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Highlights
Implementation of a Clostridium luticellarii genome-scale model for upgrading syngas fermenta-
tions

William T. Scott,Siemen Rockx,Quinten Marién,Alberte Regueira,Pieter Candry,Ramon Ganigué,Jasper J. Koehorst,Peter J.
Schaap

i§J444 models C. luticellarii metabolism for syngas fermentation and chain elongation.

Thermodynamic flux analysis (TFA) reveals adaptive energy balancing in pathways.

Simulations highlight C. luticellarii as a producer of value-added biochemicals like butyrate, isobutyrate, and caproate

Metabolic insights from iSJ444 suggest efficient syngas conversion using varied substrates for industrial use.
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ABSTRACT

Syngas fermentation is a powerful platform for converting waste streams into sustainable carboxylic
acid precursors for value-added biochemicals. Steel mills produce significant syngas, yet industrial
microbial syngas valorization remains unrealized. The most promising syngas-converting biocat-
alysts consist of Clostridia species, such as Clostridium kluyveri, Clostridium autoethanogenum,
and Clostridium ljungdahlii. Clostridium luticellarii, a recently discovered species, shares close
phylogenetic ties with these organisms. Preliminary metabolic studies suggest its potential for syngas
acetogenesis as well as chain elongation. In this study, we create iSJ444, a constraint-based metabolic
model of C. luticellarii using iHN637 of a close relative C. ljungdahlii as a starting point. Model
predictions support hypothesized methanol and syngas pathways from the metabolic characterization
studies; however, the use of propionate could not be accurately predicted. Thermodynamic Flux
Analysis (TFA) reveals that C. luticellarii maintains stable energy dissipation across most reactions
when exposed to varying pH, with significant increases observed in reactions associated with the
Wood-Ljungdahl pathway (WLP), such as the HACD1 reaction, at higher pH (6.5), suggesting an
adaptive role in energy management under neutral conditions. Flux sampling simulations exploring
metabolic flux distributions show that C. luticellarii might fit into syngas fermenting platforms. In both
cases, high hydrogen-to-carbon source ratios result in better production of (iso)butyrate and caproate.
We present a minimal genome-scale metabolic model of C. luticellarii as a foundation for further
exploration and optimization. Although our predictions of its metabolic behavior await experimental
validation, they underscore the potential of C. luticellarii to enhance syngas fermentation platforms.

1. Introduction

. . . 32
An important focus of modern biotechnological research

31 Clostridium luticellarii is a strictly anaerobic bacterium
isolated from a mud cellar, notable for its butyrate pro-
duction (Wang et al., 2015). The genome of C. luticellarii

. . . . . 33
is to understand and optimize microbial metabolic pathways w
for producing renewable and valuable chemicals, contribut- “

ing to the advancement of a sustainable circular economy.

36

These pathways enable the conversion of waste streams Y

into useful products, often being present in a consortium

38
of organisms to achieve enhanced product specificity or to "

produce compounds thermodynamically infeasible for a sin-

gle species (Bekiaris and Klamt, 2021). Syngas fermentation :)

stands out among various strategies due to its ability to

. . . 22
convert industrial off-gases, such as those from steel mills, -

and gasified waste streams into a single, homogeneous feed-

stock that can be efficiently processed by a single organism :
to produce a diverse array of valuable products. Syngas, o

primarily composed of hydrogen, carbon monoxide, and
carbon dioxide, can be utilized by anaerobic mlcroorgan-

isms, particularly acetogens, through the Wood-Ljungdahl Z
pathway to produce chemicals like acetate, ethanol, and 2,3- .

butanediol (Gildemyn et al.,
2021; Drake et al., 2008).
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has been sequenced, revealing a close relationship to both
C. kluyveri and C. ljungdahlii (Poehlein et al., 2018). A
more comprehensive metabolic characterization by Petrog-
nani et al. (2020) highlighted C. luticellarii’s potential to
grow on methanol/acetate and H,/CO,, primarily produc-
ing butyrate, isobutyrate, and caproate. Additionally, they
demonstrated its ability to synthesize valerate from propi-
onate and methanol, a hypothesis previously proposed in an
open-culture and autotrophically in a mono-culture (De Smit
et al., 2019; Marién et al., 2024). C. luticellarii thus pos-
sesses the dual capability of syngas fermentation into acetate
(but not ethanol) and chain elongation pathways for both
odd- and even-chained carboxylic acids. This rare combina-
tion of abilities is only observed in a few other organisms,
such as Eubacterium limosum (Molitor et al., 2017), making
C. luticellarii a promising candidate for inclusion in syngas
upgrading systems.

Optimizing syngas fermentation for the production of
valuable chemicals requires a deeper understanding of the
complex anaerobic metabolic pathways involved. These
pathways often exhibit flexibility, allowing metabolic shifts
between products depending on environmental conditions
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such as substrate availability and pH. This metabolic adapt-13
ability is key to enhancing the production of higher-valueis
chemicals like butyrate, caproate, and odd-chained car-us
boxylic acids. While single strains, such as chain-elongatinguss
Clostridium kluyveri, can efficiently elongate carbon chainsu
using ethanol and acetic or propionic acid (Baleeiro et al.,us
2019; Diender et al., 2019; Fernandez-Naveira et al., 2019),110
incorporating such microbes into microbial consortia re-iz
mains a potential strategy for leveraging their complemen-i2:
tary metabolic capabilities. For instance, co-cultures of C.i
kluyveri with Clostridium ljungdahlii or Acetobacteriumizs
wieringae with Anaerotignum neopropionicum have suc-iz
cessfully upgraded ethanol and acetate into more valuableis
products (Parera Olm and Sousa, 2023; Kim et al., 2019;12
Benito-Vaquerizo et al., 2020). However, the focus of futurei2r
work lies in unraveling these metabolic shifts and under-is
standing how environmental factors drive product speci-
ficity, which will inform the development of high-efficiency
systems for industrial applications. Genetic engineering
and synthetic co-cultures remain promising but secondary
strategies for enhancing the metabolic versatility of syngas-
fermenting systems.

GEnome-scale metabolic Modeling (GEM) is a vital
tool in systems biology, offering a detailed framework for
understanding the metabolic capabilities of organisms at the
genome level. By reconstructing metabolic networks from
genome annotations, GEM modeling enables the simula-
tion of metabolic fluxes under various environmental and
genetic conditions, which is crucial for elucidating complex
metabolic pathways, predicting phenotypic outcomes of ge-
netic modifications, and optimizing metabolic engineering
strategies (Thiele and Palsson, 2010). Recent advances in
GEMs have expanded their applications in diverse fields, in-
cluding microbial biotechnology and bioprocessing (Atasoy
et al., 2024).

