

# 1 Enhanced Tactile Coding in Rat Neocortex

## 2 Under Darkness

3 Kotaro Yamashiro<sup>1</sup>, Shiyori Tanaka<sup>1</sup>, Nobuyoshi Matsumoto<sup>1,2†</sup>, Yuji Ikegaya<sup>1,2,3†</sup>

4

5 <sup>1</sup>Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-  
6 0033, Japan

7 <sup>2</sup>Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan

8 <sup>3</sup>Center for Information and Neural Networks, National Institute of Information and  
9 Communications Technology, Suita City, Osaka, 565-0871, Japan

10

11 **Abbreviated title:** Enhanced Tactile Coding Under Darkness

12

13 †To whom correspondence should be addressed

14

15 Yuji Ikegaya Ph.D.

16 Laboratory of Chemical Pharmacology

17 Graduate School of Pharmaceutical Sciences, The University of Tokyo

18 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

19 Tel. : +81-3-5841-4780; Fax: +81-3-5841-4786

20 E-mail: yuji@ikegaya.jp

21

22 Nobuyoshi Matsumoto Ph.D.

23 Laboratory of Chemical Pharmacology

24 Graduate School of Pharmaceutical Sciences, The University of Tokyo

25 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

26 Tel. : +81-3-5841-4780; Fax: +81-3-5841-4786

27 E-mail: nobuyoshi@matsumoto.ac

28

29 **Conflicts of interest:** The authors declare no competing interests.

30

31 **Acknowledgments:** This work was supported by JST ERATO (JPMJER1801), AMED-  
32 CREST (24wm0625401h0001; 24wm0625502s0501; 24wm0625207s0101;  
33 24gm1510002s0104), the Institute for AI and Beyond of the University of Tokyo, JSPS  
34 Grants-in-Aid for Scientific Research (18H05525, 20K15926, 22K21353, 22J22097),  
35 KOSÉ Cosmetology Research Foundation, the Public Foundation of Chubu Science and  
36 Technology Center, and Konica Minolta Science and Technology Foundation.

37 **Abstract**

38 Sensory systems are known for their adaptability, responding dynamically to changes in  
39 environmental conditions. A key example of this adaptability is the enhancement of  
40 tactile perception in the absence of visual input. Despite behavioral studies showing  
41 visual deprivation can improve tactile discrimination, the underlying neural mechanisms,  
42 particularly how tactile neural representations are reorganized during visual deprivation,  
43 remain unclear. In this study, we explore how the absence of visual input alters tactile  
44 neural encoding in the rat somatosensory cortex (S1). Rats were trained on a custom-  
45 designed treadmill with distinct tactile textures (rough and smooth), and local field  
46 potentials (LFPs) were recorded from S1 under light and dark conditions. Machine  
47 learning techniques, specifically a convolutional neural network, were used to decode  
48 the high-dimensional LFP signals. We found that the neural representations of tactile  
49 stimuli became more distinct in the dark, indicating a reorganization of sensory  
50 processing in S1 when visual input was removed. Notably, conventional amplitude-  
51 based analyses failed to capture these changes, highlighting the power of deep learning  
52 in uncovering subtle neural patterns. These findings offer new insights into how the  
53 brain rapidly adapts tactile processing in response to the loss of visual input, with  
54 implications for multisensory integration.

55

56 **Introduction**

57 The primary somatosensory cortex (S1) is integral to the encoding of tactile  
58 information, processing sensory inputs from various regions of the body (Delhaye et al.,  
59 2018; Di Plinio et al., 2020; Piras et al., 2020; Serino, 2019). This cortical area is crucial  
60 for our sense of touch, facilitating the perception and interpretation of sensations such  
61 as pressure, vibration, temperature, and pain (Bushnell et al., 1999; Luna et al., 2005;  
62 Moulton et al., 2012). These external stimuli are represented by dynamic neural activity  
63 in S1, enabling animals to discriminate distinct sensory experiences (Bensmaia et al.,  
64 2008; Goodwin and Wheat, 2004; Koch and Fuster, 1989; Salinas et al., 2000).  
65 Crucially, neural representations in S1 are highly adaptable, shaped not only by  
66 feedforward mechanisms but also by attention, motivation, and inputs from other  
67 sensory modalities (Butler et al., 2012; Driver and Spence, 2000; Eimer and Forster,  
68 2003; Schürmann et al., 2004; Ziegler et al., 2023). This adaptability facilitates rapid  
69 adjustments to changing environmental contexts, supporting survival and optimal  
70 sensory processing (Abraira and Ginty, 2013; Dijkerman and de Haan, 2007).

71 One prominent example of such adaptability is cross-modal processing, wherein  
72 the absence or reduction of visual input enhances tactile abilities. (Bulusu and Lazar,  
73 2024; Hopkins et al., 2017; Nikbakht et al., 2018; Sugiyama et al., 2019). For instance,  
74 prolonged visual deprivation, such as blindness from an early age, results in heightened  
75 tactile discrimination abilities (Goldreich and Kanics, 2003; Norman and Bartholomew,  
76 2011; Van Boven et al., 2000; Wong et al., 2011), driven by cortical reorganization  
77 where visual cortical areas are repurposed to support tactile processing (Burton, 2003;  
78 Karlen et al., 2006; Sadato et al., 1996). Notably, however, tactile performance  
79 improvements are also observed in sighted individuals during short-term visual  
80 deprivation (Facchini and Aglioti, 2003; Kauffman et al., 2002; Pascual-Leone and  
81 Hamilton, 2001a). Such individuals demonstrate enhanced tactile discrimination during  
82 temporary darkness or blindfolding, indicating that rapid, context-dependent  
83 compensatory mechanisms occur even without long-term structural changes (Bola et al.,

84 2017; Boroojerdi et al., 2000; Merabet et al., 2008). Thus, although tactile enhancement  
85 has been studied extensively in the context of long-term sensory deprivation, the neural  
86 mechanisms underlying short-term, context-dependent modulation remain unclear.

87 The neural representation of tactile stimuli within S1 involves complex,  
88 distributed activity patterns, posing significant challenges for conventional analyses that  
89 primarily measure signal amplitude. Thus, the subtle, high-dimensional neural dynamics  
90 that may underlie immediate adaptations to temporary visual deprivation are difficult to  
91 detect using traditional methods. Addressing this gap requires refined experimental  
92 paradigms and advanced analytical tools to capture how tactile representations  
93 reorganize on short timescales.

94 To examine short-term reorganization in tactile processing, we used a behavioral  
95 paradigm using rats trained to walk naturally on a treadmill featuring distinct tactile  
96 textures (Yamashiro et al., 2024). . By manipulating visual input (light vs. dark  
97 conditions) while recording local field potentials (LFPs) from S1, we aimed to  
98 characterize rapid shifts in tactile neural representations. LFPs provide a rich, high-  
99 dimensional signal reflecting both synchronous and asynchronous activity across  
100 cortical populations. Concurrently, we applied deep learning techniques to decode  
101 subtle differences in neural activity patterns that traditional amplitude-based analyses  
102 could not detect. We hypothesized that temporary visual deprivation would enhance the  
103 neural distinction between tactile stimuli, leading to more differentiated representations  
104 of textures in the dark condition.

105 By investigating these rapid, context-dependent shifts in neural coding, this  
106 study provides valuable insights into the brain's capacity for sensory adaptation. Our  
107 findings not only shed light on how visual deprivation influences tactile processing in  
108 the short term, but also emphasize the potential of deep learning techniques in  
109 uncovering nuanced neural reorganization.

110 **Materials and Methods**

111 *Animal ethics*

112 Animal experiments were performed with the approval of the Animal Experiment  
113 Ethics Committee at the University of Tokyo (approval numbers: P29-7 and P4-15)  
114 and according to the University of Tokyo guidelines for the care and use of laboratory  
115 animals. These experimental protocols were carried out following the Fundamental  
116 Guidelines for the Proper Conduct of Animal Experiments and Related Activities of the  
117 Academic Research Institutions (Ministry of Education, Culture, Sports, Science and  
118 Technology, Notice No. 71 of 2006), the Standards for Breeding and Housing of and  
119 Pain Alleviation for Experimental Animals (Ministry of the Environment, Notice No. 88  
120 of 2006) and the Guidelines on the Method of Animal Disposal (Prime Minister's Office,  
121 Notice No. 40 of 1995). While our experimental protocols have a mandate to humanely  
122 euthanize animals if they exhibit any signs of pain, prominent lethargy, and discomfort,  
123 such symptoms were not observed in any of the rats tested in this study. All efforts were  
124 made to minimize the animals' suffering.

125

126 *Behavioral paradigm*

127 To record LFPs during natural locomotion, we employed a custom-designed, disk-  
128 shaped treadmill with a diameter of 90 cm (Figure 1A). The treadmill's running surface  
129 was divided into two halves, each featuring a distinct texture: one side was coated with  
130 coarse sandpaper (grain #80) and the other with fine sandpaper (grain #1000). In this  
131 setup, the rat was placed on the treadmill and secured with a fabric vest (Figure 1B).

