

The Impact of a Western Diet with High Salt on Metabolic Outcomes in Male C57bl/6J Mice

Michael E. Ponte¹, John C. Prom¹, Pradeep Devkota^{1,2} Sireesha Yerrathota¹, Mea Carradine³, Larry Ha⁵, E. Matthew Morris^{1,3,4,6}, and Andrew J. Lutkewitte^{1,2,4,6*}

¹Department of Cell Biology and Physiology, ²Department of Endocrinology, Diabetes, and Clinical

Pharmacology, ³Kansas University Cancer Center, ⁴Kansas Center for Metabolism & Obesity Research, University of Kansas Medical Center, Kansas City, KS, United States.

⁵Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States.

⁶Kansas University Diabetes Institute, Kansas City, KS, United States

Keywords: Western diet, salt, mitochondria, adipose tissue, insulin resistance

Running title: High-salt Western diet drives metabolic dysfunction in male mice

*Correspondence to:

Correspondence to:
Andrew J. Lutkewitte

Andrew J. Latkowitsch
The University of Kansas Medical Center

3901 Rainbow Blvd. Kansas City, KS 66160

Tel: 1-913-945-8518

alutkewitte@kumc.edu

Conflict of interest: The authors have no conflicts of interest.

Funding: This work was supported by grants from the NIH, K01 DK126990 to AJL and P20GM144269-04 RPL to AJL, and EMM. MEP was supported by T32 DK128770MC. MC was funded with support from the Lida Moffett Foundation. Work was also supported by the Cell, Tissue, Biobank, and Biostatistics Core (CTBB) and the Metabolic Phenotyping Core (MET-CORE) of the Kansas Center for Metabolism and Obesity REsearch (KC-MORE) P20GM144269-04.

31 **Abstract:**

32 **Objective:** The Western diet promotes obesity and metabolic disease by increasing caloric intake and
33 systemic inflammation. The typical Western diet is high in saturated fats, sugars, and salt. In pre-clinical rodent
34 studies, the “Western” diet (also called the high-fat high-sucrose diet (HFHS)) is high in saturated fats and
35 sugars (typically sucrose) but low in salt (<1% salt). As such, we sought investigate the impact of a chronic 3%
36 NaCl Western diet (high-fat, high-sucrose + high salt (HFHS + Salt)) diet on systemic organ metabolism, liver
37 mitochondrial function, and adipose tissue.

38 **Methods:** Thirty-six 8 week-old C57Bl/6J male mice were fed either a low-fat diet (LFD), a HFHS, or a HFHS +
39 Salt diet for 16 weeks. Body weight, body composition, and food intake were monitored weekly. Glucose
40 tolerance tests (GTT) and insulin concentrations were measured after 8 weeks of diet intervention to assess
41 glucose and insulin homeostasis. Mice were euthanized at 16 weeks for liver mitochondrial respiration and
42 tissue analysis.

43 **Results:** Over 16 weeks, the HFHS fed group gained significantly more weight than the other diet groups.
44 Liver weights were similar in LFD and HFHS + Salt groups but higher in the HFHS group. Liver triglycerides
45 (TAGs) were also similar between LFD and HFHS + Salt groups, while HFHS had elevated liver TAGs. Inguinal
46 and brown adipose tissue depots were larger in both HFHS and HFHS + Salt vs. LFD. Surprisingly, the
47 gonadal adipose tissue was significantly larger in the HFHS + Salt compared to HFHS and LFD groups –
48 suggesting that a HFHS + Salt exacerbates gonadal adipose expansion more than typical rodent HFHS.
49 Paradoxically, the addition of salt appears to have dampened expression of inflammation related genes (*Ccl2* &
50 *Adgre1*) in adipose tissue compared to HFHS alone. Metabolically, the HFHS+ Salt fed mice showed the
51 highest glucose intolerance, followed by HFHS and then LFD groups. Liver mitochondrial respiration, assessed
52 by changing ATP/ADP ratios, showed the HFHS group with the highest oxygen consumption, followed by
53 HFHS + Salt, then LFD groups, highlighting differences in respiration with additional salt (HFHS vs HFHS +
54 Salt).

55 **Conclusion:** While the excess salt mitigated some HFHS effects on weight gain and hepatic lipid
56 accumulation, it exacerbated gonadal adipose expansion and impaired glucose tolerance. HFHS increased
57 mitochondrial respiration, but salt addition appeared to dampen this effect. Dietary salt, within a high-fat/high-
58 sucrose context, has differential impacts on metabolic outcomes compared to HFHS alone, underscoring the

59 need for further research to fully understand how Western diets (high-fat, high-sucrose, *and high salt*) impact
60 all aspects of metabolic health.

61 **1. Introduction:**

62 The Western diet, typically rich in processed foods that contain added saturated fats, sugars
63 (sucrose/fructose), and salt – promotes obesity and metabolic diseases not only by increasing caloric intake
64 but also by inducing systemic inflammation and metabolic dysregulation [1, 2]. While the impact of these
65 dietary components on systemic inflammation and metabolic dysregulation is recognized, the specific
66 mechanisms, particularly concerning systemic and hepatic mitochondrial metabolism in response to dietary
67 salt, remain poorly understood.

68 Dietary salt (sodium-chloride, NaCl) provides the body with sodium, essential for cellular homeostasis and
69 various physiological functions, including maintaining extracellular fluid volume, osmolality, and maintaining
70 membrane potentials through sodium/potassium exchange [3]. While only 1.25 g/day of salt is needed for
71 normal physiological functions, modern diets significantly exceed this amount [4]. In the U.S., average daily
72 sodium intake is over 3.2 g (equivalent to ~8 g of table salt), and some populations consume up to ~15-25
73 g/day [5, 6]. Excess salt intake is well-documented as a major contributor to cardiovascular diseases (CVD),
74 one of the leading causes of death globally [7, 8]. Importantly, CVD is a major co-morbidity of obesity and
75 metabolic syndrome, making the study of the complex/multi-component Western diet (high-fat, high-sugar, *and*
76 high-salt) essential to understanding these interconnected public health crises. Global dietary guidelines
77 recommending a maximum daily sodium intake of 2.3 g (5.75 g of table salt) [9]. The World Health
78 Organization aims to reduce dietary salt (NaCl) intake to less than 5 g/day [10]. However, concerns have
79 emerged regarding the potential downsides of strict sodium restriction and/or feasibility for individuals
80 voluntarily reducing salt intake, sparking interest in salt replacement (potassium salt) therapy as potential
81 alternatives [11, 12].

82 Recent studies suggest that salt may also influence metabolism and energy balance through mechanisms like
83 increasing lipolysis, thermogenesis, and regulating key hormones such as leptin, natriuretic peptides, and
84 aldosterone [13-16]. Both high and low salt intake have been associated with metabolic dysfunction, including
85 insulin resistance, leptin resistance, obesity, and metabolic syndrome [13, 14, 17]. Conflicting findings on salt's

86 role in energy homeostasis may result from varying research designs in human and animal studies [17-21].
87 Clinic population studies such as the Trials of Hypertension Prevention (TOPH I & II) in the 1980s and
88 subsequent follow ups in 2014/16 found a direct linear relationship between average daily sodium intake during
89 the trial and cardiovascular disease risk. However, it's unclear what the participants were eating in the years
90 after the study – likely confounding the follow up results [22]. More recent studies have shown associations
91 between high sodium and low potassium with increased cardiovascular risk – while increasing potassium
92 intake may alleviate some risk [23]. Despite the well-established links between dietary salt and cardiovascular
93 disease and emerging evidence of broader metabolic effects, the impact of excess dietary sodium on systemic
94 metabolism and in particular hepatic mitochondrial function remains largely unexplored.

95 This gap in our understanding that various dietary amounts of dietary salt can have on metabolic outcomes
96 highlights the need to better understand how excess dietary salt influences energy homeostasis and glucose
97 metabolism, beyond its relatively well-known cardiovascular effects.

98 While excess sodium intake has been linked to insulin resistance and metabolic disease in human populations,
99 high sodium in animal models has been shown to reduce glucose tolerance and insulin sensitivity, while low-
100 sodium diets increase insulin-sensitizing adipokines and decrease adipose inflammation [5-9]. The effects of
101 sodium on insulin sensitivity likely involve the renin-angiotensin system (RAS), which is linked to insulin
102 resistance [24, 25]. Paradoxically, short-term sodium restriction has been shown to increase insulin resistance
103 through RAS activation [20], while mineralocorticoid receptor blockade improves insulin sensitivity and reduces
104 inflammation [26]. Sodium also influences immune cell behavior, promoting inflammatory responses that
105 worsen metabolic outcomes [27-29].

106 Sodium's role in fat deposition and obesity is relatively complex. High sodium intake is associated with obesity
107 in humans [29-31], although animal studies show mixed results. Some research suggests sodium increases fat
108 mass without affecting body weight [32], while other studies indicate it reduces both body weight and fat mass
109 [33, 34]. In diet-induced obesity models, high sodium intake has been shown to prevent weight gain [35, 36].
110 The effects of chronic high-fat/high-sucrose/high-sodium (HFHS + Salt) diets on hepatic mitochondrial
111 dynamics in the context of obesity are not well understood. Further, previous studies did not monitor on the
112 week-to-week changes in food intake (as high-salt may change palatability) which could drive the differences in
113 body composition

114 Therefore, this study aims to address this gap by investigating the direct impact of chronic Western diet
115 consumption on hepatic mitochondrial function and metabolic outcomes. Better understanding these
116 mechanisms will be crucial for developing more translatable preclinical dietary models to ultimately mitigate the
117 metabolic consequences of excessive salt intake in the context of modern Western diets (high-fat, high-
118 sucrose, and *high-salt*).

119 **2. Materials & Methods:**

120 **Animals & Diet Paradigm.** Animal protocols were approved by the Institutional Animal Care and Use
121 Committee at the University of Kansas Medical Center. All experiments were carried out in accordance with the
122 Guide for the Care and Use of Laboratory Animals. 36 male C57Bl/6J mice (#000664, Jackson Laboratory, Bar
123 Harbor, ME, USA) were purchased from Jackson Laboratory at 6 weeks of age. Mice were acclimated to
124 housing at ~28°C on 12/12 reverse light cycle (dark 10:00 – 20:00), with ad libitum access to water and
125 standard chow for 2 weeks prior to random group assignment [37]. Three diet groups were established: low-fat
126 diet (10% kcal fat, 3.5% kcal sucrose, and 3.85 kcal/g energy density, Research Diets D12110704), high-
127 fat/high-sucrose (45% kcal fat, 17% kcal sucrose, and 4.73 kcal/g energy density, Research Diets D12451),
128 and high-fat/high-sucrose + 3% NaCl (Salt) (45% kcal fat, 17% kcal sucrose, and 4.73 kcal/g energy density
129 Research Diets Special Diet # D06041001). On day 1 of the experiment, mice were given their respective diets
130 for 16-weeks with fresh diet added weekly.

131 **Anthropometrics and energy intake.** Body weight measurements started on Day 1 and were measured
132 weekly. Food intake was assessed each week, and body composition was measured weekly using the
133 EchoMRI-1100 system (EchoMRI, Houston, TX). Fat-free mass (FFM) was calculated as the difference
134 between body weight (BW) and fat mass (FM). Week 10 body composition was not assessed due to
135 equipment failure. Energy intake was calculated as the energy density of LFD (3.85 kcal/g), HFHS (4.73
136 kcal/g), or HFHS + Salt (4.6 kcal/g) times the food intake for 7 days.

