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Abstract. Single-cell RNA-seq (scRNA-seq) has become a prominent
tool for studying human biology and disease. The availability of mas-
sive scRNA-seq datasets and advanced machine learning techniques has
recently driven the development of single-cell foundation models that
provide informative and versatile cell representations based on expres-
sion profiles. However, to understand disease states, we need to consider
entire tissue ecosystems, simultaneously considering many different in-
teracting cells. Here, we tackle this challenge by generating patient-level
representations derived from multi-cellular expression context measured
with scRNA-seq of tissues. We develop PaSCient, a novel model that
employs a multi-level representation learning paradigm and provides im-
portance scores at the individual cell and gene levels for fine-grained
analysis across multiple cell types and gene programs characteristic of
a given disease. We apply PaSCient to learn a disease model across a
large-scale scRNA-seq atlas of 24.3 million cells from over 5,000 patients.
Comprehensive and rigorous benchmarking demonstrates the superiority
of PaSCient in disease classification and its multiple downstream appli-
cations, including dimensionality reduction, gene/cell type prioritization,
and patient subgroup discovery.

Keywords: Disease Modelling, Multi-Instance Learning, Single-Cell Tran-
scriptomics, Foundation Model
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1 Introduction

Technological innovations in the past decade have led to the collection of vast and
exponentially growing amounts of data for biological research, which can help
revolutionize our understanding of human disease biology [9,3,40,36]. In partic-
ular, the advent of single-cell RNA-seq (scRNA-seq) has enabled the charting of
the heterogeneity of cell states and functions, by profiling the expression of hun-
dreds of millions of cells [45]. The large number of cell profiles within and across
experiments has opened the way to discoveries from new cell types [22], distinct
genes programs associated with response to therapy or drug resistance, spe-
cific marker genes [44,34], and unique patient subsets [46,53]. Nevertheless, most
scRNA-seq studies were analyzed in isolation and only from a limited number
of patients, hindering our ability to understand biological processes at a patient
level [28,49,18,19,10,1]. Moreover, studies have typically focused on partitioning
cells into categories (types, subtypes, states, etc) and then studying each of them
separately, with only limited efforts focused on the overall ecosystem of cells as-
sembled together. Yet, diseases typically involve breakdown of homeostasis in
tissue, impacting multiple cells.

Fortunately, the growing number of scRNA-seq studies has now reached a
total number of patients that can realistically support machine learning ap-
proaches capable of modeling disease biology at a patient level [4,43]. Reasoning
about the disease process at the patient level with the granularity of single-cell
expression could potentially help uncover subgroups within patient populations
(endotypes), understand or predict patient responses to therapies, and advance
toward more precise and personalized medicine.

These considerations have motivated the development of machine learning
models to aggregate cells to identify disease states. However, existing models
only focus on binary disease classification, and were trained with only few sam-
ples and studies [15,35,59,38], failing to leverage the large repositories of single-
cell expression data available. A more recent work incorporates a larger patient
corpus but focuses on multi-modal biomedical data integration, and limits its
disease prediction to COVID-19 only [33]. By contrast, we aspire to a method
that can leverage the full scope of available data and jointly model all diseases
in a single model. However, this vision comes with significant challenges, such as
the inherent confounding and batch effects of pooling together data from differ-
ent studies [30], the imbalanced composition of different tissues, cell types, and
diseases [12], and the noise of scRNA-seq data [20,7].

Here, we propose PaSCient, a foundation model that produces a patient rep-
resentation based on the gene expression of all cells in a patient’s sample, by
leveraging large scale single-cell expression studies across different tissues and
disease. Intuitively, each patient is represented as a set (or bag) of cells, which
our model processes to provide a biologically informed vector representation
of the patient. To achieve patient-level representations, we rely on a dedicated
attention-based aggregation mechanism and data resampling strategy, which ad-
dresses the data integration challenges [55,5] posed by the dataset heterogeneity.
Our versatile representation can then be used to compare, cluster, or classify
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patients. To elucidate disease mechanisms at the patient level, we propose an
interpretable mechanism based on integrated gradients [52] to score individual
genes and/or cell types in a given patient prediction. This enables a remark-
ably fine-grained gene or cell-type prioritization, supporting biological discovery
at the patient level in terms of individual genes, specific cell types, multiple
cell types (simultaneously) and their interconnections. Our comprehensive and
rigorous benchmarking further demonstrates the superiority of PaSCient in dis-
ease classification compared to single-cell foundation models and underscores its
multiple downstream applications, including dimensionality reduction, biological
prioritization, and patient subgroup discovery.