132 Before the experiment, rats were water-restricted to ensure motivation. A  
133 waterspout was positioned in front of each rat, and its output was synchronized with the  
134 treadmill's movement (Figure 1C). Specifically, once the treadmill began to move, 30  
135  $\mu$ L of water was dispensed from the spout, encouraging the rat to continue walking to

136 receive its water reward.

137        Each rat was deprived of water until its body weight reached 85% of its baseline  
138 weight, then it was trained to walk on the treadmill for four days (one hour per day),  
139 with 30 minutes in a light environment (50 lx) followed by 30 minutes in darkness (0  
140 lx). After successful training, the rats were allowed free access to food and water to  
141 regain their original body weight before electrode implantation surgery. Following  
142 surgical recovery, the rats were water-restricted again and placed on the treadmill to  
143 assess cross-modal interactions between the visual and tactile systems. In a single  
144 session, LFP recordings were obtained in the light environment trial, followed  
145 immediately by the dark environment trial (Figure 1D). For subset of sessions, the  
146 order of the light and dark environment was swapped, dark environment trial preceding  
147 the dark environment trial. Each trial lasted for approximately 10 minutes. Recording  
148 was performed once a day for 4-14 days.

149        During the trials, the trajectory of the forelimb and onsets when the forelimb  
150 came in contact with the floor were automatically identified using a previously  
151 developed deep-learning-based method (Figure 1E) (Yamashiro et al., 2024).

152

### 153 *Animal preparation and surgical procedures*

154 LFPs were recorded from eleven 9- to 10-week-old Long-Evans rats (Japan SLC,  
155 Shizuoka, Japan) using a custom-designed, 32-channel electrode assembly. This  
156 assembly, fabricated from nichrome wires (761500, A-M Systems, WA, USA), targeted  
157 the right somatosensory cortex (S1) regions corresponding to the forelimb and hindlimb  
158 representations (Figure 1F). Specifically, 18 and 14 electrodes were placed in the  
159 forelimb and the hindlimb subregion respectively (Figure 1G). Each electrode tip was  
160 platinum-coated to reduce impedance to below 200 kΩ using a nanoZ tester (Plexon,  
161 TX, USA).

162        At the start of the surgical procedure, each rat was anesthetized with 2–3%  
163 isoflurane gas. A square craniotomy (2–6 mm posterior and 1–5 mm lateral to bregma)  
164 was then created using a dental drill. The electrode assembly was gently lowered  
165 through the cranial window to a depth of approximately 1.5 mm beneath the dura,  
166 targeting layer IV of S1. Additionally, two stainless steel screws were implanted in the  
167 bone above the cerebellum to serve as ground and reference electrodes. The recording  
168 device and electrodes were secured to the skull using stainless steel screws and dental  
169 cement. Following the surgery, each rat was housed individually in a transparent  
170 Plexiglas cage with ad libitum access to food and water for one week to ensure proper  
171 recovery.

172

173 LFP recordings from S1

174 LFPs were referenced to ground, digitized at 30 kHz using the OpenEphys recording  
175 system (<http://open-ephys.org>) and an RHD 32-channel headstage (C3314, Intan  
176 Technologies, CA, USA), then resampled to 10 kHz for subsequent analyses  
177 (Yamashiro et al., 2020). In parallel, video was acquired at 60 Hz using a USB camera  
178 module (MCM-303NIR, Gazo, Niigata, Japan), capturing a lateral view of the rat. Each  
179 video frame was synchronized with the neural recordings using strobe signals. For a  
180 subset of recordings (n = 2 rats), speed sensors were attached to the running disk to  
181 monitor locomotor speed, which was simultaneously recorded through the OpenEphys  
182 analog input.

183

184 *Data analysis*

185 Data was analyzed offline using custom-made scripts in Python3. For box plots, the  
186 centerline shows the median, the box limits show the upper and lower quartiles,

187 and the whiskers cover the 10–90% percentiles.  $P < 0.05$  was considered  
188 statistically significant. All statistical *t*-tests were two-sided, and the bootstrap method  
189 was applied for multiple comparisons.

190

191 *LFP analysis*

192 To see if there were any differences in LFPs, the LFPs were aligned to the foot strike  
193 onsets detected using deep-learning assisted methods. The aligned LFP were then  
194 categorized by the trial (light *vs.* dark) and the floor texture (smooth *vs.* rough). To  
195 analyze the amplitude of the event-related response from the foot strike, a mean trace of  
196 the aligned LFP was calculated for each channel from 32 electrodes for each condition.  
197 Foot-strike detection and all LFP alignment were intentionally forelimb-locked, because  
198 the behavioral paradigm was designed for forepaw texture contact (Figure 1E) and our  
199 array oversampled S1-forelimb (18 channels) relative to S1-hindlimb (14 channels;  
200 Figure 1G).

201

202 *A deep neural network for joint decoding of trial conditions and floor texture*

203 A custom deep neural network (DNN) model was implemented to predict both the trial  
204 condition (*e.g.*, light *vs.* dark) and floor texture (*e.g.*, smooth *vs.* rough) from time-  
205 aligned, one-dimensional LFP segments, using the PyTorch framework. Our model  
206 architecture was inspired by one-dimensional ResNet-like structures and incorporated  
207 multiheaded outputs for simultaneous prediction of two distinct variables (He et al.,  
208 2015).

209 The input to the model consisted of one-dimensional LFP signals, arranged as a  
210 tensor with multiple channels (*e.g.*, 32 input channels) over time. The network began by  
211 splitting the input into two parallel convolutional pathways. The first pathway (“left”

212 branch) applied sequential convolutional and pooling operations with relatively smaller  
213 kernel sizes and strides to incrementally reduce the dimensionality of the signal and  
214 extract fine-grained temporal features. Specifically, the model employed a two-stage  
215 convolutional process that first passed the input through a one-dimensional (1D)  
216 convolution layer with a kernel size of 7, stride of 2, and batch normalization, followed  
217 by a max pooling and an additional convolution layer. Both convolutional layers in the  
218 left branch used ReLU nonlinearities to facilitate stable and efficient feature extraction.

219 In contrast, the second pathway (“right” branch) processed the input through a  
220 single 1D convolutional layer with a larger kernel size (*e.g.*, 41) and a more aggressive  
221 stride (*e.g.*, stride of 8). This pathway captured broader temporal contexts from the input  
222 signals. Similar to the left branch, the right branch output was batch-normalized and  
223 passed through a ReLU activation function. After these two parallel extractions, the  
224 outputs of the left and right branches were concatenated along the channel dimension,  
225 forming a combined feature representation that integrated both fine- and coarse-grained  
226 temporal information.

227 The concatenated output was then passed through a max pooling operation,  
228 followed by two residual layers that employed 1D convolutional blocks  
229 (ResidualBlock) to refine feature representations. These residual layers allowed the  
230 network to learn more complex feature hierarchies by facilitating the flow of gradients  
231 during training and improving convergence, while also maintaining temporal resolution  
232 appropriate for downstream decoding.

233 Subsequently, the processed features were passed through an average pooling  
234 layer to summarize temporal information into a low-dimensional feature vector. This  
235 vector was flattened into a one-dimensional representation and then fed into two  
236 separate fully connected “heads” (fc\_head1 and fc\_head2). Each head was a simple  
237 linear layer that provided a scalar output value. By concatenating these outputs, the final  
238 layer jointly predicted two target variables from the same underlying features.

239        In summary, our model combined parallel convolutional branches for initial  
240        feature extraction, residual layers for robust representation learning, and multiheaded  
241        outputs to facilitate joint prediction of trial conditions and floor textures. The model was  
242        implemented in Python using PyTorch, and all parameters were optimized via standard  
243        stochastic gradient-based methods. This architecture allowed efficient and robust  
244        decoding of environmental conditions from LFP signals in both time and frequency  
245        domains.

246

247        *Training and evaluating the deep neural network*

248        Of the 11 recorded rats, data from the initial two rats were utilized to determine the  
249        optimal model architecture. Once the architecture was established, data from the  
250        remaining 9 rats were used for training and evaluation. The raw LFP signals were  
251        resampled from 30 kHz to 10 kHz and segmented into 800 ms windows centered on the  
252        footstrike onset (*e.g.*, 400 ms before and 400 ms after). Each LFP segment was assigned  
253        two labels: one for the trial condition (*e.g.*, light *vs.* dark) and one for the floor texture  
254        (*e.g.*, smooth *vs.* rough).

255        For each rat, the dataset was shuffled, normalized, and then subjected to 5-fold  
256        cross-validation. In this procedure, the data were partitioned into five equal subsets; in  
257        each fold, four subsets (80%) were used for training, and the remaining subset (20%)  
258        was used for evaluation. Model training was performed for 80 epochs using a batch size  
259        of 128 and a learning rate of  $10^{-6}$ . Binary cross-entropy with logits loss  
260        (BCEWithLogitsLoss) served as the objective function. These parameters were selected  
261        to ensure stable convergence and to reduce overfitting. After the training, the model's  
262        performance was evaluated using the evaluation dataset. The confusion matrix was  
263        calculated as the number of true positives, false positives, false negatives, and true  
264        negatives, aggregated across all predictions in the evaluation set.

