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Abstract

Repeating sequences of neural activity exist across brain regions of different animals are thought to un-
derlie diverse computations. However, their emergence and evolution during ongoing synaptic plasticity
remain unclear. To mechanistically understand this process, we investigated the interaction of biologically-
inspired activity-dependent synaptic plasticity rules in models of recurrent circuits to produce connectivity
structures that support neuronal sequences. Under unstructured inputs, our recurrent networks developed
strong unidirectional connections, resulting in spontaneous repeating sequences of spikes. During ongoing
plasticity these sequences repeated despite turnover of individual synaptic connections, a process reminis-
cent of synaptic drift. The turnover process occurred over different timescales, with sequence-promoting
connectivity types and motif structures being strengthened while others weakened, leading to sequences
with different degrees of volatility. Structured inputs could reinforce or retrain the resulting connectivity
structures underlying sequences, enabling stable yet flexible encoding of inputs. Our model unveils the
interplay between synaptic plasticity and sequential activity in recurrent networks, providing insights into
how the brain might implement reliable and flexible computations.

Introduction

Repeating sequences of neural activity have been observed across many species and brain regions, in-
cluding in the navigational, sensory, and motor areas of mammals, reptiles, and birds, and are believed
to underlie many computations. A striking example of repeating sequences is in the motor area of song-
birds [1]. Zebra finches repeat their courtship song thousands of times with a perfectly matching sequential
representation in their brain [2]. In the hippocampus of rats, sequences of spikes encode place trajecto-
ries as the animal moves, and they are replayed during rest [3,4]. Repeating sequences of spikes are
also common in the sensory cortices of rats, humans, mice, and turtles [5-8]. Yet, whether and how
these sequences emerge and change over time to flexibly implement these computations remains poorly
understood.
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Sequences may repeat but are also subject to change. Growing experimental evidence shows that rep-
resentations in multiple brain areas are often subject to “drift” [9-14] where one neuronal pattern of activa-
tions is slowly replaced by another. In the hippocampus, after the mapping of space is established [15-17]
with the formation of place fields by training animals in the same environment, spontaneous changes in
the encoding, a phenomenon known as “remapping”, redefine existing sequences [18,/19]. In the birdsong
system, sequences are first learned and heavily modified by the juvenile bird as it develops its own version
before the song crystallizes [20]. Even as an adult, the song can be modified under acute manipulations of
their auditory system, indicative of the ongoing plasticity to which it is exposed [21},22]. These sequences
may be the result of a composition of smaller sequential units that can be replayed independently during
sleep [23]. Even though the zebra finch is a specialist of one song, it still produces other non-courtship
vocalizations in adulthood using the same motor areas [24-26]. Related species such as budgerigars,
bengalese finches and canaries present more variable songs and even life-long learning [27-29]. Taken
together, evidence suggests that the neuronal substrate underlying sequences may be more plastic than
typically assumed.

The specific processes driving these changes in neuronal sequences are unknown, but likely relate to
activity-dependent synaptic plasticity due to sensory experience [30,/31] or prior developmental sponta-
neous activity [32-34]. Indeed, many plasticity mechanisms have been studied, theoretically and exper-
imentally, and are considered the main actors of organization of recurrent networks of neurons [35H45].
Experimental and theoretical evidence has put forward different forms of spike-timing-dependent plasticity
(STDP) as the underlying plasticity mechanism which describes synaptic change based on the order and
timing of pairs and triplets of pre- and postsynaptic spikes [36,/38,/42,43,/45-48]. The synaptic plasticity
induced by STDP can have different effects on recurrent network connectivity. For example, Hebbian forms
of symmetric pair-based STDP, shifted asymmetric STDP, or rate-dependent triplet STDP have been shown
to promote the formation of assemblies [42}/44,/49-52], groups of neurons sharing strong connections that
exhibit coordinated firing [50,/53|. In contrast, anti-symmetric Hebbian STDP has been shown to promote
the formation of “synfire chains”, a form of idealized sequential structures [37,[39]. Asymmetric Hebbian
rules based on firing rates have also been discovered using meta-learning approaches capable of organiz-
ing and maintaining sequence-generating dynamics specifically applied to the HVC of zebra finches [54].
What specific synaptic plasticity rules promote structures of connectivity that support repeatable yet flex-
ible neuronal sequences of cortical spikes is still unknown. Studying synaptic plasticity is challenging,
especially in recurrent circuits, since activity and connectivity influence each other. Previous theoretical
work has suggested that sequences provide stable output and robustly encode memories despite ongoing
plasticity which modifies synaptic weights [55,/56]. However, if, as described above, neuronal representa-
tions are subject to constant change, driven through either internal dynamics or external stimuli, we lack
an understanding of how this change affects the repeatability of spike sequences and their underlying
structures.

Here, we asked how spike timing-dependent synaptic plasticity may produce the connectivity underly-
ing repeatable sequences of spikes, and how this very same mechanism alters them. To mechanistically
dissect this question, we built a recurrent, plastic, spiking network model that produced spiking sequences.
Driven by unstructured activity, the network spontaneously developed connectivity structures through plas-
ticity that led to the appearance of spiking sequences. These same plastic processes also created volatile
dynamics of synaptic turnover with different timescales depending on synapse type, strength, and connec-
tivity motifs. Exposing the network to structured inputs revealed that the same plasticity mechanisms could
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retrain the connectivity structures underlying sequences, retaining flexibility to encoding novel inputs. Over-
all, our work addresses how the interaction between spike timing-based plasticity rules and activity leads to
the stability and evolution of spiking neuronal sequences which underlie diverse neuronal representations
in neural networks.

Results

Plasticity drives strong synapses that produce repeating sequences

Previous work has shown that long-tailed distributions of synaptic strengths are sufficient to generate re-
liable but flexible spiking sequences reminiscent of those found in the cortex [57]. Thus, we first focused
on identifying plasticity rules that produced such distributions in random networks and verified that they
produced spiking sequences in recurrent neural networks with randomly connected excitatory (E) and in-
hibitory (1) adaptive exponential integrate-and-fire neurons [58] (Fig. [T]A). We modeled spontaneous activity
as uncorrelated Poisson inputs independently sampled for every neuron. E-to-E and I|-to-E connections
experienced synaptic plasticity according to spike-timing-dependent plasticity rules (¢eSTDP and iSTDP
respectively, Fig. [STJA-B) [37,38,/46]. To prevent any small fraction of neurons from dominating the entire
network, we applied weight normalization [59,/60] to E-to-E and I-to-E connections from both the presy-
naptic and postsynaptic sides to regulate the total input and output synaptic weights for each neuron,
respectively (Fig. [ST[C). In addition, to further avoid dominance by individual neurons and to maintain a
low overall firing rate comparable to that observed in the cortex during sequences [8], excitatory neurons
were also regulated by intrinsic synaptic plasticity [61,62]. This mechanism adjusted their firing thresholds
based on their activity, thus stabilizing their firing rates over time (Fig.[S1PD).

Since intrinsic plasticity adjusts the firing thresholds, we studied synaptic strengths after scaling them by
the distance between the postsynaptic neuron’s threshold and resting potentials. We refer to this value as
effective weight (Wey = W/ (Vi — Vo)), which provides a good indicator of the likelihood that a presynaptic
activation would trigger a postsynaptic spike (Fig. [TB). The steady state of the plastic network subjected
to uncorrelated inputs resulted in an E-to-E effective weight distribution that was skewed, with a long tail
well described by a lognormal distribution (R? = 0.94, Fig. ). We found that the rare strong connections
in the tail of the distribution were distributed among the entire excitatory population, with most excitatory
neurons having at least one such output connection (Fig.[1D, [S2A).

Following previous work [8l/57], we tested the generation of sequences by randomly selecting an excita-
tory neuron (source neuron) in the model network, injecting input into it to produce 1,000 spikes at regular
intervals which defined a trial (Fig. [TE) and measuring the response of all other neurons in the network.
We quantified the resulting firing rate modulation as the difference between each neuron’s firing rate after
and before the source neuron spikes. Consistent with prior work [8,/57], we defined as “followers” those
neurons that exhibited a significantly high firing rate modulation when compared to a null model with no
injected spikes (Methods). Out of 155 tested source neurons in a model network, 135 (87.1%) of them
had at least one excitatory follower. The median number of excitatory followers (excluding 0) was 55, and
source neurons could have more than 120 excitatory followers (Fig. [S2B).

