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37 Abstract

38  Sensory systems are known for their adaptability, responding dynamically to changes in
39 environmental conditions. A key example of this adaptability is the enhancement of
40  tactile perception in the absence of visual input. Despite behavioral studies showing
41  visual deprivation can improve tactile discrimination, the underlying neural mechanisms,
42  particularly how tactile neural representations are reorganized during visual deprivation,
43 remain unclear. In this study, we explore how the absence of visual input alters tactile
44  neural encoding in the rat somatosensory cortex (S1). Rats were trained on a custom-
45  designed treadmill with distinct tactile textures (rough and smooth), and local field
46  potentials (LFPs) were recorded from S1 under light and dark conditions. Machine
47  learning techniques, specifically a convolutional neural network, were used to decode
48  the high-dimensional LFP signals. We found that the neural representations of tactile
49  stimuli became more distinct in the dark, indicating a reorganization of sensory
50  processing in S1 when visual input was removed. Notably, conventional amplitude-
51  based analyses failed to capture these changes, highlighting the power of deep learning
52 in uncovering subtle neural patterns. These findings offer new insights into how the
53  brain rapidly adapts tactile processing in response to the loss of visual input, with

54 implications for multisensory integration.
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56 Introduction

57 The primary somatosensory cortex (S1) is integral to the encoding of tactile
58 information, processing sensory inputs from various regions of the body (Delhaye et al.,
59  2018; Di Plinio et al., 2020; Piras et al., 2020; Serino, 2019). This cortical area is crucial
60  for our sense of touch, facilitating the perception and interpretation of sensations such
61 as pressure, vibration, temperature, and pain (Bushnell et al., 1999; Luna et al., 2005;
62  Moulton et al., 2012). These external stimuli are represented by dynamic neural activity
63 in S1, enabling animals to discriminate distinct sensory experiences (Bensmaia et al.,
64  2008; Goodwin and Wheat, 2004; Koch and Fuster, 1989; Salinas et al., 2000).
65  Crucially, neural representations in S1 are highly adaptable, shaped not only by
66 feedforward mechanisms but also by attention, motivation, and inputs from other
67  sensory modalities (Butler et al., 2012; Driver and Spence, 2000; Eimer and Forster,
68  2003; Schirmann et al., 2004; Ziegler et al., 2023). This adaptability facilitates rapid
69 adjustments to changing environmental contexts, supporting survival and optimal
70  sensory processing (Abraira and Ginty, 2013; Dijkerman and de Haan, 2007).

71 One prominent example of such adaptability is cross-modal processing, wherein
72  the absence or reduction of visual input enhances tactile abilities. (Bulusu and Lazar,
73 2024; Hopkins et al., 2017; Nikbakht et al., 2018; Sugiyama et al., 2019). For instance,
74 prolonged visual deprivation, such as blindness from an early age, results in heightened
75  tactile discrimination abilities (Goldreich and Kanics, 2003; Norman and Bartholomew,
76  2011; Van Boven et al., 2000; Wong et al., 2011), driven by cortical reorganization
77  where visual cortical areas are repurposed to support tactile processing (Burton, 2003;
78  Karlen et al., 2006; Sadato et al., 1996). Notably, however, tactile performance
79  improvements are also observed in sighted individuals during short-term visual
80  deprivation (Facchini and Aglioti, 2003; Kauffman et al., 2002; Pascual-Leone and
81  Hamilton, 2001a). Such individuals demonstrate enhanced tactile discrimination during
82 temporary darkness or blindfolding, indicating that rapid, context-dependent

83  compensatory mechanisms occur even without long-term structural changes (Bola et al.,
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84  2017; Boroojerdi et al., 2000; Merabet et al., 2008). Thus, although tactile enhancement
85  has been studied extensively in the context of long-term sensory deprivation, the neural

86  mechanisms underlying short-term, context-dependent modulation remain unclear.

87 The neural representation of tactile stimuli within S1 involves complex,
88  distributed activity patterns, posing significant challenges for conventional analyses that
89  primarily measure signal amplitude. Thus, the subtle, high-dimensional neural dynamics
90 that may underlie immediate adaptations to temporary visual deprivation are difficult to
91  detect using traditional methods. Addressing this gap requires refined experimental
92 paradigms and advanced analytical tools to capture how tactile representations

93  reorganize on short timescales.

94 To examine short-term reorganization in tactile processing, we used a behavioral
95  paradigm using rats trained to walk naturally on a treadmill featuring distinct tactile
96  textures (Yamashiro et al., 2024). . By manipulating visual input (light vs. dark
97  conditions) while recording local field potentials (LFPs) from S1, we aimed to
98 characterize rapid shifts in tactile neural representations. LFPs provide a rich, high-
99 dimensional signal reflecting both synchronous and asynchronous activity across
100  cortical populations. Concurrently, we applied deep learning techniques to decode
101  subtle differences in neural activity patterns that traditional amplitude-based analyses
102  could not detect. We hypothesized that temporary visual deprivation would enhance the
103  neural distinction between tactile stimuli, leading to more differentiated representations

104  of textures in the dark condition.