To summarize, our contributions are:
1. We propose a machine-learning model that creates patient-level representa-

tions based on their single-cell expression profiles. This representation can be
used to compare, cluster, or classify patients. Our model leverages single-cell
expression studies from over 5,000 patients.

2. The predictions of PaSCient can be interpreted to enable fine-grained prior-
itization of genes, cell-types, and sets of cell types (and their genes), thereby
holistically interrogating disease mechanisms at the patient level.

3. We demonstrate the capabilities of PaSCient on a COVID-19 case study,
showing that the model can be used to infer disease severity subgroups and
prioritize cell-type specific genes associated with the disease.
Our code is available at https://github.com/genentech/pascient.

2 Results

2.1 Overview of PaSCient

PaSCient takes the expression profiles of individual cells present within a pa-
tient’s sample as input and produces a summarized vector representation of
the patient. This representation can then be used for downstream tasks such
as dimensionality reduction and visualization, biological feature prioritization,
treatment response prediction, and disease severity prediction, among others
(Figure 1(a)).

Architecture. The architecture of PaSCient is inspired by DeepSet [63]. The
gene expression of the different cells of a given patient i is represented as a
matrix Xi 2 RMi⇥dg , where Mi is the number of cells for patient i, and dg is
the number of genes measured. We first encode each cell in the sample using a
learnable cell embedder function f✓ : Rd ! dh, where dh is the dimension of the
cell representations. At this stage, a patient is represented as a set of vectors
{zj : j = 1, ...,Mi} of size dh. This set can be abstracted as a matrix Zi 2
RMi⇥dh . To create a patient-level embedding ei, we used a softmax-attention
pooling layer:

wi = softmax(a✓(Zi)) (1)

ei = wT
i Zi, (2)
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where a✓ : Rdh ! R is a neural network acting on each row of Zi independently.
Lastly, the patient-level embedding is fed into a neural network classifier h✓ :
Rdh ! Rdc , where dc is the number of disease classes in the pooled dataset. The
final disease prediction is obtained as:

p̂i = softmax(h✓(ei)), (3)

where p̂i represents the predicted probabilities for each disease label. We train
PaSCient end-to-end by minimizing the cross-entropy between predicted disease-
state label and observed disease-state label. Different aggregation mechanisms
were investigated during the development of the method. A softmax-attention
layer was found to be the most effective in our ablation studies, as shown in
Figure 2(b). To address the disease and tissue heterogeneity of the dataset, we
introduce a dedicated sampling strategy that gives more importance to sam-
ple with low prevalence diseases and tissues. More details can be found in the
Methods section.

Fine-grained importance scores. To interpret the predictions of PaSCient, we de-
velop an approach relying on integrated gradients (IG) [52]. This procedure starts
by producing a gradient attribution for each cell-gene combination of the input
sample using IG. Given the resulting matrix of attributions, we average attribu-
tions based on different dimensions, leading to different levels of interpretability.
For instance, averaging the attributions over genes leads to importance scores
for each individual cell, whether averaging over cells leads to importance scores
for individual genes. A similar rationale can be employed to generate importance
score for groups of cells (or cell types) and individual genes within a given group
of cells (Figure 1(c)).

Dataset. Our dataset includes 24.3 million scRNA-seq count profiles from over
5,000 patient samples spanning 135 unique disease-state labels, across 413 stud-
ies, and 189 tissues (organs). Each patient contributed to a single sample (such
that patient and samples can be used interchangeably in this text). All datasets
are publicly accessible on CELLxGENE [43]. Cells were all profiled using droplet
based scRNA-seq from 10X Genomics. The data were split into a training (60%),
validation (20%), and test set (20%), ensuring that all samples from a given
study are in the same split. A visual summary of our splits is described in Ap-
pendix E. The data distribution was imbalanced in terms of diseases and tissues,
e.g. COVID-19 patients accounted for ⇠9% of the samples, while multiple scle-
rosis only for ⇠2% (Extended Data Fig. 2 (a) and (b)).

