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Abstract

Forming an episodic memory requires binding together disparate elements that co-occur in a single
experience. One model of this process is that neurons representing different components of a memory
bind to an "index" — a subset of neurons unique to that memory. Evidence for this model has
recently been found in chickadees, which use hippocampal memory to store and recall locations of
cached food. Chickadee hippocampus produces sparse, high-dimensional patterns ("barcodes") that
uniquely specify each caching event. Unexpectedly, the same neurons that participate in barcodes
also exhibit conventional place tuning. It is unknown how barcode activity is generated, and what
role it plays in memory formation and retrieval. It is also unclear how a memory index (e.g. barcodes)
could function in the same neural population that represents memory content (e.g. place). Here, we
design a biologically plausible model that generates barcodes and uses them to bind experiential
content. Our model generates barcodes from place inputs through the chaotic dynamics of a recurrent
neural network and uses Hebbian plasticity to store barcodes as attractor states. The model matches
experimental observations that memory indices (barcodes) and content signals (place tuning) are
randomly intermixed in the activity of single neurons. We demonstrate that barcodes reduce memory
interference between correlated experiences. We also show that place tuning plays a complementary
role to barcodes, enabling flexible, contextually-appropriate memory retrieval. Finally, our model
is compatible with previous models of the hippocampus as generating a predictive map. Distinct
predictive and indexing functions of the network are achieved via an adjustment of global recurrent
gain. Our results suggest how the hippocampus may use barcodes to resolve fundamental tensions
between memory specificity (pattern separation) and flexible recall (pattern completion) in general
memory systems.

+ 1 Introduction

2 Humans and other animals draw upon memories to shape their behaviors in the world. Memories of specific personal
3 experiences — called episodic memories ( , ) — are particularly important for livelihood. In animals,
4 episodic-like memory is operationally defined as the binding of the “where”, “what”, and “when” components that
5 comprise a single experience. This information can later be retrieved from memory to affect behavior flexibly, depending
6 on context ( , ). The binding of memory contents into a discrete memory is thought to occur

7 in hippocampus. Previous work proposed that hippocampus supports memory by generating an “index”, that is, a signal

g distinct from the contents of a memory ( R ; s ). In this scheme, during
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9 memory formation, plasticity links the neurons that represent memory contents with the neurons that generate this
10 index. Later, re-experience of partial memory contents may reactivate the index, and reactivation of the index drives

11 complete recall of the memory contents.

12 Indexing theory was originally articulated at an abstract level, without reference to particular neural repre-
13 sentations( , ). More recently, signatures of index signals were identified in neural activity
14 through experiments in food-caching chickadees (Poecile atricapillus), an influential animal model of episodic memory
15 ( , ). ( ) identified “barcode”-like activity in the chickadee hippocampus during memory
16 formation and suggested that barcodes function as memory indices. Barcodes are sparse, high-dimensional patterns of
17 hippocampal activity that occur transiently during caching. They are unique to each cache and are uncorrelated between
18 cache sites, even for nearby sites with similar place tuning. Barcodes are then reactivated when a bird retrieves the
19 cached item. Chickadee hippocampus also encodes the bird’s location — as expected, given the presence of place cells
20 — as well as the presence of a cached sunflower seed, irrespective of location. Thus, ( ) found that
21 hippocampal activity contains both putative memory indices (in the form of barcodes) and putative memory content (in

22 the form of place and seed-related activity).

23 These findings raise several critical questions. How are barcodes generated and associated with place and
24 seed-related activity during caching? How can hippocampal dynamics subsequently recall these same patterns during
25 retrieval? Critically, neurons participate in both barcodes and place codes with near random overlap, in contrast with
26 theoretical models where content and indexing functions occur in separate neurons ( , ;

27 , ; , ; s ; , ). It is unclear at a
28 computational level how memory index and content signals can be functionally distinct when they coexist in the same

29 network and even in the activities of single neurons.

30 In this paper, we use the findings of ( ) to guide the design of a biologically-plausible
31 recurrent neural network (RNN) for cache memory formation and recall. The model generates barcodes and associates
32 them with memory content in the same neural population. At recall time, the model can flexibly adjust the spatial scale
33 of its memory retrieval, ranging from site-specific information to search of an extended area, depending on contextual
34 demands. Using this model, we demonstrate the computational advantages of barcode-mediated memory by showing
35 that it reduces interference between similar memories. We also show that place and barcode activities in the model play

36 complementary roles in enabling memory specificity and flexible recall.

7 2 Results

s 2.1 Barcode representations in the hippocampus are observed during caching

39 We first review the key experimental results in ( ). Black-capped chickadees were placed in a

40 laboratory arena comprised of a grid of identical sites. Each site had a perch to land on and a hidden compartment,
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Figure 1: Hippocampal activity during food-caching reveals sparse ‘“barcodes’ for each cache memory. A. A
black-capped chickadee visits cache sites in a laboratory arena. The chickadee does not interact with cache sites during
what we call a visit. B. A chickadee caches or retrieves at a cache site by peeling back the rubber flap at the site. This
reveals a hidden compartment where seeds can be stored. C. Cartoon example of spiking activity during visits of four
hippocampal neurons in a square arena. Spikes are in red. Gray diamonds indicate the location of sites with caches. D.
As in (C), for the same cells during caching and retrieval. Neurons fire sparsely and randomly during caches (activity
clusters at sites) independent of their place tuning. E. Correlation of population activity during visits to the same or
different sites of increasing distance. Values are max-normalized. Reproduced with permission from

( ). F. As in (E), but comparing activity from caches at a site to activity from retrievals at the same or different sites.
Barcode activity shared between caches and retrievals at the same site produces a sharp deviation from smooth spatial
tuning. Values are normalized by the same factor as in (E). Reproduced with permission from ( ).

41 covered by a flap, where a seed could be hidden. Chickadees were allowed to behave freely in this environment and
42 collect sunflower seeds from feeders. A chickadee often visited sites without interacting with the hidden compartment
43 (Figure 1A) but, at other times, the chickadee cached a seed into the compartment, or retrieved a previously cached

44 seed (Figure 1B). Previous experiments demonstrated that chickadees remember the precise sites of their caches in this

45 behavioral paradigm ( , ).
46 ( ) recorded hippocampal population activity during these behaviors. When chickadees
47 visited sites, place cells were observed, similar to those previously found in birds and mammals( , )

48 (Figure 1C). Place cells did not change their spatial tuning after a cache. Instead, during caching and retrieval, neurons
49 transiently displayed memory-related activity. During caching, neurons fired sparsely, with individual neurons producing
so large activity bursts for a small subset of caches at seemingly random locations (Figure 1D). These bursts occurred
51 in both place cells and non-place cells, with the location of cache bursts unrelated to a neuron’s place tuning. At
52 the population level, activity during a cache consisted of both typical place activity and a cache-specific component
53 orthogonal to the place code, termed a “barcode”. Strikingly, barcode activity for a particular cache reactivated during
s4 later retrieval of that cache. These findings were evident when examining the correlation between population activity
55 vectors for visits, caches and retrievals at different sites. When comparing two visits, the correlation profile decayed
s6 smoothly with distance, as expected from place tuning (Figure 1E). When comparing caching with retrieval, a similar

57 smooth decay was observed for most distances, indicating the presence of place tuning. However, there was a substantial
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58 boost in correlation for caches and retrievals at the exact same site (Figure 1F). This site-specific boost resulted from

59 reactivation of the cache barcode during subsequent retrieval.

