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Abstract 26 

The study of transcriptomic and epigenomic variations in neurodegenerative diseases, 27 

particularly tauopathies like Pick’s disease (PiD) and Alzheimer’s disease (AD), offers 28 

insights into their underlying regulatory mechanisms. Here, we identified critical 29 

regulatory changes driving disease progression, revealing potential therapeutic targets. 30 

Our comparative analyses uncovered disease-enriched non-coding regions and genome-31 

wide transcription factor (TF) binding differences, linking them to target genes. Notably, 32 

we identified a distal human-gained enhancer (HGE) associated with E3 ubiquitin ligase 33 

(UBE3A), highlighting disease-specific regulatory alterations. Additionally, fine-mapping 34 

of AD risk genes uncovered loci enriched in microglial enhancers and accessible in other 35 

cell-types. Shared and distinct TF binding patterns were observed in neurons and glial 36 

cells across PiD and AD. We validated our findings using CRISPR to excise a predicted 37 

enhancer region in UBE3A and developed an interactive database, scROAD, to visualize 38 

predicted single-cell TF occupancy and regulatory networks. 39 

 40 
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Comparative studies in AD and PiD reveal critical regulatory changes and identify risk 42 

gene associations for PiD. 43 

 44 

 45 

 46 

MAIN TEXT 47 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2025. ; https://doi.org/10.1101/2024.09.06.611761doi: bioRxiv preprint 

mailto:vswarup@uci.edu
https://doi.org/10.1101/2024.09.06.611761
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript Template                                                                           Page 2 of 50 

 

 48 

Introduction 49 

Neurodegeneration is a key aspect of many neurological disorders, each with distinct 50 

molecular mechanisms and etiologies. Alzheimer’s disease (AD) is the most prevalent 51 

neurodegenerative disorder and is pathologically characterized by the progressive 52 

accumulation of amyloid-beta plaques and neurofibrillary tangles (NFTs) of tau (1). 53 

Conversely, Pick’s disease (PiD) is a rare behavioral variant of frontotemporal dementia 54 

(FTD) (2, 3), which has a prevalence of 15 to 22 per 100,000 individuals and an incidence 55 

of 2.7 to 4.1 per 100,000 individuals per year (4). PiD is characterized by the presence of 56 

pathological tau aggregates known as Pick bodies (5). Abnormal tau aggregates such as 57 

NFTs and Pick bodies alter cellular and molecular functions in the brain, but we currently 58 

do not understand the differences and similarities between these cellular changes across 59 

different tauopathies like AD and PiD (6). 60 

Efforts by large-scale consortia, such as the Genetic Frontotemporal Dementia Initiative 61 

(GENFI) and ARTFL LEFFTDS Longitudinal Frontotemporal Lobar Degeneration 62 

(ALLFTD), have been instrumental in tracking and understanding brain changes before 63 

symptoms occur and in the early and moderate stages of the disease. However, PiD’s rare 64 

prevalence, combined with challenges in clinical diagnosis, has hindered comprehensive 65 

research into its pathophysiology. The scarcity of postmortem brain samples further limits 66 

our understanding of the genetic and epigenetic underpinnings of PiD. To address these 67 

challenges, comparative functional genomics analyses of different tauopathies can provide 68 

insights into shared and distinct molecular mechanisms. One recent study (7) has begun to 69 

explore the molecular landscapes of PiD and related tauopathies using multi-omic 70 

approaches, which have provided invaluable insights into disease-specific gene regulatory 71 

networks across brain regions like the insular cortex, motor cortex, and visual cortex. 72 

However, critical regions such as the prefrontal cortex (PFC), which is involved in higher-73 

order cognitive functions and social behavior, remain relatively understudied. 74 

Transcriptomic and epigenomic alterations in the PFC associated with PiD have not been 75 

extensively explored, necessitating the focus of our current study. 76 

While recent genome-wide association studies (GWAS) and fine-mapping analyses have 77 

implicated numerous genetic loci in neurodegeneration (8-13), much of the attention in 78 

this area is currently focused on AD over other disorders (6), and the functional roles of 79 

these loci are often ambiguous since they frequently reside in non-coding regions (14-16). 80 