GEMs have been instrumental in investigating metabolic
processes in Clostridia species, particularly for the produc-
tion of industrially relevant bioproducts such as short-chain
fatty acids, organic acids, fuels and alcohols. For example,i»
GEMs have been used to optimize propionate production
in Clostridium beijerinckii by adjusting carbon fluxes (Di—130
allo et al.,, 2019) and to enhance butyrate production in""
Clostridium acetobutylicum through pathway manipulations'”
(Gallardo et al., 2016). Additionally, models have guided
strain engineering strategies for improving the production of **
various target compounds (McAnulty et al., 2012; Scott Jr'™
et al., 2020). Beyond organic acid production, GEMs have™
also been applied to explore biofuel pathways, such as in the'*’
genome-scale model of Clostridium ljungdahlii developed™
by Nagarajan et al. (2013) and the solventogenic metabolism'™
model for Clostridium beijerinckii by Milne et al. (2011)."*
These models have been pivotal in identifying metabolic™"
bottlenecks and informing genetic modifications to enhance'”
production efficiency across diverse bioprocesses. e

In this study, we applied a constraint-based metabolic'*
modeling approach to explore the potential of Clostrid-"*
ium luticellarii for syngas fermentation and direct chain™

elongation. We constructed the iSJ/444 model by adapting
the BiGG (Biochemical, Genetic and Genomic) knowledge
base model of C. [jungdahlii iIHN637) (Nagarajan et al.,
2013), removing reactions without genetic evidence, and
incorporating hypothesized pathways from De Smit et al.
(2019) and Petrognani et al. (2020). The model was validated
against the experimental results reported by Petrognani et al.
(2020), and its behavior was further characterized by sim-
ulating growth and product spectrum under various syn-
gas fermentation and methanol-chain elongation conditions.
Thermodynamic flux analysis (TFA) Henry et al. (2007)
was performed on the C. luticellarii GEM to investigate
the role of pH in the production of butyrate, isobutyrate,
and acetate. Additionally, TFA was used to examine energy
dissipation across the network to identify potential metabolic
bottlenecks impacting product formation efficiency.

C. luticellarii genome
3632 Genes
3.757 Mbp

& EGGNOG-MAPPER

D e
— 2
o °

Add hypothesized

pathways from other
studies

Consortium
Modelling
D D
1

Figure 1: Setup of this study. The iHN637 model of C. ljung-
dahlii was adapted to a C. luticellarii model (iSJ444) using an
orthology gene mapping (eggNOG-mapper) and addition of
hypothesized chain elongation-pathways from (De Smit et al.,
2019; Petrognani et al., 2020). iSJ444 can then be potentially

joined with other preexisting metabolic models into consortia
models and their potential for syngas recycling can be explored.

\m_.

Further adjustments by
comparing to
experimental results

X —
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2. Results

2.1. Building the iSJ444 model: from template to
functional GEM

The iHN637 metabolic model of C. [jungdahlii was
chosen as a template for building iSJ444 due to its close
phylogenetic relationship and the advantages of the stan-
dardized BiGG template. This approach facilitates model
consistency, interoperability, and faster adaptation compared
to de novo model construction. The BiGG format stream-
lines the process by providing a well-curated framework
of reactions and metabolites, enhancing compatibility with
existing databases and analysis tools. This reduces the need
for extensive re-annotation or gap-filling, allowing for a
focused effort on curating pathways specific to C. luticellarii.
Consequently, using the BiGG template enabled the effi-
cient and robust adaptation of the iSJ444 model, leveraging
the shared core metabolic framework while refining the
organism-specific features.
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The final iSJ444 model consists of 444 genes, 735 reac-
tions (including 100 exchange reactions), and 672 metabo-
lites. Of these, 708 reactions (90% of all reactions in iHN637)
were inherited, reflecting substantial overlap in core metabolism
between the models. This overlap ensures that the well-
established pathways from iHN637 are retained, while the
remaining 10% were specifically curated for C. luticellarii
to incorporate unique metabolic traits and functionalities.
Similar to iHN637, iSJ444 includes only an extra- and
intracellular compartment (no periplasm, which is present in
some other metabolic models). This careful balance of adap-
tation and refinement underscores the utility of template-
based modeling in achieving both accuracy and novelty for*
less-characterized organisms. 204

All reactions in the iSJ444 GEM are mass balanced
(except for the exchange reactions and the biomass func-**
tion). While the original GEM sets all metabolite charges™
to 0, we have also created a version of iSJ444 that incor->"
porates metabolite charges using data extracted from the*”®
BiGG database. This updated model achieves 84.75% charge™”
balance and 98.9% mass balance, as verified using MEM-*'°
OTE. However, for consistency with the original modeling™
framework and to maintain alignment with the assumptions™?
and datasets used in prior analyses, we proceeded with™®
the version of iSJ444 with metabolite charges set to zero™*
for the main analyses presented in this study. The biomass*®
function in the iSJ444 GEM was adopted directly from™°
C. ljungdahlii (iHN637) without modification, as defining™"’
a species-specific biomass function requires extensive ex->*
perimental data. Although biomass composition can vary>*
even among closely related species, using a function from a*
similar organism provides a reasonable approximation in the’*
absence of precise data for C. luticellarii. In this study, the
primary focus was on flux sampling to explore the range of**
possible metabolic flux distributions under different condi-***
tions, rather than optimizing for specific objectives such as™
biomass yield. Flux sampling allows a broader exploration®®
of metabolic capabilities without the need for a predefined™
objective function. While the biomass reaction provides a**
theoretical framework for cellular growth, its role in this
study was limited to serving as a reference for model valida-"
tion rather than as an optimization target for flux predictions.**

A total of 532 of the 735 reactions (72%) have at least™
one gene assigned to them, slightly lower than the original*
iHN637 model (78% coverage), partly because no genes™
are assigned to some of the added pathways. MEMOTE™
gives iSJ444 a total score of 89%, with a consistency of**®
99.86%. This score is slightly higher than iHN637 (98%),°
as some flux loops were removed. The annotation scores™’
for metabolites, reactions, and genes are similar to those in**°
iHN637. Changes were also made in the directionality of**’
reactions (Table S2). For example, the reaction catalyzing®*°
the ligation of formate and tetrahydrofolate (THF) to formyl-***
THF (FTHFL) is irreversible in iHN637, but is made re-*
versible in iSJ444. This adjustment allows for ATP genera-**

tion from methanol as a feedstock, as commonly reported for**
245

222

9

246

Table 1

Species prevalence in eggNOG orthology mapping of C. luti-
cellarii. Carried out on standard settings on the web service
of eggNOG-mapper (Cantalapiedra et al., 2021). Unspecific
mappings did not have a specific gene associated with them.

Taxon id
748727
431943
1121342

Species name # orthologous mapped genes | % of total genes
Clostridium [jungdahlii DSM 13528 119 329
Clostridium kluyveri 720 198
Clostridium tyrobutyricum 305 8.4
Clostridium carboxidivorans 125 34
Clostridium drakei 103 238
86416 Clostridium pasteurianum BC1 71 20
1262449 Clostridium pasteurianum DSM 525 = ATCC 6013 a7 13
545243 Clostridium arbusti 46 13
Other 728
Unspecific mappings 12 03

536227
332101

methylotrophic acetogens (Kremp et al., 2018; Kremp and
Miiller, 2021).

2.1.1. Incorporation of chain elongation pathways in
iSJ444

Two pathways were introduced in the iSJ/444 model
(Figure 2), along with transport and exchange reactions for
the newly introduced substrates and products of interest
(methanol, isobutyrate, caproate, etc.). These pathways are
based on the only two studies describing the metabolism
of C. luticellarii (De Smit et al., 2019; Petrognani et al.,
2020). None of the reactions added have genes assigned
to them, as an analysis of the responsible genes was not
carried out. However, the eggNOG orthology mapping may
provide clues, as many C. kluyveri genes were identified as
the closest orthologs. It is likely that C. luticellarii shares
parts of its chain elongation genes with C. kluyveri (Table
D).

Methanol is incorporated by the MTAabc system, a
cobalamin-dependent system found in acetogenic bacte-
ria (Kremp and Miiller, 2021). The model simulates this
through a pseudo-reaction that converts hydrogen, methanol,
and tetrahydrofolate (THF) to 5-methyltetrahydrofolate (Smthf)
and water. This intermediate is then funneled into the Wood-
Ljungdahl Pathway (WLP), either towards CO, to yield
energy in the form of ATP and NADH, or directed towards
acetogenesis and chain elongation.