265

266 *Evaluation of cluster separability between light and dark conditions*

267 To examine how texture representations differed between light and dark conditions, we  
268 assessed cluster separability of the intermediate features extracted from the deep-  
269 learning model. Specifically, after the model was trained, we extracted the output from  
270 the penultimate layer (a 912-dimensional feature vector for each trial). Cluster  
271 separability was quantified using the silhouette score, which measures the relative  
272 distances between within-cluster and between-cluster samples.

273 Silhouette scores were calculated for the two texture classes (smooth and rough)  
274 within each lighting condition, using the Euclidean distance metric applied to the  
275 intermediate feature representations. For each trial, the silhouette score  $s$  is defined as:

$$s = \frac{b - a}{\max(a, b)}$$

276 where  $a$  is the average distance between a point and all other points in the same cluster  
277 (intra-cluster distance), and  $b$  is the minimum average distance between a point and all  
278 points in the nearest different cluster (inter-cluster distance). The silhouette score,  
279 therefore, provides a normalized index of cluster separability, with larger values  
280 indicating more distinct clustering. To obtain an animal-level measure, silhouette scores  
281 were averaged across cross-validation within each rat.

282

283 *Explainability analysis using occlusion and integrated gradients*

284 To elucidate the internal decision-making processes of the trained deep neural network  
285 (DNN), we employed two established explainability techniques: occlusion and  
286 integrated gradients.

287        Occlusion: Occlusion analysis involves systematically masking specific input  
288    features to determine their relative contribution to the model's output (Zeiler and Fergus,  
289    2013). In the present study, one channel was selectively occluded at a time from the 32-  
290    channel LFP input and the sensitivity of each channel was calculated. Sensitivity was  
291    defined as the corresponding change in model performance when the specified channel  
292    was occluded. By conducting these analyses for each of the nine rats, channel-specific  
293    importance scores were obtained and subsequently normalized (z-scored) to facilitate  
294    cross-subject comparisons. Channels whose removal yielded a more pronounced  
295    decrease in model performance were considered more critical for accurate prediction.

296        Integrated gradients: Integrated gradients is an attribution method that quantifies  
297    the importance of each input feature by integrating the gradient of the model's output  
298    with respect to the input, transitioning from a baseline input to the actual input  
299    (Sundararajan et al., 2017). This approach produces class activation maps, enabling the  
300    visualization of features most influential for the model's output. Here, integrated  
301    gradients were applied to the LFP segments for each rat, and the resulting class  
302    activation maps were averaged across subjects and trial conditions. These maps allowed  
303    us to identify salient input regions associated with both trial conditions and floor texture.

304

## 305    **Results**

306    *Stable locomotion across light and dark conditions*

307    To investigate how visual input influences tactile processing in S1, we devised an  
308    experimental paradigm where both tactile and visual inputs were independently  
309    manipulated. Rats were placed on a disk-shaped treadmill with two distinct sandpaper  
310    textures, and LFPs were recorded from walking rats. Each rat walked for 10 min in a  
311    light environment (50 lx) and then for 10 minutes in total darkness (0 lx).

312    To make sure that rat's trajectory was stable across different floor textures and

313 environmental conditions, gait parameters were extracted from the trajectories using  
314 deep-learning-based analysis (Figure 2A). From the trajectories, swing duration, stance  
315 duration, stride length, and footstrike speed were extracted. All parameters were  
316 calculated for each floor textures and environmental conditions. Comparison of all  
317 conditions revealed that none of these metrics differed significantly between floor  
318 textures or environmental conditions, indicating that overall locomotion remained stable  
319 (Figure 2B-E,  $P > 0.05$ , one-way analysis of variance (ANOVA) followed by  
320 Tukey-Kramer *post hoc* test,  $n = 149, 149, 107$  and  $107$  trials for smooth-light, rough-  
321 light, smooth-dark, and rough-dark, respectively). Locomotor-speed traces recorded  
322 from subset of rats. The result indicated that walking velocity was stable across trials,  
323 not affected by the lighting conditions (Supplementary Figure 1). Thus, any differences  
324 in neural activity under these conditions are unlikely to be driven by altered motor  
325 behavior.

326

327 *Characteristic of S1 LFP upon forelimb contact*

328 We next analyzed LFPs from S1 using a custom 32-channel electrode array targeting  
329 the forelimb and hindlimb subregions (Figure 1F, G). LFP traces were first aligned to  
330 forelimb contacts with the disk surface. On inspection of a single LFP trace, no apparent  
331 event-related response could be observed (Figure 3A). However, aligning each LFP at  
332 forelimb contact with the floor, the average trace showed a clear response after the onset  
333 (Figure 3B). Across conditions, we observed a clear negative deflection in LFPs that  
334 was most pronounced in the forelimb subregion (Figure 3C). The amplitude of the  
335 response was significantly larger in all rats, consistent with the topographic specificity  
336 of S1 (Figure 3D,  $P = 1.89 \times 10^{-3}$ ,  $t_{10} = -2.2$ , paired *t*-test,  $n = 11$  rats). This was expected  
337 since the epochs were forelimb-locked, making larger deflections and greater  
338 importance of forelimb channels consistent with somatotopy.

339 To see if the event-related responses were affected by the change in floor texture

340 or the environmental condition, the amplitudes were compared. Despite the prominent  
341 negative deflection in LFPs at the forelimb contact with the floor, analyses showed no  
342 substantial differences in signal amplitude (Figure 3E,  $P > 0.05$ , one-way analysis of  
343 variance (ANOVA) followed by Tukey-Kramer *post hoc* test,  $n = 149, 149, 107$  and  
344 107 trials for smooth-light, rough-light, smooth-dark, and rough-dark, respectively)  
345 when comparing rough *vs.* smooth textures (Figure 3F,  $P = 0.48$  and  $0.84$ ,  $D = 1.03 \times 10^{-1}$   
346 and  $7.54 \times 10^{-2}$  for light and dark environments respectively, two-sample  
347 Kolmogorov-Smirnov test,  $n = 149$  and 107 trials from 11 rats for light and dark,  
348 respectively) and light *vs.* dark environments (Figure 6G,  $P = 0.11, 0.18$ ,  $D = 0.14$  and  
349 0.149 for smooth and rough textures respectively, two-sample Kolmogorov-Smirnov  
350 test,  $n = 149$  and 107 trials from 11 rats for light and dark, respectively).

351 To further investigate, we computed grand-average LFP waveforms across  
352 combinations of floor texture (smooth *vs.* rough) and lighting condition (light *vs.* dark)  
353 (Figure 4A). Visual inspection of the mean waveforms revealed no distinct or prominent  
354 features. We then calculated channel-wise correlations between textures within each  
355 lighting condition (i.e., light-smooth *vs.* light-rough; dark-smooth *vs.* dark-rough). To  
356 assess whether lighting modulated texture-related correlations, we subtracted the  
357 correlation coefficients obtained in the dark from those in the light and averaged the  
358 differences across animals (Figure 4B). The correlation of LFP waveforms between  
359 different textures was stronger in the light condition, suggesting that in the dark  
360 environment, the average LFP waveform is more distinct. Additionally, we examined  
361 channel-channel correlation matrices across all 32 channels for each condition (Figure  
362 4C). While stronger correlations were observed within individual S1 subregions, no  
363 systematic differences emerged between lighting conditions or between textures. To  
364 probe the frequency domain of the LFP, we computed time-frequency (wavelet)  
365 spectrograms across the floor texture and lighting condition combinations. However, no  
366 clear differences were observed across these combinations. Taken together, these results  
367 suggest that simple amplitude-based metrics may not fully capture subtler or higher-  
368 dimensional variations in underlying neuronal activity.

369

370 *Machine learning–based decoding of tactile and visual information*

371 Given the absence of clear differences in averaged LFP features, we next examined how  
372 representations of textures in the LFPs varied across environments using machine  
373 learning approaches. We first implemented a support vector machine (SVM) classifier  
374 with a radial basis function (RBF) kernel. To reduce dimensionality, principal  
375 component analysis (PCA) was applied to the raw LFP traces (Supplementary Figure  
376 2A). The SVM was then trained using 5-fold cross-validation, where, in each fold, 80%  
377 of the dataset was used to classify two types of labels: texture (smooth *vs.* rough) and  
378 trial (light *vs.* dark). Model performance was evaluated on the remaining 20% of the  
379 data. The overall classification accuracy was at chance level (~50%), indicating that the  
380 PCA–SVM combination failed to extract informative features for texture or lighting  
381 condition from the LFP traces (Supplementary Figure 2B).

382 We next employed a deep learning model, a convolutional neural network  
383 (CNN), to classify both floor texture (smooth *vs.* rough) and trial (light *vs.* dark). The  
384 CNN architecture incorporated parallel convolutional pathways designed to capture  
385 both macro- and micro-scale temporal dynamics, followed by residual blocks. The  
386 network then branched into dual output layers to jointly predict texture and lighting  
387 conditions (Figure 5A).

388 Similarly to SVM, the model was trained and evaluated using 5-fold cross-  
389 validation. In training, the model exhibited stable learning curves (Figure 5B) and also  
390 generalized well to held-out test data (Figure 5C). Confusion matrices for both texture  
391 and lighting classifications were above chance along the diagonal, demonstrating that  
392 the model reliably extracted neural representations of the floor textures from the LFPs  
393 (Figure 5D–F).