105 By investigating these rapid, context-dependent shifts in neural coding, this
106  study provides valuable insights into the brain’s capacity for sensory adaptation. Our
107  findings not only shed light on how visual deprivation influences tactile processing in
108 the short term, but also emphasize the potential of deep learning techniques in

109  uncovering nuanced neural reorganization.
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110 Materialsand Methods
111 Animal ethics

112 Animal experiments were performed with the approval of the Animal Experiment
113  Ethics Committee at the University of Tokyo (approval numbers: P29-7 and P4-15)
114  and according to the University of Tokyo guidelines for the care and use of laboratory
115 animals. These experimental protocols were carried out following the Fundamental
116  Guidelines for the Proper Conduct of Animal Experiments and Related Activities of the
117  Academic Research Institutions (Ministry of Education, Culture, Sports, Science and
118  Technology, Notice No. 71 of 2006), the Standards for Breeding and Housing of and
119  Pain Alleviation for Experimental Animals (Ministry of the Environment, Notice No. 88
120  of 2006) and the Guidelines on the Method of Animal Disposal (Prime Minister's Office,
121 Notice No. 40 of 1995). While our experimental protocols have a mandate to humanely
122 euthanize animals if they exhibit any signs of pain, prominent lethargy, and discomfort,
123 such symptoms were not observed in any of the rats tested in this study. All efforts were

124 made to minimize the animals’ suffering.
125
126  Behavioral paradigm

127  To record LFPs during natural locomotion, we employed a custom-designed, disk-
128  shaped treadmill with a diameter of 90 cm (Figure 1A). The treadmill’s running surface
129  was divided into two halves, each featuring a distinct texture: one side was coated with
130  coarse sandpaper (grain #80) and the other with fine sandpaper (grain #1000). In this

131  setup, the rat was placed on the treadmill and secured with a fabric vest (Figure 1B).

132 Before the experiment, rats were water-restricted to ensure motivation. A
133 waterspout was positioned in front of each rat, and its output was synchronized with the
134  treadmill’s movement (Figure 1C). Specifically, once the treadmill began to move, 30

135  pL of water was dispensed from the spout, encouraging the rat to continue walking to
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136  receive its water reward.

137 Each rat was deprived of water until its body weight reached 85% of its baseline
138  weight, then it was trained to walk on the treadmill for four days (one hour per day),
139  with 30 minutes in a light environment (50 Ix) followed by 30 minutes in darkness (0
140  Ix). After successful training, the rats were allowed free access to food and water to
141  regain their original body weight before electrode implantation surgery. Following
142 surgical recovery, the rats were water-restricted again and placed on the treadmill to
143  assess cross-modal interactions between the visual and tactile systems. In a single
144  session, LFP recordings were obtained in the light environment trial, followed
145  immediately by the dark environment trial (Figure 1D). For subset of sessions, the
146  order of the light and dark environment was swapped, dark environment trial preceding
147  the dark environment trial. Each trial lasted for approximately 10 minutes. Recording

148  was performed once a day for 4-14 days.

149 During the trials, the trajectory of the forelimb and onsets when the forelimb
150 came in contact with the floor were automatically identified using a previously

151  developed deep-learning—based method (Figure 1E) (Yamashiro et al., 2024).
152
153  Animal preparation and surgical procedures

154  LFPs were recorded from eleven 9- to 10-week-old Long-Evans rats (Japan SLC,
155  Shizuoka, Japan) using a custom-designed, 32-channel electrode assembly. This
156  assembly, fabricated from nichrome wires (761500, A-M Systems, WA, USA), targeted
157  the right somatosensory cortex (S1) regions corresponding to the forelimb and hindlimb
158  representations (Figure 1F). Specifically, 18 and 14 electrodes were placed in the
159  forelimb and the hindlimb subregion respectively (Figure 1G). Each electrode tip was
160  platinum-coated to reduce impedance to below 200 kQ using a nanoZ tester (Plexon,
161 TX, USA).
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162 At the start of the surgical procedure, each rat was anesthetized with 2-3%
163 isoflurane gas. A square craniotomy (2-6 mm posterior and 1-5 mm lateral to bregma)
164  was then created using a dental drill. The electrode assembly was gently lowered
165  through the cranial window to a depth of approximately 1.5 mm beneath the dura,
166 targeting layer IV of S1. Additionally, two stainless steel screws were implanted in the
167  bone above the cerebellum to serve as ground and reference electrodes. The recording
168  device and electrodes were secured to the skull using stainless steel screws and dental
169 cement. Following the surgery, each rat was housed individually in a transparent
170  Plexiglas cage with ad libitum access to food and water for one week to ensure proper

171  recovery.
172
173 LFP recordings from S1

174  LFPs were referenced to ground, digitized at 30 kHz using the OpenEphys recording
175  system (http://open-ephys.org) and an RHD 32-channel headstage (C3314, Intan
176  Technologies, CA, USA), then resampled to 10 kHz for subsequent analyses
177  (Yamashiro et al., 2020). In parallel, video was acquired at 60 Hz using a USB camera
178  module (MCM-303NIR, Gazo, Niigata, Japan), capturing a lateral view of the rat. Each
179  video frame was synchronized with the neural recordings using strobe signals. For a
180  subset of recordings (n = 2 rats), speed sensors were attached to the running disk to
181  monitor locomotor speed, which was simultaneously recorded through the OpenEphys

182  analog input.
183
184  Dataanalysis

185  Data was analyzed offline using custom-made scripts in Python3. For box plots, the

186 centerline shows the median, the box limits show the upper and lower quartiles,
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187 and the whiskers cover the 10-90% percentiles. PLI<[10.05 was considered