2.2. Model validation: comparison to
experimental results

The focus of this study was primarily on chain elongation
and syngas metabolism, so these conditions were examined
in greater detail. Predictions on various feedstocks were
compared to experimental data to validate the model. Unless
otherwise specified, experimental results referenced here are
from Petrognani et al. (2020).

A comparison of substrates tested by Petrognani et al.
(2020), on which C. luticellarii exhibited growth, is illus-
trated (see Figure 3). The modeled product spectrum on
methanol and acetate closely matches the experimental re-
sults. The isobutyrate/butyrate/caproate production percent-
ages are 41/40/11 and 43/48/8 for the model and experi-
ment, respectively, when using flux sampling with minimal
constraints (see Table S2) on metabolite uptake results in
high standard errors. When butyrate is also supplied, both
the model and experimental results show a shift in the
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Figure 2: Hypothesized chain elongation pathways from (De Smit et al., 2019; Petrognani et al., 2020) were added to the i5J444
model. The starting steps of chain elongation were already present in iHN637, as well as the WLP, which, when growing on
methanol, is used for ATP generation instead of carbon fixation. Reactions in blue were already present in iHN637. Red reactions
are unique to i5J444. Intermediate metabolites are green, energy-rich compounds (ATP, NADH, and reduced ferredoxin) are
yellow, while their counterparts are light blue. The final products of interest are red, acetate is pink. Names of metabolites and

reactions can be found in the abbreviations section. Figure is made using Escher (King et al.,

product spectrum towards greater production of isobutyrate
and caproate.

The microbial growth on methanol with propionate as an
electron acceptor showed greater divergence between model
predictions and experimental results, both with and without
valerate addition. The model predicted higher (iso)butyrate
and caproate formation at the expense of valerate production.
Similar over-predictions of these products were observed
during growth on 80% H, and 20% CO,, with modeled
acetate production being half of the experimentally observed
value: 26% versus 54%. Model predictions deviated most
significantly from experimental measurements when grown
on lactate, glucose, and glycerol. While propionate was ex-
perimentally observed to be the main fermentation product
under these conditions, the model predicted no propionate
formation and instead identified acetate as the major prod-
uct (Figure S1). Additionally, (iso)valerate production was
reported by Petrognani et al. (2020) as additional product,
whereas the model predominantly suggested the formation
of even-chained products.

2.3. Model performance across various substrates
2.3.1. Growth on methanol and propionate

As earlier simulations showed a deviation from exper-
imental results for growth on propionate, this was investi-
gated further. When constraining the model to the methanol-
propionate uptake ratio from the experiments (2:1) or (0.5
as presented in the figure), the model predicts a 1-to-1

2015).

e Acetate
Propionate
s Isobutyrate
Butyrate
mm Ethanol
Valerate
= isovalerate
mmm Caproate
mmm Hydrogen

120

H
S
3

]

=

60

% of products (Electron eq.)

40

20

oI I (VT S

v o
SR

Figure 3: Product spectrum of the i5J444 model on dif-
ferent feedstocks, compared to experimental measurements
by Petrognani et al. (2020). Bars show the average electron
equivalent percentage (%) of the total spectrum of chain
elongation products, as defined in the legend. Media names
are explained in the abbreviations section. The suffix " ex"
indicates experimental results, while results without a suffix
are model predictions. Error bars represent standard deviations.
The simulation results were obtained using flux sampling with
the Artificial Centered Hit-and-Run (ACHR) algorithm. The
average electron equivalent was calculated by multiplying the
flux of each product by its degree of reduction (see Table S1),
followed by normalization against the total electron equivalents
of all products.
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propionate-valerate production ratio, as propionate can onlysos
be metabolized to valerate (Figure 4). This result contrastsso
with experimental findings, where the ratio is closer to 2-to- 1o
propionate uptake to valerate production. It is possible that
under certain conditions, C. luticellarii oxidizes a fraction
of the propionate to acetate, as observed in related cases
of organic acid oxidation such as valerate to propionate
or butyrate to acetate (Marién et al., 2024), which could
partially explain the higher acetate production observed.

120 e Acetate
Propionate
= Isobutyrate

Butyrate

i N R — | i

Valerate
W |sovalerate

s Caproate

108

3

®
3

% of products (Electron eq.)
Y
3

»
S

02 03 oD

Il ,
a0 ex\¥
pou™ WS
No

Propionate/ Methanol uptake ratio

Figure 4: Modeled effect of uptake of propionate together
with methanol. For the first 4 bars, propionate uptake was
constrained to a specific ratio to methanol; in the 'no bound’
condition, this was unconstrained. MP _ex refers to in vitro
experimental data from Petrognani et al. (2020), where (4-%°
0.2) indicates the ratio between propionate and methanol3
uptake as measured. As valerate is the only product propionatesos
can be metabolized into, the electron equivalent of valerateson
production was approximately twice the equivalent of thes,
consumed propionate (propionate has a degree of reduction,;
of 14, valerate one of 26). H, is also produced (see Figure S2),, .
but is excluded from this graph as it was not measured in the in s
vitro experiments. Deviation bars indicate standard deviation.314

315

316

2.3.2. Influence of CO, uptake on methanol product .,
spectrum 318
Simulations on syngas and methanol showed no sig-s,
nificant changes in the range or proportions of produced,,,
metabolites. In a potential industrial reactor design, C. lu-;,
ticellarii could be provided with syngas and syngas-deriveds,,
methanol. Understanding what limits the production of chainay,
elongation products is therefore valuable. Simulations indi-s,,
cate that increased CO, uptake negatively affects the products,s
spectrum; more acetate is produced at the expense of Hja
and longer even-chain carboxylic acids (ECCAs) (Figure 5).s,;
CO, uptake was not forced, so the uptake did not necessar-;
ily match the influx/availability, with the increase haltings,,
at around 7.0 mmol/gDW/h, along with the alteration in,s,
products. A significant reduction in H, production is coupled.s,
with increased acetate as the final product. H, productionss,
decreases from 28% of the electron equivalence of products;s;
to just 3% when comparing no CO, uptake to the maxi-s,
mum unconstrained uptake. Conversely, acetate production,ss
increases from 17% to 63%. The mean total amount of chains

elongation products decreases from 55% to 34%. This shift
to the less desirable acetate production occurs just below a
2-to-1 methanol-CO, uptake ratio.

m Acetate
Propionate
mmm Isobutyrate
Butyrate
mmm Ethanol
Valerate
. |sovalerate
e Caproate
mmm Hydrogen

100

80

60

40

% of products (Electron eq.)

20

6(4.72) 12 (6.68)
Influx of CO2 / Uptake (mmol gDW~2h~1)

18 (7.09)

Figure 5: Simulated influence of CO, uptake on C. luticel-
larii product spectrum during growth on methanol. The x-
axis shows the maximum CO, uptake flux (mmol/gDW/h)
used in simulations, while numbers in parentheses represent
the resulting median flux values derived from flux sampling.
Methanol flux was fixed at 20 mmol/gDW/h. As more CO,
is consumed, H, formation and chain elongation decrease,
while acetate production increases. Deviation bars indicate the
standard deviation of flux sampling results.