2.2 PaSCient can accurately classify disease from a patient’s

scRNA-seq profiles.

We train PaSCient to predict the disease label associated with each sample in
the dataset and evaluate its performance in terms of weighted F1-score, a widely
used metric for evaluating classification performance [2,13]. We compare our
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Fig. 1. The landscape of PaSCient. (a) Model description and applications. Pa-
SCient abstracts each patient as a bag of cells and outputs a single vector summarizing
the patient’s cellular context. This vector can be used for various downstream tasks,
such as dimensionality reduction, visualization, biological feature prioritization, and
predicting treatment response or disease severity. (b) Model architecture and training.
Each bag of cells is represented as a gene-expression matrix, where rows correspond
to individual cells, and columns represent specific genes. PaSCient first embeds each
cell individually, and these cell embeddings are then summarized into a patient-level
representation by a weighting the embeddings with cell-level attention. A final clas-
sifier takes this patient embedding as input to predict the disease status. The entire
architecture is trained end-to-end. (c) Model interpretability. PaSCient enables fine-
grained interpretability, generating importance scores at various levels—for individual
cells, groups of cells (e.g., cell types), individual genes, or genes within specific cell
groups—providing detailed insights into each patient’s cellular landscape.

approach with different embedding baselines, such as a simple pseudo-bulk ap-
proach, using cell-type proportions (CTP), as well as state-of-the-art single-cell
foundation models (CellPLM [56] and SCimilarity [16]). For each of these meth-
ods, we consider two classifiers to predict the label from the patient embedding:
k-Nearest Neighbor Classifier (kNN) [42] and a multi-layer perceptron (MLP).

Remarkably, PaSCient outperforms all baselines by a significant margin (Fig-
ure 2 (a)). Notably, a simple pseudo-bulk approach outperforms more compli-
cated foundation models in this task. Additional results on a simpler binary
classification task (i.e., COVID-19 vs. healthy) are given in Appendix F, in-
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cluding the comparison with the most recent domain-expert model ScRAT [35],
which performs significantly worse than PaSCient.

We investigated different aggregation mechanisms for pooling cell-level em-
beddings into a patient-level embedding, including mean-pooling, transformer,
gated attention, linear attention, and non-linear attention mechanisms. We found
that non-linear attention performed best, improving the weighted F1-score by
16.6% compared to a mean-pooling mechanism (Figure 2(b)). The transformer
approach, although more expressive, results in poor performance, probably due
to a larger than necessary number of parameters for this task.

To account for the class imbalance in the data, we investigated different
resampling mechanisms. We studied the impact of resampling both per disease-
class and per tissue-class (Methods). Oversampling the training set for both
disease and tissue resulted in a significant improvement compared to baseline
(Figure 2(b)). Model training and hyper-parameter tuning details are given in
Appendix G.

The patient embedding space learned by PaSCient is organized by disease
state (Figure 3(a)) and by tissue (Figure 3(b)). Notably, COVID-19 patients
partition into two clusters, corresponding to blood and lung tissue samples.
Additional analyses of the patient embedding space, aggregated per disease, are
given in Appendices H and I.
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Fig. 2. Benchmarking the performance of PaSCient on multi-disease classification. (a)
Weighted F1-score results. Performance comparison between PaSCient and relevant
baseline models, with standard deviations calculated from experiments using different
seeds. PaSCientemploys non-linear attention aggregation combined with oversampling
based on disease and tissue. (b) Ablation studies. Analysis of different training con-
figurations for PaSCient, including various cell-level aggregation methods (without re-
sampling) and sampling strategies to address label imbalance. The best performance
was achieved using non-linear attention aggregation with oversampling based on both
disease and tissue labels (Oversample d+t).
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form manifold approximation and projection (UMAP) of patient embeddings colored
by each of 8 most common disease labels (a) or by tissue (b). We only visualize the
samples whose disease-state labels exist in all the splits.

2.3 PaSCient prioritizes gene and cell-type roles in disease

prediction.

We use our importance score methodology (described in Section 2.1 and in the
Methods section) to enable a fine-grained analysis of the individual cells and
genes that contribute most to a disease of interest. As a proof of concept, we
focus our analysis on COVID-19 prediction and select a cohort of patients with
a COVID-19 disease label.

