

Early development and co-evolution of microstructural and functional brain connectomes: A multi-modal MRI study in preterm and full-term infants

Gondová Andrea^{1,2*F}, Neumane Sara^{1,2,3}, Arichi Tomoki^{3,4}, Dubois Jessica^{1,2}

1. *Université Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France*
2. *Université Paris-Saclay, CEA, NeuroSpin, UNIAC, F-91191, Gif-sur-Yvette, France*
3. *Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom*
4. *Paediatric Neurosciences, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, United Kingdom*

Contact details:

Andrea Gondová: Gondova.Andrea@outlook.com *Corresponding Author

Sara Neumane: SaraNeumane@gmail.com

Tomoki Arichi: Tomoki.Arichi@kcl.ac.uk

Jessica Dubois: Jessica.Dubois@inserm.fr

Short title: Preterm microstructure-function connectivity

1 Abstract

2 Introduction

3 Functional networks characterised by coherent neural activity across distributed brain regions
4 have been observed to emerge early in neurodevelopment. Synchronized maturation across
5 regions that relate to functional connectivity (FC) could be partially reflected in the
6 developmental changes in underlying microstructure. Nevertheless, covariation of regional
7 microstructural properties, termed 'microstructural connectivity' (MC), and its relationship to
8 the emergence of functional specialization during the early neurodevelopmental period remains
9 poorly understood.

10 Methods

11 We investigated the evolution of MC and FC postnatally across a set of cortical and subcortical
12 regions, focusing on 45 preterm infants scanned longitudinally, and compared to 45 matched
13 full-term neonates as part of the developing Human Connectome Project (dHCP) using direct
14 comparisons of grey-matter connectivity strengths as well as network-based analyses.

15 Results

16 Our findings revealed a global strengthening of both MC and FC with age, with connection-
17 specific variability influenced by the connection maturational stage. Prematurity at term-
18 equivalent age was associated to significant connectivity disruptions, particularly in FC.
19 During the preterm period, direct comparisons of MC and FC strength showed positive linear
20 relationship, which seemed to weaken with development. On the other hand, overlaps between
21 MC- and FC-derived networks (estimated with Mutual Information) increased with age,
22 suggesting a potential convergence towards a shared underlying network structure that may
23 support the co-evolution of microstructural and functional systems.

24 Conclusion

25 Our study offers novel insights into the dynamic interplay between microstructural and
26 functional brain development and highlights the potential of MC as a complementary descriptor

^Φ current affiliation: Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA

27 for characterizing the brain network development and alterations due to perinatal insults such
28 as premature birth.

29 **Keypoints**

30 1. Our study reveals a significant positive linear relationship between grey-matter functional
31 connectivity and underlying microstructural connectivity during development, that decreases
32 with age and varies across connection types.

33 2. Despite progressive maturational decoupling of microstructural and functional connectivity, a
34 shared network structure may underlie changes in both properties.

35 3. Prematurity impacts the maturation of connectivity in both modalities, but with a higher
36 reduction of functional than microstructural connectivity strengths.

37 **Keywords**

38 Early neurodevelopment, microstructural connectivity, functional connectivity, brain network
39 development, prematurity

40 **Acknowledgments**

41 **Funding statements**

42 The developing Human Connectome Project was funded by the European Research Council under
43 the European Union Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement
44 no. 319456. We thank infants and their families for their participation in this study.

45 AG was supported by the CEA NUMERICS program. This project received funding from the European
46 Union's Horizon 2020 research and innovation programme under grant agreement No 800945 —
47 NUMERICS — H2020-MSCA-COFUND-2017.

48 SN was supported by a postdoctoral fellowship from the Bettencourt Schueller Foundation
49 (www.fondationbs.org).

50 TA is supported by a MRC Clinical Fellowship [MR/Y009665/1] and by the Medical Research Council
51 Centre for Neurodevelopmental Disorders, King's College London [MR/N026063/1].

52 JD received support from the Fondation Médisite (research prize under the aegis of the Fondation de
53 France FdF-18-00092867), the IdEx Université de Paris (DevMap project ANR-18-IDEX-0001), the
54 Fondation de France (BodyBrain project FdF-20-00111908), the Fondation Paralysie
55 Cérébrale (ENSEMBLE project), and the French National Agency for Research (BabyTouch project
56 ANR-22-CE37-0028; grant for the Institut Hospitalo-Universitaire Robert-Debré du Cerveau de
57 l'Enfant in the context of the France 2030 program ANR-23-IAIU-0010).

58 **Data availability**

59 The employed dataset is available from: <http://www.developingconnectome.org/data-release/third-data-release/>.

60 **Ethics approval / patient consent statement**

61 The dHCP project received UK NHS research ethics committee approval (14/LO/1169, IRAS 138070),
62 and written informed consent was obtained from the parents of all participant infants.

63 **Conflict of interest**

64 Authors declare no competing interests.

65
66
67
68

69 Introduction

70 Brain development during the third trimester of pregnancy and the perinatal period is
71 characterized by a series of complex inter-related mechanisms. The resulting macro- and
72 microstructural changes are crucial for establishing the structural and functional brain networks
73 that support neurodevelopment and optimal outcomes (Gilmore et al., 2018). Recent advances
74 in magnetic resonance imaging (MRI) have provided unprecedented access to study the brain
75 during this critical period *in vivo* (Dubois et al., 2021).

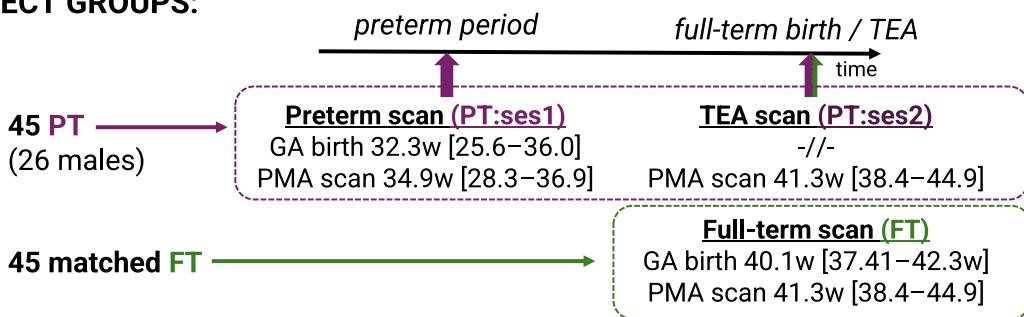
76 In particular, exploring functional connectivity (FC) across cortical and subcortical
77 brain regions with resting-state functional MRI (rs-fMRI) has revealed a strengthening of
78 cortico-subcortical and cortico-cortical connectivity with distinct developmental patterns
79 across various functional networks (Doria et al., 2010; Fransson et al., 2009; Jakab et al., 2014;
80 Smyser et al., 2010; Taymourtash et al., 2023; van den Heuvel et al., 2015; Williams et al.,
81 2023). By term-equivalent age (TEA), the topological architecture of FC partly resembles that
82 of adults, with connectivity hubs observed in the earlier developing primary sensory and motor
83 regions (Dall'Orso et al., 2022; Eyre et al., 2021; Fransson et al., 2009; Toulmin et al., 2015;
84 Turk et al., 2019; van den Heuvel & Hulshoff Pol, 2010). Postnatally, FC maturation seems to
85 progress asynchronously, following a primary-to-higher function order from
86 sensorimotor/auditory to associative and default-mode networks (Cao et al., 2017; Eyre et al.,
87 2021; Gao et al., 2015; Hoff et al., 2013).

88 This maturational progression seems consistent with the sequence of spatiotemporal
89 maturation of grey matter (GM) microstructure taking place earliest in primary sensory regions,
90 then association areas and prefrontal cortices as described by measures derived from
91 quantitative structural MRI (Ball et al., 2013; Levenberg et al., 2019; Monson et al., 2018; Neil
92 & Smyser, 2018; Yu et al., 2016). Thus, investigating the covariation of microstructural
93 descriptors across the GM regions of interest (ROIs), i.e. *microstructural connectivity* (MC),
94 and its relationship to emerging patterns of FC could reveal synchrony of microstructural
95 features across cortical and subcortical regions belonging to the same developing functional
96 network (Alexander-Bloch et al., 2013), and provide insights into coordinated maturation
97 across different brain modalities. While previous studies have explored functional and
98 microstructural developmental changes within emerging brain networks separately, this study
99 expands on the previous work to directly investigate their relationship during the preterm
100 period across various cortical GM ROIs. We hypothesize that early microstructural
101 connectivity serves as a foundation for the development of functional connectivity, with
102 distinct maturation profiles observable across different subsets of connections depending on
103 their maturational trajectories.

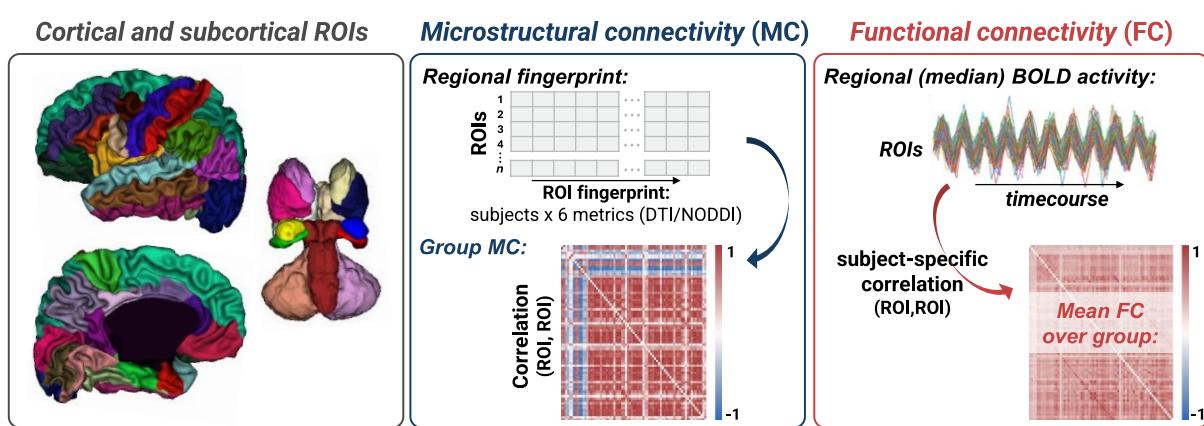
104 The idea that the covariation of GM features can be interpreted as biologically
105 meaningful and functionally relevant units was first proposed in foundational early studies
106 based on histological assessments of cortical cytoarchitecture (Brodmann, 1908; von Economo
107 & Koskinas, 1925). More recent anatomical MRI studies that model the covariation of
108 morphometric markers across cortical regions (such as cortical thickness that indirectly reflects
109 the underlying microstructure) have further supported this notion (Alexander-Bloch et al.,
110 2013; King & Wood, 2020), highlighting a higher likelihood of anatomical connectivity
111 between morphologically similar brain regions (Barbas, 2015; Goulas et al., 2016, 2017;
112 Seidlitz et al., 2018), as well as similarities in their genetic and transcriptomic profiles
113 (Alexander-Bloch et al., 2013; Yee et al., 2018).

114 Importantly, these regional covariations are sensitive to neurodevelopmental and age-
115 related changes (Khundrakpam et al., 2013, 2016; Romero-Garcia et al., 2018; Váša et al.,
116 2018), with groups of regions showing similar morphometric profiles and developmental
117 trajectories (Alexander-Bloch et al., 2013). Despite potential interpretations, only a few studies
118 focused on the first 2 postnatal years to explore developmental relationships of regional

119 covariation based on markers such as GM volume (Fan et al., 2011), cortical thickness (Geng
120 et al., 2016; Nie et al., 2014), cortical folding (Nie et al., 2014), and fibre density (Fan et al.,
121 2011; Nie et al., 2014). However, these studies led to highly heterogenous results, likely due
122 to the employment of single descriptors with specific spatial and temporal developmental
123 patterns that might influence the estimated relationships (Gilmore et al., 2012; Lyall et al.,
124 2015; Nie et al., 2014; Seidlitz et al., 2018). Recent multiparametric approaches have integrated
125 multiple morphological and microstructural descriptors derived from diffusion MRI (dMRI)
126 using diffusion models such as Diffusion Tensor Imaging (DTI) (Basser et al., 1994) and
127 Neurite Orientation Dispersion and Density Imaging (NODDI) (Zhang et al., 2012). These
128 models provide complementary measures sensitive to changes in neuronal and glial density,
129 neurite complexity, synaptic overproduction and pruning, and reduction in brain water content
130 (Ouyang, Dubois, et al., 2019) that can be combined to provide more comprehensive
131 description of the underlying microstructural developmental changes within the GM. Resulting
132 estimates of structural covariance in the neonatal brain were used to delineate modules
133 consistent with known cytoarchitectonic tissue classes and functional systems (Fenchel et al.,
134 2020), and to allow prediction of social-emotional performance at 18 months in full-term (FT)
135 newborns (Fenchel et al., 2022) and the discrimination of preterm (PT) and FT individuals at
136 TEA (Galdi et al., 2020).


137 Expanding on these works, here we investigate the relationships between
138 microstructural and functional development in the preterm period using multimodal
139 (anatomical, diffusion, and resting-state functional) MRI data from the developing Human
140 fitConnectome Project (dHCP) (Edwards et al., 2022) to analyse 45 preterm-born infants
141 scanned twice (near birth: PT:ses1, median postmenstrual age (PMA) at scan 34.9 weeks, range
142 [28.3w–36.9w]; and close to term-equivalent age (TEA): PT:ses2, median PMA at scan 41.3
143 weeks, range [38.4w–44.9w]), and 45 full-term control neonates matched for PMA at scan
144 (with PT:ses2) and sex. At the methodological level, in contrast to previous subject-level
145 multiparametric studies (Fenchel et al., 2020; Galdi et al., 2020), we employed a group-wise
146 approach to account for the reduced number of metrics we employed for microstructural
147 similarity estimation and the need of corrections for confounders such as gestational age (GA)
148 at birth required for the group comparisons.

149 Changes in FC and MC between the infant groups were evaluated for each modality
150 separately before describing the MC-FC relationship. Since disruptions of normal gestation,
151 such as preterm birth, can lead to significant heterogenous and region-specific alterations in
152 both GM microstructural maturation (Ball et al., 2013; Bataille et al., 2019; Dimitrova et al.,
153 2021; Eaton-Rosen et al., 2015, 2017; Mukherjee et al., 2001; Ouyang, Jeon, et al., 2019;
154 Smyser et al., 2016; Yu et al., 2016) and functional connectivity (Ball et al., 2016; Brenner et
155 al., 2021; Keunen et al., 2017; Smyser et al., 2010), we also assessed deviations related to
156 prematurity (PT:ses2 vs FT) in both modalities.


157 To test the hypothesis that early developing microstructural clusters and connections
158 might serve as the foundation for synchronised maturation across brain areas and thus efficient
159 functionality of brain networks (Alexander-Bloch et al., 2013), we attempted to investigate the
160 potential direction of the early MC-FC relationship in a longitudinal manner in the preterm
161 group. Additionally, to assess whether some connections might show distinct MC-FC
162 maturation profiles and dynamics in the perinatal period, our analyses focused on specific
163 subsets of ROI connections with expected maturational differences as previously described for
164 functional (van den Heuvel et al., 2015) and white matter structural (Kostović et al., 2019)
165 connectivity: cortico-subcortical connections (including thalamo-cortical connections that
166 were also highlighted separately given their crucial role in the preterm period (Kostović et al.,
167 2021)); cortico-cortical connections (grouped as i) intra-hemispheric, inter-hemispheric ii)
168 homotopic and iii) non-homotopic connections), anticipating potentially similar meaningful

169 grouping at the level of MC. Connections involving the primary sensorimotor and visual ROIs
170 were also highlighted given the early and intense development of these functions in the
171 neonatal period. We further complemented our analyses with a network-based approach that
172 involved hierarchical clustering of group MC and FC matrices. This allowed us to extend the
173 direct MC-FC comparisons that could uncover progressive refinement and possible
174 convergence of network structures between the two modalities, even in absence of direct
175 relationships that could be related to different maturational stages of evaluated connections.
176 The methodology of the present study is summarized in *Figure 1*.
177

SUBJECT GROUPS:

DATA PROCESSING:

ANALYSIS:

Comparisons:

- Within/between group
- Longitudinal
- Network-based

MC-FC coupling

178
179

180 **Figure 1.** General analysis pipeline of the presented study.

181 Materials and methods

182 Data presentation

183 Subjects

184 This study included a sample of preterm and full-term neonates from the developing
185 Human Connectome Project (dHCP) cohort (Edwards et al., 2022), collected at St Thomas'
186 Hospital London, UK from 2015 to 2020. This project received UK NHS research ethics
187 committee approval (14/LO/1169, IRAS 138070), and written informed consent was obtained
188 from the parents of all participant infants.

