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Abstract 

The cerebral cortex consists of distinct areas that develop through intrinsic 
embryonic patterning and postnatal experiences. Accurate parcellation of these areas 
in neuroimaging studies improves statistical power and cross-study comparability. 
Given significant brain changes in volume, microstructure, and connectivity during 
early life, we hypothesized that cortical areas in 1- to 3-year-olds would differ markedly 
from neonates and increasingly resemble adult patterns as development progresses. 

Here, we parcellated the cerebral cortex into putative areas using local 
functional connectivity gradients in 92 toddlers at 2 years old. We demonstrate high 
reproducibility of these cortical regions across 1- to 3-year-olds in two independent 
datasets. The area boundaries in 1- to 3-year-olds were more similar to those in adults 
than those in neonates. While the age-specific group area parcellation better fit the 
underlying functional connectivity in individuals during the first 3 years, adult area 
parcellations might still have some utility in developmental studies, especially in 
children older than 6 years. Additionally, we provide connectivity-based community 
assignments of the parcels, showing fragmented anterior and posterior components 
based on the strongest connectivity, yet alignment with adult systems when weaker 
connectivity was included.  
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Introduction  

Understanding the intricate organization of the human brain is a fundamental 
pursuit in systems neuroscience. Previous research supports the notion that the 
cerebral cortex is divided into spatially contiguous areas distinguishable by function, 
architecture, connectivity, and/or topographic organization (Eickhoff et al., 2015; 
Felleman and Van Essen, 1991; Petersen et al., 2024). For example, the differentiation 
between prestriate and striate areas by a clear histochemical border has been 
observed in human and monkey fetuses (Kostovic and Rakic, 1984). Besides the 
historical approaches in using histology to find the area organizations(Amunts et al., 
2013; Amunts and Zilles, 2015; Brodmann, 1905; Carmichael and Price, 1994; Evans, 
1992), connectivity-based area parcellations, especially those with fMRI data, has 
become popular as an efficient and non-invasive alternative to parcellate brain areas 
(Eickhoff et al., 2018, 2015; Glasser et al., 2016; Gordon et al., 2016; Schaefer et al., 
2018; Shen et al., 2013). These connectivity-based area parcellations relies on the 
computation of connectivity strength to other parts of the brain for each voxel/vertex 
(a.k.a. connectivity profiles) and then group the voxel/vertex into areas with 
homogeneous connectivity profiles (Eickhoff et al., 2015). 

The formation of cortical areas occurs starting from embryonic development. 
Initially, continuous gradients of signaling molecules within the ventricular zone drive 
the formation of neurons from their progenitor cells and give rise to a “protomap” 
(Bishop et al., 2002; Cadwell et al., 2019; Fukuchi-Shimogori and Grove, 2001; 
Hamasaki et al., 2004; O’Leary et al., 2007; Rakic, 1988; Stiles and Jernigan, 2010). 
Later, both intrinsic and extrinsic factors refine this “protomap” into discrete areas 
(Cadwell et al., 2019; O’Leary et al., 2007; Qian et al., 2024). One important contributor 
to this process is environmental inputs (Catalano and Shatz, 1998; Greenough et al., 
1987; Smyser et al., 2011; Tau and Peterson, 2010), especially from the 
thalamocortical axon projections (Molnár and Kwan, 2024; O’Leary et al., 2007; Vue 
et al., 2013). For example, early deprivation of vision in one eye caused shifted ocular 
dominance columns in monkeys (Hubel et al., 1997). The explosive increase in 
exposure to environmental stimuli following birth likely plays a significant role in the 
refinement of area boundaries shortly after birth. Moreover, synaptic addition and 
growth of dendrites and spines also enters a phase of logarithmic growth in the first 
few months after birth (Levitt, 2003), suggestive of an elevated period of cortical 
plasticity. Considering these factors, it is reasonable to expect that cortical areas in 
neonates would show low similarity to those in adults (Myers et al., 2024), with greater 
similarity to adult brain areas as the brain develops. Furthermore, it has been 
postulated that developmental changes are not uniform across the brain. The 
sequence of development has previously been described to follow a sensorimotor-to-
association axis (Casey et al., 2005; Dean et al., 2015; Flechsig, 1901; Grayson and 
Fair, 2017; Hill et al., 2010; Smyser and Neil, 2015; Smyser et al., 2016; Sydnor et al., 
2021; Tau and Peterson, 2010; von Economo et al., 2008; von Economo and Koskinas, 
1925), or a posterior-to-anterior axis (Larivière et al., 2020; Q. Li et al., 2024). Few 
studies have examined whether the maturation of cortical areas followed either of 
these patterns. 
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Many neuroimaging analyses have been conducted at the scale of parcels 
(Arslan et al., 2018; Bijsterbosch et al., 2020; Farahani et al., 2019; Faskowitz et al., 
2022, 2022; Helwegen et al., 2023; Luppi et al., 2024; Zalesky et al., 2010). Inaccurate 
area parcellation choice can lead to the mixing of signals (Smith et al., 2011), conceal 
known community structure (Power et al., 2011), and reduce the prediction accuracy 
of clinical phenotypes (Abraham et al., 2017). Therefore, choosing an area parcellation 
scheme that closely reflects the actual area boundaries in the data is of great 
importance for functional connectivity (FC) analyses (Grayson and Fair, 2017).  

Neuroimaging analyses often adopt definitions of cortical areas in adult brains 
(Glasser et al., 2016; Gordon et al., 2016; Schaefer et al., 2018; Shen et al., 2013). 
However, the dynamic and rapid development of the brain during infancy (Bethlehem 
et al., 2022) triggers unique concerns about whether it is valid to apply existing adult 
area parcellations to early childhood brains (Cusack et al., 2018; Oishi et al., 2019; 
Shi et al., 2018; Wang et al., 2023). In response, several early childhood area 
parcellations have been developed in recent years (Myers et al., 2024; Scheinost et 
al., 2016; Shi et al., 2018; Wang et al., 2023). Despite these advances, having 
different area parcellations for different age ranges poses a practical challenge for 
making coherent comparisons in brain organization across development. Thus, 
many researchers have continued to use adult area parcellations in early childhood 
studies (Kim et al., 2023; Nielsen et al., 2022; Yates et al., 2023), as well as studies 
across the lifespan (Betzel et al., 2014; Cao et al., 2014; Puxeddu et al., 2020; Zuo 
et al., 2017).  

One crucial factor in determining which area parcellation to employ in a given 
age range would be the degree to which an age-specific area parcellation differs from 
an adult area parcellation in pediatric samples. However, a systematic examination of 
parcellations across age groups is lacking. We aim to a) illustrate how well the area 
parcellations fit the functional connectivity data across individuals at various 
developmental stages, b) quantify the improvement compared to adult parcellations, 
and c) evaluate the potential impact of using an adult parcellation instead of the proper 
early childhood parcellation on downstream analyses. If adult parcellations separate 
the cortical areas with comparable success as early childhood parcellations, utilizing 
adult parcellation schemes for developmental cohorts would be justifiable. One prior 
study suggested that this was not the case for neonates (Myers et al., 2024). Here we 
query whether the adult parcellation would be a reasonable choice for older infants, 
toddlers and children. 

In the current study, we derive a surface-based area parcellation based on FC 
local gradient transitions (Cohen et al., 2008; Gordon et al., 2016; Wig et al., 2014) in 
92 toddlers at age of 2 years. To test the reproducibility of our area parcels across 
groups of subjects and whether the reproducibility followed a uniform distribution 
across space, we derive parcellations using half the sample (n = 46). To examine 
differences in patterns of FC local gradient transition across development, we quantify 
the similarity between the boundary maps at different developmental stages. 
Furthermore, we compare our area parcellation to alternative adult and early childhood 
parcellations and demonstrate the generalizability and limitations of our area 
parcellation for application to various developmental stages. Finally, we derive the 
community organization which describes the relationship between the area parcels. 
 
