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Abstract

Teaser

MAIN

The study of transcriptomic and epigenomic variations in neurodegenerative diseases,
particularly tauopathies like Pick’s disease (PiD) and Alzheimer’s disease (AD), offers
insights into their underlying regulatory mechanisms. Here, we identified critical
regulatory changes driving disease progression, revealing potential therapeutic targets.
Our comparative analyses uncovered disease-enriched non-coding regions and genome-
wide transcription factor (TF) binding differences, linking them to target genes. Notably,
we identified a distal human-gained enhancer (HGE) associated with E3 ubiquitin ligase
(UBE3A), highlighting disease-specific regulatory alterations. Additionally, fine-mapping
of AD risk genes uncovered loci enriched in microglial enhancers and accessible in other
cell-types. Shared and distinct TF binding patterns were observed in neurons and glial
cells across PiD and AD. We validated our findings using CRISPR to excise a predicted
enhancer region in UBE3A and developed an interactive database, sSCROAD, to visualize
predicted single-cell TF occupancy and regulatory networks.

Comparative studies in AD and PiD reveal critical regulatory changes and identify risk
gene associations for PiD.

TEXT
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Introduction

Neurodegeneration is a key aspect of many neurological disorders, each with distinct
molecular mechanisms and etiologies. Alzheimer’s disease (AD) is the most prevalent
neurodegenerative disorder and is pathologically characterized by the progressive
accumulation of amyloid-beta plaques and neurofibrillary tangles (NFTs) of tau (/).
Conversely, Pick’s disease (PiD) is a rare behavioral variant of frontotemporal dementia
(FTD) (2, 3), which has a prevalence of 15 to 22 per 100,000 individuals and an incidence
of 2.7 to 4.1 per 100,000 individuals per year (4). PiD is characterized by the presence of
pathological tau aggregates known as Pick bodies (5). Abnormal tau aggregates such as
NFTs and Pick bodies alter cellular and molecular functions in the brain, but we currently
do not understand the differences and similarities between these cellular changes across
different tauopathies like AD and PiD (6).

Efforts by large-scale consortia, such as the Genetic Frontotemporal Dementia Initiative
(GENFI) and ARTFL LEFFTDS Longitudinal Frontotemporal Lobar Degeneration
(ALLFTD), have been instrumental in tracking and understanding brain changes before
symptoms occur and in the early and moderate stages of the disease. However, PiD’s rare
prevalence, combined with challenges in clinical diagnosis, has hindered comprehensive
research into its pathophysiology. The scarcity of postmortem brain samples further limits
our understanding of the genetic and epigenetic underpinnings of PiD. To address these
challenges, comparative functional genomics analyses of different tauopathies can provide
insights into shared and distinct molecular mechanisms. One recent study (7) has begun to
explore the molecular landscapes of PiD and related tauopathies using multi-omic
approaches, which have provided invaluable insights into disease-specific gene regulatory
networks across brain regions like the insular cortex, motor cortex, and visual cortex.
However, critical regions such as the prefrontal cortex (PFC), which is involved in higher-
order cognitive functions and social behavior, remain relatively understudied.
Transcriptomic and epigenomic alterations in the PFC associated with PiD have not been
extensively explored, necessitating the focus of our current study.

While recent genome-wide association studies (GWAS) and fine-mapping analyses have
implicated numerous genetic loci in neurodegeneration (8-/3), much of the attention in
this area is currently focused on AD over other disorders (6), and the functional roles of
these loci are often ambiguous since they frequently reside in non-coding regions (/4-16).
The advent of single-cell epigenomics has allowed us to provide additional context for
these genetic risk variants in specific cell-types (/7), while single-cell transcriptomics has
provided insights into the molecular states of NFT-bearing neurons and NFT susceptibility
in AD (/8). While these technologies have broadened our understanding of altered cellular
states and gene regulatory programs in AD (77, 19-27), much work remains to
characterize these changes in other neurodegenerative disorders and to understand their
shared and unique molecular signatures.

In this study, we employed single-nucleus assay for transposase-accessible chromatin
using sequencing (snATAC-seq) to characterize the open chromatin landscape and single-
nucleus RNA-sequencing (snRNA-seq) to profile the gene expression of the frontal cortex
in Pick’s disease donors and cognitively normal controls. We performed parallel
comparative analyses of PiD datasets with our previous AD datasets to facilitate our
understanding of PiD. We leveraged cell-type-specific chromatin accessibility information
to model the gene-regulatory landscape of PiD and AD, identifying sets of promoter-gene
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95 links for each disease in each cell-type. We intersected these links with our internally
96 conducted fine-mapping analyses, considering linkage disequilibrium (LD), at selected
97 disease risk loci to nominate candidate cell-types and genes associated with non-coding
98 risk SNPs. Further, we modeled transcription factor (TF) binding activity in each cell-type
99 for disease and control to characterize regulatory networks and key gene-regulatory
100 mechanisms mediated by enhancer-promoter links, allowing us to focus our attention
101 directly on the regulators of these GWAS genes, differentially expressed genes (DEGs)
102 and TFs. Furthermore, snRNA-seq of PiD donors corroborated some of our findings at the
103 transcriptomic level. To validate the robustness of our insights, we highlighted a
104 previously unknown human-gained enhancer (HGE) in excitatory neurons regulating
105 UBE3A4, known for its role in regulating synaptic activity, that is altered in both PiD and
106 AD. Using CRISPR-Cas9, we excised this HGE in induced pluripotent stem cell (iPSC)-
107 derived neurons, and we observed a subsequent downregulation of UBE3A4 using RNA-
108 seq. Our data suggest both shared and distinct patterns of gene regulation in PiD and AD,
109 particularly evident in the disease-enriched and specific TF activity. Furthermore,
110 disruption in the imputed enhancer accessibility provides validation for the accurate
111 identification of enhancer regions located more than 40kbp away from the UTR of the
112 disease-relevant gene.

113 Results
114  Single-nucleus ATAC and RNA profile PiD and AD prefrontal cortex.

115 We performed snATAC-seq on frontal cortical tissue sections of PiD and cognitively

116 normal control cases (10x Genomics; n =7 PiD; n = 9 control), and snRNA-seq on the
117 same PiD and control cases (Parse Bio; n = 5 PiD; n = 3 control). Notably, our study is the
118 first to delineate the molecular landscape within frontal cortical regions of PiD at the

119 single-cell level. We processed our single-nucleus data separately in PiD from our

120 previously generated snATAC-seq data of AD (10x Genomics; n = 12 late-stage AD; n =
121 8 control) (/7) and snRNA-seq (10x Genomics; n = 11 late-stage AD; n =7 control) (17,
122 28) (Fig. 1A). After quality control filtering, 83,938 snATAC-seq and 66,661 snRNA-seq
123 profiles came from the newly generated PiD dataset (Figs. 1, B to D, S1, A and B, and

124 Methods), and 114,784 nuclei originated from previously generated AD snATAC-seq and
125 57,950 nuclei were from AD snRNA-seq. In snATAC-seq, clustering analyses revealed
126 seven major brain cell-types in this dataset - excitatory neurons (EX), inhibitory neurons
127 (INH), astrocytes (ASC), microglia (MG), oligodendrocytes (ODC), oligodendrocyte

128 progenitor cells (OPC), and pericytes and endothelial cells (PER-END) - annotated based
129 on chromatin accessibility at the promoter regions of known marker genes (Fig. 1, B, D,
130 and E). We performed label transfer using the AD dataset (/7) as a reference and then

131 confirmed the annotation of our excitatory and inhibitory neurons based on previously

132 identified marker genes, namely SYNPR for both EX and INH neurons, SLC174 for EX,
133 and GAD? for INH. Similarly, we annotated our glial subpopulations, including astrocyte
134 cluster based on the GFAP promoter, which has been shown to increase in disease (29);
135 microglia cluster based on the CSFIR promoter; oligodendrocyte cluster based on the

136 MOBP promoter; OPC cluster based on the PDGFRA promoter; and PER-END cluster on
137 the CLDN) promoter (Figs. 1E and S1F). Additionally, we further confirmed cell-type
138 identities by gene activity shown in the panel of canonical cell-type marker genes (Table
139 S1C) (30). In the snRNA-seq dataset, we first clustered and identified seven major brain
140 cell-types in PiD using a panel of canonical cell-type marker genes (Figs. 1, C and D, S1,
141 D and E, and Table S1D, Methods). These robust cell-type identifications enabled us to
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142 explore cell-type-specific alterations and molecular mechanisms underlying PiD
143 pathogenesis with a high degree of confidence.

144 Promoter-enhancer linkages improve chromatin accessibility characterization

145 From these snATAC-seq libraries, we compiled a combined set of 609,675 reproducible
146 peaks using ArchR (30) (Table S2A). To assess the robustness of our peak set, we

147 evaluated the consistency of peak calling by comparing our data with Xiong et al.’s

148 dataset (27). Overlapping peaks were defined as intersections of at least 10bp. We

149 observed that 57% of our peaks overlapped with those reported by Xiong et al. (Fig. S2A),
150 demonstrating a high degree of concordance. Interestingly, approximately half of these

151 overlapping peaks intersected with more than one peak from Xiong et al.’s dataset (Fig.
152 S2B), further highlighting the alignment of our data with previously published findings.
153 This consistency provides confidence in the reliability of our peak set as a foundation for
154 downstream analyses.

155 Building upon this robust peak set, we sought to provide functional context for non-coding
156 distal regulatory elements with respect to cell-type and disease status. Using cis co-

157 accessibility analyses with Cicero (37), we identified linkages between promoters and

158 distal elements (Fig. 2A, Methods). Subsequently, we applied non-negative matrix

159 factorization (NMF) to pseudobulk chromatin accessibility profiles of all distal regulatory
160 elements linked to gene promoter regions. This analysis revealed matrix factors

161 corresponding to epigenetic signatures of biological processes and specific cell states (Fig.
162 2B). We grouped CREs into discrete epigenetic modules based on the matrix factor with
163 the highest loading for each CRE and then performed gene ontology analyses of the

164 regulatory target genes of each module. This revealed cell-type-function-related pathways
165 and processes regulated by these non-coding CREs, such as pathways associated with

166 postsynaptic and synaptic activity in EX and INH, cell proliferation and migration-linked
167 ERBB2 signaling pathway in ODC, and processes such as apoptotic cell clearance in MG.
168 Next, using the cis co-accessibility linkages, we compared the co-accessibility strength of
169 chromatin peak links from PiD and AD samples across the major cell lineages (Fig. 2C).
170 These analyses revealed relatively higher correlations between PiD and AD in ODCs

171 (Pearson R =0.35) and ASCs (R = 0.32), with weaker correlations in other cell-types.

172 Overall, this highlights both conserved epigenomic linkages across PiD and AD and

173 unique regulatory landscapes specific to each condition.

174 To identify cis-regulatory elements (CREs) with altered chromatin accessibility in disease,
175 we systematically performed differential chromatin accessibility analyses in each cell-type
176 comparing PiD to controls and AD to controls, yielding a set of differentially accessible
177 peaks (Table S2C). Our chromatin accessibility regions were broadly categorized by

178 genomic features, including gene promoter, exonic, intronic, or distal regions, and we

179 investigated these differential peaks in PiD and AD based on these categories (Fig. 2D).
180 The majority of the differential peaks in PiD (54%) and AD (53%) were located within
181 intronic regions. Approximately 30% of the differential peaks in both PiD and AD were
182 distal, while 9% and 10% corresponded to promoters specifically in PiD and AD,

183 respectively. Less than 10% of the identified differential peaks were exonic in both PiD
184 and AD (Fig. 2D and Table S2B). These percentages were generally consistent with the
185 peak type distribution of the entire peakset, where distal peaks comprised approximately
186 32%, promoter peaks made up 5%, intronic peaks constituted 55%, and exonic peaks

187 represented 7% (Table S2A). Similar percentages were also observed in other published
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188 studies, reinforcing the robustness and consistency of our findings across different datasets
189 (27, 32). Although EX was not the most sampled cell-type in PiD, our differential analyses
190 revealed that the largest variance in the activity of CREs in the PiD dataset was observed
191 in EX. Conversely, ASC exhibited the highest differential activity in the AD dataset (Fig.
192 S2C).

193 Using this cis-regulatory linkage approach coupled with differential analyses, we used
194 heatmaps to depict the fold changes of normalized chromatin accessibility for

195 differentially accessible promoters, distal and intronic regions across cell-types EX, ASC,
196 MG, and ODC (Figs. 2E, and S2E). Additionally, we incorporated gene ontology

197 information obtained from GREAT, presenting cluster numbers alongside representative
198 gene names. Notably, by inspecting the distal, intronic, and promoter chromatin regions
199 and their linked regulatory target genes, we identified changes containing AD and FTD
200 genetic risk loci, including TMEM106B, ADAM10, SORL1, KATS, CLU, BINI and genes
201 involved in essential cellular activity, such as UBE3A4. Moreover, while examining the
202 absolute fold change of normalized chromatin accessibility, genes in EX in PiD exhibited
203 much more robust changes than those in AD (Fig. 2E). This potentially indicates that the
204 neuronal changes are more pronounced in PiD, likely reflecting age-associated regional
205 differences in pathological progression, particularly in frontal cortical regions (2, 3).

206 These differences align with the observation that patients with frontotemporal lobar

207 degeneration, including PiD, often exhibit a distinct regional vulnerability (7) and a more
208 rapid clinical progression compared to AD (33).