189 From the overall cohort, we identified 45 PT infants (26 males, median GA at birth 32.3
190 weeks, range [25.6w–36.0w]) who were scanned at two time points and whose dMRI and rs-
191 fMRI data passed the quality control as described in 3rd dHCP release notes. For the session 1,
192 the infants were scanned in the preterm period at median postmenstrual age at scan of 34.9
193 weeks, range [28.3w–36.9w]; median birth-scan delay: 1.7 weeks, range [0.1w–9.3w]. For the
194 session 2, infants were scanned close to TEA (median PMA at scan 41.3 weeks, range [38.4w–
195 44.9w]; median birth-scan delay: 9.1 weeks, range [3.6w–15.6w]; median Ses1-Ses2 delay 7.3
196 weeks, range [2.7w–11.9w]). Note that PMA at Ses1 vs Ses2 were not correlated (Pearson's
197 r=0.18, p=0.17). Additionally, we considered a group of 45 FT infants matched to the preterm
198 population on sex and age at MRI at TEA (GA at birth: median 40.1w, range [37.4w–42.3w];
199 median birth-scan delay: 0.4 weeks, range [0.1w–3.9w]). All included infants were without
200 major brain focal lesions or any overt abnormality of clinical significance on anatomical MRI
201 as evaluated by an expert paediatric neuroradiologist, (i.e., dHCP radiological scores were in
202 the range [1-3]). More subject details for all three groups are available in *Supp. Figure 1.1*.

203 **Acquisition and preprocessing of MRI data**

204 MRI data were acquired using a Philips 3 Tesla Achieva scanner (Philips Medical
205 Systems, Best, Netherlands). All infants were scanned during natural sleep using a neonatal
206 head coil and imaging system optimized for the dHCP study as previously described (Hughes
207 et al., 2017). In this study, we considered anatomical, diffusion, and resting-state functional
208 MRI data available in its pre-processed state from the dHCP database (3rd release) (Edwards et
209 al., 2022).

210 The *anatomical data* resulted from acquisition and reconstruction using optimized
211 protocols (Cordero-Grande et al., 2019), leading to super-resolved T2w images with an
212 isotropic spatial voxel size of 0.5 mm. Processing followed a dedicated pipeline for
213 segmentation and cortical surface extraction for T2w images of neonatal brains (Makropoulos
214 et al., 2018), with bias-correction, brain extraction, volumetric segmentation using Draw-EM
215 (Developing brain Region Annotation with Expectation Maximization) algorithm
216 (Makropoulos et al., 2014), and reconstruction of white matter surface (inner cortical surface)
217 meshes. These anatomical data were used for the extraction of GM ROIs (see section
218 *Delineation of ROIs*).

219 Acquisition and reconstruction of the *diffusion data* (dMRI) followed a multi-shell high
220 angular resolution diffusion imaging (HARDI) protocol with 4 b-shells ($b = 0$ s/mm²: 20
221 repeats; and $b = 400, 1,000, 2,600$ s/mm²: 64, 88, and 128 directions, respectively) (Hutter et
222 al., 2018) and was pre-processed with correction for motion artifacts and slice-to-volume
223 reconstruction using the SHARD approach, leading to an isotropic voxel size of 1.5 mm
224 (Christiaens et al., 2021). Pre-processed data were used for the fitting of diffusion models and
225 the measure of GM microstructure (see section *GM microstructural connectivity*).

226 *Resting state functional data* (rs-fMRI) was acquired for 15 minutes using a high
227 temporal resolution multiband EPI protocol (TE=38 ms; TR=392 ms; MB factor=9x; 2.15 mm
228 isotropic) (Price, 2015) and was processed following an automated processing framework
229 specifically developed for neonates (Fitzgibbon et al., 2020). Available data was used for the
230 estimation of the whole-brain functional connectivity (see section *Functional connectivity*).

231 More information on quality of the employed dMRI and rs-fMRI data can be found in
232 the *Supp. Figure 2.1 & Supp. Table 2.1*.

233

234 ***Estimation of connectivity matrices***

235 **Delineation of ROIs**

236 Firstly, ROIs were defined as subregions of the cortical and subcortical grey matter to
237 provide a framework for a focused and potentially interpretable assessment of the brain
238 connectivity. Anatomically-driven parcellation strategy was used to provide a more
239 comparable region correspondence between subjects and to allow the direct comparison of
240 results between dMRI and rs-fMRI modalities. To define the ROIs, pre-processed anatomical
241 data was used to parcellate the GM. Cortical parcels were defined on the cortical surface of
242 each hemisphere using the M-CRIB-S surface-based parcellation tool optimized for the term-
243 born neonates (Adamson et al., 2020) whose labelling scheme replicates the Desikan-Killiany-
244 Tourville (DKT) atlas (Klein & Tourville, 2012). The subcortical ROIs were defined using a
245 volumetric GM parcellation based on Draw-EM algorithm segmentation (Makropoulos et al.,
246 2014), and included medial brainstem (bstem), and for each hemisphere: thalamus (thal, fusing
247 high and low intensity regions), caudate nucleus (caud), lenticular nucleus (lenti), amygdala
248 (amyg), hippocampus (hippo), and cerebellum (cereb). The 75 cortical and subcortical ROIs
249 were combined and aligned to the subject diffusion and functional space with FSL 6.0's FLIRT
250 using precomputed warps provided within the dHCP database. The list and visualisation of
251 ROIs used in this work is detailed in *Supp. Figure 2.2a*.

252 Because the M-CRIB-S approach was developed for full-term neonates, visual
253 inspection of the ROI segmentation quality was performed on the 25 youngest PT infants at
254 scan. While we observed an expected trend of an increase in the segmentation quality with
255 PMA at scan (errors for the youngest subjects could be explained by the landmarks missing or
256 being less pronounced, i.e., for example secondary and tertiary sulci), the parcellations
257 remained satisfactory enough so as not to exclude any additional infants. Examples of the ROI
258 longitudinal segmentations are shown in *Supp. Figure 2.2b*.

259 **Microstructural connectivity (MC)**

260 The DTI model was fitted to the diffusion data using a single shell ($b = 1,000 \text{ s/mm}^2$)
261 and calculated with FSL's DTIFIT to estimate metric maps for 4 metrics: fractional anisotropy
262 (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD). Additionally,
263 multi-shell diffusion data was used to derive the neurite density index (NDI) and orientation
264 dispersion index (ODI) maps from the NODDI model (Zhang et al., 2012) using the CUDA
265 9.1 Diffusion Modelling Toolbox (cuDIMOT) NODDI Watson model implementation for
266 GPUs (Hernandez-Fernandez et al., 2019). Derived NODDI maps were then corrected as
267 described in (Neumane et al., 2022).

268 To create subject-specific regional microstructural fingerprints, we extracted median
269 diffusion metrics for each cortical and subcortical ROI (*Supp. Materials: SI3. Univariate*
270 *analyses of GM microstructure*). Beforehand, volumetric parcellations for subcortical ROIs
271 underwent 1-voxel erosion to address potential border parcellation errors with surrounding
272 white matter and cerebro-spinal fluid. For cortical ROIs, diffusion metrics were projected to
273 the white-grey matter surface using a cylindrical approach guided by the minimum of AD, as
274 described in (Lebenberg et al., 2019) and (Gondová et al., 2023). Four hemispheres with locally
275 imperfect projections in the superior frontal gyrus were identified, but the error impact on
276 median computations within such a large region was minimal.

277 To focus on the microstructural variability between ROIs, we aimed to correct for
278 potential confounding factors influencing dMRI metrics and the resulting correlations between
279 pairs of ROIs before computing the group connectivity matrices. Regional metric values were
280 corrected independently over the 3 infant groups for PMA at scan, GA at birth, and a residual
281 of the global median diffusion metric corrected for PMA and GA (see (Gondová et al., 2023)).

282 Metric values were then scaled between [0,1] after pooling together values across all regions
283 and subjects within a group (PT:ses1, PT:ses2, FT). Group-specific microstructural
284 connectivity matrices were then computed using Pearson's correlation after concatenating
285 individual regional microstructural fingerprints composed of the 6 diffusion metrics (4 DTI, 2
286 NODDI) across all subjects within the corresponding group into a single vector and considering
287 all pairs of grey matter ROIs.

288 **Functional connectivity (FC)**

289 Based on pre-processed rs-fMRI individual data (Fitzgibbon et al., 2020), we computed
290 median BOLD activity over labelled ROIs, applied low-pass filtering (0.1 Hz), and
291 standardized the time-series into Z-scores. Data was smoothed (full-width at half maximum of
292 3.225 mm) and trimmed (first and last 50 time-points). For each subject, Pearson's correlation
293 was used to compute a region-based connectivity matrix from the time series of each region
294 pair. Group-level connectivity matrices were then obtained by averaging individual matrices
295 within each infant group (PT:ses1, PT:ses2, FT). No additional correction for confounders was
296 included in the computation of group-wise FC. Even though the anatomically driven
297 parcellation might not be completely adequate for delineating the functional ROIs in the
298 developing brain (*Supp. Figure 2.3.*) we decided to keep this common framework to reduce the
299 dimensionality of the connectomes and to allow for direct comparisons with the MC.

300 **Evaluation of group-wise connectivity matrices**

301 Analyses were performed either considering all pairs of ROI connections or grouping
302 the pairs into different subtypes: cortico-subcortical, cortico-cortical connections considering
303 inter-hemispheric homotopic and non-homotopic, and intra-hemispheric connections. Given
304 the importance of thalamo-cortical connectivity and the development of primary sensorimotor
305 and visual networks during the preterm period, we further highlighted connectivity that
306 included thalamo-cortical pairs, as well as connections involving primary cortical sensorimotor
307 ROIs (precentral and postcentral gyri, paracentral lobule), and visual ROIs (pericalcarine
308 cortex, lateral occipital cortex, cuneus) whose delineations were available in the current
309 parcellation scheme.

310

311 **Analysis of group-wise microstructural connectivity (MC)**

312 On the MC level, we investigated the differences of the ROI connections in terms of
313 their microstructural profile between groups (comparing PT:ses2 vs FT and PT:ses1 vs
314 PT:ses2) and compared the distribution of the correlations between groups. As the correlation
315 coefficients were not distributed normally in each group according to the Shapiro-Wilk test,
316 and were considered as paired measures between groups, we used a non-parametric Wilcoxon
317 signed-rank test to assess the differences of distributions across the group pairs. Distribution
318 of connectivity strength between infant groups was also assessed using a robust linear
319 regression to describe potential relationships in the patterns of MC connectivity. In this work,
320 we employed the robust linear models with Huber's T loss from statsmodels (v0.12.1) python
321 package. We represented the MC connectomes as circos plots connecting ROIs. To ease the
322 visualisation, the MC matrices were thresholded to show only the strongest 25% connection
323 with: *i*, a common threshold across all three infant groups to uncover potential global changes
324 of MC with age and prematurity (MC threshold r of 0.786), and *ii*, with threshold adapted to
325 each infant group to visualise potential changes in the relative connectivity strengths between
326 groups (adapted threshold of 0.657 for PT:ses1, 0.856 for PT:ses2, and 0.833 for FT) (presented
327 in *Supp. Figure 4.1.*).

328 Analysis of group-wise functional connectomes (FC)

329 We performed similar analyses as in the case of MC to evaluate the differences in FC
330 between the infant groups. For the creation of the circos plots from the FC connectomes, the
331 strongest 25% connections corresponded to a common FC threshold of 0.448, and to adapted
332 thresholds of 0.349 for PT:ses1, 0.409 for PT:ses2, and 0.537 for FT (*Supp. Figure 5.1.*).

333 Relating MC and FC modalities

334 The relationship between group-wise MC and FC was evaluated by robust linear
335 regression for each infant group. The reported p-value for the slope of the described
336 relationship was obtained by permutation testing during which the null distribution was
337 generated by randomly shuffling the MC and FC inputs to the linear regressor. The final value
338 was then computed as the proportion of observations more extreme than the one observed for
339 the unshuffled inputs after 1000 random runs. The slopes were also compared using Z-scores
340 (*Supp. Figure 6.1.*).

341 Longitudinal analysis of MC and FC modalities

342 We leveraged the longitudinal aspect of our dataset to evaluate potential similarities
343 between evolution of MC and FC connectomes with age. We first computed the matrices of
344 developmental change between PT:ses1 and PT:ses2 for MC and FC separately (referred to as
345 ΔMC and ΔFC , respectively).

346 For ΔMC , as the diffusion metrics were corrected for within-group age effects before
347 the computation of the connectome, the change between connectomic strengths with age was
348 computed as a simple difference of absolute MC values between sessions. The direction of the
349 change then indicated an increase or decrease of the microstructural connectivity of the given
350 ROI connection between Ses1 and Ses2.

351 For ΔFC , the computation of matrices of developmental change between both
352 timepoints was similar but included an additional step to account for the variance across the
353 individual FC matrices within PT:ses1 and PT:ses2 groups related to the association between
354 ROI median correlations and the infants' PMA at the individual level. As an attempt to remedy
355 this, we first computed group-wise connection-wise confidence intervals using the standard
356 deviations of given connections' connectivity strength across subjects within the considered
357 infant group. The absolute FC differences between the 2 sessions were then weighted by the
358 overlap of the estimated confidence interval (i.e., a high overlap led to a decreased difference).
359 The sign of the resulting matrices of developmental change (like for ΔMC) indicates the
360 direction (i.e., increase or decrease) of the ROI connections' evolution with age.

361 The relationship between ΔMC and ΔFC in preterm infants was then evaluated by a
362 robust linear regression applied to the components of the upper triangle of the matrices.
363 Additionally, we compared ΔMC and ΔFC to the connectivity matrices of the opposite
364 modality derived at two sessions (i.e., ΔMC vs FC-PT:ses1 or FC-PT:ses2, and ΔFC vs MC-
365 PT:ses1 or MC-PT:ses2). Such analysis might allow us to assess hypotheses regarding the
366 potential co-evolution of the MC and FC connectivity in the age-ranges of the subjects
367 available in this study. Specifically, if the MC and FC co-evolve, their ΔMC and ΔFC networks
368 should be highly correlated, whereas in case of stronger effect of MC on FC in the early period,
369 we would expect ΔFC to depend on MC in the PT:ses1 group while FC at PT:ses2 would
370 depend on ΔMC (and vice versa). To decipher if one of these three hypotheses is more relevant
371 than the others in our PT group, we compared the regression slopes of the evaluated
372 relationships using a Z-scores like before.

373 Of note, across the article, all histograms, scatter plots, and statistical comparisons
374 include only the upper triangle of symmetric connectivity matrices. And correction for multiple
375 comparisons refers to Benjamini-Hochberg false-discovery rate correction.