137 **Glucose tolerance tests and insulin secretion assays.** At week 8 of the diet intervention, animals had food
138 withdrawn for 4-hours (at 8am) prior to a baseline blood glucose reading after which they were given an
139 intraperitoneal (IP) injection of glucose (1.5 g/kg lean mass) to assess glucose homeostasis. Blood glucose
140 and insulin were assessed from the tail vein at 0, 15, 30, 60, 90, and 120 minutes after IP injection. ~50ul of

141 serum was collected during each time point and frozen at -80°C. Insulin levels were assessed using a Mouse
142 Insulin ELISA kit (Crystal Chem, Elk Grove Village, Illinois).

143 **Liver TAG Content and NAFL Activity Scoring.** Liver TAGs and NAFL activity scoring were determined as
144 previously described [38]. Briefly, ~100 mg of frozen liver tissue was homogenized using a bead homogenizer
145 in ice cold PBS (1mL/mg tissue). 100 μ L of liver lysate was added to 100 μ L of 1 % sodium deoxycholate the
146 tubes were vortexed and heated at 37°C for 5 min to solubilize lipids. TAG content was measured
147 enzymatically (Thermo Fisher TR22421). For NAFL scoring liver tissue was fixed in 10 % neutral buffered
148 formalin for 48 hours and stored in 70 % ethanol until embedded and processed by The Kansas Intellectual
149 and Developmental Disabilities Research Center (KIDDRC) Histology Core. H&E-stained liver sections were
150 scored by an independent-blinded clinical pathologist using the Brunt Method [39].

151 **Mitochondrial Respiration.** Liver mitochondria were isolated as previously described [40]. Briefly, ~1 g of
152 liver was homogenized (glass-on-teflon) in 8 mL of ice-cold mitochondrial isolation buffer (220 mM mannitol, 70
153 mM sucrose, 10 mM Tris, 1 mM EDTA, pH adjusted to 7.4 with KOH). The homogenate was centrifuged (4°C,
154 10 min, 1500 g), the supernatant was transferred to a round bottom tube, and centrifuged (4°C, 10 min, 8000x
155 g). The pellet was resuspended in 6 mL of ice-cold mitochondrial isolation buffer using a glass-on-glass
156 homogenizer, and centrifuged again (4°C, 10 min, 6000 x g). This final pellet was resuspended in ~0.75 mL of
157 modified mitochondrial respiration buffer (MiRO5) (0.5 mM EGTA, 3 mM MgCl₂, 60 mM KMES, 20 mM
158 glucose, 10mM KH₂PO₄, 20 mM HEPES, 110 mM sucrose, 0.1% BSA, 0.0625 mM free CoA, and 2.5mM
159 carnitine, pH~7.4). The protein concentration for both suspensions was determined by BCA assay.

160 **Liver Mitochondrial Creatine Kinase Clamp.** Change in respiratory rate of isolated liver mitochondria during
161 changes in Δ _GATP were performed as previously described with minor changes [40, 41]. Briefly, 2 mM malate,
162 isolated liver mitochondria (50ul), 10 mM palmitoyl CoA, 10 mM palmitoyl-carnitine, 5 mM ATP, 5 mM creatine,
163 and 20 U/mL creatine kinase were added to Oroboros chambers containing mitochondrial respiration buffer.
164 ADP dependent respiration was initiated by the addition of 1 mM PCr, and sequential additions of PCr to 3, 6,
165 9, 12, 15, 18, 21, 24, 27, 30 mM reduced respiration toward baseline. The free energy of ATP for each PCr
166 concentration was calculated as described [40]. The linear respiration data from 9 mM to 21 mM PCr was used
167 and the conductance represented as the slope of the line. The data is oriented to represent a simulated
168 increase in energy demand produced by the clamp.

169 **Liver Mitochondrial Palmitoyl-CoA Sensitivity.** Briefly, oxygen consumption was measured during changes
170 in palmitoyl-CoA concentrations (from 5uM to 30uM) after additions of 2mM malate, 2500U/mL hexokinase,
171 and 500mM ADP.

172 **Adipose Tissue Diameter.** Adipose tissue was fixed in 10 % neutral buffered formalin for 48 hours and stored
173 in 70 % ethanol until embedded and processed by the KIDDRC Histology Core. H&E-stained adipose slides
174 were scanned by the KUMC Biospecimen Repository Core Facility using a ZEISS Digital Slide Scanner
175 Axioscan 7. Adipocyte diameter was measured using Zeiss Zen software by averaging 15 adipocytes of 3
176 separate slide sections per mouse.

177 **Gene Expression.** Liver and kidney RNA was isolated from ~ 25 mg of liver tissue using a RNeasy Plus Mini
178 Kit (Qiagen, Valencia, CA, USA). The cDNA for liver tissues was produced using the ImProm-II RT system
179 (Promega, Madison, WI, USA). Liver RT-PCR was performed using a Bio-Rad CFX Connect Real-Time
180 System (Bio-Rad, Hercules, CA, USA) and SYBR Green. Adipose tissue RNA was isolated from ~50 mg of
181 tissue by homogenization in 1 mL of Qiazol (Qiagen). Adipose RNA was extracted using a RNeasy Lipid kit
182 (Qiagen). Adipose cDNA was produced using a High-Capacity cDNA Reverse Transcription Kit
183 (ThermoFisher). Gene specific values for liver were calculated using the using the $-2^{\Delta\Delta ct}$ method and
184 normalized to relative *Cyclophilin B* (*Ppib*, liver and kidney) or *36b4* (adipose) mRNA expression values. Primer
185 sequences are listed in **Table 1**.

186 **Plasma metabolites.** Plasma samples were analyzed using a Multiplex adipokine assay (Millipore-Sigma,
187 MADKMAG-71K) by the CTBB core) for concentrations of IL-6, Leptin, MCP-1, PAI-1, Resistin, TNF α . Plasma
188 triglycerides (TAGs), HDL, total cholesterol, AST and ALT were measured by IDEXX BioAnalytics (North
189 Graphton, MA).

190 **Statistical Analysis.** GraphPad Prism version 10.0 (GraphPad Software, San Diego, CA) was used for
191 statistical analysis for each experiment unless otherwise mentioned. Data are presented as means and
192 standard error. The two-standard deviation test was utilized to test for outliers within group. Data was assessed
193 using one-way ANOVA with appropriate post-hoc tests for multi-group comparisons, or Student's t-test for
194 pairwise comparisons where indicated. Significance was considered as $p > 0.05$; LFD vs HFHS (γ), LFD vs
195 HFHS + Salt (δ), HFHS vs HFHS + Salt (β).

196 **3. Results:**

197 **3.1. Dietary Salt Mitigates Overall Weight Gain but Worsens Glucose Tolerance**

198 At the start of the study, all groups had similar body weights (~22g). Over the 16-week intervention, the HFHS
199 group gained significantly more body weight (~22g) compared to the HFHS + Salt group (~19g) and the LFD
200 group (~9g) (**Figure 1A**). This weight gain was primarily driven by a dramatic increase in fat mass, with only
201 modest gains in lean mass (**Figure 1B & C**). Although weekly energy intake was initially elevated in HFHS and
202 HFHS + Salt groups, around week 6 all the groups began to consume similar weekly kcals (**Figure 1D**). The
203 cumulative energy intake was highest in the HFHS group, followed closely by the HFHS + Salt group, and
204 lowest in the LFD group, generally aligning with the observed weight changes (**Figure 1D-F**). Notably, at
205 dietary week 11, weekly energy intake was negatively affected by an institutional-mandated cage change. This
206 caused a subtle loss in body weight of the HFHS and HFHS + Salt fed mice but not the LFD fed controls
207 (**Figure 1** see arrows).

208 Despite having lower overall body weight, mice on the HFHS + Salt diet exhibited the most severe glucose
209 intolerance. During a glucose tolerance test (GTT) (1.5mg/kg glucose IP injection) at 8 weeks, the HFHS + Salt
210 group displayed the highest blood glucose excursion, which was significantly greater than the LFD group as
211 measured by the adjusted area under the curve (AAUC) (**Figure 2A & B**). This impaired glucose homeostasis
212 was associated with a blunted insulin secretion response during the GTT in both HFHS and HFHS + Salt
213 groups compared to the LFD group (**Figure 2C & D**).

214 **3.2. Excess Dietary Salt May Protect Against Hepatic Steatosis on a High-Fat Diet**

215 To determine the extent of metabolic derangement caused by HFHS and HFHS + Salt feeding, we analyzed a
216 major metabolic organ the liver. The HFHS diet group saw elevated markers of hepatic steatosis, as evidenced
217 by a significant increase in liver weight and an increase in liver triglycerides (TAGs) (**Figure 3A & B**). This was
218 corroborated by significantly elevated NAFL activity scores (NAS), driven primarily by steatosis (**Figure 3D-G**). Interestingly,
219 spleen weight (as a % body weight), a surrogate for portal hypertension, was similarly decreased
220 in both high-fat high-sucrose groups relative to LFD – suggesting no/minimal portal vein hypertension occurred
221 in these groups (**Figure 3H**). HFHS feeding caused a significant increase in serum ALT but not AST, a marker
222 of liver damage (**Figure 3I, J**). Remarkably, the addition of 3% salt to the HFHS diet dampened these effects;

223 the HFHS + Salt group had liver weights, TAG content, and AST/ALT levels that were more like the LFD group
224 (**Figure 3A, B, D-G, I & J**). While additional dietary salt may have “protected” the liver from excessive lipid
225 accumulation, both high-fat diets induced systemic dyslipidemia. Serum HDL and total cholesterol were
226 significantly elevated in both HFHS and HFHS + Salt groups compared to LFD (**Figure 3L & M**).

227 **3.3. HFHS Diet Increases Liver Mitochondrial Respiration, an Effect Dampened by Dietary Salt**

228 To further investigate the mechanisms behind the hepatic phenotype, we assessed liver mitochondrial function.
229 Hepatic mitochondria isolated from the HFHS group exhibited the highest rate of oxygen consumption in
230 response to increasing concentrations of the fatty acid palmitoyl-CoA, indicating a heightened capacity for fatty
231 acid oxidation (**Figure 4A**). A similar pattern was observed using a creatine kinase clamp to assess respiration
232 across a range of ATP free energy (ΔG_{ATP}) values – going from low-to-high (state of rest to exercise) energy
233 demand (**Figure 4B**). In contrast, the HFHS + Salt group showed an intermediate respiratory phenotype, with
234 oxygen consumption rates significantly lower than the HFHS group but higher than the LFD group (**Figure 4A**
235 & **B**).

236 Gene expression analysis of the liver revealed that markers of fatty acid oxidation (*Cpt1a*, *Hadha*) were
237 upregulated in both high-fat groups compared to LFD (**Figure 4C & D**). However, genes associated with
238 fibrosis (*Col1a1*), inflammation (*Cd68*), and tissue remodeling (*Spp1*, *Tgfb1*) were most highly expressed in the
239 HFHS group, and their expression was reduced by the addition of dietary salt (**Figure 4H-L**). Interestingly,
240 expression of the sodium-potassium pump subunit *Atp1a1* showed a trend towards being highest in the HFHS
241 + Salt group ($p=0.068$) (**Figure 4I**).