188  statistically significant. All statistical t-tests were two-sided, and the bootstrap method

189  was applied for multiple comparisons.
190
191 LFPanalysis

192  To see if there were any differences in LFPs, the LFPs were aligned to the foot strike
193  onsets detected using deep-learning assisted methods. The aligned LFP were then
194  categorized by the trial (light vs. dark) and the floor texture (smooth vs. rough). To
195 analyze the amplitude of the event-related response from the foot strike, a mean trace of
196 the aligned LFP was calculated for each channel from 32 electrodes for each condition.
197  Foot-strike detection and all LFP alignment were intentionally forelimb-locked, because
198 the behavioral paradigm was designed for forepaw texture contact (Figure 1E) and our
199 array oversampled Si1-forelimb (18 channels) relative to S1-hindlimb (14 channels;
200  Figure 1G).

201
202  Adeep neural network for joint decoding of trial conditions and floor texture

203 A custom deep neural network (DNN) model was implemented to predict both the trial
204  condition (e.g., light vs. dark) and floor texture (e.g., smooth vs. rough) from time-
205 aligned, one-dimensional LFP segments, using the PyTorch framework. Our model
206 architecture was inspired by one-dimensional ResNet-like structures and incorporated
207  multiheaded outputs for simultaneous prediction of two distinct variables (He et al.,
208  2015).

209 The input to the model consisted of one-dimensional LFP signals, arranged as a
210  tensor with multiple channels (e.g., 32 input channels) over time. The network began by

211  splitting the input into two parallel convolutional pathways. The first pathway (“left”
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212  branch) applied sequential convolutional and pooling operations with relatively smaller
213  kernel sizes and strides to incrementally reduce the dimensionality of the signal and
214  extract fine-grained temporal features. Specifically, the model employed a two-stage
215  convolutional process that first passed the input through a one-dimensional (1D)
216  convolution layer with a kernel size of 7, stride of 2, and batch normalization, followed
217 by a max pooling and an additional convolution layer. Both convolutional layers in the

218 left branch used RelLU nonlinearities to facilitate stable and efficient feature extraction.

219 In contrast, the second pathway (“right” branch) processed the input through a
220  single 1D convolutional layer with a larger kernel size (e.g., 41) and a more aggressive
221  stride (e.g., stride of 8). This pathway captured broader temporal contexts from the input
222  signals. Similar to the left branch, the right branch output was batch-normalized and
223  passed through a ReLU activation function. After these two parallel extractions, the
224 outputs of the left and right branches were concatenated along the channel dimension,
225 forming a combined feature representation that integrated both fine- and coarse-grained

226  temporal information.

227 The concatenated output was then passed through a max pooling operation,
228 followed by two residual layers that employed 1D convolutional blocks
229  (ResidualBlock) to refine feature representations. These residual layers allowed the
230  network to learn more complex feature hierarchies by facilitating the flow of gradients
231  during training and improving convergence, while also maintaining temporal resolution

232  appropriate for downstream decoding.

233 Subsequently, the processed features were passed through an average pooling
234  layer to summarize temporal information into a low-dimensional feature vector. This
235  vector was flattened into a one-dimensional representation and then fed into two
236  separate fully connected “heads” (fc_headl and fc_head2). Each head was a simple
237  linear layer that provided a scalar output value. By concatenating these outputs, the final

238 layer jointly predicted two target variables from the same underlying features.
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239 In summary, our model combined parallel convolutional branches for initial
240  feature extraction, residual layers for robust representation learning, and multiheaded
241  outputs to facilitate joint prediction of trial conditions and floor textures. The model was
242  implemented in Python using PyTorch, and all parameters were optimized via standard
243  stochastic gradient—based methods. This architecture allowed efficient and robust
244  decoding of environmental conditions from LFP signals in both time and frequency

245  domains.
246
247  Training and evaluating the deep neural network

248  Of the 11 recorded rats, data from the initial two rats were utilized to determine the
249  optimal model architecture. Once the architecture was established, data from the
250 remaining 9 rats were used for training and evaluation. The raw LFP signals were
251  resampled from 30 kHz to 10 kHz and segmented into 800 ms windows centered on the
252  footstrike onset (e.g., 400 ms before and 400 ms after). Each LFP segment was assigned
253  two labels: one for the trial condition (e.g., light vs. dark) and one for the floor texture

254  (e.g., smooth vs. rough).

255 For each rat, the dataset was shuffled, normalized, and then subjected to 5-fold
256  cross-validation. In this procedure, the data were partitioned into five equal subsets; in
257  each fold, four subsets (80%) were used for training, and the remaining subset (20%)
258  was used for evaluation. Model training was performed for 80 epochs using a batch size
259 of 128 and a learning rate of 10° Binary cross-entropy with logits loss
260 (BCEWithLogitsLoss) served as the objective function. These parameters were selected
261  to ensure stable convergence and to reduce overfitting. After the training, the model's
262  performance was evaluated using the evaluation dataset. The confusion matrix was
263 calculated as the number of true positives, false positives, false negatives, and true

264  negatives, aggregated across all predictions in the evaluation set.

10
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265
266  Evaluation of cluster separability between light and dark conditions

267  To examine how texture representations differed between light and dark conditions, we
268  assessed cluster separability of the intermediate features extracted from the deep-
269 learning model. Specifically, after the model was trained, we extracted the output from
270  the penultimate layer (a 912-dimensional feature vector for each trial). Cluster
271  separability was quantified using the silhouette score, which measures the relative

272  distances between within-cluster and between-cluster samples.