Methods 

Experiments were undertaken with the understanding and written consent of 
each subject or their parents for all datasets used in this project.  
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Neuroimaging Data for Deriving Area Parcellations 

One main goal of this paper is to examine the area parcellations at ages 1-3. 
We used two early childhood datasets: eLABE (Y2) and BCP (Table 1). The early 
childhood datasets used in the current study were all collected with a Siemens Prisma 
3T scanner using HCP-style acquisition parameters (Supplementary Table 1). The 
functional MRI acquisition lasts 420 frames per scan run with 2-4 runs in the Baby 
Connectome Project (BCP) and 1-8 runs in the Early Life Adversity, Biological 
Embedding (eLABE) 2-year-old data (Y2). Anatomical scan processing and 
segmentation were conducted using age-specific pipelines (Kaplan et al., 2022). 
Functional data preprocessing followed established procedures (Power et al., 2014). 
Toddler EPI BOLD preprocessing pipeline was used for eLABE (Y2) and DCAN-Infant 
v0.0.9 (Autio et al., 2020; Donahue et al., 2016; Glasser et al., 2013) were used for 
BCP. Motion correction was performed with rigid-body transforms. The functional data 
were also corrected for asynchronous slice time shifts and systematic odd-even slice 
intensity differences attributable to interleaved acquisition (Power et al., 2012). The 
data were intensity normalized to achieve a consistent whole-brain mode value, and 
subsequently resampled to atlas space before being projected onto the 32k_fs_LR 
standard surface (Van Essen et al., 2012). Denoising was accomplished by nuisance 
regression, with regressors consisting of a 24-parameter Volterra expansion of motion 
time series, the mean signal over gray-ordinates, and the mean signals derived from 
white matter and cerebrospinal fluid (CSF) compartments. The data were bandpass 
filtered to retain BOLD-specific frequencies and geodesically smoothed with 
Connectome Workbench (Glasser et al., 2013; Marcus et al., 2011). Frame censoring 
was performed based on the frame displacement time series (FD > 0.2mm) following 
age-specific notch-filtering to exclude respiratory frequencies (Kaplan et al., 2022). 
Structural and functional scans were manually inspected and runs/sessions that failed 
quality controls were discarded. Additionally, participants who were born preterm (<37 
weeks gestational age), had any neonatal ICU experience, or had signs of injury on 
MRI were also excluded from the analysis. Functional data with less than 600 low-
motion frames were also excluded. For additional dataset-specific details, see 
Supplementary Table 1. 
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A summary of the demographics and image quality of the developmental cohort 
discovery and validation datasets is provided in Table 1. The cross-sectional age 
distribution and the distribution of age in longitudinal sessions are displayed in 
Supplementary Figure 1. 

Neuroimaging Data for Comparing FC Boundaries Across the Lifespan 
To compare FC boundaries, we additionally included the FC boundaries from 

a young adult dataset (Washington University 120, WU120) used in a widely adopted 
adult parcellation (Gordon et al., 2016) and from the same neonate dataset (eLABE 
(Birth)) used in a neonatal parcellation (Myers et al., 2024). Acquisition and processing 
of these datasets followed similar pipelines to the early childhood datasets above and 
as briefly described below. For dataset-specific details, please refer to Supplementary 
Table 2. 
 
WU120 

Data were collected from 120 healthy young adult participants recruited from 
the Washington University community during relaxed eyes-open fixation (50% male, 
ages 19–32). Scanning was conducted using a Siemens TRIO 3T scanner and 
included the collection of high-resolution T1-weighted and T2-weighted images, as 
well as an average of 14 min of resting-state fMRI. Detailed acquisition and processing 
have been reported previously (Power et al., 2014). 
 
eLABE (Birth) 

Inclusion criteria were the same as the eLABE (Y2) cohort. Neuroimaging data 
were collected in 261 full-term, healthy neonate offspring shortly after birth (average 
postmenstrual age of included participants 41.7 weeks, range 39–45 weeks, 54% 

Table 1. Subject demographics for the two infant/toddler datasets. For 
continuous variables, the mean is provided along with standard deviations in 
brackets. The group identity was defined as the median age rounded to the nearest 
whole number. 

Group Age 
(months) 

Age 
Range 
(months) 

Number of 
participants 

Average 
retained 
FD 
(mm) 

Frame 
retention 
rate (%) 

Acquisition 
time 

% 
White 

% 
Male 

eLABE (Y2)  

25 mo 25.2 
(1.8) 

22-31 92 0.068 
(0.021) 

92 (9) 20.0 (4.6) 21 59 

BCP  

10 mo 9.70 
(0.71) 

8-10 30 0.080 
(0.014) 

80 (6) 16.4 (5.3) 70 50 

12 mo 12.32 
(0.80) 

11-13 37 0.076 
(0.017) 

83 (6) 13.3 (4.7) 78 57 

16 mo 15.47 
(0.88) 

14-16 39 0.079 
(0.015) 

80 (8) 17.6 (5.5) 79 38 

19 mo 19.14 
(1.52) 

17-22 37 0.078 
(0.017) 

82 (8) 16.4 (5.8) 81 57 

25 mo 25.38 
(1.60) 

23-28 34 0.078 
(0.016) 

83 (5) 16.7 (5.5) 74 53 
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male). A total of 131 participants with the most data following frame censoring were 
used to create the FC boundaries. Additional details are in Supplementary Table 2. 
 
Neuroimaging Data for Testing the Generalizability of Areas Across the Lifespan 

To test for the generalizability of area parcellations across the lifespan, we 
additionally include the year-3 timepoint from the eLABE dataset, Healthy Brain 
Network (HBN) children dataset, and HCP young adult (HCP-YA) dataset. 
 
eLABE (Birth) 

This is the same dataset as above. Because 131 of the participants were 
involved in the creation of the Myers-Labonte parcellation (Myers et al., 2024), the 
other 130 participants not used in the generation of Myers-Labonte parcellation were 
used to test the parcellation's cluster validity performance to prevent circularity. The 
acquisition protocol and processing pipeline were the same as described before 
(Supplementary Table 2). 
 
eLABE (Y3) 

The inclusion criteria were the same as the eLABE (Y2) cohort. Neuroimaging 
data were collected from 132 participants at the age of 3 years. Additional participants 
were excluded based on the quality of structural and functional data and having less 
than 8 min (600 frames) of low-motion (respiratory-filtered FD < 0.2) data retained, 
leaving 65 participants (range = 2.93-3.97 years, mean = 3.22 years, SD = 0.32 years, 
63% male). The acquisition protocol and processing pipeline were the same as the 
eLABE (Y2)  dataset at age two.  

 
HBN 

Resting-state fMRI data from 493 participants from the first nine releases of the 
Healthy Brain Network (HBN) were divided into 10 groups by year (6-15yr). The HBN 
study is a large, multi-site study of children and young adults ages 5–21 years all 
collected in the New York area. Recruitment, consent, and study procedures are 
described in the data publication (Alexander et al., 2017) as well as project website. 
We used the data from two sites (CitiGroup Cornell Brain Imaging Center (CBIC) and 
Rutgers University Brain Imaging Center (RUBIC)).  

Data were pre-processed using the Human Connectome Project minimal 
processing pipeline (Glasser et al., 2013). Additional processing steps (demeaning, 
detrending, nuisance regression (with regressors consist of a 24-parameter Volterra 
expansion of motion time series, the mean signal over gray-ordinates), bandpass 
filtering at 0.008-0.1 Hz to retain BOLD-relevant frequency and frame censoring at 
respiratory-filtered FD > 0.2 mm were carried out using custom-written Python (v3.8) 
scripts using the numpy v1.24.4, scipy v1.10.1, nibabel v5.1.0, and pandas v2.0.3 
libraries. Each scan session takes 10 min and all included sessions comprises at least 
8 min (600 frames) of low-motion (respiratory-filtered FD < 0.2) data retained. Data 
was geodesically smoothed to achieve an effective smoothing of 2.55 sigma gaussian 
kernel. 
 