60 Barcode activity during caching and retrieval, which are moments of memory formation and recall, suggests a
61 mechanism supporting episodic memory. We hypothesize that the hippocampus generates a sparse, high-dimensional
62 pattern of activity transiently during the formation of each memory, and that this serves as a unique index to which the
63 contents of the memory are bound. Reactivation of the barcode at a later time drives the recall of the associated memory
64+ contents. In the food caching behavior studied by ( ), the contents of memory include the location

65 (“where”) and presence of a seed ("what"). Below, we implement this hypothesis in a computational model.

es 2.2 Generating barcode activity with random recurrent dynamics.

67 We model the hippocampus as a recurrent neural network (RNN) ( s ; s ; s
68 ) and propose that recurrent dynamics can generate barcodes from place inputs (Figure 2A). As in experiments, the
69 model’s population activity during a cache should exhibit both place and barcode activity components. The network
70 receives place inputs termed p which are spatially correlated as follows. Each neuron in the RNN receives inputs that
71 are maximal at one location in the environment and decay with distance from that location, causing the neuron to have a
72 single place field centered at that location. Across neurons, place fields uniformly span the environment. The firing
73 rate activity of RNN units is denoted as Z. The recurrent weights of the model are given by J, and the RNN activity &
74 follows standard dynamics equations:

7 = ReLU(7) (1)

75

— = —g(DT+JZ+p 2)

76 where ¥ is the voltage signal of the RNN units and ¢(-) is a leak rate that depends on the average activity of the
77 full network, representing a form of global shunting inhibition that normalizes network activity to prevent runaway
78  excitation from recurrent dynamics. In our simulations, we simplify the task by using a 1D circular environment binned
79 into 100 discrete spatial “states”. We set the spatial correlation length scale of place inputs such that the smallest
go distance between cache sites in the experiments of ( ) is equal to 8 of these states (see Methods for

81 more details).

82 We initialize the recurrent weights from a random Gaussian distribution J ~ A (NLZ, J%i)’ where N, is the
83 number of RNN neurons and p < 0, reflecting global subtractive inhibition that encourages sparse network activity
84 to match experimental findings ( ). We first consider network activity before any learning-related
85 changes. For the range of parameters we use, the network is in a chaotic state with a roughly constant overall level of
86  activity but fluctuations in the activities of individual units. From an initial state of 0, we run recurrent dynamics until
g7 this steady-state level of overall activity has been achieved (Figure S1A,B). The chaotic recurrent dynamics induced

g8 by the random weights ( , ) effectively scrambles incoming place inputs. We demonstrate this

go by measuring the correlation of RNN activity across different locations and plotting this correlation as a function of


https://doi.org/10.1101/2024.09.09.612073
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.09.612073; this version posted September 18, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

>

z o=1 o=7 0=20
O 1.0 ! 1.0 @ 1.0 -@
g O O c ' RNN Activity
2 A 1-to-1 £ 05 - * 0.5 - 0.5 -
s O— O< O s v v
s O Soo. ®& 0.0 - .\ 00 - @@
= 8o . Y : 000
O %y >e
{ L)
0123456 0123456 0123456
Jij ~ N(NL 5\’72) Distance (sites) Distance (sites) Distance (sites)
Low recurrent strength during visits (r = 0) High recurrent strength during caches (r = 1)
C.>1- E. 1. D.>10  eeeew . . F 5 -
31' Late . gN 31' Late 8(\‘4*
< cQ c cC® 3-
2 S w® o S®
Q.+ o Q +
3 g 3 : g 2
© ] 4 - xe .
0 - 0 - () - cmmesmeme onim 8o it oo o 0 -
0 1
Network Unit Response to State 1 Network Unit
G. max = 0.86 H. l. max = 0.98 J.
2 .
) S+
place field peak
max = 0.86 2 max = 0.31 2
: . 2 CJI | N
c z IS z
D E -2 'y E
max = 0.83 max = 0.32
(sl [y}
= : ) AN
) - = A
Location Location Location Location

Figure 2: A recurrent neural network generates barcode activity through recurrent dynamics. A. Diagram of a
RNN; the activity of the network units is denoted as . Place information arrives from an input layer with activities p.
Recurrent weights are initialized randomly, that is, J;; ~ A (NLI, J‘(,—i) for the synapse connecting neuron j to neuron
i, where N, is the number of RNN neurons. B. Correlation of activity vectors across different locations, when RNN
weights are initialized with ¢ = 1 (left), ¢ = 7 (center), and o = 20 (right). We show correlation of place inputs
(gray) and correlation of the RNN’s rate vector at ¢ = 100 (black). X-axis is in units of site distance (see Methods for
definition). C. Response of RNN units when simulating a visit to a location halfway around the circular track (with
r = 0; equation 3). In gray is the activity of the RNN at ¢ = 1. In black is the activity at ¢ = 100. 200 RNN units are
uniformly subsampled and sorted by the tuning of their inputs for plotting purposes. D. As in (C), but for » = 1. RNN
activity is more sparsely distributed, including high activity in neurons without place tuning for the current location.
For visualization purposes, 50 RNN units with nonzero activity and 50 RNN units with 0 activity are sampled at this
time point (¢ = 100) for display, and responses greater than 1 are clipped to > 1. E. RNN activity in response to
state 1 compared to state 2, when = 0. Each point corresponds to a single RNN unit. F. As in (E), but for r = 1.
RNN activity for these neighboring states is substantially decorrelated by recurrence. G. Firing fields of three example
units on the circular track displaying place-cell activity. Maximum value of each field is labeled and the colormap is
max-normalized. H. Simulated spike counts of a RNN population during visits to each location on the circular track.
Spikes are generated by simulating Poisson-distributed counts from underlying unit rates. Place tuning results in a
strong diagonal structure when units are sorted by their input’s preferred location. The maximum limit of the colormap
is set to the 99th percentile value of spike counts (>3 spikes). I. Same neurons as (G), but for » = 1 with units now
showing barcode activity. The location of the » = 0 place field peak of each unit (i.e., its corresponding peak in (G)) is
marked by a red triangle. J. As in (H), but for » = 1. The independence of barcode activity for neighboring sites results
in a matrix with reduced diagonal structure.
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90 distance (Figure 2B). Place inputs show a smoothly decaying correlation curve. At low values of o, the network is
91 primarily input driven, showing a smoothly decaying correlation matching inputs. At high values of o, recurrence is so
92 strong that it entirely eliminates the spatial correlation of nearby sites: activity at each state is decorrelated from activity

93 at all other states.

94 Interestingly, at an intermediate level of o = 7, the network retains elements from both high and low recurrence
o5 regimes (Figure 2B). The network exhibits a smoothly decaying correlation curve reflecting its inputs, but each state’s
96 activity also contains a strong decorrelated component, apparent in the large drop in correlations for nearby but non-
97 identical sites. This intermediate network regime closely resembles spatial correlation profiles observed during caching
98 ( , ) (Figure 1F). The smoothly decaying component is caused by the place code, whereas the sharp
99 peak at zero distance — reflecting barcode activity — is caused by the recurrent dynamics. We thus construct networks
100 using intermediate o values, which allow for the coexistence of place code and barcode components in population

101 activity.