273 Silhouette scores were calculated for the two texture classes (smooth and rough)
274  within each lighting condition, using the Euclidean distance metric applied to the

275  intermediate feature representations. For each trial, the silhouette score sis defined as:

b—a
max (a, b)

276  where a is the average distance between a point and all other points in the same cluster
277  (intra-cluster distance), and b is the minimum average distance between a point and all
278  points in the nearest different cluster (inter-cluster distance). The silhouette score,
279  therefore, provides a normalized index of cluster separability, with larger values
280 indicating more distinct clustering. To obtain an animal-level measure, silhouette scores

281  were averaged across cross-validation within each rat.
282
283  Explainability analysis using occlusion and integrated gradients

284  To elucidate the internal decision-making processes of the trained deep neural network
285 (DNN), we employed two established explainability techniques: occlusion and

286 integrated gradients.

11
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287 Occlusion: Occlusion analysis involves systematically masking specific input
288  features to determine their relative contribution to the model’s output (Zeiler and Fergus,
289  2013). In the present study, one channel was selectively occluded at a time from the 32-
290 channel LFP input and the sensitivity of each channel was calculated. Sensitivity was
291  defined as the corresponding change in model performance when the specified channel
292  was occluded. By conducting these analyses for each of the nine rats, channel-specific
293  importance scores were obtained and subsequently normalized (z-scored) to facilitate
294  cross-subject comparisons. Channels whose removal yielded a more pronounced

295  decrease in model performance were considered more critical for accurate prediction.

296 Integrated gradients: Integrated gradients is an attribution method that quantifies
297  the importance of each input feature by integrating the gradient of the model’s output
298  with respect to the input, transitioning from a baseline input to the actual input
299  (Sundararajan et al., 2017). This approach produces class activation maps, enabling the
300 visualization of features most influential for the model’s output. Here, integrated
301 gradients were applied to the LFP segments for each rat, and the resulting class
302 activation maps were averaged across subjects and trial conditions. These maps allowed

303  us to identify salient input regions associated with both trial conditions and floor texture.
304

305 Results

306 Sablelocomotion across light and dark conditions

307 To investigate how visual input influences tactile processing in S1, we devised an
308 experimental paradigm where both tactile and visual inputs were independently
309 manipulated. Rats were placed on a disk-shaped treadmill with two distinct sandpaper
310 textures, and LFPs were recorded from walking rats. Each rat walked for 10 min in a

311  light environment (50 Ix) and then for 10 minutes in total darkness (O Ix).

312 To make sure that rat’s trajectory was stable across different floor textures and

12
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313 environmental conditions, gait parameters were extracted from the trajectories using
314  deep-learning—based analysis (Figure 2A). From the trajectories, swing duration, stance
315 duration, stride length, and footstrike speed were extracted. All parameters were
316 calculated for each floor textures and environmental conditions. Comparison of all
317  conditions revealed that none of these metrics differed significantly between floor
318  textures or environmental conditions, indicating that overall locomotion remained stable
319  (Figure 2B-E, P > 0.05, one-way analysis of variance (ANOVA) followed by
320  Tukey[IKramer post hoc test, n = 149, 149, 107 and 107 trials for smooth-light, rough-
321  light, smooth-dark, and rough-dark, respectively). Locomotor-speed traces recorded
322  from subset of rats. The result indicated that walking velocity was stable across trials,
323  not affected by the lighting conditions (Supplementary Figure 1). Thus, any differences
324  in neural activity under these conditions are unlikely to be driven by altered motor
325  behavior.

326
327  Characteristic of S1L LFP upon forelimb contact

328  We next analyzed LFPs from S1 using a custom 32-channel electrode array targeting
329  the forelimb and hindlimb subregions (Figure 1F, G). LFP traces were first aligned to
330 forelimb contacts with the disk surface. On inspection of a single LFP trace, no apparent
331 event-related response could be observed (Figure 3A). However, aligning each LFP at
332  forelimb contact with the floor, the average trace showed a clear response after the onset
333  (Figure 3B). Across conditions, we observed a clear negative deflection in LFPs that
334  was most pronounced in the forelimb subregion (Figure 3C). The amplitude of the
335  response was significantly larger in all rats, consistent with the topographic specificity
336  of S1 (Figure 3D, P = 1.89x10°®, t;, = -2.2, paired t-test, n = 11 rats). This was expected
337 since the epochs were forelimb-locked, making larger deflections and greater

338 importance of forelimb channels consistent with somatotopy.
339 To see if the event-related responses were affected by the change in floor texture

13
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340  or the environmental condition, the amplitudes were compared. Despite the prominent
341  negative deflection in LFPs at the forelimb contact with the floor, analyses showed no
342  substantial differences in signal amplitude (Figure 3E, P > 0.05, one-way analysis of
343  variance (ANOVA) followed by TukeyJKramer post hoc test, n = 149, 149, 107 and
344 107 trials for smooth-light, rough-light, smooth-dark, and rough-dark, respectively)
345  when comparing rough vs. smooth textures (Figure 3F, P =0.48 and 0.84, D = 1.03x10
346 ' and 7.54x10% for light and dark environments respectively, two-sample
347  KolmogoroviiSmirnov test, n = 149 and 107 trials from 11 rats for light and dark,
348  respectively) and light vs. dark environments (Figure 6G, P = 0.11, 0.18, D = 0.14 and
349  0.149 for smooth and rough textures respectively, two-sample KolmogoroviSmirnov

350 test, n =149 and 107 trials from 11 rats for light and dark, respectively).

