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Abstract 37 

Sensory systems are known for their adaptability, responding dynamically to changes in 38 

environmental conditions. A key example of this adaptability is the enhancement of 39 

tactile perception in the absence of visual input. Despite behavioral studies showing 40 

visual deprivation can improve tactile discrimination, the underlying neural mechanisms, 41 

particularly how tactile neural representations are reorganized during visual deprivation, 42 

remain unclear. In this study, we explore how the absence of visual input alters tactile 43 

neural encoding in the rat somatosensory cortex (S1). Rats were trained on a custom-44 

designed treadmill with distinct tactile textures (rough and smooth), and local field 45 

potentials (LFPs) were recorded from S1 under light and dark conditions. Machine 46 

learning techniques, specifically a convolutional neural network, were used to decode 47 

the high-dimensional LFP signals. We found that the neural representations of tactile 48 

stimuli became more distinct in the dark, indicating a reorganization of sensory 49 

processing in S1 when visual input was removed. Notably, conventional amplitude-50 

based analyses failed to capture these changes, highlighting the power of deep learning 51 

in uncovering subtle neural patterns. These findings offer new insights into how the 52 

brain rapidly adapts tactile processing in response to the loss of visual input, with 53 

implications for multisensory integration. 54 

  55 
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Introduction 56 

The primary somatosensory cortex (S1) is integral to the encoding of tactile 57 

information, processing sensory inputs from various regions of the body (Delhaye et al., 58 

2018; Di Plinio et al., 2020; Piras et al., 2020; Serino, 2019). This cortical area is crucial 59 

for our sense of touch, facilitating the perception and interpretation of sensations such 60 

as pressure, vibration, temperature, and pain (Bushnell et al., 1999; Luna et al., 2005; 61 

Moulton et al., 2012). These external stimuli are represented by dynamic neural activity 62 

in S1, enabling animals to discriminate distinct sensory experiences (Bensmaia et al., 63 

2008; Goodwin and Wheat, 2004; Koch and Fuster, 1989; Salinas et al., 2000). 64 

Crucially, neural representations in S1 are highly adaptable, shaped not only by 65 

feedforward mechanisms but also by attention, motivation, and inputs from other 66 

sensory modalities (Butler et al., 2012; Driver and Spence, 2000; Eimer and Forster, 67 

2003; Schürmann et al., 2004; Ziegler et al., 2023). This adaptability facilitates rapid 68 

adjustments to changing environmental contexts, supporting survival and optimal 69 

sensory processing (Abraira and Ginty, 2013; Dijkerman and de Haan, 2007).  70 

One prominent example of such adaptability is cross-modal processing, wherein 71 

the absence or reduction of visual input enhances tactile abilities. (Bulusu and Lazar, 72 

2024; Hopkins et al., 2017; Nikbakht et al., 2018; Sugiyama et al., 2019). For instance, 73 

prolonged visual deprivation, such as blindness from an early age, results in heightened 74 

tactile discrimination abilities (Goldreich and Kanics, 2003; Norman and Bartholomew, 75 

2011; Van Boven et al., 2000; Wong et al., 2011), driven by cortical reorganization 76 

where visual cortical areas are repurposed to support tactile processing (Burton, 2003; 77 

Karlen et al., 2006; Sadato et al., 1996). Notably, however, tactile performance 78 

improvements are also observed in sighted individuals during short-term visual 79 

deprivation (Facchini and Aglioti, 2003; Kauffman et al., 2002; Pascual-Leone and 80 

Hamilton, 2001a). Such individuals demonstrate enhanced tactile discrimination during 81 

temporary darkness or blindfolding, indicating that rapid, context-dependent 82 

compensatory mechanisms occur even without long-term structural changes  (Bola et al., 83 
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2017; Boroojerdi et al., 2000; Merabet et al., 2008). Thus, although tactile enhancement 84 

has been studied extensively in the context of long-term sensory deprivation, the neural 85 

mechanisms underlying short-term, context-dependent modulation remain unclear. 86 

The neural representation of tactile stimuli within S1 involves complex, 87 

distributed activity patterns, posing significant challenges for conventional analyses that 88 

primarily measure signal amplitude. Thus, the subtle, high-dimensional neural dynamics 89 

that may underlie immediate adaptations to temporary visual deprivation are difficult to 90 

detect using traditional methods. Addressing this gap requires refined experimental 91 

paradigms and advanced analytical tools to capture how tactile representations 92 

reorganize on short timescales. 93 

To examine short-term reorganization in tactile processing, we used a behavioral 94 

paradigm using rats trained to walk naturally on a treadmill featuring distinct tactile 95 

textures (Yamashiro et al., 2024). . By manipulating visual input (light vs. dark 96 

conditions) while recording local field potentials (LFPs) from S1, we aimed to 97 

characterize rapid shifts in tactile neural representations. LFPs provide a rich, high-98 

dimensional signal reflecting both synchronous and asynchronous activity across 99 

cortical populations. Concurrently, we applied deep learning techniques to decode 100 

subtle differences in neural activity patterns that traditional amplitude-based analyses 101 

could not detect. We hypothesized that temporary visual deprivation would enhance the 102 

neural distinction between tactile stimuli, leading to more differentiated representations 103 

of textures in the dark condition. 104 

By investigating these rapid, context-dependent shifts in neural coding, this 105 

study provides valuable insights into the brain’s capacity for sensory adaptation. Our 106 

findings not only shed light on how visual deprivation influences tactile processing in 107 

the short term, but also emphasize the potential of deep learning techniques in 108 

uncovering nuanced neural reorganization.   109 
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Materials and Methods 110 