102 A key result from ( ) is that the hippocampus exhibits both place code and barcode activity
103 during caching and retrieval, but only place activity during visits. We propose that this effect can result from a network
104 in which recurrent strength is flexibly modulated. In a low-recurrence condition, the network produces the place code,
105 whereas in a high-recurrence condition the same network produces a combination of place code and barcode activity.
106 To simulate this in our model, we modify equation 2 to

% =—g(@)W+rJZ+pP 3)
107 where the newly included r € {0, 1} scales recurrent strength such that the network may be in a feedforward (r = 0) or
108 recurrent regime (r = 1). During visits, we assume the network is operating with low recurrent strength (r = 0). As a
109 result, the activity in the RNN exhibits the spatial profile of its place inputs. We verify this is the case by visualizing
110 early and late RNN activity given a place input (Figure 2C). With low recurrence, early and late RNN activity have
111 similar spatial profiles, and late activity patterns for nearby states are highly correlated (Figure 2E). In contrast, when
112 recurrence is enabled (r = 1), network activity is sparse with a heavy tail of a few strongly active neurons, and is
113 decorrelated between nearby states (Figure 2D,F). These changes match experimental observations of excitatory neurons

114 during food caching ( , ).

115 We visualized neural activity during visits (» = 0) and caches (r = 1). During visits, RNN units display
116 ordinary place tuning (Figure 2G, S1C). We also simulated spikes for all units at each location, and visualized this
117 as a matrix where units were sorted by the preferred location of their inputs (Figure 2H). This matrix exhibits a
118 diagonal structure reflecting strong spatial correlations. During caches, single neurons develop sparse, scrambled spatial
119 responses relative to their place tuning (Figure 21, S1C). Accordingly, simulated spikes across the population have
120 greater random, off-diagonal components during caching than during visits. Thus, recurrence in a randomly connected

121 RNN is a simple and effective mechanism to generate barcode signals from spatially correlated inputs. We alternatively
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Figure 3: Barcode activity binds content to store memories in the RNN. A. Diagram of RNN activity during memory
formation. Along with place inputs, a scalar seed input s is provided to the model. s connects to RNN units via
5000-dimensional weight vector js, ~ A(0, 1). During memory formation (i.e., when an animal caches a seed), place
inputs representing the animal’s current location and a seed input are provided to the RNN. After recurrent dynamics
are run for some time (¢ = 100), the network undergoes Hebbian learning. B. An example of memory recall in the
network. The animal is at the same location as in (A). The place input encoding that location is provided to the model
and results in the RNN recalling the stored attractor pattern seen in (A). C. Examples of RNN population activity during
caching (left), retrieval (center), and visits (right) at three sites. During visits the RNN has r» = 0, while during caches
and retrievals r = 1. For visualization purposes, 50 units are randomly sampled and displayed in the “Caching” and the
“Retrieval” plot. D. Correlation of Poisson-generated spikes simulated from RNN rate vectors at two sites, plotted as a
function of the distance between the two sites. In black is the correlation in activity between two visits. In purple is the
correlation between caching and retrieval activity. Experiments were simulated with 20 simulations where 5 sites were
randomly chosen for caching and retrieval. 99% confidence intervals are calculated over the simulations and plotted
over the markers. Compare to Figure 1E,F.

122 considered a feedforward mechanism to generate barcodes, in which barcodes are computed by a separate feedforward
123 pathway (Figure S2). We found the feedforward mechanism required an unreasonably large number of neurons and

124  sparsity levels to match the decorrelation level of the recurrent mechanism.

125 2.3 Storing memories by binding content inputs with a barcode.

126 Having suggested a mechanism for the generation of barcode representations, we next propose how such a representation
127 can be leveraged for memory storage in a network model. In our food-caching task, we assume that the contents of a
128 memory include the location of the cache and the identity of a food item within the cache. Thus, we add an additional
129 input source besides spatial location into our model — an input s representing the presence of a seed (Figure 3A). The
130 "seed" input projects randomly onto the RNN neurons. During caching, both place inputs and seed inputs arrive into

131 the RNN, matching experimental findings ( , ). This causes a mixed response in the network: one
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132 component of the response (place activity) is spatially tuned, another component (seed activity) indicates the presence
133 of a seed and does not vary with location, and the third component (barcode activity) is generated by recurrent dynamics

134 interacting with these inputs.

135 To store memories, we assume the RNN undergoes Hebbian learning after some fixed time point during the

136 7 = 1 recurrent dynamics (Figure 3A). At this time, the synapse j — i changes by an amount
AJZ']’ X XTiTj; — ﬂiﬂz (4)

137 where 8 > 0 provides an overall inhibition of the stored pattern. This term helps to prevent network activity from
138 collapsing to previously stored attractors. Memory storage works as follows, following the experimentally observed
139 sequence in ( ): place inputs arrive into the RNN, recurrent dynamics generate a random barcode, seed
140 inputs are activated, and then Hebbian learning binds a particular pattern of barcode activity to place- and seed-related

141 activity. In this way, fixed-point attractors are formed corresponding to a conjunction of a barcode and memory content.

142 Memory recall in our network follows typical pattern completion dynamics, with recurrence strength set
143 to r = 1 as for caches. As an example, consider a scenario in which an animal has already formed a memory at
144 some location [, resulting in the storage of an attractor @ into the RNN. The attractor @ can be thought of as a linear
145 combination of place input-driven activity p(l), seed input-driven activity s, and a recurrent-driven barcode component
146 b. Later, the animal returns to the same location and attempts recall (i.e. sets » = 1, Figure 3B). Place inputs for
147 location [ drive RNN activity towards p(l), which is partially correlated with attractor @, and the recurrent dynamics
148 cause network activity to converge onto attractor @. In this way, barcode activity b is reactivated as part of attractor a,
149 along with the place and seed components stored in the attractor state p(l) and s. The seed input can also affect recall,

150 as discussed in the following section.

151 As an initial test of memory function in our model, we analyzed the activity patterns that are stored and
152 recalled in the model. We simulated caching at different sites in the arena and extracted the population activity that is
153 stored via Hebbian learning (Figure 3C, left). We then simulated retrieval as an event in which the animal returns to the
154 same site and runs memory recall dynamics (r = 1) in the RNN. Population activity during retrieval closely matches
155  activity during caching, and is substantially decorrelated from activity during visits (Figure 3C). To compare our model
156 with the empirical results reproduced in 1E,F, we ran in silico experiments with caches and retrievals at varying sites
157 in the circular arena. We simulated Poisson-generated spikes drawn from our network’s underlying rates to match
158 the intrinsic variability in empirical data (see Methods). We find that population activity in the RNN is more strongly
159 correlated between caches and retrievals at the same site than two visits to a site that are not seed related (r = 0; Figure
160 3D). In addition, cache-retrieval correlations for non-identical sites rapidly drop to the level of visit-visit correlations
161 because barcodes are orthogonal even for nearby sites. These correlation profiles closely resemble those observed in

162 ( ) (compare Figures 3D and 1E.F).


https://doi.org/10.1101/2024.09.09.612073
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.09.612073; this version posted September 18, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A Cache Presence Cache Location
' Is there Answer: B. Where is the:, Answer:
food here? Yes closest food? [
[ O
OO = Ol =]
C. D. Narrow Search Broad Search
5 1.0 - — 5
3 ga- W — |
> 3
O o5 - [}
'8 1 site distance 8
o] ~
a _J ‘ o
Current Place Current Place Current Place
= 1.0 - - -
3 2ca- 1 f
2 Sc- "N G -
O o5 - O
3 8
C, 3 __J ]
0 - u & . .
C C C
Current Place Current Place Current Place
= 10 - - - =
2 2ol ] |
2 Sc,- "N G -
O 05 - ©
el
® 3 _J 3 | 1 —
c. o u ‘ o . ‘ .
Cy Cy C;
Current Place Current Place Current Place
E. F.
= 1.0 - seed Input 1.0 -
8 0l 2
2 =
14 ) =
L painininielsy duinial sntuinlyy Aainl’y i & 05-
\g E: Seed Input
8 0 [ 2
2 00 ‘ ‘ - 0.0 ‘ ‘ ‘
0.5 1 1.5 0.5 1 1.5
Distance from C1 and C2 (sites) Nearest Cache (sites)