Source spikes caused the activation of followers in the same sequence across trials (Fig. [TE, and
[8]). Followers could activate after the source spike with a delay up to 150 ms, much longer than the
timescales of neuronal dynamics. Different subsets of all followers fired in every single trial (55% excitatory
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Figure 1. A plastic recurrent network can generate sequences under unstructured inputs. A.
Schematic of the model network with 1,200 excitatory and 240 inhibitory AdEx neurons, where E-to-E and
I-to-E connections are plastic. B. Example EPSPs initiated by connections with different W on an
isolated neuron. The effective weight of a connection (W) depends on the synaptic weight (W), the
postsynaptic resting potential (15), and the firing threshold (V;;,). C. The network develops a lognormal
E-to-E weight distribution in the steady-state. D. Different presynaptic neurons have similarly-distributed
output connections. Solid line indicates the average and shade represents the standard deviation. Pooled
over all E neurons in the network (n = 1,200). E. Top: When a randomly chosen “source” neuron is forced
to spike, its “followers” activate reliably and sequentially. Neurons are sorted by their spike time in example
trial. Blue and red ticks indicate excitatory and inhibitory followers. Bottom: the source neuron was forced
to spike in 1,000 consecutive trials and increases in firing rate were calculated to identify reliable
followers. F. The jitter of the followers is positively correlated with the median delay. Same followers as E.

and 74% inhibitory followers per trial on average, [S2[C). We thus defined the responding probability of a
follower as the ratio out of all trials in which it fired at least once within 300 ms from the source spike.
Across all followers, the median delay and the jitter increased together, while both of them decreased with
increasing responding probability (Fig. [TF, Fig. [S5).

Surprisingly, although the model lacked E-to-| plasticity and thus could not produce strong connections
onto inhibitory neurons, it did produce inhibitory followers (median: 33, 45.8% of source neurons) (Fig.[S2).
Compared to excitatory followers with the same responding probability or median delay, inhibitory followers
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had a larger jitter (Fig. [|F, [S4and [S5[C). We found that the activation of inhibitory followers results in feed-
back inhibition onto the source neuron (Fig.[S6), possibly explaining post-spike hyperpolarization observed
experimentally [8].

In summary, plasticity in our network generated connectivity that promotes the appearance of se-
quences even under random inputs, consistent with experimental evidence in cortex [8]. Single spikes
in most excitatory neurons reliably trigger sequences of spikes in the rest of the network that repeat from
trial to trial.

Strong excitatory connections resist turnover under uncorrelated inputs

Although our model network converged to a steady state in terms of the distribution of effective weights,
individual connections could still change due to ongoing plasticity (distribution and single example connec-
tions tracked in Fig.[2)A). Since spike sequences in our networks were mainly driven by strong connections,
we wondered if these changes could limit the capacity of the network to produce repeatable sequences
over long timescales.

We first defined the ratio of strong E-to-E connections to the expected number of E-to-E connections
(PeeNe(N.—1), Fig. ). Once the steady state was reached, our network could always produce sequences
as a consequence of a stable number of strong connections distributed over the network independent
of their exact identity. When we tracked small groups of E-to-E connections that lived in the tail of the
distribution at a given time point (Wer > 2.5, Fig.[S2)A), we found that they had been weak in the past and
would become weak again in the future (Fig. [2IC). This group would then be replaced by a new group of
connections preserving the tail of the distribution. Strong I-to-E connections followed the same dynamics
(Fig. [S7A). Indeed, under uncorrelated inputs, the probability that a connection remained strong after a
given period decayed exponentially (Fig. [2D, blue).

To quantify the rate of this turnover of strong connections, we first simulated a baseline network under
the same plasticity rules where all of the neurons generated independent Poisson spikes with the same
rate as our network simulations (Fig.[2D, gray). We found that the turnover of strong connections was much
slower than this random baseline. This slowed turnover is likely the product of the synaptic potentiation
resulting from the anti-symmetric eSTDP rule combined with positive spiking correlations between pre-
and postsynaptic units. Indeed, I-to-E connections, subject to symmetric iISTDP and negative correlations
resulting from inhibition, experienced similar turnover rates to the baseline network (Fig. [2D, red).

Strong E-to-E connections did not just experience slower turnover compared to I-to-E, but also when
compared to weak E-to-E connections in the body of the distribution. We quantified the turnover of weak
connections (Wt € (0.5,2.5]) as the ratio of connections that remained above their lower bound after some
elapsed time. The ratio first decreased and then saturated (Fig. [2E and[S7B), and could be described with
an exponential function and a baseline, i.e., 1 — a[1 — exp(—t/7)]. The time constant for the turnover for
weak connections (7 = 856 s) was of the same scale as in the baseline network and I-to-E fit (Fig. [2D, gray
and red) and again much shorter than that of strong connections (W > 2.5; 7 = 1,605 s). Interestingly,
I-to-E connections showed the opposite trend: strong connections turned over slightly faster (Wei > 2.5;
7 = 599 s) than weak ones (Weit € (0.5,2.5]; 7 = 781 s) (Fig.[S7B).

In summary, under uncorrelated inputs and ongoing plasticity, our networks displayed stability at the
global level of synaptic strength distributions, but volatility of individual connections. While all connections
experienced turnover in their strength, the strongest E-to-E connections displayed slower decay than the
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Figure 2. Turnover of strong connections in the plastic network. A. Evolution of weight distribution
(line and shading; mean+std) and example single connections (crosses) at multiple time points. Colored
crosses indicate strong connections (Wex > 2.5). The distribution reaches a steady state, but single
connections continue to fluctuate in strength. B. Ratio of strong E-to-E connections over time. C. Average
strength of multiple groups of E-to-E connections randomly picked from the tail of the distribution at
different time points (colored labels), after the weight distribution has reached a steady state. D. Decay of
strong E-to-E (blue) and I-to-E connections (red). Dots indicate the ratio of strong connections that remain
strong after a given interval (abscissa). Lines indicate exponential fits. Gray represents E-to-E
connections when neurons are forced to fire Poisson spike trains. 7. = 1,719 s, 7, = 741 s,

Tpoisson = 679 8, n = 10 networks. E. Decay of strong E-to-E (W > 2.5, same as the average of blue
points in D, up to 2,000 s) and weak E-to-E connections (0.5 < Weg < 2.5, n = 10 networks). Dashed lines
indicate exponential fits with baseline.

rest of the network. These strong connections thus provide a backbone underlying the generation of spiking
sequences.
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Plasticity promotes connectivity motifs involved in sequences
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Figure 3. (Caption on the next page.)

Studies have shown that certain connectivity motifs are more likely to appear or be activated in recur-
rent cortical networks [57,/63-66]. Given the slow turnover and relevance of strong connections in the
generation of spike sequences, we next investigated how plasticity structures the connectivity motifs of
strong connections in particular.

We focused on four 3-neuron motif types composed of strong E-to-E connections: linear chains, diver-
gence motifs, convergence motifs and fan-in/out motifs (Weg > 2.5, Fig. [3]A). While another 3-neuron motif
is also possible (a cycle motif, where all three neurons are connected in a recurrent loop [65,/67]) due to
the asymmetry of the eSTDP rule, it was almost never observed in our network (similar to [67]), with an
average of 0.08 motifs per network instance. Following previous work, we defined motif frequency as the
ratio of the observed number of motifs to the expected number for each motif type (see Methods for details
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Figure 3. Motif analysis of strong connections. A. Definitions of the four triplet motifs: linear chains,
divergence motifs, convergence motifs, and fan-in/out motifs. B. Frequency of triplet motifs of strong
connections over time, relative to the number of all possible sites to form a motif. The dashed line
corresponds to the data points in C. C. Motif frequency in our model network (colored) compared to the
estimated motif frequency in a random network with the same ratio of strong E-to-E connections (black)
(n = 10 networks; mean =+ std). ***: P < 0.001, paired sample t-test. D. Decay of the fan-in/out motif
(colored) compared to a null model (gray) with shuffled connections. Lines indicate exponential fits

(Tran = 907 s, Tenuile = 562 8). E. Percentage of motifs among followers relative to the percentage among
all neurons in the network (n = 74 sequences; mean + std). Pie charts: percentages among followers
(linear chains: 69.95%; divergence: 13.42%; convergence: 8.05%; fan-in/out: 8.58%, summing up to
100%) and in the full network (linear chains: 65.94%; divergence: 16.08%; convergence: 13.28%;
fan-in/out: 4.70%, summing up to 100%). *: P < 0.05, ***: P < 0.001, single sample t-test.

on each motif) [68H70]. During ongoing plasticity in our network, we initially observed a sudden increase
in the frequency of motifs for all motif types, which then settled at a steady state (Fig. [3B). This initial in-
crease mimicked that observed for single strong connections (Fig.[2B), but was not merely a consequence
of it. Compared to the motif frequency in a random network, given the same probability of strong unidirec-
tional connections, we found that the networks in steady-state had over-represented “fan-in/out” motifs but
under-represented all other motif types (Fig. [3C).

We hypothesized that the presence of convergence and divergence motifs was limited by the com-
petition among multiple connections received by a single neuron that results from weight normalization.
Additionally, by regulating the firing rate of all neurons, intrinsic plasticity would also discourage the clus-
tering of strong connections on single neurons required for these motifs. To verify these hypotheses, we
disabled the presynaptic weight normalization and intrinsic plasticity on E neurons in new simulations. We
found that the motif frequency of all types in these alternative models were above random levels (Fig.[S8A),
but the ratio of strong connections was lower (2.1 x 103 vs. 0.021). This alternative model contained a
small number (4%) of “hub” neurons that receive from, or project to, other neurons most of the strong
connections of the network. These hub neurons also fired much more frequently than average, exerting a
large impact on the network dynamics (Fig.[S8B, [71H73]). In these models, ~5% of the excitatory neurons
(mainly the hub neurons) had followers and their activation was very short lived (<20ms), closer to syn-
chronous firing than to sequential propagation (Fig.[S8[C-D). Therefore, the plasticity rules that promote the
homogeneous distribution of strong connections required for the generation of spiking sequences simulta-
neously limit the presence of divergent and convergent motifs. If this argument were true, then fan-in/out
motifs, which also require clustering of strong connections on single neurons and can be transformed into
any of the other three motifs by removing just one strong connection, should also be limited by the plastic
mechanisms described above. Given that single strong connections are subject to turnover (Fig. [2B), it is
thus surprising that fan-in/out motifs were so over-represented.