Animal ethics 111 

Animal experiments were performed with the approval of the Animal Experiment 112 

Ethics Committee at the University of Tokyo (approval numbers: P29–7 and P4–15) 113 

and according to the University of Tokyo guidelines for the care and use of laboratory 114 

animals. These experimental protocols were carried out following the Fundamental 115 

Guidelines for the Proper Conduct of Animal Experiments and Related Activities of the 116 

Academic Research Institutions (Ministry of Education, Culture, Sports, Science and 117 

Technology, Notice No. 71 of 2006), the Standards for Breeding and Housing of and 118 

Pain Alleviation for Experimental Animals (Ministry of the Environment, Notice No. 88 119 

of 2006) and the Guidelines on the Method of Animal Disposal (Prime Minister's Office, 120 

Notice No. 40 of 1995). While our experimental protocols have a mandate to humanely 121 

euthanize animals if they exhibit any signs of pain, prominent lethargy, and discomfort, 122 

such symptoms were not observed in any of the rats tested in this study. All efforts were 123 

made to minimize the animals’ suffering. 124 

 125 

Behavioral paradigm 126 

To record LFPs during natural locomotion, we employed a custom-designed, disk-127 

shaped treadmill with a diameter of 90 cm (Figure 1A). The treadmill’s running surface 128 

was divided into two halves, each featuring a distinct texture: one side was coated with 129 

coarse sandpaper (grain #80) and the other with fine sandpaper (grain #1000). In this 130 

setup, the rat was placed on the treadmill and secured with a fabric vest (Figure 1B).  131 

Before the experiment, rats were water-restricted to ensure motivation. A 132 

waterspout was positioned in front of each rat, and its output was synchronized with the 133 

treadmill’s movement (Figure 1C). Specifically, once the treadmill began to move, 30 134 

µL of water was dispensed from the spout, encouraging the rat to continue walking to 135 
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receive its water reward. 136 

Each rat was deprived of water until its body weight reached 85% of its baseline 137 

weight, then it was trained to walk on the treadmill for four days (one hour per day), 138 

with 30 minutes in a light environment (50 lx) followed by 30 minutes in darkness (0 139 

lx). After successful training, the rats were allowed free access to food and water to 140 

regain their original body weight before electrode implantation surgery. Following 141 

surgical recovery, the rats were water-restricted again and placed on the treadmill to 142 

assess cross-modal interactions between the visual and tactile systems. In a single 143 

session, LFP recordings were obtained in the light environment trial, followed 144 

immediately by the dark environment trial (Figure 1D).  For subset of sessions, the 145 

order of the light and dark environment was swapped, dark environment trial preceding 146 

the dark environment trial. Each trial lasted for approximately 10 minutes. Recording 147 

was performed once a day for 4-14 days.  148 

During the trials, the trajectory of the forelimb and onsets when the forelimb 149 

came in contact with the floor were automatically identified using a previously 150 

developed deep-learning–based method (Figure 1E) (Yamashiro et al., 2024). 151 

 152 

Animal preparation and surgical procedures 153 

LFPs were recorded from eleven 9- to 10-week-old Long-Evans rats (Japan SLC, 154 

Shizuoka, Japan) using a custom-designed, 32-channel electrode assembly. This 155 

assembly, fabricated from nichrome wires (761500, A-M Systems, WA, USA), targeted 156 

the right somatosensory cortex (S1) regions corresponding to the forelimb and hindlimb 157 

representations (Figure 1F). Specifically, 18 and 14 electrodes were placed in the 158 

forelimb and the hindlimb subregion respectively (Figure 1G). Each electrode tip was 159 

platinum-coated to reduce impedance to below 200 kΩ using a nanoZ tester (Plexon, 160 

TX, USA). 161 
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At the start of the surgical procedure, each rat was anesthetized with 2–3% 162 

isoflurane gas. A square craniotomy (2–6 mm posterior and 1–5 mm lateral to bregma) 163 

was then created using a dental drill. The electrode assembly was gently lowered 164 

through the cranial window to a depth of approximately 1.5 mm beneath the dura, 165 

targeting layer IV of S1. Additionally, two stainless steel screws were implanted in the 166 

bone above the cerebellum to serve as ground and reference electrodes. The recording 167 

device and electrodes were secured to the skull using stainless steel screws and dental 168 

cement. Following the surgery, each rat was housed individually in a transparent 169 

Plexiglas cage with ad libitum access to food and water for one week to ensure proper 170 

recovery. 171 

 172 

LFP recordings from S1 173 

LFPs were referenced to ground, digitized at 30 kHz using the OpenEphys recording 174 

system (http://open-ephys.org) and an RHD 32-channel headstage (C3314, Intan 175 

Technologies, CA, USA), then resampled to 10 kHz for subsequent analyses 176 

(Yamashiro et al., 2020). In parallel, video was acquired at 60 Hz using a USB camera 177 

module (MCM-303NIR, Gazo, Niigata, Japan), capturing a lateral view of the rat. Each 178 

video frame was synchronized with the neural recordings using strobe signals. For a 179 

subset of recordings (n = 2 rats), speed sensors were attached to the running disk to 180 

monitor locomotor speed, which was simultaneously recorded through the OpenEphys 181 

analog input.  182 

 183 

Data analysis 184 

Data was analyzed offline using custom-made scripts in Python3. For box plots, the 185 

centerline shows the median, the box limits show the upper and lower quartiles, 186 
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and the whiskers cover the 10−90% percentiles. P�<�0.05 was considered 187 

statistically significant. All statistical t-tests were two-sided, and the bootstrap method 188 

was applied for multiple comparisons. 189 

 190 

LFP analysis 191 

To see if there were any differences in LFPs, the LFPs were aligned to the foot strike 192 

onsets detected using deep-learning assisted methods. The aligned LFP were then 193 

categorized by the trial (light vs. dark) and the floor texture (smooth vs. rough). To 194 

analyze the amplitude of the event-related response from the foot strike, a mean trace of 195 

the aligned LFP was calculated for each channel from 32 electrodes for each condition. 196 