394

395 *Neural representations become more distinct in darkness*

396 To understand how the absence of the visual cue might refine tactile processing, we  
397 performed explainability analyses on the model's learned representations (Figure 6). We  
398 extracted a 912-dimensional feature vector from the layer preceding the final outputs,  
399 then visualized these high-dimensional embeddings with scatter plots (Figure 6A, B).  
400 Clustering analyses using silhouette scores showed that representations of texture were  
401 more separated in the dark environment, suggesting that reduced visual input enhances  
402 the distinctness of neural dynamics that code tactile stimuli (Figure 6C,  $P = 2.31 \times 10^{-2}$ ,  $t_8$   
403 = -2.8, paired  $t$ -test,  $n = 9$  rats, Supplementary Table 1). To account for trial order,  
404 silhouette scores were also calculated in sessions where dark trials preceded light trials.  
405 In this case, only an increasing trend was observed, with no significant difference  
406 detected (Supplementary Figure 3A, B  $P = 2.9 \times 10^{-1}$ ,  $t_5 = -1.16$ , paired  $t$ -test,  $n = 6$  rats,  
407 Supplementary Table 2).

408 To assess whether the observed differences in cluster separability between light  
409 and dark conditions could arise by chance, we performed a permutation test. Within  
410 each rat, the darkness/light labels were randomly shuffled across trials while preserving  
411 the number of trials per condition. For each permutation, silhouette scores were  
412 recalculated from the layer embeddings of the trained network. This procedure was  
413 repeated 1000 times to generate an empirical null distribution of cluster separability.  
414 The observed silhouette scores for the dark condition consistently exceeded the 95th  
415 percentile of the null distribution, confirming that the enhanced separability in darkness  
416 reflects systematic differences in neural representations rather than random variation  
417 (Supplementary Figure 4).

418 To elucidate which electrodes held the most information about the floor textures,  
419 we performed occlusion analysis. The results revealed that electrodes in the forelimb  
420 subregion contributed more to successful texture and lighting predictions (Figure 6D, E,  
421  $P = 4.53 \times 10^{-6}$ ,  $t_8 = -5.57$ , Student's  $t$ -test,  $n = 9$  rats), which aligns with our observation

422 that negative deflections in LFPs were largest in forelimb-targeting channels (Figure  
423 2E). Further analysis using class activation maps from integrated gradients showed  
424 spatiotemporal patterns of salient features unique to each experimental condition  
425 (Figure 6F). In particular, the average attribution score in the forelimb subregion  
426 displayed a temporal shift in the dark condition, implying an extended processing  
427 window for texture information when visual cues are unavailable (Figure 6G,  
428 Supplementary Figure 5).

429 Collectively, these results indicate that visual deprivation modifies population-  
430 level activity in S1, yielding more distinctive representations of tactile stimuli. Such  
431 reorganization could provide a neural substrate for enhanced tactile perception under  
432 conditions of reduced or absent visual input.

433

434

435 **Discussion**

436 This study provides evidence that S1 undergoes rapid reorganization of tactile  
437 representations when visual input is removed, even over a short period. Using high-  
438 density LFP recordings and deep learning techniques, we show that the neural encoding  
439 of tactile stimuli becomes more distinct under conditions of visual deprivation.  
440 Specifically, when rats were exposed to darkness, texture representations in S1 were  
441 more clearly distinguishable than under normal visual conditions. This demonstrates the  
442 adaptability of S1 and its capacity to rapidly adjust to changing sensory contexts.

443 A key finding was the significant increase in silhouette scores when texture  
444 representations were decoded in the dark. Silhouette scores, which quantify the  
445 separability of neural features, were notably higher under dark conditions, suggesting  
446 that visual deprivation sharpens the distinctions between tactile representations. While  
447 motivational factors, such as water restriction, could potentially confound the results,  
448 trial order reversals showed only a slight increase in silhouette scores during the dark  
449 condition. If motivation alone were responsible for the enhanced discriminability,  
450 silhouette scores should have been elevated during the later light trial in the reversed  
451 sequence. This supports the conclusion that the reorganization in S1 is more likely a  
452 direct result of visual deprivation rather than solely motivation or arousal. Although  
453 differences in silhouette scores were not significant in the reversed trials, this  
454 observation may reflect a lingering effect of prior visual deprivation, consistent with  
455 previous studies in humans showing that even brief periods of visual deprivation, such  
456 as blindfolding, can enhance tactile sensitivity. These findings suggest a robust and  
457 lasting effect of visual deprivation on tactile processing.

458 Our results also highlight the somatotopic specificity of tactile encoding in S1.  
459 The evoked potential in the forelimb subregion of S1 was significantly larger than in the  
460 hindlimb subregion, reflecting the topographic organization of S1, where distinct  
461 cortical areas process sensory inputs from different body parts (Ewert et al., 2008; Prsa

462 et al., 2019; Sur et al., 1980). Further, occlusion analysis revealed that forelimb  
463 subregions were critical for distinguishing between tactile textures and lighting  
464 conditions. This finding underscores the dominance of the forelimb subregion in  
465 encoding tactile information, especially during the specific task of walking and  
466 contacting different textures. Integrated gradient analysis confirmed the importance of  
467 forelimb channels in encoding texture information and showed that the temporal  
468 window of processing following forelimb contact was extended in the dark compared to  
469 the light condition. Additionally, comparative analysis of the integrated gradient and  
470 time-frequency maps revealed a negative correlation in the 50-60 Hz frequency range,  
471 while a positive correlation was observed in the 80-90 Hz range. These findings suggest  
472 that frequency-specific patterns of LFP activity in different conditions are closely linked  
473 to the texture representations captured by the CNN model.

474 The extended temporal window in the dark condition suggests that visual  
475 deprivation may enhance the retention of tactile information in S1. Previous studies  
476 have shown that S1 neurons are involved in the short-term retention of tactile  
477 information (Zhou and Fuster, 2000, 1997, 1996), and prolonged neuronal firing in  
478 higher sensory areas may contribute to this sustained activity (Esmaeili and Diamond,  
479 2019; Leavitt et al., 2017). Our findings suggest that the dark condition could lead to  
480 more prolonged neural representations of tactile stimuli. Whether this reflects a  
481 compensatory mechanism for the absence of visual input or a correlation with  
482 heightened tactile sensitivity requires further exploration.

483 Environmental illumination can also influence the arousal state, which in turn  
484 affects cortical dynamics as reflected in LFPs. Dark environments typically promote  
485 exploratory behavior and increase arousal, modulating cortical activity through  
486 irradiance- and cone-opponent-dependent pathways to arousal circuits like the locus  
487 coeruleus and basal forebrain (Tamayo et al., 2023). Arousal in S1 enhances both  
488 baseline activity and stimulus encoding, with neuromodulatory drive sharpening  
489 temporal precision (Eggermann et al., 2014; Poulet and Petersen, 2008; Shimaoka et al.,

490 2018). These state-dependent effects may account for the enhanced separability of  
491 tactile representations observed in the dark, despite minimal differences in average  
492 evoked amplitude (Lee et al., 2020; McGinley et al., 2015; Shimaoka et al., 2018; Vinck  
493 et al., 2015). The shift toward a desynchronized, high-arousal state in darkness likely  
494 reduces low-frequency shared variability and boosts fast-timescale signal components,  
495 improving the separability of neural clusters in a high-dimensional LFP space.  
496 Moreover, neuromodulatory engagement during heightened arousal can extend effective  
497 integration windows and enhance gain in task-relevant networks, consistent with the  
498 longer temporal window for accurate predictions seen in forelimb channels.

499 These findings highlight the limitations of traditional analysis methods, such as  
500 amplitude-based metrics and event-related potentials, which often fail to capture subtle,  
501 higher-dimensional features in neural signals (Saxena and Cunningham, 2019; D. L.  
502 Yamins and DiCarlo, 2016; D. L. K. Yamins and DiCarlo, 2016). In contrast, our deep-  
503 learning approach revealed fine-grained spatiotemporal patterns in LFPs, showcasing  
504 enhanced texture-specific separability under visual deprivation. This demonstrates the  
505 power of advanced computational tools to uncover previously inaccessible shifts in  
506 sensory coding, with broad applicability to other high-dimensional neural datasets, such  
507 as those from multi-electrode arrays in freely behaving animals. However, it's important  
508 to note that each model was trained specifically for each rat, and inter-animal  
509 generalization remains a challenge, due to differences in electrode placement and  
510 individual brain structure. Despite this limitation, the model's ability to extract complex,  
511 high-dimensional patterns from the dataset remains evident, and the results show  
512 significant progress in detecting sensory changes.

513 While fMRI studies have demonstrated tactile enhancement and corresponding  
514 neural reorganization during short-term visual deprivation (Facchini and Aglioti, 2003;  
515 Kauffman et al., 2002; Pascual-Leone and Hamilton, 2001b), the low temporal and  
516 spatial resolution of fMRI limits its ability to capture detailed changes in neural  
517 representations. Our study, through LFP recordings, provides a more nuanced picture of

518 the population-level activity underlying tactile perception enhancement in the absence  
519 of visual input. Future studies could extend this work to assess whether rats can  
520 discriminate textures more accurately in the dark and explore the direct relationship  
521 between neural coding and perceptual performance.