A hypothesis for the over-representation of fan-in/out motifs is self-reinforcement due to ongoing synap-
tic plasticity. To test this, we explored the turnover rate of the fan-in/out motif relative to single strong con-
nections. We established a baseline where we exchanged a random selection of strong connections with
weak ones to achieve the same turnover rate of individual strong E-to-E connections as before (Fig. [2D).
The decay time constant of the shuffled fan-in/out motifs was approximately 1/3 of the time constant of
strong unidirectional connections under normal turnover (i.e., 77, =~ Tee/3) (Fig. ). In contrast, fan-
in/out motifs turned over more slowly than this baseline (Fig. [3D). Therefore, the slow turnover of the fan-
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in/out motif could not be ascribed exclusively to the slow turnover of single strong connections, but rather
indicates the existence of higher-order self-reinforcing effects, likely driven through the effect of eSTDP.
When we performed equivalent analysis for the other motif types, we observed faster turnover compared
to baseline (Fig.[S9), showing that these motifs are not only less common but also highly volatile.

We then evaluated whether these motifs supported the generation of spiking sequences specifically.
We considered only the E-to-E connections among the source neuron and its most reliable followers (re-
sponding probability > 0.8). We calculated the relative percentage of each motif type (Fig. [BE, top pie
chart), then normalized the motif percentages in the sequences by the motif percentages for the full net-
work (Fig.[3E, bottom pie chart). We found that the fan-in/out motifs appeared even more frequently among
followers than in the full network, where they are already over-represented (Fig. BE, dots).

Taken together, our results show that plasticity rules produce specific structures of connectivity that sup-
port the reliable generation of spiking sequences. Fan-in/out motifs of strong connections self-reinforce,
resulting in a slow turnover of the motif and their over-representation across the entire network and among
followers. Convergence and divergence motifs on the other hand are suppressed through weight normal-
ization and intrinsic plasticity, which promotes an homogeneous distribution of strong connections within
the network.

Turnover of strong connections causes turnover in sequence composition

While the observed turnover of strong E-to-E connections and fan-in/out motifs could cause the destruction
of any particular sequence, the distribution of synaptic strengths remained stable, suggesting a constant
replacement by new sequences. Indeed, sequences initiated by the same source neuron at different time
points exhibited different follower composition, where some followers remained, some were lost, and new
ones appeared (Fig. [4JA). We compared new and lost followers within 100 s intervals and averaged over
50 sequences (Fig. 4B). The net increase in the number of followers (new - lost) in a 100 s interval was
—0.1 £ 30.6, indicating that the size of the sequences remained stable over time.

To evaluate the rate of follower turnover, we first pooled 2,931 followers from 50 randomly selected
source neurons over 10 model networks which reached steady state after training with the same plasticity
rules and parameters. We then re-evaluated if these neurons continued to classify as followers at regular
intervals during ongoing plasticity. We found that the ratio of initial followers that remain followers dropped
exponentially (Fig. [4C).

Follower turnover was much faster than that of single strong connections (Fig.[2D). To characterize the
differences in turnover rates among followers, we analyzed followers based on their responding probabili-
ties and delays. We found that the ratio of remaining followers was the highest for followers with the highest
responding probability and shortest delay (Fig.[4D, Fig.[ST0A). Considering that strong E-to-E connections
are the main conduit of follower activation (Fig. (1], [57]), we calculated the length of the shortest path con-
necting each follower to its source using only strong E-to-E connections (which we call “synaptic jumps”).
The length of this path negatively correlated with the follower’s responding probability and positively cor-
related with its median delay (Fig. [STOB-C). Consistent with these correlations, the remaining ratio of of
followers also decreased with an increasing number of synaptic jumps (Fig. [4E). In summary, followers
synaptically closest to the source neuron respond most reliably and are the most robust to turnover.

We next asked how long followers last and whether their properties evolve with ongoing plasticity. We
divided a period (2,000 s) after reaching steady state into small intervals (100 s) and detected new, lost and
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Figure 4. Turnover of followers and sequences. A. Excitatory followers of an example source neuron
at two time points. Blue circles indicate common followers at both time points (Remaining). Hollow circles
indicate cells classifying as followers earlier but not later (Lost). Orange circles indicate those classifying
as followers later but not earlier (New). B. Mean number of new and lost followers over 50 sequences in
100 s intervals. C. Decay of the probability that a follower continues to classify as a follower after a given
interval (pooled over 2,931 followers from 50 sequences, mean+std). Dashed line indicates exponential
fit with baseline. D. Ratio of remaining followers after 1,000 s as a function of their responding probability
(pooled over 24,311 followers from 50 sequences at 8 time points, mean+std). E. Same as D but as a
function of number of synaptic jumps from the source. F. Distributions of the responding probability for
new, remaining, and lost followers in 100 s intervals. G. Distribution of the followers’ lifetime. Pooled from
followers detected every 100 s from 50 different sequences. H. Mean responding probability for different
groups of followers, grouped by by their lifetime. Pooled over 2,338 followers from 50 sequences.

remaining followers. In each of these intervals, new followers had lower responding probabilities than those
that remained from the previous interval, as well as longer delays, and more synaptic jumps from the source
neuron. The distribution of the responding probability of lost followers in every interval overlapped with that
of new followers (Fig. [4F), confirming that the overall number of followers in the network remained stable
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(Fig. [2A). When pooling new followers from all intervals (n = 7,189), we observed a skewed distribution
of lifetimes (Fig. [4G), with most neurons being classified as followers for only a short period. Interestingly,
a small proportion (7.3%) of new followers lasted over 1,000 s, much longer than the time constant of
the overall turnover of followers, .., = 459 s (Fig. ), suggesting that the network may stabilize some
new followers after they are recruited. The responding probability of followers followed a non-monotonic
trajectory, first increasing and then decreasing with time, which was common to all followers, independent
of their lifetime (Fig. 4H). Some followers displayed remarkably long lifetimes, remaining followers for as
long as our simulations. These highly stable followers also showed peak responding probability.

In summary, in the presence of uncorrelated inputs and ongoing synaptic plasticity, our networks
showed stable global properties and local fluctuations, not only for single synaptic connection and mo-
tif distributions, but also for sequence composition. Single sequences experienced the appearance of new
followers and disappearance of old ones so that the overall extent of spiking sequences in the network
remained constant. While many followers experienced short lifetimes with low responding probabilities,
others could be stabilized in the network, becoming long-lasting and highly responsive followers.

Spatially structured inputs reinforce strong connections and stabilize turnover

To investigate whether spiking sequences might also be generated in the presence of structured inputs,
as is the case in sensory areas which predominantly receive and process sensory input, we next drove
the networks with correlated inputs in the presence of the same types of synaptic plasticity. We applied a
common training paradigm that is used to form assemblies, defined as strongly mutually connected groups
of neurons that experience correlated activity [35,/40142,43,50,511/53}74,75]. We refer to these as ‘spatially’
correlated inputs, implemented as additional inputs to ongoing unstructured activity sequentially targeting
groups of excitatory neurons (which became the assemblies) one group at a time, with a different group
being targeted every 100 s (Fig.[5A).

The network reached a stable long-tailed distribution of synaptic strengths (Fig.[STTA-B). As a result of
the spatially structured inputs, however, the strong E-to-E connections concentrated within single assem-
blies, with very low chance (9.1 x 10~%) of strong connections between different assemblies (Fig. -C).
Consequently, followers were most likely found within the same assembly (Fig. [5D). Pooling from 126
source neurons, we detected 252 followers in the same assembly as their source and 155 followers in
any other of the remaining 11 assemblies. The percentage of same-assembly followers (61.9%) was much
higher than what would be expected if followers were distributed uniformly in the entire network (9.1%). Fur-
thermore, same-assembly followers had significantly higher responding probability than different-assembly
followers (0.47 4 0.40 vs. 0.25 + 0.28) and shorter delays (15.7 + 10.6 ms vs. 24.8 + 10.8 ms). Hence,
consistent with prior work on assemblies [40,42./43.[51,(74,|75], under spatially correlated input directed at
different groups neurons, our networks also formed neural assemblies; yet, within each assembly, synaptic
plasticity still generated strong connections. Moreover, the strong connections were concentrated within
assemblies, reinforcing connectivity structures underlying sequences.