Foot-strike detection and all LFP alignment were intentionally forelimb-locked, because 197 

the behavioral paradigm was designed for forepaw texture contact (Figure 1E) and our 198 

array oversampled S1-forelimb (18 channels) relative to S1-hindlimb (14 channels; 199 

Figure 1G). 200 

 201 

A deep neural network for joint decoding of trial conditions and floor texture 202 

A custom deep neural network (DNN) model was implemented to predict both the trial 203 

condition (e.g., light vs. dark) and floor texture (e.g., smooth vs. rough) from time-204 

aligned, one-dimensional LFP segments, using the PyTorch framework. Our model 205 

architecture was inspired by one-dimensional ResNet-like structures and incorporated 206 

multiheaded outputs for simultaneous prediction of two distinct variables (He et al., 207 

2015). 208 

The input to the model consisted of one-dimensional LFP signals, arranged as a 209 

tensor with multiple channels (e.g., 32 input channels) over time. The network began by 210 

splitting the input into two parallel convolutional pathways. The first pathway (“left” 211 
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branch) applied sequential convolutional and pooling operations with relatively smaller 212 

kernel sizes and strides to incrementally reduce the dimensionality of the signal and 213 

extract fine-grained temporal features. Specifically, the model employed a two-stage 214 

convolutional process that first passed the input through a one-dimensional (1D) 215 

convolution layer with a kernel size of 7, stride of 2, and batch normalization, followed 216 

by a max pooling and an additional convolution layer. Both convolutional layers in the 217 

left branch used ReLU nonlinearities to facilitate stable and efficient feature extraction. 218 

In contrast, the second pathway (“right” branch) processed the input through a 219 

single 1D convolutional layer with a larger kernel size (e.g., 41) and a more aggressive 220 

stride (e.g., stride of 8). This pathway captured broader temporal contexts from the input 221 

signals. Similar to the left branch, the right branch output was batch-normalized and 222 

passed through a ReLU activation function. After these two parallel extractions, the 223 

outputs of the left and right branches were concatenated along the channel dimension, 224 

forming a combined feature representation that integrated both fine- and coarse-grained 225 

temporal information. 226 

The concatenated output was then passed through a max pooling operation, 227 

followed by two residual layers that employed 1D convolutional blocks 228 

(ResidualBlock) to refine feature representations. These residual layers allowed the 229 

network to learn more complex feature hierarchies by facilitating the flow of gradients 230 

during training and improving convergence, while also maintaining temporal resolution 231 

appropriate for downstream decoding. 232 

Subsequently, the processed features were passed through an average pooling 233 

layer to summarize temporal information into a low-dimensional feature vector. This 234 

vector was flattened into a one-dimensional representation and then fed into two 235 

separate fully connected “heads” (fc_head1 and fc_head2). Each head was a simple 236 

linear layer that provided a scalar output value. By concatenating these outputs, the final 237 

layer jointly predicted two target variables from the same underlying features. 238 
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In summary, our model combined parallel convolutional branches for initial 239 

feature extraction, residual layers for robust representation learning, and multiheaded 240 

outputs to facilitate joint prediction of trial conditions and floor textures. The model was 241 

implemented in Python using PyTorch, and all parameters were optimized via standard 242 

stochastic gradient–based methods. This architecture allowed efficient and robust 243 

decoding of environmental conditions from LFP signals in both time and frequency 244 

domains. 245 

 246 

Training and evaluating the deep neural network 247 

Of the 11 recorded rats, data from the initial two rats were utilized to determine the 248 

optimal model architecture. Once the architecture was established, data from the 249 

remaining 9 rats were used for training and evaluation. The raw LFP signals were 250 

resampled from 30 kHz to 10 kHz and segmented into 800 ms windows centered on the 251 

footstrike onset (e.g., 400 ms before and 400 ms after). Each LFP segment was assigned 252 

two labels: one for the trial condition (e.g., light vs. dark) and one for the floor texture 253 

(e.g., smooth vs. rough).  254 

For each rat, the dataset was shuffled, normalized, and then subjected to 5-fold 255 

cross-validation. In this procedure, the data were partitioned into five equal subsets; in 256 

each fold, four subsets (80%) were used for training, and the remaining subset (20%) 257 

was used for evaluation. Model training was performed for 80 epochs using a batch size 258 

of 128 and a learning rate of 10-6. Binary cross-entropy with logits loss 259 

(BCEWithLogitsLoss) served as the objective function. These parameters were selected 260 

to ensure stable convergence and to reduce overfitting. After the training, the model's 261 

performance was evaluated using the evaluation dataset. The confusion matrix was 262 

calculated as the number of true positives, false positives, false negatives, and true 263 

negatives, aggregated across all predictions in the evaluation set. 264 
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 265 

Evaluation of cluster separability between light and dark conditions 266 

To examine how texture representations differed between light and dark conditions, we 267 

assessed cluster separability of the intermediate features extracted from the deep-268 

learning model. Specifically, after the model was trained, we extracted the output from 269 

the penultimate layer (a 912-dimensional feature vector for each trial). Cluster 270 

separability was quantified using the silhouette score, which measures the relative 271 

distances between within-cluster and between-cluster samples. 272 

Silhouette scores were calculated for the two texture classes (smooth and rough) 273 

within each lighting condition, using the Euclidean distance metric applied to the 274 

intermediate feature representations. For each trial, the silhouette score s is defined as: 275 