522 From an evolutionary perspective, enhanced tactile sensitivity in low-visibility  
523 environments provides an adaptive advantage. Many species, including rodents, rely on  
524 somatosensation for navigation and foraging when visual information is scarce. The  
525 ability to rapidly enhance tactile processing in such conditions could aid in efficient  
526 resource acquisition and predator detection. Given the influence of arousal on tactile  
527 sensitivity (Lee et al., 2020; Shimaoka et al., 2018), the dynamic nature of sensory  
528 processing becomes evident—S1 does not merely respond passively to tactile input but  
529 actively adapts its encoding strategies based on available sensory cues.

530 Several limitations warrant further exploration. First, if arousal contributes to the  
531 effects observed in S1 during light–dark transitions, we predict that arousal indices,  
532 such as pupil or whisking activity, should correlate with LFP spectral composition and  
533 decoding accuracy on a trial-by-trial basis (McGinley et al., 2015; Reimer et al., 2014;  
534 Shimaoka et al., 2018). Second, manipulating neuromodulatory tone through  
535 optogenetic activation of arousal circuits should modulate the separability of texture  
536 representations, independent of illumination (Eggermann et al., 2014; Harris and Thiele,  
537 2011). Future experiments integrating real-time arousal measures and LFP analyses will  
538 be crucial in disentangling the contributions of arousal versus light–dark effects on  
539 cross-modal reorganization in S1. Additionally, while rats serve as a powerful model for  
540 sensory processing, their neural architecture may not fully capture the complexities of  
541 human perception. Extending this paradigm to assess perceptual changes in tactile  
542 acuity will further clarify the relationship between neural coding and perceptual  
543 performance.

544 In conclusion, our study provides new insights into the brain’s remarkable

545 ability to reorganize its sensory processing in response to changes in sensory input. By  
546 demonstrating that visual deprivation rapidly reconfigures tactile processing in S1, we  
547 highlight the brain's flexibility in adapting to environmental changes. This work  
548 underscores the potential of combining behavioral paradigms, LFP recordings, and deep  
549 learning techniques to understand the dynamic and adaptive nature of sensory coding,  
550 paving the way for future research in multisensory interactions.

551 **Data availability**

552 The data that support the findings of this study are available from the corresponding  
553 author upon request.

554

555 **Code availability**

556 Custom code generated during this study for data analysis are available at  
557 <https://github.com/UT-yakusaku/Yamashiro-eLife-2024>.

558

559

560 **References**

561 Abraira VE, Ginty DD. 2013. The sensory neurons of touch. *Neuron* **79**:618–639.

562 Bensmaia SJ, Denchev PV, Dammann JF 3rd, Craig JC, Hsiao SS. 2008. The representation of  
563 stimulus orientation in the early stages of somatosensory processing. *J Neurosci* **28**:776–  
564 786.

565 Bola Ł, Siuda-Krzywicka K, Paplińska M, Sumera E, Zimmermann M, Jednoróg K, Marchewka  
566 A, Szwed M. 2017. Structural reorganization of the early visual cortex following Braille  
567 training in sighted adults. *Sci Rep* **7**:17448.

568 Boroojerdi B, Bushara KO, Corwell B, Immisch I, Battaglia F, Muellbacher W, Cohen LG.  
569 2000. Enhanced excitability of the human visual cortex induced by short-term light  
570 deprivation. *Cereb Cortex* **10**:529–534.

571 Bulusu V, Lazar L. 2024. Crossmodal associations between naturally occurring tactile and  
572 sound textures. *Perception* **53**:219–239.

573 Burton H. 2003. Visual cortex activity in early and late blind people. *J Neurosci* **23**:4005–4011.

574 Bushnell MC, Duncan GH, Hofbauer RK, Ha B, Chen JI, Carrier B. 1999. Pain perception: is  
575 there a role for primary somatosensory cortex? *Proc Natl Acad Sci U S A* **96**:7705–7709.

576 Butler JS, Foxe JJ, Fiebelkorn IC, Mercier MR, Molholm S. 2012. Multisensory representation  
577 of frequency across audition and touch: high density electrical mapping reveals early  
578 sensory-perceptual coupling. *J Neurosci* **32**:15338–15344.

579 Delhaye BP, Long KH, Bensmaia SJ. 2018. Neural basis of touch and proprioception in primate  
580 cortex. *Compr Physiol* **8**:1575–1602.

581 Dijkerman HC, de Haan EHF. 2007. Somatosensory processing subserving perception and  
582 action: Dissociations, interactions, and integration. *Behav Brain Sci* **30**:224–230.

583 Di Plinio S, Perrucci MG, Aleman A, Ebisch SJH. 2020. I am Me: Brain systems integrate and  
584 segregate to establish a multidimensional sense of self. *Neuroimage* **205**:116284.

585 Driver J, Spence C. 2000. Multisensory perception: beyond modularity and convergence. *Curr  
586 Biol* **10**:R731–5.

587 Eggermann E, Kremer Y, Crochet S, Petersen CCH. 2014. Cholinergic signals in mouse barrel  
588 cortex during active whisker sensing. *Cell Rep* **9**:1654–1660.

589 Eimer M, Forster B. 2003. Modulations of early somatosensory ERP components by transient  
590 and sustained spatial attention. *Exp Brain Res* **151**:24–31.

591 Esmaeili V, Diamond ME. 2019. Neuronal correlates of tactile working memory in prefrontal  
592 and vibrissal somatosensory cortex. *Cell Rep* **27**:3167–3181.e5.

593 Ewert TAS, Vahle-Hinz C, Engel AK. 2008. High-frequency whisker vibration is encoded by  
594 phase-locked responses of neurons in the rat's barrel cortex. *J Neurosci* **28**:5359–5368.

595 Facchini S, Aglioti SM. 2003. Short term light deprivation increases tactile spatial acuity in  
596 humans. *Neurology* **60**:1998–1999.

597 Goldreich D, Kanics IM. 2003. Tactile acuity is enhanced in blindness. *J Neurosci* **23**:3439–  
598 3445.

599 Goodwin AW, Wheat HE. 2004. Sensory signals in neural populations underlying tactile  
600 perception and manipulation. *Annu Rev Neurosci* **27**:53–77.

601 Harris KD, Thiele A. 2011. Cortical State and Attention. *Nature Reviews Neuroscience* **12**:509.

602 He K, Zhang X, Ren S, Sun J. 2015. Deep residual learning for image recognition. *arXiv  
603 [csCV]*.

604 Hopkins K, Kass SJ, Blalock LD, Brill JC. 2017. Effectiveness of auditory and tactile  
605 crossmodal cues in a dual-task visual and auditory scenario. *Ergonomics* **60**:692–700.

606 Karlen SJ, Kahn DM, Krubitzer L. 2006. Early blindness results in abnormal corticocortical and  
607 thalamocortical connections. *Neuroscience* **142**:843–858.

608 Kauffman T, Théoret H, Pascual-Leone A. 2002. Braille character discrimination in blindfolded  
609 human subjects. *Neuroreport* **13**:571–574.

610 Koch KW, Fuster JM. 1989. Unit activity in monkey parietal cortex related to haptic perception  
611 and temporary memory. *Exp Brain Res* **76**:292–306.

612 Leavitt ML, Mendoza-Halliday D, Martinez-Trujillo JC. 2017. Sustained activity encoding  
613 working memories: Not fully distributed. *Trends Neurosci* **40**:328–346.

614 Lee CCY, Kheradpezhoun E, Diamond ME, Arabzadeh E. 2020. State-dependent changes in  
615 perception and coding in the mouse somatosensory cortex. *Cell Rep* **32**:108197.

616 Luna R, Hernández A, Brody CD, Romo R. 2005. Neural codes for perceptual discrimination in  
617 primary somatosensory cortex. *Nat Neurosci* **8**:1210–1219.

618 McGinley MJ, David SV, McCormick DA. 2015. Cortical Membrane Potential Signature of  
619 Optimal States for Sensory Signal Detection. *Neuron* **87**:179–192.

620 Merabet LB, Hamilton R, Schlaug G, Swisher JD, Kiriakopoulos ET, Pitskel NB, Kauffman T,  
621 Pascual-Leone A. 2008. Rapid and reversible recruitment of early visual cortex for touch.  
622 *PLoS One* **3**:e3046.

623 Moulton EA, Pendse G, Becerra LR, Borsook D. 2012. BOLD responses in somatosensory  
624 cortices better reflect heat sensation than pain. *J Neurosci* **32**:6024–6031.

625 Nikbakht N, Tafreshiha A, Zoccolan D, Diamond ME. 2018. Supralinear and Supramodal  
626 Integration of Visual and Tactile Signals in Rats: Psychophysics and Neuronal  
627 Mechanisms. *Neuron* **97**:626–639.e8.

628 Norman JF, Bartholomew AN. 2011. Blindness enhances tactile acuity and haptic 3-D shape  
629 discrimination. *Atten Percept Psychophys* **73**:2323–2331.

