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A B S T R A C T
Syngas fermentation is a powerful platform for converting waste streams into sustainable carboxylic
acid precursors for value-added biochemicals. Steel mills produce significant syngas, yet industrial
microbial syngas valorization remains unrealized. The most promising syngas-converting biocat-
alysts consist of Clostridia species, such as Clostridium kluyveri, Clostridium autoethanogenum,
and Clostridium ljungdahlii. Clostridium luticellarii, a recently discovered species, shares close
phylogenetic ties with these organisms. Preliminary metabolic studies suggest its potential for syngas
acetogenesis as well as chain elongation. In this study, we create iSJ444, a constraint-based metabolic
model of C. luticellarii using iHN637 of a close relative C. ljungdahlii as a starting point. Model
predictions support hypothesized methanol and syngas pathways from the metabolic characterization
studies; however, the use of propionate could not be accurately predicted. Thermodynamic Flux
Analysis (TFA) reveals that C. luticellarii maintains stable energy dissipation across most reactions
when exposed to varying pH, with significant increases observed in reactions associated with the
Wood-Ljungdahl pathway (WLP), such as the HACD1 reaction, at higher pH (6.5), suggesting an
adaptive role in energy management under neutral conditions. Flux sampling simulations exploring
metabolic flux distributions show that C. luticellarii might fit into syngas fermenting platforms. In both
cases, high hydrogen-to-carbon source ratios result in better production of (iso)butyrate and caproate.
We present a minimal genome-scale metabolic model of C. luticellarii as a foundation for further
exploration and optimization. Although our predictions of its metabolic behavior await experimental
validation, they underscore the potential of C. luticellarii to enhance syngas fermentation platforms.

1. Introduction10

An important focus of modern biotechnological research11

is to understand and optimize microbial metabolic pathways12

for producing renewable and valuable chemicals, contribut-13

ing to the advancement of a sustainable circular economy.14

These pathways enable the conversion of waste streams15

into useful products, often being present in a consortium16

of organisms to achieve enhanced product specificity or to17

produce compounds thermodynamically infeasible for a sin-18

gle species (Bekiaris and Klamt, 2021). Syngas fermentation19

stands out among various strategies due to its ability to20

convert industrial off-gases, such as those from steel mills,21

and gasified waste streams into a single, homogeneous feed-22

stock that can be efficiently processed by a single organism23

to produce a diverse array of valuable products. Syngas,24

primarily composed of hydrogen, carbon monoxide, and25

carbon dioxide, can be utilized by anaerobic microorgan-26

isms, particularly acetogens, through the Wood-Ljungdahl27

pathway to produce chemicals like acetate, ethanol, and 2,3-28

butanediol (Gildemyn et al., 2017; Parera Olm and Sousa,29

2021; Drake et al., 2008).30
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Clostridium luticellarii is a strictly anaerobic bacterium31

isolated from a mud cellar, notable for its butyrate pro-32

duction (Wang et al., 2015). The genome of C. luticellarii33

has been sequenced, revealing a close relationship to both34

C. kluyveri and C. ljungdahlii (Poehlein et al., 2018). A35

more comprehensive metabolic characterization by Petrog-36

nani et al. (2020) highlighted C. luticellarii’s potential to37

grow on methanol/acetate and H2/CO2, primarily produc-38

ing butyrate, isobutyrate, and caproate. Additionally, they39

demonstrated its ability to synthesize valerate from propi-40

onate and methanol, a hypothesis previously proposed in an41

open-culture and autotrophically in a mono-culture (De Smit42

et al., 2019; Mariën et al., 2024). C. luticellarii thus pos-43

sesses the dual capability of syngas fermentation into acetate44

(but not ethanol) and chain elongation pathways for both45

odd- and even-chained carboxylic acids. This rare combina-46

tion of abilities is only observed in a few other organisms,47

such as Eubacterium limosum (Molitor et al., 2017), making48

C. luticellarii a promising candidate for inclusion in syngas49

upgrading systems.50

Optimizing syngas fermentation for the production of51

valuable chemicals requires a deeper understanding of the52

complex anaerobic metabolic pathways involved. These53

pathways often exhibit flexibility, allowing metabolic shifts54

between products depending on environmental conditions55
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such as substrate availability and pH. This metabolic adapt-56