� �  
� � �

max 
�, ��
 

where a is the average distance between a point and all other points in the same cluster 276 

(intra-cluster distance), and b is the minimum average distance between a point and all 277 

points in the nearest different cluster (inter-cluster distance). The silhouette score, 278 

therefore, provides a normalized index of cluster separability, with larger values 279 

indicating more distinct clustering. To obtain an animal-level measure, silhouette scores 280 

were averaged across cross-validation within each rat. 281 

 282 

Explainability analysis using occlusion and integrated gradients 283 

To elucidate the internal decision-making processes of the trained deep neural network 284 

(DNN), we employed two established explainability techniques: occlusion and 285 

integrated gradients. 286 
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Occlusion: Occlusion analysis involves systematically masking specific input 287 

features to determine their relative contribution to the model’s output (Zeiler and Fergus, 288 

2013). In the present study, one channel was selectively occluded at a time from the 32-289 

channel LFP input and the sensitivity of each channel was calculated. Sensitivity was 290 

defined as the corresponding change in model performance when the specified channel 291 

was occluded. By conducting these analyses for each of the nine rats, channel-specific 292 

importance scores were obtained and subsequently normalized (z-scored) to facilitate 293 

cross-subject comparisons. Channels whose removal yielded a more pronounced 294 

decrease in model performance were considered more critical for accurate prediction. 295 

Integrated gradients: Integrated gradients is an attribution method that quantifies 296 

the importance of each input feature by integrating the gradient of the model’s output 297 

with respect to the input, transitioning from a baseline input to the actual input 298 

(Sundararajan et al., 2017). This approach produces class activation maps, enabling the 299 

visualization of features most influential for the model’s output. Here, integrated 300 

gradients were applied to the LFP segments for each rat, and the resulting class 301 

activation maps were averaged across subjects and trial conditions. These maps allowed 302 

us to identify salient input regions associated with both trial conditions and floor texture. 303 

 304 

Results 305 

Stable locomotion across light and dark conditions 306 

To investigate how visual input influences tactile processing in S1, we devised an 307 

experimental paradigm where both tactile and visual inputs were independently 308 

manipulated. Rats were placed on a disk-shaped treadmill with two distinct sandpaper 309 

textures, and LFPs were recorded from walking rats. Each rat walked for 10 min in a 310 

light environment (50 lx) and then for 10 minutes in total darkness (0 lx).  311 

To make sure that rat’s trajectory was stable across different floor textures and 312 
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environmental conditions, gait parameters were extracted from the trajectories using 313 

deep-learning–based analysis (Figure 2A). From the trajectories, swing duration, stance 314 

duration, stride length, and footstrike speed were extracted. All parameters were 315 

calculated for each floor textures and environmental conditions. Comparison of all 316 

conditions revealed that none of these metrics differed significantly between floor 317 

textures or environmental conditions, indicating that overall locomotion remained stable 318 

(Figure 2B-E, P > 0.05, one-way analysis of variance (ANOVA) followed by 319 

Tukey�Kramer post hoc test, n = 149, 149, 107 and 107 trials for smooth-light, rough-320 

light, smooth-dark, and rough-dark, respectively). Locomotor-speed traces recorded 321 

from subset of rats. The result indicated that walking velocity was stable across trials, 322 

not affected by the lighting conditions (Supplementary Figure 1). Thus, any differences 323 

in neural activity under these conditions are unlikely to be driven by altered motor 324 

behavior. 325 

 326 

Characteristic of S1 LFP upon forelimb contact 327 

We next analyzed LFPs from S1 using a custom 32-channel electrode array targeting 328 

the forelimb and hindlimb subregions (Figure 1F, G). LFP traces were first aligned to 329 

forelimb contacts with the disk surface. On inspection of a single LFP trace, no apparent 330 

event-related response could be observed (Figure 3A). However, aligning each LFP at 331 

forelimb contact with the floor, the average trace showed a clear response after the onset 332 

(Figure 3B). Across conditions, we observed a clear negative deflection in LFPs that 333 

was most pronounced in the forelimb subregion (Figure 3C). The amplitude of the 334 

response was significantly larger in all rats, consistent with the topographic specificity 335 

of S1 (Figure 3D, P = 1.89×10-3, t10 = -2.2, paired t-test, n = 11 rats). This was expected 336 

since the epochs were forelimb-locked, making larger deflections and greater 337 

importance of forelimb channels consistent with somatotopy. 338 

To see if the event-related responses were affected by the change in floor texture 339 
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or the environmental condition, the amplitudes were compared. Despite the prominent 340 

negative deflection in LFPs at the forelimb contact with the floor, analyses showed no 341 

substantial differences in signal amplitude (Figure 3E, P > 0.05, one-way analysis of 342 

variance (ANOVA) followed by Tukey�Kramer post hoc test, n = 149, 149, 107 and 343 

107 trials for smooth-light, rough-light, smooth-dark, and rough-dark, respectively) 344 

when comparing rough vs. smooth textures (Figure 3F, P = 0.48 and 0.84, D = 1.03×10-345 
1 and 7.54×10-2 for light and dark environments respectively, two-sample 346 

Kolmogorov�Smirnov test, n = 149 and 107 trials from 11 rats for light and dark, 347 

respectively) and light vs. dark environments (Figure 6G, P = 0.11, 0.18, D = 0.14 and 348 