HCP-YA 
 Resting-state fMRI data from a subset of randomly chosen 40 participants not 
used for the creation of the Glasser parcellation (Glasser et al., 2016) were selected 
from the HCP-YA dataset for external validation of the adult dataset to minimize 
circularity. Data was processed with the same standard preprocessing pipeline as WU 
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120, except that a low-pass-filtered FD < 0.04 mm was used to remove high-motion 
frames. 
 
Creation of FC-transition Boundary Maps and Area Parcels 

We segmented the cortical surface into discrete parcels representing putative 
cortical areas based on the FC local gradient (Gordon et al., 2016). The FC from each 
vertex to every other vertex was calculated as Pearson’s correlation of the time series 
in individual sessions (Supplementary Figure 2A). The Fisher-Z-transformed FC from 
each vertex was correlated with a randomly subsampled set of 594 vertices (1% of the 
total vertices) to generate an “FC similarity” matrix, which indexed the similarity in FC 
patterns across vertices (Supplementary Figure 2B). We used 1% of the vertices for 
computational efficiency without compromising accuracy (Supplementary Materials). 
After that, the workbench command “cifti-gradient” was used to calculate the gradient 
of FC-transition in individual subjects’ surfaces in the standard 32k_fs_LR mesh. The 
gradient maps were then averaged across all subjects and smoothed with a Gaussian 
kernel of 2.55 sigma (Supplementary Figure 2C). A “watershed by flooding” algorithm 
(Beucher and Meyer, 1992) was used to create discrete areas separated by 
boundaries based on the gradient transitions (Supplementary Figure 2D). The 
gradient-based boundary map technique rests on the assumption that FC within a 
cortical area is relatively uniform and distinct from FC of an adjacent area (Wig et al., 
2014), consistent with how areas have been previously reported as distinct in 
connectivity in macaque monkeys (Felleman and Van Essen, 1991). Finally, the 
boundaries from different gradient maps were averaged to obtain a boundary map that 
indexed the probability of a vertex being an area boundary (values range between 0 
and 1) (Supplementary Figure 2E). 

Discrete parcels (Supplementary Figure 2F) from a boundary map were created 
by locating the minima in the boundary map, growing parcels from minima using the 
watershed algorithm, and merging the watersheds if the median values of boundaries 
between them are below a threshold (merging threshold, defined as a percentile of the 
boundary map values). Neighboring parcels with sizes smaller than 15 vertices were 
merged. Parcels joined only by a single vertex were split. Isolated parcels smaller than 
10 vertices were removed. Vertices above 90% in the boundary map values (height 
threshold) were left as parcel borders. The resolution of the parcels depends on the 
merging threshold, with higher merging thresholds leading to a small number of larger 
parcels and lower merging thresholds leading to a large number of smaller parcels (as 
demonstrated in Supplementary Figure 3). 
 
Parcel Reproducibility 

To assess the reproducibility of our results, we generated the boundary map 
(Supplementary Figure 2E) and discrete parcels (Supplementary Figure 2F) from non-
overlapping split halves of participants 20 times. For each pair of area parcellations at 
a merging threshold, we quantified the overlap in the parcels and in the boundaries 
(See Section: Parcel Similarity Measures). In addition, we divided the brain into 10 
equal bins based on either the position along the sensorimotor-association axis 
(Sydnor et al., 2021) or the posterior-anterior axis and calculated the parcel 
reproducibility in each bin (Supplementary Figure 4). 
 
Parcel Similarity Measures 

Adjusted Rand Index (ARI) calculated on non-boundary vertices was used as 
the main measure of similarity across two area parcellations. For completeness and 
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comparability with prior literature, we also calculated the dice coefficient between area 
parcellations, either as the average dice coefficient across matching pairs of parcels 
defined with the largest dice coefficient (Shen et al., 2013), or on binarized parcel 
identity maps (with boundaries as 0 and parcels as 1) (Myers et al., 2024). The dice 
coefficient between binarized parcel identity maps was biased by the percentage of 
the brain covered with parcels (e.g. when there are more/wider boundaries, the 
overlap will be higher). For example, in area parcellations such as Glasser (Glasser et 
al., 2013) and AAL (Tzourio-Mazoyer et al., 2002), the dice coefficient calculated this 
way would be 1 because those area parcellations did not specify boundaries and 
allocate all cortical vertices into parcels.  

Additionally, we compared the binarized parcel boundaries (with boundaries as 
1 and parcels as 0). We quantified the differences between the parcel boundaries with 
dice coefficient and Hausdorff distance (Müller et al., 2022; Shen et al., 2013), which 
measures the maximum distance one needs to travel between two contours. A lower 
Hausdorff distance indicates a high similarity between boundaries. We used a spatial 
distance measure for boundaries because it is less sensitive to small shifts in space 
and does not require perfect overlap. To mitigate sensitivity to outliers, we used two 
variants of the Hausdorff distance measure: 95% Hausdorff distance (HD95) 
(Huttenlocher et al., 1993) and average Hausdorff distance (AHD) (Müller et al., 2022). 
HD95 was defined as the maximum of the 95th percentile of the distances between 
any point in contour X to the closest point in another contour Y and the 95th percentile 
of the distances between contour Y to the closest point in contour X. AHD was defined 
as the maximum of the mean distance between contour X and contour Y and the mean 
distance between contour Y and contour X. 

 
𝐻𝐷95 = max)𝑑95(𝑋, 𝑌), 𝑑95(𝑌, 𝑋)0	[𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	1] 
𝐴𝐻𝐷 =	max >𝑑̅(𝑋, 𝑌), 𝑑̅(𝑋, 𝑌)@ [𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	2] 

 
 Here “distance” was defined as the geodesic distance between vertices in the 

Conte69 surface atlas (Van Essen et al., 2012).  
Additionally, we generated a null model by generating random rotations around 

the x,y, and z axes for a split-half of the total sample of data (Split-I) and calculated 
each of the metrics. In theory, this controls for the bias from different merging 
thresholds, but due to the presence of the medial wall, spatial permutations often 
induce missing data (Markello and Misic, 2021). 
 
Boundary Map Consistency Across Age 

To examine the difference in the area organization across different 
developmental stages, we applied the same method to generate boundary maps from 
neonates and adults. These were compared to the boundary maps derived from the 
eLABE (Y2) dataset. We computed the similarity between the boundary maps by 
taking the top percentiles of the boundary map values and calculating the Hausdorff 
distance measures.  

 
Evaluation of Cluster Validity of Area Parcellation  

To evaluate the cluster validity of the area parcellations (i.e. how well they fit 
the FC data, we used an unbiased metric for the comparison of area parcellations 
across different spatial resolutions (Zhi et al., 2022). The distance-dependent 
boundary coefficient (DCBC) (Zhi et al., 2022) compares the average difference in 
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similarity (Pearson’s r, with a value between -1 and 1) of FC profiles from vertices 
within a parcel and those from vertices between parcels across geodesic distance bins 
of 1 mm (e.g. between 10 mm to 11 mm). As demonstrated in a prior publication (Zhi 
et al., 2022), this metric accounts for the spatial smoothness of the data and is 
relatively unbiased when comparing area parcellations across multiple spatial 
resolutions (a.k.a. number of parcels). The expected value of DCBC for a random 
parcellation was zero regardless of the resolution of the parcellation, and a positive 
DCBC would mean better than random. Thus, no simulation with random null 
parcellations is necessary to establish a baseline measurement, as opposed to 
measures like homogeneity Z-score compared to a spatially permuted null (Gordon et 
al., 2016). As a negative control, we also evaluated an area parcellation that randomly 
partitioned the brain into 304 equally-sized fragments (Icosahedron) as a control. For 
implementation details and a comparison with alternative measures, please refer to 
the Supplementary Materials. 
 
Comparing Our Area Parcellation to Alternatives 

To further contextualize results, we compared our area parcellation to existing 
area parcellations created using adult or early childhood data. We transformed the 
area parcellations into the common 32k_fs_LR standard mesh where necessary. 
Details for the transformation are provided in the Supplementary Materials. 