The advent of single-cell epigenomics has allowed us to provide additional context for 81 

these genetic risk variants in specific cell-types (17), while single-cell transcriptomics has 82 

provided insights into the molecular states of NFT-bearing neurons and NFT susceptibility 83 

in AD (18). While these technologies have broadened our understanding of altered cellular 84 

states and gene regulatory programs in AD (17, 19-27), much work remains to 85 

characterize these changes in other neurodegenerative disorders and to understand their 86 

shared and unique molecular signatures. 87 

In this study, we employed single-nucleus assay for transposase-accessible chromatin 88 

using sequencing (snATAC-seq) to characterize the open chromatin landscape and single-89 

nucleus RNA-sequencing (snRNA-seq) to profile the gene expression of the frontal cortex 90 

in Pick’s disease donors and cognitively normal controls. We performed parallel 91 

comparative analyses of PiD datasets with our previous AD datasets to facilitate our 92 

understanding of PiD. We leveraged cell-type-specific chromatin accessibility information 93 

to model the gene-regulatory landscape of PiD and AD, identifying sets of promoter-gene 94 
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links for each disease in each cell-type. We intersected these links with our internally 95 

conducted fine-mapping analyses, considering linkage disequilibrium (LD), at selected 96 

disease risk loci to nominate candidate cell-types and genes associated with non-coding 97 

risk SNPs. Further, we modeled transcription factor (TF) binding activity in each cell-type 98 

for disease and control to characterize regulatory networks and key gene-regulatory 99 

mechanisms mediated by enhancer-promoter links, allowing us to focus our attention 100 

directly on the regulators of these GWAS genes, differentially expressed genes (DEGs) 101 

and TFs. Furthermore, snRNA-seq of PiD donors corroborated some of our findings at the 102 

transcriptomic level. To validate the robustness of our insights, we highlighted a 103 

previously unknown human-gained enhancer (HGE) in excitatory neurons regulating 104 

UBE3A, known for its role in regulating synaptic activity, that is altered in both PiD and 105 

AD. Using CRISPR-Cas9, we excised this HGE in induced pluripotent stem cell (iPSC)-106 

derived neurons, and we observed a subsequent downregulation of UBE3A using RNA-107 

seq. Our data suggest both shared and distinct patterns of gene regulation in PiD and AD, 108 

particularly evident in the disease-enriched and specific TF activity. Furthermore, 109 

disruption in the imputed enhancer accessibility provides validation for the accurate 110 

identification of enhancer regions located more than 40kbp away from the UTR of the 111 

disease-relevant gene. 112 

Results  113 

Single-nucleus ATAC and RNA profile PiD and AD prefrontal cortex. 114 

We performed snATAC-seq on frontal cortical tissue sections of PiD and cognitively 115 

normal control cases (10x Genomics; n = 7 PiD; n = 9 control), and snRNA-seq on the 116 

same PiD and control cases (Parse Bio; n = 5 PiD; n = 3 control). Notably, our study is the 117 

first to delineate the molecular landscape within frontal cortical regions of PiD at the 118 

single-cell level. We processed our single-nucleus data separately in PiD from our 119 

previously generated snATAC-seq data of AD (10x Genomics; n = 12 late-stage AD; n = 120 

8 control) (17) and snRNA-seq (10x Genomics; n = 11 late-stage AD; n = 7 control) (17, 121 

28) (Fig. 1A). After quality control filtering, 83,938 snATAC-seq and 66,661 snRNA-seq 122 

profiles came from the newly generated PiD dataset (Figs. 1, B to D, S1, A and B, and 123 

Methods), and 114,784 nuclei originated from previously generated AD snATAC-seq and 124 

57,950 nuclei were from AD snRNA-seq. In snATAC-seq, clustering analyses revealed 125 

seven major brain cell-types in this dataset - excitatory neurons (EX), inhibitory neurons 126 