0.149 for smooth and rough textures respectively, two-sample Kolmogorov�Smirnov 349 

test, n = 149 and 107 trials from 11 rats for light and dark, respectively).  350 

To further investigate, we computed grand-average LFP waveforms across 351 

combinations of floor texture (smooth vs. rough) and lighting condition (light vs. dark) 352 

(Figure 4A). Visual inspection of the mean waveforms revealed no distinct or prominent 353 

features. We then calculated channel-wise correlations between textures within each 354 

lighting condition (i.e., light-smooth vs. light-rough; dark-smooth vs. dark-rough). To 355 

assess whether lighting modulated texture-related correlations, we subtracted the 356 

correlation coefficients obtained in the dark from those in the light and averaged the 357 

differences across animals (Figure 4B). The correlation of LFP waveforms between 358 

different textures was stronger in the light condition, suggesting that in the dark 359 

environment, the average LFP waveform is more distinct. Additionally, we examined 360 

channel–channel correlation matrices across all 32 channels for each condition (Figure 361 

4C). While stronger correlations were observed within individual S1 subregions, no 362 

systematic differences emerged between lighting conditions or between textures. To 363 

probe the frequency domain of the LFP, we computed time–frequency (wavelet) 364 

spectrograms across the floor texture and lighting condition combinations. However, no 365 

clear differences were observed across these combinations. Taken together, these results 366 

suggest that simple amplitude-based metrics may not fully capture subtler or higher-367 

dimensional variations in underlying neuronal activity. 368 
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 369 

Machine learning–based decoding of tactile and visual information 370 

Given the absence of clear differences in averaged LFP features, we next examined how 371 

representations of textures in the LFPs varied across environments using machine 372 

learning approaches. We first implemented a support vector machine (SVM) classifier 373 

with a radial basis function (RBF) kernel. To reduce dimensionality, principal 374 

component analysis (PCA) was applied to the raw LFP traces (Supplementary Figure 375 

2A). The SVM was then trained using 5-fold cross-validation, where, in each fold, 80% 376 

of the dataset was used to classify two types of labels: texture (smooth vs. rough) and 377 

trial (light vs. dark). Model performance was evaluated on the remaining 20% of the 378 

data. The overall classification accuracy was at chance level (~50%), indicating that the 379 

PCA–SVM combination failed to extract informative features for texture or lighting 380 

condition from the LFP traces (Supplementary Figure 2B). 381 

We next employed a deep learning model, a convolutional neural network 382 

(CNN), to classify both floor texture (smooth vs. rough) and trial (light vs. dark). The 383 

CNN architecture incorporated parallel convolutional pathways designed to capture 384 

both macro- and micro-scale temporal dynamics, followed by residual blocks. The 385 

network then branched into dual output layers to jointly predict texture and lighting 386 

conditions (Figure 5A). 387 

Similarly to SVM, the model was trained and evaluated using 5-fold cross-388 

validation. In training, the model exhibited stable learning curves (Figure 5B) and also 389 

generalized well to held-out test data (Figure 5C). Confusion matrices for both texture 390 

and lighting classifications were above chance along the diagonal, demonstrating that 391 

the model reliably extracted neural representations of the floor textures from the LFPs 392 

(Figure 5D–F). 393 

 394 
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Neural representations become more distinct in darkness 395 

To understand how the absence of the visual cue might refine tactile processing, we 396 

performed explainability analyses on the model’s learned representations (Figure 6). We 397 

extracted a 912-dimensional feature vector from the layer preceding the final outputs, 398 

then visualized these high-dimensional embeddings with scatter plots (Figure 6A, B). 399 

Clustering analyses using silhouette scores showed that representations of texture were 400 

more separated in the dark environment, suggesting that reduced visual input enhances 401 

the distinctness of neural dynamics that code tactile stimuli (Figure 6C, P = 2.31×10-2, t8 402 

= -2.8, paired t-test, n = 9 rats, Supplementary Table 1). To account for trial order, 403 

silhouette scores were also calculated in sessions where dark trials preceded light trials. 404 

In this case, only an increasing trend was observed, with no significant difference 405 

detected (Supplementary Figure 3A, B P = 2.9×10-1, t5 = -1.16, paired t-test, n = 6 rats, 406 

Supplementary Table 2). 407 

To assess whether the observed differences in cluster separability between light 408 

and dark conditions could arise by chance, we performed a permutation test. Within 409 

each rat, the darkness/light labels were randomly shuffled across trials while preserving 410 

the number of trials per condition. For each permutation, silhouette scores were 411 

recalculated from the layer embeddings of the trained network. This procedure was 412 

repeated 1000 times to generate an empirical null distribution of cluster separability. 413 

The observed silhouette scores for the dark condition consistently exceeded the 95th 414 

percentile of the null distribution, confirming that the enhanced separability in darkness 415 

reflects systematic differences in neural representations rather than random variation 416 

(Supplementary Figure 4).  417 

To elucidate which electrodes held the most information about the floor textures, 418 

we performed occlusion analysis. The results revealed that electrodes in the forelimb 419 

subregion contributed more to successful texture and lighting predictions (Figure 6D, E, 420 

P = 4.53×10-6, t8 = -5.57, Student’s t-test, n = 9 rats), which aligns with our observation 421 
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that negative deflections in LFPs were largest in forelimb-targeting channels (Figure 422 

2E). Further analysis using class activation maps from integrated gradients showed 423 

spatiotemporal patterns of salient features unique to each experimental condition 424 