Table 2 summarizes the area parcellations tested including the number of 
parcels, sources, and original space. In addition, to establish a lower bound of DCBC 
for the dataset, we used an Icosahedron-162 parcellation which provided regular 
tessellations of the hemispheres in the form of a 3D regular polyhedron with equilateral 
triangles as faces (Zhi et al., 2022). 
 
Table 2. Adult and Early Childhood Area Parcellations 

Name Number of 
parcels 

Citation Original Space 

Gordon 333 Gordon, Laumann et al. 
2016 

32k_fs_LR 

Glasser 360 Glasser et al. 2016 32k_fs_LR 

Schaefer 400 Schaefer et al. 2018 32k_fs_LR 

AAL 82 Tzourio-Mazoyer et al. 
2002 

MNI152 

Desikan 70 Desikan et al. 20016 32k_fs_LR 

Shen 200 Shen et al., 2013 MNI152 

Myers-Labonte  283 Myers, Labonte et al., 
2024 

32k_fs_LR 
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Tu 326 Current study 32k_fs_LR 

Wang 864 Wang et al. 2023 32k_fs_LR 

Scheinost 87 Scheinost et al., 2016 MNI152 

Shi 1 Yr 194 Shi et al., 2018 Age-specific T1 
(Shi et al., 2011) 

Shi 2 Yr 205 Shi et al., 2018 Age-specific T1 
(Shi et al., 2011) 

Icosahedron 
(control) 

304 Zhi et al. 2022 32k_fs_LR 

 
Comparing Our Area Parcellation to Age-specific Early Childhood Area 
parcellations 

Using the boundary maps in Figure 2, we generated age-specific area 
parcellations with the BCP data divided into 5 groups and a merging threshold of 65%. 
To test whether finer age-specific area parcellations improve cluster validity for the 
corresponding age group, we calculated the DCBC for these five age-group 
parcellations on a secondary validation dataset containing an additional subset of BCP 
sessions in the same age range (N = 73 sessions from 51 participants, age range 8-
29 months). This validation datset included more recently released BCP data collected 
at the University of Minnesota and University of North Carolina Chapel Hill sites. 
Acquisition and processing details were largely the same as the main BCP dataset 
described before with an update to the DCAN-Infant pipeline v0.0.22 where zero-
padding has been implemented at the filtering step to minimize the distortions in the 
edges of the time series. 
 
Practical Implications of Using Early Childhood and Adult Parcellations 

Previously, researchers have found that inaccurate area parcellations may 
reduce the prediction accuracy of clinical phenotypes (Abraham et al., 2017; Dadi et 
al., 2019). FC derived from an accurate area parcellation should yield satisfactory 
prediction accuracies for behavioral phenotypes (Kong et al., 2023) and demonstrate 
decent test-retest reliability (Tozzi et al., 2020). We thus compare the prediction 
accuracy of age using FC from the BCP dataset based on the present 2-year-old 
parcellation (Tu (326)) and the Gordon parcellation (Gordon et al., 2016), which were 
the best-performing early childhood and adult area parcellations on cluster validity 
respectively. In addition, we assessed the test-retest reliability of individual edges in 
the parcellated FC. We constructed a functional connectome with the first 7.2 min (600 
frames for TR = 0.8 and 540 frames for TR = 0.72) of low-motion (filtered FD<0.2) 
fMRI data in each subject in the BCP dataset using the area parcellations and applied 
a linear support vector regression for the prediction of age (J. Li et al., 2024). The test-
retest reliability was assessed with the first 5 min of two separate scan runs within the 
same session using an intraclass correlation coefficient (ICC (3,1))(Shrout and Fleiss, 
1979; Tozzi et al., 2020). Details are provided in the Supplementary Materials. 
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Identification of Community Structure in 2-year-olds 
To characterize the relationship between the area parcels, we identified the 

community structure with the Infomap algorithm on the area parcels as nodes and the 
FC between parcels as edges (Gordon et al., 2016; Rosvall and Bergstrom, 2008). 
For each participant in the eLABE (Y2) dataset (N = 92), we created a parcellated time 
series by calculating the mean within-parcel time series over each of the parcels from 
the dense grayordinate time series in 32k_fs_LR space with the workbench command 
“wb_command cifti-parcellate”. We then cross-correlated these parcellated time series 
to generate a parcel-wise correlation matrix. Parcel-wise correlation matrices were 
Fisher z-transformed and averaged across all participants to obtain a group-average 
correlation matrix. 

To reduce the impact of non-neuronal sources of inflation in short-distance 
correlation (e.g., data processing, subject motion), we applied an exclusion distance 
of 30 mm on the correlation matrix. A range of thresholds was then used to make the 
parcel-wise correlation matrix into a weighted sparse graph (edge density in steps of 
0.25% ranging from 0.25% to 20%), which were entered as inputs to the Infomap 
algorithm. A consensus across thresholds was found with a manual examination of 
the communities at different thresholds to identify reliable networks across thresholds 
which also matched the prior description of functional systems (Power et al., 2011; 
Wig, 2017; Yeo et al., 2011). In addition, we also examined whether the networks at 
lower edge density thresholds, keeping the naming convention and colors similar to 
what was described in an earlier publication (Myers et al., 2024).  

 
Results  
 
Area Parcellation in 2-year-olds is Reproducible across Participants 

The reproducibility of the area parcellations across participants was evaluated 
using split-half sampling 20 times (Figure 1A-B). We found that the reproducibility was 
highest around a merging threshold of 60-80%, significantly larger than the spatially 
permuted null model (Figure 1C-E). Based on manual inspection of the boundary map 
and the granularity of area parcels in popular adult area parcellations (Glasser et al., 
2016; Gordon et al., 2016), we settled on a merging threshold of 65% for our main 
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Figure 1. Parcel reproducibility between split halves. A) Parcellations from an example 
first split-half and and second split-half. B) The overlap between the parcels and 
boundaries in A and B. C) Adjusted Rand Index (ARI). D) parcel-average Dice coefficient. 
E) Dice coefficient on binarized parcels. The blue line and shaded area show the actual 
values and the standard deviation across 20 splits. The black line and shaded area 
illustrate the mean and 95% confidence interval of the spatially permuted null from one 
example split. The dashed line shows the merging threshold = 65%. F-H: the same 
metrics in C-E but separated into 10 bins along the Sensorimotor-Association axis at 
merging threshold = 65%. I-K: the same metrics in C-E but separated into 10 bins along 
the Posterior-Anterior axis at merging threshold =65%. The colors in the individual data 
point in F-K matches with the bin colors in Supplementary Figure 4. 
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parcellation, which produced 324-391 parcels across 20 split-haves (Supplementary 
Figure 5A). For the remaining sections, the main area parcellation using all data in 
eLABE (Y2) (N = 92) and merging threshold 65% were used for evaluation, hereafter 
referred to as “Tu (326)”. At the merging threshold of 65%, ARI = 0.66 ± 0.02, Z-score 
compared to the null model = 14.3, parcel averaged dice coefficient = 0.62 ± 0.01, Z-
score compared to the null model = 15.2. The dice coefficient for the binarized parcel 
map is 0.87 ± 0.002, Z-score compared to the null model = 8.46. Similar results were 
obtained with binarized boundary maps (see Supplementary Materials). 

Furthermore, we examined the parcel reproducibility across different positions 
in the brain by segmenting the brain into approximately 10 equal divisions along the 
sensorimotor-association axis (Supplementary Figure 4A) and the posterior-anterior 
axis (Supplementary Figure 4B). We found that the sensorimotor regions tend to have 
higher reproducibility than the association regions (Figure 1F-H) and that the posterior 
regions tend to have higher parcel reproducibility than the anterior regions (Figure 1I-
K).  
 