242 **3.4. Excess Dietary Salt Alters Adipose Tissue Distribution**

243 In stark contrast to its effects on liver and overall body weight, excess dietary salt specifically exacerbated the
244 expansion of gonadal (visceral) fat. The gonadal white adipose tissue (gWAT) depot was significantly larger in
245 the HFHS + Salt group compared to both the HFHS and LFD groups (**Figure 5A**). This was accompanied by a
246 significant increase in gWAT adipocyte diameter compared to the LFD group, although gWAT diameter was
247 similar between the HFHS + Salt and HFHS groups (**Figure 5B**). Inguinal (subcutaneous) white adipose tissue
248 (iWAT) depots and adipocyte size were similarly increased in both high-fat groups compared to LFD (**Figure**

249 **5C & D).** In contrast, brown adipose tissue (BAT) was largest in the HFHS group, an effect that was normalized
250 by the additional 3% dietary salt (**Figure 5E**).

251 **3.5. HFHS Diets Induce Adipose Inflammation, with Salt Addition Exerting Modulatory Effects**

252 Plasma adipokine levels of adiponectin, leptin, resistin, and plasminogen activator inhibitor 1 (PAI-1) were not
253 different among the groups (**Figure 6A-D**). Plasma MCP-1 was significantly lower in the HFHS + Salt group
254 compared to LFD group (**Figure 6E**). The pro-inflammatory cytokine IL-6 was significantly elevated in the
255 HFHS group, an effect that was completely abolished in the HFHS + Salt group while TNF- α was unchanged
256 (**Figure 6F, G**).

257 In gWAT, several genes involved in adipocyte function (fat synthesis and storage), *Pparg1*, *Srebf1*, *Fasn*, and
258 *Elov16*, are all significantly upregulated in the LFD group compared to the HFHS and HFHS + Salt groups
259 (**Figure 7A-D**). In contrast to the lipogenic genes, the inflammatory and fibrotic markers *Ccl2* (a monocyte
260 chemoattractant), *Adgre1* (a macrophage marker), and *Tgfb1* (a gene involved in inflammation and fibrosis)
261 are all significantly increased in the HFHS group compared to LFD – while the expression in the HFHS + Salt
262 group is intermediary (**Figure 7 E-H**). Interestingly, *Cd68* (macrophage marker) was significantly elevated in
263 the LFD and HFHS + Salt compared to the HFHS group (**Figure 7I**). *Col1a1* (fibrosis marker) was significantly
264 lower in the LFD group compared to the HFHS and HFHS + Salt groups (**Figure 7J**).

265 iWAT gene expression revealed no significant differences in *Pparg1* expression between groups, however,
266 *Srebf1*, *Fasn*, and *Elov16* showed significant increases in relative expression of LFD animals compared the
267 HFHS groups (**Figure 7K-N**). Both *Ccl2* and *Adgre1* were significantly elevated in the HFHS and HFHS + Salt
268 groups – with the Salt mice having an intermediary expression between the HFHS and LFD groups (**Figure**
269 **7O & P**). Like the gWAT *Elo6* expression – there were no significant differences between the groups, although
270 the HFHS and HFHS + Salt trended higher in iWAT tissue (**Figure 7Q**). Also, like gWAT, iWAT expression of
271 *Tgfb1* was significantly elevated in the HFHS group compared to LFD and HFHS + Salt (**Figure 7R**).
272 Interestingly, *Cd68* expression was elevated in both HFHS and HFHS + Salt groups compared to LFD, and
273 likewise for *Col1a1* expression (**Figure 7S & T**).

274 Brown adipose tissue gene analysis revealed increased expression of *Upc1* (thermogenesis) in the HFHS
275 group compared to LFD and HFHS + Salt groups (**Figure 8A**). *Prdm16* (BAT induction and differentiation) was

276 significantly elevated in the LFD group compared to both HFHS groups (**Figure 8B**). Genes involving in
277 transcriptional regulation of energy balance and metabolism (*Pgc1a*, *Adrb3*, *Cpt1a*, *Ppara*, and *Pparg1*)
278 showed significantly increased expression in the HFHS group compared to LFD and HFHS + Salt groups
279 (**Figure 8C-G**). While *Srebp1* and *Fasn*, also lipid metabolism genes, showed significantly increased in
280 expression in the LFD group compared with both HFHS groups (**Figure 8H & I**). Together these data highlight
281 the depot specific changes in response to our diet interventions.

282 **4.1 Discussion:**

283 This study aimed to investigate the impact of a chronic high-fat/high-sucrose diet with and without added salt
284 (to mimic a *modern* Western diet) on metabolic outcomes in male C57B/6J mice. Our findings demonstrate
285 differential effects on body composition, glucose metabolism, liver function, hepatic mitochondrial respiration,
286 and adipose tissue distribution. With increasing healthcare burdens related to chronic Western diets (high fat,
287 sugar, *and* salt) and associated metabolic dysfunction, it is critical we better understand how these dietary
288 compositions impact metabolic outcomes compared to traditional high-fat, high-sugar (primarily sucrose and
289 often low salt) diets commonly used in preclinical research models [42-44].

290 Our results demonstrate that while both HFHS and HFHS + Salt diets led to increased body weight compared
291 to the low-fat diet (LFD), the HFHS group accumulated more weight over the 16-week period compared to the
292 HFHS + Salt group (**Figure 1A**). This difference in weight gain was primarily driven by increased fat mass
293 accumulation, with the HFHS group exhibiting greater total fat mass (**Figure 1C**). Surprisingly, despite HFHS +
294 Salt having statistically similar cumulative energy intake to the HFHS group (**Figure 1F**), the added salt
295 appears to have mitigated some of the weight-promoting effects of the high-fat/high-sucrose diet. We
296 acknowledge that the cumulative energy intake is slightly lower in the Salt fed group compared to the HFHS
297 diet alone. Since even a slight decrease in energy intake can reduce weight gain over an extended period, this
298 could explain the reduction in weight gain and therefore many of the metabolic observations here. Further
299 research to determine the optimal % of NaCl to avoid palatability aversion yet still drive hypertension and
300 metabolic disease.

301 Although the additional salt mostly improved the metabolic outcomes measured in this study, there was a
302 striking change in adipose tissue distribution (**Figure 5**) – the HFHS + Salt diet led to an increase in gonadal

303 adipose tissue, which is consistent with previous work [45]. Surprisingly, the addition of salt did not exacerbate
304 adipose inflammation. In fact, the salt lowered tissue and plasma markers of inflammation in gWAT and iWAT
305 (**Figures 5 and 6**). Inflammatory and fibrotic markers were consistently upregulated in the high-fat diet groups.
306 In gWAT, *Ccl2*, *Adgre1*, and *Tgfb1* were all significantly increased in the HFHS group compared to LFD, with
307 the HFHS + Salt group showing an intermediary expression (**Figure 7E-H**). Similarly, in iWAT, both *Ccl2* and
308 *Adgre1* were significantly elevated in the HFHS and HFHS + Salt groups, confirming a broad inflammatory
309 response in both groups (**Figure 7O & P**). Interestingly, *Cd68* expression was lower in the HFHS group
310 compared to both LFD and HFHS + Salt groups in gWAT but elevated in iWAT unlike the LFD group (**Figure 7I**
311 & **S**). This was accompanied by a significant increase in *Col1a1* expression in both HFHS and HFHS + Salt
312 groups compared to LFD in gWAT (**Figure 7J**). While both high-fat diets induced fibrosis (*Col1a1*), the addition
313 of salt “dampened” the expression of *Tgfb1* in both iWAT and gWAT (**Figure 7H & R**). Surprisingly, plasma IL-6
314 levels were significantly elevated in the HFHS group but completely normalized in the HFHS + Salt group – this
315 suggests that the added salt might have a modulating effect on the inflammatory response, potentially by
316 affecting the production or clearance of IL-6 (**Figure 6F**). Plasma MCP-1 levels were significantly lower in the
317 HFHS + Salt group compared to LFD, suggesting excess dietary salt influences chemokine signaling (**Figure**
318 **6E**). In contrast, brown adipose tissue (BAT) weight was significantly increased in the HFHS group compared
319 to HFHS + Salt and LFD (**Figure 5E**). The mechanisms underlying these specific, depot-dependent effects of
320 high dietary salt on adipose tissue warrant further investigation into adipocyte proliferation/expansion during
321 high-salt exposure.

322 The addition of 3 % NaCl did not change spleen weight (a marker of portal hypertension, **Figure 3H**) nor heart
323 or kidney weight (data not shown), suggesting that 3% NaCl + HFHS diet may not be sufficient to drive portal
324 hypertension in C57Bl/6J male mice. Many hypertension studies use diets with as much as ~4-8% NaCl;
325 however, these studies often do not rigorously assess metabolic functions [46-48].

326 Increased liver triglycerides and elevated alanine aminotransferase (ALT) levels, hallmarks of hepatic steatosis
327 and liver damage, were observed in the HFHS group (**Figure 3A, B & J**). However, the addition of salt to the
328 HFHS diet appeared to ameliorate these effects, with liver triglyceride and ALT levels in the HFHS + Salt group
329 being similar to the LFD group (**Figure 3A, B & J**). This suggests a potential “protective” or “blunting” effect of
330 high-salt against hepatic lipid accumulation and liver injury markers in the context of a chronic high-fat/high-

331 sucrose diet. This observation is consistent with the significantly lower liver weight observed in the HFHS +
332 Salt group compared to the HFHS group, and its similarity to LFD (**Figure 3A**). Detailed scoring for markers of
333 liver injury, including the overall NAFL activity score (NAS) and its components (ballooning, lobular
334 inflammation, and steatosis), further revealed elevated scores, particularly for steatosis, in the HFHS group
335 compared to LFD and HFHS + Salt (**Figure 3D-G**). Serum HDL and total cholesterol were significantly
336 elevated in both high-fat, high-sucrose groups compared to LFD, suggesting that the added salt didn't "*blunt*"
337 circulating markers of dyslipidemia compared to HFHS alone (**Figure 3L & M**). One possibility for the
338 improvement in liver metabolism is that lipids are repartitioned from the liver to the expanded gonadal adipose
339 depot, where lipids are physiologically stored.

340 Metabolically, the HFHS + Salt group exhibited the highest degree of glucose intolerance, followed closely by
341 the HFHS group, with the LFD group demonstrating the best glucose tolerance (**Figure 2A & B**). The absolute
342 area under the curve (AAUC) for the GTT was significantly increased in the HFHS + Salt group compared to
343 the LFD but not the HFHS group (**Figure 2B**). Fasting insulin was higher in both the HFHS and HFHS + Salt
344 diet groups and insulin secretion as a response to the glucose bolus was blunted both high-fat-high sucrose
345 groups. (**Figure 2C, D**). Future studies should include insulin tolerance testing and more detailed assessment
346 of insulin kinetics to better characterize the effects of a true Western diet on insulin sensitivity and secretion
347 dynamics in chronic high-fat fed mice.

348 Mitochondrial respiration studies revealed that the HFHS group exhibited the highest oxygen consumption
349 rates in response to both increasing Palmitoyl-CoA (PCoA) concentrations and changes in ATP free energy via
350 the creatine kinase (CK) clamp protocols (**Figure 4A & B**). While the HFHS + Salt group also showed elevated
351 oxygen consumption compared to the LFD group, its magnitude was intermediate between the LFD and HFHS
352 groups for both protocols. These findings suggest that both high-fat/high-sucrose diets, with or without salt,
353 increase liver mitochondrial respiration, potentially reflecting increased fatty acid oxidation capacity or overall
354 metabolic demand. Liver mRNA expression analysis revealed that markers of fatty acid oxidation (Cpt1a,
355 Hadha) were upregulated in both high-fat groups, consistent with increased fatty acid metabolism capacity
356 (**Figure 4C & D**). We also observed a trend towards increased Atp1a1 expression in the HFHS + Salt group
357 ($p=0.068$), suggesting a potential mechanism where the increased sodium load from the diet elevates the

358 energy demand of the Na⁺/K⁺-ATPase, thereby increasing energy expenditure and reducing the substrate
359 available for storage in the liver.