(INH), astrocytes (ASC), microglia (MG), oligodendrocytes (ODC), oligodendrocyte 127 

progenitor cells (OPC), and pericytes and endothelial cells (PER-END) - annotated based 128 

on chromatin accessibility at the promoter regions of known marker genes (Fig. 1, B, D, 129 

and E). We performed label transfer using the AD dataset (17) as a reference and then 130 

confirmed the annotation of our excitatory and inhibitory neurons based on previously 131 

identified marker genes, namely SYNPR for both EX and INH neurons, SLC17A for EX, 132 

and GAD2 for INH. Similarly, we annotated our glial subpopulations, including astrocyte 133 

cluster based on the GFAP promoter, which has been shown to increase in disease (29); 134 

microglia cluster based on the CSF1R promoter; oligodendrocyte cluster based on the 135 

MOBP promoter; OPC cluster based on the PDGFRA promoter; and PER-END cluster on 136 

the CLDN5 promoter (Figs. 1E and S1F). Additionally, we further confirmed cell-type 137 

identities by gene activity shown in the panel of canonical cell-type marker genes (Table 138 

S1C) (30). In the snRNA-seq dataset, we first clustered and identified seven major brain 139 

cell-types in PiD using a panel of canonical cell-type marker genes (Figs. 1, C and D, S1, 140 

D and E, and Table S1D, Methods). These robust cell-type identifications enabled us to 141 
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explore cell-type-specific alterations and molecular mechanisms underlying PiD 142 

pathogenesis with a high degree of confidence. 143 

Promoter-enhancer linkages improve chromatin accessibility characterization 144 

From these snATAC-seq libraries, we compiled a combined set of 609,675 reproducible 145 

peaks using ArchR (30) (Table S2A). To assess the robustness of our peak set, we 146 

evaluated the consistency of peak calling by comparing our data with Xiong et al.’s 147 

dataset (27). Overlapping peaks were defined as intersections of at least 10bp. We 148 

observed that 57% of our peaks overlapped with those reported by Xiong et al. (Fig. S2A), 149 

demonstrating a high degree of concordance. Interestingly, approximately half of these 150 

overlapping peaks intersected with more than one peak from Xiong et al.’s dataset (Fig. 151 

S2B), further highlighting the alignment of our data with previously published findings. 152 

This consistency provides confidence in the reliability of our peak set as a foundation for 153 

downstream analyses. 154 

Building upon this robust peak set, we sought to provide functional context for non-coding 155 

distal regulatory elements with respect to cell-type and disease status. Using cis co-156 

accessibility analyses with Cicero (31), we identified linkages between promoters and 157 

distal elements (Fig. 2A, Methods). Subsequently, we applied non-negative matrix 158 

factorization (NMF) to pseudobulk chromatin accessibility profiles of all distal regulatory 159 

elements linked to gene promoter regions. This analysis revealed matrix factors 160 

corresponding to epigenetic signatures of biological processes and specific cell states (Fig. 161 

2B). We grouped CREs into discrete epigenetic modules based on the matrix factor with 162 

the highest loading for each CRE and then performed gene ontology analyses of the 163 

regulatory target genes of each module. This revealed cell-type-function-related pathways 164 

and processes regulated by these non-coding CREs, such as pathways associated with 165 

postsynaptic and synaptic activity in EX and INH, cell proliferation and migration-linked 166 

ERBB2 signaling pathway in ODC, and processes such as apoptotic cell clearance in MG. 167 

Next, using the cis co-accessibility linkages, we compared the co-accessibility strength of 168 

chromatin peak links from PiD and AD samples across the major cell lineages (Fig. 2C). 169 

These analyses revealed relatively higher correlations between PiD and AD in ODCs 170 

(Pearson R = 0.35) and ASCs (R = 0.32), with weaker correlations in other cell-types. 171 

Overall, this highlights both conserved epigenomic linkages across PiD and AD and 172 

unique regulatory landscapes specific to each condition. 173 

To identify cis-regulatory elements (CREs) with altered chromatin accessibility in disease, 174 

we systematically performed differential chromatin accessibility analyses in each cell-type 175 

comparing PiD to controls and AD to controls, yielding a set of differentially accessible 176 

peaks (Table S2C). Our chromatin accessibility regions were broadly categorized by 177 

genomic features, including gene promoter, exonic, intronic, or distal regions, and we 178 

investigated these differential peaks in PiD and AD based on these categories (Fig. 2D). 179 