ability is key to enhancing the production of higher-value57

chemicals like butyrate, caproate, and odd-chained car-58

boxylic acids. While single strains, such as chain-elongating59

Clostridium kluyveri, can efficiently elongate carbon chains60

using ethanol and acetic or propionic acid (Baleeiro et al.,61

2019; Diender et al., 2019; Fernández-Naveira et al., 2019),62

incorporating such microbes into microbial consortia re-63

mains a potential strategy for leveraging their complemen-64

tary metabolic capabilities. For instance, co-cultures of C.65

kluyveri with Clostridium ljungdahlii or Acetobacterium66

wieringae with Anaerotignum neopropionicum have suc-67

cessfully upgraded ethanol and acetate into more valuable68

products (Parera Olm and Sousa, 2023; Kim et al., 2019;69

Benito-Vaquerizo et al., 2020). However, the focus of future70

work lies in unraveling these metabolic shifts and under-71

standing how environmental factors drive product speci-72

ficity, which will inform the development of high-efficiency73

systems for industrial applications. Genetic engineering74

and synthetic co-cultures remain promising but secondary75

strategies for enhancing the metabolic versatility of syngas-76

fermenting systems.77

GEnome-scale metabolic Modeling (GEM) is a vital78

tool in systems biology, offering a detailed framework for79

understanding the metabolic capabilities of organisms at the80

genome level. By reconstructing metabolic networks from81

genome annotations, GEM modeling enables the simula-82

tion of metabolic fluxes under various environmental and83

genetic conditions, which is crucial for elucidating complex84

metabolic pathways, predicting phenotypic outcomes of ge-85

netic modifications, and optimizing metabolic engineering86

strategies (Thiele and Palsson, 2010). Recent advances in87

GEMs have expanded their applications in diverse fields, in-88

cluding microbial biotechnology and bioprocessing (Atasoy89

et al., 2024).90

GEMs have been instrumental in investigating metabolic91

processes in Clostridia species, particularly for the produc-92

tion of industrially relevant bioproducts such as short-chain93

fatty acids, organic acids, fuels and alcohols. For example,94

GEMs have been used to optimize propionate production95

in Clostridium beijerinckii by adjusting carbon fluxes (Di-96

allo et al., 2019) and to enhance butyrate production in97

Clostridium acetobutylicum through pathway manipulations98

(Gallardo et al., 2016). Additionally, models have guided99

strain engineering strategies for improving the production of100

various target compounds (McAnulty et al., 2012; Scott Jr101

et al., 2020). Beyond organic acid production, GEMs have102

also been applied to explore biofuel pathways, such as in the103

genome-scale model of Clostridium ljungdahlii developed104

by Nagarajan et al. (2013) and the solventogenic metabolism105

model for Clostridium beijerinckii by Milne et al. (2011).106

These models have been pivotal in identifying metabolic107

bottlenecks and informing genetic modifications to enhance108

production efficiency across diverse bioprocesses.109

In this study, we applied a constraint-based metabolic110

modeling approach to explore the potential of Clostrid-111

ium luticellarii for syngas fermentation and direct chain112

elongation. We constructed the iSJ444 model by adapting113

the BiGG (Biochemical, Genetic and Genomic) knowledge114

base model of C. ljungdahlii (iHN637) (Nagarajan et al.,115

2013), removing reactions without genetic evidence, and116

incorporating hypothesized pathways from De Smit et al.117

(2019) and Petrognani et al. (2020). The model was validated118

against the experimental results reported by Petrognani et al.119

(2020), and its behavior was further characterized by sim-120

ulating growth and product spectrum under various syn-121

gas fermentation and methanol-chain elongation conditions.122

Thermodynamic flux analysis (TFA) Henry et al. (2007)123

was performed on the C. luticellarii GEM to investigate124

the role of pH in the production of butyrate, isobutyrate,125

and acetate. Additionally, TFA was used to examine energy126

dissipation across the network to identify potential metabolic127

bottlenecks impacting product formation efficiency.128

Figure 1: Setup of this study. The iHN637 model of C. ljung-
dahlii was adapted to a C. luticellarii model (iSJ444) using an
orthology gene mapping (eggNOG-mapper) and addition of
hypothesized chain elongation-pathways from (De Smit et al.,
2019; Petrognani et al., 2020). iSJ444 can then be potentially
joined with other preexisting metabolic models into consortia
models and their potential for syngas recycling can be explored.

2. Results129

2.1. Building the iSJ444 model: from template to130

functional GEM131

The iHN637 metabolic model of C. ljungdahlii was132

chosen as a template for building iSJ444 due to its close133

phylogenetic relationship and the advantages of the stan-134

dardized BiGG template. This approach facilitates model135

consistency, interoperability, and faster adaptation compared136

to de novo model construction. The BiGG format stream-137

lines the process by providing a well-curated framework138

of reactions and metabolites, enhancing compatibility with139

existing databases and analysis tools. This reduces the need140

for extensive re-annotation or gap-filling, allowing for a141

focused effort on curating pathways specific to C. luticellarii.142

Consequently, using the BiGG template enabled the effi-143

cient and robust adaptation of the iSJ444 model, leveraging144

the shared core metabolic framework while refining the145

organism-specific features.146
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The final iSJ444 model consists of 444 genes, 735 reac-147

tions (including 100 exchange reactions), and 672 metabo-148

lites. Of these, 708 reactions (90% of all reactions in iHN637)149

were inherited, reflecting substantial overlap in core metabolism150

between the models. This overlap ensures that the well-151

established pathways from iHN637 are retained, while the152

remaining 10% were specifically curated for C. luticellarii153

to incorporate unique metabolic traits and functionalities.154

Similar to iHN637, iSJ444 includes only an extra- and155

intracellular compartment (no periplasm, which is present in156

some other metabolic models). This careful balance of adap-157

tation and refinement underscores the utility of template-158

based modeling in achieving both accuracy and novelty for159

less-characterized organisms.160

All reactions in the iSJ444 GEM are mass balanced161

(except for the exchange reactions and the biomass func-162

tion). While the original GEM sets all metabolite charges163

to 0, we have also created a version of iSJ444 that incor-164

porates metabolite charges using data extracted from the165

BiGG database. This updated model achieves 84.75% charge166

balance and 98.9% mass balance, as verified using MEM-167

OTE. However, for consistency with the original modeling168

framework and to maintain alignment with the assumptions169

and datasets used in prior analyses, we proceeded with170

the version of iSJ444 with metabolite charges set to zero171

for the main analyses presented in this study. The biomass172

function in the iSJ444 GEM was adopted directly from173

C. ljungdahlii (iHN637) without modification, as defining174

a species-specific biomass function requires extensive ex-175

perimental data. Although biomass composition can vary176

even among closely related species, using a function from a177

similar organism provides a reasonable approximation in the178

absence of precise data for C. luticellarii. In this study, the179

primary focus was on flux sampling to explore the range of180

possible metabolic flux distributions under different condi-181

tions, rather than optimizing for specific objectives such as182

biomass yield. Flux sampling allows a broader exploration183

of metabolic capabilities without the need for a predefined184

objective function. While the biomass reaction provides a185

theoretical framework for cellular growth, its role in this186

study was limited to serving as a reference for model valida-187

tion rather than as an optimization target for flux predictions.188

A total of 532 of the 735 reactions (72%) have at least189

one gene assigned to them, slightly lower than the original190

iHN637 model (78% coverage), partly because no genes191

are assigned to some of the added pathways. MEMOTE192

gives iSJ444 a total score of 89%, with a consistency of193

99.86%. This score is slightly higher than iHN637 (98%),194

as some flux loops were removed. The annotation scores195

for metabolites, reactions, and genes are similar to those in196

iHN637. Changes were also made in the directionality of197

reactions (Table S2). For example, the reaction catalyzing198

the ligation of formate and tetrahydrofolate (THF) to formyl-199

THF (FTHFLi) is irreversible in iHN637, but is made re-200

versible in iSJ444. This adjustment allows for ATP genera-201

tion from methanol as a feedstock, as commonly reported for202

Table 1
Species prevalence in eggNOG orthology mapping of C. luti-
cellarii. Carried out on standard settings on the web service
of eggNOG-mapper (Cantalapiedra et al., 2021). Unspecific
mappings did not have a specific gene associated with them.

Taxon id Species name # orthologous mapped genes % of total genes
748727 Clostridium ljungdahlii DSM 13528 1196 32.9
431943 Clostridium kluyveri 720 19.8
1121342 Clostridium tyrobutyricum 305 8.4
536227 Clostridium carboxidivorans 125 3.4
332101 Clostridium drakei 103 2.8
86416 Clostridium pasteurianum BC1 71 2.0
1262449 Clostridium pasteurianum DSM 525 = ATCC 6013 47 1.3
545243 Clostridium arbusti 46 1.3
Other 728 20.0
Unspecific mappings 12 0.3