Figure 4: Precise and flexible recall of barcode-mediated cache memories A. Cartoon of a chickadee at a site, trying
to remember whether the site contains a seed. The chickadee cannot see inside the hidden compartment and must rely
on memory to answer this question. B. Cartoon of a chickadee at a site, trying to recall the location of the closest
cache.In this case, the animal must use its memory to recall the location of a cache three sites away. C. Seed output of
the RNN at different locations along the circular track. Red dots above the line indicate locations where the value is
greater than 0.5. Top, results after the first cache is made at a location 20% of the way through the track. The location
of the first cache is marked on the x-axis as C;. Middle, same but after the second cache (C5) is made at a location 35%
of the way through the track. Bottom, same but after the third cache (C3) is made at a location 70% of the way through
the track. D. The place output of the RNN at different locations along the track. In the heatmaps, each column shows
the activities of all the output units when the animal is at a particular location (horizontal axis). The left side panels of
the subfigure correspond to the model operating at low recall strength (s = 0). The right side panels correspond to the
model operating at high recall strength (s = 1.5). As in (C), top, middle, and bottom plots correspond to RNN activity
after caches are made at C1, C2, and C3. Place output correctly switches between the location of each cache depending
on proximity to the current position. E. Probability of correct reject rate in the model when the animal is at a location
between caches 1 and 2, after all caches have been made. X-axis shows the distance from the probed location to the
surrounding caches, measured in site distance. The color of each line corresponds to the recall strength s. At low recall
strengths, the model correctly identified the absence of a cache between C1 and C2, reflecting discrimination of the two
cache locations. F. Probability of recalling the location of the closest cache, given the distance of the animal from the
cache. A recall is considered successful if the seed output exceeds 0.5 and if the peak of the output corresponds to the
location of the nearest cache. Lines are colored by recall strength s. The model correctly recalls the locations of nearby
caches, with search radius increasing as recall strength increases.
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s 2.4 Barcode-mediated memory supports precise and flexible context-based memory recall

164 What are the computational benefits of barcode-mediated memory storage? We designed two behavioral tasks for our
165 model that quantify complementary aspects of memory performance. In both tasks, we simulate a sequence of three
166 caches in the circular arena. We then test the model’s performance during memory recall (i.e. » = 1) using two distinct
167  tasks. The “Cache Presence” task requires the network to identify the presence or absence of a cached seed at the current
168 location (Figure 4A). By evaluating the model on this task using different spacings between caches, we can measure the
169 spatial precision of memory, i,e. how far apart two caches must be to prevent interference between their associated
170 memories. The “Cache Location” task requires the network to identify the cache nearest to the current location by
171 reactivating place activity corresponding to that cache location (Figure 4B). This task measures the robustness of
172 recall and requires attractor dynamics to accurately retrieve memories from potentially distant locations. Together,
173 these questions probe the ability of the memory system to be both specific (pattern separation) and searchable (pattern

174 completion).

175 To enable readout from the model, we add an output layer containing place and seed units. During memory
176 formation, these units receive a copy of place and seed inputs, respectively, and undergo Hebbian plasticity (equation 4
177 with 8 = 0) with RNN units. This enables the RNN to reactivate a copy of the inputs that were provided during memory
178 formation. We measure the activity of the seed output to determine cache presence, and we measure place outputs to
179 determine cache location. We note that other readout mechanisms would likely function similarly — for example, plastic
180 feedback connectivity from recurrent onto inputs units. The output layer used here is not intended to correspond to
181 a specific brain region, but simply to provide a window into what could be read out easily from network activity by

182 downstream neural circuits.

183 We first show model performance on a single example of the Cache Presence and Cache Location tasks, where
184 caches are made at the locations 20%, 35%, and 70% of the way around the circular track. For the Cache Presence
185 task, we evaluate the model at each spatial location and plot the activity of the seed output (Figure 4C). After the first
186 cache, we see that the seed output is only high at states around the vicinity of the first cache (Figure 4C, top). The false
187 positive rate is not zero since the states around the cache also have high output. However, the width of this false positive
188 area is less than the distance between two sites in the arena used in ( ), indicating that the model is
189 able to identify caches at the spatial resolution observed in chickadee behavior in these experiments. After a second
190 cache, the seed output correctly reports seeds in the areas around the two caches (Figure 4C, middle). Importantly, the
191 network separates the caches from each other, correctly identifying the absence of a seed at a position between the two

192 caches. This behavior is maintained after the addition of the final third cache (Figure 4C, bottom).

193 For the Cache Location task, we examine the place outputs (Figure 4D , “Narrow Search”). When the current
194 position is near a cache, the network correctly outputs a place field for the location of the nearest cache. However, an
195 animal relying on memory to guide behavior may need to recall cache locations even when far away from a cache. To

196 enable increased search radius, we make use of the seed input, which can bias network activity towards all memory
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197 patterns previously associated with this input. Activating the seed input greatly increases the range of current positions
198 over which cache memories are retrieved (Figure 4D, “Broad Search”). Critically, this does not cause interference
199 between memories. For example, as current position moves from the location of cache 1 to cache 2, place outputs
200 discretely jump from one cache location to the other, corresponding to correct selection of the nearest cache location.
201 The search radius during recall can thus be flexibly adjusted according to task demands, allowing the trade-off between

202 pattern completion and pattern separation to be dynamically regulated by simple scaling of a network input.

203 We next systematically quantified model performance on these tasks. For these analyses, we binarized the
204 seed output as being above or below a threshold (Figure S3AB). When caches are sufficiently spaced, memory recall
205 is near perfect (Figure S3AB). This led us to evaluate the resolution of the model’s memory as caches become more
206 closely spaced. We decreased the distance between cache 1 and 2 to identify the minimum distance where caches are
207 separable, i.e. where the model correctly indicates the absence of a cache at a midpoint between caches 1 and 2. Figure
208 4E shows this correct reject rate as a function of the distance from each cache and the seed input strength. With low
209 seed input (e.g. s = 0), the correct reject rate is high when the current location is one site distance away from caches
210 1 and 2. In other words, if a cache is made at site 1 and site 3, our model recognizes that site 2 remains empty. This
211 precision matches the single-site resolution measured by behavioral experiments in this arena ( ,
212 ). As expected, performance on the Cache Presence task decreases with greater seed input strengths, as these are

213 suited to searching over a broad spatial range.

214 For the Cache Location task, we measure the probability that the model outputs the location of the nearest
215 cache. We plot this probability as a function of distance from the current location to the nearest cache (Figure 4F). The
216 model is able to correctly recall cache locations with almost perfect accuracy when it is near a cache. Performance drops
217 sharply with distance when the seed input is low, but is substantially recovered by increasing the seed input strength.
218 Critically, even when the search radius is broad enough to include multiple caches, attractor dynamics encourage
219 selection of the single closest cache location rather than blending memories. Thus the seed input strength provides
220 a flexible search radius during the recall process. Low values of s are more suitable for detecting the presence or
221 absence of a seed near the current location, while high values of s are more suitable for finding remote caches. The
222 complementary demands of the Cache Presence and Cache Location tasks demonstrate the utility of a flexible search

223 radius within one memory system.