630 Pascual-Leone A, Hamilton R. 2001a. The metamodal organization of the brain. *Prog Brain Res*  
631 **134**:427–445.

632 Pascual-Leone A, Hamilton R. 2001b. The metamodal organization of the brain. *Prog Brain Res*  
633 **134**:427–445.

634 Piras F, Vecchio D, Ciullo V, Gili T, Banaj N, Piras F, Spalletta G. 2020. Sense of external  
635 agency is sustained by multisensory functional integration in the somatosensory cortex.  
636 *Hum Brain Mapp* **41**:4024–4040.

637 Poulet JFA, Petersen CCH. 2008. Internal brain state regulates membrane potential synchrony  
638 in barrel cortex of behaving mice. *Nature* **454**:881–885.

639 Prsa M, Morandell K, Cuenu G, Huber D. 2019. Feature-selective encoding of substrate  
640 vibrations in the forelimb somatosensory cortex. *Nature* **567**:384–388.

641 Reimer J, Froudarakis E, Cadwell CR, Yatsenko D, Denfield GH, Tolias AS. 2014. Pupil  
642 fluctuations track fast switching of cortical states during quiet wakefulness. *Neuron*  
643 **84**:355–362.

644 Sadato N, Pascual-Leone A, Grafman J, Ibañez V, Deiber MP, Dold G, Hallett M. 1996.  
645 Activation of the primary visual cortex by Braille reading in blind subjects. *Nature*  
646 **380**:526–528.

647 Salinas E, Hernandez A, Zainos A, Romo R. 2000. Periodicity and firing rate as candidate  
648 neural codes for the frequency of vibrotactile stimuli. *J Neurosci* **20**:5503–5515.

649 Saxena S, Cunningham JP. 2019. Towards the neural population doctrine. *Curr Opin Neurobiol*  
650 **55**:103–111.

651 Schürmann M, Caetano G, Jousmäki V, Hari R. 2004. Hands help hearing: facilitatory  
652 audiotactile interaction at low sound-intensity levels. *J Acoust Soc Am* **115**:830–832.

653 Serino A. 2019. Peripersonal space (PPS) as a multisensory interface between the individual and  
654 the environment, defining the space of the self. *Neurosci Biobehav Rev* **99**:138–159.

655 Shimaoka D, Harris KD, Carandini M. 2018. Effects of arousal on mouse sensory cortex depend  
656 on modality. *Cell Rep* **22**:3160–3167.

657 Sugiyama S, Kinukawa T, Takeuchi N, Nishihara M, Shioiri T, Inui K. 2019. Tactile Cross-  
658 Modal Acceleration Effects on Auditory Steady-State Response. *Front Integr Neurosci*  
659 **13**:496317.

660 Sundararajan M, Taly A, Yan Q. 2017. Axiomatic attribution for deep networks. *arXiv [csLG]*.

661 Sur M, Merzenich MM, Kaas JH. 1980. Magnification, receptive-field area, and “hypercolumn”  
662 size in areas 3b and 1 of somatosensory cortex in owl monkeys. *J Neurophysiol* **44**:295–  
663 311.

664 Tamayo E, Mouland JW, Lucas RJ, Brown TM. 2023. Regulation of mouse exploratory  
665 behaviour by irradiance and cone-opponent signals. *BMC Biol* **21**:178.

666 Van Boven RW, Hamilton RH, Kauffman T, Keenan JP, Pascual-Leone A. 2000. Tactile spatial  
667 resolution in blind braille readers. *Neurology* **54**:2230–2236.

668 Vinck M, Batista-Brito R, Knoblich U, Cardin JA. 2015. Arousal and locomotion make distinct  
669 contributions to cortical activity patterns and visual encoding. *Neuron* **86**:740–754.

670 Wong M, Gnanakumaran V, Goldreich D. 2011. Tactile spatial acuity enhancement in  
671 blindness: evidence for experience-dependent mechanisms. *J Neurosci* **31**:7028–7037.

672 Yamashiro K, Aoki M, Matsumoto N, Ikegaya Y. 2020. Polyherbal formulation enhancing  
673 cerebral slow waves in sleeping rats. *Biol Pharm Bull* **43**:1356–1360.

674 Yamashiro K, Ikegaya Y, Matsumoto N. 2024. Automatic detection of foot-strike onsets in a  
675 rhythmic forelimb movement. *Neurosci Res* **206**:41–50.

676 Yamins DL, DiCarlo JJ. 2016. Eight open questions in the computational modeling of higher  
677 sensory cortex. *Curr Opin Neurobiol* **37**:114–120.

678 Yamins DLK, DiCarlo JJ. 2016. Using goal-driven deep learning models to understand sensory  
679 cortex. *Nat Neurosci* **19**:356–365.

680 Zeiler MD, Fergus R. 2013. Visualizing and understanding convolutional networks. *arXiv*  
681 [*csCV*].

682 Zhou YD, Fuster JM. 2000. Visuo-tactile cross-modal associations in cortical somatosensory  
683 cells. *Proc Natl Acad Sci U S A* **97**:9777–9782.

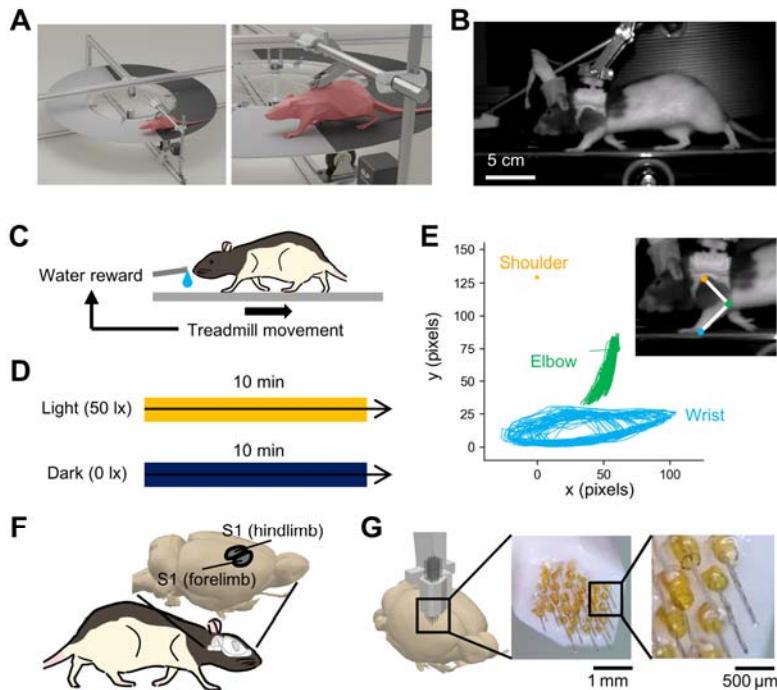
684 Zhou YD, Fuster JM. 1997. Neuronal activity of somatosensory cortex in a cross-modal (visuo-  
685 haptic) memory task. *Exp Brain Res* **116**:551–555.

686 Zhou YD, Fuster JM. 1996. Mnemonic neuronal activity in somatosensory cortex. *Proc Natl  
687 Acad Sci U S A* **93**:10533–10537.

688 Ziegler K, Folkard R, Gonzalez AJ, Burghardt J, Antharvedi-Goda S, Martin-Cortecero J,  
689 Isaías-Camacho E, Kaushalya S, Tan LL, Kuner T, Acuna C, Kuner R, Mease RA, Groh A.  
690 2023. Primary somatosensory cortex bidirectionally modulates sensory gain and  
691 nociceptive behavior in a layer-specific manner. *Nat Commun* **14**:2999.

692

693 **Figures**



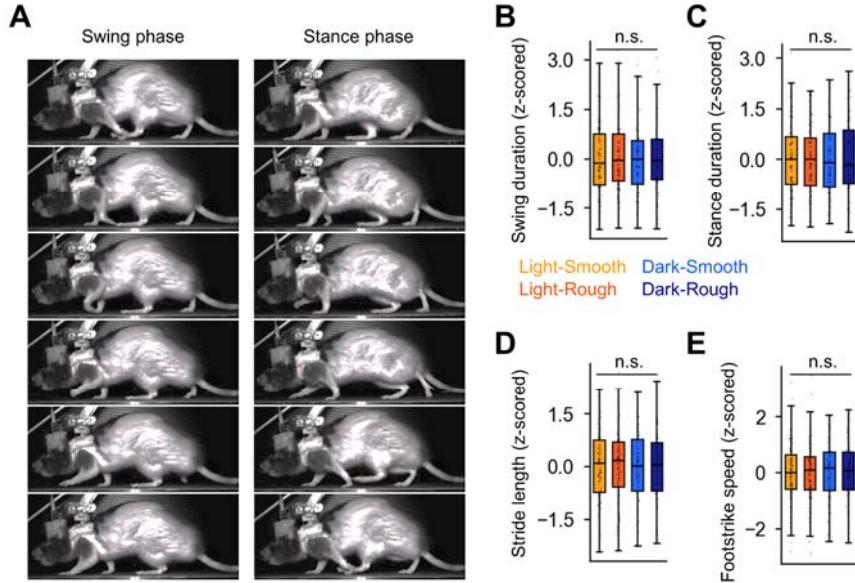
694

695 **Figure 1. Behavioral paradigm and limb movement assessment with concurrent**  
696 **LFP recordings.**

697 (A) A diagram of the disk-shaped treadmill used in the experiment. One half of the disk  
698 is covered with #80 sandpaper, and the other half with #2000 sandpaper. (B) A frame  
699 from the video capturing a walking rat from a left-side perspective. (C) The motivation  
700 scheme. The rats were water-deprived prior to the experiments. A water port was  
701 coupled with the movement of the treadmill so that when the rat walked on the treadmill,  
702 the water would come out. This way, the rats were always motivated to walk during the  
703 whole session. (D) The experimental protocol, where each rat walked for 10 minutes in  
704 light (50 lx) and then for 10 minutes in darkness (0 lx). (E) An example trajectory of the  
705 elbow and wrist joints from one session, plotted with the shoulder joint fixed in the  
706 coordinate space (shoulder: *yellow*, elbow: *green*, wrist: *cyan*). (F) A schematic

707 illustrating the forelimb and hindlimb subregions of S1. **(G)** A custom 32-channel  
708 electrode array used to record LFPs from these subregions.