360 **4.2 Summary**

361 In conclusion, this study demonstrates that the addition of dietary salt (NaCl) to a high-fat/high-sucrose diet has
362 complex and sometimes paradoxical effects on metabolic parameters. While salt appears to mitigate some of
363 the negative effects of a high-fat/high-sucrose diet on overall weight gain, hepatic lipid accumulation, liver
364 injury markers (e.g., ALT), and serum IL-6 levels, it exacerbates gWAT expansion and impairs glucose
365 tolerance. These findings highlight the importance of considering the combined and nuanced effects of
366 individual dietary components within the context of a modern Western diet (high fat, high sugar (sucrose), *and*
367 high salt). Our data emphasizes the need for further research to fully interpret the metabolic effects of a true
368 Western diet in preclinical models. Future studies will focus on exploring the specific mechanisms by which salt
369 influences adipose tissue metabolism, hepatic lipid accumulation, and glucose/insulin homeostasis.

370 1. Clemente-Suarez, V.J., et al., *Global Impacts of Western Diet and Its Effects on Metabolism and Health: A*
371 *Narrative Review*. *Nutrients*, 2023. **15**(12).

372 2. Adolph, T.E. and H. Tilg, *Western diets and chronic diseases*. *Nat Med*, 2024. **30**(8): p. 2133-2147.

373 3. He, F.J. and G.A. MacGregor, *Salt reduction lowers cardiovascular risk: meta-analysis of outcome trials*. *Lancet*,
374 2011. **378**(9789): p. 380-2.

375 4. Farquhar, W.B., et al., *Dietary sodium and health: more than just blood pressure*. *J Am Coll Cardiol*, 2015. **65**(10):
376 p. 1042-50.

377 5. Bernstein, A.M. and W.C. Willett, *Trends in 24-h urinary sodium excretion in the United States, 1957-2003: a*
378 *systematic review*. *Am J Clin Nutr*, 2010. **92**(5): p. 1172-80.

379 6. Powles, J., et al., *Global, regional and national sodium intakes in 1990 and 2010: a systematic analysis of 24 h*
380 *urinary sodium excretion and dietary surveys worldwide*. *BMJ Open*, 2013. **3**(12): p. e003733.

381 7. Rust, P. and C. Ekmekcioglu, *Impact of Salt Intake on the Pathogenesis and Treatment of Hypertension*. *Adv Exp*
382 *Med Biol*, 2017. **956**: p. 61-84.

383 8. *Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium*
384 *and potassium excretion*. *Intersalt Cooperative Research Group*. *BMJ*, 1988. **297**(6644): p. 319-28.

385 9. Snetselaar, L.G., et al., *Dietary Guidelines for Americans, 2020-2025: Understanding the Scientific Process,*
386 *Guidelines, and Key Recommendations*. *Nutr Today*, 2021. **56**(6): p. 287-295.

387 10. He, F.J. and G.A. MacGregor, *Role of salt intake in prevention of cardiovascular disease: controversies and*
388 *challenges*. *Nat Rev Cardiol*, 2018. **15**(6): p. 371-377.

389 11. Cook, N.R., et al., *Sodium and health-concordance and controversy*. *BMJ*, 2020. **369**: p. m2440.

390 12. Greer, R.C., et al., *Potassium-Enriched Salt Substitutes as a Means to Lower Blood Pressure Benefits and Risks*.
391 *Hypertension*, 2020. **75**(2): p. 266-274.

392 13. Bordicchia, M., et al., *Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic*
393 *program in mouse and human adipocytes*. *J Clin Invest*, 2012. **122**(3): p. 1022-36.

394 14. Dobrian, A.D., et al., *Effect of salt on hypertension and oxidative stress in a rat model of diet-induced obesity*. *Am*
395 *J Physiol Renal Physiol*, 2003. **285**(4): p. F619-28.

396 15. Tuck, M.L., et al., *The effect of weight reduction on blood pressure, plasma renin activity, and plasma aldosterone*
397 *levels in obese patients*. *N Engl J Med*, 1981. **304**(16): p. 930-3.

398 16. Wang, T.J., et al., *Impact of obesity on plasma natriuretic peptide levels*. *Circulation*, 2004. **109**(5): p. 594-600.

399 17. Donovan, D.S., et al., *Effect of sodium intake on insulin sensitivity*. *Am J Physiol*, 1993. **264**(5 Pt 1): p. E730-4.

400 18. Frieler, R.A., et al., *High-fat and high-sodium diet induces metabolic dysfunction in the absence of obesity*.
401 *Obesity (Silver Spring)*, 2021. **29**(11): p. 1868-1881.

402 19. Sharma, A.M., et al., *Salt Sensitivity in Young Normotensive Subjects Is Associated with a Hyperinsulinemic*
403 *Response to Oral Glucose*. *Journal of Hypertension*, 1991. **9**(4): p. 329-335.

404 20. Garg, R., et al., *Low-salt diet increases insulin resistance in healthy subjects*. *Metabolism*, 2011. **60**(7): p. 965-8.

405 21. Zheng, X., et al., *High-salt diet augments systolic blood pressure and induces arterial dysfunction in outbred,*
406 *genetically diverse mice*. *Am J Physiol Heart Circ Physiol*, 2023. **324**(4): p. H473-H483.

407 22. Diaz, K.M., et al., *The effects of weight loss and salt reduction on visit-to-visit blood pressure variability: results*
408 *from a multicenter randomized controlled trial*. *J Hypertens*, 2014. **32**(4): p. 840-8.

409 23. Ma, Y., et al., *24-Hour Urinary Sodium and Potassium Excretion and Cardiovascular Risk*. *N Engl J Med*, 2022.
410 **386**(3): p. 252-263.

411 24. Garg, R., et al., *Aldosterone production and insulin resistance in healthy adults*. *J Clin Endocrinol Metab*, 2010.
412 **95**(4): p. 1986-90.

413 25. Ronconi, V., et al., *Aldosterone, mineralocorticoid receptor and the metabolic syndrome: role of the*
414 *mineralocorticoid receptor antagonists*. *Curr Vasc Pharmacol*, 2012. **10**(2): p. 238-46.

415 26. Guo, C., et al., *Mineralocorticoid receptor blockade reverses obesity-related changes in expression of adiponectin,*
416 *peroxisome proliferator-activated receptor-gamma, and proinflammatory adipokines*. *Circulation*, 2008. **117**(17):
417 p. 2253-61.

418 27. Wenstedt, E.F.E., et al., *Salt increases monocyte CCR2 expression and inflammatory responses in humans*. *Jci*
419 *Insight*, 2019. **4**(21).

420 28. Zhang, W.C., et al., *High salt primes a specific activation state of macrophages, M(Na)*. *Cell Research*, 2015.
421 **25**(8): p. 893-910.

422 29. Zhou, X., et al., *Variation in Dietary Salt Intake Induces Coordinated Dynamics of Monocyte Subsets and*
423 *Monocyte-Platelet Aggregates in Humans: Implications in End Organ Inflammation*. Plos One, 2013. **8**(4).

424 30. Yi, S.S., M.J. Firestone, and J.M. Beasley, *Independent associations of sodium intake with measures of body size*
425 *and predictive body fatness*. Obesity (Silver Spring), 2015. **23**(1): p. 20-3.

426 31. Ma, Y., F.J. He, and G.A. MacGregor, *High salt intake: independent risk factor for obesity?* Hypertension, 2015.
427 **66**(4): p. 843-9.

428 32. Fonseca-Alaniz, M.H., et al., *High dietary sodium intake increases white adipose tissue mass and plasma leptin in*
429 *rats*. Obesity (Silver Spring), 2007. **15**(9): p. 2200-8.

430 33. Cui, H., et al., *High-salt intake negatively regulates fat deposition in mouse*. Sci Rep, 2017. **7**(1): p. 2053.

431 34. Drori, D., *The effect of sodium chloride ingestion on food intake and on fat deposition in male rats*. Br J Nutr,
432 1976. **35**(2): p. 195-200.

433 35. DeClercq, V.C., et al., *Distinct Adipose Depots from Mice Differentially Respond to a High-Fat, High-Salt Diet*. J
434 Nutr, 2016. **146**(6): p. 1189-96.

435 36. Weidemann, B.J., et al., *Dietary Sodium Suppresses Digestive Efficiency via the Renin-Angiotensin System*. Sci Rep,
436 2015. **5**: p. 11123.

437 37. Giles, D.A., et al., *Thermoneutral housing exacerbates nonalcoholic fatty liver disease in mice and allows for sex-*
438 *independent disease modeling*. Nat Med, 2017. **23**(7): p. 829-838.

439 38. LaPoint, A., et al., *Adipocyte lipin 1 expression associates with human metabolic health and regulates systemic*
440 *metabolism in mice*. J Clin Invest, 2024. **134**(23).

441 39. Brunt, E.M., et al., *Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions*. Am J
442 Gastroenterol, 1999. **94**(9): p. 2467-74.

443 40. Ponte, M.E., et al., *Reduced Liver Mitochondrial Energy Metabolism Impairs Food Intake Regulation Following*
444 *Gastric Preloads and Fasting*. bioRxiv, 2025.

445 41. Kumari, R., et al., *VCD-induced menopause mouse model reveals reprogramming of hepatic metabolism*. Mol
446 Metab, 2024. **82**: p. 101908.

447 42. Speakman, J.R., *Use of high-fat diets to study rodent obesity as a model of human obesity*. International Journal
448 of Obesity, 2019. **43**(8): p. 1491-1492.

449 43. Li, J.L., et al., *High fat diet induced obesity model using four strains of mice: Kunming, C57BL/6, BALB/c and ICR*.
450 *Experimental Animals*, 2020. **69**(3): p. 326-335.

451 44. Morris, E.M., et al., *Reduced Liver-Specific PGC1a Increases Susceptibility for Short-Term Diet-Induced Weight*
452 *Gain in Male Mice*. Nutrients, 2021. **13**(8).

453 45. Lanaspa, M.A., et al., *High salt intake causes leptin resistance and obesity in mice by stimulating endogenous*
454 *fructose production and metabolism*. Proc Natl Acad Sci U S A, 2018. **115**(12): p. 3138-3143.

455 46. Pitynski-Miller, D., et al., *A high salt diet inhibits obesity and delays puberty in the female rat*. Int J Obes (Lond),
456 2017. **41**(11): p. 1685-1692.

457 47. Tsunooka, K. and H. Morita, *Effect of a chronic high-salt diet on whole-body and organ sodium contents of Dahl*
458 *rats*. J Hypertens, 1997. **15**(8): p. 851-6.

459 48. Ferguson, J.F., et al., *High dietary salt-induced DC activation underlies microbial dysbiosis-associated*
460 *hypertension*. Jci Insight, 2019. **4**(13).

461

462

463

464

465

466

467

468

469

Table 1 – RT PCR primer sequences.