224 We further examined how model hyperparameters affected performance on these tasks. We find that the
225 plasticity bias 3 is needed to prevent erroneous memory recall at sites without caches (Figure S3E-H). Without this,
226 recall specificity is poor and model performance suffers on the Cache Presence task. We also verified that our model is
227 robust to the order in which caches were made (Figure S3CD). We found that adding noise to the network’s temporal
228 dynamics had little effect on memory recall performance (Figure S4A). However, large static noise vectors added to the
220 network’s input and initial state decreased the overall probability of memory recall, but not its spatial profile (Figure

230 S4B). Finally, we extended our model to work with random, spatially correlated inputs, rather than receiving place
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Figure 5: Ablations reveal complementary roles of place code and barcode activity in memory recall. A. Left, as in
Figure 4C, bottom, but for the “Place Code Only” model (barcode-ablated), which has recurrent weights initalized with
u = 0,0 = 0. Right, same, but for the “Barcode Only” model (place-ablated). The barcode only model is the same
as the full model, but place inputs are uncorrelated for nearby locations. B. Left, as in Figure 4D, bottom, but for the
place code only model. Right, the same but for the barcode only model (for visual clarity, the matrix is downsampled
to remove zero-value rows). The place code only model has similar outputs for recall from all current locations. The
barcode only model has no place output for recall from most locations. C. As in Figure 4E, but showing the full model
(solid line), the place code only model (dotted line), and the barcode only model (dashed line). For all models, s = 0.
The place code only model is unable to discriminate between nearby caches. D. As in Figure 4F, with lines as in (C).
For all models, s = 0.4. The barcode only model recalls successfully only when the current location contains a cache.
Only the full model reliably recalls remote cache locations.

231 cell-like inputs (Figure S5). This shows that our results apply regardless of the specific format of spatial inputs, which

232 are experimentally undetermined.

233 2.5 Place activity and barcode activity play complementary roles in memory.

234 We have shown that a barcode-mediated memory system is precise yet allows flexible, content-based retrieval. Below
235 we identify the specific contributions of place and of barcode activity by ablating either of these components in our
235 model. To ablate barcodes (“Place Code Only” in Figure 5), we initialize our model without the random recurrent
237 weights that produce chaotic dynamics. This is akin to running caching dynamics in “visit mode”, i.e. = 0 in Figure
238 2. To ablate place activity (“Barcode Only” in Figure 5), we eliminate spatial correlations in the networks inputs. This
239 is akin to having place fields with extremely narrow precision, rather than a spatially smooth place code. We test both

240 ablated models on the three-cache tasks from above and compare their performance to our full model.

241 The Place Code Only model directly binds memory contents of place and seed. This causes cache memories
242 for nearby locations, where the place code is correlated, to interfere with each other. Interference is clearly visible in
243 the performance on the Cache Presence task (Figure SA, left). The seed output of the place code only network is high

244 across a wide area including caches 1 and 2 and the empty locations between them. Indeed this network is unable to
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245 identify the absence of a cache at locations between caches 1 and 2, even with a substantial distance between them
246  (Figure 5C). Furthermore, the memories for caches 1 and 2 sometimes appears to suppress memory for a distant cache
247 3. Further evidence of interference is apparent in the Cache Location task, where the network merges caches 1 and
248 2, and entirely fails to signal the cache at location 3 (Figure 5B, left). This network has a low true negative rate, and
249 often a single cache dominates the output (Figure S6A-D). Accordingly, the network is able to signal the location of a
250 cache, but this location is often not the nearest cache (Figure 5D). Intuitively, without barcodes the network is unable to
251 distinguish individual memories at nearby spatial locations. Without this barcode-mediated competition, it forms a

252 single agglomerated memory that is inflexibly recalled.

253 If correlations in inputs cause memory interference, why not do away with them entirely? The Barcode Only
254 model shows that this is not a good option. This model performs well on the Cache Presence task (Figure 5A, right,
255  Figure S6E-QG), correctly identifying the presence of all three caches, and the absence of caches in other locations
256 (Figure 5C). However, the Barcode Only model fails on the Cache Location task. The model is unable to recall place
257 fields that are not precisely at its current location (Figure 5B,D). With greater seed input, the model can sometimes
258 recall memories at remote locations, but these are selected randomly with no preference for nearby caches (Figure 5D,
259 Figure S6H). Intuitively, the model cannot distinguish nearby and distant caches because it lacks input correlations,

260 which establish the measure of proximity.

261 In summary, place and barcode activity play complementary roles in our model. Barcode activity functions
262 like an index for individual memories. This function supports discriminability of memories even when memory contents
263 overlap — for example, for two nearby caches with correlated place activity. Barcodes also support selective recall
264 of individual memories in our model via competitive attractor dynamics. However the discriminability advantage of
265 barcodes is only useful if they can be reactivated during memory recall. Spatially correlated place inputs (and the
266 seed input) allow efficient memory retrieval by defining a measure of proximity in memory contents, and support
267 remote memory recall. The presence of both index and content signals in our model allows all of these functions to be

268 performed by the same network, and for the trade-offs between them to be adjusted flexibly.

269 2.6 Modulating recurrent strength allows the RNN to incorporate both predictive maps and

270 barcode memory.

271 We have constructed a model of a simple episodic memory, taking inspiration from hippocampal data ( ,
272 ). However, the hippocampus has also been suggested to support functions beyond episodic memory. An especially
273 influential line of prior work proposes that the hippocampus plays a role in generating predictive maps, with evidence
274 from both experiments (including in food-caching birds) ( , ; , ; ,
275 ; , ) and theory ( , ; , ; , ).
276 This raises the question — is our model consistent with predictive map theories? And if so, how might predictive maps

277 influence episodic memory recall?
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Figure 6: Predictive coding and barcode generation are performed by the same RNN in different dynamical
regimes A. Cartoon of a chickadee in a circular track, running in a consistently clockwise direction. B. Heatmap of
RNN firing fields when r = 0, where each row corresponds to the tuning curve of one neuron across all locations. Red
dashed line indicates the diagonal. C. As in (B), but for = 0.3. Here, clockwise movement corresponds to movement
from site ¢ to site ¢ + 1. Thus predictive activity appears as a shift in RNN activity below the matrix diagonal. D. As in
(B), but for » = 1.0. Barcodes appear as random, off-diagonal structure in the activity matrix. E. The firing fields of
four example units across different recurrent strengths. That is, each unit’s row in (B) is in blue, its row in (C) is in
orange, and its row in (D) is in purple. Each curve is max-normalized. F. Average projection strength of RNN activity
onto the place code, predictive code, and barcode vectors. The place code vector is defined as activity with r = 0. The
predictive code vector is defined as the place field of the unit at the next clockwise site, minus the projection onto the
place code. The barcode vector is defined as activity with » = 1.0, minus the projection onto the place code. Each line
is max-normalized. G. Seed output of the model with predictive weights, given the animal’s location on the circular
track. Here, there is only one cache, made at the halfway location of the circular track (labeled “C”).