methylotrophic acetogens (Kremp et al., 2018; Kremp and203

Müller, 2021).204

2.1.1. Incorporation of chain elongation pathways in205

iSJ444206

Two pathways were introduced in the iSJ444 model207

(Figure 2), along with transport and exchange reactions for208

the newly introduced substrates and products of interest209

(methanol, isobutyrate, caproate, etc.). These pathways are210

based on the only two studies describing the metabolism211

of C. luticellarii (De Smit et al., 2019; Petrognani et al.,212

2020). None of the reactions added have genes assigned213

to them, as an analysis of the responsible genes was not214

carried out. However, the eggNOG orthology mapping may215

provide clues, as many C. kluyveri genes were identified as216

the closest orthologs. It is likely that C. luticellarii shares217

parts of its chain elongation genes with C. kluyveri (Table218

1).219

Methanol is incorporated by the MTAabc system, a220

cobalamin-dependent system found in acetogenic bacte-221

ria (Kremp and Müller, 2021). The model simulates this222

through a pseudo-reaction that converts hydrogen, methanol,223

and tetrahydrofolate (THF) to 5-methyltetrahydrofolate (5mthf)224

and water. This intermediate is then funneled into the Wood-225

Ljungdahl Pathway (WLP), either towards CO2 to yield226

energy in the form of ATP and NADH, or directed towards227

acetogenesis and chain elongation.228

2.2. Model validation: comparison to229

experimental results230

The focus of this study was primarily on chain elongation231

and syngas metabolism, so these conditions were examined232

in greater detail. Predictions on various feedstocks were233

compared to experimental data to validate the model. Unless234

otherwise specified, experimental results referenced here are235

from Petrognani et al. (2020).236

A comparison of substrates tested by Petrognani et al.237

(2020), on which C. luticellarii exhibited growth, is illus-238

trated (see Figure 3). The modeled product spectrum on239

methanol and acetate closely matches the experimental re-240

sults. The isobutyrate/butyrate/caproate production percent-241

ages are 41/40/11 and 43/48/8 for the model and experi-242

ment, respectively, when using flux sampling with minimal243

constraints (see Table S2) on metabolite uptake results in244

high standard errors. When butyrate is also supplied, both245

the model and experimental results show a shift in the246
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Figure 2: Hypothesized chain elongation pathways from (De Smit et al., 2019; Petrognani et al., 2020) were added to the iSJ444
model. The starting steps of chain elongation were already present in iHN637, as well as the WLP, which, when growing on
methanol, is used for ATP generation instead of carbon fixation. Reactions in blue were already present in iHN637. Red reactions
are unique to iSJ444. Intermediate metabolites are green, energy-rich compounds (ATP, NADH, and reduced ferredoxin) are
yellow, while their counterparts are light blue. The final products of interest are red, acetate is pink. Names of metabolites and
reactions can be found in the abbreviations section. Figure is made using Escher (King et al., 2015).

product spectrum towards greater production of isobutyrate247

and caproate.248

The microbial growth on methanol with propionate as an249

electron acceptor showed greater divergence between model250

predictions and experimental results, both with and without251

valerate addition. The model predicted higher (iso)butyrate252

and caproate formation at the expense of valerate production.253

Similar over-predictions of these products were observed254

during growth on 80% H2 and 20% CO2, with modeled255

acetate production being half of the experimentally observed256

value: 26% versus 54%. Model predictions deviated most257

significantly from experimental measurements when grown258

on lactate, glucose, and glycerol. While propionate was ex-259

perimentally observed to be the main fermentation product260

under these conditions, the model predicted no propionate261

formation and instead identified acetate as the major prod-262

uct (Figure S1). Additionally, (iso)valerate production was263

reported by Petrognani et al. (2020) as additional product,264

whereas the model predominantly suggested the formation265

of even-chained products.266

2.3. Model performance across various substrates267

2.3.1. Growth on methanol and propionate268

As earlier simulations showed a deviation from exper-269

imental results for growth on propionate, this was investi-270

gated further. When constraining the model to the methanol-271

propionate uptake ratio from the experiments (2:1) or (0.5272

as presented in the figure), the model predicts a 1-to-1273

Figure 3: Product spectrum of the iSJ444 model on dif-
ferent feedstocks, compared to experimental measurements
by Petrognani et al. (2020). Bars show the average electron
equivalent percentage (%) of the total spectrum of chain
elongation products, as defined in the legend. Media names
are explained in the abbreviations section. The suffix "_ex"
indicates experimental results, while results without a suffix
are model predictions. Error bars represent standard deviations.
The simulation results were obtained using flux sampling with
the Artificial Centered Hit-and-Run (ACHR) algorithm. The
average electron equivalent was calculated by multiplying the
flux of each product by its degree of reduction (see Table S1),
followed by normalization against the total electron equivalents
of all products.
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propionate-valerate production ratio, as propionate can only274

be metabolized to valerate (Figure 4). This result contrasts275

with experimental findings, where the ratio is closer to 2-to-1276

propionate uptake to valerate production. It is possible that277

under certain conditions, C. luticellarii oxidizes a fraction278

of the propionate to acetate, as observed in related cases279

of organic acid oxidation such as valerate to propionate280

or butyrate to acetate (Mariën et al., 2024), which could281

partially explain the higher acetate production observed.282

Figure 4: Modeled effect of uptake of propionate together
with methanol. For the first 4 bars, propionate uptake was
constrained to a specific ratio to methanol; in the ’no bound’
condition, this was unconstrained. MP_ex refers to in vitro
experimental data from Petrognani et al. (2020), where (+-
0.2) indicates the ratio between propionate and methanol
uptake as measured. As valerate is the only product propionate
can be metabolized into, the electron equivalent of valerate
production was approximately twice the equivalent of the
consumed propionate (propionate has a degree of reduction
of 14, valerate one of 26). H2 is also produced (see Figure S2),
but is excluded from this graph as it was not measured in the in
vitro experiments. Deviation bars indicate standard deviation.

2.3.2. Influence of CO2 uptake on methanol product283

spectrum284

Simulations on syngas and methanol showed no sig-285

nificant changes in the range or proportions of produced286

metabolites. In a potential industrial reactor design, C. lu-287

ticellarii could be provided with syngas and syngas-derived288

methanol. Understanding what limits the production of chain289

elongation products is therefore valuable. Simulations indi-290

cate that increased CO2 uptake negatively affects the product291

spectrum; more acetate is produced at the expense of H2292

and longer even-chain carboxylic acids (ECCAs) (Figure 5).293

CO2 uptake was not forced, so the uptake did not necessar-294

ily match the influx/availability, with the increase halting295

at around 7.0 mmol/gDW/h, along with the alteration in296

products. A significant reduction in H2 production is coupled297

with increased acetate as the final product. H2 production298

decreases from 28% of the electron equivalence of products299

to just 3% when comparing no CO2 uptake to the maxi-300

mum unconstrained uptake. Conversely, acetate production301

increases from 17% to 63%. The mean total amount of chain302

elongation products decreases from 55% to 34%. This shift303

to the less desirable acetate production occurs just below a304

2-to-1 methanol-CO2 uptake ratio.305

Figure 5: Simulated influence of CO2 uptake on C. luticel-
larii product spectrum during growth on methanol. The x-
axis shows the maximum CO2 uptake flux (mmol/gDW/h)
used in simulations, while numbers in parentheses represent
the resulting median flux values derived from flux sampling.
Methanol flux was fixed at 20 mmol/gDW/h. As more CO2
is consumed, H2 formation and chain elongation decrease,
while acetate production increases. Deviation bars indicate the
standard deviation of flux sampling results.

2.3.3. Syngas fermentation and the addition of trace306

feeds307

As the iSJ444 model was designed to explore the syngas308

fermenting abilities of C. luticellarii, multiple simulations309

were conducted using different syngas compositions. The310

growth of C. luticellarii on syngas has not been extensively311

studied, so future experiments are needed to validate these312

predictions. In particular, growth on CO should be tested,313

as it is uncertain whether C. luticellarii can tolerate (high314

concentrations of) this toxic gas. CO can negatively affect315

bacterial growth even at micromolar levels (Mendes et al.,316

2021). While two CO-tolerant strains, C. kluyveri and C.317

ljungdahlii, are close relatives, recent studies indicate that C.318

kluyveri exhibits significant CO toxicity and only functions319

in a co-culture when CO partial pressures are kept low.320

Moreover, adaptive laboratory evolution (ALE) has been321

required to improve C. kluyveri’s tolerance to even moder-322

ate CO concentrations. Therefore, while C. luticellarii may323

share some tolerance mechanisms, it is premature to assume324

high CO tolerance without experimental validation (Diender325

et al., 2016; Mohammadi et al., 2012).326

Results from simulations with various syngas composi-327

tions indicate no change in the product spectrum, except in328

cases with limited carbon availability in the form of CO or329

CO2, while maintaining constant energy availability through330

H2. In these cases, acetate production was approximately331

31%, while in other media, it ranged from 51% to 60%. The332

model indicates the potential for C. luticellarii to grow using333

CO as the sole energy source. Simulations with additional334

acetate influx show no feasibility for extra acetate uptake by335

C. luticellarii, likely because acetate is already a primary336
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end product of energy generation from syngas. Uptake of337

additional acetate would require further energy. The model338

showed unconstrained propionate uptake when fed syngas,339

which enabled valerate production. As indicated by previous340

simulations, the conversion of propionate in the current341

model is not energy-efficient, resulting in low uptake rates.342

Methanol addition did not affect the product spectrum on343

syngas.344

Figure 6: iSJ444 model prediction of C. luticellarii prod-
uct spectra on various syngas compositions and with the
addition of trace feeds. x/x/x refers to H2/CO/CO2 ratios.
+ Methanol, acetate, and propionate were added at 5, 5,
and 2 mmol/gDW/h influx of the respective metabolite in
addition to syngas. Note the syngas composition here refers
to 30/60/10 H2/CO/CO2 ratios, respectively. Deviation bars
indicate standard deviation.