2.3.3. Syngas fermentation and the addition of trace
feeds

As the iSJ444 model was designed to explore the syngas
fermenting abilities of C. luticellarii, multiple simulations
were conducted using different syngas compositions. The
growth of C. luticellarii on syngas has not been extensively
studied, so future experiments are needed to validate these
predictions. In particular, growth on CO should be tested,
as it is uncertain whether C. luticellarii can tolerate (high
concentrations of) this toxic gas. CO can negatively affect
bacterial growth even at micromolar levels (Mendes et al.,
2021). While two CO-tolerant strains, C. kluyveri and C.
ljungdahlii, are close relatives, recent studies indicate that C.
kluyveri exhibits significant CO toxicity and only functions
in a co-culture when CO partial pressures are kept low.
Moreover, adaptive laboratory evolution (ALE) has been
required to improve C. kluyveri’s tolerance to even moder-
ate CO concentrations. Therefore, while C. luticellarii may
share some tolerance mechanisms, it is premature to assume
high CO tolerance without experimental validation (Diender
et al., 2016; Mohammadi et al., 2012).

Results from simulations with various syngas composi-
tions indicate no change in the product spectrum, except in
cases with limited carbon availability in the form of CO or
CO,, while maintaining constant energy availability through
H,. In these cases, acetate production was approximately
31%, while in other media, it ranged from 51% to 60%. The
model indicates the potential for C. luticellarii to grow using
CO as the sole energy source. Simulations with additional
acetate influx show no feasibility for extra acetate uptake by
C. luticellarii, likely because acetate is already a primary
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end product of energy generation from syngas. Uptake ofsz
additional acetate would require further energy. The modelsss
showed unconstrained propionate uptake when fed syngas,sn
which enabled valerate production. As indicated by previoussrs
simulations, the conversion of propionate in the currentss
model is not energy-efficient, resulting in low uptake rates.sr
Methanol addition did not affect the product spectrum onss
syngas. 379

380
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Figure 6: iSJ444 model prediction of C. luticellarii prod-,,,
uct spectra on various syngas compositions and with the,,
addition of trace feeds. x/x/x refers to H,/CO/CO, ratios._
+ Methanol, acetate, and propionate were added at 5, 5,
and 2 mmol/gDW/h influx of the respective metabolite in”
addition to syngas. Note the syngas composition here refers™’
to 30/60/10 H,/CO/CO, ratios, respectively. Deviation bars*®

indicate standard deviation. 399
400

401

402

2.4. Thermodynamic analysis of C. luticellarii
metabolism under varying pH conditions -
The Thermodynamic Flux Analysis (TFA) results, de-405
picted in Figure 7, reveal how energy dissipation varies406
across the top 50 metabolic reactions of Clostridium lu-
ticellarii when exposed to pH levels of 5.5 and 6.5. F01r:08
the majority of these reactions, dissipation changes were
modest, typically remaining below 0.1 kJ/mol, sugge:sting410
that the organism’s metabolic network retains a considerable411
degree of stability, effectively maintaining its energy balance412
despite fluctuations in environmental pH. However, several
reactions exhibited more pronounced shifts, indicating spe-, ,
cific metabolic processes adjust their energy distribution, ,
in response to pH changes. These pH levels were selected,
to explore a hypothesis underscored in the experimental,
work of Marién et al. (2024), which identified pH as a key, .
factor influencing metabolic flux direction in C. luticellarii.,
Specifically, their findings showed that mildly acidic pH (<,
5.5) stimulates the production of longer-chain products, such,
as butyric acid, while circumneutral pH (~ 6.5) favors acetic,,,
acid production. By simulating energy dissipation at these,,,
pH levels, we aimed to provide a thermodynamic perspective,,,
on the metabolic shifts observed experimentally. .
Among the top 50 reactions, HACD1 (3-hydroxyacyl-,,
CoA dehydrogenase (acetoacetyl-CoA)) and HACD2 (3-,,
hydroxyacyl-CoA dehydrogenase (3-oxohexanoyl-CoA)) dis-
played notable dissipation differences. HACD1 exhibited an

403

11 kJ/mol increase in dissipation at pH 6.5 compared to
pH 5.5 but had a more negative dissipation energy at pH
5.5, indicating favorability under mildly acidic conditions.
In contrast, HACD2 exhibited a 7.8 kJ/mol increase in
dissipation at pH 6.5, with pH 6.5 having a more negative
dissipation energy, highlighting its favorability under neutral
conditions. Similarly, ACOAD2 (Acyl-CoA dehydrogenase)
demonstrated the largest dissipation difference among all
reactions analyzed, with a difference of 41 kJ/mol, em-
phasizing the energetic adaptation of fatty acid f-oxidation
processes under varying pH conditions.

Interestingly, these findings show a mixed alignment
with experimental observations under autotrophic condi-
tions, where chain elongation has been reported to be more
feasible at pH 5.5 than at pH 6.5 (Marién et al., 2024). While
some reactions, such as HACDI1, support the experimental
results by demonstrating favorability under acidic condi-
tions, others, like HACD?2, suggest enhanced favorability at
neutral pH, potentially countering the experimental trends.
This nuanced interplay highlights both the strengths and lim-
itations of thermodynamic predictions in capturing the com-
plexity of metabolic regulation, which includes enzyme ac-
tivity, substrate availability, and kinetic constraints—factors
not explicitly modeled in TFA. These results underscore
the importance of integrative approaches that combine ther-
modynamic insights with experimental data to more com-
prehensively understand pH-driven metabolic shifts in C.
luticellarii.

While most reactions showed moderate dissipation dif-
ferences, reactions like PC (Pyruvate Carboxylase) and PGK
(Phosphoglycerate Kinase) exhibited dissipation differences
of approximately 0.11 kJ/mol. These differences suggest
subtle energy reallocation within central carbon metabolism,
fine-tuning energy use while maintaining overall stability.
The findings here illustrate that reactions like HACDI,
HACD2, and ACOAD?2 act as flexible nodes in the metabolic
network, fine-tuning their energy requirements in response
to pH changes. These findings emphasize the dual role of C.
luticellarii’s metabolism: maintaining overall stability while
selectively optimizing key reactions to enhance metabolic
efficiency under varying environmental conditions.

2.4.1. Pathway-specific dissipation patterns

A focused view of flux distributions and energy dissi-
pation changes across key metabolic pathways, notably the
Wood-Ljungdahl Pathway (WLP) and the branched tricar-
boxylic acid (TCA) cycle, under pH 5.5 and 6.5 is pre-
sented (see Figure 8). The top 50 metabolic reactions an-
alyzed include reactions from these pathways as well as
others, selected based on their absolute dissipation differ-
ences between the two pH conditions, highlighting reac-
tions with significant energetic adaptations. The WLP, inte-
gral for autotrophic growth through carbon fixation, shows
minimal dissipation differences (as well as overall dissipa-
tion) in foundational reactions such as CODH_ACS (Car-
bon monoxide dehydrogenase/Acetyl-CoA synthase) and
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Absolute Dissipation Differences Across Top 50 Reactions
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Figure 7: Heatmap of absolute dissipation differences across the top 50 reactions between pH 5.5 and pH 6.5. The color gradient
indicates the magnitude of dissipation changes, with blue representing lower dissipation differences and red indicating higher

values. The x-axis represents the pathways to which the reaction

s belong, while the y-axis lists individual reactions. Reactions

where pH 6.5 exhibits more negative dissipation energy are marked with a black asterisk, indicating favorability under neutral
conditions. The heatmap highlights both the magnitude of dissipation differences and the influence of pH on reaction favorability.