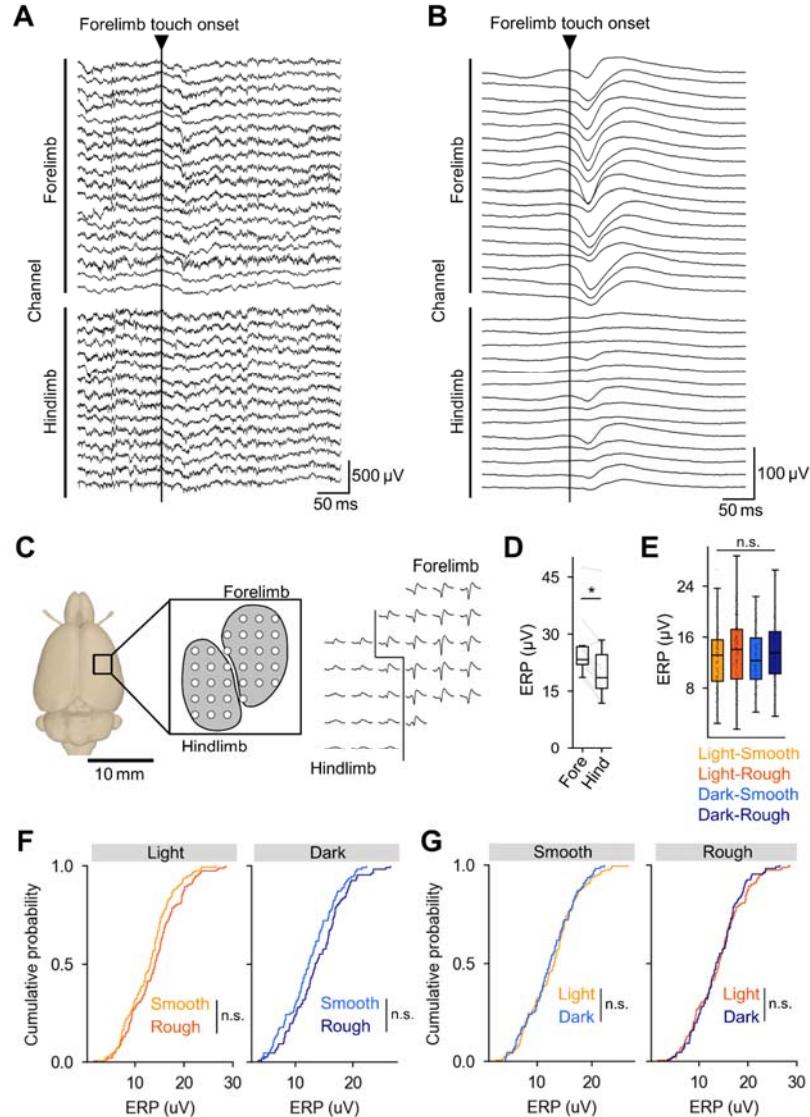
709



710 **Figure 2. Comparison of gait parameters across textures and environmental**  
711 **conditions.**

712 (A) Swing phase *vs.* stance phase, illustrated with video frames (*left*: swing, *right*:  
713 stance). (B) Normalized swing duration measured for each rat under different textures  
714 (smooth *vs.* rough) and environmental condition (light *vs.* dark). Light orange and  
715 dark orange correspond to the light conditions (smooth, rough), while light blue and  
716 dark blue correspond to the dark conditions (smooth, rough). There were no significant  
717 differences among trial conditions. (C–E) Stance duration, stride length, and footstrike  
718 speed, respectively, under the same conditions as in B. None of these parameters  
719 differed significantly across texture types or lighting conditions.

720

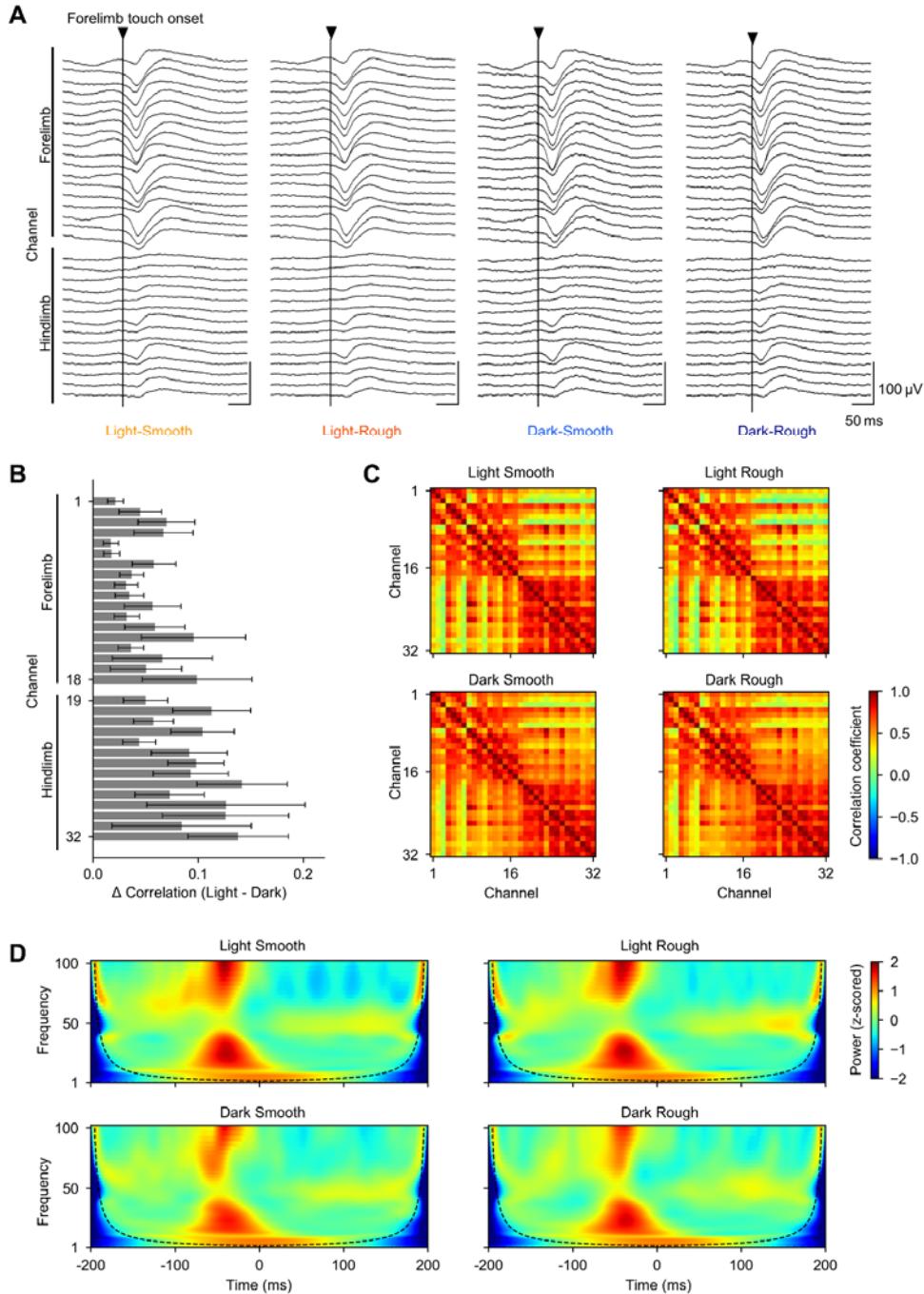


721

722 **Figure 3. LFP recordings in rat S1 during walking.**

723 (A) A single representative LFP trace aligned to a forelimb contact. (B) An example of  
724 an averaged LFP trace from one session, aligned to forelimb contact. (C) The electrode  
725 montage and averaged LFP at each electrode. *Left:* The electrode montage showing all  
726 32 recording sites. *Right:* Averaged LFP signals aligned to forelimb contacts with the  
727 floor, shown for each electrode depicted in the left panel. (D) Comparison of amplitudes