2.4. Thermodynamic analysis of C. luticellarii345

metabolism under varying pH conditions346

The Thermodynamic Flux Analysis (TFA) results, de-347

picted in Figure 7, reveal how energy dissipation varies348

across the top 50 metabolic reactions of Clostridium lu-349

ticellarii when exposed to pH levels of 5.5 and 6.5. For350

the majority of these reactions, dissipation changes were351

modest, typically remaining below 0.1 kJ/mol, suggesting352

that the organism’s metabolic network retains a considerable353

degree of stability, effectively maintaining its energy balance354

despite fluctuations in environmental pH. However, several355

reactions exhibited more pronounced shifts, indicating spe-356

cific metabolic processes adjust their energy distribution357

in response to pH changes. These pH levels were selected358

to explore a hypothesis underscored in the experimental359

work of Mariën et al. (2024), which identified pH as a key360

factor influencing metabolic flux direction in C. luticellarii.361

Specifically, their findings showed that mildly acidic pH (≤362

5.5) stimulates the production of longer-chain products, such363

as butyric acid, while circumneutral pH (∼ 6.5) favors acetic364

acid production. By simulating energy dissipation at these365

pH levels, we aimed to provide a thermodynamic perspective366

on the metabolic shifts observed experimentally.367

Among the top 50 reactions, HACD1 (3-hydroxyacyl-368

CoA dehydrogenase (acetoacetyl-CoA)) and HACD2 (3-369

hydroxyacyl-CoA dehydrogenase (3-oxohexanoyl-CoA)) dis-370

played notable dissipation differences. HACD1 exhibited an371

11 kJ/mol increase in dissipation at pH 6.5 compared to372

pH 5.5 but had a more negative dissipation energy at pH373

5.5, indicating favorability under mildly acidic conditions.374

In contrast, HACD2 exhibited a 7.8 kJ/mol increase in375

dissipation at pH 6.5, with pH 6.5 having a more negative376

dissipation energy, highlighting its favorability under neutral377

conditions. Similarly, ACOAD2 (Acyl-CoA dehydrogenase)378

demonstrated the largest dissipation difference among all379

reactions analyzed, with a difference of 41 kJ/mol, em-380

phasizing the energetic adaptation of fatty acid 𝛽-oxidation381

processes under varying pH conditions.382

Interestingly, these findings show a mixed alignment383

with experimental observations under autotrophic condi-384

tions, where chain elongation has been reported to be more385

feasible at pH 5.5 than at pH 6.5 (Mariën et al., 2024). While386

some reactions, such as HACD1, support the experimental387

results by demonstrating favorability under acidic condi-388

tions, others, like HACD2, suggest enhanced favorability at389

neutral pH, potentially countering the experimental trends.390

This nuanced interplay highlights both the strengths and lim-391

itations of thermodynamic predictions in capturing the com-392

plexity of metabolic regulation, which includes enzyme ac-393

tivity, substrate availability, and kinetic constraints—factors394

not explicitly modeled in TFA. These results underscore395

the importance of integrative approaches that combine ther-396

modynamic insights with experimental data to more com-397

prehensively understand pH-driven metabolic shifts in C.398

luticellarii.399

While most reactions showed moderate dissipation dif-400

ferences, reactions like PC (Pyruvate Carboxylase) and PGK401

(Phosphoglycerate Kinase) exhibited dissipation differences402

of approximately 0.11 kJ/mol. These differences suggest403

subtle energy reallocation within central carbon metabolism,404

fine-tuning energy use while maintaining overall stability.405

The findings here illustrate that reactions like HACD1,406

HACD2, and ACOAD2 act as flexible nodes in the metabolic407

network, fine-tuning their energy requirements in response408

to pH changes. These findings emphasize the dual role of C.409

luticellarii’s metabolism: maintaining overall stability while410

selectively optimizing key reactions to enhance metabolic411

efficiency under varying environmental conditions.412

2.4.1. Pathway-specific dissipation patterns413

A focused view of flux distributions and energy dissi-414

pation changes across key metabolic pathways, notably the415

Wood-Ljungdahl Pathway (WLP) and the branched tricar-416

boxylic acid (TCA) cycle, under pH 5.5 and 6.5 is pre-417

sented (see Figure 8). The top 50 metabolic reactions an-418

alyzed include reactions from these pathways as well as419

others, selected based on their absolute dissipation differ-420

ences between the two pH conditions, highlighting reac-421

tions with significant energetic adaptations. The WLP, inte-422

gral for autotrophic growth through carbon fixation, shows423

minimal dissipation differences (as well as overall dissipa-424

tion) in foundational reactions such as CODH_ACS (Car-425

bon monoxide dehydrogenase/Acetyl-CoA synthase) and426
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Figure 7: Heatmap of absolute dissipation differences across the top 50 reactions between pH 5.5 and pH 6.5. The color gradient
indicates the magnitude of dissipation changes, with blue representing lower dissipation differences and red indicating higher
values. The x-axis represents the pathways to which the reactions belong, while the y-axis lists individual reactions. Reactions
where pH 6.5 exhibits more negative dissipation energy are marked with a black asterisk, indicating favorability under neutral
conditions. The heatmap highlights both the magnitude of dissipation differences and the influence of pH on reaction favorability.