MTHFRS5 (0.00 kJ/mol), suggesting that these carbon reduc-ss
tion steps remain tightly regulated regardless of pH. How-o
ever, reactions like ACALD (Acetaldehyde dehydrogenase),sso
which converts acetyl-CoA to acetaldehyde, show slightas:
dissipation increases (0.0211 kJ/mol), reflecting a degree ofes:
metabolic flexibility in processing carbon intermediates.

One of the more striking variations is seen in HACD 14s4
associated reaction, where dissipation difference is 10.9sss
kJ/mol, indicating a significant adjustment (more nega-sss
tive, thus favoribility) in energy utilization when producingss:
longer-chain compounds like acetate at a mildly acid pH ofess
5.5. This aligns with the role of HACDI in energy-intensivesss
pathways such as reverse f-oxidation, where the balancesso
between pH-driven favorability and chain elongation de-:
pends on the specific metabolic context. Greater energyse
dissipation in a reaction often means the step becomes moresss
thermodynamically favorable, facilitating its progressionsss
under varying conditions. However, this energy is generallyass
dissipated, which may include heat, the diffusion of metabo-ss
lites, or the release of unused energy carriers (e.g., reducedssr
cofactors), and is not directly recoverable by the organismass

453

unless it is coupled to energy conservation mechanisms, such
as electron bifurcation (e.g., co-reduction of ferredoxin) or
the generation of a proton motive force, as is the case for
this reaction. Without such coupling, the dissipated energy
cannot be utilized for processes like H* translocation or
ATP synthesis. The organism instead compensates through
adjustments in other metabolic pathways, highlighting the
balance between flexibility and efficiency in maintaining
homeostasis.

In contrast, the branched TCA cycle demonstrates a more
nuanced pattern of energy adjustment. Reactions like CS
(Citrate synthase), responsible for the synthesis of citrate
from acetyl-CoA and oxaloacetate, show modest dissipation
(0.0509 kJ/mol), suggesting some flexibility in the path-
way’s entry points under varying pH (8). ICDHx (Isocitrate
dehydrogenase) exhibits a dissipation of 0.0324 kJ/mol,
indicating adjustments in the conversion of isocitrate to a-
ketoglutarate, a critical step for generating reducing equiv-
alents (NADH). These smaller dissipation changes reflect
a balanced response to pH shifts, focusing on maintaining
energy efficiency within the core metabolism. The observed

Scott et al.: Preprint submitted to Elsevier

Page 7 of 14


https://doi.org/10.1101/2024.11.26.625427
http://creativecommons.org/licenses/by-nc-nd/4.0/

469

470

471

472

473

474

475

476

477

478

479

480

482

483

485

486

487

bioRxiv preprint doi: https://doi.org/10.1101/2024.11.26.625427; this version posted January 17, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Genome-scale modeling of Clostridium luticellari syngas fermentations

variability in WLP and specific TCA reactions underscoresass
how C. luticellarii reallocates energy based on environmen-ss
tal conditions, using pathways like the WLP for broader en-sso
ergy adjustments at pH 6.5 while keeping essential metabolicso
processes stable at lower pH levels. This detailed energyss:
management strategy allows the organism to optimize itssss
metabolic outputs, whether in carbon fixation or energyass
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2.4.2. Variability in metabolic pathway flexibility
Thermodynamic Variability Analysis (TVA) revealedss
how Clostridium luticellarii adjusts its metabolic network,,,
across different pH conditions, shedding light on its capacity,s
for metabolic flexibility. At pH 6.5 (see Supplementary,
Figure S3), the network exhibited greater flux variability,,,
particularly in key pathways like the Wood-Ljungdahl Path-,,
way (WLP) and reverse f-oxidation, both of which are,
crucial for autotrophic growth and the synthesis of longer-,,
chain carboxylates such as butyrate and isobutyrate. The,,,
WLP’s increased variability in carbon fixation, specifically;,,

in reactions reducing CO, to acetyl-CoA, indicates greater
adaptability at pH 6.5, which directly supports higher yields
of these energy-demanding products.

In contrast, TVA at pH 5.5 (see Supplementary Figure
S4) showed reduced variability, especially in pathways with
high ATP demand, such as WLP and the ATP-investment
steps of glycolysis. The heightened proton concentration at
this pH imposes greater energetic costs on ATP production,
resulting in a more constrained metabolic state. This reduced
flexibility limits the organism’s ability to adjust its metabolic
fluxes, making it less responsive to environmental changes
compared to the adaptability observed at pH 6.5.

The differences in metabolic flexibility between pH con-
ditions significantly impact the production capabilities of C.
luticellarii. At pH 5.5, the constrained flexibility in pathways
like carbon fixation and chain elongation limits the produc-
tion of higher-value products such as butyrate and isobu-
tyrate, favoring acetate production due to its lower energy
demands. In contrast, pH 6.5 allows greater metabolic flex-
ibility, enabling a broader range of energy-intensive prod-
ucts by optimizing pathways like the WLP and reverse f-
oxidation. This adaptability at pH 6.5 is advantageous for
producing higher-value fermentation products, making it a
preferred condition for maximizing output. The combined
insights from TFA and TVA underscore how pH influences
the balance between metabolic rigidity and flexibility, guid-
ing the optimization of fermentation conditions for desired
outputs.

2.4.3. Integration of dissipation and variability
analysis

The integration of TFA and TVA results reveals how C.
luticellarii adjusts its metabolic strategies across different
pH conditions, highlighting both its flexibility and con-
straints. At pH 6.5, increased energy dissipation and higher
flux variability in key pathways like HACDI indicate a
more adaptable metabolic network, allowing efficient carbon
fixation and chain elongation that support the production
of energy-intensive products like butyrate and isobutyrate.
In contrast, at pH 5.5, reduced flux variability and smaller
changes in dissipation reflect a more rigid metabolic state,
as the organism adapts to the energetic challenges of higher
proton concentrations. This rigidity, as predicted by the
model simulations, limits the production of complex car-
boxylates and instead favors a metabolic shift toward simpler
products like acetate.

3. Discussion

This study presents iSJ444, a model for C. luticellarii
adapted from its close relative C. ljungdahlii. This model
enabled the evaluation of the chain elongation pathways
from earlier studies and the generation of predictions for not
yet experimentally tested metabolic behavior. The model is
highly rated by MEMOTE and shows growth on multiple
substrates relevant to syngas fermentation. Simulation re-
sults support that the earlier hypothesized pathways are most
likely utilized by C. luticellarii. The performance of iSJ444
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also highlights the robustness of iHN637, despite it beingso
relatively outdated (published in 2013). Comparisons to ex-eo:
perimental results were made without constraining the actualee
uptake of metabolites. Yet, the product spectra matched well, 03
demonstrating the power of flux sampling and the utility ofcos
metabolic models for predictions, even without precise datasos
on substrate use. This study supports the further testing andsos
inclusion of C. luticellarii in syngas-fermenting systems. o7