209  Fine-mapping identifies cell-type-specific epigenomic annotations in FTD and AD

210 Given that the majority of variants reside in non-coding regions, around 80% of chromatin
211 accessible peaks in distal and intronic regions (Fig. 2D), a pattern further supported by

212 overlapped quantitative trait loci (QTLs) with chromatin accessible peaks (34-37) (Fig.
213 S3D), and the limited research on disease-associated gene identification for PiD, we assert
214 the importance of utilizing closely related FTD and AD GWAS data as reference points.
215 Our analysis approach, an integrative method combining data from multiple modalities
216 introduced in this study, involves overlapping snATAC-seq accessible peaks with fine-
217 mapped GWAS SNPs, enabling us to determine whether chromosomal regions

218 surrounding these disease-related SNPs exhibit accessibility in our dataset (Fig. S3A).

219 However, it is important to acknowledge the inherent limitations of our study, particularly
220 the rarity of PiD and the consequent unavailability of PiD-specific GWAS summary data
221 with sufficient statistical power. This limitation restricts our analyses to leveraging

222 existing knowledge and datasets to explore potential gene targets for PiD, rather than

223 conducting direct PiID GWAS analyses. We conducted comprehensive fine-mapping,

224 annotation, and cell-type-specific gene expression analyses, in addition to collecting

225 publicly available predicted loss-of-function data (38) (gnomAD v4.0 UCSC; Methods).
226 These efforts aimed to identify causal variants and explore the association of genetic

227 variant-related genes with the risk of AD (/2) and FTD (/3) (Fig. 3). The fine-mapping
228 analyses identified 77 lead GWAS risk SNPs with 113 credible sets, groups of genetic

229 variants, in LD within the AD and FTD brain (posterior inclusion probability (PIP) > 0.95)
230 overlapping with accessible peaks from the seven major cell-types. Interestingly, we found
231 that 36 out of 113 fine-mapped causal credible sets overlapped with accessible peaks of
232 one or two cell-types, and 16 out of 113 were present in all cell-types (Figs. 3 middle

233 panel, and S3B, Table S3A), suggesting that some disease risk variants are relevant to a
234 particular cell-type while others influence gene regulation across several cell-types. To
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235 expand on this, we assessed the overlap between our fine-mapped SNPs and Xiong et al.’s
236 ROSMAP snATAC-seq cell-type-specific peaks (27) across seven major cell-types (Fig. 3
237 middle panel). In addition, we examined the uniqueness of cell-type overlaps for these

238 fine-mapped SNPs, defined as the number of cell-types with overlapping peaks. The high
239 proportion of overlapping peaks and the similar patterns in cell-type-specific overlaps

240 observed in Xiong et al.’s data further support the concordance between the two datasets
241 (Fig. S3C). To reinforce this notion, we integrated the snRNA-seq dataset from three

242 previous studies of the AD cortex (/7, 20, 39) and plotted the expression of genes

243 identified from GWAS summary statistics, where each gene was associated with the lead
244 causal SNP, from its respective control group of distinct cell-types (Fig. 3 left panel).

245 Additionally, we corroborated the association of the lead SNP and other fine-mapped

246 SNPs in LD with their associated genes by cross-referencing cCREs and target genes, data
247 which can be accessed through our online interactive database, ScROAD.

248 For AD, our analyses revealed that more than half of the 113 fine-mapped signals

249 overlapped with accessible peaks found in microglia, a cell-type of particular interest in
250 AD research. Notably, these peaks encompassed several known AD GWAS genes that
251 have been extensively studied in microglia, including ABCA1, ADAM10, ADAM17, BINI,
252 INPP5D, NCK2, PICALM, and TREM? (Fig. 3 middle panel). The enrichment of GWAS
253 risk signals within microglia was consistent with the established pathophysiological role
254 of these cells, particularly their involvement in inflammation in AD (40). AD risk variants
255 at the INPP5D locus were found in accessible chromatin regions exclusively in microglia,
256 and the INPP5D gene was expressed almost specifically in microglia as well (Fig. 3

257 middle panel).

258 While previous studies have demonstrated the enrichment of AD genetic risk SNPs

259 specifically in microglia (/7), we note that these risk genes are expressed in several cell-
260 types. For example, the risk variants of ADAM10 overlapped with accessible peaks from
261 EX, INH, MG and ODC and its gene expression was detected across all cell-types. As the
262 major constituent of a-secretase, ADAM 10 cleaves APP towards a non-amyloidogenic

263 pathway, thereby preventing Af generation (4/7). Furthermore, fine-mapping analyses

264 revealed that BIN/ risk variants, a major risk factor for AD known to induce tau- and

265 isoform-dependent neurotoxicity (42, 43), predominantly localize to accessible peaks

266 associated with ASC, MG, ODC, and OPC. These findings give credence to previously
267 reported disparate findings on the effects of BINI SNPs in microglia (44) and

268 oligodendrocytes (/7). Considering that a given gene can often be expressed in multiple
269 cell-types, it is crucial to exercise caution when analyzing the effects of variants, as these
270 effects may vary greatly among different cell-types. Similarly, GWAS variants in the

271 TREM? gene were identified within accessible peaks primarily associated with MG and
272 EX. TREM? plays a crucial role in various cellular processes, including cell proliferation,
273 survival, phagocytosis, and regulation of inflammation (45). Notably, its defensive

274 response against AD pathology, coupled with its upregulation in reactive microglia

275 surrounding amyloid plaques, has been consistently observed across multiple studies, both
276 in mouse models and human samples (40, 46, 47).

277 Complementing our analyses of AD risk loci, we also performed fine-mapping analyses
278 on GWAS risk loci for FTD, aiming to propose possible risk genes for FTD subtype PiD
279 (Fig. 3, and Table S3A and B), with five of them intersecting with accessible chromatin
280 regions in our snATAC-seq dataset. For example, one of the fine-mapped FTD risk loci,
281 SLC30A48, encodes a zinc transporter and is a susceptible GWAS locus for type 2 diabetes
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282 (48). Strikingly, there is a notable increase in the prevalence of both type 2 diabetes and
283 dementia in older adults (49). We speculate that SLC30A48 could be an indirectly related
284 risk locus for FTD. Moreover, among the identified FTD risk loci, GLDN stands out as
285 another intriguing candidate. GLDN encodes gliomedin, a crucial protein involved in the
286 formation of the nodes of Ranvier (50). These nodes are critical structures along the neural
287 axons where action potentials are regenerated. Disruption of the nodes of Ranvier can

288 result in the failure of the electrically resistive seal between the myelin and the axon,

289 ultimately contributing to various neurological diseases (57). Given the fundamental role
290 of gliomedin in maintaining axonal integrity, investigating GLDN variants within specific
291 cell-types may provide valuable insights into their potential involvement in FTD

292 pathogenesis. In particular, our snRNA-seq differential analyses between PiD and age-

293 matched controls revealed that GLDN was statistically significantly downregulated (Fig. 3
294 right panel). Besides GLDN, in our snRNA-seq analyses, some of the AD GWAS genes,
295 such as ADAM10, ADAM17, BINI1, APP, CLU, JAZF1, MAPT, PICALM, PLEKHAI,

296 SLC24A44, SORLI, and UMAD1, were also differentially expressed in PiD (Table S4 A
297 and B). While risk loci have been identified in our GWAS studies and cis-regulatory-

298 linked risk genes, several open chromatin regions that overlap with AD/FTD GWAS SNPs
299 (Fig. 3) are also differentially accessible regions (DARSs) in the PiD or AD vs. their age-
300 matched control comparison. There are 41 EX DARs and 12 ODC DARs in the PiD

301 dataset and 21 DARs in the AD dataset, of which some overlap with SNPs identified in
302 the AD/FTD GWAS fine mapping (Fig. S3E). These findings underscore the shared

303 genetic mechanisms across tauopathies while also reflecting cell-type-specific chromatin
304 accessibility differences. Furthermore, AD GWAS genes show a strong overlap with

305 differentially expressed genes in PiD (Fisher’s Exact Test: p-value < 2.2x10'®, Table

306 S3C), suggesting that these associations are not random. However, it remains crucial to
307 determine how fine-mapped signals specifically relate to PiD. By integrating these genetic
308 findings with our multi-omics data, we can gain deeper insights into the complex interplay
309 between genetic risk factors and cellular processes contributing to PiD and AD pathology,
310 particularly with regard to regulatory non-coding regions and gene expression in the

311 corresponding cell-types.

312 Neuron TF binding occupancy reveals dysregulation in PiD and AD

313 To uncover gene regulatory mechanisms impacting neurons and glial cells in PiD and AD,
314 we investigated co-accessible enhancer-promoter regions, focusing on genome-wide and
315 gene-specific TF differential binding activities. Various gene regulatory network (GRN)
316 approaches (52, 53) based on motif enrichment analyses often infer TF activity from

317 overrepresented motifs without distinguishing functional binding from chromatin

318 relaxation (24, 54), resulting in false positives (55), where “relaxed” open chromatin

319 regions may not always indicate meaningful regulatory activity (Fig. S4 A and B). To

320 address this limitation, our approach incorporates TF footprinting using the TOBIAS tool
321 (56) to directly measure TF occupancy. This strategy resolves functional from non-

322 functional motif occurrences by identifying functional enhancer-TF interactions and

323 advances our understanding of FTD and AD genetic risk signals, including the role of

324 fine-mapped SNPs in putative regulatory functions. We performed chromatin cis co-

325 accessibility and TF occupancy prediction analyses on 609,675 cCREs (Table S2A) to

326 examine disease-enriched signals in both PiD and AD. For each predominant cell-type, we
327 implemented cis-regulatory co-accessibility (37) and trans-regulatory occupancy

328 prediction (56), dividing the cells into PiD, AD, and their corresponding controls for

329 detailed examination (Fig. 4A).
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330 Our integrated cis- and trans-regulatory analyses approach allows us to explore disease-
331 enriched enhancer-promoter links, TF differential binding activity, and motif binding site
332 disruption in neurons. Genome-wide TF differential binding scores were calculated in PiD
333 and AD with their matching controls in neurons (Fig. 4B). We identified transcription

334 factors BHLHE2?2, a TF previously indicated to play a key role in neural cell fate (57),

335 along with other TFs (p-value < 0.05), which exhibit shared and enhanced binding activity
336 in both PiD and AD compared with their respective controls. JDP2, a TF involved in

337 apoptosis (58), along with other TFs, demonstrates increased binding activity only in AD.
338 CTCF, a transcriptional regulator that acts on enhancers, promoters, and gene bodies (59),
339 together with other TFs in the lower left quadrant, displays decreased binding activity in
340 both PiD and AD compared to their controls. To ensure that the observed changes were
341 not biased toward surviving neurons or influenced by sampling quality control, we

342 calculated a neuronal vulnerability module score based on a list of vulnerable genes

343 associated with reduced expression in disease conditions collected from Mathys et al. (60).
344 This analysis demonstrated that our PiD snRNA-seq data includes both surviving and

345 vulnerable neurons, with vulnerability module scores higher in controls compared to PiD
346 (Fig. S4C).

347 We investigated the binding of select transcription factors to the enhancer regions of their
348 target genes in neurons to contextualize their variable binding activity. (Fig. 4 C to E). To
349 accomplish this, a gene regulatory network for the transcription factors BHLHE22, CTCF,
350 and JDP2 was established in both PiD and AD datasets for excitatory neurons (Figs. 4 B
351 and C, and S4D). Several genes implicated in AD GWAS, including JAZF1, SORLI,

352 PLEKHAI, and ADAM10, exhibited differential expression in EX in individuals with PiD,
353 providing possible insights into shared molecular mechanisms between PiD and AD,

354 suggesting potential convergent pathways underlying neurodegeneration in these

355 conditions (Fig. 4C). Importantly, some of these fine-mapped GWAS genes within the TF
356 network were further supported by significant eQTLs (36) (p-value < 1x107) observed in
357 EX, reinforcing their importance in this cell-type (Fig. S4E). The differentially expressed
358 TFs and genes we identified, positioned in the center of the network, are under the

359 regulation of all three highlighted factors: CTCF, JDP2, and BHLHE?22. Those regulated
360 by two or a single TF are depicted on the outer ring of the network. We stress that these
361 findings merely represent a simplified depiction of a highly complex regulatory network.
362 Gene targets within this network are acknowledged to be subject to regulation, but it is
363 important to note that the highlighted transcription factors do not solely govern their

364 regulation.

365 To complement our analyses of TF trans-regulatory network in neurons, we aimed to

366 discern cis-regulatory elements and DNA-binding motifs that are enriched in either

367 disease or control conditions, particularly within regions containing fine-mapped SNPs.
368 Through the integration of the co-accessibility map with chromatin accessibility signals
369 and GWAS statistics across the genomic axis, we elucidated potential disruptions in cis-
370 regulatory relationships caused by causal disease variants in a GWAS gene, ADAM10,

371 which is also differentially expressed (Fig. 4 D and E). Additionally, we conducted

372 sequence analyses to identify motifs that are disrupted in comparison to control

373 conditions. This procedure was executed with the aim of assessing disease or control gene
374 local enhancer accessibility and predicting potential disruptions in TF binding.