Spatially structured inputs also made strong connections more stable than those resulting from training
under unstructured activity (as earlier in the study) (Fig. [BE, blue and gray). Furthermore, while turnover
of single strong connections did occur, those decayed strong connections were quickly compensated by
new ones in the same assembly, preserving the high density of strong connections within assemblies and
resulting in very stable connectivity (Fig. BE, pink).
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Figure 5. Structured inputs lead to structured connectivity and stable turnover. A. Schematic of
training protocol with spatially structured inputs. Correlated inputs were sequentially presented to
non-overlapping groups (which determined the assembilies) of excitatory neurons (color-coded) for 100 s
(gray shading). Only one assembly received inputs at a time. Other excitatory and inhibitory neurons
received uncorrelated inputs. The targeted group cycled throughout the simulation. B. Ratio of strong
E-to-E connections where pre- and postsynaptic neurons are in the same assembly (within) or in different
assemblies (between), (n = 10; mean=std). C. Ratio of strong connections within and between
assemblies at steady state (¢t = 25,000 s in B). Most of the strong connections are formed within the
correlated assemblies (diagonal). D. Top: Distribution of responding probability (left) and median delay
(right) of followers in the same assembly with the source neuron (blue, n = 155) or in other assemblies
(gray, n = 97). Bottom: Two example sequences triggered at two source neurons in different assemblies.
Purple: source neurons. Blue: Followers within an assembly. Gray: Followers in other assemblies.

E. Decay rate of strong E-E connections in the network with and without correlated inputs. Blue: E-to-E
connections within assemblies. Gray: Decay in the network with uncorrelated inputs (same as Fig. [2D,
blue). Pink: Same as blue but turnover of a connection was not counted if it was replaced by a new
connection in the same assembly. Lines indicate exponential fits (7yi¢nin = 5,259 S, Tuncorr = 1,721 S,
Teomp = 17,761 8). F. Ratio of strong connections, in networks first trained with uncorrelated inputs and
then correlated inputs (n = 10; mean+std). G. Same as F but networks were first trained with one
correlated input pattern and then switched to a different correlated input pattern. Top: within and between
connections relative to first pattern. Middle: same relative to second pattern. Bottom: Example
sequences from the same source at two time points. Orange and hollow circles are new and lost followers
relative to the first time point.

We next asked if the stable strong connections concentrated within assemblies could be learned by
a network that had been previously trained with unstructured activity (as earlier in the study), effectively
retraining the original network structure. After training a network with unstructured inputs until it reached
steady state (t = 8,000 s), we again provided spatially correlated inputs to groups of neurons (Fig. [BF).
We found that the network connectivity could indeed be retrained so that the strong connections between
neurons underlying sequence generation reorganized from being broadly distributed across the entire net-
work to being concentrated within the assemblies specified by the structured input. Correspondingly, the
percentage of same-assembly followers rose from 8.3% to 42.9% (Fig. [5F).

Finally, we investigated the capacity of the network to adapt to a change in the inputs. After training a
network with one pattern (A) of spatially correlated inputs until it reached steady state, we switched to a
new, randomly chosen pattern (B) (Fig.[5|G). The network restructured its connectivity with the new strong
connections being concentrated within the assemblies specified by the new pattern B of spatially correlated
inputs. Correspondingly, the percentage of same-assembly followers to pattern A dropped from 78.7% to
9.0%, while the percentage of same-assembly followers of pattern B rose from 5.5% to 68.8%. This
redistribution of strong connections to the new assemblies was also reflected in the generated sequences.

In summary, spatially structured inputs, providing correlated input to groups of neurons, could further
shape network connectivity that leads to sequences. The strong connections underlying sequence gener-
ation concentrated between neurons receiving the correlated inputs and forming the assemblies, yielding
reliable followers and slowing down turnover. Despite this enhanced stability, the network could be re-
trained, remaining flexible to accommodate input changes.
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Figure 6. (Caption on the next page.)
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Figure 6. Temporally structure inputs lead to sequentially organized followers. A. Schematic of
training protocol with temporally structured inputs. Correlated inputs were sequentially presented to
non-overlapping groups (which determined the assemblies) of excitatory neurons (color-coded) for 10 ms
(gray shading). Only one assembly received inputs at a time. Inhibitory neurons received uncorrelated
inputs. The targeted group cycled throughout the simulation. B. Ratio of strong E-to-E connections within
the same assembly (blue), from one assembly to the next assembly (orange), and all others (black)

(n = 10; mean=std). C. Ratio of strong connections within and between assemblies at steady state

(t = 16,000 s in B). D. Left: Average count of followers in different assemblies. Assembly number is
relative to the source neuron, starting from 1. Note most followers fall in the immediate next assembly.
Right: example sequence extending from assembly 1 to 5, with followers vertically sorted by the assembly
number relative to the source neuron, as indicated by different colors and numbers. E. Decay rate of
strong E-to-E connections. Blue: to a neuron in the same or next assembly. Pink: same as blue but
turnover is counted only if the connection was not replaced by a new one. Black: Decay in the network
with uncorrelated inputs (same as Fig. [2D). Lines indicate exponential fits (.. = 4,738 s,

Tuncorr = 1,721'S, Teomp = 28,551 s). F. Distributions of responding probability (left) and median delay
(right) of followers in the same assembly as the source neuron (blue), in the next assembly (orange), or in
other assemblies (gray) (n = 116 seqUENCES, Nyithin = D7, Nnext = 107, nother = 326). G. Ratio of strong
connections within assemblies, from one assembly to the next, and anywhere else, in a network first
trained with unstructured inputs and then with temporally structured inputs (n = 10; mean+std). H. Same
as G but network was first trained with one pattern and then with a different one (n = 10; mean-+std).

Temporally structured inputs define and stabilize cortical sequences

Cortical inputs may also contains temporal structure in addition to activating neurons in the same group. We
thus explored the stability and flexibility of connectivity structures underlying sequences in networks driven
by temporally correlated inputs during synaptic plasticity. These inputs were implemented as Poisson
spikes targeting one assembly at a time and sequentially shifting to the next. Each assembly received
inputs for only 10 ms—a timescale comparable to single-neuron dynamics in our model and much shorter
than that used in the previous section (100 s). Differing from the previous section, an assembly received no
input between activations, until all other assemblies had been activated and the sequentially shifting inputs
returned to it (Fig. [JA). This resulted in the groups of neurons being sequentially targeted in the same
quick succession during training, exposing neurons to strong temporal correlations. The network reached
a stable long-tailed distribution of synaptic strengths (Fig.[STT|C-D). With these temporally structured inputs,
strong connections emerged not only within assemblies (diagonal of the connectivity matrix), but also from
one assembly to another (sub-diagonal, Fig. [6IC). These next-assembly connections extended sequences
over multiple assemblies (Fig. [6D).

Strong connections within the same assembly and from one assembly to the next were more stable
than the strong connections in a network trained with unstructured Poisson inputs (Fig.[6E, blue and gray).
As in the case of the assemblies in the previous section, any strong connection that turned over in a
consecutive assembly pair was quickly compensated by the appearance of a new strong connection in
same the assembly pair. The effective turnover rate therefore was very low, with a time constant longer
than our simulations (Fig. [BE, pink). This highly stable connectivity resulted in highly responsive and
stable followers: followers in the same assemblies as their source neuron or in the next assembly had
a significantly higher responding probability than any follower in the other assemblies (0.64 + 0.40 vs.
0.40 4+ 0.36 for same-assembly; 0.53 + 0.39 vs. 0.40 + 0.36 for next-assembly), as well as shorter delays
(10.5 £ 9.9 ms vs. 28.0 £ 13.4 ms for same-assembly; 13.7 &+ 8.3 ms vs. 28.0 £ 13.4 ms for next-assembly),
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(Fig. [6F). These followers suggest that, under temporally structured inputs, our model network developed
spiking sequences that could link multiple assemblies.

Finally, we tested if temporally structured inputs could flexibly reorganize networks with two types of
preexisting structure: that resulting from uncorrelated inputs (Fig. [6iG), and that resulting from a different
pattern of temporally structured inputs (Fig.[6H). After reaching stability in the two cases, we applied a new
temporally structured input pattern. In both cases, the network reorganized its strong E-to-E connections
to the assembly structure described above (Fig. [[C), resulting in sequences that activated over multiple
assemblies and reflecting the ordering of the new inputs.

In summary, temporally structured inputs could shape stable sequences across neural assemblies that
reflect the temporal order of the inputs. The resulting strong connections had a very low turnover ratio,
creating a stable backbone of propagation that sequentially linked multiple groups of neurons. Nonetheless,
this stable configuration was also flexible enough to adapt to changes in the input patterns.

Discussion

Here, we investigated how repeating sequences of spikes may arise and change under ongoing synaptic
plasticity in a spiking neural network composed of recurrently connected excitatory and inhibitory neu-
rons with biologically-plausible synaptic plasticity rules. We found the network spontaneously reached
long-tailed weight distribution and structures of connectivity that made it produce sequences even in the
complete absence of structured stimuli (Fig. [T). Although the statistics of these structures were stable,
particular synaptic weights and sequences evolved due to the constant turnover of connections (Fig.
Fig.[d). Still, the timescales of turnover were longer for features of connectivity that supported sequences
when compared to random connectivity (Fig. [2, Fig.[3). This lower volatility could be further reduced when
the network was subjected to external structured stimuli (Fig. [5} Fig. [6). While these structured inputs
reinforced connectivity structures underlying sequences, the networks retained sufficient flexibility to adapt
to changes in the input (Fig.[5] Fig.[6).