MTHFR5 (0.00 kJ/mol), suggesting that these carbon reduc-427

tion steps remain tightly regulated regardless of pH. How-428

ever, reactions like ACALD (Acetaldehyde dehydrogenase),429

which converts acetyl-CoA to acetaldehyde, show slight430

dissipation increases (0.0211 kJ/mol), reflecting a degree of431

metabolic flexibility in processing carbon intermediates.432

One of the more striking variations is seen in HACD1433

associated reaction, where dissipation difference is 10.9434

kJ/mol, indicating a significant adjustment (more nega-435

tive, thus favoribility) in energy utilization when producing436

longer-chain compounds like acetate at a mildly acid pH of437

5.5. This aligns with the role of HACD1 in energy-intensive438

pathways such as reverse 𝛽-oxidation, where the balance439

between pH-driven favorability and chain elongation de-440

pends on the specific metabolic context. Greater energy441

dissipation in a reaction often means the step becomes more442

thermodynamically favorable, facilitating its progression443

under varying conditions. However, this energy is generally444

dissipated, which may include heat, the diffusion of metabo-445

lites, or the release of unused energy carriers (e.g., reduced446

cofactors), and is not directly recoverable by the organism447

unless it is coupled to energy conservation mechanisms, such448

as electron bifurcation (e.g., co-reduction of ferredoxin) or449

the generation of a proton motive force, as is the case for450

this reaction. Without such coupling, the dissipated energy451

cannot be utilized for processes like H+ translocation or452

ATP synthesis. The organism instead compensates through453

adjustments in other metabolic pathways, highlighting the454

balance between flexibility and efficiency in maintaining455

homeostasis.456

In contrast, the branched TCA cycle demonstrates a more457

nuanced pattern of energy adjustment. Reactions like CS458

(Citrate synthase), responsible for the synthesis of citrate459

from acetyl-CoA and oxaloacetate, show modest dissipation460

(0.0509 kJ/mol), suggesting some flexibility in the path-461

way’s entry points under varying pH (8). ICDHx (Isocitrate462

dehydrogenase) exhibits a dissipation of 0.0324 kJ/mol,463

indicating adjustments in the conversion of isocitrate to 𝛼-464

ketoglutarate, a critical step for generating reducing equiv-465

alents (NADH). These smaller dissipation changes reflect466

a balanced response to pH shifts, focusing on maintaining467

energy efficiency within the core metabolism. The observed468
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variability in WLP and specific TCA reactions underscores469

how C. luticellarii reallocates energy based on environmen-470

tal conditions, using pathways like the WLP for broader en-471

ergy adjustments at pH 6.5 while keeping essential metabolic472

processes stable at lower pH levels. This detailed energy473

management strategy allows the organism to optimize its474

metabolic outputs, whether in carbon fixation or energy475

conservation.476

Figure 8: Focused view of the Wood-Ljungdahl Pathway and
the branched TCA cycle with dissipation changes between
pH 5.5 and pH 6.5. Red arrows indicate increased dissipation
compared to pH 5.5, while blue arrows represent decreased
dissipation compared to pH 5.5.

2.4.2. Variability in metabolic pathway flexibility477

Thermodynamic Variability Analysis (TVA) revealed478

how Clostridium luticellarii adjusts its metabolic network479

across different pH conditions, shedding light on its capacity480

for metabolic flexibility. At pH 6.5 (see Supplementary481

Figure S3), the network exhibited greater flux variability,482

particularly in key pathways like the Wood-Ljungdahl Path-483

way (WLP) and reverse 𝛽-oxidation, both of which are484

crucial for autotrophic growth and the synthesis of longer-485

chain carboxylates such as butyrate and isobutyrate. The486

WLP’s increased variability in carbon fixation, specifically487

in reactions reducing CO2 to acetyl-CoA, indicates greater488

adaptability at pH 6.5, which directly supports higher yields489

of these energy-demanding products.490

In contrast, TVA at pH 5.5 (see Supplementary Figure491

S4) showed reduced variability, especially in pathways with492

high ATP demand, such as WLP and the ATP-investment493

steps of glycolysis. The heightened proton concentration at494

this pH imposes greater energetic costs on ATP production,495

resulting in a more constrained metabolic state. This reduced496

flexibility limits the organism’s ability to adjust its metabolic497

fluxes, making it less responsive to environmental changes498

compared to the adaptability observed at pH 6.5.499

The differences in metabolic flexibility between pH con-500

ditions significantly impact the production capabilities of C.501

luticellarii. At pH 5.5, the constrained flexibility in pathways502

like carbon fixation and chain elongation limits the produc-503

tion of higher-value products such as butyrate and isobu-504

tyrate, favoring acetate production due to its lower energy505

demands. In contrast, pH 6.5 allows greater metabolic flex-506

ibility, enabling a broader range of energy-intensive prod-507

ucts by optimizing pathways like the WLP and reverse 𝛽-508

oxidation. This adaptability at pH 6.5 is advantageous for509

producing higher-value fermentation products, making it a510

preferred condition for maximizing output. The combined511

insights from TFA and TVA underscore how pH influences512

the balance between metabolic rigidity and flexibility, guid-513

ing the optimization of fermentation conditions for desired514

outputs.515

2.4.3. Integration of dissipation and variability516

analysis517

The integration of TFA and TVA results reveals how C.518

luticellarii adjusts its metabolic strategies across different519

pH conditions, highlighting both its flexibility and con-520

straints. At pH 6.5, increased energy dissipation and higher521

flux variability in key pathways like HACD1 indicate a522

more adaptable metabolic network, allowing efficient carbon523

fixation and chain elongation that support the production524

of energy-intensive products like butyrate and isobutyrate.525

In contrast, at pH 5.5, reduced flux variability and smaller526

changes in dissipation reflect a more rigid metabolic state,527

as the organism adapts to the energetic challenges of higher528

proton concentrations. This rigidity, as predicted by the529

model simulations, limits the production of complex car-530

boxylates and instead favors a metabolic shift toward simpler531

products like acetate.532

3. Discussion533

This study presents iSJ444, a model for C. luticellarii534

adapted from its close relative C. ljungdahlii. This model535

enabled the evaluation of the chain elongation pathways536

from earlier studies and the generation of predictions for not537

yet experimentally tested metabolic behavior. The model is538

highly rated by MEMOTE and shows growth on multiple539

substrates relevant to syngas fermentation. Simulation re-540

sults support that the earlier hypothesized pathways are most541

likely utilized by C. luticellarii. The performance of iSJ444542
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also highlights the robustness of iHN637, despite it being543