376
377

378 ***Delineation and assessment of MC and FC networks***

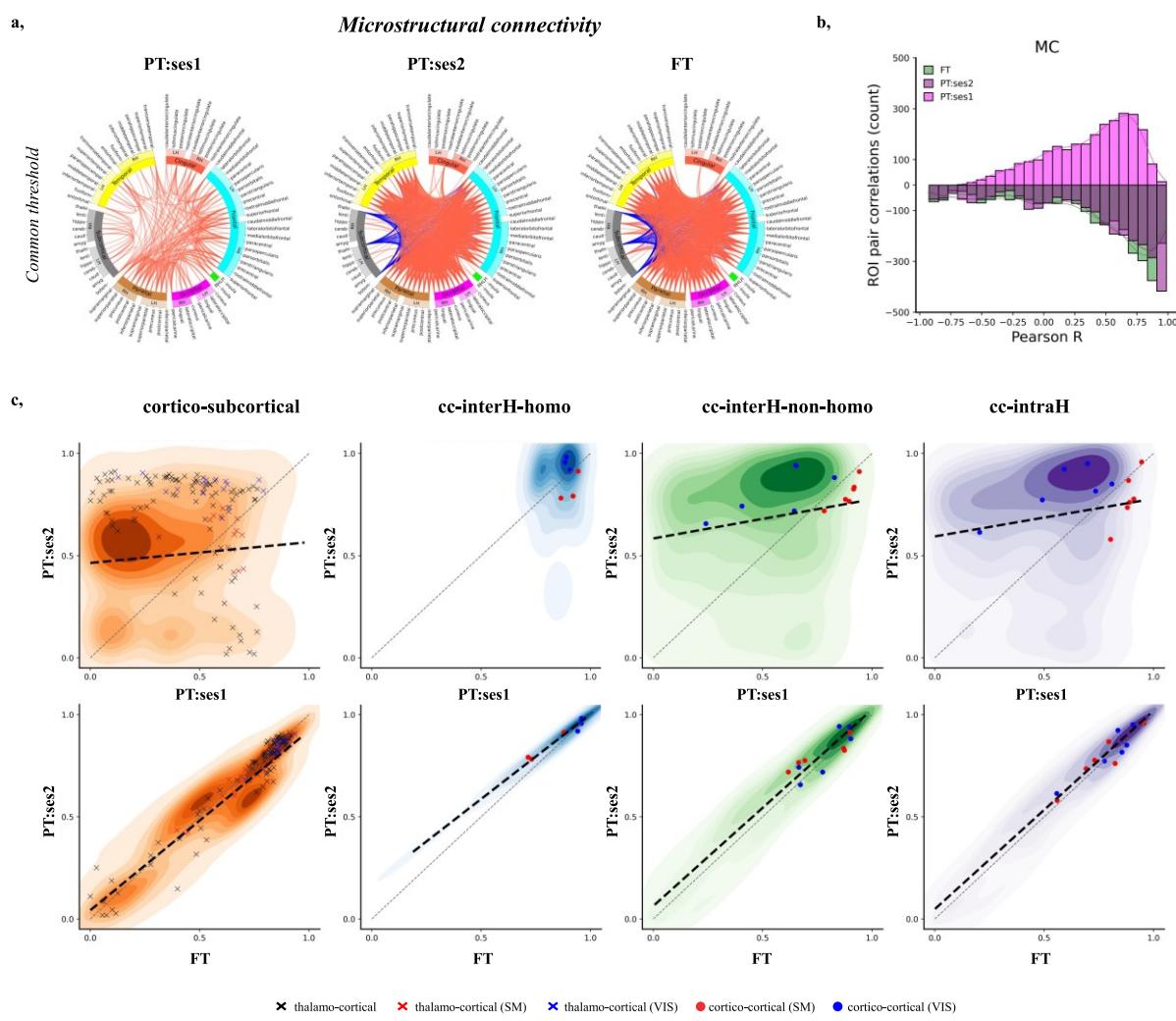
379 **Group-wise networks**

380 To extend our analyses beyond the direct comparisons of ROIs connection correlations,
381 we aimed to evaluate the similarities between the inter-regional relationships to compare either
382 the groups within each connectomic modality or between modalities. With this aim, we
383 extracted ‘networks’ for each group and each modality separately, i.e., clusters that would
384 regroup ROIs with similar connectivity profiles, by computing Euclidean distances from the
385 correlation coefficients to create group-wise MC and FC distance matrices using cosine
386 theorem (for the MC, the absolute values of the connectivity strengths were considered). We
387 then performed hierarchical clustering with the Ward linkage to group ROIs with similar
388 connectivity patterns. Determining the optimal number of clusters that would appropriately
389 reflect the evolving relationships across modalities and infant groups is difficult, especially
390 given the dynamic evolution of developing infant brain on both structural and functional level.
391 To address this, the commonalities between hierarchical trees (dendograms) defining MC/FC
392 networks (either between groups for a single modality, or between modalities for a single
393 group) were instead compared by computing mutual information (MI) across all possible
394 cluster sizes, ranging from 2 to 75 (the maximum possible number of clusters given the number
395 of parcels, *Supp. Figure 7.1.-2.*). MI quantifies the shared information between clustering
396 results and approximates the overlap between network structures. Similarly to previous MC-
397 FC comparisons, we performed permutation testing to evaluate the statistical significance of
398 the observed MI values and account for randomness. During this procedure, cluster
399 assignments were randomly shuffled 100 times, and the MI was recalculated to generate a null
400 distribution of MI values for each cluster pair (2-75) in a given comparison. Observed MI
401 values exceeding the 95th percentile of the given null distribution were considered to represent
402 meaningful, non-random clustering overlap. For the overall comparison of dendograms, MI
403 values for significant cluster pairs were averaged, and their standard deviations were calculated
404 with the aim to ensure that only statistically robust overlaps contributed to the reported results,
405 providing a more reliable measure of shared structure between networks.

406

407 **Evolution of longitudinal MC and FC networks**

408 Based on the idea that ROIs that participate in the same networks might show similar
409 developmental dynamics, we further aimed to regroup ROIs based on their changing
410 connectivity profiles, i.e., the matrices of developmental change Δ MC and Δ FC, into structural
411 and functional ‘longitudinal networks’ in preterm infants and compare these longitudinal MC
412 and FC-derived networks in terms of their overlap with MI. To get a proxy of longitudinal MC
413 and FC networks, the Δ MC and Δ FC matrices were used to cluster ROIs with similar
414 developmental connectivity modifications. As previously done for within-group connectivity
415 matrices, we used the Ward hierarchical clustering and created all possible cluster sizes from
416 2 to 75 and evaluated the MI between the clustering pairs considering different combinations.
417 Additionally, we compared the networks derived from the Δ MC and Δ FC to the networks from
418 the respective opposite modality derived at both sessions (i.e., Δ MC vs FC-PT:ses1 or FC-
419 PT:ses2, and Δ FC vs MC-PT:ses1 or MC-PT:ses2) to assess the potential co-evolution of the
420 MC and FC networks (*Figure 5.*, *Supp. Figure 7.3.*).


421 **Results**

422 ***Microstructural and functional relationships across grey matter***

423 **Evaluating microstructural connectivity (MC) in infant groups**

424 Univariate analyses of diffusion metrics resulting from DTI and NODDI models
425 confirmed region-specific differences between groups of infants across cortical and subcortical
426 ROIs (*Supp. Materials: SI3. Univariate analyses of GM microstructure*).

427 Circos plots of the MC matrices for the three infant groups (*Figure 2a*, after grouping
428 cortical ROIs into 6 lobes, and sub-cortical ROIs together, and thresholding to the 25%
429 strongest correlation coefficients) revealed a global reinforcement of microstructural
430 connectivity (i.e., higher correlation across ROIs) with increasing PMA (PT:ses1 vs
431 PT:ses2/FT) across most ROI connections. In the preterm period, MC correlations were both
432 weaker and more widespread across ROI connections within and between lobes. Among the
433 strongest connections, some cortico-subcortical relationships observed in the preterm timepoint
434 (e.g., subcortico-cingulate connections) were replaced by inter-hemispheric connections close
435 to TEA. Moreover, strong negative correlations, predominately involving cortico-subcortical
436 connections between frontal lobe and brainstem or bilateral thalamus, were observed in PT:ses2
437 and FT groups but not in PT:ses1 group. While challenging to attribute to a single diffusion
438 metric, these diverging profiles are likely due to the crossing of white matter fibres in
439 subcortical structures that give rise to opposing relationships of the related FA and ODI values
440 at TEA (*Supp. Figure 3.2.*). This is consistent with previously described microstructural
441 dissimilarity characterised by distinct maturational trends of diffusion metrics observed in
442 thalamus and other subcortical ROIs compared to cortical GM (Eaton-Rosen et al., 2015; Galdi
443 et al., 2020). To increase the comparability across groups, we considered absolute MC
444 correlation coefficients in the subsequent analyses.

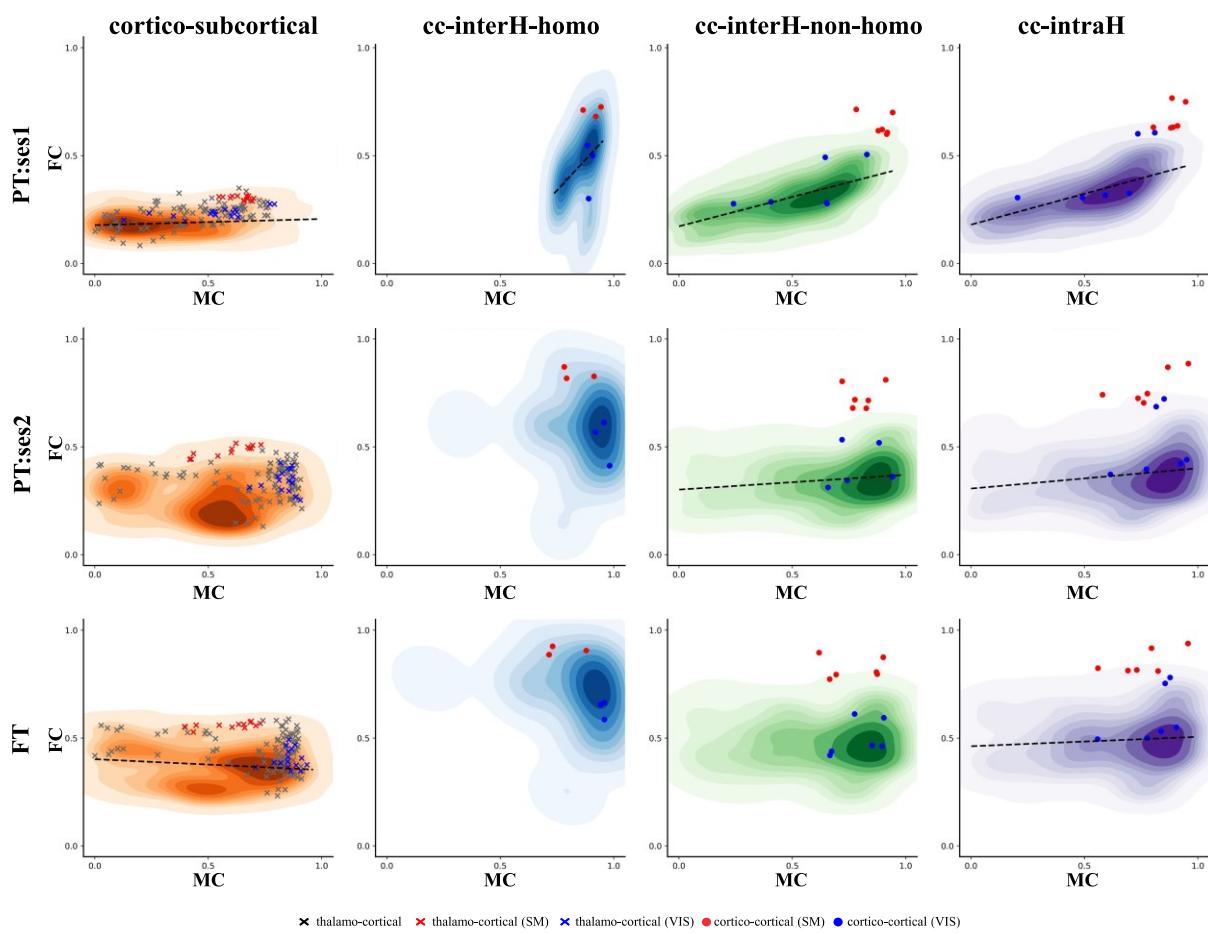
445
446

Figure 2. Microstructural connectome (MC) in infant groups. **a**, Circos plots representing correlation matrices and visualizing top 25 % MC connections for each infant group using a common MC threshold of 0.786. For the ease of visualization, cortical ROIs were grouped into 6 lobes (frontal in light blue, parietal in brown, temporal in yellow, occipital in pink, cingulate in red, and insular in green) and subcortical ROIs (in grey) (see *Supp. Figure 2.2* for ROI naming conventions and assignment to lobes). Connections with positive correlations are shown in red, negative in blue. **b**, Distribution of ROI connection correlations (Pearson coefficient R) across infant groups (PT:ses1 / ses2 in light/dark magenta, FT in green) (NB: throughout the manuscript, histograms, scatter plots, and statistical comparisons include only the upper triangle of symmetric matrices). **c**, Absolute changes of MC for subsets of ROI connections between PT:ses1 vs PT:ses2 (top) and FT vs PT:ses2 (bottom). The dotted black line shows the significant* relationships determined by robust linear regression, while the grey line represents the identity relationship. Connections involving primary sensorimotor and visual regions are highlighted as scatter points. **Legend:** cc-interH-homo – cortico-cortical interhemispheric homotopic, cc-interH-non-homo – cortico-cortical interhemispheric nonhomotopic, cc-intraH – cortico-cortical intrahemispheric, cor.p – p value after Benjamini-Hochberg false-discovery rate correction, MC – microstructural connectivity, SM – sensorimotor, VIS – visual. *after Benjamini-Hochberg false-discovery rate correction.

464

465
466
467
468
469

Comparing ROI connection strengths between groups (*Figure 2b*) confirmed significant changes of MC with age, with significant differences between PT and FT infants at TEA (paired Wilcoxon test across absolute correlation values for ROI connections, corrected for multiple comparisons: PT:ses2 > PT:ses1, $W=915823$ $p<0.001$; PT:ses2 > FT, $W=1521116$ $p<0.001$. Combined with a weaker, but significant positive linear relationship between the


470 PT:ses1 and PT:ses2 as assessed with robust linear regression, the results thus suggest an
471 ongoing development of MC profiles in preterm neonates before TEA. As expected, much
472 higher similarity of MC was observed between the PT:ses2 and FT groups (*Supp. Figure 4.1.*).
473

474 Next, we focused on different subsets of ROI connections to evaluate potential
475 differences in MC profiles that might reflect their different microstructural maturational
476 patterns (*Figure 2c*). For cortico-subcortical connections, the MC strengths were initially
477 mostly low (PT:ses1), and strengthened with development (PT:ses1 < PT:ses2, FT). In
478 particular, thalamo-cortical connections showed overall high variability at all timepoints,
479 except for those involving the primary sensorimotor (SM) and visual (VIS) areas which already
480 showed strong connectivity at the early age. Within cortico-cortical connections, inter-
481 hemispheric homotopic connections showed strong MC across all groups, suggesting a limited
482 maturation effect over the studied developmental period. Other inter- and intra-hemispheric
483 connections showed intermediate MC profiles and changes compared to cortico-subcortical
484 and cortico-cortical homotopic connections. ROIs involved in the primary SM system showed
485 higher MC connectivity strengths than those involved in the primary VIS system in the PT:ses1,
486 with a comparatively lower increase in connectivity strength in the TEA timepoint.
487

487 **Relating microstructural and functional connectivity**

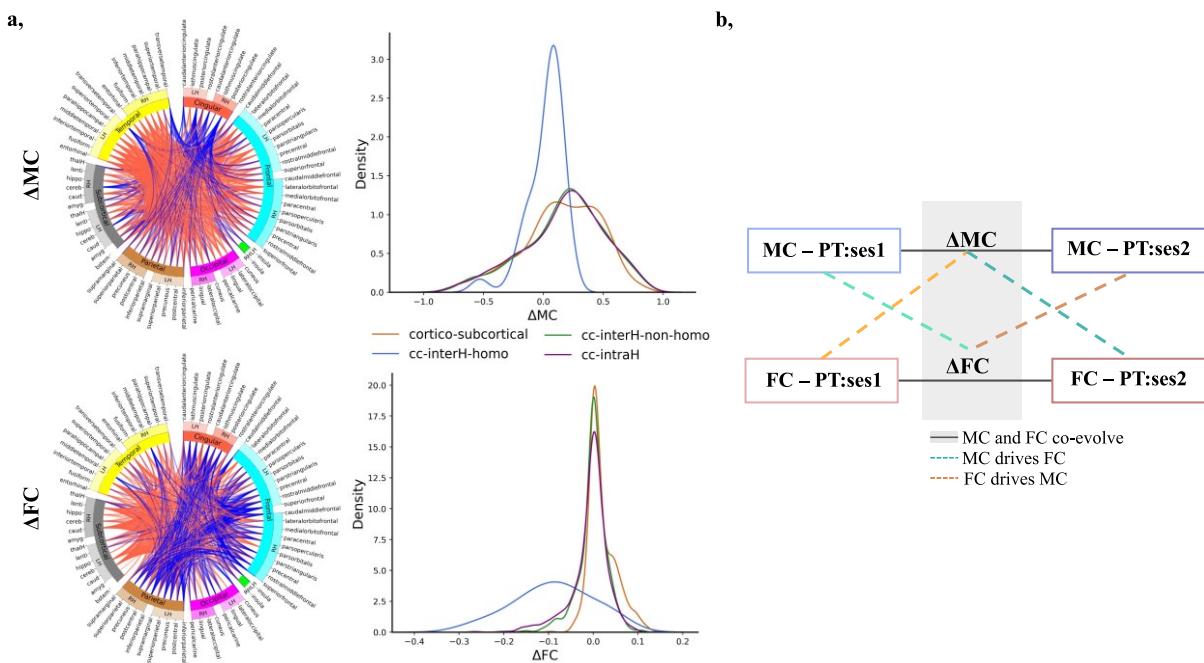
488 Estimation of FC in our work followed commonly used approach based on temporal
489 correlation of the functional signal across the ROIs (Taymourtash et al., 2023), and the
490 evaluation followed similar analyses as presented in the previous section for MC. The
491 corresponding FC results are presented in the *Supp. Materials: Evaluating functional*
492 *connectivity (FC)* in infant groups, as the original focus of our study was majorly MC and its
493 relationship to functional development.