Our results demonstrate that spiking sequences can be generated in randomly connected networks
trained by synaptic plasticity even under unstructured inputs, which supports STDP being the main actor,
while stabilizing mechanisms such as weight normalization and intrinsic plasticity [46,/59,/61] play a com-
plementary role. Many models using STDP to produce sequences were based on binary neurons and
time-discretized STDP that only considered the activity in two consecutive timesteps at a time [37,/64.(76)].
This led to an idealized form of sequential activity known as “synfire chains”, and weights that binarized
by saturating or decaying to zero. Other models relied on structured inputs [74] or supervised learning
rules and external teaching signals [55,/56. 7677 which cannot account for the spontaneous sequences
considered in our work and found experimentally [5/8]. Finally, some studies are based on feedforward
architectures [78l79] or extremely small networks (fewer than 20 neurons) [74], which differ significantly
from the highly recurrent large-scale networks found in the brain. The plasticity rules that we combined
gave rise to stable, continuous, long-tailed weight distributions of excitatory connections that generate
spiking sequences (Fig. (1} [37,39,/57])). This particular combination of plasticity rules avoids the presence
of dominant excitatory neurons that concentrate all strong connections (i.e., hub neurons found in previ-
ous work [71-73,/80]). Instead, strong connections are spread across the network, enabling sequences
that could start almost everywhere (Fig. [). These strong connections form over-represented connectivity
motifs that promote sequential activation (fan-in/out motifs), consistent with experimental evidence on the
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routing of neuronal activity [65].

Beyond excitation, our work also involved plasticity of I-to-E connections through a symmetric iISTDP
rule, resulting in a balance of excitation and inhibition (Fig.[1] [38]). In consequence, excitatory neurons that
initiate sequences receive strong feedback inhibition after the onset of the sequence (Fig.[S6), as observed
experimentally [8]. This is the result of inhibitory neurons that start to fire after multiple excitatory neurons in
the sequence have been activated. (Fig.[T). By countering these activations, this form of negative feedback
mechanism might limit the growth of excitatory connections and contribute to their eventual turnover [81].
E-to-l connections were modeled as non-plastic, since their plasticity rules are rarely characterized in
experiments and E-to-E and I-to-E plasticity alone was sufficient to generate sequences.

The stability of these long-tailed distributions of excitatory connections neither depended on the pres-
ence of structured input, nor it was impaired by it. Our simulations with spatially and temporally struc-
tured inputs did not affect the statistics of our excitatory weight distributions (Fig.[S11). The presence of
spatially structured inputs resulted in additional assembly structure within the connectivity matrix (Fig.
[391140,42.143,51,{74]), within which spiking sequences persisted. Fast inputs with temporal structure, on
the other hand, produced cross-assembly connections similar to “neuronal clocks” (Fig. [6} [55]). In both
cases, we observed spiking sequences of reliable followers concentrated within each assembly or across
two assemblies, and a slow turnover of the connectivity that produces them, highlighting the robustness
and flexibility of these plasticity rules.

Long-tailed distributions of synaptic weights and sequences are widely observed phenomena across
multiple brain areas and species [63,/64,66l71,[80-85]. Theoretical studies with different degrees of biolog-
ical realism have proposed links between these weight distributions and activity patterns [37}/39,57.86.,87].
Our results under unstructured or structured input contribute to this link and propose the role of specific
plasticity rules to explain the widespread presence of both, long-tailed distributions and spiking sequences,
in the brain.

Spiking sequences have been proposed to be an intrinsic feature of the brain, rather than a reflection
of sequential input [4]. The brain can use these structures during learning to anchor stimulus represen-
tations. Our results demonstrating the generation of sequences even with unstructured input provide a
mechanism for the emergence of this representational substrate. However, despite the robust statistics
of our networks, we found a constant turnover of synaptic connections (Fig. |2) that resulted in a constant
turnover of followers (Fig.[4) and thus the eventual alteration of any given sequence. If sequences are often
observed in sensory, motor and navigational cortices, and are meant to bind representations, how might
this turnover affect the encoding of external stimuli, actions or places?

An increasing body of experimental evidence suggests that representations in the brain might be sub-
ject to a slow “drift”, where patterns of neuronal activity correlate with task features in the short timescale,
but the overall representations radically change in the long term [9]. Drift has been reported in multiple
brain regions, such as mice posterior parietal cortex (PPC, [85]), mice visual cortex [11l[12], the hippocam-
pus of mice and rats [18,/88], mice olfactory cortex [89], as well as Drosophila mushroom body [90]. The
sequences that we describe here present sudden drops of single followers but overall slow changes of the
whole sequence (Fig. [4) and thus seem suitable candidates to underlie some of these drifting represen-
tations. Recent work in the hippocampus suggests that slow drift of place representation at the scale of
population codes may be the reflection of sudden changes of place fields at the level of single neurons,
which is very consistent with our modeling results [91].

To deal with how a downstream area might decode a drifting representation, theoretical studies propose
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plastic readouts that can adjust to the encoding as long as the timescale of the drift is slower than the
timescale of the decoding [92,|93]. Our sequences present a drift of the neurons involved at multiple
timescales: followers late in the sequence drop out more quickly while followers earlier in the sequence
are more stable (Fig. [4), resulting in a slow drift in the representation at the scale of the whole sequence.
Furthermore, since most neurons in our networks could elicit a sequence, multiple sequences may run
in parallel [57], which could extend even further the stability of the representations when considering the
whole population. Our work with structured input strongly supports this possibility: when considering any
strong connection among the followers within an assembly, turnover timescales became longer than our
simulations (Fig. 5] Fig.[6).

Interestingly, in the mouse primary visual cortex, the representations corresponding to some simple and
basic visual stimuli (e.g., gratings) are very stable, while the representations of more natural and complex
visual stimuli are more unstable [12]. It is possible that gratings act like our temporally structured inputs, fix-
ing neuronal representations through stereotyped repetition, while the high variance of naturalistic movies
acts like our uncorrelated input, resulting in faster turnover that translates into unstable representations.
A more interesting hypothesis is that such complexity-dependent drift results from the turnover dynamics
we observe between early (stable) followers and late (unstable) followers (Fig.[4). Previous modeling work
showed that contextual network activation determines the dynamic activation of later followers, suggesting
a higher degree of selectivity of later than earlier followers [57]. Our results would thus be consistent with
early neurons in the sequence representing simpler stimuli, possibly receiving direct thalamic inputs, while
later neurons representing more complex stimuli. These later, complex representations would be more
amenable to drift because they rely on the activation (and stability) of multiple strong connections within
the recurrent circuit (Fig. [4). Since natural environments likely present a large variety of slightly different
stimuli, later followers with very high stimulus selectivity may activate very rarely, and, consequently, may
be more prone to turnover under our plasticity rules, resulting in a stronger drift in terms of representation.
This view aligns well with prior theoretical frameworks of sparse coding, which aimed to explain why the
large majority of neurons are mostly silent [94].

Although representations of sequential activity primarily rely on strong connections, weak connections
may also be highly relevant for their turnover driven by plasticity. The high volatility of weak connections in
our simulations (Fig. |2) suggests a quick mechanism for network computations: If weak connections are
particularly susceptible to plastic changes due to the network dynamics, they may be ideally positioned to
implement fast flexibility into the network. Indeed, weak connections are likely to play a role in implementing
competition and cooperation across multiple sequences [57]. Under this view, reactivation of sequences
under changing inputs will be first subject to the modulation of weak connectivity and may, on a longer
timescale, result in the reorganization of the more stable backbone of strong connections.

Finally, although our model network may capture features of stimulus representational drift, it has a
limited memory capacity. Indeed, while changing of input patterns can be seen as a feature of flexible
adaptation to changing stimulus statistics (Fig. B Fig. [6), it can also be interpreted as a volatile memory
issue, commonly known as “catastrophic forgetting” [95]. A possible avenue of future research to address
this issue may lie in determining the suitable dynamics of learning of a readout layer, as described above
[92,193], or exposing the network to multiple alternating input patterns during training, similar to previous
modeling work on hippocampal sequence replay [96].
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Methods

Single neuron model

We used the adaptive exponential integrate-and-fire neuronal model (AdEx, [58]) for both excitatory and
inhibitory neurons, with membrane potential dynamics:

dv

mE = _gL(V - EL) - ge(V - Ee) - gz(V - Ez) + Ispik:e(v) —u—+ I(t) + f(t)7 (1)

where C,, is the membrane capacitance, g, is the leaky conductance, g. and g; are the conductances of
the excitatory and inhibitory channels. E;, E. and E; are reversal potentials of the leaky, excitatory, and
inhibitory channels, respectively (Table [T). Membrane noise is captured by I(t), a background current that
follows a Gaussian distribution with mean ., and standard deviation ., and sampled at interval 7,,,.
Spontaneous activity and inputs from other parts of the brain not included in the model are captured by a
Poisson input £(¢), formulated as a sum of Dirac’s delta functions with amplitude &..:

§(t) = eat 25(15 —ti), ()

where time points {t;} are sampled from an exponential distribution with time constant ... « is an adap-
tation variable following the dynamics given by:
du

TUE = 7au(V7EL) +bu6(t*t5pike) — U. (3)

Ik (V') is an additional exponential function of the membrane potential V' to simulate the spiking process.
It can be written as

V -V,
Lspike(V) = gL ATexp ( ATth> ; (4)

where V;, is the firing threshold and AT is a slope parameter which controls the steepness of the mem-
brane potential trace just before a spike. The spike times of one neuron are determined by the membrane
potential exceeding Vjeqi. After a spike, the membrane potential is reset to V;.cse:.