278 Interestingly, prior work has shown that biologically realistic RNNs can generate predictive maps with
279 structured recurrent weights ( , ). Specifically, if recurrent weights encode the transition statistics of an
280 animal’s experience, then predictive map-like activity will arise from the RNN dynamics, and can be controlled by
281 recurrent strength (analogous to the value of r in equation 3). This prediction via structured recurrent weights invites
282 comparison to the use of random recurrent weights in our model to generate barcodes. Inspired by this connection,
283 we considered whether a single model could generate both predictive and barcode activity via recurrent dynamics.
284  We constructed a hybrid model, in which recurrent weights are a blend of random weights, as above, and structured,
285 predictive weights as in ( ) (Figure S7TAB). We hypothesize that network activity changes from a
286 predictive to a chaotic regime (supporting barcodes) with increasing recurrent strength, i.e. as we adjust r in the range

287 O0<r<1.

288 We use the same circular arena for our simulations, but with the assumption that animal behavior is biased,

289 i.e., the animal only moves clockwise (Figure 6A). We visualize population activity at each site, with units sorted
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290 by their place field. When recurrent strength is at its lowest (r = 0, Figure 6B) network activity is place-like and
291 reflects the current location of the animal provided in its inputs. When recurrent strength is slightly increased (r = 0.3,
292 Figure 6C), the network exhibits predictive activity. That is, neural activity of recurrent units is shifted to reflect an
293 expected future position, relative to the current spatial position encoded in inputs. This is consistent with observations
294 from experimental data collected from hippocampus of animals with biased movements in a linear track (

295 s ; s s ; , ). Finally, when recurrent strength is maximal
296 (r = 1.0, Figure 6D) we observe barcodes, i.e. sparse activity at random positions relative to inputs. We plot spatial
297 tuning curves of a few example RNN units under low, intermediate, and high recurrent strengths (Figure 6E, S7C).
298 Individual units can display typical place fields (blue), skewed predictive place fields (orange), and barcode activity

299 (purple).

300 These results suggest that the structured and random components of recurrent connectivity can act somewhat
s01 independently of each other, with their relative contributions determined by recurrent strength. We quantify this by
302 measuring the magnitude of the projection of population activity onto the place code, the predictive code, and barcodes
303 as a function of recurrent strength (Figure 6F). At the lowest recurrent strength (r = 0), the population activity is
so4 solely concentrated on the place code. As recurrent strength is increased, place coding decreases and predictive activity
305 increases with a peak around = 0.4. Beyond this, both place and predictive activity decrease as barcode activity rises

306 to a peak when r = 1.0.

307 Finally, we explore the functional implications of including predictive maps into our memory model. We first
308 verify that model performance in the previous three-cache tasks is not disrupted by including predictive weights in the
309 model (Figure S8). We then examine memory recall of a single cache for a predictive model, assuming a clockwise
310 behavioral bias (Figure 6G). The model exhibits a profound skew: the cache is recalled much earlier on the path leading
311 up to the cache location, at further distance from the cache than on the path after the cache location. This indicates that
312 knowledge of the environment and prior experience, as reflected in predictive place activity, can shape memory recall in

313 our model.

a2 3 Discussion

315 We have proposed a biologically realistic model for a simple form of episodic memory using barcodes. Our work is
st6 related to previous auto-associative memory models of the hippocampus such as Hopfield networks ( ,
317 ; , ; , ; , ; , ), but diverges in
s1s  a few critical areas. Building on ideas from hippocampal indexing theory ( , ;

319 s ), and following the discovery of barcodes ( s ), we show how recurrent computation can
320 implement memory indexing. Our model is further noteworthy in randomly intermixing representations of memory
321 index and memory content in the activity of single neurons, matching experimental findings. This intermixing implies

322 that single neurons cannot be definitively identified as “place cells” or “barcode cells”, despite clear differentiation
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323 between the place code and the barcode at the population level. A further innovation of our model is the ability to
324 control the trade-off between pattern completion and pattern separation during memory recall, by simply turning up or
325 down the strength of a memory content input (“search strength” in Figure 4). In this work we considered only place
326 and a single “seed” input, but it is straightforward to generalize this to naturalistic cases where different food types are
327 stored, or to memory contents beyond cached food. In principle, our approach would allow independent control of

s28 search strength for each potential element of memory content.

329 To generate barcodes during caching and retrieval without affecting place activity during visits, our model
330 changes recurrent strength in an RNN between different behaviors. A major question is how the brain could implement
331 such gain changes in recurrence. One possible mechanism is a change in recurrent inhibition, which is consistent with
332 dramatic changes in the activity of inhibitory neurons observed during caching ( , ). Neuromodulators
a3 like acetylcholine have been shown to bidirectionally modulate different inhibitory neuron subtypes ( , ;
334 , ), and proposed to control the recurrent gain of hippocampal processing ( , , ).
335 However, our model uses generic RNN units, and it is unclear precisely how units in the model should be mapped to
336 real excitatory and inhibitory hippocampal neurons in the brain. Our model predicts a state change in hippocampal
337 activity during memory formation and recall, allowing recurrent computation to generate or reactivate memory barcodes.

sss Detailed modeling of realistic E-I networks is needed to further clarify its specific biological implementation.

339 Alternatively, other mechanisms may be involved in generating barcodes. We demonstrated that conventional
s40 feed-forward sparsification ( , ; s ) was highly inefficient, but more specialized
341 computations may improve this ( , ; ) ; ) ;

342 , ). Another possibility is that barcodes are generated in a separate recurrent network upstream of the recurrent
343 network where memories are stored. In this 2-network scenario, the downstream network receives both spatial tuning
344 and barcodes as inputs. This would not obviate the need for modulating recurrent strength in the downstream network
345 to switch between input-driven modes and attractor dynamics. We suspect separating barcode generation and memory

346  storage in separate networks would not fundamentally affect our conclusions.

347 We showed that barcodes allow for precise memory retrieval despite the presence of other correlated memories.
a4s  This sharpened memory retrieval is similar to mechanisms used in key-value memory structures that are often embedded
349 in machine learning architectures ( , X ; s ; s ; s
350 ). At their simplest, these key-value memory structures consist of memory slots. Each slot consists of a memory
351 that can be addressed via "keys" such that their stored memory is returned as "values". In machine learning, key-value
352 memory has been connected to the dot-product attention mechanism used in transformers ( ,
353 ; , ). Interestingly, prior theoretical work has suggested neural implementations for both
354 key-value memory and attention mechanisms, arguing for their usefulness in neural systems such as long term memory
a5 ( ) ; ) ; ) ; , ; ,
356 ; s ; R ). In this framework, the address where a memory is stored

357 (the key) may be optimized independently of the value or content of the memory. In our model, barcodes improve
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ss8 memory performance by providing a content-independent scaffold that binds to memory content, preventing memories
359 with overlapping content from blurring together. Thus barcodes can be considered as a change in memory address,
sso and our model suggests important connections between recurrent neural activity and key generation mechanisms.
ss1  However we note that barcodes should not be literally equated with keys in key-value systems as our model’s memory

s62 is ‘content-addresable’—it can be queried by place and seed inputs.