Functional Connectivity Transition Boundaries in 2-year-olds Are Consistent 
Within Group and More Proximal to Those in Adults than Those in Neonates  

 
Figure 2. Similarity of boundary maps across ages. A) The FC boundary map in an 
example first split half. B) The FC boundary map in an example second split half. C) The 
FC boundary map in an adult dataset (WU 120). D) The FC boundary map in a neonate 
dataset (eLABE (Birth)). (E) 95% Hausdorff distance (HD95) indexes the spatial similarity 
of the boundaries between eLABE (Y2) Split-I and those from eLABE (Y2) Split-II (black), 
adult (yellow), and neonate (blue). The shaded area indexes the 95% confidence interval 
for the HD95 between the FC boundary in eLABE (Y2) Split-I and 1000 spatially 
permuted null of eLABE (Y2) Split-II. F) Same as E but using average Hausdorff distance 
(AHD). Lower HD95 and AHD indicate more similar boundaries. 
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We compared the boundary maps from the 2-year-olds (Figure 2A-B) to boundary 
maps generated from adults (Figure 2C) and neonates (<1 month from birth, Figure 
2D) by comparing the similarity of the vertices with the top percentile of boundary 
probabilities (ranging from 15-55%) (Supplementary Figure 6).  

Boundaries in 2-year-olds were spatially closer to adult boundaries (HD95 = 
7.61 ± 0.24 mm, AHD = 2.22 ± 0.03 mm for the top 35% vertices) compared to neonate 
boundaries (HD95 = 8.68 ± 0.01 mm, AHD = 2.63 ± 0.01 mm for the top 35% vertices) 
(Figure 2E-F). The boundaries were considerably similar across the five early 
childhood age bins (median age 10, 12, 16, 19, 25 months, Table 1) in the BCP dataset 
(HD95 ≈	5 mm for the top 35% vertices, Supplementary Figure 7). However, area 
boundaries tended to be more similar between early childhood groups with a smaller 
age difference. 

Figure 3. Cluster validity for different area parcellations evaluated with a distance-
controlled boundary coefficient (DCBC) measure. (A) Adult area parcellations and early 
childhood area parcellations. (B) DCBC quantified in individuals in the same eLABE (Y2) 
dataset used to derive the Tu (326) parcels. (C) DCBC quantified in individuals in an 
independent dataset (BCP). * p<.05 after FDR correction for one-sample t-test against 0. 
As a convention, we noted the number of parcels of a particular parcellation scheme in 
parentheses, e.g., Gordon (333) means Gordon parcellation with 333 parcels 

Adult Early childhood

A

B C BCP (25 mo), N = 34eLABE (Y2), N = 92
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Early childhood
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Local Gradient-Based 2-year-old Area Parcellation Provides the Best Cluster 
Validity for children at 1-3 years 

Using FC profiles from the eLABE (Y2) individuals, we evaluated the cluster 
validity of the present 2-year-old parcellation versus several extant adult and early 
childhood area parcellations (Figure 3A), as well as a regular heaxogonal parcellation 
of a sphere (Icosahedron) with 304 parcels (Supplementary Figure 8) using FC from 
eLABE (Y2) individuals. We observed a large variation in cluster validity within adult 
and early childhood parcellation groups, with the Gordon parcellation demonstrating 
the best performance among adult parcellations and the Tu (326) parcellation 
demonstrating the best performance among early childhood parcellations (Figure 3B). 
However, all adult and early childhood parcellations examined except for AAL (82) and 
Desikan (70) had DCBC > 0 (FDR-corrected p<.05). The DCBC for the control 
Icosahedron (304) parcellation was not significantly above 0. A repeated measures 
ANOVA with the 13 parcellations as the within-subject factor was run on the 13x92 
DCBC matrix and demonstrated a significant difference in DCBC across parcellations, 
F (12,1092) = 508.64, p<.001). Post-hoc paired t-test showed that Tu (326) had a 
better cluster validity (Cohen’s d > 2.0, Supplementary Figure 9A) than alternative 
adult and early childhood parcellations in eLABE (Y2) individuals.  

One caveat to the observation above was that the evaluation was performed 
on the same dataset used to generate the parcels. As such, an independent validation 
dataset (BCP) was used to further evaluate the cluster validity of the area parcellations 
(Figure 3C). The Gordon (333) and Tu (326) parcellations still performed the best 
within their respective parcellation age brackets, confirming the robustness of our 
results. A significant difference in DCBC across parcellations was found by a repeated 
measures ANOVA with the 13 parcellations as the within-subject factor, F (12,396) = 
100.92, p<.001). Post-hoc paired t-test showed a better cluster validity of Tu (326) 
against other parcellations (Cohen’s d > 1.2, Supplementary Figure 9B) at 8-30 
months. 

To further validate the cluster validity of the parcellations in early childhood, we 
calculated the DCBC on individuals from all five BCP groups (Supplementary Figure 
10). We ran a repeated measures ANOVA with the 12 parcellations as the within-
subject factor and the 5 age bins as the between-subject factor on the 13x177 DCBC 
matrix. There was a significant difference in DCBC across parcellations, F (12,2064) 
= 551.31, p<.001), and no interaction between the five age bins and parcellations, F 
(48,2064) = 0.76, p = 0.88).  

Similar results were observed when calculating a homogeneity Z-score at the 
group-average level (Supplementary Figure 11-12). Details are provided in 
Supplementary Materials. 
 
Age-specific Early Childhood Parcellations Have Comparable Cluster Validity to 
the 2-year-old Parcellation 

We generated parcellations using the BCP dataset for five narrower age 
windows with a 65% merging threshold (Figure 4A). Age-specific early childhood 
parcellations were similar to one another (ranging from 352 to 380 parcels, ARI = 0.5-
0.6). We calculated DCBC of the age-specific parcellations, the Tu (326) and the 
Gordon (333) on additional sessions of BCP data from a different set of subjects. A 
significant difference across parcellations was found with the repeated measures 
ANOVA with the 3 parcellations as the within-subject factor for 10 months (F(2,18) = 
15.86, p<.001), 12 months (F(2,20) = 21.52, p<.001), 16 months (F(2,24) = 21.74, 
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p<.001), 19 months (F(2,36) = 49.01, p<.001), and 25 months (F(2,38) = 48.61, 
p<.001). Using a post-hoc two-tailed paired t-test, we found that the age-specific 
parcellation outperformed Tu (326) parcellation only at 10 months (FDR-corrected p = 
0.038) (Figure 4B), and was significantly worse than the Tu (326) parcellation at 19 
months (FDR-corrected p = 0.0065). Given that the Tu (326) parcellation was derived 
from a separate dataset from the age-specific parcellations, the current results support 
the generalizability and the utility of our Tu (326) parcellation to the age range of 1-2 
years. 

Since the Wang early childhood parcellation (Wang et al., 2023) also had age-
specific versions with parcellations from 3,6,9,12,18, and 24 months, we tested 
whether the age-specific parcellations would best fit the individual FC in a similar age 
bracket. We found no clear evidence that data from a similar age range was best fit 
by the age-specific parcellation and that all age-specific Wang parcellations had low 
DCBC (<0.02) (Supplementary Figure 13).  
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Adult Parcellations Based on Functional Connectivity Have a Higher Cluster 
Validity at Age 6 and Beyond 

We determined the fit of area parcellations across the lifespan by testing our 
set of parcellations across FC in individual neonates (eLABE (Birth)), 3-year-olds 
(eLABE (Y3)), children (HBN), and young adults (HCP-YA). Neonate FC data were 
best fit by Myers-Labonte (283) parcellation (Figure 5A), 3-year-old FC data were best 
fit by the Tu (326) parcellation (Figure 5B). Children (Figure 5C-E, Supplementary 
Figure 14) and young adult (Figure 5F) FC data were best fit by the Gordon (333) 
parcellation. Adult and early childhood parcellations derived from FC rather than 
anatomy alone have a positive DCBC across all datasets at age 6 and beyond, with 
the difference in cluster validity across pairs of parcellations demonstrated in 
Supplementary Figure 15.   