494 When comparing MC-FC during development across ROI connections, MC and FC
495 showed strong positive linear relationship at an early age (PT:ses1 – slope=0.257, permuted
496 p=0.001) which however decreased with development (PT:ses1 – slope=0.100, permuted
497 p=0.013; FT – slope=0.046, permuted p=0.134) (*Supp. Figure 6.1a*), with statistically-different
498 slopes between the 2 PT sessions (PT-ses1 vs PT-ses2: Z=14.02, p<0.001) and between the 2
499 TEA sessions (PT:ses2 vs FT: Z-score=4.29, p<0.001) (similar results were obtained when
500 considering signed instead of absolute MC values: *Supp. Figure 6.1b*; and when analysing ROI
501 connections with negative and positive MC values separately: *Supp. Figure 6.1c*). Considering
502 different subsets of connections allowed us to specify these observations: positive linear MC-
503 FC relationships were strong for all subsets in PT-ses1, whereas such relationships were
504 observed in PT-ses2 only in connections that could be expected to be less mature at the
505 structural and functional levels over this period (i.e., cortico-cortical inter-hemispheric non-
506 homotopic and intra-hemispheric connections). In FT neonates, negative linear MC-FC
507 relationships were observed for cortico-subcortical connections (*Figure 3.*, *Supp. Figure 6.1d*).
508

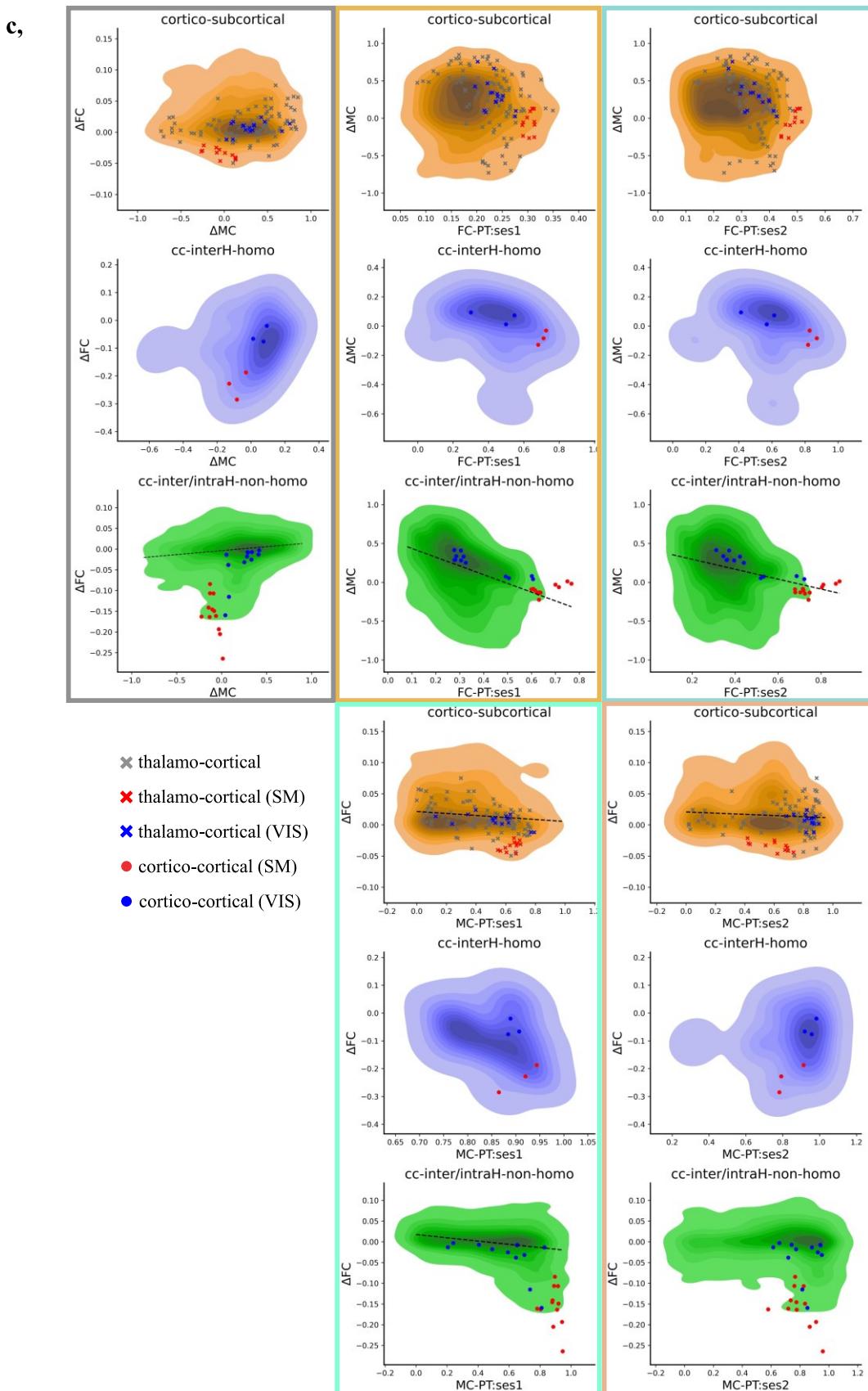
	cortico-subcortical		cc-interH-homo		cc-interH-non-homo		cc-intraH	
	robust LR	cor. p	robust LR	cor. p	robust LR	cor. p	robust LR	cor. p
PT:ses1	0.03x + 0.18	0.001	1.13x + 0.51	0.014	0.27x + 0.17	<0.001	0.29x + 0.18	p<0.001
PT:ses2	-0.01x + 0.27	0.697	-0.07x + 0.64	0.757	0.07x + 0.30	<0.001	0.09x + 0.31	p<0.001
FT	-0.05x + 0.40	0.001	-0.18x + 0.87	0.409	0.02x + 0.47	0.409	0.04x + 0.46	0.014

509
510
511
512
513

Figure 3. Relationship between MC and FC for different subsets of ROI connections. The table summarizes features of the robust linear relationship (LR) between the two. See *Figure 2* for legend and colour codes.


514

Evaluating the longitudinal evolution of MC and FC connectomes


515
516
517
518
519
520
521
522
523
524
525
526

We further aimed to investigate the evolution of MC-FC relationships by taking advantage of the longitudinal evaluations of PT infants to compute the matrices of developmental change between PT:ses1 and PT:ses2 separately for MC (considering absolute values at each age) and FC (referred to as Δ MC and Δ FC, respectively) (*Figure 4a*). Both increases and decreases of the connection strengths from the preterm period to TEA were observed for both modalities. As seen from group-wise comparisons, most connections increased in strength for Δ MC. Among others, the most pronounced decreases in connections involved the cingulate cortex and some of the subcortical ROIs (e.g., cerebellum and amygdala). For Δ FC, connections involving subcortical ROIs globally increased in strength while several cortico-cortical connections decreased in strength in a more pronounced way than for Δ MC. Inter-hemispheric connections involving homotopic cortical ROIs showed different profiles compared to other cortico-cortical connections (inter-hemispheric non-homotopic and

527 intra-hemispheric connections) which were merged in the subsequent analyses given their
528 overall similarity.

529

530

531 **Figure 4. a,** Longitudinal evolution of MC (top left) and FC (bottom left) in preterm infants. Circos
 532 plots visualize top 25 % connections for ΔMC and ΔFC modalities in PT infants (respective thresholds:
 533 0.458 and 0.037). Connections with increasing strength of relationships with age are shown in red,
 534 decreasing in blue. Density plots show the distribution of changes in connectivity strength with age for

535 different subsets of connections for the two modalities (right). **b**, Figure summarizing 3 possible
536 hypotheses on the developing causal relationships between microstructural and functional connectivity:
537 we colour coded the subplots by hypothesis tested by the given comparison: MC and FC co-evolve
538 (grey), MC drives FC (cyan, dark cyan), and FC drives MC (orange, dark orange). **c**, Directionality of
539 MC-FC relationships for different connection subsets (colour-coded by the three hypotheses). See
540 *Figure 1* and *Supp. Figure 2.2.* for legend and colour codes.

541 To further investigate the potential directionality of dependence between the
542 developing MC and FC in preterm infants, we hypothesized three possible MC-FC
543 relationships (*Figure 4b*): 1) if FC and MC co-evolve, Δ FC and Δ MC should be strongly
544 correlated; 2) if FC relies on MC, MC-ses1 should drive Δ FC while Δ MC should drive FC-
545 ses2; 3) conversely, if MC relies on FC, FC-ses1 should drive Δ MC while Δ FC should drive
546 MC-ses2. The hypotheses and results for all ROI connections are summarized in *Supp. Figure*
547 *6.2b,c*, while here we focused on the subsets of connections (*Figure 4c*).

548 For cortico-subcortical connections, significant negative linear relationships were
549 observed between Δ FC and MC-ses1 but also between Δ FC and MC-ses2. Among cortico-
550 cortical connections, inter-hemispheric homotopic connections showed no significant
551 associations across the comparisons, which could be related to their relatively mature state
552 compared to other cortico-cortical connections during the considered age range or by
553 methodological limitations due to reduced number of connections compared to other subsets.
554 For the other cortico-cortical connections (inter-hemispheric non-homotopic and intra-
555 hemispheric), Δ FC and Δ MC were positively related, while Δ MC and FC-ses1 as well as Δ FC
556 and MC-ses1 showed negative relationships. This latter result suggests that there exist
557 synchronized changes in MC and FC, and also lower changes in one connection modality if the
558 other already showed high connectivity strength during the preterm period. Surprisingly,
559 negative relationships were also observed between Δ MC and FC-ses2, suggesting a reverse
560 pattern (e.g., larger developmental increases in MC "leading" to lower FC at ses2).
561

562 ***Network-based comparisons of MC and FC development***

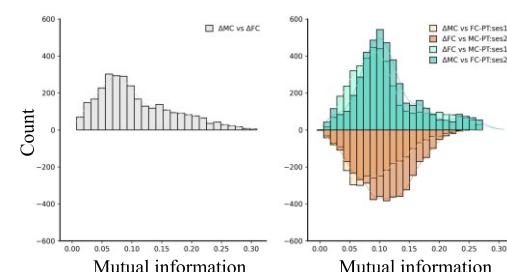
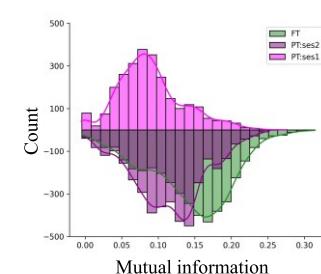
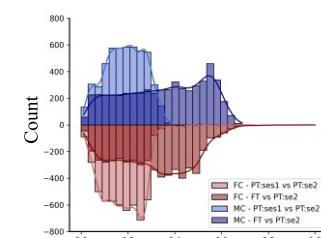
563 To extend the direct comparisons of connectivity strength across ROI connections
564 between infant groups, we further used the connectivity matrices to define 'microstructural
565 networks' for MC and 'functional networks' for FC modality using Ward clustering for each
566 infant group. The resulting dendograms, as well as examples of clustering for selected cluster
567 numbers are presented in *Supp. Figures 7.1. and 7.2.*

568 In agreement with previous observations, the comparison of clustering results using
569 mutual information (MI) between hierarchical trees across infant groups for either MC or FC
570 showed higher, although imperfect, overlap between PT:ses2 and FT subjects than between the
571 2 PT sessions (*Figure 5a*), while differences between PT:ses2 and FT subjects supported
572 potential effects of prematurity on microstructural connectivity across ROI connections.
573 Interestingly, the network overlap was very similar in FC and MC modalities, whereas a
574 stronger positive linear relationship between PT:ses1 and PT:ses2 groups in terms of FC than
575 of MC was previously observed across ROI connections. This suggested that network
576 structures observed at TEA are already in place in the preterm period to a certain extent for
577 both FC and MC.
578

a,

	MC	
	MI max	MI mean (std)
PT:ses1 vs PT:ses2	0.39	0.19 (0.09)
FT vs PT:ses2	0.69	0.35 (0.18)

	FC	
	MI max	MI mean (std)
PT:ses1 vs PT:ses2	0.75	0.18 (0.08)
FT vs PT:ses2	1.00	0.31 (0.15)




b,

	MC vs FC	
	MI max	MI mean (std)
PT:ses1	0.28	0.09 (0.04)
PT:ses2	0.25	0.12 (0.05)
FT	0.31	0.14 (0.06)

c,

	Longitudinal	
	MI max	MI mean (std)
ΔMC vs ΔFC	0.31	0.11 (0.06)
ΔFC vs MC-PT: ses1	0.30	0.08 (0.07)
ΔMC vs FC-PT:ses2	0.31	0.10 (0.07)
ΔMC vs FC-PT:ses1	0.27	0.05 (0.06)
ΔFC vs MC-PT:ses2	0.24	0.08 (0.06)

579
580

581 **Figure 5.** Network-based analyses. **a,** Table and histogram summarising the distribution of mutual
582 information (MI) of clustering results within MC (blue) and FC (red) modalities between groups
583 (PT:ses1 vs PT:ses2 in light colour, FT vs PT:ses2 in deep colour). **b,** Results for the network overlap
584 comparisons between MC and FC modalities. Distribution of MI values within PT:ses1 group in light
585 magenta, PT:ses2 dark magenta, and FT in green. **c,** Mutual information between clustering results
586 derived from longitudinal ΔMC and ΔFC matrices in preterm infants as well as comparison to networks
587 derived from the opposite modality at ses1 or ses2. As in *Figure 4*, we colour coded the columns by
588 hypothesis tested by the given comparison: MC and FC co-evolve (grey), MC drives FC (cyan), and
589 FC drives MC (orange).

590 Using the clustering-based approach, we also evaluated the similarity between MC and
591 FC at the network level in each group using the clustering approach. A trend of low but
592 progressively increasing mutual information was observed between MC- and FC-derived
593 networks (i.e., lower mean values in PT:ses1 than in FT, *Figure 5.b*) which contrasted with
594 direct ROI connection comparisons where the MC-FC linear relationships tended to globally
595 decrease with development. This might suggest a potential emergence of the shared underlying
596 network structures between MC and FC throughout development.

597 Finally, as in previous sections, we performed analysis of hierarchical clustering
598 separately on ΔMC and ΔFC to characterise longitudinal networks. Derived ΔMC and ΔFC
599 dendograms and examples of clustering results for selected number of clusters are presented
600 in *Supp. Figure 7.3.*, displaying some visual similarities but also some dissimilarities between
601 ΔMC and ΔFC . The mutual information between clustering results from longitudinal ΔMC and
602 ΔFC was further compared to the networks at each PT session to test the MC-FC relationship
603 hypotheses proposed in *Figure 4b*. Evaluation of MI between ΔMC and ΔFC derived networks
604 suggested significant overlap, which tended to be higher than for all the other comparisons

605 between each longitudinal network and the opposite modality at a given session (*Figure 5c*).
606 The lower MI were observed for network comparisons of Δ FC vs MC-ses2 and FC-ses1 vs
607 Δ MC, suggesting a lower dependence of MC on FC in the network space than the reverse
608 (*Figure 5c*). Nevertheless, results across the comparisons were fairly similar, making it difficult
609 to confidently ascertain which of the three hypotheses about MC-FC co-evolution is the most
610 probable on the network level.
611

612 Discussion

613 This study investigated early postnatal changes in *microstructural* and *functional* brain
614 connectivity, with a focus on their developmental trajectories during the preterm period. We
615 observed a global strengthening of absolute connectivity across cortical and subcortical
616 regions. However, these changes varied significantly across connections, consistent with the
617 expected stages of connection maturation, and were systematically impacted by prematurity.

618 Our findings imply that both microstructural and functional grey-matter connectivity
619 not only strengthen with age but also appear to evolve in relation to each other. This is
620 highlighted by significant positive linear relationships between MC and FC in the early PT
621 session, suggesting a potentially tightly coupled developmental trajectory between these
622 modalities. Later progressive decrease in direct positive MC-FC relationship with age may
623 reflect a dynamic shift in how the two modalities relate to one another, potentially reflecting a
624 transition toward greater functional specialization and complexity as the brain matures.

625 Interestingly, while direct MC-FC relationships diminished over time, our findings
626 suggest that the overlap between derived MC and FC networks increased. This might rely on a
627 progressive refinement and potential convergence of network structures between the two
628 modalities. Such convergence may reflect the establishment of efficient interactions across the
629 neural networks to support maturational processing and integration during this critical period
630 of brain development.
631

632 *Early maturation of grey matter connectivity*

633 Evaluating early microstructural connectivity (MC) with multi-shell dMRI

634 By analysing microstructural features, our study provides new insights into early
635 neurodevelopment through an alternative approach that evaluates microstructural relationships
636 (i.e. connectivity) across GM regions in relation to their functional synchronicity in the
637 temporal domain. Covariation of GM features during the first two years after birth have been
638 studied in the past, primarily relying on single morphometric markers (Fan et al., 2011; Geng
639 et al., 2016; Nie et al., 2014). While informative, such approaches offer only an indirect view
640 of the underlying microstructural processes occurring during the complex period of early brain
641 development (including dendritic arborization and the growth of axonal extensions,
642 synaptogenesis and subsequent pruning, myelination of intracortical fibres, proliferation of
643 glial cells, which together lead to a dramatic decrease in water content and an increase in tissue
644 density) (Bystron et al., 2008). Additionally, observations based on single descriptors are
645 potentially biased by specific spatial and temporal developmental patterns of changes of the
646 given descriptor (Gilmore et al., 2012; Lyall et al., 2015; Nie et al., 2014; Seidlitz et al., 2018).
647 We thus aimed to achieve a more comprehensive view of the inter-regional GM connectivity
648 by leveraging the complementary microstructural information provided by DTI- and NODDI-
649 derived metrics.