375 We found alterations in the cis-regulatory mechanisms of ADAM110 in AD, a prominent
376 anti-amyloidogenic candidate gene in AD pathology (47) (Fig. 4D). These changes were
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377 identified in proximity to the fine-mapped lead ADAM10 SNP, rs442495, and in its strong
378 LD block, potentially disrupting the DNA-binding motif. Consequently, these disruptions
379 may result in diminished transcription factor (TF) binding activity in disease compared to
380 their corresponding control group. We further investigated the gene locus TF binding

381 activity in those highlighted fine-mapped accessible regions. We selected five TFs from
382 the top-ranked TFs based on the average log2(fold change) of the TF binding score. For
383 example, we found forkhead box O1 (FOXOI), SATB homeobox 1 (SATBI), POU class 5
384 homeobox 1 (POUS5F1), Paired box 4 (PAX4), and peroxisome proliferator-activated

385 receptor (PPAR) transcription factors enriched in highlighted regions identified for

386 ADAM10 in EX (Fig. 4e). Previous studies have investigated the potential roles of

387 FOXO1, SATBI1, and POUSFI in the development of AD (67-63). Notably, FOXO TF
388 families were indicated as mediators of stress adaptation, which promotes the resilience of
389 cells as a key regulator in other pathways, such as metabolism, cell cycle, and redox

390 regulation (64). The transcription factor PAX4 has been investigated in the contexts of
391 both AD and Type 2 Diabetes (72D), and is known to function as a key link in the

392 common pathways of both diseases (65).

393 To thoroughly examine the differences in gene expression in EX between disease and

394 control groups, we arranged and compared all selected differentially expressed genes

395 (DEGs) and transcription factors (TFs) side by side for PiD and AD (Fig. 4 F and G). The
396 fold change in gene expression indicates the robustness of biological changes between
397 diseases and highlights the role of certain genes and TFs in disease development. Among
398 those top-selected genes, identified based on its absolute fold change and cis-regulatory
399 co-accessibility score, CALM1 has been linked to the progression from mild cognitive

400 impairment (MCI) to AD through involvement in the neurotrophin signaling pathway,

401 which contributes to neuronal development, survival, and plasticity (66). Additionally,
402 CALM1 participates in dysregulated ligand-receptor (LR) interactions (67). Its

403 downregulation in both PiD (FDR-adjusted p-value = 5.57x107, Table S4A) and AD

404 (FDR-adjusted p-value = 0.011, Table S4B) samples suggests a common role of CALM1
405 in the pathogenesis of both diseases. Similarly, TARBPI showed a notable decrease in
406 both PiD and AD (Fig. 4 C and F). TARBPI encodes the TAR RNA binding protein 1

407 (TRBP), which participates as a methyltransferase enzyme in post-transcriptional gene
408 regulation through its involvement in RNA processing pathways and is associated with
409 inattention symptoms (68). Whereas we had previously identified the differential

410 regulation of the distal enhancer of the UBE3A4 gene (Fig. 2E), we further found that

411 UBE3A expression was statistically significant decreased in EX in PiD (FDR-adjusted p-
412 value = 1.04 x10'4, Table S4A), regulated by CTCF and BHLHE??2 (Fig. 4 C and F).

413 We conducted a detailed examination of the alterations in TFs’ expression levels between
414 diseased and control states. Our analyses revealed a general trend of pervasive

415 downregulation of TF expression across PiD samples, when compared to the changes

416 observed between AD and its respective control group, despite a few TFs showing

417 upregulation (Figs. 4G, and S4 F and G). A similar trend was observed in Rexach et al.’s
418 behavioral variant FTD dataset (7), where reduced TF expression was consistent across
419 disease samples compared to controls (Fig. S4H). This trend highlights a broader

420 downregulation of TFs in PiD but not in AD (Fig. S4G). These unique regulatory patterns
421 displayed in PiD emphasize the complexity of these mechanisms. Among the

422 differentially expressed TFs, we observed RORA, which plays an essential role in energy
423 and lipid metabolism (69), is statistically significantly upregulated in both PiD (FDR-

424 adjusted p-value = 1.14 x102, Table S4A) and AD (FDR-adjusted p-value = 0.002, Table
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425 S4B). Aberrant energy metabolism is the critical factor for cell integrity maintenance and
426 neurodegeneration. Another notable differentially expressed TF, STAT1, demonstrated a
427 different expression pattern across PiD (FDR-adjusted p-value = 4.61 x10-14, Table S4A)
428 and AD (not statistically significant), implying its distinct involvement in the regulatory
429 mechanisms underlying different neurodegenerative disorders or different stages of

430 disorders. Prior research has indicated that decreased STATI expression correlates with a
431 higher risk of conversion to MCI and can be considered a preclinical indication of AD
432 development (70). The preceding analyses and these data provide a likely genetic

433 mechanism for two distinct dementias, based on differential TF binding activity on the
434 enhancer or promoter regions of its target gene, coupled with analyses shown on gene
435 expression.

436 In inhibitory neurons (INH), we highlighted two TFs, JDP2 and NRFI. JDP2, a

437 transcription factor linked to apoptosis (58), emerged as one of the top TFs based on Tn5
438 bias-subtracted TF differential footprinting binding scores in AD. NRF'I, a master

439 regulator of proteasome genes, plays a critical role in proteasome-mediated protein

440 degradation, a process whose dysregulation has been implicated in neurodegenerative

441 diseases (71). In contrast to JDP2, although NRF'I was not among the top TFs with

442 differential footprinting binding scores in excitatory neurons (EX), it was identified as one
443 of the top factors within the INH TF network (Figs. S5 A to C). Notably, both JDP2 and
444 NRF1 are also expressed in EX, suggesting shared regulatory mechanisms between these
445 neuronal subtypes (Figs. 4 B and G, and S4 F and G). These findings complement our
446 results in EX, highlighting both cell-type-specific and shared transcriptional regulatory
447 mechanisms in neurons, which may have important implications for understanding their
448 roles in neurodegeneration.

449  TF binding occupancy reveals glial responses in PiD and AD

450 We investigated the regulatory role of several TFs in glial cells in PiD and AD. Given the
451 importance of TFs in modulating gene expression, we focused on identifying the top

452 differential binding TFs, distinguishing those specific to PiD and those shared with AD.
453 Among the selected TFs, we explored the regulatory effects of microglial TF SPI1, a well-
454 known AD GWAS risk gene (/2), Friend leukemia integration 1 (FLI1), and Transcription
455 Factor Dp-1 (TFDPI) (Figs. 5A, and S6D), to shed light on the potential roles of these

456 TFs in the pathogenesis of PiD and AD. In our snATAC-seq analyses of microglial cells,
457 we observed increased differential binding activities of FL// and SP/I in both PiD and

458 AD. SPII is known to be associated with the normal development of microglial cells in
459 the brain (72), and Ets-related transcription factor FL// has been established as a regulator
460 of gene activity during cellular differentiation (73) (Fig. 5A). However, TFDPI, a

461 potential global modulator of chromatin accessibility by controlling histone transcription
462 (74), shows contrasting differential binding activities when comparing PiD with AD (Fig.
463 5A), suggesting potential discrepancy in genome-wide TFDPI TF binding activity

464 between diseases. Among the top-selected targets, we observed a statistically significant
465 downregulation of MAF in AD (FDR-adjusted p-value = 2.28x10%, Table S4B), a gene
466 identified as an AD GWAS risk gene and a differentially expressed TF (12), regulated by
467 SPII. Interestingly, we did not observe any notable difference in MAF expression in PiD
468 (Figs. 5B, and S6A). Additionally, another AD DEG, CX3CRI (FDR-adjusted p-value =
469 1.53x10°25, Table S4B), was also regulated by SPI1 but not markedly dysregulated in PiD.
470 CX3CRI has been implicated in both neuroprotective and detrimental effects by regulating
471 inflammation in neurological disorders (75). Furthermore, our analyses revealed the
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472 differential expression of several other GWAS risk genes regulated by 7FDP1, FLI1, and
473 SPI1, including GLDN, ZFHX3, USP6NL, SORLI1, MS4A4A, INPP5D, and RASGEFIC
474 (12).

475 In astrocytes, we observed a consistent trend among most TFs, where the majority

476 displayed either increased or decreased binding scores in both PiD and AD. Notably, a
477 subgroup of TFs from the activating protein-1 (AP-1) family, namely JUND, JUNB, and
478 FOS, exhibited pronounced enrichment in both PiD and AD (Figs. 5C, and S6E). For

479 instance, JUND from the AP-1 TF family, known for its strong correlations with pTau and
480 amyloid-beta (76), demonstrated similar patterns. Additionally, BACHI, primarily

481 recognized as a transcriptional suppressor (77), showed a positive correlation with both
482 PiD and AD. These findings suggest some potential convergence of top-selected TFs’

483 activity in astrocytes across PiD and AD. Specifically, JUND’s inferred role in astrocyte
484 APOE expression, which is shown to be downregulated in AD (FDR-adjusted p-value =
485 3.14x10*, Table S4B) but not statistically significant in PiD (Figs. 5D, and S6B),

486 underscores its involvement in AD-related processes. At the same time, we identified

487 hypoxia-inducible factor-1 alpha (HIF'1A4), regulated by both JUND and BACH1, as

488 downregulated in PiD (FDR-adjusted p-value = 4.35x1075, Table S4A) but not statistically
489 significant in AD, which may align with previous reports suggesting that the loss of

490 HIF1A4 within astrocytes protects neurons from cell death (78). Our observations

491 underscore potential regulatory changes in astrocytes, characterized by the regulatory

492 activation mediated by AP-1 family TFs and the transcriptional suppression facilitated by
493 BACH]1. Furthermore, the dysregulation of APOE expression and HIF'IA levels in

494 astrocytes highlights the complex regulatory networks that influence astrocyte function
495 and contribute to disease progression in AD and PiD.

496 In oligodendrocytes, we observed a predominant trend where the majority of TFs

497 exhibited either increased binding activity in both PiD and AD or unique patterns specific
498 to each disease state (Figs. SE, and S6F). Noteworthy among these are the transcriptional
499 suppressors HESI and ZBTB33 (79, 80), which displayed enriched differential binding
500 scores in both PiD and AD. Moreover, our analyses revealed that these two transcriptional
501 repressors were associated with the downregulation of ADAM10, PLEKHAI, and JAZF 1,
502 and the upregulation of BINI and MAPT, consistent with broader transcriptional changes
503 across multiple DEGs (Figs. SE, and S6C). This suggests the intricate and multifaceted
504 nature of the transcriptional processes, which may be relevant to both PiD and AD, or

505 specific to one of these conditions, indicating shared or condition-specific regulatory

506 mechanisms. Furthermore, MAPT, a gene encoding tau protein to keep the function of

507 microtubules and axonal transport, which ZBTB33 also regulates, is differentially

508 expressed in both PiD and AD. Additionally, the downregulation of FOXO1, known to
509 protect against age-progressive axonal degeneration (87), further underscores the intricate
510 interplay between transcriptional regulation and neurodegenerative processes in

511 oligodendrocytes.

512 To further evaluate the reliability of the observed transcriptional changes, we analyzed the
513 percentage of cells expressing selected genes, grouped by samples and color-coded by

514 diagnosis (Fig. S7 A to C). This analysis encompassed both downregulated and

515 upregulated DEGs in PiD, as well as GWAS risk genes expressed in the selected cell-type,
516 as highlighted in TF regulatory network (Figs. 5 B, D, and F). Despite the inherent

517 sparsity of snRNA-seq data, the percentage expression of genes exhibited consistent

518 patterns across individuals, with no single sample disproportionately influencing the
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519 results. These stable trends across libraries and individuals affirm the robustness of the
520 observed differences in gene expression and support the conclusions drawn from these
521 analyses.

522 Cis-regulatory linked HGE impacts gene expression in disease synaptic pathology

523 We have elucidated the shared and distinct changes in the pathways between these two
524 frontal cortical degenerative diseases related to the prominent features, glial activation,
525 neuroinflammation, synaptic dysfunction, and synapse loss of AD and related dementia
526 (82, 83). Building upon these findings, we reasoned that these data further provide a

527 unique opportunity to identify human-specific regulatory elements responsible for

528 maintaining the integrity of human cortical neurons and driving cortical neurogenesis.

529 We further explored regulatory elements driving cortical neurogenesis unique to humans
530 using a previously compiled gene list that showed increased activity specifically in the

531 developing human brain, when comparing gene expression between mice, macaques, and
532 humans (84). Through overlapping human-gained enhancer (HGE) with snATAC-seq

533 peaks from PiD and AD (Table S5), we identified an enhancer element that is both a

534 differentially accessible peak in PiD and an HGE. Using chromatin co-accessibility

535 analyses, we bioinformatically linked this differential accessible enhancer to UBE34, even
536 though it is located more than 40kbp away from its UTRs and around 80kbp away from its
537 coding region (Fig. S8A). As a gene implicated in neuronal activity, UBE34 codes for a
538 protein that plays a critical role in neuronal functioning, regulating proliferation and

539 apoptosis (83). UBE3A loss-of-function mutation has been observed in individuals with
540 Angelman Syndrome, while autism-linked UBE34 gain of function mutation was recently
541 reported in a mouse model showing neurobehavioral deficits (86, 87). The cis-regulatory
542 identified distal enhancers and HGE of UBE34 in neurons are more accessible in PiD

543 (FDR-adjusted p-value = 4.40 107, Table S2C) (Figs. 2E, and 6A).