351 To further investigate, we computed grand-average LFP waveforms across
352  combinations of floor texture (smooth vs. rough) and lighting condition (light vs. dark)
353  (Figure 4A). Visual inspection of the mean waveforms revealed no distinct or prominent
354  features. We then calculated channel-wise correlations between textures within each
355 lighting condition (i.e., light-smooth vs. light-rough; dark-smooth vs. dark-rough). To
356 assess whether lighting modulated texture-related correlations, we subtracted the
357  correlation coefficients obtained in the dark from those in the light and averaged the
358  differences across animals (Figure 4B). The correlation of LFP waveforms between
359 different textures was stronger in the light condition, suggesting that in the dark
360  environment, the average LFP waveform is more distinct. Additionally, we examined
361 channel-channel correlation matrices across all 32 channels for each condition (Figure
362  4C). While stronger correlations were observed within individual S1 subregions, no
363  systematic differences emerged between lighting conditions or between textures. To
364 probe the frequency domain of the LFP, we computed time—frequency (wavelet)
365  spectrograms across the floor texture and lighting condition combinations. However, no
366 clear differences were observed across these combinations. Taken together, these results
367  suggest that simple amplitude-based metrics may not fully capture subtler or higher-

368  dimensional variations in underlying neuronal activity.
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369
370  Machine learning—based decoding of tactile and visual information

371  Given the absence of clear differences in averaged LFP features, we next examined how
372  representations of textures in the LFPs varied across environments using machine
373  learning approaches. We first implemented a support vector machine (SVM) classifier
374  with a radial basis function (RBF) kernel. To reduce dimensionality, principal
375  component analysis (PCA) was applied to the raw LFP traces (Supplementary Figure
376  2A). The SVM was then trained using 5-fold cross-validation, where, in each fold, 80%
377  of the dataset was used to classify two types of labels: texture (smooth vs. rough) and
378  trial (light vs. dark). Model performance was evaluated on the remaining 20% of the
379  data. The overall classification accuracy was at chance level (~50%), indicating that the
380 PCA-SVM combination failed to extract informative features for texture or lighting

381  condition from the LFP traces (Supplementary Figure 2B).

382 We next employed a deep learning model, a convolutional neural network
383  (CNN), to classify both floor texture (smooth vs. rough) and trial (light vs. dark). The
384  CNN architecture incorporated parallel convolutional pathways designed to capture
385  both macro- and micro-scale temporal dynamics, followed by residual blocks. The
386  network then branched into dual output layers to jointly predict texture and lighting
387  conditions (Figure 5A).

388 Similarly to SVM, the model was trained and evaluated using 5-fold cross-
389  validation. In training, the model exhibited stable learning curves (Figure 5B) and also
390 generalized well to held-out test data (Figure 5C). Confusion matrices for both texture
391 and lighting classifications were above chance along the diagonal, demonstrating that
392  the model reliably extracted neural representations of the floor textures from the LFPs
393  (Figure 5D-F).

394
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395  Neural representations become more distinct in darkness

396  To understand how the absence of the visual cue might refine tactile processing, we
397  performed explainability analyses on the model’s learned representations (Figure 6). We
398 extracted a 912-dimensional feature vector from the layer preceding the final outputs,
399 then visualized these high-dimensional embeddings with scatter plots (Figure 6A, B).
400 Clustering analyses using silhouette scores showed that representations of texture were
401  more separated in the dark environment, suggesting that reduced visual input enhances
402  the distinctness of neural dynamics that code tactile stimuli (Figure 6C, P = 2.31x107%, tg
403 = -2.8, paired t-test, n = 9 rats, Supplementary Table 1). To account for trial order,
404  silhouette scores were also calculated in sessions where dark trials preceded light trials.
405 In this case, only an increasing trend was observed, with no significant difference
406  detected (Supplementary Figure 3A, B P = 2.9x10™, t5 = -1.16, paired t-test, n = 6 rats,
407  Supplementary Table 2).

408 To assess whether the observed differences in cluster separability between light
409 and dark conditions could arise by chance, we performed a permutation test. Within
410 each rat, the darkness/light labels were randomly shuffled across trials while preserving
411  the number of trials per condition. For each permutation, silhouette scores were
412  recalculated from the layer embeddings of the trained network. This procedure was
413  repeated 1000 times to generate an empirical null distribution of cluster separability.
414  The observed silhouette scores for the dark condition consistently exceeded the 95th
415  percentile of the null distribution, confirming that the enhanced separability in darkness
416  reflects systematic differences in neural representations rather than random variation

417  (Supplementary Figure 4).