650 Both dMRI models present different trade-offs between complexity, biological
651 plausibility and limitations, such as those due to the DTI model inability to accurately represent
652 microstructure in regions with complex voxel properties (Batalle et al., 2019) or the potential

653 suboptimal estimation of NODDI parameters in infant GM due to its initial optimisation for
654 adult WM (Guerrero et al., 2019). However, both models have been widely used in
655 developmental studies because of their relevance as GM microstructure descriptors (Ball et al.,
656 2013; Eaton-Rosen et al., 2017; Smyser et al., 2016). To maintain consistency with the
657 literature, we opted for similar settings as previous dMRI studies of cortical maturation for
658 NODDI estimation (Batalle et al., 2019; Fenchel et al., 2020), and extracted metrics over the
659 cortical surface (Lebenberg et al., 2019) while considering median values over ROIs (Gondová
660 et al., 2023) for a reliable evaluation of GM microstructure confirmed by the observation of
661 expected diffusion metric changes with age (*Supp. Figure 3.1. & 3.2.*).

662 Combining multiple morphological and microstructural descriptors of cortical
663 development into a multi-parametric approach has been previously proposed in FT infants to
664 identify modules and similarity networks consistent with known cytoarchitecturally defined
665 brain areas and functional systems (Fenchel et al., 2020; Galdi et al., 2020). Nevertheless,
666 morphological features from anatomical MRI (e.g. local cortical surface, thickness, and
667 folding) remain less specific markers of maturation synchronization than microstructural
668 features employed in our study with dMRI. Due to the limited descriptor set (6 microstructural
669 metrics), we focused on group-wise MC estimation that included corrections for confounding
670 factors (i.e. GA at birth, PMA at scan). Extracted matrices remained globally consistent across
671 groups, suggesting reliability of our approach. Future work could potentially benefit from
672 increasing the feature sets by incorporating additional microstructural descriptors including
673 diffusion kurtosis metrics (Jelescu et al., 2015) for computation of individual matrices.

674 In terms of MC, the observed global reinforcement of absolute connectivity strength
675 across regions with increasing age agrees with previous descriptions of complex age-related
676 changes of microstructural similarity in FT and PT infants at TEA, including increases across
677 occipital, parietal and temporal areas, and decreases in limbic and cingulate regions (Fenchel
678 et al., 2020; Galdi et al., 2020). Observations in frontal regions differed across studies, perhaps
679 because of diffuse alterations of brain maturation in the subjects born preterm (Ball et al.,
680 2017). The age-related increase in absolute connectivity observed between thalamus/brainstem
681 and cortical regions is also consistent with rapid developmental changes to afferent and efferent
682 deep GM connectivity reported in the preterm period (Batalle et al., 2017).

683 **Evaluating functional connectivity (FC) with rs-fMRI**

684 Several studies have highlighted the organisation and evolution of FC and related
685 networks during early brain development (Dall'Orso et al., 2022; Eyre et al., 2021;
686 Taymourtash et al., 2023; Williams et al., 2023). Although data used in our study were
687 processed using an optimised pipeline designed to minimize the effects of motion, residual
688 difference between the groups were observed. Despite the differences in data quality across the
689 three infant groups (*Supp. Table 2.1*), our unimodal FC analyses (presented in the *Supp.*
690 *Materials: Evaluating functional connectivity (FC) in infant groups*) revealed coherent
691 profiles, similar to those described in previous studies (e.g., stronger connectivity between
692 homotopic inter-hemispheric regions than between other regions (Taymourtash et al., 2023;
693 Williams et al., 2023)). While we noted effects of PMA at scan across individual FC matrices,
694 we did not correct for it when computing group-wise matrices due to difficulties with
695 implementation of appropriate corrections at the level of individual connections. Nevertheless,
696 we attempted to mitigate these effects when deriving 'weighted' longitudinal matrices between
697 the preterm period and TEA (see *Materials and methods: Longitudinal analysis of MC and FC*
698 *modalities*). Similarly to our MC results and previous FC studies (Taymourtash et al., 2023;
699 Thomason et al., 2015), we observed a global FC reinforcement of connectivity strengths with
700 age, particularly for cortico-subcortical but also cortico-cortical connections. Nevertheless, the
701 detection of early cortico-subcortical FC at the first timepoint might be limited by age-

703 dependent effects on signal-to-noise ratio (SNR) (Denisova, 2019) that may notably impact the
704 subcortical regions (Maugeri et al., 2018; Risk et al., 2021). While it is interesting to note that
705 FC between the two PT sessions showed a higher correlation than MC, interpretation in terms
706 of maturation progression would require comparison to MC and FC mature states to disentangle
707 whether functional connections are established earlier than microstructural ones, or if the
708 refinement of FC relationships occurs after the studied period.

709

710 **Relationships between microstructural and functional connectivity in the late preterm 711 period.**

712 To provide a common framework for the comparisons of MC and FC modalities, we
713 used a set of 31 bilateral cortical and 13 subcortical ROIs, derived from anatomical
714 parcellations optimized for neonates. Nevertheless, the anatomically driven parcellation likely
715 introduces bias to resulting connectivity estimates, particularly in the case of FC in which
716 anatomically defined ROIs might not accurately represent individual functional regions
717 especially in the context of dynamic development (Smith & Beckmann, 2017; *Supp. Figure*
718 2.3.). Additionally, although the parcellation quality was satisfactory for all subjects and
719 timepoints, it was lower for the earlier scans (i.e., when the infant's age moved away from TEA
720 – age used to define the cortical parcellation atlas) (*Supp. Figure* 2.2.). The observed errors
721 occurred mostly in the regions where anatomical landmarks, such as secondary and tertiary
722 sulci, were not yet present to guide the delineations. We extracted median ROI descriptors in
723 both MC and FC modalities to partially mitigate these parcellation errors. Future work could
724 use different parcellation schemes (e.g., random parcellation (Fenchel et al., 2020; Gondová et
725 al., 2023)) to confirm our findings.

726 Notably, while there were significant positive linear relationships between MC and FC
727 in the preterm period, coupling decreased with development at the whole brain level.
728 Comparison between developmental matrices across all connections in the preterm period
729 (Δ MC and Δ FC) suggested a clear trend of positive relationship between coinciding changes
730 of MC and FC, as well as a lower change in one modality if the other already showed high
731 connectivity strength in the early period. The initially significant positive relationship in the
732 preterm period is followed by a progressive but coordinated decoupling of MC and FC with
733 maturation. This contrasts with previous studies linking structure and function through white
734 matter connectivity (Grayson et al., 2014; Hagmann et al., 2010; Zhang et al., 2022) which
735 described increasing coupling in PT infants (van den Heuvel et al., 2015) and synchrony
736 between the maturation of grey matter regions and underlying white matter tracts (Friedrichs-
737 Maeder et al., 2017; Smyser et al., 2016). The approach we proposed with MC could thus
738 provide an alternative and complementary view for investigations into structure-function
739 relationships even in absence of identified structural links (i.e., structural connections identified
740 with diffusion MRI and tractography).

741

742 **Different MC-FC relationships in connection subsets based on expected maturational 743 stage**

744 Any evaluations of MC-FC relationships are intrinsically influenced by the considered
745 developmental period relative to the maturation stage of the given connections and networks.
746 Thus, whole-brain evaluations are likely obscured by the asynchrony in maturation across brain
747 areas observed at the level of GM microstructure (Fukutomi et al., 2018; Leenberg et al.,
748 2019) and FC (Cao et al., 2017; Eyre et al., 2021; Larivière et al., 2020). To address this and
749 perform more targeted evaluation of MC-FC relationships, we considered subsets of
750 connections (i.e. cortico-subcortical vs cortico-cortical connections, with distinctions between
751 intra- and interhemispheric ones, the latter being split into homotopic vs non-homotopic
752 subsets) that were previously shown to differ based on previous studies of functional (van den

753 Heuvel et al., 2015) and white matter structural connectivity (Kostović et al., 2019; Kulikova
754 et al., 2015; Takahashi et al., 2012; Vasung et al., 2017; Wilson et al., 2021, 2023).

755 Across cortico-cortical connections, inter-hemispheric homotopic ones showed similar
756 profiles of strong MC between the two PT sessions, indicating limited maturation effects over
757 the studied period, while the other connections showed more varied MC changes. Qualitatively
758 similar trends were observed for FC, with inter-hemispheric homotopic connections being
759 generally similar between sessions. Cortico-subcortical connections seemed to display greater
760 heterogeneity in age-related changes in both MC and FC strength with age, suggesting a need
761 for more specific analysis across different deep GM structures (but this was out of the scope of
762 this first study).

763 Cortico-cortical connections involving primary sensorimotor (SM) and visual (VIS)
764 ROIs both showed strong MC at PT:ses1 with minimal developmental changes across the
765 studied age range, in line with reports of early maturation of primary sensory areas (Ball et al.,
766 2013; Lehenberg et al., 2019). SM regions exhibited slightly higher initial MC and a smaller
767 increase by TEA compared to VIS regions, that might indicate earlier maturation of
768 sensorimotor functions. Similar to MC, strong FC was observed for SM connections with
769 minimal developmental change over the studied period, consistent with previous observations
770 of functional organisation of primary sensory networks by TEA (Eyre et al., 2021; Dall'Orso
771 et al., 2022). This was to a lesser degree similar for VIS connections, in line with previous
772 findings suggesting the early presence of sensory cortical hubs with a later transition to the
773 visual system (Fransson et al., 2009; van den Heuvel et al., 2015).

774 Comparing the two MC and FC modalities within each group (*Figure 3.*), different
775 connection subsets revealed diverse patterns of MC-FC relationships with age. Cortico-
776 subcortical connections exhibited negative relationships at TEA, while inter-hemispheric
777 homotopic and non-homotopic connections showed decreasing coupling, and intra-
778 hemispheric connections maintained significant positive relationships across all age
779 timepoints. This observation might be coherent with the developmental sequence described in
780 terms of white matter connectivity and FC across different connection subsets, with cortico-
781 subcortical connections being the most mature over the perinatal period, followed by inter-
782 hemispheric homotopic cortico-cortical connections, non-homotopic inter-hemispheric
783 connections, then the remaining intra-hemispheric cortico-cortical connections. Progressive
784 loss of MC-FC coupling could then reflect the connectivity maturation on the microstructural
785 level which might underlie progressive functional specialisation and diversification of FC
786 (Allievi et al., 2016; Dall'Orso, 2022). However, if the interpretation of progressive functional
787 specialization is correct, the decoupling between MC and FC likely stems from the measure to
788 which FC matrices derived from a given set of ROIs capture the underlying biological
789 functional connectivity changes with age. Thus, while the loss of positive relationships might
790 indicate developmental changes that occur during the studied age range between the two
791 modalities, distinguishing between biological and 'second-order' methodological artefacts is
792 challenging. Future work would benefit from adapting parcellation schemes to better reflect
793 functional (and microstructural) specialization with age or attempting the analysis of spatial
794 distribution of developmental changes across cortical and subcortical structures in a
795 parcellation-independent manner.

796 Furthermore, the observation of negative relationships between MC and FC in
797 potentially the most mature cortico-subcortical connections at TEA suggests a complex
798 structure-function relationship in mature systems that warrants further exploration. As we
799 suspected that negative MC values at later ages (resulting from microstructural differences
800 between cortical and subcortical ROIs) might complicate these comparisons, we also analysed
801 the MC-FC relationships separately for positive and negative MC, confirming different
802 characteristics for cortico-subcortical vs cortico-cortical connectivity (*Supp. Figure 6.1d*).

803 Future MC analyses might be reserved to the cortico-cortical assessment, while targeted white-
804 matter structural connectivity evaluations might be more appropriate to consider cortico-
805 subcortical connectivity (Neumane et al., 2022).

806 While our goal was to explore the directionality of MC and FC co-development based
807 on matrices of developmental change in PT infants (Δ MC and Δ FC), results did not allow us
808 to distinctly differentiate between the three possible hypotheses: FC-MC co-evolution; MC
809 relying on FC; FC relying on MC. The relative limited sample size in our study, due to the
810 scarcity of multimodal and longitudinal data from the preterm population, may partly explain
811 our inconclusive results. Additionally, variability in the birth-to-scan and 1st-to-2nd scan
812 delays in the PT group could also affect group comparisons (*Supp. Figure 1.1.*). While
813 reassigning or excluding subjects to create groups with more homogenous scan ages could
814 reduce variability, it would further reduce our sample size. We chose to retain as many subjects
815 as possible, controlling for age at scan as a linear covariate. Nevertheless we acknowledge that
816 such corrections may not fully capture the complex, nonlinear developmental trajectories
817 during this period. Future studies could address age variability more robustly by modelling age
818 as a continuous variable, shifting to individual-level connectivity estimates which would allow
819 to compare the rates of change across different connections in a more comprehensive manner,
820 and expanding the longitudinal dataset to enhance the robustness of our evaluation. Until then,
821 the observation of significant relationships in the latest developing inter/intra-hemispheric non-
822 homotopic subsets but not in the others might be suggestive of a concurrence of bi-directional
823 MC-FC changes in developing connections. Further targeted investigation focusing on selected
824 networks with well characterised maturational sequences, such as primary sensorimotor and
825 visual networks may help to further elucidate the developing interactions between MC and FC
826 in the absence of larger longitudinal cohorts, although their limited developmental changes
827 across the period studied might make the assessments challenging.
828

829 **Impact of prematurity on microstructural and functional connectivity**

830 Additionally, as previous studies have reported that PT infants show spatially
831 heterogenous alterations in GM microstructure (Batalle et al., 2019; Dimitrova et al., 2021;
832 Eaton-Rosen et al., 2015, 2017; Ouyang, Jeon, et al., 2019; Smyser et al., 2016) and altered
833 inter-regional similarity (Galdi et al., 2020), we also investigated the impact of prematurity on
834 MC and FC at TEA. We observed different relative patterns of MC between the two groups
835 (PT:ses2 vs FT), affecting diverse ROI connections, including the bilateral thalamus and
836 hippocampus, as well as widespread intra- and inter-hemispheric connections across the cortex.
837 Interestingly, PT infants showed globally higher MC strengths at TEA compared to FT infants,
838 particularly in inter-hemispheric homotopic cortical connections. This may suggest a more
839 mature profile in PT infants for these connections, potentially reflecting accelerated maturation
840 driven by the earlier onset of experience-dependent developmental mechanisms in the extra-
841 uterine environment.

842 In terms of FC, we observed a significant effect of prematurity characterised by a global
843 decrease in FC connectivity strength, consistently with previous studies (Ball et al., 2016;
844 Brenner et al., 2021; Chiarelli et al., 2021; Eyre et al., 2021; Keunen et al., 2017; Scheinost et
845 al., 2016; Smyser et al., 2010). This suggests a diffuse and complex effect of prematurity on
846 FC, rather than more focal effects on intrinsic brain network connectivity.

847 When directly comparing MC and FC, differences between PT infants at TEA and FT
848 neonates were observed only in cortico-subcortical and inter-hemispheric non-homotopic
849 connections. These findings suggest that the impact of prematurity on MC-FC relationships
850 may depend on the maturation stage and specific dynamics of connection subtypes, which
851 could be influenced by the timing of the premature birth among other complex factors,
852 including environment. In our study, PT and FT infants did not differ in socio-economic status,

853 as measured by the UK Index of Multiple Deprivation (IMD) (*Supp. Table 2.2.*) and we
854 considered the environmental impact on brain connectivity to be limited at the time of MRI in
855 our study. However, environmental factors are known to influence neurodevelopment in
856 premature (and full-term) infants (Benavente-Fernández et al., 2019; Vanes et al., 2023) and
857 likely play a broader role in brain development through complex interactions. While our study
858 focused on differences linked to prematurity, future work could examine how socio-economic
859 factors affect maturation and modulate the effects of prematurity. As early life presents a
860 sensitive window during which brain disruptions may disproportionately affect later outcomes,
861 the MC and FC modifications observed in our work could predispose to altered trajectories and
862 dynamics of brain network integration and specialisation with long-term implications for
863 neurodevelopmental outcomes. Future research should explore specific effects of perinatal
864 insults and their timing on MC-FC dynamics across maturational stages to inform more
865 personalised intervention strategies that could optimize brain network development during
866 critical periods.