544 We hypothesized that the active HGE would enhance the expression of UBE3A4 or mitigate
545 suppressive effects leading to its downregulation. Conversely, the elimination of this

546 active HGE would presumably result in reduced levels of UBE3A4. To validate whether
547 this imputed enhancer is indeed the putative enhancer of UBE3A4, we conducted CRISPR-
548 edited experiments in iPSCs, wherein we targeted and excised the HGE region

549 (chr15:25,479,200-25,482,595) (Fig. 6 A to C). CRISPR-modified (UBE3A4 KD) and

550 1sogenic control (WT) iPSCs were differentiated into cortical neurons using a modified
551 NGN?2 induction protocol (88) (Methods). After 28 days, cortical neuron populations from
552 both WT and UBE3A4 KD lines retained some NES-positive neural progenitor cells (Fig.
553 6B), and roughly 75% of nuclei co-localized with the mature neuronal marker MAP2 with
554 no statistically significant difference noted with UBE34 KD (p-value = 0.5687, unpaired t-
555 test, two-tailed; Fig. S8B). Additionally, there was no notable expression difference in the
556 early cortical layer marker, 7TBR1, seen with UBE3A4 KD (p-value = 0.8135, unpaired t-
557 test, two-tailed; Fig. S8C), at greater than 50% in both populations. No substantial

558 differences in marker expression were observed, confirming the neuronal identity of both
559 the edited and unedited lines. In theory, if the predicted enhancer does regulate gene

560 activity, removing it would interfere with its control mechanisms, resulting in reduced

561 activity of the target gene. This approach has previously been employed to identify

562 enhancers that regulate neocortical development (§9). RNA-seq analyses performed on 28
563 days in vitro neurons revealed downregulation of UBE3A in the UBE3A KD neurons,

564 confirming the predicted UBE3A4 HGE region regulates UBE3A expression (Fig. 6 D and
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565 E), and that the perturbation of UBE3A expression affected the expression of other genes
566 (Fig. 6D). These genes are associated with the downregulation of protein ubiquitination,
567 apoptosis, heterochromatin organization, cAMP-dependent protein kinase activity, and
568 disruptions in various metabolic processes (Fig. 6F).

569 Given the intricate nature of human tissue, particularly in the context of disease

570 conditions, our subsequent analyses in data derived from human tissue noted an enriched
571 activity of chromatin accessibility (average log2FC > 0, Table S2C) for all distal peaks
572 associated with UBE34 in the EX. Despite this, we observed a decrease in the proteomic
573 and transcriptomic levels of UBE3A. In our immunofluorescence staining of UBE3A4, we
574 noted a statistically significant decrease in UBE3A4 levels in human PFC (Fig. 6G).

575 Furthermore, our analyses of snRNA-seq DEGs in PiD also revealed UBE3A4 as one of the
576 downregulated genes (Fig. 6 H and I). In our gene ontology analyses, we found that the
577 downregulated genes were involved in various processes related to neuronal integrity,

578 brain morphogenesis, neuron cell-cell adhesion, axon guidance, cell fate determination via
579 the Wnt signaling pathway, and UBE3A4-related ubiquitin-dependent protein catabolic

580 processes. Conversely, among the upregulated terms, we observed enrichment in

581 processes related to microtubule organization and tau protein regulation (Fig. 6J).

582 The discordance between increased snATAC-seq enhancer signal and decreased snRNA-
583 seq gene expression for UBE3A may be attributed to a regulatory phenomenon where the
584 chromatin region becomes more accessible to counteract the downregulation of its target
585 genes. At the subcluster level, our integrated analysis of EX revealed consistent

586 downregulation of UBE3A4 gene expression accompanied by increased chromatin

587 accessibility at the UBE3A4 enhancer across most subclusters (Fig. S9 A to C). Subclusters
588 EX4 and EXS, where fewer than 5% of cells exhibited accessible UBE3A enhancers, were
589 excluded from this interpretation. The remaining subclusters (EX1 to EX3, EX5 to EX7)
590 showed a consistent pattern of decreased UBE3A expression alongside elevated enhancer
591 accessibility. This observation suggests that the discrepancy between increased snATAC-
592 seq enhancer signal and decreased snRNA-seq gene expression for UBE3A cannot be

593 explained solely by subcluster-specific differences, indicating the involvement of broader
594 regulatory mechanisms. These findings underscore the complexity of regulatory dynamics
595 within the disease context and highlight the need for further investigation into the

596 regulatory processes underlying these observations.

597  Discussion

598

599 Single-cell sequencing has been used to characterize the cell-type and cell state-specific
600 changes in Alzheimer’s disease pathology extensively. While recent efforts have extended
601 these approaches to other tauopathies (7, 90, 917), they remain comparatively understudied,
602 particularly in Pick’s disease. In this study, we generated single-nucleus epigenomic and
603 transcriptomic data from postmortem human brain tissue samples of Pick’s disease and
604 cognitively normal controls. By integrating the analyses on cis- and trans-regulatory

605 mechanisms with gene expression data, our approach at single-cell resolution enabled us
606 to investigate the cellular diversity of the human PFC to compare shared and distinct

607 regulatory mechanisms between these two tauopathies in excitatory neurons, astrocytes,
608 microglia, and oligodendrocytes, and pinpoint the cell-type specific, disease-associated
609 alterations. Meta-analyses in genome-wide association studies, supplemented with the

610 assistance of snATAC and snRNA data, utilized AD and FTD GWAS genes and revealed
611 putative and dysregulated risk genes for PiD. Systematic analyses of alteration in TF
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612 binding activity on promoter-enhancer links in both a genome-wide scale and gene-local
613 region in PiD and AD revealed distinct and shared TF-regulatory networks from neurons
614 and glial cells. Our single-nucleus data and customized approach to investigating cis- and
615 trans-regulatory mechanisms altered in PiD and AD pathology led to the creation of an
616 online interactive database, SCROAD, which researchers are free to explore. We

617 additionally generated RNA-seq data from iPSC-derived neurons following CRISPR-Cas9
618 editing, allowing us to validate imputed promoter-enhancer regulatory linkage from

619 possible target genes involved in disease progression.

620

621 Although the precise molecular mechanisms driving PiD pathology remain elusive, our
622 study provides insights into the intricate landscape of gene regulation in PiD, particularly
623 the challenges in interpreting distal regulatory elements. Our differential analyses

624 highlight the utility of our identified promoter-enhancer links in elucidating regulatory
625 mechanisms and revealed widespread chromatin accessibility and gene expression

626 changes linked to PiD and AD pathology across major cell-types. These alterations,

627 spanning chromatin accessibility and expression of genes tied to synaptic signaling,

628 apoptotic pathways, neuronal activity regulation, cellular stress responses, and

629 intercellular communication, may indicate compensatory neuron-oligodendrocyte

630 crosstalk that attempts to re-establish homeostasis by differentially modulating specific
631 gene programs. Some promoter-enhancer connections facilitated increased chromatin

632 accessibility, potentially serving as a compensatory mechanism to mitigate the

633 dysregulation of target genes. Other alterations, including positive regulation of

634 endocytosis, genes responsible for cellular metabolic processes, and genes encoding

635 cellular response to unfolded/misfolded protein in astrocytes and microglia, may

636 contribute to glial cell differentiation or immune activation in PiD and AD. Disruptions in
637 the metabolic processes and cellular stress response compromise the balance in the

638 cellular microenvironment and consequently contribute to the progression of PiD and AD.
639

640 While the causative molecular mechanisms of PiD remain unknown, our work offers

641 insights that assist in unraveling the nature of gene regulation in PiD, especially regarding
642 genomic loci with well-described heritable disease risk. We capitalized on the AD and
643 FTD GWAS data to identify genes associated with phenotypic variability between PiD
644 and AD because of similar pathological and clinical traits, such as tauopathies and

645 cognitive decline. GWAS have been widely used to enhance our understanding of

646 polygenic human traits and to reveal clinically relevant risk variants for

647 neurodegeneration. Notably, we identified genetic risk variants that overlapped with

648 specific cell-types to narrow down the potential non-coding variants underlying disease
649 susceptibility. Furthermore, our analysis revealed that AD GWAS genes showed a

650 substantial overlap with differentially expressed genes in PiD cases, suggesting that these
651 associations are not random. This highlights the potential convergent regulatory

652 mechanisms that may be shared between PiD and AD, despite the distinct clinical

653 manifestations. Although this method has enabled the investigation of cell-type-specific
654 disease-associated regulatory mechanisms, key limitations of the snATAC-seq assay

655 without variant calling in PiD samples leave the opportunity for future studies and

656 improvements.

657

658 Cell demise constitutes a defining characteristic of neurodegenerative ailments, including
659 Pick’s and Alzheimer’s disease. More pronounced alterations in chromatin accessibility
660 and gene expression were observed in excitatory neurons and oligodendrocytes in PiD
661 compared to AD. In agreement with a previously observed association of rapid
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662 progression and early disease onset in PiD compared to AD (3, 33), as well as

663 spatiotemporal differences (7), we found an elevation in the fold change in chromatin
664 accessibility of dysregulation among genes and TFs, especially in excitatory neurons.

665 Additionally, in excitatory neurons from PiD, we observed a complex regulatory

666 mechanism that downregulated genes strongly associated with increased chromatin-

667 accessible regions for the same genes through cis-regulated promoter-enhancer links,

668 including genes responsible for neuronal activity and signaling, for example, UBE3A4. A
669 major contribution of our study lies in the identification of cell-type-specific enhancer-
670 promoter pairs, potentially facilitating gene-regulatory alterations in PiD and AD, along
671 with the TFs likely to bind to these regulatory elements within the respective cell-types.
672 Our investigation into cis-regulatory elements and DNA-binding motifs, particularly in
673 regions harboring fine-mapped SNPs, has uncovered potential disruptions in regulatory
674 relationships, exemplified by the anti-amyloidogenic gene ADAM1(. These disruptions,
675 proximal to disease-associated SNPs, may lead to diminished TF binding activity and
676 subsequent dysregulation of target gene expression. Furthermore, our analyses utilized the
677 gene-specific-enhancer-binding TFs’ information to construct a TF regulatory network in
678 neurons and demonstrated alterations in PiD and AD. We also provide insights into the
679 regulatory landscape of TFs in glial cells across PiD and AD. We identified differential
680 binding activities of TFs, such as SP//, known as a major AD GWAS risk gene in

681 microglia and associated with its development, JUND in astrocytes, known for its strong
682 correlations with pTau and amyloid-beta, and transcriptional suppressors HES! and

683 ZBTB33 in oligodendrocytes, shedding light on their potential roles in disease

684 pathogenesis. Moreover, the downstream dysregulation of TFs and genes associated with
685 the highlighted TFs, including CX3CR1, MAPT, and FOXO1, emphasizes the intricate
686 regulatory mechanisms implicated in neurodegenerative processes, with some alterations
687 shared between PiD and AD, while others are uniquely observed in either condition.

688

689 The identification of functional regulatory elements in human excitatory neurons and the
690 validation of their functions in iPSC-derived neurons enhance our understanding of

691 epigenomic discovery. Leveraging these findings, we identified human-specific regulatory
692 elements crucial for maintaining the integrity of cortical neurons in a neurodegenerative
693 disorder, providing valuable annotations. Subsequent CRISPR-edited experiments in

694 1PSCs confirmed the regulatory role of a putative enhancer in UBE3A expression.

695 Furthermore, our observation of enriched chromatin accessibility near UBE34 in

696 excitatory neurons, despite decreased UBE3A expression in snRNA-seq, highlights the
697 complexity of gene regulation in the context of disease.

698

699 This study represents an important step in identifying PiD risk genes and leveraging

700 transcription factor occupancy to predict regulatory mechanisms but has notable

701 limitations. Small sample sizes, especially for rare cell-types, limited the power of

702 analyses, making it difficult to detect subtle gene expression changes and chromatin

703 accessibility patterns at refined subcluster levels. Statistical noise and variability inherent
704 to snRNA-seq and snATAC-seq data further complicated these analyses. DARs in

705 snATAC-seq were not interpreted in isolation in our study; instead, they were used in
706 conjunction with transcription factor (TF) differential binding analyses to support the

707 identification of putative CREs linked to differentially expressed genes. This integrative
708 approach mitigates the risk of overinterpreting noisy DARs and strengthens the biological
709 relevance of our regulatory inferences. Nonetheless, to further improve statistical power
710 and resolution, larger datasets and higher-resolution techniques will be essential to

711 improve robustness and resolution in future studies. Discrepancies in library preparation
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712 between PiD and AD datasets could introduce biases in data interpretation. To mitigate
713 this, we compared disease versus control data within each study, applied stringent quality
714 control, and used normalization and batch effect correction to harmonize data while

715 preserving biological signals. Additionally, the relatively high abundance of

716 oligodendrocytes in our dataset may partially reflect technical factors related to nuclei

717 isolation and capture efficiency; nonetheless, emerging evidence suggests that

718 oligodendrocytes contribute to neurodegenerative processes, and future studies focusing
719 on this cell-type may offer valuable insights into the pathogenesis of PiD and AD.

720

721 Survival bias is another key limitation. Although we calculated a neuronal vulnerability
722 module score, per Mathys et al. (60), to account for surviving neurons, this issue remains a
723 challenge in single-cell studies. While our analysis included both surviving and vulnerable
724 neurons in the PiD dataset, further investigation in dedicated studies is needed. The

725 absence of PiD-specific GWAS data presents another constraint, limiting the direct

726 applicability of FTD GWAS fine-mapping results to PiD. Despite incorporating AD and
727 FTD GWAS data for overlap analysis, PiD’s rarity and unique pathology underscore the
728 need for targeted genetic studies. Technical limitations, such as insufficient sequencing
729 coverage and challenges with PCR-based library preparation, also restricted our ability to
730 analyze MAPT haplotypes (92), hindering a full exploration of the MAPT locus in PiD
731 pathology.