418 To elucidate which electrodes held the most information about the floor textures,
419  we performed occlusion analysis. The results revealed that electrodes in the forelimb
420  subregion contributed more to successful texture and lighting predictions (Figure 6D, E,
421 P =453x10" tg = -5.57, Student’s t-test, n = 9 rats), which aligns with our observation
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422  that negative deflections in LFPs were largest in forelimb-targeting channels (Figure
423  2E). Further analysis using class activation maps from integrated gradients showed
424  spatiotemporal patterns of salient features unique to each experimental condition
425  (Figure 6F). In particular, the average attribution score in the forelimb subregion
426  displayed a temporal shift in the dark condition, implying an extended processing
427 window for texture information when visual cues are unavailable (Figure 6G,

428  Supplementary Figure 5).

429 Collectively, these results indicate that visual deprivation modifies population-
430 level activity in S1, yielding more distinctive representations of tactile stimuli. Such
431  reorganization could provide a neural substrate for enhanced tactile perception under

432  conditions of reduced or absent visual input.
433

434
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435  Discussion

436 This study provides evidence that S1 undergoes rapid reorganization of tactile
437  representations when visual input is removed, even over a short period. Using high-
438  density LFP recordings and deep learning techniques, we show that the neural encoding
439  of tactile stimuli becomes more distinct under conditions of visual deprivation.
440  Specifically, when rats were exposed to darkness, texture representations in S1 were
441  more clearly distinguishable than under normal visual conditions. This demonstrates the

442  adaptability of S1 and its capacity to rapidly adjust to changing sensory contexts.

443 A key finding was the significant increase in silhouette scores when texture
444  representations were decoded in the dark. Silhouette scores, which quantify the
445  separability of neural features, were notably higher under dark conditions, suggesting
446  that visual deprivation sharpens the distinctions between tactile representations. While
447  motivational factors, such as water restriction, could potentially confound the results,
448  trial order reversals showed only a slight increase in silhouette scores during the dark
449  condition. If motivation alone were responsible for the enhanced discriminability,
450  silhouette scores should have been elevated during the later light trial in the reversed
451  sequence. This supports the conclusion that the reorganization in S1 is more likely a
452  direct result of visual deprivation rather than solely motivation or arousal. Although
453  differences in silhouette scores were not significant in the reversed trials, this
454 observation may reflect a lingering effect of prior visual deprivation, consistent with
455  previous studies in humans showing that even brief periods of visual deprivation, such
456  as blindfolding, can enhance tactile sensitivity. These findings suggest a robust and

457  lasting effect of visual deprivation on tactile processing.

458 Our results also highlight the somatotopic specificity of tactile encoding in S1.
459  The evoked potential in the forelimb subregion of S1 was significantly larger than in the
460 hindlimb subregion, reflecting the topographic organization of S1, where distinct

461  cortical areas process sensory inputs from different body parts (Ewert et al., 2008; Prsa
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462 et al., 2019; Sur et al., 1980). Further, occlusion analysis revealed that forelimb
463  subregions were critical for distinguishing between tactile textures and lighting
464  conditions. This finding underscores the dominance of the forelimb subregion in
465 encoding tactile information, especially during the specific task of walking and
466  contacting different textures. Integrated gradient analysis confirmed the importance of
467  forelimb channels in encoding texture information and showed that the temporal
468  window of processing following forelimb contact was extended in the dark compared to
469 the light condition. Additionally, comparative analysis of the integrated gradient and
470  time-frequency maps revealed a negative correlation in the 50-60 Hz frequency range,
471  while a positive correlation was observed in the 80-90 Hz range. These findings suggest
472  that frequency-specific patterns of LFP activity in different conditions are closely linked

473  to the texture representations captured by the CNN model.

474 The extended temporal window in the dark condition suggests that visual
475  deprivation may enhance the retention of tactile information in S1. Previous studies
476  have shown that S1 neurons are involved in the short-term retention of tactile
477  information (Zhou and Fuster, 2000, 1997, 1996), and prolonged neuronal firing in
478  higher sensory areas may contribute to this sustained activity (Esmaeili and Diamond,
479  2019; Leavitt et al., 2017). Our findings suggest that the dark condition could lead to
480 more prolonged neural representations of tactile stimuli. Whether this reflects a
481  compensatory mechanism for the absence of visual input or a correlation with

482  heightened tactile sensitivity requires further exploration.

483 Environmental illumination can also influence the arousal state, which in turn
484  affects cortical dynamics as reflected in LFPs. Dark environments typically promote
485  exploratory behavior and increase arousal, modulating cortical activity through
486 irradiance- and cone-opponent-dependent pathways to arousal circuits like the locus
487  coeruleus and basal forebrain (Tamayo et al., 2023). Arousal in S1 enhances both
488  baseline activity and stimulus encoding, with neuromodulatory drive sharpening

489  temporal precision (Eggermann et al., 2014; Poulet and Petersen, 2008; Shimaoka et al.,
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490 2018). These state-dependent effects may account for the enhanced separability of
491  tactile representations observed in the dark, despite minimal differences in average
492  evoked amplitude (Lee et al., 2020; McGinley et al., 2015; Shimaoka et al., 2018; Vinck
493 et al., 2015). The shift toward a desynchronized, high-arousal state in darkness likely
494  reduces low-frequency shared variability and boosts fast-timescale signal components,
495 improving the separability of neural clusters in a high-dimensional LFP space.
496  Moreover, neuromodulatory engagement during heightened arousal can extend effective
497  integration windows and enhance gain in task-relevant networks, consistent with the

498  longer temporal window for accurate predictions seen in forelimb channels.