Excitatory and inhibitory conductances, g. and g;, are determined by the weights of input synapses:

d e e
Ci = —%-F E W (t — trj), )
¢ kg
dg; i
= LN wis(t -ty
% . + a wid(t —ty5), (6)

where the indices k£ and [ correspond to presynaptic excitatory and inhibitory neurons, w denotes the
synaptic weight, and j denotes the index of a single spike so that ¢;; represents the timing of the spikes of
the presynaptic neuron k. All parameters for the single neuron model are provided in Table [1]

Network model

The model network consisted of N, = 1200 excitatory (E) and N; = 240 inhibitory (I) neurons with sparse
connections between all neuron types (Fig. [TA, Table [2). Initial connectivity was random and homoge-
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Table 1. Parameters for the single neuron model

Parameter Description Value
Cm Membrane capacitance 240 pF
qgr Leak conductance 419 nS
Er Reversal potential of the leak channel -70.6 mV
E. Reversal potential of the excitatory channel 10 mV
E; Reversal potential of the inhibitory channel -75 mV
Lawn Mean of the background inputs 62.5 pA
Own Standard deviation of the background inputs 21.4pA
Twn Sampling interval of the background input 1ms
Eeat Amplitude of the external Poisson input 1mV
Text Time constant of the external Poisson input 3ms
ay Conductance of the adaptive channel 4nS
bu, Additional adaptive current when the neuron spikes 80.5 pA
Tu Time constant of adaptation 144 ms
AT Slope constant of the spiking current I ;. (V) 2ms
Vin Firing threshold -50.4 mV
Vreset Reset potential 60 mV
Vpeak Peak potential to identify spikes omVv
Te Time constant of the excitatory channel 1.1 ms
T; Time constant of the inhibitory channel 1.1 ms
dt Simulation time step 0.1 ms
Table 2. Parameters in the network model
Parameter Description Value
Pee Connection probability from E to E 0.06
Dei Connection probability from E to | 0.19
Die Connection probability from | to E 0.2
Dii Connection probability from | to | 0.11
Tee Sum of incoming E-to-E connections 297 nS
Tet Sum of incoming E-to-l connections 1012 nS
Tie Sum of incoming I-to-E connections 643 nS
T Sum of incoming I-to-1 connections 373 nS
dsyn Synaptic delay 1.5ms

neous, with weak strengths unable to cause a postsynaptic spike with a single presynaptic one. E-to-E and
I-to-E connections were plastic, while E-to-l and I-to-lI connections were static. No new connections were
created even if some of them decreased to zero due to plasticity. A synaptic delay of 1.5 ms was modeled
for all connections.

Synaptic plasticity rules

We implemented four different plasticity rules: excitatory spike-timing-dependent plasticity (STDP) for E-
to-E connections, inhibitory STDP for I-to-E connections, weight normalization for E-to-E and I-to-E con-
nections, and intrinsic plasticity for E neurons (Fig. [T]A).

Spike-timing-dependent rules and intrinsic plasticity were applied immediately after a pair of spikes was
detected. Weight normalization was applied whenever the sum of incoming or outgoing synaptic weights
changed by more than a given threshold (1% in this study).
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Excitatory STDP (eSTDP)

The change in synaptic weight of an E-to-E connection was implemented as [46]

A exp (f“) , At>0

T+

—A_exp (%) ., At<0 7

AWee =

for any pair of pre- and postsynaptic excitatory spikes separated by a temporal difference of At = t,,5: —
tpre. A4 and A_ determine the maximum amplitude of the long-term potentiation (LTP) or long-term
depression (LTD) of the synapse when At is (close to) 0. All parameters for the plasticity rules are provided
in Table 3

Inhibitory STDP (iSTDP)
The change in synaptic weight of an I-to-E connection was determined by [38]

Awie = Az exp (—élt) (8)
for any pair of inhibitory presynaptic and excitatory postsynaptic spikes separated by a temporal difference
of At = t,0st — tpre. Additionally, whenever there was a single inhibitory presynaptic spike, independently

of the presence or absence of a postsynaptic excitatory one, a corrective LTD weight change was applied:

Aw;e = —ArTD (9)

Weight normalization

Pre- and postsynaptic weight normalization was applied to both E-to-E and I-to-E connections. Postsynap-
tic normalization for E-to-E connections ensured that the sum of incoming excitatory synaptic weights for
each postsynaptic excitatory neuron remained constant at 7¢ using:

wee —ws. (10)

Presynaptic normalization kept the sum of outgoing synaptic weights from excitatory neuron i at S¢¢, using

the updating rule:

< Z;wj‘f wiy . (11)
Similarly, for I-to-E connections, the sum of incoming inhibitory synaptic weights for each postsynaptic

excitatory neuron was kept at 7°¢, while the sum of outgoing synaptic weights from inhibitory neuron i

remained constant at S:¢, using the rules:

w

whe w'e (12)

and

Wi ¢ =t (13)
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Intrinsic plasticity for excitatory neurons
The firing threshold V;;, of each E neuron was adjusted to match a universal target firing rate r;:

dVin,i
dt

=1 (zi(t) = 1) (14)

where V4, ; is the firing threshold of neuron 4, z;(¢) is equal to 1 if the neuron spikes at time ¢ and otherwise
to 0 (with units of Hz). The parameter n controls the speed of this adjustment.

Effective weights
Due to the dynamic firing threshold of excitatory neurons and in order to quantify the real impact of
synapses, we defined the “effective weight” as:

Wett = ——+, (15)

that is, the ratio of the synaptic weight 17 to the voltage distance from the resting potential V; to the firing
threshold V;;,. The resting potential V,, was estimated through simulation of the membrane potential with
only the background input I(t).

Table 3. Parameters for the plasticity rules

Parameter Description Value
Ay Maximum LTP amplitude in eSTDP 1.6 nS
A_ Maximum LTD amplitude in eSTDP 0.32nS
A; Maximum LTP amplitude in iISTDP 1.6 nS
Arrp Maximum LTD amplitude in iSTDP 0.0432 nS
T4 LTP time constant in eSTDP 15 ms
T— LTD time constant in eSTDP 30 ms
i LTP time constant in iISTDP 15 ms

n Learning rate for intrinsic plasticity 0.05 mV
Tt Target firing rate of excitatory neurons 0.45 Hz
Vo Resting membrane potential -63 mV

Alternative combinations of plasticity rules

To evaluate the contribution of each plasticity rule, we conducted simulations where one or two of these
rules was disabled (Fig.[S12). Removing both presynaptic and postsynaptic normalization led to runaway
dynamics of the network, while all other combinations resulted in steady states with approximately lognor-
mal E-to-E weight distributions (Fig.[ST2A-B).

We approximated the proportion of neurons capable of initiating a sequence as the proportion of excita-
tory neurons with maximal outgoing W.¢ greater than 2.5 nS/mV (Fig.[S2]A). In the full plasticity model, this
approximated proportion was 90.5% (Fig. [ST2C, blue), closely matching the actual proportion of 87.1%
of sequence-generating neurons observed through direct testing (n=155 neurons, Fig. [S2). Using this
approximation, we could assess the effectiveness of the stable rule combinations:

1. Removing only intrinsic plasticity: 2.25%(Fig.[S12]C, orange).
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. Removing only presynaptic normalization: 21.42% (Fig. pink).

2
3. Retaining only postsynaptic normalization: 3.08% (hub neurons, Fig. Fig.[S12C, cyan).
4. Retaining only presynaptic normalization: 70.17% (Fig.[ST2C, purple).

5

. Retaining only presynaptic normalization and intrinsic plasticity: 96.08%.

Interestingly, combinations 4 and 5, which rely on presynaptic normalization, came close and even
surpassed the full model. However, using only presynaptic normalization caused the network’s firing rate
to increase over time, ultimately far exceeding biologically observed rates (Fig.[S12D) [8]. While intrinsic
plasticity can regulate the firing rate in such scenarios, it drives the firing threshold up to -18 mV, which
is not biologically realistic. For these reasons, we used the full plasticity model in our simulations, even
though presynaptic normalization alone might be sufficient to enable sequence generation.

Sequence testing

We tested for the presence of sequences similarly to previous experimental and modeling studies [8}/57].
For the testing procedure below, we made a frozen copy of the network with disabled plasticity.