(Figure 6F). In particular, the average attribution score in the forelimb subregion 425 

displayed a temporal shift in the dark condition, implying an extended processing 426 

window for texture information when visual cues are unavailable (Figure 6G, 427 

Supplementary Figure 5). 428 

Collectively, these results indicate that visual deprivation modifies population-429 

level activity in S1, yielding more distinctive representations of tactile stimuli. Such 430 

reorganization could provide a neural substrate for enhanced tactile perception under 431 

conditions of reduced or absent visual input. 432 

 433 

  434 
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Discussion 435 

This study provides evidence that S1 undergoes rapid reorganization of tactile 436 

representations when visual input is removed, even over a short period. Using high-437 

density LFP recordings and deep learning techniques, we show that the neural encoding 438 

of tactile stimuli becomes more distinct under conditions of visual deprivation. 439 

Specifically, when rats were exposed to darkness, texture representations in S1 were 440 

more clearly distinguishable than under normal visual conditions. This demonstrates the 441 

adaptability of S1 and its capacity to rapidly adjust to changing sensory contexts. 442 

A key finding was the significant increase in silhouette scores when texture 443 

representations were decoded in the dark. Silhouette scores, which quantify the 444 

separability of neural features, were notably higher under dark conditions, suggesting 445 

that visual deprivation sharpens the distinctions between tactile representations. While 446 

motivational factors, such as water restriction, could potentially confound the results, 447 

trial order reversals showed only a slight increase in silhouette scores during the dark 448 

condition. If motivation alone were responsible for the enhanced discriminability, 449 

silhouette scores should have been elevated during the later light trial in the reversed 450 

sequence. This supports the conclusion that the reorganization in S1 is more likely a 451 

direct result of visual deprivation rather than solely motivation or arousal. Although 452 

differences in silhouette scores were not significant in the reversed trials, this 453 

observation may reflect a lingering effect of prior visual deprivation, consistent with 454 

previous studies in humans showing that even brief periods of visual deprivation, such 455 

as blindfolding, can enhance tactile sensitivity. These findings suggest a robust and 456 

lasting effect of visual deprivation on tactile processing.  457 

Our results also highlight the somatotopic specificity of tactile encoding in S1. 458 

The evoked potential in the forelimb subregion of S1 was significantly larger than in the 459 

hindlimb subregion, reflecting the topographic organization of S1, where distinct 460 

cortical areas process sensory inputs from different body parts (Ewert et al., 2008; Prsa 461 
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et al., 2019; Sur et al., 1980). Further, occlusion analysis revealed that forelimb 462 

subregions were critical for distinguishing between tactile textures and lighting 463 

conditions. This finding underscores the dominance of the forelimb subregion in 464 

encoding tactile information, especially during the specific task of walking and 465 

contacting different textures. Integrated gradient analysis confirmed the importance of 466 

forelimb channels in encoding texture information and showed that the temporal 467 

window of processing following forelimb contact was extended in the dark compared to 468 

the light condition. Additionally, comparative analysis of the integrated gradient and 469 

time-frequency maps revealed a negative correlation in the 50-60 Hz frequency range, 470 

while a positive correlation was observed in the 80-90 Hz range. These findings suggest 471 

that frequency-specific patterns of LFP activity in different conditions are closely linked 472 

to the texture representations captured by the CNN model. 473 

The extended temporal window in the dark condition suggests that visual 474 

deprivation may enhance the retention of tactile information in S1. Previous studies 475 

have shown that S1 neurons are involved in the short-term retention of tactile 476 

information (Zhou and Fuster, 2000, 1997, 1996), and prolonged neuronal firing in 477 

higher sensory areas may contribute to this sustained activity (Esmaeili and Diamond, 478 

2019; Leavitt et al., 2017). Our findings suggest that the dark condition could lead to 479 

more prolonged neural representations of tactile stimuli. Whether this reflects a 480 

compensatory mechanism for the absence of visual input or a correlation with 481 

heightened tactile sensitivity requires further exploration. 482 

Environmental illumination can also influence the arousal state, which in turn 483 

affects cortical dynamics as reflected in LFPs. Dark environments typically promote 484 

exploratory behavior and increase arousal, modulating cortical activity through 485 

irradiance- and cone-opponent–dependent pathways to arousal circuits like the locus 486 

coeruleus and basal forebrain (Tamayo et al., 2023). Arousal in S1 enhances both 487 

baseline activity and stimulus encoding, with neuromodulatory drive sharpening 488 

temporal precision (Eggermann et al., 2014; Poulet and Petersen, 2008; Shimaoka et al., 489 
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2018). These state-dependent effects may account for the enhanced separability of 490 

tactile representations observed in the dark, despite minimal differences in average 491 

evoked amplitude (Lee et al., 2020; McGinley et al., 2015; Shimaoka et al., 2018; Vinck 492 

et al., 2015). The shift toward a desynchronized, high-arousal state in darkness likely 493 

reduces low-frequency shared variability and boosts fast-timescale signal components, 494 

improving the separability of neural clusters in a high-dimensional LFP space. 495 

Moreover, neuromodulatory engagement during heightened arousal can extend effective 496 

integration windows and enhance gain in task-relevant networks, consistent with the 497 

longer temporal window for accurate predictions seen in forelimb channels. 498 

These findings highlight the limitations of traditional analysis methods, such as 499 

amplitude-based metrics and event-related potentials, which often fail to capture subtle, 500 

higher-dimensional features in neural signals (Saxena and Cunningham, 2019; D. L. 501 