 

Figure 4. Age-specific early childhood area parcellations. DCBC on a secondary 
validation dataset of held-out BCP participants using i) the age-specific parcellations, ii) 
Tu (326), and iii) Gordon (333). ** p<.01, *** p<.001. FDR-corrected for 3 paired t-tests.  
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The Myers-Labonte parcellation (Myers et al., 2024) included an alternative version 
that covered most of the brain (height threshold  = 90%).  Both versions of the Myers-
Labonte parcellation significantly better fit the eLABE data at the birth time point. They 
were both worse than the Tu (326) parcels at the Y2/Y3 time points, and they had 
comparable (Myers-Labonte (283), FDR-corrected p≥.05) or worse (Myers-Labonte 
(370), FDR-corrected p<.05) fit than the Gordon (333) parcels at the Y2/Y3 time points 
(Supplementary Figure 16).   

 
Practical Implications of Using Early Childhood versus Adult Parcellations 

 To capture the practical implications of using early childhood versus adult 
parcellations, we tested the prediction of chronological age from the parcellated 
connectome and the test-retest reliability of the connectome using the validation 

Figure 5. Cluster validity for different adult and early childhood parcellations across 
other developmental stages. A) a neonate dataset eLABE (Birth), B) an older toddler 
dataset eLABE (Y3), C-E) a children dataset HBN, and D) a young adult dataset 
HCP. * p<.05 after FDR-correction 
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dataset (BCP). We observed that the prediction accuracy increased with the number 
of parcels but plateaued at around 300 parcels (Figure 6A) regardless of adult or early 
childhood parcellations.  

The spatial distribution of the top 5% of edges with positive and negative 
correlations was similar across the best-performing early childhood (Tu (326)) and 
adult (Gordon (333)) parcellations (Figure 6B-C). Medial-visual, motor, and medial 
parietal areas had the highest number of edges significantly correlated with age while 
the lateral frontal areas had the lowest number of edges significantly correlated with 
age (Figure 6D-E). The spatial distribution of the top 5% of edges using other area 
parcellations (Figure 3) were largely consistent (Supplementary Figure 17-19), but for 
the coarse anatomical area parcellations, edges from some areas may appear less 
correlated with age (e.g. the motor cortex areas in Desikan (70)). 

In addition, we computed the test-retest reliability of FC using the Tu (326) and 
Gordon (333) parcellations on the BCP dataset. We found lower test-retest reliability 
(as indexed by ICC) in the motor areas and the lateral-medial prefrontal cortex using 
both parcellations (Figure 7). Similar patterns were observed with other area 
parcellations (Supplementary Figure 20-21). 
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Figure 6. Predicting behavioral phenotypes from the connectomes using adult and 
early childhood parcellations. A) Multivariate prediction accuracy of age at scan using 
all edges. Error bars show the mean and standard deviation of correlation of actual 
age and predicted age at scan across 1000 random samples. The red line shows a 
logarithmic fit to the data. The bolded symbol shows the best adult (Gordon (333)) and 
best early childhood (Tu (326)) parcellations in Figure 3. B) Top 5% positive edges in 
age-FC correlation magnitude (red) and top 5% negative edges in age-FC correlation 
magnitude (blue), nodes represent parcel centroids in Tu (326) C) Same as B but for 
Gordon (333). D) Number of significant edges from each parcel for Tu (326). E) 
Number of significant edges from each parcel for Gordon (333).  
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Community Assignment of Parcels into Networks 

The interactions between the cortical areas form large-scale functional 
networks or communities (Power et al., 2011; Yeo et al., 2011). We obtained data-
driven community assignments using the Tu (326) parcels as the nodes in a graph 
and optimized for reliable networks that were present across densities (Supplementary 
Video). Contrary to the fragmented anterior and posterior parts of the default network 
and fronto-parietal network observed in overlapping participants at birth (Myers et al., 
2024; Sylvester et al., 2022), at the age of two the anterior and posterior parts of those 
networks joined together at higher edge densities (Figure 6A), suggestive of increased 
long-range FC within the network from 0 to 2 years. We found that at lower edge 
densities, the default network divides into four local components (posterior default, 

 
Figure 7. Test-retest reliability from the connectomes using adult and early childhood 
parcellations. A) Calculation of test-retest reliability of edges. AP = anterior-to-posterior, 
PA = posterior-to-anterior, example FC matrix was sorted by the Gordon et al. 2016 
network orders). B) The edges with a “good” reliability (ICC = 0.60-0.75) for Tu (326). C) 
The edges with a “good” reliability (ICC = 0.60-0.75) for Gordon (333). D) Mean edge 
test-retest reliability for edges connected to areas in the brain for Tu (326). Nodes 
represent parcel centroids. E) Mean edge test-retest reliability for edges connected to 
areas in the brain for Gordon (333). 
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inferior fronto-parietal, dorsomedial prefrontal cortex (PFC), and ventromedial PFC) 
instead of distributed components (Andrews-Hanna et al., 2010; Gordon et al., 2020; 
Yeo et al., 2011), suggestive of more localized FC distribution in 2-year-olds compared 
to adults. Similarly, the fronto-parietal network can be separated into posterior fronto-
parietal, lateral PFC, and anterior PFC at lower edge densities (Figure 6B). The visual 
network can be separated into primary visual and visual association, similar to adults. 
The visual association network here has sometimes been described as a component 
of the dorsal attention network (Du et al., 2024; Yeo et al., 2011). To illustrate the 
change in long-range FC strengths across neonates, 2-year-olds, and adults, we 
visualized the raw connectivity seed maps from different components of the canonical 
default network (Supplementary Figure 22).  

Discussion 
 
 We have developed a cortical area parcellation for 2-year-olds based on 
functional connectivity (FC). Compared to other existing adult and early childhood area 
parcellations, our parcellation provided a better fit for individuals between 1-3 years 

 

Figure 8. Assigned community identities for each parcel. A) Consensus community 
assignment for 12 networks. B) Finer division of 19 networks. Acronyms: PFC = 
Prefrontal Cortex, SM = Somatomotor. 

*PFC = Prefrontal cortex, SM = Somatomotor
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old across two independent datasets. Therefore, it could be used in future studies of 
FC in this age range. We also found that the best-performing adult parcellations also 
provide a good fit to 1-3 year olds, comparable to some existing early childhood area 
parcellations in the literature, and even outperformed our 2-year-old parcellation in 
children age 6 years and older.  

Our parcellation achieved the best internal validity of cluster quality among all 
early childhood parcellations  tested on the age 1-3 year-old groups. Additionally, we 
found that area boundaries in 2-year-olds are more similar to those in adults than to 
those in neonates. Taken together, these results suggest that work using adult area 
parcellations for developmental studies is reasonable. Our findings support the 
hypothesis that substantial refinement of cortical areas occurs in the first year of 
postnatal experience, after which they become much more adult-like. Our work not 
only provides insights into cortical arealization in humans during early development, 
but also offers practical guidelines for using cortical parcellation for neuroimaging 
studies involving developmental cohorts. 
 
Boundary Consistency in 2-year-olds Is Stronger on the Sensorimotor End Than 
on the Association End 
 We observed that area boundaries on the sensorimotor end of the 
sensorimotor-association hierarchy tend to be more consistent across subject 
samples. This observation could be attributed to two factors: 1) interindividual 
variability was lower in sensorimotor systems (Gratton et al., 2018; Kong et al., 2019; 
Li et al., 2019; Mueller et al., 2013; Sydnor et al., 2021; von Economo et al., 2008; von 
Economo and Koskinas, 1925), or 2) some borders in the sensorimotor systems were 
sharper, as seen in macaque monkeys (Lewis and Van Essen, 2000). This is 
consistent with the early of maturation of sensorimotor systems compared to 
association systems based on converging evidence including functional connectivity 
(Gao et al., 2015a; Smyser et al., 2011), cortical thickness (Ahmad et al., 2023), 
cortical surface expansion (Garcia et al., 2018; Hill et al., 2010), gray matter density 
(Gogtay et al., 2004),  intrinsic activity (Sydnor et al., 2023, 2021), and intrinsic time 
scales (Truzzi and Cusack, 2023). As a consequence of an earlier maturation of 
sensorimotor areas, plasticity might be limited compared to association areas (Hill et 
al., 2010), which may lead to reduced susceptibility to environmental influences (Gao 
et al., 2017) and thus lower interindividual variability in the area boundaries. 
 