relatively outdated (published in 2013). Comparisons to ex-544

perimental results were made without constraining the actual545

uptake of metabolites. Yet, the product spectra matched well,546

demonstrating the power of flux sampling and the utility of547

metabolic models for predictions, even without precise data548

on substrate use. This study supports the further testing and549

inclusion of C. luticellarii in syngas-fermenting systems.550

The iHN637 model of C. ljungdahlii was chosen as551

a template for model creation, but C. kluyveri could have552

also served this purpose. A C. kluyveri metabolic model553

exists (Zou et al., 2018), and it is the next closest strain554

to C. luticellarii, with eggNOG mapping indicating many555

C. luticellarii genes are related to C. kluyveri (Table 1).556

However, its model was less accessible and conventional557

than the BiGG-formatted iHN637. The iHN637 model also558

includes ferredoxin-linked reactions, such as those involv-559

ing electron bifurcation and ferredoxin-NAD(P) reductase560

(RnF) complexes, which are key to energy conservation561

and are most likely present in C. luticellarii as well. These562

features made iHN637 a practical and effective starting point563

for creating the iSJ444 model. While a clostridial metamodel564

that consolidates key features of closely related species and565

can be pruned or tuned for specific organisms would be566

highly useful, it would require careful design to balance567

generality and accuracy. Such a framework could streamline568

future efforts to model less-characterized Clostridia by pro-569

viding a robust starting point with established core pathways.570

Future improvements to iSJ444, such as incorporating addi-571

tional reactions from C. kluyveri, could contribute toward572

developing a more universal Clostridial model, enabling573

broader comparisons and applications.574

iSJ444 is less extensive than similar models of related575

acetogens. The model has 735 reactions, whereas metabolic576

models of C. kluyveri, C. autoethanogenum, and Clostridium577

tyrobutyricum have 994, 1109, and 858 reactions, respec-578

tively (Feng et al., 2022; Valgepea et al., 2017; Zou et al.,579

2018). This smaller size is due to a combination of factors:580

i) the iHN637 model, which served as the starting point, is581

itself smaller compared to some more recent models; and582

ii) additional reactions were removed during the adaptation583

process to focus on pathways relevant to syngas metabolism584

and chain elongation in C. luticellarii. By taking this re-585

ductionist approach, iSJ444 achieves greater specificity and586

computational efficiency, enabling more accurate predic-587

tions of syngas fermenting and chain elongation capabilities.588

This focused design minimizes the inclusion of extraneous589

reactions that are not experimentally supported for C. luticel-590

larii, reducing uncertainty and simplifying the interpretation591

of simulation results. Results of growth on glucose and592

glycerol demonstrate some of the limitations. This type of593

constraint-based modeling has inherent limitations; gene594

expression is usually not considered, though methods exist595

for this (Åkesson et al., 2004). The lack of experimental596

data on C. luticellarii, in particular, poses challenges, as the597

formulation of organism-specific biomass functions often598

requires extensive experimental data, which is crucial for599

model accuracy (Dikicioglu et al., 2015; Lachance et al.,600

2019). While iSJ444 is not intended for broader exploration601

of C. luticellarii’s metabolism, its specificity makes it a602

powerful tool for investigating and optimizing syngas-based603

bioprocesses and targeted metabolite production. This de-604

sign strategy highlights the trade-off between model com-605

prehensiveness and precision, with iSJ444 being tailored for606

its intended applications.607

When comparing the model simulation results, it is608

important to note that model simulations represent fluxes609

at a single time point, whereas experimental results reflect610

changes in metabolite concentrations over the entire incuba-611

tion period. The comparisons made here thus involve pro-612

duction/consumption at a specific time point for the model613

versus total production/consumption at the end of the incu-614

bation for the experiments. As production and consumption615

do not remain constant over time, this discrepancy should be616

considered when interpreting the comparisons.617

The model accurately predicted the product spectrum of618

methanol fermentation but overestimated the formation of619

chain elongation products and H2, while CO2 levels were620

similarly elevated. This overestimation could be linked to621

the model’s inability to fully capture the dynamic interplay622

between H2 and CO2 consumption, particularly under con-623

ditions where CO2 serves as the primary electron acceptor.624

In acetogens, significant H2 production is uncommon when625

electron acceptors such as CO2 are available, which may626

explain the deviation from experimental observations. This627

discrepancy may arise from differences between the model’s628

steady-state predictions and the cumulative production in629

batch incubation. Dynamic conditions during incubation,630

such as nutrient shifts, early growth biomass production, or631

limitations in gas-liquid mass transfer, commonly observed632

in batch systems could divert resources from product for-633

mation, thereby reducing observed yields. Imposing con-634

straints on biomass and ATP generation could potentially635

resolve this issue. In the simulations, propionate use was636

limited. In the model, only a single propionate utilization637

pathway was considered (valerate production). The low up-638

take rates could be attributed to propionate metabolism into639

valerate, which yields insufficient energy. When forcing a640

methanol/propionate uptake ratio similar to that observed641

in experiments, iSJ444 predicted significantly more valerate642

production than was observed experimentally. As previously643

hypothesized, this variation may be due to the presence of yet644

unidentified energy generating reactions within the pathway645

or oxidation, suggesting that alternative pathways could be646

involved in the metabolism of propionate in C. luticellarii647

(De Smit et al., 2019; Mariën et al., 2024). The base iHN637648

model of C. ljungdahlii could form lactate from propionate,649

a capability that was removed in iSJ444 to prevent the650

production of valerate/propionate when simulating growth651

on methanol, which was not observed in experiments.652

Comparisons to experimental data were made more chal-653

lenging due to the high standard deviations observed during654

flux sampling of the iSJ444 model. Even with a large number655

of samples, the results do not appear to converge, potentially656
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due to the simplicity of the added pathways or because657