Gene Name (Mouse)	Forward Seq.	Reverse Seq.
PPIB	TGGAGATGAATCTGTAGGAC	CAAATCCTTCTCTCCTGTAG
CPT1a	CTCCGCCTGAGCCATGAAG	CACCACTGATGATGCCATTCT
HADHA	ATAATTGATGCTGTGAAGGC	TCTCCAAATTCTGCGATTTC
ESR1	TCTGCCAAGGAGACTCGCTACT	GGTGCATTGGTTGTAGCTGGAC
PGC1a	AGCCGTGACCACTGACAACGAG	GCTGCATGGTTCTGAGTGCTAAG
TIMP1	GCAACTCGGACCTGGTCATAA	CGGCCCGRGATGAGAAACT
COL1a1	GCTCCTCTTAGGGGCCACT	CCACGTCTCACCAATTGGGG
ATP1a1	ACATGTGGTTGACAATCAG	TACTGCCGCTTAAGAATAG
CD68	AGCTGAGGGAAGTGAATGGAA	TGCCTCTTACACGGGATTGC
TGFb1	CTCCCGTGGCTCTAGTGC	GCCTTAGTTGGACAGGATCTG
36B4	GCAGACAACGTGGCTCCAAGCAGAT	GGTCCTCCCTGGTGAACACGAAGCCC
SPP1	ATCTCACCAATTGGATGAGTCT	TGTAGGGACGATTGGAGTGAAA
PPARg1	GGAAGACCACCGCATTCTT	GTAATCAGCAACCATTGGGTCA
Srebf1	GGCACTAAGTGCCCTAACCT	GCCACATAGATCTGCCAGTGT
FASN	GTCTGGAAAGCTGAAGGATCTC	TGCCTCTGAACCAACTCACAC
ELOVL6	GAAAAGCAGTTCAACGAGAACG	AGATGCCGACCACCAAAGATA
CCL2	CACCCTTTGTTCGAGAGC	CAACACCAAGGGCAGGTAGT
F4/80 (ADGRE1)	CTTTGGCTATGGGCTTCCAGTC	GCAAGGAGGACAGAGTTATCGTG
IL6	CCAGAGATACAAAGAAATGATGG	ACTCCAGAAGACCAGAGGAAAT
UPC1	GTGAAGGTAGAATGCAAGC	AGGGCCCCCTCATGAGGTC
PRDM16	ATCCACAGCACGGTGAAGCCAT	ATCCACAGCACGGTGAAGCCAT
ADRB3	AGGCACAGGAATGCCACTCCAA	GCTTAGCCACAACGAACACTCG
PPAR α	GATGTCACACAATGCAATT	CAGTTCCGAATTTCAAGG

470

471

472

Figure 1 – Metabolic and Body Composition Analysis after 16 Weeks of Diet Interventions. A) Body weight changes over 16 weeks during chronic diet interventions. **B)** Lean mass changes over 16 weeks during chronic diet interventions. **C)** Fat mass changes over 16 weeks during chronic diet interventions. **D)** Weekly energy intake in Kcal during the chronic diet interventions. **E)** Weekly energy intake normalized to body weight (Kcal/g) during the chronic diet interventions. **F)** Cumulative energy intake in Kcal during chronic diet interventions. In panels A-F, arrows indicate a "cage change" event. LFD: Low-fat diet; HFHS: High-fat, high-sugar diet; HFHS + Salt: High-fat, high-sugar diet with added salt. **Data presented as mean \pm SEM.** Statistical analysis was performed using one-way ANOVA with Fisher's LSD post-hoc test. Significance: $p > 0.05$; : LFD vs HFHS (γ), LFD vs HFHS + Salt (δ), HFHS vs HFHS + Salt (β).

481

Figure 2 – Glucose and Insulin Homeostasis. A) Blood glucose levels during a glucose tolerance test (GTT) following an intraperitoneal (IP) injection of 1.5 mg/kg glucose after 8 weeks of diet intervention. **B)** Adjusted area under the curve (AAUC) for the GTT. **C)** Insulin secretion during the GTT, **D)** expressed as % of initial value. LFD: Low-fat diet; HFHS: High-fat, high-sugar diet; HFHS + Salt: High-fat, high-sugar diet with added salt. Data presented as mean \pm SEM. Statistical analysis was performed using one-way ANOVA with Fisher's LSD post-hoc test. Significance $p > 0.05$; LFD vs HFHS (γ), LFD vs HFHS + Salt (δ), HFHS vs HFHS + Salt (β).

488

Figure 3 – Hepatic and Systemic Metabolic Markers after 16 Weeks of Diet Interventions. A) Liver weight expressed as a percentage of total body weight. **B)** Liver triglyceride (TAGs) content (mg/g liver tissue) after 16 weeks of diet intervention. **C)** Representative (10x) Hematoxylin and Eosin (H&E) stained images of liver tissue from each diet group. **D)** Composite NAS (NAFLD Activity Score) score, derived from summing scores for **E)**

489

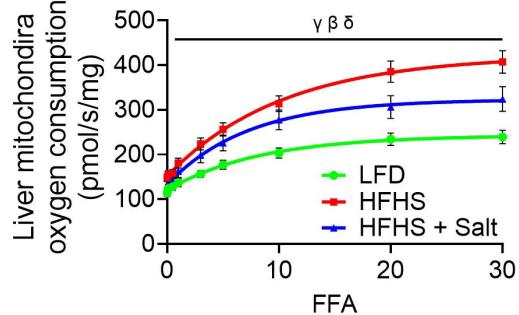
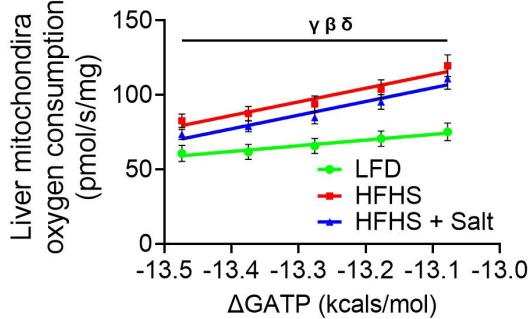
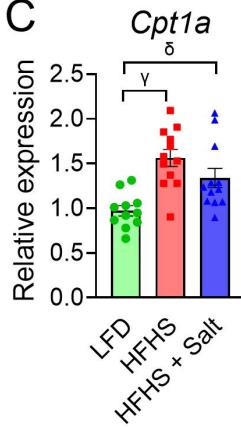
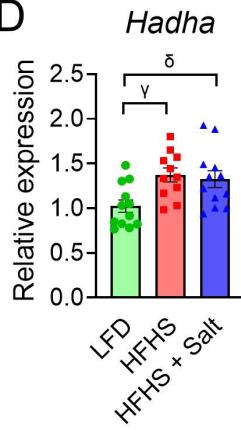
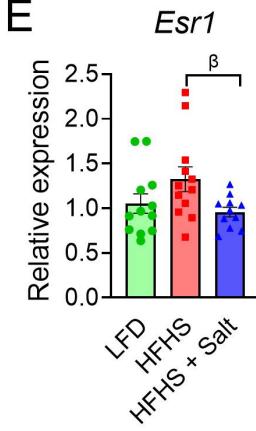
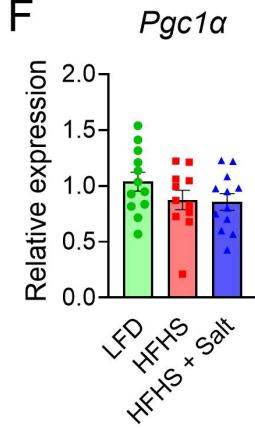
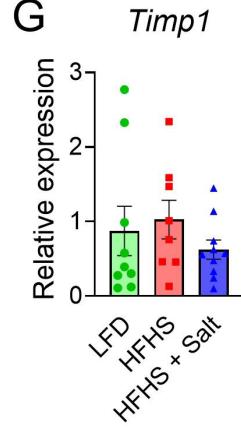
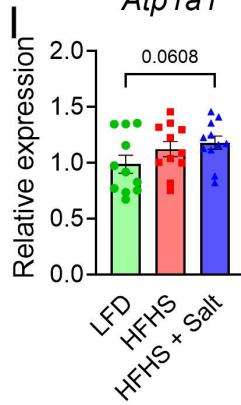
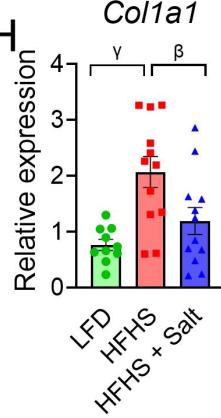
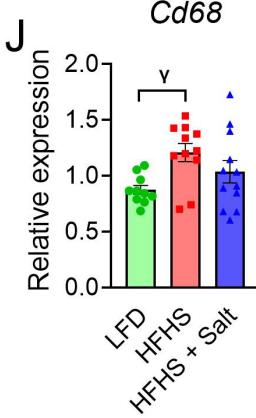
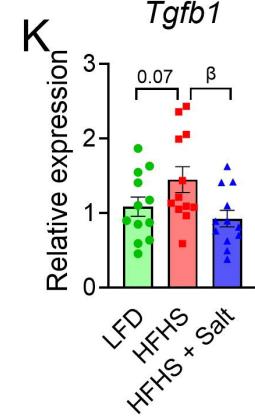
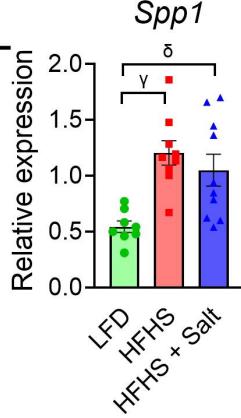
490