We first compute cell type level attributions to uncover what cell types were
contributing most to the COVID-19 label for each patient (Figure 4(a)). The
highest average attributions (computed over all patients) are found for classi-
cal monocytes and platelets, suggesting the importance of these cell types in
COVID-19. Notably, these cell types have been identified in the literature as
playing a key-role in the disease pathogenesis [23,58].

Remarkably, our fine-grained importance methodology enables further ex-
ploration within cell types of interest. We investigate what genes were most
impacting COVID-19 prediction for each of these cell types specifically. For each
patient, we compute the importance of gene in monocytes (Figure 4(b)) and in
platelets (Figure 4(b)). This procedure identifies the specific importance of genes
in a given cell type. Ranking genes by average importance reveals that S100A8,
IFITM3, and IFI27 are the most pertinent genes in monocytes for COVID-19.
IFI27, HBB, and CA1 are found to be most important in platelets. These genes
are associated with COVID-19 severity or treatment [37,60,51,64,11].

We validate the set of important genes uncovered by PaSCient by measuring
the overlap with the set of differentially expressed genes from ToppCell [21].
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A Fisher’s exact test indicates strong overlap for both classical monocytes (p-
value=2.1e-22) and platelets (p-value=2.5e-20). A similar analysis for other dis-
eases is presented in Appendix J. These analyses show that we can capture and
prioritize disease-specific genes and cell types at different resolutions.
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monocytes and platelets identified as the most predictive for COVID-19 diagnosis. (b)
Attributions aggregated over classical monocytes (each point is a patient). Genes are
ranked by mean attribution, with the green line indicating the median value and the
green triangle denoting the mean value. (c) Attributions aggregated over platelets (each
point is a patient). Genes are ranked by mean attribution, with the green line indicating
the median value and the green triangle denoting the mean value.

2.4 PaSCient recovers disease severity of individual patients.

To investigate the patient representations learnt by our method, we collect four
scRNA-seq datasets from COVID-19 patients where a severity label is avail-
able (mild or severe) [31,50,57,29], and that were not included during training.
Visualizing the patient representations generated by our model, we find that
the landscape is primarily organized by disease severity and not by study (Fig-
ure 5(a)). Conversely, a principal components analysis (PCA) representation of
pseudo-bulk data is organized primarily by study rather than severity, highlight-
ing batch effects.
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Moreover, the importance scores given by our model to different cell types
correlates with disease severity, with significant associations (corrected p< 0.01)
for NK cells, B cells, myeloid dendritic cells, and MAIT cells. Indeed, there is a
significant difference in the magnitude of the integrated gradients attributions
of the model, averaged over all myeloid dendritic cells in each patient sample,
between mild and severe patient groups (Figure 5(b), Bonferroni-corrected p-
value=0.001, rank sum test). Similarly, there is a significant association between
the disease severity and the magnitude of the probability of COVID-19 diagnosis
predicted by PaSCient (Figure 5(c)). Together, these results show that PaSCient
can implicitly represent the disease severity of each patient. Associations between
severity and other cell types are given in Appendix K. A case study for predicting
drug response is presented in Appendix L.

3 Discussion

Here, we introduced a new model, PaSCient, that generates patient-level em-
beddings given a single-cell RNA-seq context, leveraging thousands of samples.
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PaSCient builds upon recent single-cell foundation models [8,16,14], and multi-
cellular representations models [15,35,59] but differs in key aspects. First, Pa-
SCient builds upon the large scale training of single-cells foundation models but
extends the approach to multi-cellular representations. While single-cell repre-
sentations can be pooled into a patient-level representation (e.g., via average-
pooling), our experiments showed that this resulted in sub-optimal performance.
Our approach is indeed more expressive as it learns a dedicated aggregation
mechanism that better reflects the underlying biological processes. Second, Pa-
SCient extends previous works on multi-cellular representations by going beyond
binary classifications and by leveraging hundreds of single-cell expression studies.

Providing biologically informed patient-level representations presents several
advantages for biological and clinical research. Such representations enable a
patient-specific understanding of disease mechanisms and can improve patient
segmentation, thereby contributing to more targeted therapies. We demonstrated
the potential of PaSCient in patient segmentation by showing that the learnt em-
beddings implicitly encoded clinical information such as disease severity. From a
target discovery perspective, we highlighted the fine-grained resolution of our im-
portance scores. We showed that our model could be used to prioritize individual
cells and genes, but also groups of cells (such as cell types) and cell-type-specific
genes, underlining a promising knowledge discovery toolkit.