The iHN637 model of C. ljungdahlii was chosen aseos
a template for model creation, but C. kluyveri could haveso
also served this purpose. A C. kluyveri metabolic modeleswo
exists (Zou et al., 2018), and it is the next closest strainen
to C. luticellarii, with eggNOG mapping indicating manys:»
C. luticellarii genes are related to C. kluyveri (Table 1).e13
However, its model was less accessible and conventionales
than the BiGG-formatted iHN637. The iHN637 model alsoeis
includes ferredoxin-linked reactions, such as those involv-eis
ing electron bifurcation and ferredoxin-NAD(P) reductases:
(RnF) complexes, which are key to energy conservationss
and are most likely present in C. luticellarii as well. Theseeo
features made iHN637 a practical and effective starting pointezo
for creating the iSJ444 model. While a clostridial metamodelez:
that consolidates key features of closely related species ands»
can be pruned or tuned for specific organisms would bess
highly useful, it would require careful design to balancess
generality and accuracy. Such a framework could streamlines2s
future efforts to model less-characterized Clostridia by pro-es
viding a robust starting point with established core pathways.sr
Future improvements to iSJ444, such as incorporating addi-e»s
tional reactions from C. kluyveri, could contribute towardso
developing a more universal Clostridial model, enablingsso
broader comparisons and applications. 631

iSJ444 is less extensive than similar models of relatedss:
acetogens. The model has 735 reactions, whereas metabolicsss
models of C. kluyveri, C. autoethanogenum, and Clostridiumess
tyrobutyricum have 994, 1109, and 858 reactions, respec-sss
tively (Feng et al., 2022; Valgepea et al., 2017; Zou et al.,e36
2018). This smaller size is due to a combination of factors:ssr
i) the i(HN637 model, which served as the starting point, isss
itself smaller compared to some more recent models; andss
i) additional reactions were removed during the adaptationsso
process to focus on pathways relevant to syngas metabolismes
and chain elongation in C. luticellarii. By taking this re-e:
ductionist approach, iSJ444 achieves greater specificity andess
computational efficiency, enabling more accurate predic-ss
tions of syngas fermenting and chain elongation capabilities.ess
This focused design minimizes the inclusion of extraneousess
reactions that are not experimentally supported for C. luticel-es
larii, reducing uncertainty and simplifying the interpretationsss
of simulation results. Results of growth on glucose andss
glycerol demonstrate some of the limitations. This type ofeso
constraint-based modeling has inherent limitations; genees:
expression is usually not considered, though methods existes:
for this (z&kesson et al., 2004). The lack of experimentaless
data on C. luticellarii, in particular, poses challenges, as thesss
formulation of organism-specific biomass functions oftensss
requires extensive experimental data, which is crucial foress

model accuracy (Dikicioglu et al., 2015; Lachance et al.,
2019). While iSJ444 is not intended for broader exploration
of C. luticellarii’s metabolism, its specificity makes it a
powerful tool for investigating and optimizing syngas-based
bioprocesses and targeted metabolite production. This de-
sign strategy highlights the trade-off between model com-
prehensiveness and precision, with iSJ444 being tailored for
its intended applications.

When comparing the model simulation results, it is
important to note that model simulations represent fluxes
at a single time point, whereas experimental results reflect
changes in metabolite concentrations over the entire incuba-
tion period. The comparisons made here thus involve pro-
duction/consumption at a specific time point for the model
versus total production/consumption at the end of the incu-
bation for the experiments. As production and consumption
do not remain constant over time, this discrepancy should be
considered when interpreting the comparisons.

The model accurately predicted the product spectrum of
methanol fermentation but overestimated the formation of
chain elongation products and H,, while CO, levels were
similarly elevated. This overestimation could be linked to
the model’s inability to fully capture the dynamic interplay
between H, and CO, consumption, particularly under con-
ditions where CO, serves as the primary electron acceptor.
In acetogens, significant H, production is uncommon when
electron acceptors such as CO, are available, which may
explain the deviation from experimental observations. This
discrepancy may arise from differences between the model’s
steady-state predictions and the cumulative production in
batch incubation. Dynamic conditions during incubation,
such as nutrient shifts, early growth biomass production, or
limitations in gas-liquid mass transfer, commonly observed
in batch systems could divert resources from product for-
mation, thereby reducing observed yields. Imposing con-
straints on biomass and ATP generation could potentially
resolve this issue. In the simulations, propionate use was
limited. In the model, only a single propionate utilization
pathway was considered (valerate production). The low up-
take rates could be attributed to propionate metabolism into
valerate, which yields insufficient energy. When forcing a
methanol/propionate uptake ratio similar to that observed
in experiments, iSJ444 predicted significantly more valerate
production than was observed experimentally. As previously
hypothesized, this variation may be due to the presence of yet
unidentified energy generating reactions within the pathway
or oxidation, suggesting that alternative pathways could be
involved in the metabolism of propionate in C. luticellarii
(De Smit et al., 2019; Marién et al., 2024). The base iHN637
model of C. [jungdahlii could form lactate from propionate,
a capability that was removed in iSJ444 to prevent the
production of valerate/propionate when simulating growth
on methanol, which was not observed in experiments.

Comparisons to experimental data were made more chal-
lenging due to the high standard deviations observed during
flux sampling of the iSJ444 model. Even with a large number
of samples, the results do not appear to converge, potentially
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due to the simplicity of the added pathways or becausers
the energy production options are closely balanced. Thens
metabolites not present in iHN637 and added to iSJ444ns
have only two associated reactions. The chain elongationzz
pathways added are very linear, with no alternative pathwayszs
for metabolite entry. When flux is randomly sampled, therns
quantity of chain elongation products is heavily dependentrzo
on the initial flux of the reaction that initiates this lin-7z1
ear pathway. Because the inflow and outflow flux of allr»
metabolites must be balanced, all fluxes in such a linearr:s
pathway are interdependent. Thus, standard deviations ofr2
end products may remain high even with many samples,s
as they depend on a single initial flux. Including reactionsrs
that produce intermediates in the pathway could reduce therr
standard deviation of the final products. These reactionsrs
(if present) could be identified by examining C. kluyveri,io
a more extensively studied chain elongator. Nonetheless,so
considering the simplicity of the iS/444 model and its chainzs:
elongation pathways, the model matches the experimentalrs
data on methanol and H,/CO, qualitatively and, to somerss
extent, quantitatively. This supports the presence of the even-7ss
chain elongation pathway proposed by Petrognani et al.zss
(2020). 736

The batch feeding strategy employed in the experimentalzsr
work by Petrognani et al. (2020) plays a significant role invss
understanding the discrepancies between model predictionsrso
and observed data. In these experiments, substrates werero
supplied at the start of the batch fermentation, resultingra
in dynamic changes in substrate availability and metabo-7.
lite concentrations over time. Such fluctuations inherentlyzss
contrast with the steady-state assumptions underlying thers
iSJ444 model simulations, which consider constant fluxzs
distributions. To improve the alignment between model pre-7s
dictions and experimental data, future studies could imple-7s
ment continuous feeding strategies. This approach maintainsras
substrate concentrations at steady levels, reducing temporalzso
variability and creating conditions that more closely mimicrso
the steady-state assumptions of the metabolic model. Ad-7s:
ditionally, dynamic Flux Balance Analysis (dFBA) couldss:
be employed to capture the temporal changes in metabolicrss
activity observed in batch systems, thereby enhancing therss
predictive capabilities of the model under dynamic condi-zss
tions (Foster et al., 2021; Scott et al., 2023). By consideringss
both feeding strategies and dynamic modeling approaches,s
future experimental designs can bridge the gap between inzss
silico predictions and experimental observations, ultimatelyzse
improving the model’s utility in guiding biotechnologicalzo
applications for syngas fermentation. 761

Predictions of performance on untested growth mediaz:
indicated that the product spectrum on syngas was primarilyzss
influenced by carbon availability, with more ECCA forma-rcs
tion when less carbon source (in the form of either COres
or CO,) was supplied, while maintaining the same energyss
potential through H,. Limiting carbon uptake appears toze
increase the need for complete oxidation of the availablerss
carbon, yielding more ATP and producing longer carboxylices
acids. Butyribacterium methylotrophicum, which can growro

on syngas to produce ethanol, acetate, lactic acid, and bu-
tyrate, exhibited similar behavior, with a higher percentage
of hydrogen in the feed increasing production (Heiskanen
et al., 2007). E. limosum showed increased acetate produc-
tion when supplied with H,/CO, compared to only CO,
but no butyrate was formed in either condition, making
direct comparison with the ECCA-producing model more
challenging. C. [jungdahlii also increased acetate production
over ethanol under high H,/CO ratios (Jack et al., 2019).
More in line with our results is the increased ethanol pro-
duction of C. autoethanogenum under high H,, observed
experimentally (Valgepea et al., 2018) and predicted through
metabolic modeling (Benito-Vaquerizo et al., 2020). This
suggests that high H, may enable the utilization of pathways
beyond acetate formation. While C. luticellarii has thus far
only been grown on H, and CO,, the effects of varying syn-
gas compositions on the products of C. luticellarii warrant
further experimental study.