867 While our study focused on the preterm period in preterm infants, prematurity-related
868 alterations to microstructural and functional modalities make it difficult to dissociate
869 maturation from prematurity effects. Since little is known about the developmental
870 relationships between the structure and function of emerging neuronal networks, future
871 longitudinal research in typical populations might be warranted to better understand these
872 physiological dynamics and their differences in pathology.

873 Previous studies have further highlighted the significant role of postnatal experiences
874 in brain network maturation. While we attempted to control for GA at birth and PMA at MRI
875 scan in each group, the time between birth and MRI (days *ex-utero*) could still impact MC, FC,
876 and their assessed relationship. While it would be difficult to fully assess these effects due to
877 our limited sample size compared with GA and PMA variability, future work might investigate
878 the effects of days *ex-utero* to better distinguish between environmental and intrinsic
879 developmental influences.

880

881 ***Network approach: sub-setting links with similar connectivity profiles and*** 882 ***developmental trajectories***

883 To expand our analyses beyond direct comparisons of MC and FC strengths, we aimed
884 to assess the potential overlap of the spatial organisation of networks across infant groups and
885 modalities. This involved defining networks based on connectivity profiles across different
886 regions. To do so, we used hierarchical Ward clustering due to its ability to capture potential
887 hierarchical structure of regional relationships and to retain interrelations at different levels of
888 description in the resulting dendograms. However, this method has limitations, among which
889 the irreversibility of the cluster assignment that makes the resulting clusters sensitive to local
890 effects and errors that might be propagated through dendograms (Moreno-Dominguez et al.,
891 2014). Despite this, Ward clustering was previously shown to perform well compared to
892 alternative methods, even for a large number of clusters, in both simulated and real rs-fMRI
893 data (Thirion et al., 2014). Nevertheless, given the potential spatial overlap between brain
894 networks, future research could explore other clustering methods such as overlapping
895 communities (de Reus et al., 2014) or those accommodating varying spatial network
896 configurations (Bijsterbosch et al., 2018). Additionally, more granular analyses with larger
897 number of smaller ROIs could be beneficial, especially in the case of FC based on random or
898 functionally based parcellations.

899 Determining an appropriate number of clusters also posed challenges, especially
900 because the network specialization might differ throughout development and between MC and
901 FC modalities (Allievi et al., 2016; Dall'Orso et al., 2022). To address this, we compared all
902 possible cluster number pairs to approximate general overlap across different network solutions

903 using the mutual information. Although this approach provided only a broad measure of
904 network (di)similarity, visual inspection of resulting hierarchies suggested informativeness
905 within the clustering solutions, with some expected patterns such as regions within primary
906 sensorimotor networks tending to belong to the same clusters across solutions.

907 Such a network-based approach might thus offer alternative and complementary
908 information to previous connection subset-based descriptions. Simplifying the heterogeneity
909 across connections by clustering regions with similar connectivity profiles (for group-specific
910 clustering) or similar developmental trajectories (for longitudinal networks between PT:Ses1
911 and PT:Ses2) to derive connectivity clusters, i.e., ‘networks’, might lead to more robust
912 comparisons of MC and FC connectivities.

913 At the network level, we observed significant but not extensive overlap between MC-
914 derived networks in preterms (PT:ses1 vs PT:ses2) and at TEA (PT-ses2 vs FT), suggesting
915 both convergences and divergences over the preterm and term periods. Nevertheless, some
916 patterns of microstructural connectivity reflecting potential network properties appear to be
917 established during the preterm period and further refined with development. Similarly, FC-
918 derived networks showed some overlap between the two PT sessions, suggesting that some
919 functional properties are discernible in the preterm period and continue to develop as suggested
920 by previous studies (Doria et al., 2010; Smyser et al., 2010; van den Heuvel et al.,
921 2015). Besides, the observation that the network overlap remains consistent between the two
922 PT sessions for both MC and FC modalities contrasts with the direct connectivity comparisons
923 indicating higher similarity of FC than MC, further underscoring the value of the network-level
924 analysis to describe inter-regional patterns that might be inaccessible in the whole-brain
925 analysis due to heterogenous maturation of different connection subtypes.

926 Interestingly, while direct connectivity strength comparisons indicated disappearance
927 of MC-FC linear relationships with maturation, comparisons of extracted networks revealed an
928 opposite trend of increasing network overlap with age. This might imply a shared underlying
929 network organization between MC and FC established early on in the preterm period, similarly
930 to later ages (Geng et al., 2016), that progressively aligns MC and FC as networks refine on
931 both microstructural and functional levels. Network-based comparisons derived from
932 developmental changes (Δ MC and Δ FC) reached similar overlaps, further suggesting network
933 commonalities between MC and FC modalities. As for direct MC-FC comparisons, typical
934 organisation of MC-FC network patterns seemed altered by prematurity indicated by a lower
935 overlap in PT:ses2 infants than in FT neonates.

936 Regarding the question of MC-FC co-evolution and directionality, we observed
937 generally lower network-based overlap for the comparisons Δ MC vs FC-PT:ses1 and Δ FC vs
938 MC-PT:ses2 that weakens the hypothesis of dependence of MC on FC during the preterm
939 period. Instead, the two alternative hypotheses (MC-FC co-evolution or dependence of FC on
940 MC) might be better supported by such network-based observations. Nevertheless, given the
941 complex and bi-directional influences between microstructural and functional development
942 underlying brain maturation in this period (Cadwell et al., 2019), further investigations
943 focusing on specific systems/networks might be necessary to reduce analytical noise and clarify
944 the complex picture of MC-FC relationships. Additionally, previous studies suggested that the
945 relationship between white-matter structural and functional connectivity might diminish as
946 structure stabilizes into a more permanent foundation for the adaptations of functional
947 connectome to new demands and environment (Baum et al., 2020; Ciarrusta et al., 2022; Yeo
948 et al., 2011). Extending our evaluations of MC-FC relationships to later developmental periods,
949 when the interplay between microstructure and function may evolve differently, might be
950 useful to complement our observations.

951 Conclusion

952 In the present study, we explored the complex nature of grey matter connectivity during
953 early brain development through comparisons of microstructural and functional brain features.
954 Focusing on 45 preterm infants scanned longitudinally, we observed a global reinforcement of
955 absolute MC and FC strength with age, characterise by strong dependence on different
956 connection subsets and network maturational dynamics. MC and FC are positively related
957 during the preterm period but this linear relationship decreases with development, while
958 overlaps between MC- and FC-derived networks increase with age, suggesting a progressive
959 convergence toward a shared network structure. These findings highlight the intricate interplay
960 between microstructural and functional properties and will hopefully lead to future studies into
961 how their co-evolution may play critical role in shaping neurodevelopmental trajectories and
962 their disruption impact long-term outcomes.

963 Prematurity had a diffuse and heterogeneous effect on both MC and FC, with significant
964 reductions in connectivity observed in preterm infants compared to their full-term counterparts.
965 These disruptions underscore the need for further research to investigate how specific MC-FC
966 alterations relate to the degree of prematurity and how they influence later neurodevelopmental
967 outcomes. In the future, examining individual-level variations in MC-FC relationships and
968 their progression through later developmental stages may help delineate atypical trajectories in
969 vulnerable preterm populations. Such efforts could enhance our understanding of
970 neurodevelopmental disorders and inform targeted interventions for preterm infants in order to
971 improve their functional outcomes and quality of life.

972 The increasing overlap between MC and FC networks with age also emphasizes the
973 potential utility of MC as a complementary descriptor for characterizing brain network
974 maturation. While the biological significance of MC in synchronized maturation across brain
975 regions warrants further investigation, future studies comparing MC with white matter
976 structural connectivity and exploring its relationships to intrinsic developmental triggers (e.g.
977 conserved genetic or evolutionary patterns), extrinsic environmental influences and subsequent
978 behavioural acquisitions may provide additional insights.

979 References

981 Adamson, C. L., Alexander, B., Ball, G., Beare, R., Cheong, J. L. Y., Spittle, A. J., Doyle, L. W., Anderson,
982 P. J., Seal, M. L., & Thompson, D. K. (2020). Parcellation of the neonatal cortex using Surface-
983 based Melbourne Children's Regional Infant Brain atlases (M-CRIB-S). *Scientific Reports*, 10(1),
984 1–11. <https://doi.org/10.1038/s41598-020-61326-2>

985 Alexander-Bloch, A., Giedd, J. N., & Bullmore, E. (2013). Imaging structural co-variance between
986 human brain regions. *Nature Reviews Neuroscience*, 14(5), 322–336.
987 <https://doi.org/10.1038/nrn3465>

988 Allievi, A. G., Arichi, T., Tusor, N., Kimpton, J., Arulkumaran, S., Counsell, S. J., Edwards, A. D., &
989 Burdet, E. (2016). Maturation of Sensori-Motor Functional Responses in the Preterm Brain.
990 *Cerebral Cortex*, 26(1), 402–413. <https://doi.org/10.1093/cercor/bhv203>

991 Ball, G., Aljabar, P., Arichi, T., Tusor, N., Cox, D., Merchant, N., Nongena, P., Hajnal, J. V., Edwards, A.
992 D., & Counsell, S. J. (2016). Machine-learning to characterise neonatal functional connectivity in
993 the preterm brain. *NeuroImage*, 124, 267–275.
994 <https://doi.org/10.1016/j.neuroimage.2015.08.055>

995 Ball, G., Aljabar, P., Nongena, P., Kennea, N., Gonzalez-Cinca, N., Falconer, S., Chew, A. T. M., Harper,
996 N., Wurie, J., Rutherford, M. A., Counsell, S. J., & Edwards, A. D. (2017). Multimodal image

997 analysis of clinical influences on preterm brain development. *Annals of Neurology*, 82(2), 233–
998 246. <https://doi.org/10.1002/ana.24995>

999 Ball, G., Srinivasan, L., Aljabar, P., Counsell, S. J., Durighel, G., Hajnal, J. V., Rutherford, M. A., &
1000 Edwards, A. D. (2013). Development of cortical microstructure in the preterm human brain.
1001 *Proceedings of the National Academy of Sciences*, 110(23), 9541–9546.
1002 <https://doi.org/10.1073/pnas.1301652110>

1003 Barbas, H. (2015). General Cortical and Special Prefrontal Connections: Principles from Structure to
1004 Function. *Annual Review of Neuroscience*, 38(1), 269–289. <https://doi.org/10.1146/annurev->
1005 neuro-071714-033936

1006 Basser, P. J., Mattiello, J., & Lebihan, D. (1994). Estimation of the Effective Self-Diffusion Tensor from
1007 the NMR Spin Echo. *Journal of Magnetic Resonance, Series B*, 103(3), 247–254.
1008 <https://doi.org/10.1006/jmrb.1994.1037>

1009 Bataille, D., Hughes, E. J., Zhang, H., Tournier, J.-D., Tusor, N., Aljabar, P., Wali, L., Alexander, D. C.,
1010 Hajnal, J. V., Nosarti, C., Edwards, A. D., & Counsell, S. J. (2017). Early development of structural
1011 networks and the impact of prematurity on brain connectivity. *NeuroImage*, 149, 379–392.
1012 <https://doi.org/10.1016/j.neuroimage.2017.01.065>

1013 Bataille, D., O'Muircheartaigh, J., Makropoulos, A., Kelly, C. J., Dimitrova, R., Hughes, E. J., Hajnal, J.
1014 V., Zhang, H., Alexander, D. C., Edwards, A. D., & Counsell, S. J. (2019). Different patterns of
1015 cortical maturation before and after 38 weeks gestational age demonstrated by diffusion MRI
1016 in vivo. *NeuroImage*, 185, 764–775. <https://doi.org/10.1016/j.neuroimage.2018.05.046>

1017 Baum, G. L., Cui, Z., Roalf, D. R., Ceric, R., Betzel, R. F., Larsen, B., Cieslak, M., Cook, P. A., Xia, C. H.,
1018 Moore, T. M., Ruparel, K., Oathes, D. J., Alexander-Bloch, A. F., Shinohara, R. T., Raznahan, A.,
1019 Gur, R. E., Gur, R. C., Bassett, D. S., & Satterthwaite, T. D. (2020). Development of structure–
1020 function coupling in human brain networks during youth. *Proceedings of the National Academy
1021 of Sciences*, 117(1), 771–778. <https://doi.org/10.1073/pnas.1912034117>

1022 Benavente-Fernández, I., Synnes, A., Grunau, R. E., Chau, V., Ramraj, C., Glass, T., Cayam-Rand, D.,
1023 Siddiqi, A., & Miller, S. P. (2019). Association of Socioeconomic Status and Brain Injury With
1024 Neurodevelopmental Outcomes of Very Preterm Children. *JAMA Network Open*, 2(5), e192914.
1025 <https://doi.org/10.1001/jamanetworkopen.2019.2914>

1026 Brenner, R. G., Wheelock, M. D., Neil, J. J., & Smyser, C. D. (2021). Structural and functional
1027 connectivity in premature neonates. *Seminars in Perinatology*, 45(7), 151473.
1028 <https://doi.org/10.1016/j.semperi.2021.151473>

1029 Brodmann, K. (1908). Beiträge zur histologischen Lokalisation der Grosshirnrinde. VI. Mitteilung: Die
1030 Cortexgliederung des Menschen. *Journal Für Psychologie Und Neurologie*, 10, 231–246.

1031 Bystron, I., Blakemore, C., & Rakic, P. (2008). Development of the human cerebral cortex: Boulder
1032 Committee revisited. *Nature Reviews Neuroscience*, 9(2), 110–122.
1033 <https://doi.org/10.1038/nrn2252>

1034 Cadwell, C. R., Bhaduri, A., Mostajo-Radji, M. A., Keefe, M. G., & Nowakowski, T. J. (2019).
1035 Development and Arealization of the Cerebral Cortex. *Neuron*, 103(6), 980–1004.
1036 <https://doi.org/10.1016/j.neuron.2019.07.009>

1037 Cao, M., Huang, H., & He, Y. (2017). Developmental Connectomics from Infancy through Early
1038 Childhood. *Trends in Neurosciences*, 40(8), 494–506. <https://doi.org/10.1016/j.tins.2017.06.003>

1039 Chiarelli, A. M., Sestieri, C., Navarra, R., Wise, R. G., & Caulo, M. (2021). Distinct effects of
1040 prematurity on MRI metrics of brain functional connectivity, activity, and structure: Univariate
1041 and multivariate analyses. *Human Brain Mapping*, 42(11), 3593–3607.
1042 <https://doi.org/10.1002/hbm.25456>

1043 Christiaens, D., Cordero-Grande, L., Pietsch, M., Hutter, J., Price, A. N., Hughes, E. J., Vecchiato, K.,
1044 Deprez, M., Edwards, A. D., Hajnal, J. V., & Tournier, J.-D. (2021). Scattered slice SHARD
1045 reconstruction for motion correction in multi-shell diffusion MRI. *NeuroImage*, 225, 117437.
1046 <https://doi.org/10.1016/j.neuroimage.2020.117437>

1047 Ciarrusta, J., Christiaens, D., Fitzgibbon, S. P., Dimitrova, R., Hutter, J., Hughes, E., Duff, E., Price, A.
1048 N., Cordero-Grande, L., Tournier, J.-D., Rueckert, D., Hajnal, J. V., Arichi, T., McAlonan, G.,
1049 Edwards, A. D., & Batalle, D. (2022). The developing brain structural and functional connectome
1050 fingerprint. *Developmental Cognitive Neuroscience*, 55, 101117.
1051 <https://doi.org/10.1016/j.dcn.2022.101117>

1052 Cordero-Grande, L., Christiaens, D., Hutter, J., Price, A. N., & Hajnal, J. V. (2019). Complex diffusion-
1053 weighted image estimation via matrix recovery under general noise models. *NeuroImage*, 200,
1054 391–404. <https://doi.org/10.1016/j.neuroimage.2019.06.039>

1055 Dall'Orso, S., Arichi, T., Fitzgibbon, S. P., Edwards, A. D., Burdet, E., & Muceli, S. (2022). Development
1056 of functional organization within the sensorimotor network across the perinatal period. *Human*
1057 *Brain Mapping*, 43(7), 2249–2261. <https://doi.org/10.1002/hbm.25785>

1058 de Reus, M. A., Saenger, V. M., Kahn, R. S., & van den Heuvel, M. P. (2014). An edge-centric
1059 perspective on the human connectome: link communities in the brain. *Philosophical*
1060 *Transactions of the Royal Society B: Biological Sciences*, 369(1653), 20130527.
1061 <https://doi.org/10.1098/rstb.2013.0527>