We artificially triggered a series of spikes in a randomly selected neuron, which we defined as the
“source neuron”’of the sequence. Then we calculated the “firing rate modulation” of all other neurons in the
network, defined as the change in their firing rates before and after the source neuron’s spike. Neurons
exhibiting a firing rate modulation significantly higher than expected under a statistical null model were
identified as “followers” in the sequence.

The same source neuron was forced to spike every 400 ms over M = 1,000 trials (Fig.[TE). To com-
pensate for this additional forced activity, the frequency of the external Poisson input £(¢) was reduced (7.,
=4 ms). In each trial and for each neuron in the network, we computed r; as the firing rate in the 100 ms
before the forced spike (Fig. [TE, gray shades) and r, as the firing rate in the 300 ms after (Fig.[TE, blue
shades).

To construct a statistical null model, we calculated the averages of ; and rs ((r1) and (ry)) across all
neurons and trials, and used them to simulate a single neuron firing Poisson spikes (instead of following
Eq.[1) over M’ = 10,000 trials. Hence, in each trial, this idealized neuron was set to fire at rate (r;) for the
first 100 ms and at rate (r3) in the next 300 ms.

We defined the “firing rate modulation” of each neuron Ar as Ar = ro — 1. Each pair of r; and ro,
for each trial, contributed one observation of Ar. To reduce sampling noise, we divided the M = 1,000
simulated observations and the M’ = 10,000 null observations of Ar into 10 equal-sized subsets (100
simulated and 1,000 null observations for each). In each subset, we computed the 95th percentile of Ar
from the null model. A neuron was identified as a follower only if its average (Ar) exceeded the 95th
percentile of the null model in all of the 10 subsets.

To calculate the responding probability, delay, and jitter(Fig. [S4C-D), for every identified follower, in
each of the M = 1,000 trials of spike triggering, we searched for its first spike after the forced source
spike (Fig.[TE). If none was detected within a 300 ms window after the spike triggering, we considered the
follower unresponsive to the source neuron for that trial. If a spike was found, the elapsed time from the
triggered spike was recorded as the delay. If a follower responded to the source neuron in M* out of the
M = 1,000 trials, its responding probability was then M* /M (Fig.[TE). A total of M * delays were recorded,
with the median calculated as the median delay, and the standard deviation defined as the jitter.

23


https://doi.org/10.1101/2024.09.27.615499
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.27.615499; this version posted November 1, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

After extracting the sequences generated from all excitatory neurons, we estimated the minimal effec-
tive weight required to trigger a follower. The threshold was estimated to be 2.5 nS/mV (Fig. [S2[C) and
determined as the criterion to classify strong connections.

Turnover of connections

We calculated the turnover of existing connections by estimating the mean proportion that remains at
a given time interval (Fig. [2D). We used up to 11 evenly-spaced snapshots of the network after it had
reached steady state. For example, to estimate turnover of connections at a 2,000s interval for a sim-
ulation that reached steady state at 8,000s and lasted a total of 16,000s, we took snapshots at ¢t =
8,000s, 10,000s, 12,000s, 14, 000s, 16,000s. Then, we calculated the ratio of connections that remained
from one snapshot to the next and averaged them across all snapshots, resulting in one estimate per
instantiation of the network.

Pooling estimates across multiple instantiations and multiple time intervals, we estimated the turnover
time constant = of connections by fitting using an exponential function:

r=ax*exp(—t/7)+1—a, (16)

where r is the remaining ratio and ¢ is the time interval. If there was no baseline in the exponential function

(Fig.[2D, BE, [6E), we fixed a = 1 in the fitting.
The turnover of motifs were calculated following the exact same procedure.

Motif analysis

The frequency of motifs composed of strong E-to-E connections (F, Fig. colored) was defined as the
ratio of the total count of motifs (V) and the number of all potential excitatory motifs that could exist in the

network (Ny):
N

N
Ny is different for each motif type and can be calculated from the connection probability (p..) and the
number of excitatory neurons (V,).

For linear chains,

F (17)

No=P(Nea3)pze=p35Ne(Ne—1)(Ne—2)7 (18)

where P is the number of permutations. For convergence and divergence motifs,
N, -1 1
A G o R A ) (19)

For fan-in/out motif,
N(/J/:Nepchilpze:pgeNE(Ne_l)(Ne_Z)- (20)

We compared this frequency (F') with the one expected if strong connections were randomly shuffled
(Frands Fig.[3C black). We use the ratio (po, Fig.[2B) of strong E-to-E connections to the expected number
of E-to-E connections (p.. N.(N. — 1)) to calculate the expected count of a particular motif in a fully random
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network (V,q»q). For linear chains,

Nrand = (pOpee)2(1 - pOpep)4Np(N€ - 1)(N(> - 2)

Nrand (21)
N = P51 — popee)*.

F’r’and =

For convergence and divergence motifs,

N;and = (p0p66)2(1 - popee)4Ne(Ne —1)(Ne —2)/2
N (22)
'r/'and = N6 4 = pg(l - p0p66)4

For fan-in/out motif,
Nfl'/and = (p0p6€)3(1 _pOpee)gNe(Ne - 1)(Ne - 2)

1

rand — po(l 7p0pee) .

Follower turnover

When analyzing follower turnover based on responding probabilities, delays, and synaptic jumps (Fig. (4D,
ME, and[STOA), we selected an interval of 1,000 s and took 9 snapshots of the network from ¢ = 8,000 s
to t = 16,000 s, generating 8 intervals to calculate the remaining ratio of followers. Taking Fig. as an
example, we selected 50 sequences and went over these 8 intervals, calculating the remaining ratio of the
followers with given responding probability. This yielded 400 ratios, which were averaged using the number
of followers in each snapshot as weights.

Spatially and temporally structured inputs

To simulate spatially structured inputs, we introduced an input pattern with pairwise correlations to the
network, superimposed on the unstructured Poisson input as a background. The pattern was composed of
12 randomly partitioned assemblies of 100 excitatory neurons each. These assemblies were sequentially
activated with correlated inputs for 100 s, separated by 5 s gaps between activations (Fig. [5A, also see
table below for parameters). At any given time, only one assembly received correlated inputs, while all
other assemblies and inhibitory neurons were driven by unstructured Poisson inputs. Note that, when
switching from one pattern to another (Fig. [5H), since patterns were random and all neurons belonged to
some assembly, the two patterns had a slight overlap. The network reached a steady state after ~10,000 s
of training (Fig. [5B-C). All parameters for the spatially structured inputs are provided in Table [4]

Table 4. Parameters of the spatially structured inputs (Fig. )

Parameter Description Value

Teorr Period in which correlated inputs are given to an assembly 100 s

Tyap Period in which no correlated inputs are given (between two pe- | 5s

riods with correlation)

Peorr Correlation of correlated external inputs 1.0 (fully corre-
lated)

Eext,e Amplitude of external inputs to E neurons 20 mV

Text,e Time constant of external inputs to E neurons 400 ms

Eeat,i Amplitude of external inputs to | neurons 20 mV

Text,i Time constant of external inputs to | neurons 300 ms
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For generating temporally structured inputs, we modeled inputs as Poisson spikes targeting one as-
sembly at a time, then shifted sequentially to the next. Each assembly was activated for 10 ms and then
received no input until the next cycle. Inhibitory neurons still received unstructured Poisson inputs at any
time (also see table below for parameters). All parameters for the temporally structured inputs are provided
in Table Bl

Table 5. Parameters of the temporally structured inputs (Fig. @)

Parameter Description Value
Teorr Period in which correlated inputs are given to an assembly 10 ms
Tgap Period in which no correlated inputs are given (between two pe- | 0
riods with correlation)
Eeate Amplitude of external inputs to E neurons 1mVv
Text,e Time constant of external inputs to E neurons 0.6 ms
Eeat,i Amplitude of external inputs to | neurons 1mV
Text,i Time constant of external inputs to | neurons 3 ms
T4 Target firing rate of E neurons 0.7s

Entropy and rank correlation of the sequence

Following the same calculation as in [8], the entropy of a sequence was defined as

Hp = — Z Piilog Py, (24)

where P, is the probability for follower i to be the k" to fire in the sequence. In a totally random sequence
with n followers, P;, = 1/n for all the followers and the entropy for any k equals to

1 1
Hy = —nx —log— = logn, (25)
n n

allowing us to define the normalized entropy as Hy/H,. We took the n = 135 sequences in Fig.
calculated their normalized entropy, and then created 10 shuffled sequences for each of them (1350 in

total) as a null model (Fig. [S4A).
To calculate the rank correlation of sequences (Fig.[S4B), we first defined an order matrix for every trial
in which a spike was triggered. Specifically, for trial k, the order matrix Oy (i, j) was defined as

1, follower i fired prior to follower j
o —1, follower j fired prior to follower i
Ok(i,j) = o (26)
0, one of follower i and follower j didn'’t fire

0, the difference of their firing time was smaller than 2 ms

Then we defined
Sk,i(1) = (O(i,5) O1(3, 7)) j#i- (27)

As a result, a positive Sy ;(¢) means the firing order of follower i relative to other followers was similar in
trial & and trial I. A negative Sy ;(i¢) means the firing order was reversed. Then we could calculate the rank
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correlation for neuron ¢ as
(i) = (Sk,1(1))k,1- (28)

Hub neurons

Removing presynaptic normalization and intrinsic plasticity led to the appearance of hub neurons (Fig.[S8).
For these simulations, some parameters were different as listed in Table [6]to avoid runaway activity through
explosive excitation (STDP parameters) or to show the EPSPs triggered solely by the forced spike (£..¢).