the energy production options are closely balanced. The658

metabolites not present in iHN637 and added to iSJ444659

have only two associated reactions. The chain elongation660

pathways added are very linear, with no alternative pathways661

for metabolite entry. When flux is randomly sampled, the662

quantity of chain elongation products is heavily dependent663

on the initial flux of the reaction that initiates this lin-664

ear pathway. Because the inflow and outflow flux of all665

metabolites must be balanced, all fluxes in such a linear666

pathway are interdependent. Thus, standard deviations of667

end products may remain high even with many samples,668

as they depend on a single initial flux. Including reactions669

that produce intermediates in the pathway could reduce the670

standard deviation of the final products. These reactions671

(if present) could be identified by examining C. kluyveri,672

a more extensively studied chain elongator. Nonetheless,673

considering the simplicity of the iSJ444 model and its chain674

elongation pathways, the model matches the experimental675

data on methanol and H2/CO2 qualitatively and, to some676

extent, quantitatively. This supports the presence of the even-677

chain elongation pathway proposed by Petrognani et al.678

(2020).679

The batch feeding strategy employed in the experimental680

work by Petrognani et al. (2020) plays a significant role in681

understanding the discrepancies between model predictions682

and observed data. In these experiments, substrates were683

supplied at the start of the batch fermentation, resulting684

in dynamic changes in substrate availability and metabo-685

lite concentrations over time. Such fluctuations inherently686

contrast with the steady-state assumptions underlying the687

iSJ444 model simulations, which consider constant flux688

distributions. To improve the alignment between model pre-689

dictions and experimental data, future studies could imple-690

ment continuous feeding strategies. This approach maintains691

substrate concentrations at steady levels, reducing temporal692

variability and creating conditions that more closely mimic693

the steady-state assumptions of the metabolic model. Ad-694

ditionally, dynamic Flux Balance Analysis (dFBA) could695

be employed to capture the temporal changes in metabolic696

activity observed in batch systems, thereby enhancing the697

predictive capabilities of the model under dynamic condi-698

tions (Foster et al., 2021; Scott et al., 2023). By considering699

both feeding strategies and dynamic modeling approaches,700

future experimental designs can bridge the gap between in701

silico predictions and experimental observations, ultimately702

improving the model’s utility in guiding biotechnological703

applications for syngas fermentation.704

Predictions of performance on untested growth media705

indicated that the product spectrum on syngas was primarily706

influenced by carbon availability, with more ECCA forma-707

tion when less carbon source (in the form of either CO708

or CO2) was supplied, while maintaining the same energy709

potential through H2. Limiting carbon uptake appears to710

increase the need for complete oxidation of the available711

carbon, yielding more ATP and producing longer carboxylic712

acids. Butyribacterium methylotrophicum, which can grow713

on syngas to produce ethanol, acetate, lactic acid, and bu-714

tyrate, exhibited similar behavior, with a higher percentage715

of hydrogen in the feed increasing production (Heiskanen716

et al., 2007). E. limosum showed increased acetate produc-717

tion when supplied with H2/CO2 compared to only CO,718

but no butyrate was formed in either condition, making719

direct comparison with the ECCA-producing model more720

challenging. C. ljungdahlii also increased acetate production721

over ethanol under high H2/CO ratios (Jack et al., 2019).722

More in line with our results is the increased ethanol pro-723

duction of C. autoethanogenum under high H2, observed724

experimentally (Valgepea et al., 2018) and predicted through725

metabolic modeling (Benito-Vaquerizo et al., 2020). This726

suggests that high H2 may enable the utilization of pathways727

beyond acetate formation. While C. luticellarii has thus far728

only been grown on H2 and CO2, the effects of varying syn-729

gas compositions on the products of C. luticellarii warrant730

further experimental study.731

Supplying methanol along with syngas did not result732

in increased ECCA production, even though results with733

methanol as the sole feed showed higher ECCA production734

than growth on syngas alone. The lack of improvement in735

the product spectrum with methanol aligns with the sim-736

ulations on methanol and CO2, as CO2 led to increased737

acetate production. In the presence of syngas, a similar effect738

occurs, where uptake of CO and CO2 is predicted to lead to739

more acetate production. E. limosum was found to grow and740

take up syngas more rapidly when simultaneously fed with741

methanol, but the product spectrum was not measured in that742

study (Kim et al., 2021). It was found that the accelerating743

effect of methanol only occurred during growth on H2 and744

CO2, and not for CO and CO2, due to a closer connection745

between the H2/CO2 and methanol enzymatic pathways.746

Although this effect would not show in the simulations, it747

is important to consider for future studies on syngas and748

methanol metabolism by C. luticellarii.749

Future experimental validation of the iSJ444 model un-750

der varying syngas compositions is critical for testing and751

refining its predictive capabilities. Such efforts could ben-752

efit from adopting a Design-Build-Test-Learn (DBTL) cy-753

cle, a well-established framework in metabolic engineering754

that enables iterative improvements in both experimental755

and computational workflows (Nielsen and Keasling, 2016;756

Gurdo et al., 2022). In the "Design" phase, the iSJ444 model757

can be used to simulate metabolic responses under different758

H2/CO/CO2 ratios, identifying conditions likely to enhance759

product formation or expose metabolic bottlenecks. During760

the "Build" and "Test" phases, these conditions can be ex-761

perimentally implemented and validated, while the "Learn"762

phase allows integration of the results into subsequent model763

iterations. This iterative approach has proven effective in764

improving the predictive power of genome-scale metabolic765

models and optimizing bioprocesses (Otero-Muras and Car-766

bonell, 2021). By leveraging the DBTL cycle, the iSJ444767

model could serve as a dynamic tool for systematically768

exploring syngas fermentation, facilitating the development769

of resilient and efficient industrial processes. Incorporating770

Scott et al.: Preprint submitted to Elsevier Page 10 of 14

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2025. ; https://doi.org/10.1101/2024.11.26.625427doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.26.625427
http://creativecommons.org/licenses/by-nc-nd/4.0/


Genome-scale modeling of Clostridium luticellari syngas fermentations

this strategy aligns with the broader aim of bridging compu-771

tational predictions with experimental insights in metabolic772

engineering.773

It is challenging to accurately represent pH in metabolic774

model simulations, particularly in the context of chain elon-775

gation processes (de Leeuw et al., 2020; Ganigué Pagès776

et al., 2016). However, with sufficient experimental data and777

assumptions, pH effects can be incorporated into genome-778

scale models to enhance predictive power. Extensive work779

on Thermodynamic Flux Analysis (TFA) has provided a ba-780

sis for integrating thermodynamic constraints into metabolic781

models, effectively improving the accuracy of metabolic782

network simulations (Müller and Bockmayr, 2013; Gollub783

et al., 2021). In addition to thermodynamic constraints like784

pH, incorporating proteomics data with tools such as GECK-785

Opy and ECMpy can further refine genome-scale model786

predictions (Carrasco Muriel et al., 2023; Mao et al., 2024).787

Integrating proteomics data alongside thermodynamic fac-788

tors enables finer constraint adjustments, resulting in more789

accurate flux predictions. However, the lack of experimental790

proteomics data for C. luticellarii currently limits opportuni-791

ties to further constrain our genome-scale model using these792

approaches.793

iSJ444 serves as a minimal yet robust base model of794

C. luticellarii, suitable for further exploration of its syngas795

and chain elongation capabilities. The model could be im-796

proved to allow for more accurate predictions of odd-chain797

elongation by expanding odd-chained metabolic pathways.798

It could also benefit from a tailored biomass function and799

a well-formulated objective function if it is to be used800

for dFBA. Model predictions encourage further metabolic801

testing of C. luticellarii, especially concerning the effects802

of H2/CO or CO2 ratios on product formation, and the803

addition of methanol when growing on syngas, as these804

model predictions seem to contradict earlier studies. A large805

effect of syngas composition on product formation could be806

detrimental, as a key advantage of microbial-based syngas807

fermentation could come from its insensitivity to variation in808

composition (Liew et al., 2016). Beyond direct use of syngas,809

C. luticellarii might be more productive when supplied with810

syngas-derived methanol, and optimization of this approach811

can also be studied using this model. Insights from the chain812

elongation pathways of C. kluyveri could be leveraged to813

further enhance iSJ444. The model can also be integrated814

into consortia, including those with C. autoethanogenum,815

a popular organism in syngas fermentations that has an816

established metabolic model (Valgepea et al., 2017). As817

C. autoethanogenum has similar metabolic properties to C.818

ljungdahlii, it would likely play a similar role in a consortium819

model. This study represents an initial step in exploring the820

potential of C. luticellarii for enhancing syngas recycling821

and suggests further experimental and in-silico testing of its822

capabilities.823

4. Materials and methods824

4.1. Model creation: iSJ444825

The genome-scale metabolic model (GEM) for Clostrid-826

ium luticellarii, named iSJ444, was constructed using a827

combination of ortholog mapping and manual curation. The828

iHN637 model of Clostridium ljungdahlii (Nagarajan et al.,829

2013), retrieved from the BiGG database (http://bigg.ucsd.830

edu/models/iHN637), was used as the base model. Ortholo-831

gous genes were identified using the eggNOG-mapper tool832

(Cantalapiedra et al., 2021), and reactions corresponding to833

genes not present in the C. luticellarii genome were removed834

from iHN637. Reactions that were orphaned by this process835

but had single Enzyme Commission (E.C.) annotations were836

reinstated if orthologous genes performing the same E.C.837

function were identified in the C. luticellarii genome.838

To ensure the model’s functionality, MEMOTE analysis839

(Lieven et al., 2020) was employed to detect and fill any840

pathway gaps, allowing the model to produce all essential841

biomass precursors. Specific chain elongation pathways,842

relevant for butyrate and isobutyrate production, were man-843

ually incorporated based on previously published metabolic844

characterizations of C. luticellarii (De Smit et al., 2019;845

Petrognani et al., 2020). Where possible, reaction identifiers846

from the BiGG database were used. Finally, flux bounds847

were adjusted to fit experimental data, ensuring that the848

model’s predictions aligned with the observed growth and849

product formation conditions. Additionally, FROG (Flux850

Robustness and Optimization for GEMs) analysis (Raman851

et al., 2024) was performed to confirm the reproducibility852

and robustness of the flux balance analysis (FBA) (Orth853

et al., 2010) modeling results.854

The setup of this study, showing how the iHN637 model855

of C. ljungdahlii was adapted to the iSJ444 model for C. lu-856

ticellarii using orthology gene mapping (eggNOG-mapper)857

and the addition of hypothesized chain elongation pathways858

(De Smit et al., 2019; Petrognani et al., 2020) is depicted859

in a diagram (see Figure 1). iSJ444 was created with the860

potential to be incorporated into consortia models along with861

other preexisting metabolic models to assess their potential862

for syngas recycling.863

4.2. Model validation conditions864

The validation of the iSJ444 GEM against experimental865

data was conducted using results from batch fermentation866

experiments as described by Petrognani et al. (2020). In867

these experiments, Clostridium luticellarii DSM 29 923 was868

cultivated on a synthetic methanol medium supplemented869

with 200 mM methanol as the electron donor, 100 mM870

potassium acetate, and 23 mM sodium butyrate as elec-871

tron acceptors. The experiments were conducted in sealed,872

static penicillin bottles under controlled conditions, where873

substrates were added at the start of incubation rather than874

through continuous feeding. The ’average electron equiva-875

lent’ for the product spectrum was calculated by multiplying876

the flux of each product by its degree of reduction, as listed877

in Supplementary Table S1. The resulting values were nor-878

malized against the total electron equivalents of all products879

Scott et al.: Preprint submitted to Elsevier Page 11 of 14

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2025. ; https://doi.org/10.1101/2024.11.26.625427doi: bioRxiv preprint 