1062 Denisova, K. (2019). Age attenuates noise and increases symmetry of head movements during sleep
1063 resting-state fMRI in healthy neonates, infants, and toddlers. *Infant Behavior and Development*,
1064 57, 101317. <https://doi.org/10.1016/j.infbeh.2019.03.008>

1065 Dimitrova, R., Pietsch, M., Ciarrusta, J., Fitzgibbon, S. P., Williams, L. Z. J., Christiaens, D., Cordero-
1066 Grande, L., Batalle, D., Makropoulos, A., Schuh, A., Price, A. N., Hutter, J., Teixeira, R. P.,
1067 Hughes, E., Chew, A., Falconer, S., Carney, O., Egloff, A., Tournier, J.-D., ... O'Muircheartaigh, J.
1068 (2021). Preterm birth alters the development of cortical microstructure and morphology at
1069 term-equivalent age. *NeuroImage*, 243, 118488.
1070 <https://doi.org/10.1016/j.neuroimage.2021.118488>

1071 Doria, V., Beckmann, C. F., Arichi, T., Merchant, N., Groppo, M., Turkheimer, F. E., Counsell, S. J.,
1072 Murgasova, M., Aljabar, P., Nunes, R. G., Larkman, D. J., Rees, G., & Edwards, A. D. (2010).
1073 Emergence of resting state networks in the preterm human brain. *Proceedings of the National*
1074 *Academy of Sciences*, 107(46), 20015–20020. <https://doi.org/10.1073/pnas.1007921107>

1075 Dubois, J., Alison, M., Counsell, S. J., Hertz-Pannier, L., Hüppi, P. S., & Benders, M. J. N. L. (2021). MRI
1076 of the Neonatal Brain: A Review of Methodological Challenges and Neuroscientific Advances.
1077 *Journal of Magnetic Resonance Imaging*, 53(5), 1318–1343. <https://doi.org/10.1002/jmri.27192>

1078 Eaton-Rosen, Z., Melbourne, A., Orasanu, E., Cardoso, M. J., Modat, M., Bainbridge, A., Kendall, G. S.,
1079 Robertson, N. J., Marlow, N., & Ourselin, S. (2015). Longitudinal measurement of the
1080 developing grey matter in preterm subjects using multi-modal MRI. *NeuroImage*, 111, 580–589.
1081 <https://doi.org/10.1016/j.neuroimage.2015.02.010>

1082 Eaton-Rosen, Z., Scherrer, B., Melbourne, A., Ourselin, S., Neil, J. J., & Warfield, S. K. (2017).
1083 Investigating the maturation of microstructure and radial orientation in the preterm human
1084 cortex with diffusion MRI. *NeuroImage*, 162, 65–72.
1085 <https://doi.org/10.1016/j.neuroimage.2017.08.013>

1086 Edwards, A. D., Rueckert, D., Smith, S. M., Abo Seada, S., Alansary, A., Almalbis, J., Allsop, J.,
1087 Andersson, J., Arichi, T., Arulkumaran, S., Bastiani, M., Batalle, D., Baxter, L., Bozek, J.,
1088 Braithwaite, E., Brandon, J., Carney, O., Chew, A., Christiaens, D., ... Hajnal, J. V. (2022). The
1089 Developing Human Connectome Project Neonatal Data Release. *Frontiers in Neuroscience*, 16.
1090 <https://doi.org/10.3389/fnins.2022.886772>

1091 Eyre, M., Fitzgibbon, S. P., Ciarrusta, J., Cordero-Grande, L., Price, A. N., Poppe, T., Schuh, A., Hughes,
1092 E., O'Keeffe, C., Brandon, J., Cromb, D., Vecchiato, K., Andersson, J., Duff, E. P., Counsell, S. J.,
1093 Smith, S. M., Rueckert, D., Hajnal, J. V., Arichi, T., ... Edwards, A. D. (2021). The Developing
1094 Human Connectome Project: typical and disrupted perinatal functional connectivity. *Brain*,
1095 144(7), 2199–2213. <https://doi.org/10.1093/brain/awab118>

1096 Fan, Y., Shi, F., Smith, J. K., Lin, W., Gilmore, J. H., & Shen, D. (2011). Brain anatomical networks in
1097 early human brain development. *NeuroImage*, 54(3), 1862–1871.
1098 <https://doi.org/10.1016/j.neuroimage.2010.07.025>

1099 Fenchel, D., Dimitrova, R., Seidlitz, J., Robinson, E. C., Batalle, D., Hutter, J., Christiaens, D., Pietsch,
1100 M., Brandon, J., Hughes, E. J., Allsop, J., O'Keeffe, C., Price, A. N., Cordero-Grande, L., Schuh, A.,
1101 Makropoulos, A., Passerat-Palmbach, J., Bozek, J., Rueckert, D., ... O'Muircheartaigh, J. (2020).
1102 Fench et Development of Microstructural and Morphological Cortical Profiles in the Neonatal
1103 Brain. *Cerebral Cortex*, 30(11), 5767–5779. <https://doi.org/10.1093/cercor/bhaa150>

1104 Fitzgibbon, S. P., Harrison, S. J., Jenkinson, M., Baxter, L., Robinson, E. C., Bastiani, M., Bozek, J.,
1105 Karolis, V., Cordero Grande, L., Price, A. N., Hughes, E., Makropoulos, A., Passerat-Palmbach, J.,
1106 Schuh, A., Gao, J., Farahibozorg, S. R., O'Muircheartaigh, J., Ciarrusta, J., O'Keeffe, C., ...
1107 Andersson, J. (2020). The developing Human Connectome Project (dHCP) automated resting-
1108 state functional processing framework for newborn infants. *NeuroImage*, 223(August), 117303.
1109 <https://doi.org/10.1016/j.neuroimage.2020.117303>

1110 Fransson, P., Skiöld, B., Engström, M., Hallberg, B., Mosskin, M., Åden, U., Lagercrantz, H., &
1111 Blennow, M. (2009). Spontaneous Brain Activity in the Newborn Brain During Natural Sleep—
1112 An fMRI Study in Infants Born at Full Term. *Pediatric Research*, 66(3), 301–305.
1113 <https://doi.org/10.1203/PDR.0b013e3181b1bd84>

1114 Friedrichs-Maeder, C. L., Griffa, A., Schneider, J., Hüppi, P. S., Truttmann, A., & Hagmann, P. (2017).
1115 Exploring the role of white matter connectivity in cortex maturation. *PLOS ONE*, 12(5),
1116 e0177466. <https://doi.org/10.1371/journal.pone.0177466>

1117 Fukutomi, H., Glasser, M. F., Zhang, H., Autio, J. A., Coalson, T. S., Okada, T., Togashi, K., Van Essen,
1118 D. C., & Hayashi, T. (2018). Neurite imaging reveals microstructural variations in human
1119 cerebral cortical gray matter. *NeuroImage*, 182, 488–499.
1120 <https://doi.org/10.1016/j.neuroimage.2018.02.017>

1121 Galdi, P., Blesa, M., Stoye, D. Q., Sullivan, G., Lamb, G. J., Quigley, A. J., Thrippleton, M. J., Bastin, M.
1122 E., & Boardman, J. P. (2020). Neonatal morphometric similarity mapping for predicting brain
1123 age and characterizing neuroanatomic variation associated with preterm birth. *NeuroImage: Clinical*, 25, 102195. <https://doi.org/10.1016/j.nicl.2020.102195>

1125 Gao, W., Alcauter, S., Elton, A., Hernandez-Castillo, C. R., Smith, J. K., Ramirez, J., & Lin, W. (2015).
1126 Functional Network Development During the First Year: Relative Sequence and Socioeconomic
1127 Correlations. *Cerebral Cortex*, 25(9), 2919–2928. <https://doi.org/10.1093/cercor/bhu088>

1128 Geng, X., Li, G., Lu, Z., Gao, W., Wang, L., Shen, D., Zhu, H., & Gilmore, J. H. (2016). Structural and
1129 Maturational Covariance in Early Childhood Brain Development. *Cerebral Cortex*, bhw022.
1130 <https://doi.org/10.1093/cercor/bhw022>

1131 Gilmore, J. H., Knickmeyer, R. C., & Gao, W. (2018). Imaging structural and functional brain
1132 development in early childhood. *Nature Reviews Neuroscience*, 19(3), 123–137.
1133 <https://doi.org/10.1038/nrn.2018.1>

1134 Gilmore, J. H., Shi, F., Woolson, S. L., Knickmeyer, R. C., Short, S. J., Lin, W., Zhu, H., Hamer, R. M.,
1135 Styner, M., & Shen, D. (2012). Longitudinal Development of Cortical and Subcortical Gray
1136 Matter from Birth to 2 Years. *Cerebral Cortex*, 22(11), 2478–2485.
1137 <https://doi.org/10.1093/cercor/bhr327>

1138 Gondová, A., Neumane, S., Leprince, Y., Mangin, J.-F., Arichi, T., & Dubois, J. (2023). Predicting
1139 neurodevelopmental outcomes from neonatal cortical microstructure: A conceptual replication
1140 study. *NeuroImage: Reports*, 3(2), 100170. <https://doi.org/10.1016/j.ynirp.2023.100170>

1141 Goulas, A., Uylings, H. B. M., & Hilgetag, C. C. (2017). Principles of ipsilateral and contralateral
1142 cortico-cortical connectivity in the mouse. *Brain Structure and Function*, 222(3), 1281–1295.
1143 <https://doi.org/10.1007/s00429-016-1277-y>

1144 Goulas, A., Werner, R., Beul, S. F., Saering, D., Heuvel, M. P., Triarhou, L. C., & Hilgetag, C. C. (2016).
1145 Cytoarchitectonic similarity is a wiring principle of the human connectome. *BioRxiv*.
1146 <https://doi.org/https://doi.org/10.1101/068254>

1147 Grayson, D. S., Ray, S., Carpenter, S., Iyer, S., Dias, T. G. C., Stevens, C., Nigg, J. T., & Fair, D. A. (2014).
1148 Structural and Functional Rich Club Organization of the Brain in Children and Adults. *PLoS ONE*,
1149 9(2), e88297. <https://doi.org/10.1371/journal.pone.0088297>

1150 Guerrero, J. M., Adluru, N., Bendlin, B. B., Goldsmith, H. H., Schaefer, S. M., Davidson, R. J.,
1151 Kecskemeti, S. R., Zhang, H., & Alexander, A. L. (2019). Optimizing the intrinsic parallel
1152 diffusivity in NODDI: An extensive empirical evaluation. *PLOS ONE*, 14(9), e0217118.
1153 <https://doi.org/10.1371/journal.pone.0217118>

1154 Hagmann, P., Sporns, O., Madan, N., Cammoun, L., Pienaar, R., Wedeen, V. J., Meuli, R., Thiran, J.-P.,
1155 & Grant, P. E. (2010). White matter maturation reshapes structural connectivity in the late
1156 developing human brain. *Proceedings of the National Academy of Sciences*, 107(44), 19067–
1157 19072. <https://doi.org/10.1073/pnas.1009073107>

1158 Hernandez-Fernandez, M., Reguly, I., Jbabdi, S., Giles, M., Smith, S., & Sotropoulos, S. N. (2019).
1159 Using GPUs to accelerate computational diffusion MRI: From microstructure estimation to
1160 tractography and connectomes. *NeuroImage*, 188, 598–615.
1161 <https://doi.org/10.1016/j.neuroimage.2018.12.015>

1162 Hoff, G. E. A.-J., Van den Heuvel, M. P., Benders, M. J. N. L., Kersbergen, K. J., & De Vries, L. S. (2013).
1163 On development of functional brain connectivity in the young brain. *Frontiers in Human*
1164 *Neuroscience*, 7. <https://doi.org/10.3389/fnhum.2013.00650>

1165 Hughes, E. J., Winchman, T., Padormo, F., Teixeira, R., Wurie, J., Sharma, M., Fox, M., Hutter, J.,
1166 Cordero-Grande, L., Price, A. N., Allsop, J., Bueno-Conde, J., Tusor, N., Arichi, T., Edwards, A. D.,
1167 Rutherford, M. A., Counsell, S. J., & Hajnal, J. V. (2017). A dedicated neonatal brain imaging
1168 system. *Magnetic Resonance in Medicine*, 78(2), 794–804. <https://doi.org/10.1002/mrm.26462>

1169 Hutter, J., Tournier, J. D., Price, A. N., Cordero-Grande, L., Hughes, E. J., Malik, S., Steinweg, J.,
1170 Bastiani, M., Sotropoulos, S. N., Jbabdi, S., Andersson, J., Edwards, A. D., & Hajnal, J. V. (2018).
1171 Time-efficient and flexible design of optimized multishell HARDI diffusion. *Magnetic Resonance*
1172 *in Medicine*, 79(3), 1276–1292. <https://doi.org/10.1002/mrm.26765>

1173 Jakab, A., Schwartz, E., Kasprian, G., Gruber, G. M., Prayer, D., Schäffler, V., & Langs, G. (2014). Fetal
1174 functional imaging portrays heterogeneous development of emerging human brain networks.
1175 *Frontiers in Human Neuroscience*, 8. <https://doi.org/10.3389/fnhum.2014.00852>

1176 Jelescu, I. O., Veraart, J., Adisetiyo, V., Milla, S. S., Novikov, D. S., & Fieremans, E. (2015). One
1177 diffusion acquisition and different white matter models: How does microstructure change in
1178 human early development based on WMTI and NODDI? *NeuroImage*, 107, 242–256.
1179 <https://doi.org/10.1016/j.neuroimage.2014.12.009>

1180 Keunen, K., Counsell, S. J., & Benders, M. J. N. L. (2017). The emergence of functional architecture
1181 during early brain development. *NeuroImage*, 160, 2–14.
1182 <https://doi.org/10.1016/j.neuroimage.2017.01.047>

1183 Khundrakpam, B. S., Lewis, J. D., Zhao, L., Chouinard-Decorte, F., & Evans, A. C. (2016). Brain
1184 connectivity in normally developing children and adolescents. *NeuroImage*, 134, 192–203.
1185 <https://doi.org/10.1016/j.neuroimage.2016.03.062>

1186 Khundrakpam, B. S., Reid, A., Brauer, J., Carbonell, F., Lewis, J., Ameis, S., Karama, S., Lee, J., Chen, Z.,
1187 Das, S., Evans, A. C., Ball, W. S., Byars, A. W., Schapiro, M., Bommer, W., Carr, A., German, A.,
1188 Dunn, S., Rivkin, M. J., ... O'Neill, J. (2013). Developmental Changes in Organization of Structural
1189 Brain Networks. *Cerebral Cortex*, 23(9), 2072–2085. <https://doi.org/10.1093/cercor/bhs187>

1190 King, D. J., & Wood, A. G. (2020). Clinically feasible brain morphometric similarity network
1191 construction approaches with restricted magnetic resonance imaging acquisitions. *Network*
1192 *Neuroscience*, 4(1), 274–291. https://doi.org/10.1162/netn_a_00123

1193 Klein, A., & Tourville, J. (2012). 101 Labeled Brain Images and a Consistent Human Cortical Labeling
1194 Protocol. *Frontiers in Neuroscience*, 6. <https://doi.org/10.3389/fnins.2012.00171>

1195 Kostović, I., Radoš, M., Kostović-Srzentić, M., & Krsnik, Ž. (2021). Fundamentals of the Development
1196 of Connectivity in the Human Fetal Brain in Late Gestation: From 24 Weeks Gestational Age to
1197 Term. *Journal of Neuropathology & Experimental Neurology*, 80(5), 393–414.
1198 <https://doi.org/10.1093/jnen/nlab024>

1199 Kostović, I., Sedmak, G., & Judaš, M. (2019). Neural histology and neurogenesis of the human fetal
1200 and infant brain. *NeuroImage*, 188, 743–773.
1201 <https://doi.org/10.1016/j.neuroimage.2018.12.043>

1202 Kulikova, S., Hertz-Pannier, L., Dehaene-Lambertz, G., Buzmakov, A., Poupon, C., & Dubois, J. (2015).
1203 Multi-parametric evaluation of the white matter maturation. *Brain Structure and Function*,
1204 220(6), 3657–3672. <https://doi.org/10.1007/s00429-014-0881-y>

1205 Larivière, S., Vos de Wael, R., Hong, S.-J., Paquola, C., Tavakol, S., Lowe, A. J., Schrader, D. V., &
1206 Bernhardt, B. C. (2020). Multiscale Structure–Function Gradients in the Neonatal Connectome.
1207 *Cerebral Cortex*, 30(1), 47–58. <https://doi.org/10.1093/cercor/bhz069>