Area Boundary Maps in 2-year-olds Resembled Adult Area Boundary Maps More 
than Neonate Area Boundary Maps 
Functional Connectivity Transition Boundaries in 2-year-olds Are More Proximal 
to Those in Adults than to Those in Neonates 

Prior literature has described the mechanism of cortical arealization across 
development as a process that involved the formation of morphogen gradients driven 
by genetic factors, as well as the activity-dependent refinement of sharp boundaries 
(Cadwell et al., 2019) influenced by thalamocortical inputs (O’Leary et al., 2007). 
Consistent with this view, our current study demonstrates that the putative cortical 
areas boundaries as defined by FC transitions in 2-year-olds are more proximal to 
those in adults than those in neonates. These findings indicate that area boundaries 
experience significant development during early infancy, with the rate of change 
decelerating around 1 to 2 years of age.  

Other studies have also identified relatively low variability in FC-gradient 
transition boundaries between 3 months and 24 months of age (Wang et al., 2023). 



This suggests that the most significant refinement of area boundaries in neonates 
likely occurs within the first three months. Supporting this idea, surface area continues 
to expand dramatically from 29 post-menstrual weeks but slows its developmental 
pace after three months (Bethlehem et al., 2022; Huang et al., 2022), further 
supporting this idea. 

Notably, the area boundaries in 2-year-olds exhibit a higher similarity to those  
observed in neonates compared to a spatially permuted null model. This finding 
suggests that an organization structure of area boundaries is established from birth, 
aligning with the proposed intrinsic proto-mapping of cortical area organization driven 
by morphogens during embryonic development (Cadwell et al., 2019; O’Leary et al., 
2007; Smyser et al., 2011; Tau and Peterson, 2010).  
 
A Coarse-grained Area Parcellation was Optimized for Biological Validity and 
Utility 

Our level of resolution at 326 parcels is comparable to most other adult and 
early childhood area parcellations. In addition, it is close to the prior estimation of 300-
400 cortical areas in humans based on multimodal evidences (Glasser et al., 2016; 
Van Essen et al., 2012; Van Essen and Glasser, 2018) for better biological 
interpretability. It is well-known that automated approaches are sensitive to small 
variations in the data, and may produce multiple solutions based on free parameter 
choices (Supplementary Figure 3)(Van Essen and Glasser, 2018). Since the 
resolution has a non-negligible effect on measurements such as global graph metrics 
(Arslan et al., 2018; Zalesky et al., 2010), we believe that keeping the number of 
parcels similar to popular adult area parcellations makes comparison across children 
and adults more equitable. Importantly, there are currently no 3D histological atlases 
showing how cortex matures during the first three years of life so a direct comparison 
to histological data cannot be made. While another fine-grained early childhood area 
parcellation exists (Wang et al., 2023), our results suggest that its generalizability to 
alternative processing or datasets is low as demonstrated by our results. Furthermore, 
multiple lines of evidence including our analyses suggest that the prediction of 
demographic and behavioral variables from FC data plateau with ~300 parcels (Arslan 
et al., 2018; Kong et al., 2023) and that a clear correspondence between the FC 
gradients and the Mesulam hierarchy can be seen regardless of area parcellation 
scheme with more than 300 nodes (Vos de Wael et al., 2020). Therefore, having a 
fine-grained area parcellation may not necessarily provide a practical advantage in 
analyses such as examining graph properties of the brain network or multivariate age 
prediction.  

On the other hand, we recognize that different levels of resolution may be useful 
in different applications (Schaefer et al., 2018; Zalesky et al., 2010). Therefore, we 
have also released the 2-year-old area parcellation at multiple resolutions with the 
caveat that our estimates of the higher-resolution area parcellations might not be as 
generalizable across individuals and datasets and should be used with caution. 
 
Cluster Validity of Adult Area Parcellations in Developmental Cohorts 
 We found that while the best-performing adult area parcellation (Gordon (333)) 
had a worse fit to the functional connectivity data in 0-3 year-olds than the best-
performing early childhood area parcellations, they still had a better-than-chance 
cluster validity (DCBC>0)  and beat the regular hexagonal (icosahedron) area 
parcellation. This suggests some resemblance between adult areas and areas in 



neonates to 3-year-olds. For additional discussion regarding results in prior literature 
see Supplementary Materials. 
 
Using Adult instead of Early Childhood Area Parcellations Lead to Qualitatively 
Similar Conclusions for Age Prediction and Test-retest Reliability 

We found that the prediction accuracy of age increased with parcel number and 
plateaued around 300 parcels with no clear advantage of the shape and distribution 
of parcels, consistent with prior literature (Arslan et al., 2018; Kong et al., 2021). 
Another study found a marginal effect of atlas choice on the prediction of individual 
psychological and clinical traits and supported the use of data-driven rather than pre-
defined area parcellations (Dadi et al., 2019).However, this observation could 
potentially be attributed to the difference in the number of areas between the data-
driven and pre-defined area parcellations.  

Consistent with prior work in adults (Tozzi et al., 2020), we found higher test-
retest reliability for FC edges from the temporal and parietal lobes (Figure 7). Overall, 
the FC reliability in early childhood were lower than that in adults, which could 
potentially be explained by a combination of the low amount of data (5 min) used for 
test and retest, the difference in phase-encoding direction in the test and retest scans, 
and/or transitions between different stages of the sleep cycle in the early childhood 
data compared to awake adult scans (Lee et al., 2020; Mitra et al., 2017). Other 
studies also found relatively low edge-level test-retest reliability in infants with the 
mean ICC around 0.14-0.37 (Dufford et al., 2021; Wang et al., 2021). 

While our limited explorations here add credence to conclusions from previous 
studies using adult area parcellations (Kardan et al., 2022; Nielsen et al., 2022), this 
does not equate to the statement that adult parcels are accurate representations of 
areas in early childhood. 
 
Network Assignments in 2-year-olds Resembled Networks in Adults 

We identified fragmented components of canonical adult functional systems 
consistent with prior literature using similar techniques on participants within this age 
range (Eggebrecht et al., 2017; Kardan et al., 2022; Wang et al., 2023). This finding 
aligns with earlier studies suggesting that long-range FC tended to develop later than 
short-range FC with age (Smyser et al., 2011, 2010; Smyser and Neil, 2015; Spisák 
et al., 2014; Sylvester et al., 2022; Thomason et al., 2015). However, when we 
incorporated weaker connectivity, the network assignments in 2-year-olds had similar 
topography to previously reported adult networks (Gordon et al., 2016; Ji et al., 2019; 
Power et al., 2011; Yeo et al., 2011).  Additionally, analyses from a separate study 
demonstrated that these network assignments provided an approximately equal fit for 
children aged 1 to 2 years and performed substantially better than the Gordon network 
assignments from young adults (Tu et al., 2024). 

Despite the similarities to adult networks, we also found important differences 
in the network assignments in 2-year-olds. First, the temporal lobe remained largely 
segregated from the canonical default network unlike in adults. Additionally, the motor 
hand/foot system incorporated part of the inferior parietal lobule and posterior insula, 
which might suggest some extra plasticity that contributes to multisensory integration 
during development. This might be driven by the connectivity between inter-effector 
regions and control network (Gordon et al., 2023). Furthermore, the salience and 
cingulo-opercular networks were less differentiated from each other, and the cingulo-
opercular network was missing the component commonly observed at the cingulate 
cortex. 



It is important to note that the infomap community detection algorithm tends to 
find more localized clusters when only examining the strongest FC due to the stronger 
FC at short-distance, especially in developmental cohorts. We suspect that alternative 
methods which de-emphasize the distance dependence of FC (Sylvester et al., 2022; 
Zamani Esfahlani et al., 2020) may retrieve communities more similar to the large-
scale functional systems identified in adults (Petersen and Sporns, 2015). Instead of 
making a binary decision about whether the networks “connect” or “separate”, we 
believe that it is more important to note the performance of the algorithm across 
different edge densities and compare it to the adult network topography. Thus, we 
provide a 12-network model which largely resembles the definition of functional 
networks observed in adults, and also a 19-network model with a similar granularity to 
the functional networks defined in neonates at birth (Myers et al., 2024) targeted at 
different uses. 