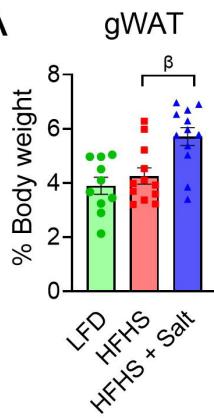
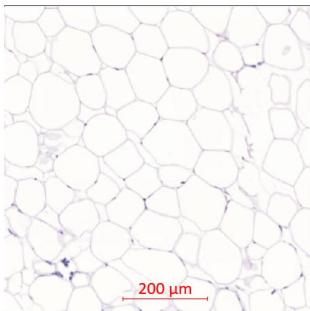
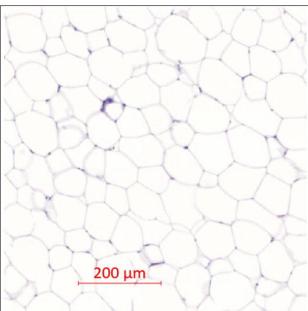
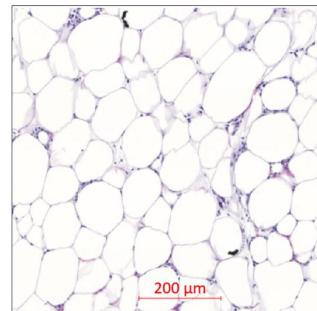
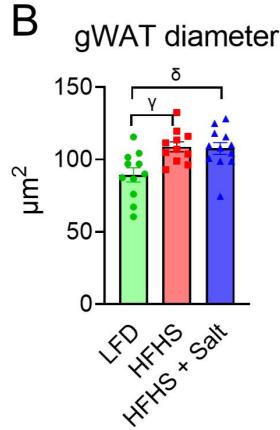
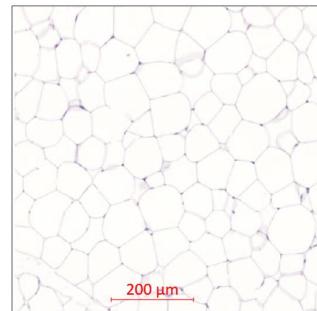
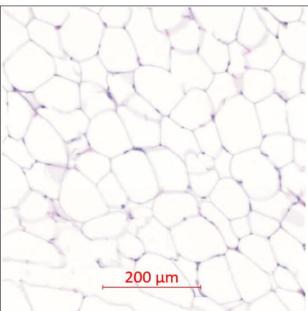
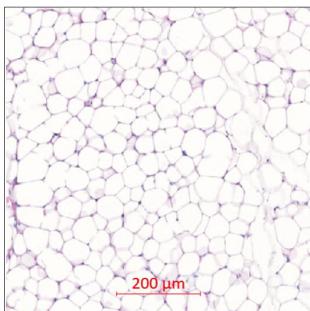
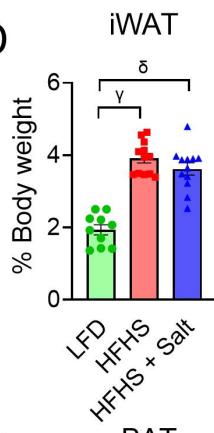
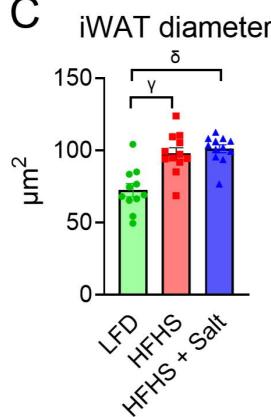
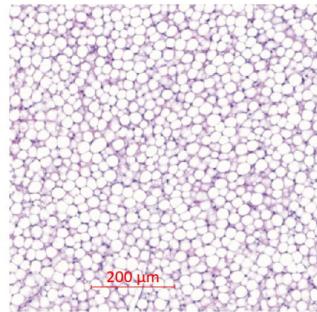
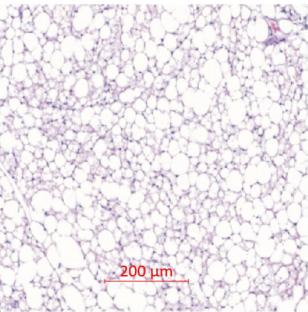
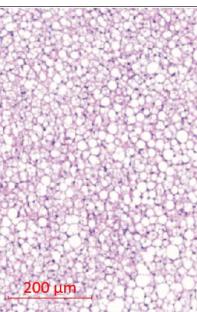
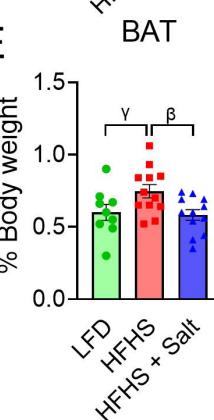
491

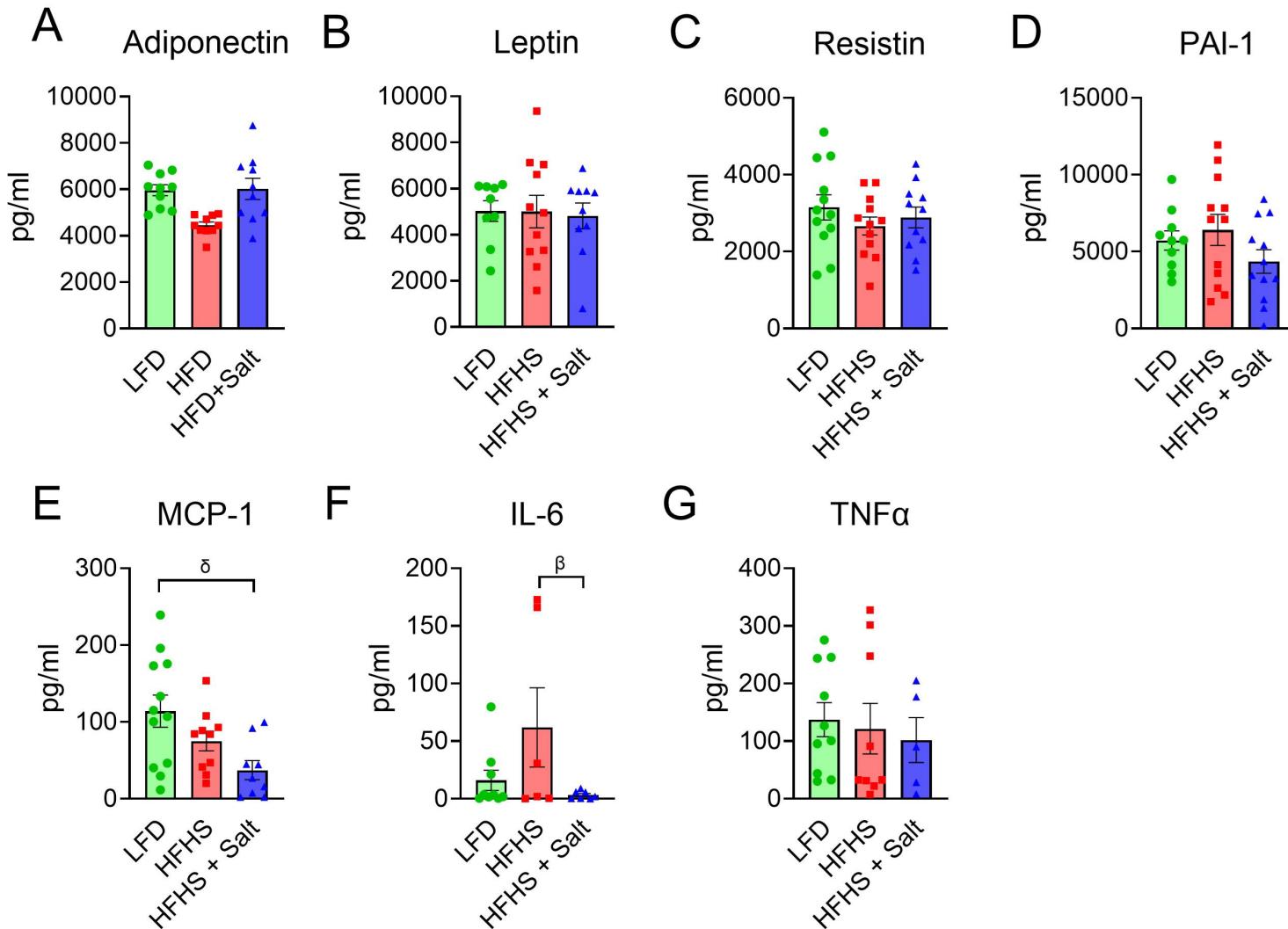
492 ballooning degeneration. **F**) lobular inflammation. **G**) steatosis. **H**) Spleen weight expressed as a percentage of
493 total body weight. **I**) Serum Aspartate Aminotransferase (AST) levels (U/L). **J**) Serum Alanine Aminotransferase
494 (ALT) levels (U/L). **K**) Serum triglyceride (TAGs) levels (mg/dL). **L**) Serum High-Density Lipoprotein (HDL)
495 levels (mg/dL). **M**) Total serum cholesterol levels (mg/dL). LFD: Low-fat diet; HFHS: High-fat, high-sugar diet;
496 HFHS + Salt: High-fat, high-sugar diet with added salt. Data presented as mean \pm SEM. Statistical analysis
497 was performed using one-way ANOVA with Fisher's LSD post-hoc test. Significance $p > 0.05$; LFD vs HFHS
498 (γ), LFD vs HFHS + Salt (δ), HFHS vs HFHS + Salt (β).

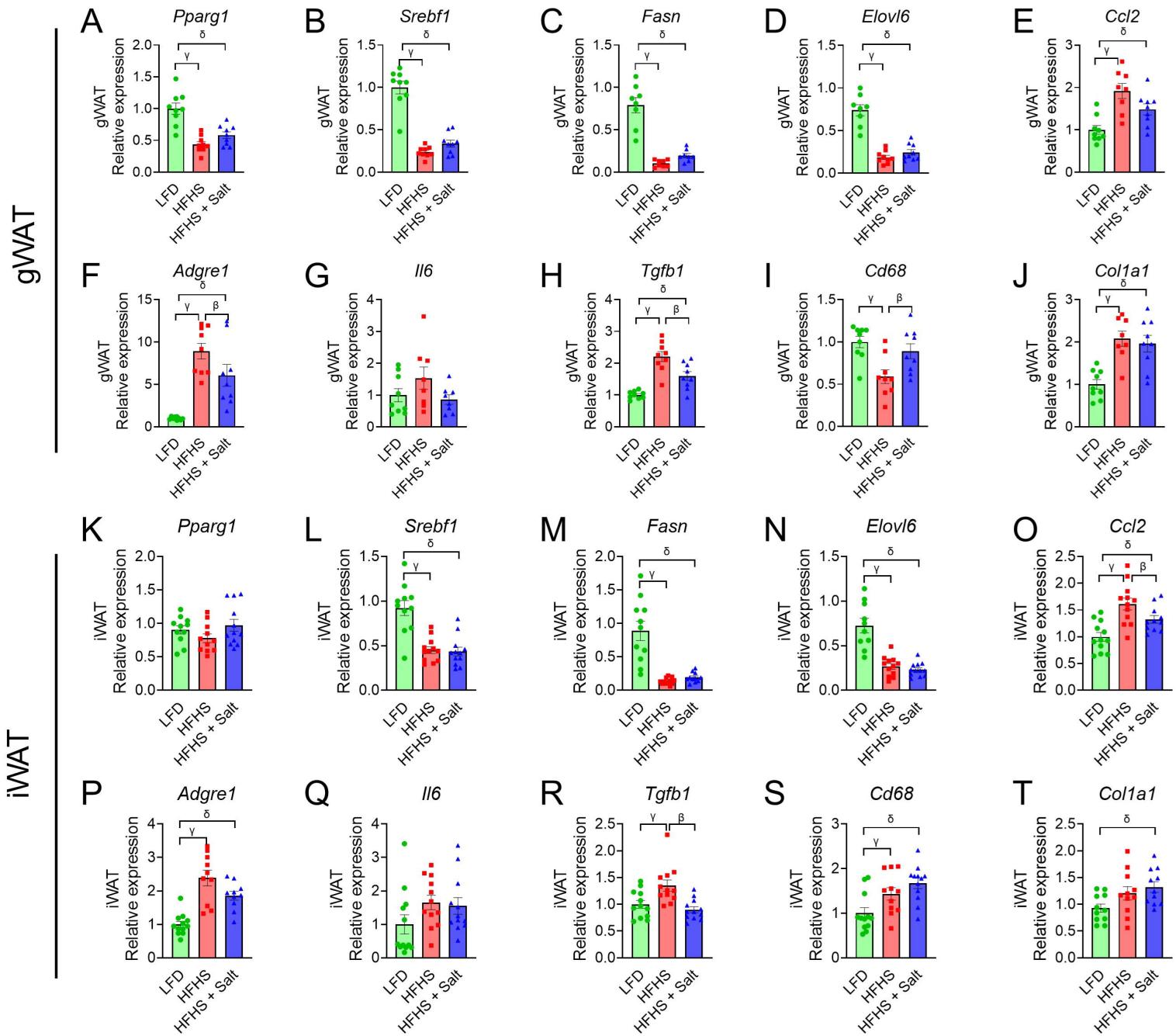
499 **Figure 4 – Liver Mitochondrial Respiration and Gene Expression.** **A**) Oxygen consumption (pmol/s/mg
500 protein) of isolated liver mitochondria in response to increasing concentrations of Palmitoyl-CoA. **B**) Oxygen
501 consumption (pmol/s/mg protein) of isolated liver mitochondria across a range of ATP free energy (ΔG ATP)
502 values, maintained via a creatine kinase clamp. **C-L**) Relative mRNA expression levels in liver tissue for genes
503 involved in metabolism & inflammation: **C**) *Carnitine palmitoyltransferase 1a (Cpt1a)*, **D**) *Hydroxyacyl-CoA*
504 *dehydrogenase alpha (Hadha)*, **E**) *Estrogen receptor 1 (Esr1)*, **F**) *Peroxisome proliferator-activated receptor*
505 *gamma coactivator 1-alpha (Pgc1a)*, **G**) *Tissue inhibitor of metalloproteinases 1 (Timp1)*, **H**) *Collagen type I*
506 *alpha 1 chain (Col1a1)*, **I**) *ATPase Na⁺/K⁺ transporting subunit alpha 1 (Atp1a1)*, **J**) *Cluster of differentiation 68*
507 (*Cd68*), **K**) *Transforming growth factor beta 1 (Tgfb1)*, and **L**) *Secreted phosphoprotein 1 (Spp1)*. LFD: Low-fat
508 diet; HFHS: High-fat, high-sugar diet; HFHS + Salt: High-fat, high-sugar diet with added salt. Data presented
509 as mean \pm SEM. Statistical analysis was performed using one-way ANOVA with Fisher's LSD post-hoc test,
510 **non-linear fit, and simple linear regression**. Significance $p > 0.05$; LFD vs HFHS (γ), LFD vs HFHS + Salt
511 (δ), HFHS vs HFHS + Salt (β).