499 These findings highlight the limitations of traditional analysis methods, such as
500 amplitude-based metrics and event-related potentials, which often fail to capture subtle,
501 higher-dimensional features in neural signals (Saxena and Cunningham, 2019; D. L.
502  Yamins and DiCarlo, 2016; D. L. K. Yamins and DiCarlo, 2016). In contrast, our deep-
503 learning approach revealed fine-grained spatiotemporal patterns in LFPs, showcasing
504  enhanced texture-specific separability under visual deprivation. This demonstrates the
505 power of advanced computational tools to uncover previously inaccessible shifts in
506  sensory coding, with broad applicability to other high-dimensional neural datasets, such
507  as those from multi-electrode arrays in freely behaving animals. However, it's important
508 to note that each model was trained specifically for each rat, and inter-animal
509 generalization remains a challenge, due to differences in electrode placement and
510 individual brain structure. Despite this limitation, the model’s ability to extract complex,
511 high-dimensional patterns from the dataset remains evident, and the results show

512  significant progress in detecting sensory changes.

513 While fMRI studies have demonstrated tactile enhancement and corresponding
514  neural reorganization during short-term visual deprivation (Facchini and Aglioti, 2003;
515 Kauffman et al., 2002; Pascual-Leone and Hamilton, 2001b), the low temporal and
516  spatial resolution of fMRI limits its ability to capture detailed changes in neural

517  representations. Our study, through LFP recordings, provides a more nuanced picture of
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518 the population-level activity underlying tactile perception enhancement in the absence
519  of visual input. Future studies could extend this work to assess whether rats can
520 discriminate textures more accurately in the dark and explore the direct relationship

521  between neural coding and perceptual performance.

522 From an evolutionary perspective, enhanced tactile sensitivity in low-visibility
523  environments provides an adaptive advantage. Many species, including rodents, rely on
524  somatosensation for navigation and foraging when visual information is scarce. The
525 ability to rapidly enhance tactile processing in such conditions could aid in efficient
526  resource acquisition and predator detection. Given the influence of arousal on tactile
527  sensitivity (Lee et al., 2020; Shimaoka et al., 2018), the dynamic nature of sensory
528  processing becomes evident—S1 does not merely respond passively to tactile input but

529 actively adapts its encoding strategies based on available sensory cues.

530 Several limitations warrant further exploration. First, if arousal contributes to the
531 effects observed in S1 during light—dark transitions, we predict that arousal indices,
532  such as pupil or whisking activity, should correlate with LFP spectral composition and
533  decoding accuracy on a trial-by-trial basis (McGinley et al., 2015; Reimer et al., 2014;
534  Shimaoka et al., 2018). Second, manipulating neuromodulatory tone through
535  optogenetic activation of arousal circuits should modulate the separability of texture
536  representations, independent of illumination (Eggermann et al., 2014; Harris and Thiele,
537  2011). Future experiments integrating real-time arousal measures and LFP analyses will
538 be crucial in disentangling the contributions of arousal versus light-dark effects on
539  cross-modal reorganization in S1. Additionally, while rats serve as a powerful model for
540  sensory processing, their neural architecture may not fully capture the complexities of
541  human perception. Extending this paradigm to assess perceptual changes in tactile
542  acuity will further clarify the relationship between neural coding and perceptual

543  performance.

544 In conclusion, our study provides new insights into the brain’s remarkable
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545  ability to reorganize its sensory processing in response to changes in sensory input. By
546  demonstrating that visual deprivation rapidly reconfigures tactile processing in S1, we
547  highlight the brain’s flexibility in adapting to environmental changes. This work
548  underscores the potential of combining behavioral paradigms, LFP recordings, and deep
549 learning techniques to understand the dynamic and adaptive nature of sensory coding,

550  paving the way for future research in multisensory interactions.
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Data availability

The data that support the findings of this study are available from the corresponding

author upon request.

Code availability

Custom code generated during this study for data analysis are available at
https://github.com/UT-yakusaku/Y amashiro-eLife-2024.
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695 Figure 1. Behavioral paradigm and limb movement assessment with concurrent
696 LFPrecordings.

697  (A) A diagram of the disk-shaped treadmill used in the experiment. One half of the disk
698 is covered with #80 sandpaper, and the other half with #2000 sandpaper. (B) A frame
699 from the video capturing a walking rat from a left-side perspective. (C) The motivation
700 scheme. The rats were water-deprived prior to the experiments. A water port was
701  coupled with the movement of the treadmill so that when the rat walked on the treadmill,
702  the water would come out. This way, the rats were always motivated to walk during the
703  whole session. (D) The experimental protocol, where each rat walked for 10 minutes in
704 light (50 Ix) and then for 10 minutes in darkness (0 Ix). (E) An example trajectory of the
705 elbow and wrist joints from one session, plotted with the shoulder joint fixed in the

706  coordinate space (shoulder: yellow, elbow: green, wrist: cyan). (F) A schematic
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707  illustrating the forelimb and hindlimb subregions of S1. (G) A custom 32-channel

708 electrode array used to record LFPs from these subregions.
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710  Figure 2. Comparison of gait parameters across textures and environmental
711  conditions.

712 (A) Swing phase vs. stance phase, illustrated with video frames (left: swing, right:
713  stance). (B) Normalized swing duration measured for each rat under different textures
714 (smooth vs. rough) and environmental condition (light vs. dark). Light orange and
715  dark orange correspond to the light conditions (smooth, rough), while light blue and
716  dark blue correspond to the dark conditions (smooth, rough). There were no significant
717  differences among trial conditions. (C—E) Stance duration, stride length, and footstrike
718  speed, respectively, under the same conditions as in B. None of these parameters

719  differed significantly across texture types or lighting conditions.