Our work represents an important step toward patient-level representations
contextualized by single-cell expression. While our datasets included millions
of cells, the increasing scale of available single-cell repositories suggests further
iterations of this class of models will lead to better representations.

4 Methods

Notations. We define the aggregated dataset includes N patient samples: D =
{s1, s2, ..., sN}, where si represents the ith patient sample. Each patient includes
Mi cells (where Mi varies per patient): si = {c1, c2, ...cMi}i, where cj represents
the jth cell in si. Lastly, each cell cj is a vector whose features are gene expression
counts with dimension dg = 28, 231. Each patient can then be represented as
a matrix Xi 2 RMi⇥dg . Patient-level metadata is also available such as disease
label yi and tissue label ti.

Model architecture. PaSCient combines a cell encoder f✓(·), an aggregator h✓(·),
and a classifier g✓(·), all implemented by neural networks. At a high level, the
cell encoder produces an embedding for each cell in a patient sample, the aggre-
gator combines the cell embeddings into a patient embedding, and the classifier
predicts the disease label based on the patient embedding.

The cell encoder is a linear layer. The classifier is a multi-layer percep-
tron (MLP) with a final softmax activation. We write the output of the cell
encoder as zi = f✓(ci), the output of the aggregator as ei = g✓(zi) with
z = [z1, z2, ..., zMi ]i), and the output of the classifier as p̂i = h✓(ei). The model
is trained by minimizing the cross-entropy between p̂i and yi. A graphical de-
piction of the model architecture is given in Figure 1.
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Aggregators. We considered multiple different aggregators. Most aggregators
have the form of a weighted sum: ei =

PMi

j=1 wjzj . Aggregators differ by the
way the weights w = [w1, ..., wMi ] are computed. The mean aggregator uses
wj = 1

Mi
; the linear attention aggregator uses w = Softmax(z); the non-linear

attention uses Softmax(a✓(z)) with a✓ a learnable neural network that operates
on each zj independently; and the gated-attention uses w = Softmax(U✓(z)�
Sigmoid(V✓(z))) with two learnable neural networks u✓ and v✓. The transformer
aggregator differs in its architecture as it updates the embeddings of each cell
according to the entire sample and sums the resulting embeddings.

Resampling strategies. We used the following resampling strategies for address-
ing the disease and tissue imbalances in the dataset: (1) Downsampling disease:
subsampling the most frequent disease classes such as to balance the disease label
overall; (2) Oversampling disease: oversampling the least frequent disease classes
such as to balance the disease label overall; (3) Oversampling tissue: oversam-
pling the least frequent tissue classes such as to balance the tissue label overall;
(4) Oversampling disease and tissue: oversampling the least frequent tissue and
disease classes such as to balance both tissue and disease labels overall.

Model explainability. We used the integrated gradients method on the input
matrix Xi [52]. Computing the integrated gradients on this input results in an
attribution matrix Ri 2 RMi⇥dg with the same dimensions as the input matrix.
The attribution of a given gene was obtained by averaging Ri across all cells.
The attribution of a given cell was obtained by averaging over all genes. Any
other combination follows from generalizing this procedure.

Disease classification metrics. We evaluated classification performance using
the weighted F1-score. F1-score is robust to class imbalance and reflects both
precision and recall across all classes. Each experiment was repeated 10 times
using different seeds leading to different cells being sampled for each patient. This
repetition allowed computing an empirical standard deviation on the results.

Dataset pre-processing. All datasets were profiled by droplet based scRNA-Seq
from 10X Genomics. We removed cell profiles with no gene expression levels and
normalized all remaining profiles to the corrected sequencing depth, followed by
a log(x+ 1) transformation.

Reproducibility and Data The sources of datasets used for training/validat-
ing/testing as well as downstream applications can be found in the Supple-
mentary File 1. Our collected descriptions for diseases and tissues can be found
in Supplementary File 2. The genes from ToppCell are listed in Supplemen-
tary File 3. The running time of our method for different tasks is included in
Supplementary File 4.
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