732

733 Although the study highlights key regulatory dynamics, such as increased UBE3A4

734 enhancer accessibility, these changes do not always result in corresponding gene

735 expression increases. Additional layers, such as nonsense-mediated mRNA decay (NMD)
736 or disease-related chromatin changes like relaxation and heterochromatin loss, could

737 intervene and complicate these relationships. Future studies integrating advanced multi-
738 omic approaches, including chromatin conformation assays and proteomics, will be

739 crucial for unraveling the complex interplay between chromatin accessibility, gene

740 expression, and disease-associated regulatory mechanisms in PiD.

741

742 Overall, our findings offer critical insights into the regulatory landscapes of PiD and AD,
743 underscoring the value of integrated genomic approaches in unraveling the molecular

744 mechanisms underlying neurodegenerative disorders. By highlighting the intricate

745 interplay between transcriptional regulation and disease progression, this work emphasizes
746 the need for a deeper understanding of these regulatory networks as a foundation for

747 developing targeted and effective therapeutic strategies.

748

749

750

751  Materials and Methods

752

753 Postmortem human brain tissue

754 Human postmortem frontal cortex brain samples were obtained from UCI MIND’s

755 Alzheimer’s Disease Research Center (ADRC), Harvard and Mt. Sinai tissue repositories.
756 All participants, or participants’ legal representatives, provided written informed consent
757 for the study. 50 mg of tissue from each sample (n = 9 control brain and n = 7 Pick’s

758 brain) was dissected and aliquoted into a 1.5 ml tube inside a prechilled tissue dissection
759 box as described previously (93). Samples were also selected based upon several

760 covariates, including age, sex, postmortem interval (PMI), and disease comorbidity.

761 Sample information is available in Table S1.
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762

763 Immunofluorescence

764 PFA-fixed human postmortem brain tissues (PFC region) were sectioned at 30 um using a
765 cryotome (Leica SM2010R). Sections were then rehydrated and washed in 1X sterile PBS
766 and permeabilized using 1X sodium citrate buffer pH 6.0 (heated at 95°C for 10 mins).
767 After blocking with 3% BSA solution or serum, sections were incubated with diluted

768 primary antibodies (as per manufacture’s recommendation) at 4°C overnight (IBA1

769 antibody; Cat #NC9288364; 1:1000; Fisher Scientific, GFAP Polyclonal Antibody; Cat
770 #PA3-16727; 1:500; ThermoFisher, p-tau (AT8) Cat #MN1020; 1:250; ThermoFisher;
771 UBE3A; Cat #10344-1-AP; 1:1000; Proteintech, Anti neurofilament protein; Cat

772 #837904; 1:1000; Biolegend). Secondary antibodies were selected and diluted according
773 to the manufacturer’s instruction and incubated for 1.5-2 hrs. Sections were then washed
774 (3X with PBS), mounted and cover slipped using anti-fade mounting media. Slides were
775 imaged (20x/40x/60x) using Nikon ECLIPSE Ti2 inverted microscope. Images from 3
776 randomly selected areas of each slice were used for analyses.

777

778 snATAC-seq tissue processing and nuclei isolation

779 Frozen brain tissue pieces were placed in 500 pL chilled 0.1X Lysis Buffer (1X lysis

780 buffer diluted with lysis dilution buffer; please refer to snATAC-seq protocol (93) for

781 more details) and immediately homogenized 15 times using a pellet pestle (Fisherbrand™
782 Pellet Pestle™ Cordless Motor with RNase-Free Disposable Pellet Pestles, Cat#12-141-
783 364). The homogenized tissues were then incubated for 15 mins followed by addition of
784 500 pl of chilled Wash Buffer and filtration through a 70 pm Cell Strainer (Miltenyi

785 Biotech). In the next step, a sucrose gradient (Nuclei PURE Prep Nuclei Isolation Kit, Cat
786 #NUC201-1KT, Sigma) was prepared and nuclei were spun at 13,000 x g for 45 minutes
787 at 4°C. After centrifugation, the debris and myelin from the top of the sucrose gradient
788 were removed. Nuclei were resuspended, washed, filtered (through a 40 um cell strainer),
789 counted (using a cell counter), and then incubated in a Transposition Mix.

790

791 snATAC-seq library preparation and sequencing

792 Transposed nuclei were loaded on 10X Genomics Next GEM Chip H (10x Genomics) to
793 generate single-cell GEMS. GEMs were then transferred, incubated, and cleaned for

794 further processing. Single nuclei ATAC-seq libraries were prepared using the Chromium
795 Single Cell ATAC v2 (10x Genomics) reagents kit as per the manufacturer’s instructions.
796 Library size distribution and average fragment length of each library were assessed with
797 Agilent TapeStation High Sensitivity D5000 ScreenTapes and the concentrations were
798 quantified using a Qubit Fluorometer. Libraries were sequenced on a NovaSeq 6000

799 (Illumina) in paired-end mode (read1N: 50 cycles, index i7: 8, index 15:16 cycles, read
800 2N:50 cycles) to generate approximately 500 M reads per sample.

801

802 snRNA-seq library preparation and sequencing

803 45-50 mg of fresh frozen brain tissue (PFC) was homogenized in EZ Lysis buffer (Cat
804 #NUC101-1KT, Sigma-Aldrich) and incubated for 10 min on ice before being passed

805 through a 70 um filter. The fresh tube with filtered homogenate was then centrifuged at
806 500 g for 5 min at 4°C and resuspended in an additional 1 mL of lysis buffer. After

807 another centrifugation samples were incubated in Nuclei Wash and Resuspension buffer
808 (1xPBS, 1% BSA, 0.2U/l RNase inhibitor) for 5 min. To remove myelin contaminants and
809 debris, we prepared sucrose gradients and centrifuged the tubes at 13,000 g for 45 min at
810 4°C. Next, a debris removal solution (Cat #130-109-398, Miltenyi Biotec) was added to
811 the nuclei suspension (and centrifuged at 3,000g 10 mins at 4°C) for a second round of
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812 cleanup. Debris-free clean nuclei suspension was then diluted in nuclei buffer (with BSA
813 and RNase) before processing with the Nuclei Fixation Kit (Parse Biosciences). After

814 fixation and permeabilization, nuclei were cryopreserved with DMSO until the day of

815 library preparation. Libraries were prepared using EVERCODE™ WT V3 kit (Parse

816 Bioscience) and quantified using Qubit dsDNA HS assay kit (Cat #Q32851, Invitrogen).
817 D5000 HS kit (Cat #5067-5592, Cat #5067-5593; Agilent) was used for measuring the

818 average fragment length of each library. Libraries were sequenced using Illumina Novaseq
819 6000 S4 platform (paired-end sequencing) for a sequencing depth of 50,000 read

820 pairs/nuclei.

821

822 Human iPSCs

823 The ADRC76 iPSC line (94) was provided by the UCI ADRC Induced Pluripotent Stem
824 Cell Core. ADRC76 was generated from fibroblasts from an 83-year-old, white, male with
825 no known disease. CRISPR/Cas9 editing was performed by UCI’s Stem Cell Research

826 Center CRISPR Core to generate a homozygous deletion of the UBE3A enhancer region.
827 Two guide RNAs were designed to the UBE3A enhancer region (chr15:25,479,200-

828 25,482,595) and delivered with Cas9 as a RNP complex via electroporation. Clone C-14
829 (UBE3A KD) was selected and used for all experiments. Sanger sequencing was used to
830 confirm the deletion, revealing a 1bp allelic difference in the deletion due to NHEJ-based
831 DNA repair. Karyotyping was performed by Cell Line Genetics to ensure genomic

832 integrity after CRISPR/Cas9 editing. Immunocytochemistry was used to confirm

833 expression of pluripotency markers OCT4, SOX2, and SSEA4.

834

835 Cortical neuron pellet generation

836 Cortical neurons were generated as previously described (88) with some modifications.
837 Induced pluripotent cell lines were maintained in mTeSR Plus medium (Stem Cell

838 Technologies Cat #100-0276) on GelTrex basement membrane (ThermoFisher Cat

839 #A1413302) and passaged using ReLeSR (Stem Cell Technologies Cat #100-0484) at

840 80% confluence in the presence of CEPT (Chroman1-Tocris Cat #7163, Emricasan-Seleck
841 Chemicals Cat #S7775, Polyamine supplement - Sigma Cat #P8483, Trans-ISRIB-R&D
842 Systems-5284) (95). UBE3 A mutant and parental lines were transfected via Nucleofection
843 (LONZA Cat #VPH-5022) of the PB-TO-hNGN2 (Addgene Cat #172115%*) plasmid and
844 purified in the presence of 200 ng/mL Puromycin (Invivogen ant-pr-1) until the majority
845 of cells showed plasmid expression as determined by BFP expression. Once a high BFP
846 expression had been established, iPSCs dissociated to single cell with Accutase

847 (ThermoFisher Cat #NC9464543) and seeded at 1 x 10 cells per GelTrex coated 6 well in
848 Induction media: Knockout DMEM/F12 (ThermoFisher); N2 supplement 100X

849 (ThermoFisher); non-essential amino acids 100X (ThermoFisher), and supplemented with
850 Doxycycline at a final concentration of 1uM (Sigma) and CEPT. The medium was

851 changed every day. After 3 days, Uridine (U) and Fluorodeoxyuridine (FdU) were both
852 added at 1mM (Sigma Cat #3750, Sigma Cat #0503). On day 4, the induced cells were

853 passaged as single cells with Accutase and seeded at 2 x 10° cells per Poly-D-Lysine

854 coated 6 wells (Sigma Cat #P6407) in Cortical Neuron Culture Medium 1 (CM1): 1:1

855 Knockout DMEM/F12: BrainPhys neuronal medium without Phenol-Red (STEMCELL
856 Technologies); B27 supplement, 50X (ThermoFisher); BDNF (10 pg/ml, STEMCELL
857 Technolgies ) in PBS containing 0.1% BSA (ThermoFisher); NT-3 (10 pg/ml, Preprotech)
858 in PBS containing 0.1% BSA, GDNF (10 pg/ml, STEMCELL Technologies) in PBS

859 containing 0.1% BSA; laminin final con. 1 pg/ml (ThermoFisher), Doxycycline (1 uM), U
860 (1 uM), and FdU (1 uM). Cells were maintained an additional 24 days with half media

861 changes every 3-4 days first with CM1 (day 7), then Cortical Neuron Culture Medium 2

Manuscript Template Page 18 of 50


https://doi.org/10.1101/2024.09.06.611761
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.06.611761; this version posted October 6, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

862 (CM2) starting at day 10. CM2: BrainPhys neuronal medium without Phenol-Red

863 (STEMCELL Technologies); B27 supplement, S0X (ThermoFisher); BDNF (10 pg/ml,
864 STEMCELL Technologies) in PBS containing 0.1% BSA (ThermoFisher); NT-3 (10

865 pg/ml, Preprotech) in PBS containing 0.1% BSA, GDNF (10 pg/ml, STEMCELL

866 Technologies) in PBS containing 0.1% BSA; laminin final con. 1 pg/ml (ThermoFisher),
867 Doxycycline (1 uM), U (1 uM), and FdU (1 pM). Three successive passages of each cell
868 line were differentiated in parallel with pellets collected and flash froze for RNAseq at DO,
869 D4, and D28 along with PFA fixed coverslips.

870

871 Cortical differentiation immunocytochemistry and image analysis

872 After 28 days in culture, cortical neuron populations were fixed with 4%

873 paraformaldehyde (Fisher Scientific #50980487) for 10 minutes at room temperature, then
874 washed three times with PBS (Corning #21030CV). Cells were permeabilized with 0.3%
875 Triton-X (Sigma #T8787) in PBS for 10 minutes and then blocked with 2% goat serum
876 (ThermoFisher #16210-064), 3% BSA (ThermoFisher #15260-037), 0.1% Triton-X, and
877 0.3M Glycine (Fisher #BP381-1) in PBS for 1 hour at room temperature and then

878 incubated in primary antibody diluted in block, overnight at 4°C (anti-Nestin (1:1000)

879 Millipore MABS5326, anti-MAP2 (1:1000; Synaptic Systems 188004), anti-TBR1 (1:250;
880 Abcam ab31940). Primary antibody was removed, and cells washed three times with PBS
881 and then incubated for 1 hour in secondary antibody diluted 1:1000 in block, in the dark at
882 room temperature (Alexa Fluor Goat IgG (H+L) Secondary Antibody, ThermoFisher

883 Scientific). Cells were washed with PBS for three times and then washed in PBS

884 containing Hoechst 33342 (Sigma #14533) for 10 minutes and then a final wash in PBS.
885 Coverslips were mounted with Fluoromount-G® (Fisher #0B10001) and allowed to dry.
886 40x images were acquired with an Olympus FLUOVIEW FV 3000 confocal microscope
887 and 20x images were acquired at 20X on a Keyence BZ-X810 Widefield Microscope, 4
888 random images were taken per coverslip from each replicate differentiation. TBR1

889 positive cells and total nuclei (Hoechst) were quantified using Imaris Spots tool (Imaris
890 Single Full software, BITPLANE) while MAP2 area was analyzed using Imaris Surface
891 tool and the colocalization tool was used to count the number of nuclei were within the
892 MAP2 positive surface. Both MAP2 positive nuclei and TBR1 positive cell counts were
893 normalized by total nuclei per image. TBR1 and MAP2 expression values were analyzed
894 using GraphPad Prism software using a Student’s two-tailed t-test, assuming equal

895 variance.