720
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722  Figure3. LFPrecordingsin rat S1 during walking.

723 (A) A single representative LFP trace aligned to a forelimb contact. (B) An example of
724 an averaged LFP trace from one session, aligned to forelimb contact. (C) The electrode
725 montage and averaged LFP at each electrode. Left: The electrode montage showing all
726 32 recording sites. Right: Averaged LFP signals aligned to forelimb contacts with the

727  floor, shown for each electrode depicted in the left panel. (D) Comparison of amplitudes
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728  between hindlimb and forelimb subregions, aggregated across all 11 rats. P = 1.89x10°%,
729  typ = -2.2, paired t-test, n = 11 rats. (E) Comparison of averaged amplitudes within the
730  same trial for different floor textures and environmental conditions. P > 0.05, one-way
731 analysis of variance (ANOVA) followed by Tukey Kramer post hoc test, n = 149, 149,
732 107 and 107 trials for smooth-light (light-orange), rough-light (dark-orange), smooth-
733  dark (light-blue), and rough-dark (dark-blue), respectively. (F) Cumulative probability
734 distributions of mean amplitude from each session, compared across different textures.
735 P =4.84x10", 8.35x10", D = 1.03x10™" and 7.54x107 for light and dark environments
736  respectively, two-sample KolmogoroviiSmirnov test, n = 149 and 107 trials from 11
737  rats for light and dark, respectively. (G) Cumulative probability distributions of mean
738 amplitude from each session, compared across light and dark environments. P =
739 1.05x107, 1.83x107%, D = 0.14 and 0.149 for smooth and rough textures respectively,
740  two-sample KolmogoroviiSmirnov test, n = 149 and 107 trials from 11 rats for light
741  and dark, respectively. Abbreviations: ERP, event-related potential; LFP, local field

742  potential; S1, primary somatosensory cortex.
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Figure 4. LFP characteristics acr oss textures and lighting

(A) Example averaged LFP traces from one session, aligned to forelimb contact: light—
smooth, light-rough, dark-smooth, dark—rough (left to right). (B) Channel correlation
difference map (light — dark) computed from average LFP waveforms (Pearson’s r).
Higher values indicate stronger channel-wise correlations in light relative to dark. (C)
Correlation matrices shown separately for each texture and lighting condition. Matrices
exhibit similar within—S1-subregion structure, with no clear texture- or light-dependent
differences. (D) Example time—frequency (wavelet) spectrogram of LFP power from
one session, aligned to forelimb contact. Dotted line indicates the cone of influence.

Color scales represent wavelet coefficient magnitude (C) and corresponding power (D).
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756  Figure 5. Model-based prediction of texture and environmental conditions from
757 LFP.

758  (A) The deep learning model architecture. The LFP input is processed through two
759  parallel pathways for macro- and micro-scale feature extraction, followed by residual
760  Dblocks that feed into two output heads for floor texture (Smooth vs. Rough) and the
761  environmental condition (Light vs. Dark). (B) Training performance for a single
762  representative rat. The left graph shows accuracy curves for texture (blue) and lighting
763  (yellow), and the right graph shows the loss curves. (C) Testing performance for the
764  same rat. The model exhibits good generalization, as accuracy increases and loss
765  decreases on held-out data. (D) Confusion matrix for texture classification for all rats.
766  Values above chance on the diagonal indicate successful texture prediction. Note that all
767  values in the same row add up to 1. (E) Same as D, but for environmental conditions.

768  (F) Combined confusion matrix for texture and trial predictions. The model performs
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769  well on both tasks across all rats. Abbreviations: avgpool, average pooling layer; conv,

770  convolutional layer; maxpool, max pooling layer; LFP, local field potential.
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772  Figure 6. Neural representations are more distinct in dark environments than in

773 light environments

774 (A) A 912-dimensional feature vector is extracted from the layer preceding the final
775  output. (B) A scatter plot of these features from one rat shows individual LFP segments
776  (aligned to forelimb contact). Light orange and dark orange correspond to the light
777  conditions (smooth, rough), while light blue and dark blue correspond to the dark
778  conditions (smooth, rough). (C) Silhouette scores across all nine rats, showing that the
779  dark condition yields higher scores and thus more distinct neural representations. P =
780  2.31x1072 tg = -2.8, paired t-test, n = 9 rats. (D) A pseudo-color map based on occlusion
781  analysis, illustrating the contribution of each electrode in the forelimb and hindlimb

782  subregions. Hotter regions indicate higher importance for the model’s predictions. (E)
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783  Forelimb channels exhibit higher occlusion sensitivity than hindlimb channels,
784  highlighting the forelimb’s dominant role when the foot contacts the floor. P = 4.53x10
785 ° tys = -5.57, Student’s t-test, n = 9 rats. (F) Class activation maps generated via
786 integrated gradients highlight key input features responsible for accurate model
787  predictions of texture and environmental conditions. Attribution scores show each
788  feature’s impact on the model’s output relative to a reference baseline: high positive
789  scores denote features that strongly affect the predicted class. The onset of forelimb
790  contact is aligned to time zero. (G) Attribution scores averaged over forelimb electrodes
791  for floor texture (left) and the environmental conditions (right). A temporal lag in the
792  dark condition suggests an extended processing window for floor texture when visual

793  cues are absent.
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