363 Episodic memory is often studied at a behavioral level in humans performing free or cued recall of remembered
34 word lists ( , ; , ). Temporal context models (TCM) of episodic memory have been highly
35 successful in accounting for the sequential order effects observed reliably in this experimental setting (

366 , ; s ; s ), and the idea of a “context vector” in TCM is closely related
367 to use of barcodes as a memory index in our model. However experiments have shown that chickadee cache retrieval
ses does not exhibit temporal order effects ( , ), suggesting that caches at different locations are
se9 likely not linked by a temporal context as in TCM. Interestingly, caches at the same location were found to have distinct
370  but correlated barcodes ( , ), which could be related to caches sharing a “spatial context” analogous to
371 TCM. In the present study we did not consider memory for different caches at the same location, since it requires a
372 mechanism for forgetting or overwriting cache memory following retrieval. Although such “directed forgetting” is
373 observed in chickadee behavior ( R ), there is no definitive solution for Hopfield-like networks, and it is thus

374 beyond the scope of our current work.

ars Our hippocampal model focused on the implementation of episodic memory. Importantly, the proposed
376  barcode mechanism is capable of coexisting with other hippocampal functions, such as predictive coding as formalized
377 by the successor representation (SR) ( , ). Surprisingly, we found that a hybrid network can switch
s7e  between SR-generating and barcode-generating modes of operation by adjusting the gain of recurrent connectivity.
379 Further work is needed to characterize the general conditions under which barcode and SR functions do or do not
sso mutually interfere. It is also unclear if these are separate functions of the same circuit, or if they are complementary in
381 certain scenarios ( s ; s ). For example, we found that the SR could bias barcode-
ss2  mediated memory recall. In a complex environment, the Euclidean distance between two points may not correspond to
383 its proximity in a practical sense, which the SR better captures. In this case, experience-dependent biases in memory
ss4 recall can be functionally advantageous ( , ) and would be consistent with behavioral

ss5  results ( , ; s ).
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s Methods

396 Caching Task

397 We simulate a caching task in a circular track, similar to ( ). The track consists of N, connected states.
s9s The goal of this task is to test how well an agent equipped with a memory model can precisely recall the locations
s9s where a cache (or memory) has been stored. Specifically, for each simulation we first choose a set of states C' that will
400 be the location where caches are made. For each state ¢ € C' we assume the agent is currently at state ¢ and allow the
401 model to store a memory at that state. We then simulate what the output of the model is if the agent is at any of the

402 other Ny states. We continue this procedure for the remaining states in the list.

403 In the three-cache task, C' = {0, m, N, x0.7}. We sweep over different values of 0 < m < N 0.7 to test the
404 effects of site spacing. In the main figures, these three caches are made in increasing order of their location. However,
405 we also randomly shuffle the order of caching in a supplementary figure (Figure S3CD) and do not find any effects on

406 model performance.

407 Barcode model

408 Architecture

409 Place inputs into the model arrive from an input layer 7 € R™V». The input layer feeds into a recurrent neural network
a0 with activity € R™=, where N, = N,. Place input units connect to recurrent units with one-to-one connections
411 (that is, the weight matrix J,; from the place input layer to the recurrent network is the size N, identity matrix).
s12 Recurrent weights are encoded in the matrix J € R™=*N=_ At initialization, J ~ N (% [‘\’,—i) where i, o are tunable

413 hyperparameters controlling the mean and standard deviation of the distribution.

414 The input representing seeds arrives from a single unit s. The connections from s to recurrent units = are

415 encoded in the vector fsx € RN=. Each value of fsm is sampled from the standard normal distribution.

416  Recurrent dynamics
Recurrent dynamics are run over 7" timesteps. Let v; be the preactivations of the recurrent population at time ¢ and z;
be the activations of the recurrent population at time ¢. That is, ; = ReLU (0;). Att = 0, 5 = vy = 0. The recurrent
dynamics are defined over
dv o -
—=|—-—=—)> Z|U+rJE+p+s)
B> P s
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417 where r € {0, 1} is a modulatory factor that controls whether the network operates with recurrent dynamics or is purely
418 feedforward driven. The first term in the equation corresponds to a voltage leak term where the leak at each neuron is
419 proportional to global population activity. This effectively implements a form of divisive normalization, and helps keep
420 network activity stable even as weights are updated during the caching task. The second term in the equation represents

421 recurrent inputs, while the last two terms represent feedforward inputs into the network.

422 Input structure and timing
423 Place is encoded in p'such that, at location &, each input neuron [ has activity p; = e where d is the shortest distance
424 between k and [ as a percentage of the circular arena size. We consider 100 evenly sampled states in this state space.

425 Seed input s may be any nonnegative scalar value.

426 * Place mode: Input j7'is active over all 7" timesteps. Recurrence is turned off (r = 0), as is the seed input
427 (s =0).

428 * Caching mode: Input p'is active over all T' timesteps and input s is active over timesteps [T — t5, T with
429 strength A. Recurrence is on (rr = 1).

430  Recall mode: Input pand input s are both active over all 7" timesteps. Recurrence is on (r = 1). The value of
431 s is flexibly modulated to adjust the search strength (s > 0).

432 Update rule
Let & be the activations of the recurrent network at the end of recurrent dynamics (in our case, at time 7). At each cache

event the update rule carried out is

AJ = %(fﬂ + BF1T)

x

where 7) controls the learning rate. The weight update contains a Hebbian update through ZZT and an inhibitory update
through S#1T, where 3 is a negative scalar. This inhibitory term causes the connections between neurons which are not

co-active during caching to weaken. The update rule can also be stated in terms of the synapse j — i:
AJij ~ I’in -+ 6:13’1

433 This is the form shown in equation 4.

43¢ Network readout
435 To detect cache presence, we define a seed output signal. The output y, is read out from the recurrent network activity
436 through weights .751 At initialization, jsx = 0. Every time a cache is made, the following update rule is run: Ajsm =2

437 Thus, seed output is read out as y; = ;sz

438 To recall cache location, we define a place field readout layer. The output ¢, € R™? is read out from the
439 recurrent network through weights J, € RNixNz At initialization, Jye = 0. Bvery time a cache is made, the

440 following update rule is run: AJ,, = pzT. Thus, recalled cache locations are read out as ¢, = Jy, .
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Ablations
To construct a place code only model, we ablate barcode generation by setting J = 0 at initialization. To construct a
barcode only model, we ablate the presence of place-correlations in the input by setting the place input spatial scale

parameter v to a very small value 103 in the place encoding equation.

Defining site distance in our simulation

To allow comparisons to data in ( ), we first determine the number of states in our simulation that’s
equivalent to the distance between adjacent cache sites in ( ). To do so, we note that the spatial
correlation between population activity at two adjacent cache sites is around 0.75 (when spatial correlation profile is
normalized to [0, 1]). We identify the number of states in our simulation such that the normalized correlation between
visit activity is also around 0.75. We find that this is around 8 states. Thus, we define 8 states in our simulation as

equivalent to the distance between adjacent cache sites.

Simulating and visualizing spikes

We simulate Poisson spikes from our rate network in Figure 2HJ. Specifically, for a unit with rate r, we draw spikes

from a Poisson distribution with mean and variance r + K. We set K = 0.2 to visually match observations from data.

Spatial correlation of RNN activity for cache-retrieval pairs at different sites

To calculate correlation values as in Figure 3D, we simulated experiments where 5 sites were randomly chosen for
caching and retrieval. To compare model results to the empirical data in 1E,F, which includes intrinsic neural variability,
we sampled Poisson-generated spike counts from the rates output by our model. Specifically, for RNN activity 7; at
location 4, using the rates at t = 100 as elsewhere, we first generate a sample vector of spikes $; ~ Poisson(k7;). We
choose k to be 0.2 to match experimental spatial correlation profiles in the “visit-visit” condition. To get the correlation
of population activity at locations ¢, j, we calculate the population Pearson correlation coefficient between s; and sj.
To generate Figure 3D, we repeated this simulated experiment 20 times with different random seeds and then pool
over experiments to average correlation values as a function of distance. All values are normalized by the “visit-visit”
correlation value at a site distance of 0, to match the analysis of experimental data in ( ). This is

repeated over 20 random seeds.