896

897 RNAseq experiments with iPSC neurons

898 Total RNA was extracted from iPSC-derived neurons using the Direct-zol RNA Miniprep
899 kit (Zymo Research) following the manufacturer’s protocol. RNA quantity was measured
900 using Qubit Fluorometric Quantitation, and RNA integrity was assessed using the RNA
901 Integrity Number (RIN) on an Agilent 4100 Tapestation. Stranded Total RNA-Seq

902 libraries were prepared using EvoPlus V2 kits (Roche), multiplexed, and sequenced on an
903 [llumina platform to an average depth of approximately 50 million reads per sample. Raw
904 FASTQ files were aligned to the human reference genome (GRCh38) using RNA-STAR
905 (v 2.7), and transcript abundances were quantified in transcripts per million (TPM) using
906 Salmon (v 1.10). Genes with TPM values greater than 1 in at least 20% of the samples
907 were selected for downstream analysis. Differential gene expression analysis was

908 performed using a linear regression model that accounted for batch effects, including those
909 from library preparation and sequencing.

910

911 Processing snATAC-seq data
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912 We used Cellranger-atac count (v 2.0.0) to map raw snATAC-seq reads to the GRCh38
913 reference genome (downloaded from the 10x Genomics website) in each sample,

914 quantifying chromatin accessibility for each cell barcode. First, we used the ArchR

915 function createArrowFiles to format the output of Cellranger-atac, removing barcodes

916 with transcription start site (TSS) enrichment less than 4 and fewer than 1000 fragments.
917 This function also yields a barcodes-by-genomic-bins “tile matrix™ and a “gene score

918 matrix” which aggregates chromatin accessibility information proximal to each gene. We
919 next used the R package ArchRtoSignac (93) to convert our dataset from ArchR to Signac
920 format to proceed with downstream analyses in Signac. We next performed analyses of
921 our recently generated snATAC-seq samples from PiD donors and cognitively normal

922 controls with our previous snATAC-seq dataset of AD donors and controls as the

923 reference dataset. We filtered snATAC-seq data with thresholds of TSS enrichment > 5
924 and fragment counts > 1500, similar to with the high-quality data standards established by
925 Xiong et al (27). Following this, we created a merged object of the PiD and AD snATAC-
926 seq datasets and generated an integrated, dimensionally-reduced representation using the
927 Seurat function FindIntegrationAnchors, with reciprocal latent semantic indexing (RLSI)
928 as the dimensionality reduction method. Using this anchor set, we performed transfer

929 learning with the Seurat function FindTransferAnchors to predict cell-type identities for
930 nuclei in the PiD dataset, based on annotations from the AD dataset. This transfer learning
931 analysis assigned a probability score to each nucleus in the PiD dataset for its cell-type
932 assignment. While some nuclei were confidently mapped to a single cell-type, others

933 showed ambiguous mappings across multiple cell-types. To ensure high-confidence

934 mappings, we filtered the PiD dataset to include only nuclei with a maximum prediction
935 probability of 0.95. Subsequently, we conducted a final integrated analysis using LSI

936 dimensionality reduction and Harmony, incorporating the biological sample as a covariate
937 to account for batch effects. To ensure a fair and accurate comparison between PiD and
938 AD, we implemented several measures, including rigorous batch correction and evaluation
939 of UMAP visualizations of cell-type distributions across datasets. These steps confirmed
940 that the observed contrasts between case and control groups were not confounded by batch
941 effects, enabling robust comparative analyses of cell-type distributions. But to avoid

942 potential confusion in our experimental design and comparison, we re-plotted UMAPs

943 (Fig. S1C, Figs. 1, B to D) for PiD and AD separately against their respective control

944 groups.

945

946 Processing snRNA-seq data

947 We used split-pipe ParseBio pipeline (v 1.0.3) to map snRNA-seq reads to the GRCh38
948 reference transcriptome (downloaded from the Ensembl website) in each sample,

949 quantifying unique molecular identifiers (UMI) for each cell barcode. Next, we accounted
950 for potential ambient RNA contamination by applying Cellbender remove-background (v
951 0.2.0) to model the ambient signal and remove it from the UMI counts matrix for each

952 sample. We then identified barcodes mapping to multiple nuclei (multiplets) by applying
953 Scrublet (v 0.2.3) with default settings to each sample. We applied an initial quality

954 control (QC) filter to remove barcodes with fewer than 250 UMI. Further, we applied

955 sample-specific filters to remove barcodes in the top 5% of UMI, the percentage of

956 mitochondrial reads, and the multiplet score within each sample. We finally applied a

957 dataset-wide cutoff to remove barcodes with greater than 20,000 UMI, greater than 0.2
958 multiplet score, and greater than 5% mitochondrial reads, resulting in 68,999 barcodes for
959 clustering analysis. We next performed clustering analysis with Scanpy with the following
960 steps. First, we normalized gene expression for each cell by the total UMI counts in all

961 genes and log transform using sc.pp.normalize total and sc.pp.loglp. Second, we
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962 performed feature selection using sc.pp.highly variable genes using the “Seurat v3”
963 option for the feature selection method, retaining 3,000 genes for downstream analyses.
964 Third, we scaled the normalized expression matrix for these 3,000 genes to unit variance
965 and centered at zero mean using the sc.pp.scale function. Fourth, we performed linear
966 dimensionality reduction with principal component analysis (PCA) using the sc.tl.pca
967 function, which we then corrected on the basis of the sample of origin using Harmony.
968 Fifth, we constructed a cell neighborhood graph using the top 30 harmonized PCs using
969 sc.pp.neighbors function. We visualized this cell neighborhood graph using UMAP with
970 the function sc.tl.umap. We performed an initial round of Leiden clustering with a high-
971 resolution parameter (resolution = 3) to reveal additional clusters of low-quality cells
972 which may have escaped our previous QC filtering, and to annotate major cell-types based
973 on a panel of canonical marker genes. After removing two low-quality clusters, we split
974 apart the dataset by major cell lineages (excitatory neurons, inhibitory neurons,
975 oligodendrocytes, and astrocytes) to perform sub-clustering analyses, yielding our final
976 clustered and processed snRNA-seq dataset.
977
978 Differential accessible open chromatin analyses
979 We systematically performed the analyses of differential open chromatin accessibility
980 across each cellular type. This involved contrasting the disease states with their respective
981 control conditions. For all the differential analyses employed, differentially accessible
982 peak scrutiny was facilitated by implementing logistic regression (test.use = ‘LR’) to draw
983 comparisons between cellular groupings. Logistics regression was utilized based on the
984 accessibility interface of a specified open chromatin region (OCR) within varying groups
985 of the selected cell-type. This is a protocol recommended by the Signac package (v 1.9.0)
986 (96). The differential analyses were executed in Signac by deploying the same
987 FindMarkers function found in Seurat (v 4.3.0). The accessible peaks that exhibited an
988 adjusted p-value (corrected by Bonferroni method) of less than 0.05, accompanied by a
989 minimum cellular fraction (min.pct > 0.05) in either of the two groups, were categorized
990 as differentially accessible peak between the cellular groupings. We ran a comparative
991 analysis of chromatin accessibility between the two diagnosis groups, specifically Pick’s
992 disease (PiD) and Alzheimer’s disease (AD), and their age-appropriate cognitively normal
993 counterparts. This was conducted within the human single-nucleus ATAC-seq dataset.
994 The differential accessibility findings were visualized using a Complexheatmap (97),
995 divided by diagnosis comparison and hierarchically aggregated based on the avg log2FC
996 of differentially accessible peaks. This enabled us to focus on changes specific to each
997 cellular type within each genomic classification. Finally, to single out the biological
998 pathways and processes exhibiting a notable enrichment within our promoter differentially
999 accessible peak sets or promoters of cis-regulatory-associated differentially accessible
1000 peaks present in distal and intronic regions, we invoked the support of the GREAT R
1001 package (v 2.0.2) (98, 99). Source of variation analysis was conducted using the
1002 variancePartition R package (v 1.32.5) (100) to assess the contribution of experimental
1003 variables to variation in both gene expression and chromatin accessibility in single-cell
1004 data, and to inform covariate selection in both the differential gene expression and
1005 differential chromatin accessibility models (Fig. S10 A and B). In addition, we
1006 systematically tested the effect of including different covariates on differential chromatin
1007 accessibility outcomes to evaluate model sensitivity and potential overfitting (Fig. S10 C
1008 to G).
1009
1010 Differential gene expression analyses
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1011 We identified unbiased marker genes in each of our snRNA-seq clusters by a one-versus-
1012 all differential gene expression test using the Seurat (v 4.3.0) function FindAlIMarkers
1013 with MAST as our differential expression model. We used sequencing biological sample
1014 and total number of UMIs per cell as model covariates. We performed differential

1015 expression analyses to compare gene expression signatures in cells from PiD and control
1016 samples in each of our major cell-types (excitatory neurons, inhibitory neurons,

1017 oligodendrocytes, OPCs, astrocytes, pericytes, endothelial cells, and microglia). Similar to
1018 our cluster marker gene test, we used MAST as our differential expression module with
1019 biological sample, sex, and number of UMI as model covariates. We used the R package
1020 enrichR (v 3.0) to perform pathway enrichment analyses for the DEGs in our excitatory
1021 neuron population.

1022

1023 Statistical fine-mapping of candidate causal variants residue within cell-type specific
1024 accessible peaks from the snATAC-seq data

1025 We sourced comprehensive genome-wide association studies (GWAS) pertinent to

1026 Alzheimer’s Disease (AD) (/2) and frontotemporal degeneration (FTD) (/3). The

1027 summary data pertaining to the AD GWAS was procured from the European

1028 Bioinformatics Institute GWAS Catalog (accession number: GCST90027158), whilst the
1029 FTD GWAS summary data was retrieved from the International Frontotemporal Dementia
1030 Genetics Consortium. To streamline the output files of the GWAS summary statistics from
1031 each dataset, we employed a uniformly designed pipeline, MungeSumstats (/07). The
1032 application of this tool was governed by parameters that have been specified

1033 comprehensively in our GitHub repository. To further elucidate the role of single

1034 nucleotide polymorphisms (SNPs) pertaining to AD, we fine-mapped these SNPs within a
1035 1-Mb window of the lead variants of AD risk loci that had been unearthed in the initial
1036 GWAS investigation (/2). In addition to the AD SNPs, the detection of lead SNPs

1037 associated with FTD (/3) required the identification of specific genetic markers encased
1038 within a 1-Mb spectrum present on all chromosomes. The selection criteria for these

1039 markers were established based on the statistical significance of their corresponding p-
1040 values. To accommodate all SNPs within the linkage disequilibrium (LD) block, we

1041 estimated pairwise LD between SNPs within the 1-Mb window of the GWAS lead variant.
1042 This estimation was performed using PLINK (v 1.9 and v 2.0) (/02). Once the lead SNPs
1043 from the FTD and AD GWAS had been secured, the identified data was customized

1044 according to the corresponding 1-MB range LD matrix, within the sparse multiple

1045 regression model. This model was then implemented in the fine-mapping instrument, Sum
1046 of Single Effects (SuSiE) (103, 104). We managed to acquire a number of credible sets
1047 (CSs) for identified FTD and AD GWAS risk loci with high probability (a posterior

1048 inclusion probability: PIP > 0.95). In order to prioritize these credible sets, we aligned
1049 SNP locations with our snATAC-seq open chromatin regions. The fine-mapped casual
1050 SNPs within the identified cell-types were assessed for credibility by cross-referencing the
1051 GWAS risk genes’ expression level across all cell-types using control data from published
1052 resources (17, 20, 39). The final step included checking two scores - the probability of
1053 being loss-of-function intolerant (pLI) and the loss-of-function observed/expected upper-
1054 bound fraction (LOEUF) for the prioritized GWAS risk loci. These scores reflect the

1055 integrity of a gene or transcript in tolerating protein truncating variation (38).

1056

1057 Utilizing publicly available datasets

1058 We obtained the sequence data from three peer-reviewed single-nucleus RNA sequencing
1059 (snRNA-seq) studies related to Alzheimer’s Disease (AD) (17, 20, 39). The datasets

1060 represented in the works of Mathys et al. (2019), and Zhou et al. (2020) were accessed via
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1061 the Synapse platform (referenced under syn18485175 and syn21670836, respectively). In
1062 the context of the dataset for the Morabito et al. (2021) study, which was formulated by
1063 our research team, a download was not necessitated, but you can access it under

1064 syn22079621. Although the pipeline was largely consistent, there were minor deviations
1065 in terms of parameter adjustments as per the individual requirements of each dataset. A
1066 comprehensive delineation of these nuanced changes is documented in our GitHub

1067 repository. Additionally, to enhance the reliability of our analyses, we incorporated

1068 PsychENCODE scQTL datasets from Pratt et al. (34) and Emani et al. (35), DLPFC

1069 snRNA-seq scQTL data from Fujita et al. (36), and neuronal and glial caQTL data from
1070 Zeng et al. (37). These datasets were leveraged to validate key findings from our

1071 snATAC-seq analyses. Specifically, we focused on significant eQTLs (p-value < 1x10°-5)
1072 associated with fine-mapped GWAS genes within the TF regulatory networks identified in
1073 this study. Furthermore, we cross-referenced our peak sets with Xiong et al.’s epigenomic
1074 data (27), further substantiating the robustness of our findings.