Table 6. Hub neurons

Parameter Description Value

Ay LTP amplitude in eSTDP 0.4nS

A_ LTD amplitude in eSTDP 0.08 nS

A; LTP amplitude in iISTDP 0.4 nS

ArTp LTD amplitude in iSTDP 0

Eext Amplitude of external Poisson inputs (only for Fig.) 0
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Figure S1. Synaptic plasticity mechanisms in the model neural network. follow a Hebbian
pair-based eSTDP rule and I-to-E connections follow a pair-based iSTDP rule. Synaptic normalization
preserves the total sum of incoming and outgoing weights (E-to-E and I-to-E). Intrinsic adjusts the firing
threshold of excitatory neurons if the firing rate is higher or lower than the target firing rate. A. Schematic
of the model network with 1,200 excitatory and 240 inhibitory AdEx neurons, where E-to-E and I-to-E
connections are plastic. B. The STDP rules that changes the E-to-E (eSTDP) and I-to-E (iSTDP) synaptic
weights. C. Synaptic normalization preserves the total sum of incoming and outgoing weights (E-to-E and
I-to-E). D. Intrinsic plasticity adjusts the firing threshold of excitatory neurons if the firing rate is higher or
lower than the target firing rate.

35


https://doi.org/10.1101/2024.09.27.615499
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.27.615499; this version posted November 1, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A 150 1 B 120 C 120
= » [—JE followers
® —o—E followers s ;tb 5 C—JE followers [ ] followers
S =0~ | followers 08 2 - = 100 ]I followers 100
3 : (o)} 2]
c (<] L
€ 100 8 = g0 S 8o
E 20 3 60 2 60
® 04 3 8 o N
‘5 50 %5 = O 40 3 40
I o 2 (@]
02 =S € S
3 " S 20 20
[0} o
(&) 14 < O
0 0 0 0-
2 4 6 8 10 0 50 100 150 0 50 100
Maximal outgoing WBff (nS/mV) Number of followers Number of responding followers in one trial

Figure S2. Statistics of sequence generation. A. Sequence generation plotted against source neurons’
maximal outgoing effective weight. (Gray bars) Histogram of the maximal outgoing We¢ of the 1,200
excitatory neurons in a model network. (Blue line) The ratio of source neurons that had at least one
excitatory follower, given the maximal outgoing Wy, calculated within the n = 155 source neurons that we
chose. (Red line) The ratio of source neurons that had at least one inhibitory follower, given the maximal
outgoing Wy, calculated within the n = 155 source neurons that we chose. B. Distribution of the number
of excitatory followers and inhibitory followers of the n = 155 source neurons that we tested. C.
Distribution of the number of followers that spiked after the forced spike of the same source neuron.
Pooled from 1,000 consecutive trials.
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Figure S3. More examples of sequences generated in the same network as in Fig. El. Blue curves

indicate median delays of excitatory followers. Red curves indicate median delays of inhibitory followers.

Cyan and pink shades indicate jitters.
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Figure S4. Sequence properties. A. Normalized entropy of sequence in the model network (black) and
the null model with shuffled sequences (red). Data pooled from all source neurons with at least one
follower (n = 135). Each sequence was shuffled 10 times. B. Rank correlation as a function of spike rank
in the model network (black) and the null model with shuffled sequences (red). Same data as D. C. Delay
of excitatory followers after source spike. Solid line indicates the median delay and shading indicates the
jitter (standard deviation across all trials). D. Same as C but for inhibitory followers.
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Figure S5. Two dimensional density plot of followers’ responding probability, median delay, and
jitter. A. Density plot of responding probability and median delay of followers. Median delay is negatively
correlated to responding probability. Pearson correlation » = —0.507. B. Density plot of responding
probability and jitter of followers. Jitter is negatively correlated to responding probability. Pearson
correlation » = —0.246. C. Density plot of median delay and jitter of followers. Jitter is positively correlated
to median delay. (Blue) Excitatory followers; (Red) Inhibitory followers. Darker color indicates higher
probability density. Pearson correlation » = 0.343. Pooled over 7,769 excitatory followers and 2,796
inhibitory followers from 135 sequences.
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Figure S6. Feedback inhibition from inhibitory followers. A. Source neuron triggers feedback
inhibition in the model. Blue: source neuron membrane potential after a spike. Pooled over n = 15
neurons. Black: membrane potential of isolated neurons. Pooled over n = 1,200 neurons. Solid lines
indicate means and shadings the standard deviations. B. Quantification of feedback inhibition (A). The
average hyperpolarized membrane potential is quantified as the mean of the membrane potential within
50 ms to 100 ms after the spike.
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Figure S7. The turnover of I-to-E connections. A. Average strength of multiple groups of I-to-E
connections picked from the tail of the W distribution at different time points, after the weight distribution
has reached a steady state. B. The decay rate of strong I-to-E weights (W > 2.5) and weak I-to-E
connections (0.5 < Wei < 2.5). Dots indicate ratios calculated from simulations with 10 instantiations of
the network. Dashed lines indicate exponential fits with different time constants and baselines for each

group.
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Figure S8. A model network without presynaptic normalization and intrinsic plasticity generates
hub neurons and short sequences. A. The comparison between the motif frequency at ¢t = 6,000 s in
the alternative model network with hub neurons and the estimated ratio in a random control network given
the py value at that time point. Calculated from 10 trials. Error bars represent standard deviation. ***:

P < 0.001. B. Hub neurons. The synaptic strength is proportional to the firing rate of neurons. Neurons
with a high firing rate have a much greater impact on the network dynamics. Left: presynaptic neurons in
E-to-E connections. Right: Postsynaptic neurons in E-to-E connections. C. Short sequences as a result of
hub neurons. Left: excitatory followers. Right: inhibitory followers. D. Explosive dynamics in which a great
number of followers can be generated within a time window as short as 30 ms. Left: excitatory neurons.

Right: inhibitory neurons.
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Figure S9. The decay of three-neuron motifs in our model network (color-coded) and in the null
model (gray) in which the connections were shuffled. A. Linear chains. The decay of linear chains in
our model network was comparable to the null model, consistent with Fig. [3D in which the ratio of linear
chains was comparable to the null model. B. divergence motifs. The decay of divergence motifs in our
model network was much faster than the null model, consistent with Fig. ED in which the ratio of
divergence motif was much lower than the null model. C. Convergence motifs. The decay of convergence
motifs in our model network was much faster than the null model, consistent with Fig. 3D in which the ratio
of convergence motifs was much lower than the null model.
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Figure S10. A. The remaining ratio of followers after a 1,000 s interval decreases with the median delay
of followers. Solid line indicates the average and shade represents the standard deviation. B. The strong
synaptic jump is negatively correlated to the responding probability. Pearson’s correlation » = —0.386,
pooled over 2,508 followers at t = 8,000 s in Fig.[4l C. The strong synaptic jump is positively correlated to
the median delay. Pearson’s correlation » = 0.494, same followers as B.
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Figure S11. E-to-E distribution reached a steady state after training with structured inputs. A. The

network develops a stable distribution which can be fit as lognormal when trained with spatially structured
inputs. Left: ¢ = 10,000 s, right: ¢ = 25,000 s, orange curve shows the fit, R? = 0.809 for the left and

R? = 0.821 for the right. B. The network develops a stable distribution which can be fit as lognormal when
trained with temporally structured inputs. Left: ¢ = 8,000 s, right: ¢ = 16,000 s, orange curve shows the fit,

R? = 0.669 for the left and R? = 0.669 for the right.
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Figure S12. Alternative plasticity models can also support sequence-generating networks. A.
Steady-state distribution of E-to-E synaptic weight under different combinations of plasticity rules
(counterpart of Fig.[T[C). Inset: Zoomed-in view of the distribution from 1 to 10 nS/mV. B. Ratio of strong
E-to-E connections (Wi > 2.5) over time (counterpart of Fig. solid line). C. Histogram of the maximal
outgoing Weg across the 1,200 E neurons in the steady-state model network (counterpart of Fig.[S2A,
gray shade). The black dashed line indicates the minimal W required to initiate a sequence (West = 2.5).
D. Traces of population firing rate of E neurons over time, smoothed using a third-order Savitzky-Golay
filter with a 50-second time window. The y-axis is clipped at 3 Hz for visualization. E. Distribution of firing
thresholds of E neurons in the steady-state network when intrinsic plasticity is active. Black arrow on the
left indicates the initial firing threshold, which was identical for all excitatory neurons.

43


https://doi.org/10.1101/2024.09.27.615499
http://creativecommons.org/licenses/by-nc-nd/4.0/