http://bigg.ucsd.edu/models/iHN637
http://bigg.ucsd.edu/models/iHN637
http://bigg.ucsd.edu/models/iHN637
https://doi.org/10.1101/2024.11.26.625427
http://creativecommons.org/licenses/by-nc-nd/4.0/


Genome-scale modeling of Clostridium luticellari syngas fermentations

in the spectrum. This calculation method was applied to880

both experimental and model-predicted data to enable direct881

comparisons.882

To provide an accessible summary of the experimental883

data used for validation, a table has been provided outlining884

the experimental sources, conditions, and key findings (Ta-885

ble S3). This table highlights the limited, but critical datasets886

used for validating the iSJ444 GEM and emphasizes the887

importance of these data in guiding model predictions and888

interpretations.889

4.3. Flux sampling simulations890

The genome and amino acid sequences of C. luticellarii891

(strain PVXP01) were retrieved from the NCBI sequence892

database (Poehlein et al., 2018). Model simulations were893

performed using COBRApy version 0.24.0 (Ebrahim et al.,894

2013) with CPLEX optimizer version 22.1.0.0 as the solver,895

running in Python 3.8. Unless otherwise specified, flux896

sampling was conducted using COBRApy’s built-in artifi-897

cial centering hit-and-run (ACHR) algorithm with 15,000898

samples, based on the sampling strategy used in previ-899

ous syngas-fermenting co-culture studies (Benito-Vaquerizo900

et al., 2020). Flux sampling was chosen for its ability to901

generate diverse, non-optimal flux distributions, allowing for902

a more realistic representation of metabolic variability com-903

pared to methods that optimize a single objective (Herrmann904

et al., 2019). Optimized General Parallel Sampler (OPTGP)905

sampling was also tested, but no significant differences were906

observed compared to ACHR sampling. Flux variability907

analysis was also performed on iSJ444 using COBRApy,908

with the loopless setting on true and the fraction of optimum909

on 0, to see the full solution space (Table S4).910

Flux sampling was employed to simulate the metabolic911

activity of C. luticellarii under various conditions. Growth912

simulations did not rely on maximizing the biomass reaction913

but instead used flux sampling to explore a range of possible914

metabolic flux distributions. While the biomass reaction pro-915

vides a theoretical framework for cellular growth, it was not916

used as an optimization objective in this study, aligning with917

the study’s focus on product spectrum predictions rather than918

growth yield.919

4.4. Thermodynamic flux analysis and energy920

dissipation921

Thermodynamic flux analysis (TFA) (Henry et al., 2007)922

was conducted using the pyTFA Python package (Salvy923

et al., 2019), which incorporates thermodynamic constraints924

into flux balance models to improve the realism of metabolic925

predictions. We adapted pyTFA tutorials on sampling (Salvy926

et al., 2019) and Equilibrator integration (Beber et al., 2022)927

to perform TFA, thermodynamic variability analysis, and928

flux sampling, allowing us to assess energy dissipation929

across the metabolic network. The use of Equilibrator (Beber930

et al., 2022) allowed us to incorporate accurate thermody-931

namic data, improving the precision of reaction feasibility932

predictions by ensuring that Gibbs free energy calculations933

were context-specific and consistent with the intracellular934

environment.935

Due to the lack of specific thermodynamic data for C.936

luticellarii, assumptions were made regarding intracellular937

compartment conditions at pH 5.5 and pH 6.5. In particular,938

compartment pH values and the membrane potential were939

inferred from similar organisms, as no experimental data940

are available for C. luticellarii under these conditions. These941

assumptions were essential for setting boundary conditions942

for TFA simulations. By integrating Gibbs free energy data943

and simulating growth under both acidic (pH 5.5) and neutral944

(pH 6.5) conditions, we quantified the energy dissipation945

and identified potential metabolic bottlenecks that impact the946

efficiency of key pathways. Flux sampling was used to cap-947

ture the distribution of feasible metabolic states, providing948

insights into the robustness of metabolic pathways related to949

butyrate, isobutyrate, and acetate production.950

5. Abbreviations951

5.1. Feedstocks952

In brackets are influx rates/ratios used in the simula-953

tions/experiments.954

MA Methanol + Acetate (20/10)955

MAB Methanol + Acetate + Butyrate (20/10/2.5)956

MP Methanol + Propionate (20/10)957

MPV Methanol + Propionate + Valerate (20/10/2.5)958

LA D-Lactate + Acetate (20/10)959

GLC Glucose (2.5)960

GLY Glycerol (2.5)961

H2-CO2 Hydrogen and carbon dioxide (80/20)962

Syngas Unless otherwise specified: hydrogen, carbon monox-963

ide, and carbon dioxide in a 30/60/10 ratio964

ME Methanol (20)965

MCO2 Methanol and carbon dioxide (20/10)966

5.2. Model metabolite names967

_c suffix means intracellular metabolite, _e extracellular.968

meoh Methanol969

ac Acetate970

ppa Propionate (C3)971

but Butyrate (C4)972

ibt Isobutyrate (C4)973

pta Valerate (C5)974

hxa Caproate (C6)975

accoa Acetyl-CoA976

aacoa Acetoacetyl-CoA977

fdxr/o_42 Ferredoxin reduced/oxidized form 4:2978

5.3. Model reaction names979

MTAabcPS Pseudo reaction of the methanol-cobalamin980

methyltransferase system981

CODH4 Carbon monoxide dehydrogenase982

METR Methyltetrahydrofolate:corrinoid/iron-sulfur pro-983

tein methyltransferase984

CODH_ACS Carbon monoxide/acetyl-CoA synthase pseudo985

reaction986

VCACT Acetyl-CoA C-acyltransferase987

HVCD 3-hydroxyacyl-CoA dehydrogenase988

VECOAH, ECOAH1 and ECOAH2 3-hydroxyacyl-CoA989
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dehydratase990

VCOAD2, ACOAD1z, ACOAD2 Acyl-CoA dehydroge-991

nase992

FACOAL50i Fatty acid CoA ligase993

ACACT1r Acetyl-CoA C-acetyltransferase994

HACD1, HACD2 3-hydroxyacyl-CoA dehydrogenase995

BUTCT Acetyl-CoA:butyrate-CoA transferase996

IBTMr Isobutyryl-CoA mutase997

IBUTCT Acetyl-CoA:isobutyrate-CoA transferase998

THL Thiolase999

HXCT Acetyl-CoA:hexanoate-CoA transferase1000
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