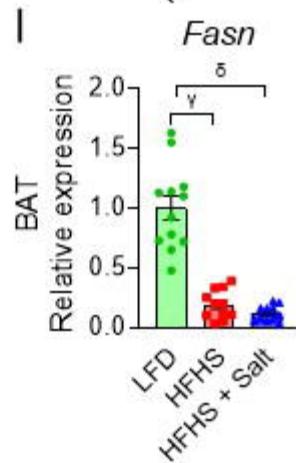
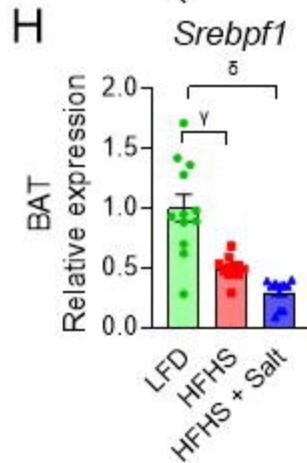
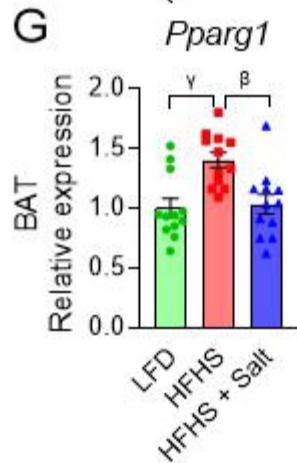
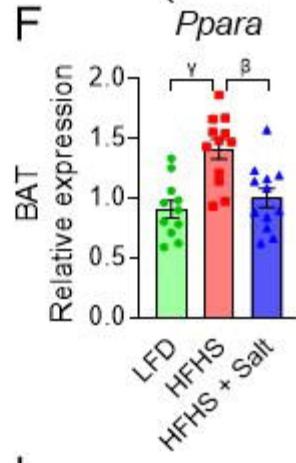
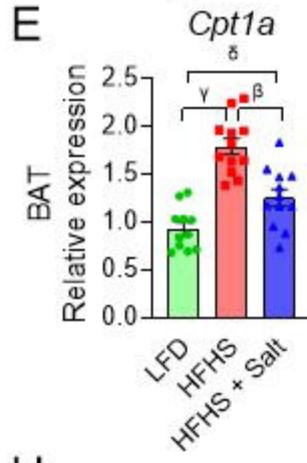
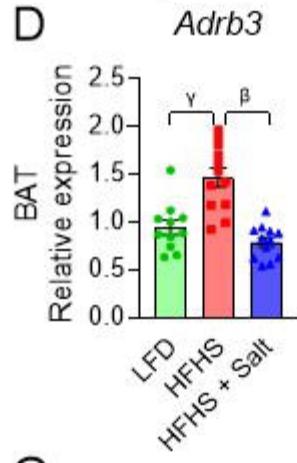
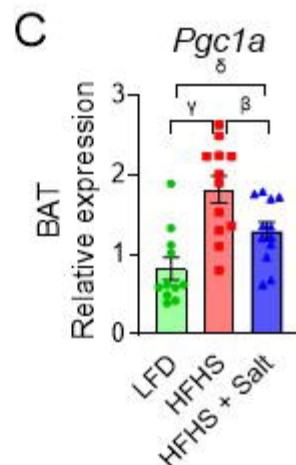
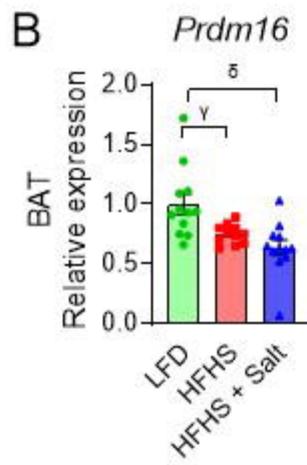
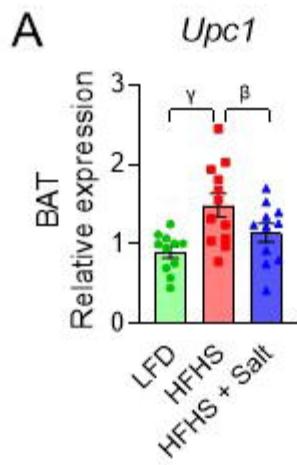
512 **Figure 5 – Adipose Tissue Depot Analysis.** **A**) Gonadal white adipose tissue (gWAT) weight expressed as a
513 percentage of total body weight, with representative Hematoxylin and Eosin (H&E) stained images for each
514 diet group. **B**) gWAT diameter. **C**) Inguinal white adipose tissue (iWAT) weight expressed as a percentage of
515 total body weight, with representative H&E-stained images for each diet group. **C**) iWAT diameters. **E**) Brown
516 adipose tissue (BAT) weight expressed as a percentage of total body weight, with representative H&E stained
517 images for each diet group. LFD: Low-fat diet; HFHS: High-fat, high-sugar diet; HFHS + Salt: High-fat, high-
518 sugar diet with added salt. Data presented as mean \pm SEM. Statistical analysis was performed using one-way
519 ANOVA with Fisher's LSD post-hoc test. Significance $p > 0.05$; LFD vs HFHS (γ), LFD vs HFHS + Salt (δ),
520 HFHS vs HFHS + Salt (β).

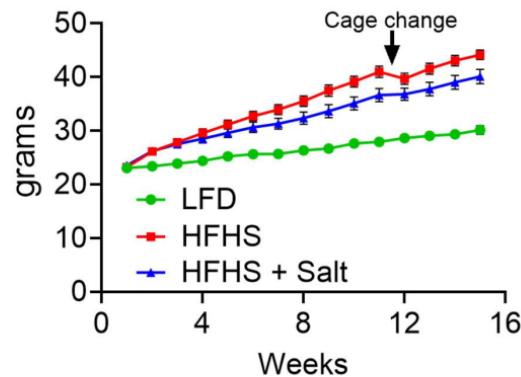
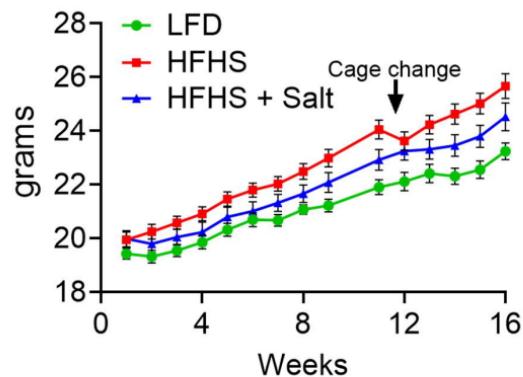
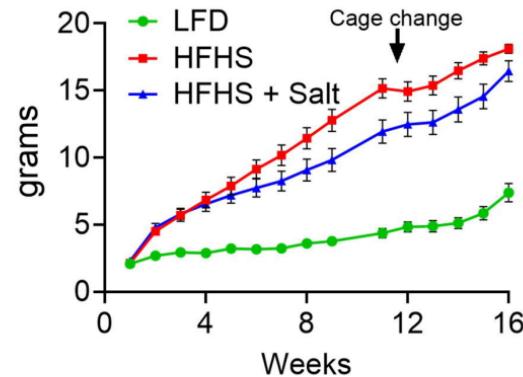
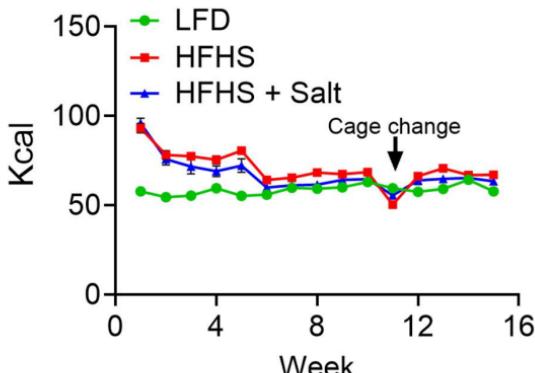
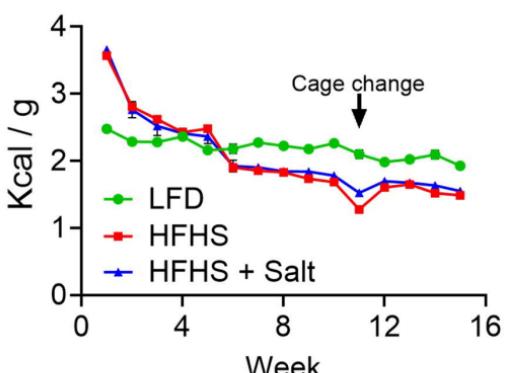
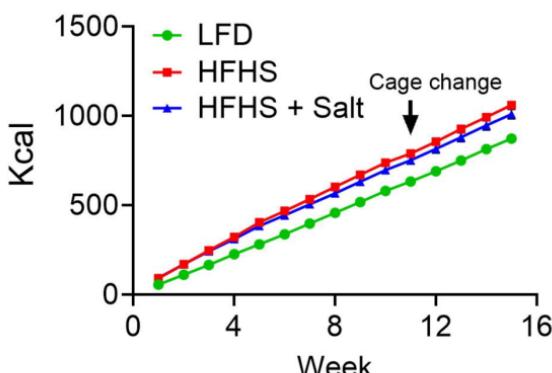












521 **Figure 6 – Circulating Adipokine and Inflammatory Cytokine Levels.** Plasma concentrations (pg/ml) of: **A**)
522 Adiponectin, **B**) Leptin, **C**) Resistin, **D**) Plasminogen Activator Inhibitor-1 (PAI-1), **E**) Monocyte Chemoattractant
523 Protein-1 (MCP-1), **F**) Interleukin-6 (IL-6), and **G**) Tumor Necrosis Factor alpha (TNF α). LFD: Low-fat diet;
524 HFHS: High-fat, high-sugar diet; HFHS + Salt: High-fat, high-sugar diet with added salt. Data presented as
525 mean \pm SEM. Statistical analysis was performed using one-way ANOVA with Fisher's LSD post-hoc test.
526 Significance $p > 0.05$; LFD vs HFHS (γ), LFD vs HFHS + Salt (δ), HFHS vs HFHS + Salt (β).