It is worth emphasizing that whether the network clusters we identified with 
functional connectivity correspond to “functional systems” with specialized functional 
roles (Power et al., 2011; Wig, 2017; Yeo et al., 2011) remains an outstanding question. 
They are likely premature forms of the adult systems (Gao et al., 2015b, 2015a).The 
biological validity of the fragmented components we found will need to be validated 
with task neuroimaging data in early childhood (Yates et al., 2022, 2021) in future 
research. Researchers who use our network model should be fully aware of this 
limitation. 

 
Practical Recommendations on Using the Tu (326) and Alternative Area 
Parcellations 

Age-specific parcellations are uniquely useful in that they will apply with the 
greatest fidelity to the age for which they were made. However, a major limitation with 
using an age-specific area parcellations is that a different number of nodes and edges 
may exist for each age. While theoretically the development of cortical areas may raise 
a challenge in finding a consistent area parcellation that fits all ages, our results here 
demonstrated that our 2-year-old area parcellation Tu (326) generalized well to fit the 
FC patterns in 1-to-3-year-olds. Thus, we recognize that two alternative approaches 
are reasonable depending on the goal and motivation of a given study. 

1. Use a canonical adult area parcellation map. Using the same area parcellation 
map can ensure correspondence across age groups (Oishi et al., 2019). 
However, this method risks not having the best area parcellation for each group 
and introducing noise in the data. Based on our current results, the use of an 
adult area parcellation might be a reasonable choice with limited practical 
impact on analyses such as age prediction from parcellated connectome. 

2. Using individualized area parcellations or functional embedding to find 
matching relationships. Several techniques exist to create individual 
parcellations based on a group-average area parcellation prior (Chong et al., 
2017; Kong et al., 2021; Li et al., 2017, 2019, 2022; Qiu et al., 2022; Zhao et 
al., 2020), or to embed connectivity in a latent space to find correspondence 
across participants (Haxby et al., 2020; Langs et al., 2016; Nenning et al., 2020). 
Additionally, individualized area parcellations can be created with highly-
sampled individuals using precision functional imaging methods (Gordon et al., 
2017; Laumann et al., 2015). 

 
Limitations and Future Directions 



Extensive work from non-human primates (NHP) has validated the 
neurophysiological basis of FC observed in fMRI (Logothetis et al., 2001; Pagani et 
al., 2023; Vincent et al., 2007), and found the fMRI-based network organization to be 
constrained by anatomical connectivity (Adachi et al., 2012; Pritschet et al., 2020; 
Vincent et al., 2007). Therefore, while functional connectivity can be affected by many 
factors, it indirectly provides insights into cortical arealization. However, it is important 
to acknowledge the inherent limitations associated with defining area boundaries 
based solely on fMRI (Eickhoff et al., 2015; Van Essen and Glasser, 2018). Functional 
connectivity estimates from fMRI do not fully account for critical neurobiological factors, 
including the balance of excitatory and inhibitory signals within the maturing cortex 
(Ben-Ari, 2002; Markram et al., 2004), the retraction of cortical fibers, and the growth 
or arborization of dendrites (Hua and Smith, 2004; Stiles and Jernigan, 2010). 
Consequently, these factors could lead to misunderstandings or misinterpretations of 
cortical maturation when relying solely on functional connectivity findings, and 
consideration of multimodal evidence could provide further insights (Glasser et al., 
2016). Moreover, FC gradients identify transitions between regions that activate 
synchronously at rest, which correspond to features of the brain’s 
functional/topographical organization. For example, FC gradients segregate motor 
cortex into approximately foot, hand and face patches rather than elongated 
architectonic divisions (Glasser et al., 2016). Thus, this strategy may capture areas 
that are bound together by simultaneous activation (e.g., sensory and motor regions) 
rather than architectonic similarity (Van Essen and Glasser, 2018). 

In addition, while our area parcellations described cortical area organization in 
1-to-3-year-olds, future area parcellations would benefit from the additional inclusion 
of subcortical and cerebellar structures. Additionally, areal differentiation begins during 
the last part of gestation, and the current paper only considered postnatal 
differentiation of areas. Moreover, the group atlas can be affected by multiple factors 
including acquisition, resolution, consistency across participants of functional 
organization within areas, the consistency of system organization between areas, and 
the consistency of anatomic organization (Ahmad et al., 2023; Shen et al., 2013). 
Future research with smaller voxels or a better T2* protocol to increase signal-to-noise 
ratio may further improve the quality of the group area parcellation. 

In addition, the datasets used for area boundaries had minor differences in 
acquisition and processing (Supplementary Table 1), which could potentially impact 
the appearance of area boundaries. In addition, future studies should also investigate 
how much of the differences between neonate and their older-age counterparts could 
be attributed to the challenges in the registration of the neonate's brains due to their 
tissue properties and anatomical differences from the adult brain. Additionally, when 
testing the generalizability of area parcellations to neonates, 2-year-olds and 3-year-
olds, we used data from overlapping subjects from the eLABE longitudinal dataset, 
which might have provided a slight advantage to the Myers-Labonte (283) and Tu (326) 
area parcellations. 

One additional confound is that the early childhood data were acquired during 
natural sleep, which has been shown to weaken long-range connectivity within 
canonical functional systems (Mitra et al., 2017). Recent studies also found 
differences in the FC of sleeping and awake neonates (Lee et al., 2020) and infants 
(Tu et al., 2024; Yates et al., 2023). It is also known that the sleep architecture changes 
across developmental stages (Kahn et al., 1996), which may contribute to the reduced 
consistency of early childhood FC within and across individuals. Moreover, eyes-open 
versus eyes-closed seem to affect visual area functional connectivity (Laumann et al., 



2015; Van Essen and Glasser, 2018). Therefore, as with all functional connectivity-
based area parcellations, our putative areas may not represent exactly the 
neurobiological boundaries, despite its potential utility in dimensionality reduction (Van 
Essen and Glasser, 2018). 

Lastly, some of the area parcellations tested were originally generated in 
volumetric space. However, all datasets used in testing the cluster validity were in the 
surface space. For convenience, we transformed the area parcellations in the 
volumetric space to a standard MNI space when necessary and then to the 32k_fs_LR 
surface mesh using previously described procedures (Arslan et al., 2018). This 
transformation was imperfect and could have unintentionally favored surface area 
parcellations over area parcellations which were originally determined in a volume 
space.  
 
Conclusion 

We developed FC gradient-based area parcellations of the neocortical surface 
for 2-year-olds to be used in future studies of FC in this age range. We found that area 
boundaries in 2-year-olds were more similar to those in adults than those in neonates. 
Despite multiple similar efforts in early childhood area parcellation, our area 
parcellations achieved the best cluster validity among all area parcellations tested on 
the 1-to-3-year-olds across two independent datasets. We also found that the best-
performing adult area parcellations provided a better-than-chance fit to the FC in 1-3-
year-old area parcellations. Our results lend credence to conclusions from prior work 
using an adult area parcellation for 1-to-3-year-olds and support the hypothesis that 
the most substantial refinement of cortical areas occurs in the first few months of life. 
Our work not only sheds new insights into cortical arealization in humans but also 
offers practical guidelines for using area parcellations for neuroimaging studies in 
developmental cohorts.  
 
Data and Code Availability 

 Baby Connectome Project data are available for download at the NIH Data 
Repository website: https://nda.nih.gov/edit_collection.html?id=2848. Early Life 
Adversity, Biological Embedding (eLABE) data are available through request at 
https://eedp .wustl.edu/research/elabe-study/. 

All analyses, unless otherwise stated, were implemented with custom MATLAB 
scripts in the R2020b release. All visualizations were created with custom MATLAB 
scripts or Connectome Workbench Version 1.5.0.  

The code for the generation and evaluation of parcellations is adapted from the 
MSCcodebase and the DCBC toolbox. Code and parcellations mentioned in the 
manuscript are available to download here. 
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