1075

1076 Finding co-accessible peaks with Cicero to establish putative enhancer-promoter
1077 linkage

1078 We initiated the conversion of the SeuratObject into the CellDataSet framework utilizing
1079 the as.cell data_set function offered within the SeuratWrappers toolkit (v 0.3.0). This was
1080 subsequently transformed into a Cicero object through the application of the

1081 make cicero cds function taken from the Cicero package (v 1.3.4.11). The run_cicero
1082 function, a key component of the Cicero suite, was then employed to calibrate the co-

1083 accessibility of open chromatin peaks across the genome for each cell-type. The

1084 predominant objective here was to predict cis-regulatory interactions within a genomic
1085 window of 300,000 base pairs. The construction of a linkage co-accessibility score for
1086 each associating pair of accessible peaks was completed using a graphical LASSO

1087 regression model. This package and approach were based on techniques detailed in the
1088 Cicero method (37). The understanding being that an increased co-accessibility score

1089 denoted a stronger bond between an OCR pair and hence, greater confidence could be
1090 assigned to this pairing within a given dataset. Within the total ensemble of OCR pairs, we
1091 prioritized our examination on pairs identified as enhancer-promoter. The rationale for this
1092 selective focus stemmed from the potential for the enhancer-enhancer pair’s co-

1093 accessibility score to originate from inherent enhancer-enhancer interactions. This in turn
1094 could lead to a perceivable reduction in the co-accessibility scoring for the enhancer-

1095 promoter pair. Lastly, a comparative study was undertaken to calculate the delta co-

1096 accessibility score within identical OCR pairs. In this step, diseased states were compared
1097 with their corresponding control settings. The purpose of this comparison was to highlight
1098 any enhanced enhancer-promoter linkages that could potentially be contributing to the
1099 advancement of the disease.

1100

1101 Characterizing biological functions of putative enhancer-promoter linkage

1102 We used NMF (v 0.23.0) as implemented in the R NMF package using k = 25 matrix

1103 factors on the cis-regulatory-linked-enhancer accessibility matrix averaged by each

1104 snATAC-seq cluster split by cells from PiD control and PiD samples, as well as AD

1105 control and AD samples, yielding 25 enhancer modules. The NMF basis matrix (W) was
1106 used to assign each enhancer to its top associated module, and the NMF coefficient matrix
1107 (H) was used to determine which cell cluster that each module was most associated with.
1108 We applied NMF with a factorization rank of k = 25 to decompose the enhancer-by-

1109 cluster matrix derived from cis-regulatory-linked enhancer accessibility values. While the
1110 factorization yielded 25 enhancer modules, Fig. 2B highlights a focused subset of 9
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1111 modules that exhibited clear cell-type-specific accessibility patterns most relevant to the
1112 aims of the figure. The remaining modules were not excluded from downstream analysis,
1113 but were omitted from this particular plot to maintain visual clarity and focus. To identify
1114 biological processes associated with these enhancer modules, we used the enrichR (v 3.0)
1115 package to query enriched GO terms for the set of target genes in each enhancer module in
1116 the GO Biological Processes 2021, GO Cellular Component 2021, GO Molecular

1117 Function 2021 databases, Human WikiPathway 2021 and Human KEGG 2021.

1118

1119 Transcription factor Occupancy prediction on snATAC-seq chromatin accessibility
1120 TOBIAS (56) stands as a robust, precise, and rapid footprinting framework, facilitating a
1121 comprehensive exploration of TF binding occupancy for numerous TFs concurrently on a
1122 genome-wide scale as well as at the gene local region. We want to use this ATAC-seq
1123 analysis toolkit to investigate the kinetics of transcription factor (TF) binding in PiD, AD
1124 and their distinctions compared to respective control conditions, and we turn to TOBIAS
1125 for its capabilities as the ATAC-seq TF footprinting analyses toolkit. Our initial steps
1126 involved the extraction and categorization of cell barcodes based on both cell-type and
1127 diagnosis. Subsequently, we compiled distinct .bam files for each condition, serving as the
1128 requisite input format for the TOBIAS ATACorrect step. This particular tool within

1129 TOBIAS corrects the inherent insertion bias of Tn5 transposition. Following this

1130 correction process, the central task in footprinting commenced with the identification of
1131 protein binding regions across the entire genome. Utilizing single-base pair cut site tracks
1132 generated by ATACorrect, TOBIAS FootprintScores was employed to compute a

1133 continuous footprinting score across these regions. This approach enhances the prediction
1134 of binding for transcription factors even with lower footprintability, characterized by

1135 weaker footprints. Subsequently, the footprints were plotted using the function

1136 PlotAggregate to visualize and compare the aggregated signals across the specified

1137 conditions. This step serves to provide a tangible representation of TF binding occupancy
1138 and facilitates comparative analyses of these changes under different diagnosis conditions
1139 in each cell-type.

1140

1141 Transcription factor Regulatory Network Construction

1142 To construct a comprehensive TF regulatory network, we integrated insights from Cicero
1143 (37) and TOBIAS (56). First, leveraging Cicero, we focused on the predicted cis-

1144 regulatory interactions within a 300,000 base pair window, and grouped them based on the
1145 genomic class around its target gene identified by accessible promoter peaks. By

1146 prioritizing the examination of enhancer-promoter pairs within the ensemble of OCR

1147 pairs, we discerned potential interactions crucial for regulatory difference.

1148 Simultaneously, using TOBIAS, we explored TF binding activity in the selected gene
1149 local region by applying ATAC-seq footprinting analyses to identify protein binding

1150 regions across the genome. Following that, we utilized knowledge of accessible peaks’
1151 cis-regulatory activity and gene local region TF binding activity to construct a TF

1152 regulatory network for selected target genes using R package igraph (v 2.0.1.9005). This
1153 approach combines co-accessibility from Cicero and footprinting from TOBIAS,

1154 providing a nuanced perspective on the regulatory landscape. The resultant TF regulatory
1155 network offers a multifaceted depiction of the interplay between TFs, enhancers, and

1156 promoters, enhancing our ability to decipher the intricacies of gene regulation in the

1157 context of PiD and AD. In the network, top-selected genes were filtered to include only
1158 those with an adjusted p-value < 0.05 and expressed in at least 5% of cells (pct > 0.05).
1159 From this set, we further prioritized genes within the top 50% of co-access scores derived
1160 from cis-regulatory link calculations, with TF binding on the cis-regulatory elements
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1161 confirmed by TOBIAS package. Next, we retained the top 10 or fewer genes with the

1162 largest absolute log fold changes for both upregulated and downregulated genes associated
1163 with the selected transcription factors (TFs) in the TF network.

1164

1165

1166
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1852 Fig. 1. snMulti-omics for the study of cellular diversity in the PiD and AD brain. (A)
1853 Immunofluorescence characterization of PiD, AD and control; and schematic
1854 representation of the samples used in this study, sequencing experiments and
1855 downstream bioinformatic analyses, created with BioRender.com. Representative
1856 quadruple immunofluorescence images for IBA1 (red), GFAP (magenta), amyloid
1857 plaque (blue), and AT8/p-tau (green) from prefrontal cortex region of postmortem
1858 human brain tissues of age- and sex-matched control (n =3), AD (n=5) and PiD
1859 (n = 15) cases. Images were captured using Nikon ECLIPSE Ti2 inverted
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microscope (20X). (B, C) Uniform Manifold Approximation and Projection
(UMAP) visualizations for single-nucleus ATAC-seq data (B) and single-nucleus
RNA-seq data (C) from Pick’s disease and age-matched control. (D) UMAP
visualizations for single-nucleus ATAC-seq and RNA-seq data from Alzheimer’s
disease and age-matched control. (E) Coverage plots for canonical cell-type
markers: GFAP (chr17:44905000-44916000) for astrocytes, SYNPR
(chr3:63278010-63278510) for neurons, SLC17A6 (chr11:22338004-22345067)
for excitatory neurons, GAD2 (chr10:26214210-26241766) for inhibitory neurons,
CSFIR (chr5:150056500-150087500) for microglia, MOBP (chr3:39467000-
39488000) for oligodendrocytes, PDGFRA (chr4:54224871-54300000) for
pericytes and endothelial cells in the PiD dataset. The gray bar within each box
highlights the promoter regions.
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1874 Fig. 2. Open chromatin classification and epigenetically distinct cell-types through
1875 putative promoter-enhancer links in the human PiD and AD prefrontal
1876 cortex. (A) Schematics of putative promoter-enhancer linkage. (B) NMF heatmap
1877 of putative enhancer scaled chromatin activity in PiD, AD, and their matching
1878 controls. (C) Correlation heatmap of putative promoter-enhancer co-accessibility.

1879 (D) Peak-type and biotype classification of differentially accessible peaks (p-value
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1880 < 0.05). (E) Heatmaps of fold changes (Disease vs. Control) on normalized

1881 chromatin accessibility of differential accessible promoters and distal in excitatory
1882 neurons, astrocytes, microglia, and oligodendrocytes (FDR-adjusted p-value < 0.05
1883 and abs(log2FC) > 0.5), with gene ontology acquired from GREAT and examples
1884 of promoters and distal regions’ cis-regulatory linked gene as in panel (A).
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1887 Fig. 3. Cell-type-specific fine-mapped causal SNPs from FTD and AD GWAS risk
1888 loci. Left panel: The left dot-plot shows the gene expression in each cell-type from
1889 the control samples of three public snRNA-seq datasets (/7, 20, 39). Middle panel:
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1890 Fine-mapped SNPs from identified FTD and AD GWAS risk loci showing overlap
1891 with open chromatin regions from snATAC-seq and GWAS risk gene expression
1892 in major cell-types. The fine-mapping column using Sum of Single Effects (SuSiE)
1893 shows all of the snATAC-seq cell-type-specific open chromatin regions

1894 overlapping credible sets, defined as the groups of SNPs containing the causal

1895 variant, (PIP > 0.95). The closest gene to the credible set is indicated on the left.
1896 The r? indicates the average correlation between the SNPs in the credible set. Both
1897 the probability of being loss-of-function intolerant (pLI) and loss-of-function

1898 observed/expected upper bound fraction (LOEUF) are from gnomAD (38)

1899 (gnomAD v4.0 UCSC). In the pLI column, a value closer to 1 indicates that the
1900 gene cannot tolerate protein-truncating variation. In the LOEUF column, a value
1901 closer to 0 indicates that the GWAS risk gene is constrained or mutation intolerant.
1902 The overlapped snATAC-seq OCR columns, including SNPs overlapped with

1903 peaks in this study and in Xiong et al. (27), reflect the cell-types of those causal
1904 SNPs from a credible set that are present or absent. Right panel: The two dot-plots
1905 on the right show the snRNA-seq differentially expressed GWAS genes in each
1906 cell-type between PiD and age-matched control samples, and between AD and
1907 age-matched control samples (17). A complete set of the fine-mapped SNPs and
1908 credible sets with a PIP > 0.95 shown for FTD and AD is available in Table S3.
1909 Data on fine-mapped SNPs with cCREs and their associated target genes can be
1910 accessed through our online interactive database, sSCROAD.