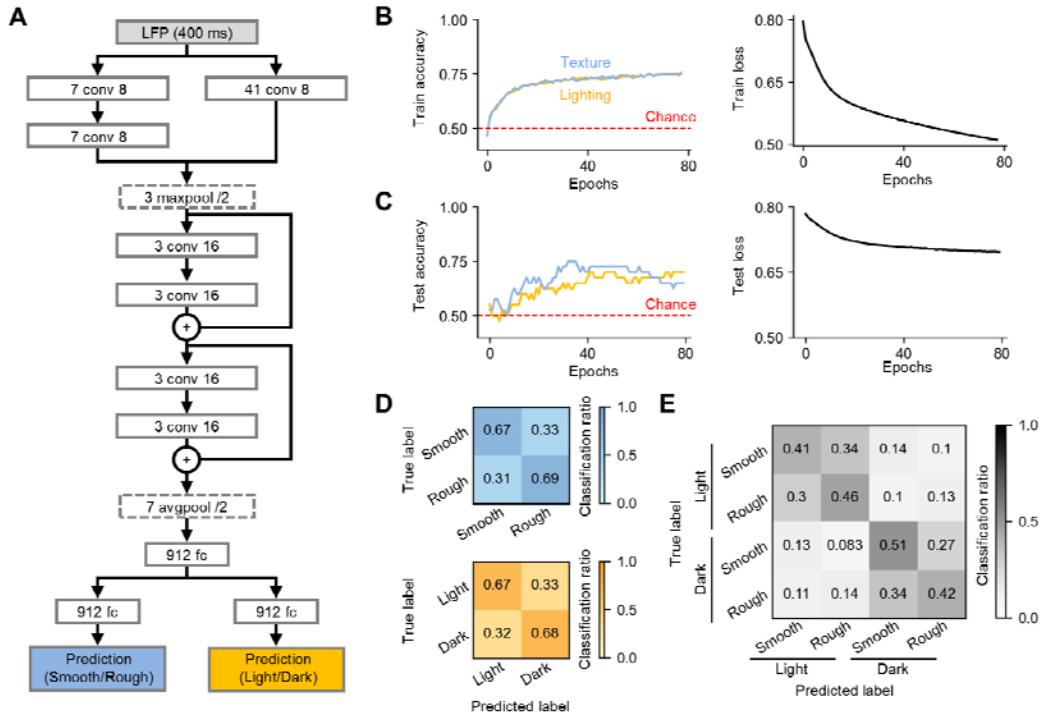
728 between hindlimb and forelimb subregions, aggregated across all 11 rats.  $P = 1.89 \times 10^{-3}$ ,  
729  $t_{10} = -2.2$ , paired t-test,  $n = 11$  rats. **(E)** Comparison of averaged amplitudes within the  
730 same trial for different floor textures and environmental conditions.  $P > 0.05$ , one-way  
731 analysis of variance (ANOVA) followed by Tukey-Kramer post hoc test,  $n = 149, 149,$   
732 107 and 107 trials for smooth-light (light-orange), rough-light (dark-orange), smooth-  
733 dark (light-blue), and rough-dark (dark-blue), respectively. **(F)** Cumulative probability  
734 distributions of mean amplitude from each session, compared across different textures.  
735  $P = 4.84 \times 10^{-1}, 8.35 \times 10^{-1}, D = 1.03 \times 10^{-1}$  and  $7.54 \times 10^{-2}$  for light and dark environments  
736 respectively, two-sample Kolmogorov-Smirnov test,  $n = 149$  and 107 trials from 11  
737 rats for light and dark, respectively. **(G)** Cumulative probability distributions of mean  
738 amplitude from each session, compared across light and dark environments.  $P =$   
739  $1.05 \times 10^{-1}, 1.83 \times 10^{-1}, D = 0.14$  and 0.149 for smooth and rough textures respectively,  
740 two-sample Kolmogorov-Smirnov test,  $n = 149$  and 107 trials from 11 rats for light  
741 and dark, respectively. Abbreviations: ERP, event-related potential; LFP, local field  
742 potential; S1, primary somatosensory cortex.



744 **Figure 4. LFP characteristics across textures and lighting**

745 (A) Example averaged LFP traces from one session, aligned to forelimb contact: light–  
746 smooth, light–rough, dark–smooth, dark–rough (left to right). (B) Channel correlation  
747 difference map (light – dark) computed from average LFP waveforms (Pearson’s  $r$ ).  
748 Higher values indicate stronger channel-wise correlations in light relative to dark. (C)  
749 Correlation matrices shown separately for each texture and lighting condition. Matrices  
750 exhibit similar within–S1-subregion structure, with no clear texture- or light-dependent  
751 differences. (D) Example time–frequency (wavelet) spectrogram of LFP power from  
752 one session, aligned to forelimb contact. Dotted line indicates the cone of influence.  
753 Color scales represent wavelet coefficient magnitude (C) and corresponding power (D).

754

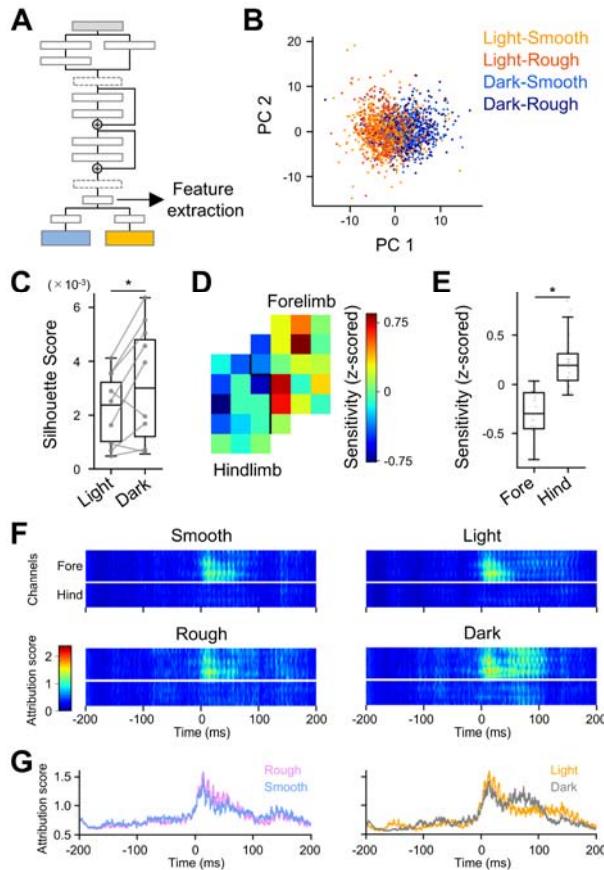


755

756 **Figure 5. Model-based prediction of texture and environmental conditions from**  
757 **LFP.**

758 **(A)** The deep learning model architecture. The LFP input is processed through two  
759 parallel pathways for macro- and micro-scale feature extraction, followed by residual  
760 blocks that feed into two output heads for floor texture (Smooth *vs.* Rough) and the  
761 environmental condition (Light *vs.* Dark). **(B)** Training performance for a single  
762 representative rat. The left graph shows accuracy curves for texture (blue) and lighting  
763 (yellow), and the right graph shows the loss curves. **(C)** Testing performance for the  
764 same rat. The model exhibits good generalization, as accuracy increases and loss  
765 decreases on held-out data. **(D)** Confusion matrix for texture classification for all rats.  
766 Values above chance on the diagonal indicate successful texture prediction. Note that all  
767 values in the same row add up to 1. **(E)** Same as D, but for environmental conditions.  
768 **(F)** Combined confusion matrix for texture and trial predictions. The model performs

769 well on both tasks across all rats. Abbreviations: avgpool, average pooling layer; conv,  
770 convolutional layer; maxpool, max pooling layer; LFP, local field potential.



771

772 **Figure 6. Neural representations are more distinct in dark environments than in**  
773 **light environments**

774 (A) A 912-dimensional feature vector is extracted from the layer preceding the final  
775 output. (B) A scatter plot of these features from one rat shows individual LFP segments  
776 (aligned to forelimb contact). Light orange and dark orange correspond to the light  
777 conditions (smooth, rough), while light blue and dark blue correspond to the dark  
778 conditions (smooth, rough). (C) Silhouette scores across all nine rats, showing that the  
779 dark condition yields higher scores and thus more distinct neural representations.  $P =$   
780  $2.31 \times 10^{-2}$ ,  $t_8 = -2.8$ , paired  $t$ -test,  $n = 9$  rats. (D) A pseudo-color map based on occlusion  
781 analysis, illustrating the contribution of each electrode in the forelimb and hindlimb  
782 subregions. Hotter regions indicate higher importance for the model's predictions. (E)

783 Forelimb channels exhibit higher occlusion sensitivity than hindlimb channels,  
784 highlighting the forelimb's dominant role when the foot contacts the floor.  $P = 4.53 \times 10^{-6}$ ,  $t_{16} = -5.57$ , Student's  $t$ -test,  $n = 9$  rats. **(F)** Class activation maps generated via  
785 integrated gradients highlight key input features responsible for accurate model  
786 predictions of texture and environmental conditions. Attribution scores show each  
787 feature's impact on the model's output relative to a reference baseline: high positive  
788 scores denote features that strongly affect the predicted class. The onset of forelimb  
789 contact is aligned to time zero. **(G)** Attribution scores averaged over forelimb electrodes  
790 for floor texture (*left*) and the environmental conditions (*right*). A temporal lag in the  
791 dark condition suggests an extended processing window for floor texture when visual  
792 cues are absent.