Supplying methanol along with syngas did not result
in increased ECCA production, even though results with
methanol as the sole feed showed higher ECCA production
than growth on syngas alone. The lack of improvement in
the product spectrum with methanol aligns with the sim-
ulations on methanol and CO,, as CO, led to increased
acetate production. In the presence of syngas, a similar effect
occurs, where uptake of CO and CO, is predicted to lead to
more acetate production. E. limosum was found to grow and
take up syngas more rapidly when simultaneously fed with
methanol, but the product spectrum was not measured in that
study (Kim et al., 2021). It was found that the accelerating
effect of methanol only occurred during growth on H, and
CO,, and not for CO and CO,, due to a closer connection
between the H,/CO, and methanol enzymatic pathways.
Although this effect would not show in the simulations, it
is important to consider for future studies on syngas and
methanol metabolism by C. luticellarii.

Future experimental validation of the iSJ/444 model un-
der varying syngas compositions is critical for testing and
refining its predictive capabilities. Such efforts could ben-
efit from adopting a Design-Build-Test-Learn (DBTL) cy-
cle, a well-established framework in metabolic engineering
that enables iterative improvements in both experimental
and computational workflows (Nielsen and Keasling, 2016;
Gurdo et al., 2022). In the "Design" phase, the iSJ/444 model
can be used to simulate metabolic responses under different
H,/CO/CO, ratios, identifying conditions likely to enhance
product formation or expose metabolic bottlenecks. During
the "Build" and "Test" phases, these conditions can be ex-
perimentally implemented and validated, while the "Learn"
phase allows integration of the results into subsequent model
iterations. This iterative approach has proven effective in
improving the predictive power of genome-scale metabolic
models and optimizing bioprocesses (Otero-Muras and Car-
bonell, 2021). By leveraging the DBTL cycle, the iSJ444
model could serve as a dynamic tool for systematically
exploring syngas fermentation, facilitating the development
of resilient and efficient industrial processes. Incorporating

Scott et al.: Preprint submitted to Elsevier

Page 10 of 14


https://doi.org/10.1101/2024.11.26.625427
http://creativecommons.org/licenses/by-nc-nd/4.0/

772

773

775

776

777

778

779

780

782

783

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

bioRxiv preprint doi: https://doi.org/10.1101/2024.11.26.625427; this version posted January 17, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Genome-scale modeling of Clostridium luticellari syngas fermentations

this strategy aligns with the broader aim of bridging compu-,,,
tational predictions with experimental insights in metabolic
engineering.

It is challenging to accurately represent pH in metabolic®®
model simulations, particularly in the context of chain elon-**
gation processes (de Leeuw et al., 2020; Ganigué Pages®™®
etal., 2016). However, with sufficient experimental data and®®
assumptions, pH effects can be incorporated into genome-*°
scale models to enhance predictive power. Extensive work®'
on Thermodynamic Flux Analysis (TFA) has provided a ba-*?
sis for integrating thermodynamic constraints into metabolic®
models, effectively improving the accuracy of metabolic
network simulations (Miiller and Bockmayr, 2013; Gollub®™
et al., 2021). In addition to thermodynamic constraints like®*
pH, incorporating proteomics data with tools such as GECK-**
Opy and ECMpy can further refine genome-scale model®®
predictions (Carrasco Muriel et al., 2023; Mao et al., 2024).5%
Integrating proteomics data alongside thermodynamic fac-*°
tors enables finer constraint adjustments, resulting in more®"
accurate flux predictions. However, the lack of experimental®?
proteomics data for C. luticellarii currently limits opportuni-**
ties to further constrain our genome-scale model using these®*
approaches. 84

iSJ444 serves as a minimal yet robust base model of**
C. luticellarii, suitable for further exploration of its syngas®’
and chain elongation capabilities. The model could be im-**
proved to allow for more accurate predictions of odd-chain®*
elongation by expanding odd-chained metabolic pathways.*®
It could also benefit from a tailored biomass function and™'
a well-formulated objective function if it is to be used™
for dFBA. Model predictions encourage further metabolic®™
testing of C. luticellarii, especially concerning the effects
of H,/CO or CO, ratios on product formation, and the
addition of methanol when growing on syngas, as these®™
model predictions seem to contradict earlier studies. A large®’
effect of syngas composition on product formation could be*®
detrimental, as a key advantage of microbial-based syngas®™’
fermentation could come from its insensitivity to variation in®*
composition (Liew et al., 2016). Beyond direct use of syngas,™
C. luticellarii might be more productive when supplied with®®
syngas-derived methanol, and optimization of this approach®*
can also be studied using this model. Insights from the chain
elongation pathways of C. kluyveri could be leveraged to
further enhance iSJ444. The model can also be integrated
into consortia, including those with C. autoethanogenum,”
a popular organism in syngas fermentations that has an®
established metabolic model (Valgepea et al., 2017). As**
C. autoethanogenum has similar metabolic properties to C.**
ljungdahlii, it would likely play a similar role in a consortium®”°
model. This study represents an initial step in exploring the®"
potential of C. luticellarii for enhancing syngas recycling®”
and suggests further experimental and in-silico testing of its®”
capabilities. o
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4. Materials and methods

4.1. Model creation: iSJ444

The genome-scale metabolic model (GEM) for Clostrid-
ium luticellarii, named iSJ444, was constructed using a
combination of ortholog mapping and manual curation. The
iHN637 model of Clostridium ljungdahlii (Nagarajan et al.,
2013), retrieved from the BiGG database (http://bigg.ucsd.
edu/models/iHN637), was used as the base model. Ortholo-
gous genes were identified using the eggNOG-mapper tool
(Cantalapiedra et al., 2021), and reactions corresponding to
genes not present in the C. luticellarii genome were removed
from iHN637. Reactions that were orphaned by this process
but had single Enzyme Commission (E.C.) annotations were
reinstated if orthologous genes performing the same E.C.
function were identified in the C. luticellarii genome.

To ensure the model’s functionality, MEMOTE analysis
(Lieven et al., 2020) was employed to detect and fill any
pathway gaps, allowing the model to produce all essential
biomass precursors. Specific chain elongation pathways,
relevant for butyrate and isobutyrate production, were man-
ually incorporated based on previously published metabolic
characterizations of C. luticellarii (De Smit et al., 2019;
Petrognani et al., 2020). Where possible, reaction identifiers
from the BiGG database were used. Finally, flux bounds
were adjusted to fit experimental data, ensuring that the
model’s predictions aligned with the observed growth and
product formation conditions. Additionally, FROG (Flux
Robustness and Optimization for GEMs) analysis (Raman
et al., 2024) was performed to confirm the reproducibility
and robustness of the flux balance analysis (FBA) (Orth
et al., 2010) modeling results.