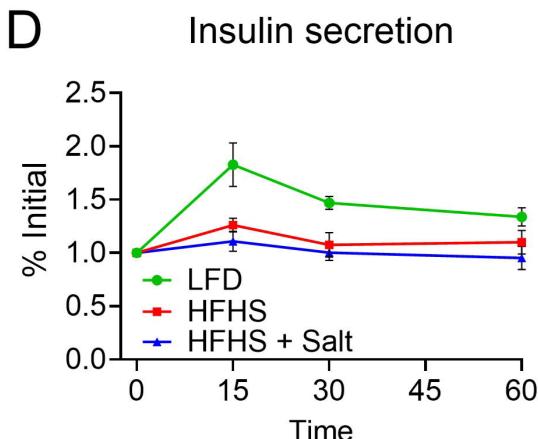
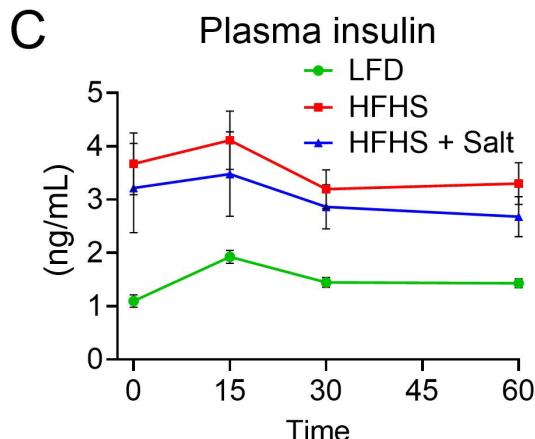
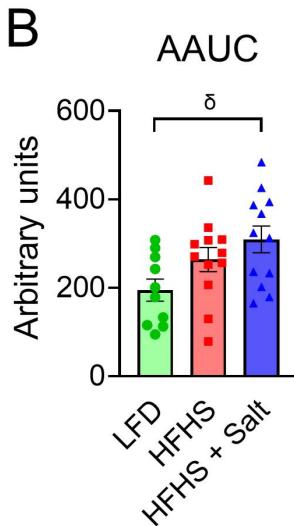
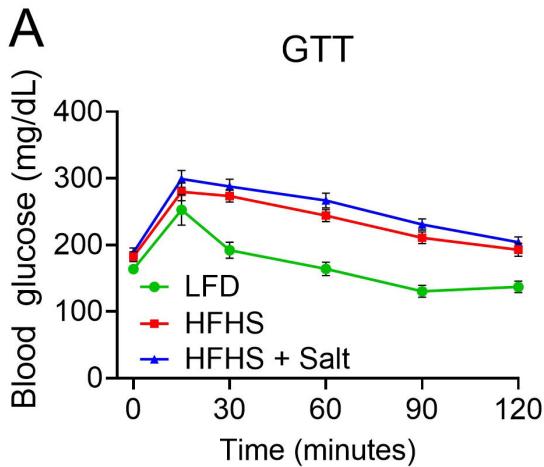














527
528 **Figure 7 – Adipose Tissue Gene Expression.** Relative mRNA expression levels in gonadal white adipose
529 tissue (gWAT) for genes involved in lipogenesis, inflammation, and fibrosis including: **A**) *Peroxisome*
530 *proliferator-activated receptor gamma 1 (Pparg1)*, **B**) *Sterol regulatory element-binding protein 1 (Srebf1)*, **C**)
531 *Fatty acid synthase (Fasn)*, **D**) *Elongation of very long chain fatty acids protein 6 (Elovl6)*, **E**) *C-C motif*
532 *chemokine ligand 2 (Ccl2)*, **F**) *Adhesion G protein-coupled receptor E1 (Adgre1)*, **G**) *Interleukin 6 (Il6)*, **H**)
533 *Transforming growth factor beta 1 (Tgfb1)*, **I**) *Cluster of Differentiation 68 (Cd68)*, and **J**) *Collagen type I* alpha
534 *1 chain (Col1a1)*. Relative mRNA expression levels in inguinal white adipose tissue (iWAT) for: **K**) *Pparg1*, **L**)
535 *Srebf1*, **M**) *Fasn*, **N**) *Elovl6*, **O**) *Ccl2*, **P**) *Adgre1*, **Q**) *Il6*, **R**) *Tgfb1*, **S**) *Cd68*, and **T**) *Col1a1*. LFD: Low-fat diet;
536 HFHS: High-fat, high-sugar diet; HFHS + Salt: High-fat, high-sugar diet with added salt. Data presented as
537 mean \pm SEM. Statistical analysis was performed using one-way ANOVA with Fisher's LSD post-hoc test.
538 Significance $p > 0.05$; LFD vs HFHS (γ), LFD vs HFHS + Salt (δ), HFHS vs HFHS + Salt (β).

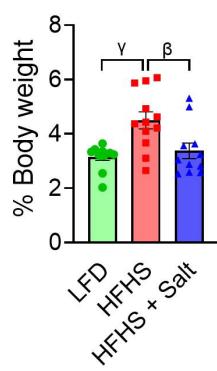
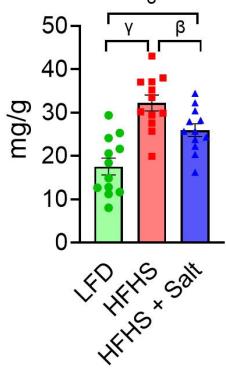
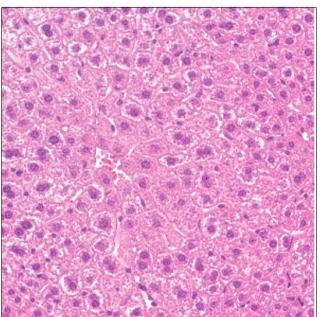
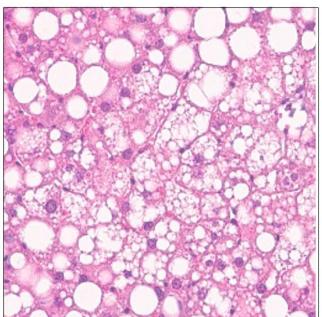
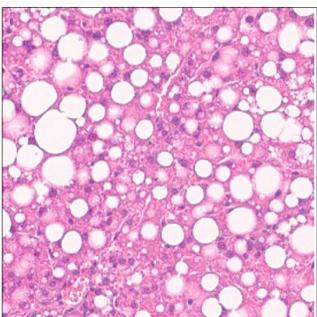
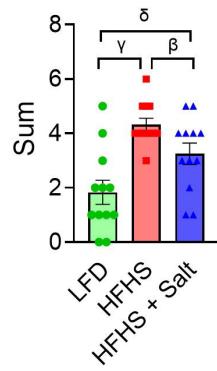
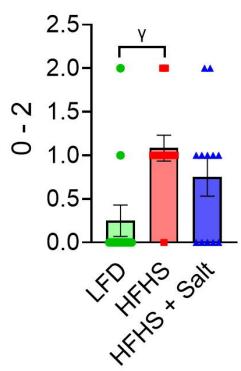

540 **Figure 8 – Brown Adipose Tissue Gene Expression.** Relative mRNA expression levels in brown adipose
541 tissue (BAT) for genes involved in thermogenesis, fatty acid oxidation, and lipogenesis including: **A)**
542 *Uncoupling protein 1 (Ucp1)*, **B)** *PR/SET domain 16 (Prdm16)*, **C)** *Peroxisome proliferator-activated receptor*
543 *gamma coactivator 1-alpha (Pgc1a)*, **D)** *Adrenoceptor beta 3 (Adrb3)*, **E)** *Carnitine palmitoyltransferase 1a*
544 (*Cpt1a*), **F)** *Peroxisome proliferator-activated receptor alpha (Ppara)*, **G)** *Peroxisome proliferator-activated*
545 *receptor gamma 1 (Pparg1)*, **H)** *Sterol regulatory element-binding protein 1 (Srebf1)*, and **I)** *Fatty acid synthase*
546 (*Fasn*). LFD: Low-fat diet; HFHS: High-fat, high-sugar diet; HFHS + Salt: High-fat, high-sugar diet with added
547 salt. Data presented as mean \pm SEM. Statistical analysis was performed using one-way ANOVA with Fisher's
548 LSD post-hoc test. Significance $p > 0.05$; LFD vs HFHS (γ), LFD vs HFHS + Salt (δ), HFHS vs HFHS + Salt
549 (β).

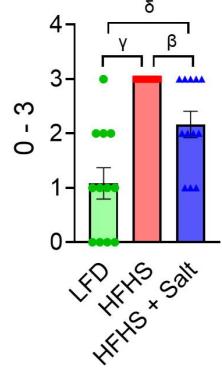
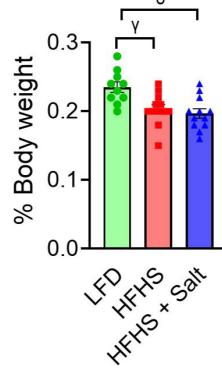
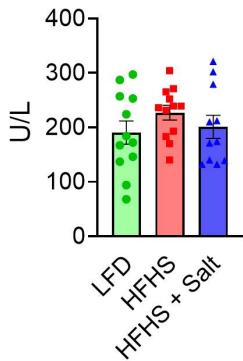
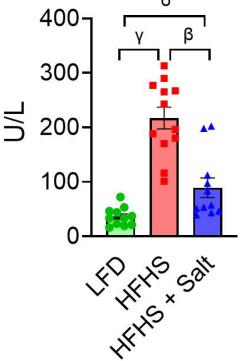
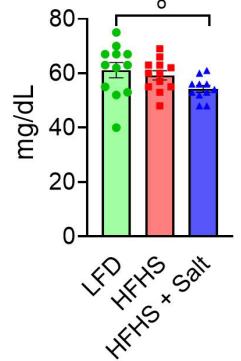
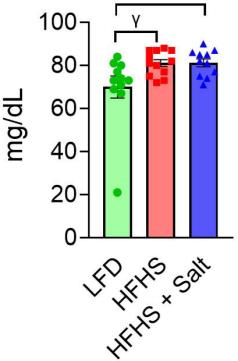
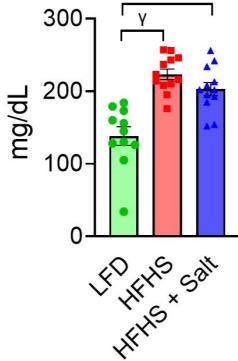

550










551







A**B****C****D****E****F****G****H****J****K****L**





A**LFD****HFHS****HFHS + Salt****B****D****C****E**

A**Body weight****B****Lean mass****C****Fat mass****D****Weekly energy intake****E****Weekly energy intake****F****Cumulative energy intake**

A Liver**B Liver TAGs****C LFD****HFHS****HFHS + Salt****D NAS score****E Ballooning****F Lobular inflammation****G Steatosis****H Spleen****I AST****J ALT****K TAGs****L HDL****M Cholesterol**