Yamins and DiCarlo, 2016; D. L. K. Yamins and DiCarlo, 2016). In contrast, our deep-502 

learning approach revealed fine-grained spatiotemporal patterns in LFPs, showcasing 503 

enhanced texture-specific separability under visual deprivation. This demonstrates the 504 

power of advanced computational tools to uncover previously inaccessible shifts in 505 

sensory coding, with broad applicability to other high-dimensional neural datasets, such 506 

as those from multi-electrode arrays in freely behaving animals. However, it's important 507 

to note that each model was trained specifically for each rat, and inter-animal 508 

generalization remains a challenge, due to differences in electrode placement and 509 

individual brain structure. Despite this limitation, the model’s ability to extract complex, 510 

high-dimensional patterns from the dataset remains evident, and the results show 511 

significant progress in detecting sensory changes. 512 

While fMRI studies have demonstrated tactile enhancement and corresponding 513 

neural reorganization during short-term visual deprivation (Facchini and Aglioti, 2003; 514 

Kauffman et al., 2002; Pascual-Leone and Hamilton, 2001b), the low temporal and 515 

spatial resolution of fMRI limits its ability to capture detailed changes in neural 516 

representations. Our study, through LFP recordings, provides a more nuanced picture of 517 
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the population-level activity underlying tactile perception enhancement in the absence 518 

of visual input. Future studies could extend this work to assess whether rats can 519 

discriminate textures more accurately in the dark and explore the direct relationship 520 

between neural coding and perceptual performance. 521 

From an evolutionary perspective, enhanced tactile sensitivity in low-visibility 522 

environments provides an adaptive advantage. Many species, including rodents, rely on 523 

somatosensation for navigation and foraging when visual information is scarce. The 524 

ability to rapidly enhance tactile processing in such conditions could aid in efficient 525 

resource acquisition and predator detection. Given the influence of arousal on tactile 526 

sensitivity (Lee et al., 2020; Shimaoka et al., 2018), the dynamic nature of sensory 527 

processing becomes evident—S1 does not merely respond passively to tactile input but 528 

actively adapts its encoding strategies based on available sensory cues. 529 

Several limitations warrant further exploration. First, if arousal contributes to the 530 

effects observed in S1 during light–dark transitions, we predict that arousal indices, 531 

such as pupil or whisking activity, should correlate with LFP spectral composition and 532 

decoding accuracy on a trial-by-trial basis (McGinley et al., 2015; Reimer et al., 2014; 533 

Shimaoka et al., 2018). Second, manipulating neuromodulatory tone through 534 

optogenetic activation of arousal circuits should modulate the separability of texture 535 

representations, independent of illumination (Eggermann et al., 2014; Harris and Thiele, 536 

2011). Future experiments integrating real-time arousal measures and LFP analyses will 537 

be crucial in disentangling the contributions of arousal versus light–dark effects on 538 

cross-modal reorganization in S1. Additionally, while rats serve as a powerful model for 539 

sensory processing, their neural architecture may not fully capture the complexities of 540 

human perception. Extending this paradigm to assess perceptual changes in tactile 541 

acuity will further clarify the relationship between neural coding and perceptual 542 

performance. 543 

In conclusion, our study provides new insights into the brain’s remarkable 544 
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ability to reorganize its sensory processing in response to changes in sensory input. By 545 

demonstrating that visual deprivation rapidly reconfigures tactile processing in S1, we 546 

highlight the brain’s flexibility in adapting to environmental changes. This work 547 

underscores the potential of combining behavioral paradigms, LFP recordings, and deep 548 

learning techniques to understand the dynamic and adaptive nature of sensory coding, 549 

paving the way for future research in multisensory interactions.  550 
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Data availability 551 

The data that support the findings of this study are available from the corresponding 552 

author upon request. 553 

 554 

Code availability 555 

Custom code generated during this study for data analysis are available at 556 

https://github.com/UT-yakusaku/Yamashiro-eLife-2024. 557 

 558 
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Figures 693 

 694 

Figure 1. Behavioral paradigm and limb movement assessment with concurrent 695 

LFP recordings.  696 

(A) A diagram of the disk-shaped treadmill used in the experiment. One half of the disk 697 

is covered with #80 sandpaper, and the other half with #2000 sandpaper. (B) A frame 698 

from the video capturing a walking rat from a left-side perspective. (C) The motivation 699 

scheme. The rats were water-deprived prior to the experiments. A water port was 700 

coupled with the movement of the treadmill so that when the rat walked on the treadmill, 701 

the water would come out. This way, the rats were always motivated to walk during the 702 

whole session. (D) The experimental protocol, where each rat walked for 10 minutes in 703 

light (50 lx) and then for 10 minutes in darkness (0 lx). (E) An example trajectory of the 704 

elbow and wrist joints from one session, plotted with the shoulder joint fixed in the 705 

coordinate space (shoulder: yellow, elbow: green, wrist: cyan). (F) A schematic 706 
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illustrating the forelimb and hindlimb subregions of S1. (G) A custom 32-channel 707 

electrode array used to record LFPs from these subregions.   708 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2025. ; https://doi.org/10.1101/2025.04.11.648316doi: bioRxiv preprint 

https://doi.org/10.1101/2025.04.11.648316
http://creativecommons.org/licenses/by/4.0/


 

 

29 

 709 

Figure 2. Comparison of gait parameters across textures and environmental 710 

conditions.  711 

(A) Swing phase vs. stance phase, illustrated with video frames (left: swing, right: 712 

stance). (B) Normalized swing duration measured for each rat under different textures 713 

(smooth vs. rough) and environmental condition (light vs. dark). Light orange and 714 

dark orange correspond to the light conditions (smooth, rough), while light blue and 715 

dark blue correspond to the dark conditions (smooth, rough). There were no significant 716 

differences among trial conditions. (C–E) Stance duration, stride length, and footstrike 717 

speed, respectively, under the same conditions as in B. None of these parameters 718 

differed significantly across texture types or lighting conditions. 719 
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 721 