The setup of this study, showing how the iHN637 model
of C. [jungdahlii was adapted to the iSJ444 model for C. lu-
ticellarii using orthology gene mapping (eggNOG-mapper)
and the addition of hypothesized chain elongation pathways
(De Smit et al., 2019; Petrognani et al., 2020) is depicted
in a diagram (see Figure 1). iSJ444 was created with the
potential to be incorporated into consortia models along with
other preexisting metabolic models to assess their potential
for syngas recycling.

4.2. Model validation conditions

The validation of the iS/444 GEM against experimental
data was conducted using results from batch fermentation
experiments as described by Petrognani et al. (2020). In
these experiments, Clostridium luticellarii DSM 29 923 was
cultivated on a synthetic methanol medium supplemented
with 200 mM methanol as the electron donor, 100 mM
potassium acetate, and 23 mM sodium butyrate as elec-
tron acceptors. The experiments were conducted in sealed,
static penicillin bottles under controlled conditions, where
substrates were added at the start of incubation rather than
through continuous feeding. The ’average electron equiva-
lent’ for the product spectrum was calculated by multiplying
the flux of each product by its degree of reduction, as listed
in Supplementary Table S1. The resulting values were nor-
malized against the total electron equivalents of all products
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in the spectrum. This calculation method was applied tooss
both experimental and model-predicted data to enable directoss
comparisons. 038

To provide an accessible summary of the experimentalsso
data used for validation, a table has been provided outliningsso
the experimental sources, conditions, and key findings (Ta-on
ble S3). This table highlights the limited, but critical datasetsos>
used for validating the iSJ/444 GEM and emphasizes thess
importance of these data in guiding model predictions andsss
interpretations. oa5

946

4.3. Flux sampling simulations o7
The genome and amino acid sequences of C. luticellarii,,,
(strain PVXPO1) were retrieved from the NCBI sequence,,,
database (Poehlein et al., 2018). Model simulations were,,,
performed using COBRApy version 0.24.0 (Ebrahim et al.,
2013) with CPLEX optimizer version 22.1.0.0 as the solver,
running in Python 3.8. Unless otherwise specified, flux®
sampling was conducted using COBRApy’s built-in artifi-,,
cial centering hit-and-run (ACHR) algorithm with 15,000,
samples, based on the sampling strategy used in previ-g,
ous syngas-fermenting co-culture studies (Benito-Vaquerizog
et al., 2020). Flux sampling was chosen for its ability tOg
generate diverse, non-optimal flux distributions, allowing for,,
a more realistic representation of metabolic variability com-,
pared to methods that optimize a single objective (Herrmann,,,
et al., 2019). Optimized General Parallel Sampler (OPTGP),,
sampling was also tested, but no significant differences were,,
observed compared to ACHR sampling. Flux variability,,
analysis was also performed on iSJ/444 using COBRADpY,;
with the loopless setting on true and the fraction of optimumy,
on 0, to see the full solution space (Table S4). 065
Flux sampling was employed to simulate the metabolic,g
activity of C. luticellarii under various conditions. Growth
simulations did not rely on maximizing the biomass reactionss
but instead used flux sampling to explore a range of possiblesss
metabolic flux distributions. While the biomass reaction pro-sss
vides a theoretical framework for cellular growth, it was notozo
used as an optimization objective in this study, aligning wither:
the study’s focus on product spectrum predictions rather thaner.
growth yield. o73

974

4.4. Thermodynamic flux analysis and energy o5
dissipation o6
Thermodynamic flux analysis (TFA) (Henry et al., 2007),,,
was conducted using the pyTFA Python package (Salvyg,
et al., 2019), which incorporates thermodynamic constraints
into flux balance models to improve the realism of metabolicers
predictions. We adapted pyTFA tutorials on sampling (Salvyoso
et al., 2019) and Equilibrator integration (Beber et al., 2022)ss:
to perform TFA, thermodynamic variability analysis, andos
flux sampling, allowing us to assess energy dissipationsss
across the metabolic network. The use of Equilibrator (Bebeross
et al., 2022) allowed us to incorporate accurate thermody-sss
namic data, improving the precision of reaction feasibilityoss
predictions by ensuring that Gibbs free energy calculationses
were context-specific and consistent with the intracellulaross
environment. 989

Due to the lack of specific thermodynamic data for C.
luticellarii, assumptions were made regarding intracellular
compartment conditions at pH 5.5 and pH 6.5. In particular,
compartment pH values and the membrane potential were
inferred from similar organisms, as no experimental data
are available for C. luticellarii under these conditions. These
assumptions were essential for setting boundary conditions
for TFA simulations. By integrating Gibbs free energy data
and simulating growth under both acidic (pH 5.5) and neutral
(pH 6.5) conditions, we quantified the energy dissipation
and identified potential metabolic bottlenecks that impact the
efficiency of key pathways. Flux sampling was used to cap-
ture the distribution of feasible metabolic states, providing
insights into the robustness of metabolic pathways related to
butyrate, isobutyrate, and acetate production.

5. Abbreviations
5.1. Feedstocks

In brackets are influx rates/ratios used in the simula-
tions/experiments.
MA Methanol + Acetate (20/10)
MAB Methanol + Acetate + Butyrate (20/10/2.5)
MP Methanol + Propionate (20/10)
MPYV Methanol + Propionate + Valerate (20/10/2.5)
LA D-Lactate + Acetate (20/10)
GLC Glucose (2.5)
GLY Glycerol (2.5)
H2-CO2 Hydrogen and carbon dioxide (80/20)
Syngas Unless otherwise specified: hydrogen, carbon monox-
ide, and carbon dioxide in a 30/60/10 ratio
ME Methanol (20)
MCO2 Methanol and carbon dioxide (20/10)

5.2. Model metabolite names
_c suffix means intracellular metabolite, _e extracellular.
meoh Methanol
ac Acetate
ppa Propionate (C3)
but Butyrate (C4)
ibt Isobutyrate (C4)
pta Valerate (C5)
hxa Caproate (C6)
accoa Acetyl-CoA
aacoa Acetoacetyl-CoA
fdxr/o_42 Ferredoxin reduced/oxidized form 4:2

5.3. Model reaction names
MTAabcPS Pseudo reaction of the methanol-cobalamin
methyltransferase system
CODH4 Carbon monoxide dehydrogenase
METR Methyltetrahydrofolate:corrinoid/iron-sulfur pro-
tein methyltransferase
CODH_ACS Carbon monoxide/acetyl-CoA synthase pseudo
reaction
VCACT Acetyl-CoA C-acyltransferase
HVCD 3-hydroxyacyl-CoA dehydrogenase
VECOAH, ECOAH1 and ECOAH2 3-hydroxyacyl-CoA
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dehydratase 1041
VCOAD2, ACOAD1z, ACOAD2 Acyl-CoA dehydroge
nase 1043
FACOALSO0i Fatty acid CoA ligase

1044
1045

ACACTI1r Acetyl-CoA C-acetyltransferase 1046
HACD1, HACD?2 3-hydroxyacyl-CoA dehydrogenase 1047
BUTCT Acetyl-CoA:butyrate-CoA transferase 1048
IBTMr Isobutyryl-CoA mutase 1049
IBUTCT Acetyl-CoA:isobutyrate-CoA transferase 12:
THL Thiolase 1052
HXCT Acetyl-CoA:hexanoate-CoA transferase 1053
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