1208 Lebenberg, J., Mangin, J.-F., Thirion, B., Poupon, C., Hertz-Pannier, L., Leroy, F., Adibpour, P.,
1209 Dehaene-Lambertz, G., & Dubois, J. (2019). Mapping the asynchrony of cortical maturation in
1210 the infant brain: A MRI multi-parametric clustering approach. *NeuroImage*, 185, 641–653.
1211 <https://doi.org/10.1016/j.neuroimage.2018.07.022>

1212 Lyall, A. E., Shi, F., Geng, X., Woolson, S., Li, G., Wang, L., Hamer, R. M., Shen, D., & Gilmore, J. H.
1213 (2015). Dynamic Development of Regional Cortical Thickness and Surface Area in Early
1214 Childhood. *Cerebral Cortex*, 25(8), 2204–2212. <https://doi.org/10.1093/cercor/bhu027>

1215 Makropoulos, A., Gousias, I. S., Ledig, C., Aljabar, P., Serag, A., Hajnal, J. V., Edwards, A. D., Counsell,
1216 S. J., & Rueckert, D. (2014). Automatic Whole Brain MRI Segmentation of the Developing
1217 Neonatal Brain. *IEEE Transactions on Medical Imaging*, 33(9), 1818–1831.
1218 <https://doi.org/10.1109/TMI.2014.2322280>

1219 Makropoulos, A., Robinson, E. C., Schuh, A., Wright, R., Fitzgibbon, S., Bozek, J., Counsell, S. J.,
1220 Steinweg, J., Vecchiato, K., Passerat-Palmbach, J., Lenz, G., Mortari, F., Tenev, T., Duff, E. P.,
1221 Bastiani, M., Cordero-Grande, L., Hughes, E., Tusor, N., Tournier, J. D., ... Rueckert, D. (2018).
1222 The developing human connectome project: A minimal processing pipeline for neonatal cortical
1223 surface reconstruction. *NeuroImage*, 173(April 2017), 88–112.
1224 <https://doi.org/10.1016/j.neuroimage.2018.01.054>

1225 Maugeri, L., Moraschi, M., Summers, P., Favilla, S., Mascali, D., Cedola, A., Porro, C. A., Giove, F., &
1226 Fratini, M. (2018). Assessing denoising strategies to increase signal to noise ratio in spinal cord
1227 and in brain cortical and subcortical regions. *Journal of Instrumentation*, 13(02), C02028–
1228 C02028. <https://doi.org/10.1088/1748-0221/13/02/C02028>

1229 Monson, B. B., Eaton-Rosen, Z., Kapur, K., Liebenthal, E., Brownell, A., Smyser, C. D., Rogers, C. E.,
1230 Inder, T. E., Warfield, S. K., & Neil, J. J. (2018). Differential Rates of Perinatal Maturation of
1231 Human Primary and Nonprimary Auditory Cortex. *Eneuro*, 5(1), ENEURO.0380-17.2017.
1232 <https://doi.org/10.1523/ENEURO.0380-17.2017>

1233 Moreno-Dominguez, D., Anwander, A., & Knösche, T. R. (2014). A hierarchical method for whole-
1234 brain connectivity-based parcellation. *Human Brain Mapping*, 35(10), 5000–5025.
1235 <https://doi.org/10.1002/hbm.22528>

1236 Mukherjee, P., Miller, J. H., Shimony, J. S., Conturo, T. E., Lee, B. C. P., Almlí, C. R., & McKinstry, R. C.
1237 (2001). Normal Brain Maturation during Childhood: Developmental Trends Characterized with
1238 Diffusion-Tensor MR Imaging. *Radiology*, 221(2), 349–358.
1239 <https://doi.org/10.1148/radiol.2212001702>

1240 Neil, J. J., & Smyser, C. D. (2018). Recent advances in the use of MRI to assess early human cortical
1241 development. *Journal of Magnetic Resonance*, 293, 56–69.
1242 <https://doi.org/10.1016/j.jmr.2018.05.013>

1243 Neumane, S., Gondova, A., Leprince, Y., Hertz-Pannier, L., Arichi, T., & Dubois, J. (2022). Early
1244 structural connectivity within the sensorimotor network: Deviations related to prematurity and
1245 association to neurodevelopmental outcome. *Frontiers in Neuroscience*, 16.
1246 <https://doi.org/10.3389/fnins.2022.932386>

1247 Nie, J., Li, G., Wang, L., Shi, F., Lin, W., Gilmore, J. H., & Shen, D. (2014). Longitudinal development of
1248 cortical thickness, folding, and fiber density networks in the first 2 years of life. *Human Brain
1249 Mapping*, 35(8), 3726–3737. <https://doi.org/10.1002/hbm.22432>

1250 Ouyang, M., Dubois, J., Yu, Q., Mukherjee, P., & Huang, H. (2019). Delineation of early brain
1251 development from fetuses to infants with diffusion MRI and beyond. *NeuroImage*, 185, 836–
1252 850. <https://doi.org/10.1016/j.neuroimage.2018.04.017>

1253 Ouyang, M., Jeon, T., Sotiras, A., Peng, Q., Mishra, V., Halovanic, C., Chen, M., Chalak, L., Rollins, N.,
1254 Roberts, T. P. L., Davatzikos, C., & Huang, H. (2019). Differential cortical microstructural
1255 maturation in the preterm human brain with diffusion kurtosis and tensor imaging. *Proceedings
1256 of the National Academy of Sciences*, 116(10), 4681–4688.
1257 <https://doi.org/10.1073/pnas.1812156116>

1258 Price, A. N. (2015). *Accelerated Neonatal fMRI Using Multiband EPI*.

1259 Risk, B. B., Murden, R. J., Wu, J., Nebel, M. B., Venkataraman, A., Zhang, Z., & Qiu, D. (2021). Which
1260 multiband factor should you choose for your resting-state fMRI study? *NeuroImage*, 234,
1261 117965. <https://doi.org/10.1016/j.neuroimage.2021.117965>

1262 Romero-Garcia, R., Whitaker, K. J., Váša, F., Seidlitz, J., Shinn, M., Fonagy, P., Dolan, R. J., Jones, P. B.,
1263 Goodyer, I. M., Bullmore, E. T., & Vértes, P. E. (2018). Structural covariance networks are
1264 coupled to expression of genes enriched in supragranular layers of the human cortex.
1265 *NeuroImage*, 171, 256–267. <https://doi.org/10.1016/j.neuroimage.2017.12.060>

1266 Scheinost, D., Kwon, S. H., Shen, X., Lacadie, C., Schneider, K. C., Dai, F., Ment, L. R., & Constable, R.
1267 T. (2016). Preterm birth alters neonatal, functional rich club organization. *Brain Structure and
1268 Function*, 221(6), 3211–3222. <https://doi.org/10.1007/s00429-015-1096-6>

1269 Seidlitz, J., Váša, F., Shinn, M., Romero-Garcia, R., Whitaker, K. J., Vértes, P. E., Wagstyl, K.,
1270 Kirkpatrick Reardon, P., Clasen, L., Liu, S., Messinger, A., Leopold, D. A., Fonagy, P., Dolan, R. J.,
1271 Jones, P. B., Goodyer, I. M., Raznahan, A., & Bullmore, E. T. (2018). Morphometric Similarity
1272 Networks Detect Microscale Cortical Organization and Predict Inter-Individual Cognitive
1273 Variation. *Neuron*, 97(1), 231-247.e7. <https://doi.org/10.1016/j.neuron.2017.11.039>

1274 Smith, S. M., & Beckmann, C. F. (2017). *Introduction to Resting State fMRI Functional Connectivity*.

1275 Smyser, C. D., Inder, T. E., Shimony, J. S., Hill, J. E., Degnan, A. J., Snyder, A. Z., & Neil, J. J. (2010).
1276 Longitudinal Analysis of Neural Network Development in Preterm Infants. *Cerebral Cortex*,
1277 20(12), 2852–2862. <https://doi.org/10.1093/cercor/bhq035>

1278 Smyser, T. A., Smyser, C. D., Rogers, C. E., Gillespie, S. K., Inder, T. E., & Neil, J. J. (2016). Cortical Gray
1279 and Adjacent White Matter Demonstrate Synchronous Maturation in Very Preterm Infants.
1280 *Cerebral Cortex*, 26(8), 3370–3378. <https://doi.org/10.1093/cercor/bhv164>

1281 Takahashi, E., Folkerth, R. D., Galaburda, A. M., & Grant, P. E. (2012). Emerging Cerebral Connectivity
1282 in the Human Fetal Brain: An MR Tractography Study. *Cerebral Cortex*, 22(2), 455–464.
1283 <https://doi.org/10.1093/cercor/bhr126>

1284 Taymourtash, A., Schwartz, E., Nenning, K.-H., Sobotka, D., Licandro, R., Glatter, S., Diogo, M. C.,
1285 Golland, P., Grant, E., Prayer, D., Kasprian, G., & Langs, G. (2023). Fetal development of
1286 functional thalamocortical and cortico–cortical connectivity. *Cerebral Cortex*, 33(9), 5613–5624.
1287 <https://doi.org/10.1093/cercor/bhac446>

1288 Thirion, B., Varoquaux, G., Dohmatob, E., & Poline, J.-B. (2014). Which fMRI clustering gives good
1289 brain parcellations? *Frontiers in Neuroscience*, 8. <https://doi.org/10.3389/fnins.2014.00167>

1290 Thomason, M. E., Grove, L. E., Lozon, T. A., Vila, A. M., Ye, Y., Nye, M. J., Manning, J. H., Pappas, A.,
1291 Hernandez-Andrade, E., Yeo, L., Mody, S., Berman, S., Hassan, S. S., & Romero, R. (2015). Age-
1292 related increases in long-range connectivity in fetal functional neural connectivity networks in
1293 utero. *Developmental Cognitive Neuroscience*, 11, 96–104.
1294 <https://doi.org/10.1016/j.dcn.2014.09.001>

1295 Toulmin, H., Beckmann, C. F., O’Muircheartaigh, J., Ball, G., Nongena, P., Makropoulos, A., Ederies,
1296 A., Counsell, S. J., Kennea, N., Arichi, T., Tusor, N., Rutherford, M. A., Azzopardi, D., Gonzalez-
1297 Cinca, N., Hajnal, J. V., & Edwards, A. D. (2015). Specialization and integration of functional
1298 thalamocortical connectivity in the human infant. *Proceedings of the National Academy of
1299 Sciences*, 112(20), 6485–6490. <https://doi.org/10.1073/pnas.1422638112>

1300 Turk, E., van den Heuvel, M. I., Benders, M. J., de Heus, R., Franx, A., Manning, J. H., Hect, J. L.,
1301 Hernandez-Andrade, E., Hassan, S. S., Romero, R., Kahn, R. S., Thomason, M. E., & van den
1302 Heuvel, M. P. (2019). Functional Connectome of the Fetal Brain. *The Journal of Neuroscience*,
1303 39(49), 9716–9724. <https://doi.org/10.1523/JNEUROSCI.2891-18.2019>

1304 van den Heuvel, M. P., & Hulshoff Pol, H. E. (2010). Exploring the brain network: A review on resting-
1305 state fMRI functional connectivity. *European Neuropsychopharmacology*, 20(8), 519–534.
1306 <https://doi.org/10.1016/j.euroneuro.2010.03.008>

1307 van den Heuvel, M. P., Kersbergen, K. J., de Reus, M. A., Keunen, K., Kahn, R. S., Groenendaal, F., de
1308 Vries, L. S., & Benders, M. J. N. L. (2015). The Neonatal Connectome During Preterm Brain
1309 Development. *Cerebral Cortex*, 25(9), 3000–3013. <https://doi.org/10.1093/cercor/bhu095>

1310 Vanes, L., Fenn-Moltu, S., Hadaya, L., Fitzgibbon, S., Cordero-Grande, L., Price, A., Chew, A., Falconer,
1311 S., Arichi, T., Counsell, S. J., Hajnal, J. V., Batalle, D., Edwards, A. D., & Nosarti, C. (2023).
1312 Longitudinal neonatal brain development and socio-demographic correlates of infant outcomes
1313 following preterm birth. *Developmental Cognitive Neuroscience*, 61, 101250.
1314 <https://doi.org/10.1016/j.dcn.2023.101250>

1315 Váša, F., Seidlitz, J., Romero-Garcia, R., Whitaker, K. J., Rosenthal, G., Vértes, P. E., Shinn, M.,
1316 Alexander-Bloch, A., Fonagy, P., Dolan, R. J., Jones, P. B., Goodyer, I. M., Sporns, O., & Bullmore,
1317 E. T. (2018). Adolescent Tuning of Association Cortex in Human Structural Brain Networks.
1318 *Cerebral Cortex*, 28(1), 281–294. <https://doi.org/10.1093/cercor/bhx249>

1319 Vasung, L., Raguz, M., Kostovic, I., & Takahashi, E. (2017). Spatiotemporal Relationship of Brain
1320 Pathways during Human Fetal Development Using High-Angular Resolution Diffusion MR
1321 Imaging and Histology. *Frontiers in Neuroscience*, 11. <https://doi.org/10.3389/fnins.2017.00348>

1322 von Economo, C. F., & Koskinas, G. N. (1925). Die cytoarchitektonik der hirnrinde des erwachsenen
1323 menschen. . J. Springer.

1324 Williams, L. Z. J., Fitzgibbon, S. P., Bozek, J., Winkler, A. M., Dimitrova, R., Poppe, T., Schuh, A.,
1325 Makropoulos, A., Cupitt, J., O’Muircheartaigh, J., Duff, E. P., Cordero-Grande, L., Price, A. N.,

1326 Hajnal, J. V., Rueckert, D., Smith, S. M., Edwards, A. D., & Robinson, E. C. (2023). Structural and
1327 functional asymmetry of the neonatal cerebral cortex. *Nature Human Behaviour*, 7(6), 942–
1328 955. <https://doi.org/10.1038/s41562-023-01542-8>

1329 Wilson, S., Pietsch, M., Cordero-Grande, L., Christiaens, D., Uus, A., Karolis, V. R., Kyriakopoulou, V.,
1330 Colford, K., Price, A. N., Hutter, J., Rutherford, M. A., Hughes, E. J., Counsell, S. J., Tournier, J.-D.,
1331 Hajnal, J. V., Edwards, A. D., O'Muircheartaigh, J., & Arichi, T. (2023). Spatiotemporal tissue
1332 maturation of thalamocortical pathways in the human fetal brain. *ELife*, 12.
1333 <https://doi.org/10.7554/eLife.83727>

1334 Wilson, S., Pietsch, M., Cordero-Grande, L., Price, A. N., Hutter, J., Xiao, J., McCabe, L., Rutherford,
1335 M. A., Hughes, E. J., Counsell, S. J., Tournier, J.-D., Arichi, T., Hajnal, J. V., Edwards, A. D.,
1336 Christiaens, D., & O'Muircheartaigh, J. (2021). Development of human white matter pathways
1337 in utero over the second and third trimester. *Proceedings of the National Academy of Sciences*,
1338 118(20). <https://doi.org/10.1073/pnas.2023598118>

1339 Yee, Y., Fernandes, D. J., French, L., Ellegood, J., Cahill, L. S., Vousden, D. A., Spencer Noakes, L.,
1340 Scholz, J., van Eede, M. C., Nieman, B. J., Sled, J. G., & Lerch, J. P. (2018). Structural covariance
1341 of brain region volumes is associated with both structural connectivity and transcriptomic
1342 similarity. *NeuroImage*, 179, 357–372. <https://doi.org/10.1016/j.neuroimage.2018.05.028>

1343 Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., Roffman, J. L.,
1344 Smoller, J. W., Zöllei, L., Polimeni, J. R., Fischl, B., Liu, H., & Buckner, R. L. (2011). The
1345 organization of the human cerebral cortex estimated by intrinsic functional connectivity.
1346 *Journal of Neurophysiology*, 106(3), 1125–1165. <https://doi.org/10.1152/jn.00338.2011>

1347 Yu, Q., Ouyang, A., Chalak, L., Jeon, T., Chia, J., Mishra, V., Sivarajan, M., Jackson, G., Rollins, N., Liu,
1348 S., & Huang, H. (2016). Structural Development of Human Fetal and Preterm Brain Cortical
1349 Plate Based on Population-Averaged Templates. *Cerebral Cortex*, 26(11), 4381–4391.
1350 <https://doi.org/10.1093/cercor/bhv201>

1351 Zhang, H., Schneider, T., Wheeler-Kingshott, C. A., & Alexander, D. C. (2012). NODDI: Practical in vivo
1352 neurite orientation dispersion and density imaging of the human brain. *NeuroImage*, 61(4),
1353 1000–1016. <https://doi.org/10.1016/j.neuroimage.2012.03.072>

1354 Zhang, L., Wang, L., & Zhu, D. (2022). Predicting brain structural network using functional
1355 connectivity. *Medical Image Analysis*, 79, 102463.
1356 <https://doi.org/10.1016/j.media.2022.102463>

1357