1911
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1913 Fig. 4. Excitatory neuronal related transcription factor dysregulation and gene
1914 expression changes associated with PiD and AD pathology. (A) Schematic of
1915 co-accessible mapping between putative enhancer and promoter for the target gene
1916 as well as the TF binding activity at its local regions. (B) Genome-wide Tn5 bias-
1917 subtracted TF differential footprinting binding scores of PiD and AD in excitatory
1918 neurons (EX) compared to the corresponding controls. (C) Transcription factor
1919 (TF) regulatory networks showing the predicted candidate target genes for the

1920 following TFs: CTCF, BHLHE?22, and JDP2 in EX. Highlighted transcription
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1921 factors and other differentially expressed TFs are shown in yellow. Upregulated
1922 differentially expressed genes are shown in red and square. Downregulated
1923 differentially expressed genes are shown in blue and in a circle. The gene of
1924 interest, UBE3A4, is downregulated, shown in pink and in a circle. Differentially
1925 expressed GWAS risk genes are displayed in bright blue. Edges representing the
1926 linkage of TF-target gene regulation are shown in purple for PiD and sienna for
1927 AD. (D) Delta co-accessibility of ADAM]I0 and its open chromatin regions in EX
1928 for both AD and PiD with their corresponding controls. Highlighted regions in
1929 dark yellow represent all SuSiE fine-mapped SNPs (Fig. 3) close to the target
1930 gene. (E) Fold changes of TFs binding in the SuSiE fine-mapped regions for both
1931 AD and PiD. (F) Dot-plot of differentially expressed genes in PiD and AD versus
1932 their respective controls. (G) Dot-plot of differentially expressed GWAS risk
1933 genes and TFs in PiD and AD versus their respective controls.
1934
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1937 Fig. 5. Glial changes in transcription factor dysregulation and gene expression in PiD
1938 and AD progression. (A, C, E) Genome-wide Tn5 bias-subtracted TF differential
1939 footprinting binding score of PiD and AD in microglia (MG) (A), astrocytes (ASC)
1940 (C), and oligodendrocytes (ODC) (E) compared to their corresponding controls.
1941 (B, D, F) TF regulatory networks showing the predicted candidate target genes for
1942 MG (B), ASC (D), and ODC (F). Highlighted transcription factors and
1943 differentially expressed TFs are shown in yellow. Upregulated differentially
1944 expressed genes are shown in red and square. Downregulated differentially
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1945 expressed genes are shown in blue and in a circle. The differentially expressed
1946 GWAS risk genes are displayed in bright blue. Edges representing the linkage of
1947 TF-target gene regulation are shown in purple for PiD and sienna for AD.
1948
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1950
1951 Fig. 6. Mapping distal candidate cis-Regulatory Elements (cCREs) involved in
1952 synaptic function to their target genes. (A) Delta co-accessibility of UBE3A and
1953 enlarged CRISPR-edited enhancer regions of UBE3A in salmon and differentially
1954 accessible peaks in yellow overlap with intronic regions of long intergenic non-
1955 protein coding RNA 22 (LINC02250). (B) iPSC-derived neurons assessment, Left:
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1956 Representative 40X images of 28-day WT and UBE3A KD cultures showing

1957 MAP2 (magenta) and NESTIN (green) expression. Scale bar = 10 pum. Right:

1958 Representative 20X images showing MAP2 (magenta), NESTIN (green), TBR1
1959 (magenta), and Hoechst (blue) expression. Scale bar = 30 um. (C) Experimental
1960 design for human-gained enhancer (HGE) CRISPR-Cas9 for UBE3A, RNA-seq
1961 performed on iPSC-derived neurons after 28 days of development. (D) Volcano
1962 plot of DEGs from RNA-seq (UBE3AKD vs WT), n =3 per group. (E) UBE3A
1963 expression from RNA-seq (UBE3AKD vs WT). (F) Gene ontology of upregulated
1964 and downregulated DEGs from RNA-seq (UBE3AKD vs WT). (G) Representative
1965 immunofluorescence images for UBE3A (red), neurofilament marker (green), and
1966 DAPI (blue) from postmortem human brain tissue (PFC) of control (n=3), AD

1967 (n=5) and PiD (n=5) cases. 60X Images were captured using Nikon ECLIPSE Ti2
1968 inverted microscope. Scale bar = 30 um. (H) UBE3A expression from snRNA-seq
1969 in EX. (I) snRNA-seq DEG analyses in EX. (J) Gene ontology of upregulated and
1970 downregulated DEGs from snRNA-seq (PiD vs Control).

1971

1972
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Supplementary Text

scROAD Interactive Database

We have developed scROAD (Single-cell Regulatory Occupancy Archive in Dementia), an
interactive online resource designed to explore single-cell cCREs (candidate cis-regulatory
elements) transcription factor occupancy data. This database provides comprehensive
information derived from snATAC-seq analysis of human postmortem prefrontal cortex (PFC)
tissue, with a specific focus on Alzheimer’s Disease (AD) and Pick’s Disease (PiD). scROAD
enables researchers to perform exploratory searches for genes, transcription factors (TFs), and
SNPs, as well as to visualize transcription factor regulatory networks. Additionally, users can
download the data for their own research purposes.

Accessible at http://swaruplab.bio.uci.edu/scROAD, this resource is freely available for
noncommercial research purposes. By providing high-resolution regulatory data, scROAD
supports the broader scientific community in advancing our understanding of transcriptional
regulation in dementia and fosters the generation of novel hypotheses and discoveries.
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Fig. S1. Quality control and cell type annotations of the PiD and AD snMulti-omic datasets.

(A) Violin plot showing the number of peak counts in the samples from the PiD PFC snATAC-
seq dataset. (B) Violin plot showing the number of UMI, genes and mitochondrial percentage in
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the samples from the PiD PFC snRNA-seq dataset. (C) Integrated Uniform Manifold
Approximation and Projection (UMAP) visualizations by diagnosis for snRNA-seq and
snATAC-seq data from PiD and AD. (D) Uniform Manifold Approximation and Projection
(UMAP) visualizations for clusters of snRNA-seq data from PiD. (E) Heatmap of canonical cell-
type markers for snRNA-seq data from PiD. (F) Coverage plots for canonical cell-type markers
in AD dataset: GFAP (chr17:44905000-44916000) for astrocytes, SYNPR (chr3:63278010-
63278510) for neurons, SLC1746 (chr11:22338004-22345067) for excitatory neurons, GAD2
(chr10:26214210-26241766) for inhibitory neurons, CSFIR (chr5:150056500-150087500) for
microglia, MOBP (chr3:39467000-39488000) for oligodendrocytes, PDGFRA (chr4:54224871-
54300000) for Pericytes and Endothelial cells in PiD dataset. The gray bar within each box
highlights the promoter regions.
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Fig. S2. Comprehensive analysis of peak overlaps, cis-regulatory construction and changes
in PiD and AD.

(A) Proportion of peaksets overlapped between Xiong et al. (27) and this study. (B) Number of
peaks overlapped between this study and Xiong et al. (C) Genomic type classification of
differential open accessible regions grouped by cell types (P-value < 0.05) between PiD and AD
with their respective controls. (D) Ridgeline plot showing the distance of imputed enhancers
from the promoters. (E) Heatmaps of fold changes (Disease vs. Control) on normalized
chromatin accessibility of differential accessible intronic regions in excitatory neurons,
astrocytes, microglia and oligodendrocytes (FDR adjusted P-value < 0.05 and abs(log2FC) >
0.5), gene ontology acquired from GREAT and examples of promoters and distal regions’ cis-
regulatory linked gene as in the panel of Fig. 2E. (F) Over-representation analysis (ORA) of
DEGs (snRNA-seq) and DARs (snATAC-seq) from PiD and AD.
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Fig. S3. Integration and validation of GWAS fine-mapped SNPs with open chromatin
regions in FTD and AD.

(A) The schematic of analyses showing the summary of Frontotemporal Dementia (FTD) and
Alzheimer’s Disease GWAS meta-analyses, fine-mapping, and other data processing steps to
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link causal SNPs to snATAC-seq accessible peaks in specific cell types. (B) Histogram of
Overlapped Credible Sets with this study: Count vs. Overlapped Cell Types. It describes a
histogram that displays the count of overlapped credible sets and their associated number of
overlapped cell types. (C) Histogram of Overlapped Credible Sets with Xiong et al. (27): Count
vs. Overlapped Cell Types. (D) Distribution of QTLs (34-37) overlapped with peak types from
this study. (E) Counts of DARs in a 2000 bp window of overlapped SNPs by dataset and cell
type from this study.
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Fig. S4. EX transcription factor dynamics and differential expression in PiD and AD.

(A) Open chromatin co-accessibility plot with TF binding occupancy calculation. (B) Two open
chromatin scenarios in PiD and control; scenario 1: Open chromatin with TF binding (footprint)
in PiD; scenario 2: Open chromatin without TF binding (no footprint) in PiD. (C) Vulnerability
module score (60) of neurons, EX and INH, in PiD. (D) Aggregated TF footprints of CTCF
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(MAO0139.1), BHLHE22 (MA1635.1), and JDP2 (MA0656.1) in AD and PiD. (E) Significant
AD sc-eQTLs (p-value < 1x10°-5) from Fujita et al. (36) by cell type. (F) PiD snRNA all
significantly differential expressed TFs. (G) Heatmap of average expression difference of
highlighted TFs and top selected differentially TFs regulated by highlighted TFs between PiD or
AD with their matched control (FDR-adjusted p-value < 0.05). (H) Dotplot of differentially
expressed TFs in Rexach et al. (7) bvFTD versus their respective controls.
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Fig. S5. INH TF binding difference and regulatory networks in PiD and AD.

(A) Genome-wide Tn5 bias-subtracted TF differential footprinting binding score of PiD and AD
in INH. (B) NRF'I and JDP2 TF regulatory networks showing the predicted candidate target
genes for INH. (C) Dot-plot of the differentially expressed genes and TFs in PiD and AD versus
their respective controls.
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Fig. S6. Aggregated footprints of TFs in MG, ASC, and ODC.

(A, B, C) Dot-plot of the differentially expressed gene, differentially expressed GWAS risk
genes, and TFs in PiD and AD versus their respective controls in MG (A), ASC (B), and ODC
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(C). (D) Aggregated TF footprints of Spi/ (MA0080.6), TFDPI (MA1122.1) and FLII
(MAO0475.2) in PiD and AD. (E) Aggregated TF footprints of BACHI (MA1633.2) and JUND
(MAO0491.2) in PiD and AD. (F) Aggregated TF footprints of ZBTB33 (MA0527.1) and HES!
(MA1099.2) in PiD and AD.
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A Microglia: Percentages of Cells Expressing Selected Genes in TF Network
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Fig. S7. Percentages of cells expressing selected genes in TF.

(A) Microglia: percentages of cells expressing selected genes in the TF network. (B) Astrocyte:
percentages of cells expressing selected genes in the TF network. (C) Oligodendrocyte:
percentages of cells expressing selected genes in the TF network.
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Fig. S8. UBE3A enhancer accessibility and iPSC-derived neurons confirmation.

(A) Delta co-accessibility of UBE3A and its open chromatin regions in EX for both AD and PiD
with their corresponding controls. Highlighted regions in salmon represent CRISPR -edited
enhancer regions to the UBE3A. (B) Quantification of DAPI nuclei colocalized with MAP2
expression, normalized to total nuclei. (C) Quantification of TBR1 positive nuclei normalized to
total nuclei. Points represent individual images, n=4 per coverslip, n=1 coverslip per 3
differentiation replicates.
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Fig. S9. Subclustering analysis on EX.

(A) UMAP of snRNA-seq EX subcluster. (B) UMAP of snATAC-seq EX subcluster. (C)
Summary table of differential expression and accessibility analyses of EX subcluster.
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Fig. S10. Covariate partitioning and impact of covariate selection on the number of
statistically significant differentially accessible regions (DARs). (A) Source of variation
analysis showing the proportion of gene expression variance explained by each covariate used in
the differential expression model in snRNA-seq. (B) Source of variation analysis showing the
proportion of chromatin accessibility variance explained by each covariate used in the
differential expression model in snATAC-seq. (C) Number of statistically significant DARs per
cell type with covariates (age, sex, postmortem interval, number of fragments) for AD data from
Xiong et al., 2023, Cell (27). DARs were reprocessed using the same covariates as in SnRNA-
seq. (D) Number of statistically significant DARs per cell type with covariates (sex, sample,
number of fragments) for AD data from Morabito et al., 2021, Nature Genetics (17). (E) Number
of statistically significant DARs per cell type with covariates (sex, sample, number of fragments)
for PiD data from this study. No covariates were used in the original analysis. (F) Number of
statistically significant DARSs per cell type without any covariates for AD data from Morabito et
al., 2021, Nature Genetics (17). (G) Number of statistically significant DARs per cell type
without any covariates for PiD data from this study.

17


https://doi.org/10.1101/2024.09.06.611761
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.06.611761; this version posted October 6, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Table S1. Summary of supplementary tables providing metadata, marker analysis, and cell
counts for PiD and AD datasets.

(Table S1A) Metadata for PiD and AD. (Table S1B) Results from snATAC-seq FindAlIMarkers
analysis on gene activity. (Table S1C) Cell counts for each cell type across snATAC-seq and
snRNA-seq datasets. (Table S1D) Results from snRNA-seq FindAllMarkers analysis on gene
expression.

Table S2. Summary of snATAC-seq peaks and differential accessibility regions (DARs) in
PiD and AD datasets.

(Table S2A) Complete peak set of snATAC-seq for both PiD and AD. (Table S2B) Summary
counts of peak type and biotype in PiD and AD DARs (p < 0.05). (Table S2C) DAR analysis for
PiD vs Control (pct > 0.05), including all statistics, not just significant ones.

Table S3. Fine-mapping and GWAS enrichment analysis in PiD and AD datasets.

(Table S3A) Overlap of snATAC-seq peaks with SuSiE fine-mapped credible sets (PIP > 0.95)
and Xiong et al., 2023 (27). (Table S3B) Complete list of SuSiE fine-mapped credible sets (PIP
>0.95). (Table S3C) GWAS gene enrichment analysis in PiD DGE.

Table S4. Differential gene expression (DGE) analysis in PiD and AD datasets.
(Table S4A) DGE results using MAST glm for PiD vs Control. (Table S4B) DGE results using
MAST glm for AD vs Control.

Table SS. Human-gain enhancers (HGE) overlapped with snATAC-seq peaks in PiD and
AD datasets.

Data S1. iPSC CRISPR KO Karyotype and Pluripotency Data Files.

(File 1) Project Report UBE3A  Swarup 6 30 22.pdf contains the design and results of the
UBE3A CRISPR knockout experiment, including the knockout design strategy, experimental
outcomes, quality control data for generated cell lines, and validation of iPSC characteristics.
(File 2) Microarray REPORT CLG-46814 ADRCT76.pdf is the microarray report for the parental
iPSC line ADRC76, derived from fibroblasts and provided by the UCI Alzheimer’s Disease
Research Center (ADRC) iPSC Core. (File 3) Microarray REPORT CLG-46815 C40.pdf
corresponds to Clone 40 derived from the ADRC76 iPSC line. (File 4) Microarray REPORT
CLG-46816_C14.pdf corresponds to Clone 14 derived from the ADRC76 iPSC line.
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