Barcode model with predictive map

The barcode model with prediction differs from the default model in the initialized weight matrix. Specifically,

the weight matrix J = B + M, where B is the random Gaussian matrix of the default model. M is a successor
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469 representation-like matrix ( , ) defined as
D
M =p(> 7T +56
d=0

470 where T is the transition probability matrix and v = 0.99 is a temporal discount factor. We also add a scaling factor
471 p = 0.075 and an inhibitory offset § = —0.015. M is a 5000-dimensional square matrix, and we truncate the summation
472 at D = 300 steps. T is defined as
1, ifj=di+1
Tij =
0, otherwise

a3 Alternative model: feedforward barcode generation

We will construct a feedforward model to generate sparse, decorrelated barcodes (Figure S2A). Place inputs to the
model are fed through a hidden expansion layer before being compressed again by an output layer to generate the
barcode. We first define these layers via the random matrices W, € R Ne and W,, € R¥="M where W}, ~ N (0, N%))
and W, ~ N(0, ﬁ) We make the hidden layer very large: M = 20000. The activity of the model in the hidden layer
is described as:

337L = ReLU(Whﬁ— C@)

474 where Cp is a constant chosen such that the proportion of units in 27, that are active is 6. In other words, 6 is a

475 hyperparameter of the model that sets how sparse the hidden layer activity is.

The hidden layer activity is then passed through the output weights to form the barcode activity generated by
the feedforward model:

Z = ReLU(W,a}, — C)
476 where C'is a constant chosen such that the sparsity of &' matches the sparsity of barcodes generated in the default RNN
477 barcode model.
a8 Alternative model: place encoding with Gaussian input weights

479 We simulate a version of the model with more realistic and complex place inputs. We generated the input currents to the
4s0  RNN units according to a 0-mean multivariate Gaussian process. The statistics of the Gaussian process are chosen
481 such that the covariance of the inputs to RNN unit ¢ and unit j is an exponentially decaying function of their minimum
42 spatial distance d around the circular arena: ¥;5 = e~51. All other details of this alternative model is the same as in

483 the default.

s Code

485 Code is publicly available on https://github.com/chingf/barcodes.
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s  Parameter values

Hyperparameter Symbol | Value
Place Inputs Spatial scale parameter v 0.2
Number of place input neurons N; 5000
Dimensionality Number of recurrent network neurons N, 5000
Number of output neurons N, 5000
Number of states Ny 100
. . Scale of RNN initial weight mean -40
RNN weight matrix Scale of RNN initial weight standard deviation g 7
Dynamics integration step At 0.1
. Dynamics divisive normalization strength o 20
RNN dynamics Lgngth of recurrent dynamics : T 100
Length of seed input in caching mode ts 5
Strength of seed input during caching A 3.0
Learning parameters | Update learning rate I 40
Update rule inhibition bias B -0.35
Analysis parameters | Readout threshold of seed output K 0.5
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Figure S1: A. Difference between RNN activity across each step of recurrent dynamics. Specifically, at recurrent
timestep ¢, we plot ||Z; — Z;_1||. Each line corresponds to a different random seed and model initialization. B.
Difference between RNN activity at some step of recurrent dynamics and the initial RNN state. Specifically, at recurrent
timestep t, we plot ||Z; — Zo||. Each line corresponds to a different random seed and model initialization. C. As in
Figure 2GI, but for 20 additional randomly sampled units.

27


https://doi.org/10.1101/2024.09.09.612073
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.09.612073; this version posted September 18, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A Th B 1.0 -
8 —— place field activity
g b === RNN, 0=1.0
= 0.5 -
= € = RNN, 0=7.0
olts] = RNN, 0=20.0
[ = FF, sparsity = 0.5
8 8 0.0 - = FF, sparsity = 0.05
= = FF, sparsity = 0.005
0 1 2 3 4
Distance (sites)
max = 2.50 max = 2.46 max = 2.46
max = 0.03 max = 0.04 max = 0.05
max = 2.43 max = 2.49 max = 2.46 max = 2.48
max = 0.03 max = 0.04 max = 0.04 max = 0.03
max = 2.43 max = 2.41 max = 2.49 max = 2.45
max = 0.00 max = 0.04 max = 0.02 max = 0.03
max = 2.41 max = 2.50 max = 2.48 max = 2.45
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Figure S2: A. Diagram of the feedforward model for barcode generation. Place inputs {7 are passed through an expansion
layer W), with a nonlinear activation function to get the hidden layer activity 5. A subsequent compression layer W,
with a nonlinear activation function generates the final barcode activity z. B. As in Figure 2B but adding in red the
results for the feddforward model as sparsity is varied. C. As in Figure 2GI, but for 16 randomly sampled units from
the feedforward model.
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Figure S3: A. True positive rate of the seed output in the 3-cache task of Figure 4, as the choice of binarized threshold
is varied. The color of each line corresponds to the recall strength s. Here, caches are all spaced at least two sites apart.
B. As in (A), but for true negative rate. We will choose a threshold of 0.5 to binarize the seed output. CD As in (AB),
but the order caches are made is random. E. True positive rate of the seed output binarized at 0.5 when plasticity bias
B and search strength s is varied. F. As in (E) but for true negative rate. G. As in (E) but plotting the correct reject
rate at a location between two caches. Here the two caches are 1.5 sites apart or closer. H. As in (E) but plotting the
probability of recalling the location of the closest cache when the animal is 2 sites away from it.

A 1.0 - B 1.0
— Dynamics Noise — Initial State Noise
E : E :
o 0.5 - 0.1 ® 0.5 - 0.1
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Figure S4: A. As in Figure 4F, with recall strength fixed to 0.4. We vary noise in the network dynamics, randomly
drawing O-centered Gaussian noise at every timestep and adding that to the dynamics. Lines are colored by the noise
standard deviation. Note that the input signal has a variance of 1. B. As in Figure 4F, with recall strength fixed to 0.4.
We vary noise in the place inputs into the model. We randomly draw 0-centered Gaussian noise, add this vector into the
place inputs, and use this as input into the model. Lines are colored by the noise standard deviation. Again, input signal

has a variance of 1.
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Figure S5: A. Diagram showing how place inputs are modified to be more realistic. Place encoding p'is now drawn
from a 0-mean Gaussian process with place-like covariance structure. This results in a more distributed representation
in p’ over spatial locations. Furthermore, J,, is now a random Gaussian matrix (instead of the identity matrix). B.
Correlations between place inputs at different locations, as a function of their distance. C. As in Figure S3A, but for the
Gaussian model. D. As in Figure S3B, but for the Gaussian model. E. As in Figure 4E, but for the Gaussian model. F.
As in Figure 4F, but for the Gaussian model.
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Figure S6: AB. As in Figure S3AB, but for the place code only model shown in 5A. C. Probability that the Nth cache
location is successfully recalled as site spacing is increased in the 3 cache task. Results are shown for the place code
only model. D. As in Figure 4F, but for the place code only model. EFGH. As in (ABCD), but for the barcode only
model.
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Figure S7: A. The predictive weights M that is added to J. B. As in (A), but zooming in 10x into the matrix for clarity.
C. As in Figure 6E, but for 24 additional randomly sampled units.
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Figure S8: AB. As in Figure S3AB, but for the model with predictive weights added in. CD. As in Figure 4EF, but the
model with predictive weights added in.
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