Figure 3. LFP recordings in rat S1 during walking.  722 

(A) A single representative LFP trace aligned to a forelimb contact. (B) An example of 723 

an averaged LFP trace from one session, aligned to forelimb contact. (C) The electrode 724 

montage and averaged LFP at each electrode. Left: The electrode montage showing all 725 

32 recording sites. Right: Averaged LFP signals aligned to forelimb contacts with the 726 

floor, shown for each electrode depicted in the left panel. (D) Comparison of amplitudes 727 
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between hindlimb and forelimb subregions, aggregated across all 11 rats. P = 1.89×10-3, 728 

t10 = -2.2, paired t-test, n = 11 rats. (E) Comparison of averaged amplitudes within the 729 

same trial for different floor textures and environmental conditions. P > 0.05, one-way 730 

analysis of variance (ANOVA) followed by Tukey�Kramer post hoc test, n = 149, 149, 731 

107 and 107 trials for smooth-light (light-orange), rough-light (dark-orange), smooth-732 

dark (light-blue), and rough-dark (dark-blue), respectively. (F) Cumulative probability 733 

distributions of mean amplitude from each session, compared across different textures. 734 

P = 4.84×10-1, 8.35×10-1, D = 1.03×10-1 and 7.54×10-2 for light and dark environments 735 

respectively, two-sample Kolmogorov�Smirnov test, n = 149 and 107 trials from 11 736 

rats for light and dark, respectively. (G) Cumulative probability distributions of mean 737 

amplitude from each session, compared across light and dark environments. P = 738 

1.05×10-1, 1.83×10-1, D = 0.14 and 0.149 for smooth and rough textures respectively, 739 

two-sample Kolmogorov�Smirnov test, n = 149 and 107 trials from 11 rats for light 740 

and dark, respectively. Abbreviations: ERP, event-related potential; LFP, local field 741 

potential; S1, primary somatosensory cortex.  742 
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Figure 4. LFP characteristics across textures and lighting 744 

(A) Example averaged LFP traces from one session, aligned to forelimb contact: light–745 

smooth, light–rough, dark–smooth, dark–rough (left to right). (B) Channel correlation 746 

difference map (light − dark) computed from average LFP waveforms (Pearson’s r). 747 

Higher values indicate stronger channel-wise correlations in light relative to dark. (C) 748 

Correlation matrices shown separately for each texture and lighting condition. Matrices 749 

exhibit similar within–S1-subregion structure, with no clear texture- or light-dependent 750 

differences. (D) Example time–frequency (wavelet) spectrogram of LFP power from 751 

one session, aligned to forelimb contact. Dotted line indicates the cone of influence. 752 

Color scales represent wavelet coefficient magnitude (C) and corresponding power (D). 753 
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 755 

Figure 5. Model-based prediction of texture and environmental conditions from 756 

LFP.  757 

(A) The deep learning model architecture. The LFP input is processed through two 758 

parallel pathways for macro- and micro-scale feature extraction, followed by residual 759 

blocks that feed into two output heads for floor texture (Smooth vs. Rough) and the 760 

environmental condition (Light vs. Dark). (B) Training performance for a single 761 

representative rat. The left graph shows accuracy curves for texture (blue) and lighting 762 

(yellow), and the right graph shows the loss curves. (C) Testing performance for the 763 

same rat. The model exhibits good generalization, as accuracy increases and loss 764 

decreases on held-out data. (D) Confusion matrix for texture classification for all rats. 765 

Values above chance on the diagonal indicate successful texture prediction. Note that all 766 

values in the same row add up to 1. (E) Same as D, but for environmental conditions. 767 

(F) Combined confusion matrix for texture and trial predictions. The model performs 768 
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well on both tasks across all rats. Abbreviations: avgpool, average pooling layer; conv, 769 

convolutional layer; maxpool, max pooling layer; LFP, local field potential.  770 
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 771 

Figure 6. Neural representations are more distinct in dark environments than in 772 

light environments 773 

(A) A 912-dimensional feature vector is extracted from the layer preceding the final 774 

output. (B) A scatter plot of these features from one rat shows individual LFP segments 775 

(aligned to forelimb contact). Light orange and dark orange correspond to the light 776 

conditions (smooth, rough), while light blue and dark blue correspond to the dark 777 

conditions (smooth, rough). (C) Silhouette scores across all nine rats, showing that the 778 

dark condition yields higher scores and thus more distinct neural representations. P = 779 

2.31×10-2, t8 = -2.8, paired t-test, n = 9 rats. (D) A pseudo-color map based on occlusion 780 

analysis, illustrating the contribution of each electrode in the forelimb and hindlimb 781 

subregions. Hotter regions indicate higher importance for the model’s predictions. (E) 782 
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Forelimb channels exhibit higher occlusion sensitivity than hindlimb channels, 783 

highlighting the forelimb’s dominant role when the foot contacts the floor. P = 4.53×10-784 
6, t16 = -5.57, Student’s t-test, n = 9 rats. (F) Class activation maps generated via 785 

integrated gradients highlight key input features responsible for accurate model 786 

predictions of texture and environmental conditions. Attribution scores show each 787 

feature’s impact on the model’s output relative to a reference baseline: high positive 788 

scores denote features that strongly affect the predicted class. The onset of forelimb 789 

contact is aligned to time zero. (G) Attribution scores averaged over forelimb electrodes 790 

for floor texture (left) and the environmental conditions (right). A temporal lag in the 791 

dark condition suggests an extended processing window for floor texture when visual 792 

cues are absent. 793 
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