The majority of the differential peaks in PiD (54%) and AD (53%) were located within 180 

intronic regions. Approximately 30% of the differential peaks in both PiD and AD were 181 

distal, while 9% and 10% corresponded to promoters specifically in PiD and AD, 182 

respectively. Less than 10% of the identified differential peaks were exonic in both PiD 183 

and AD (Fig. 2D and Table S2B). These percentages were generally consistent with the 184 

peak type distribution of the entire peakset, where distal peaks comprised approximately 185 

32%, promoter peaks made up 5%, intronic peaks constituted 55%, and exonic peaks 186 

represented 7% (Table S2A). Similar percentages were also observed in other published 187 
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studies, reinforcing the robustness and consistency of our findings across different datasets 188 

(27, 32). Although EX was not the most sampled cell-type in PiD, our differential analyses 189 

revealed that the largest variance in the activity of CREs in the PiD dataset was observed 190 

in EX. Conversely, ASC exhibited the highest differential activity in the AD dataset (Fig. 191 

S2C). 192 

Using this cis-regulatory linkage approach coupled with differential analyses, we used 193 

heatmaps to depict the fold changes of normalized chromatin accessibility for 194 

differentially accessible promoters, distal and intronic regions across cell-types EX, ASC, 195 

MG, and ODC (Figs. 2E, and S2E). Additionally, we incorporated gene ontology 196 

information obtained from GREAT, presenting cluster numbers alongside representative 197 

gene names. Notably, by inspecting the distal, intronic, and promoter chromatin regions 198 

and their linked regulatory target genes, we identified changes containing AD and FTD 199 

genetic risk loci, including TMEM106B, ADAM10, SORL1, KAT8, CLU, BIN1 and genes 200 

involved in essential cellular activity, such as UBE3A. Moreover, while examining the 201 

absolute fold change of normalized chromatin accessibility, genes in EX in PiD exhibited 202 

much more robust changes than those in AD (Fig. 2E). This potentially indicates that the 203 

neuronal changes are more pronounced in PiD, likely reflecting age-associated regional 204 

differences in pathological progression, particularly in frontal cortical regions (2, 3). 205 

These differences align with the observation that patients with frontotemporal lobar 206 

degeneration, including PiD, often exhibit a distinct regional vulnerability (7) and a more 207 

rapid clinical progression compared to AD (33). 208 

Fine-mapping identifies cell-type-specific epigenomic annotations in FTD and AD 209 

Given that the majority of variants reside in non-coding regions, around 80% of chromatin 210 

accessible peaks in distal and intronic regions (Fig. 2D), a pattern further supported by 211 

overlapped quantitative trait loci (QTLs) with chromatin accessible peaks (34-37) (Fig. 212 

S3D), and the limited research on disease-associated gene identification for PiD, we assert 213 

the importance of utilizing closely related FTD and AD GWAS data as reference points. 214 

Our analysis approach, an integrative method combining data from multiple modalities 215 

introduced in this study, involves overlapping snATAC-seq accessible peaks with fine-216 

mapped GWAS SNPs, enabling us to determine whether chromosomal regions 217 

surrounding these disease-related SNPs exhibit accessibility in our dataset (Fig. S3A). 218 

However, it is important to acknowledge the inherent limitations of our study, particularly 219 

the rarity of PiD and the consequent unavailability of PiD-specific GWAS summary data 220 

with sufficient statistical power. This limitation restricts our analyses to leveraging 221 

existing knowledge and datasets to explore potential gene targets for PiD, rather than 222 

conducting direct PiD GWAS analyses. We conducted comprehensive fine-mapping, 223 

annotation, and cell-type-specific gene expression analyses, in addition to collecting 224 

publicly available predicted loss-of-function data (38) (gnomAD v4.0 UCSC; Methods). 225 

These efforts aimed to identify causal variants and explore the association of genetic 226 

variant-related genes with the risk of AD (12) and FTD (13) (Fig. 3). The fine-mapping 227 

analyses identified 77 lead GWAS risk SNPs with 113 credible sets, groups of genetic 228 

variants, in LD within the AD and FTD brain (posterior inclusion probability (PIP) > 0.95) 229 

overlapping with accessible peaks from the seven major cell-types. Interestingly, we found 230 

that 36 out of 113 fine-mapped causal credible sets overlapped with accessible peaks of 231 

one or two cell-types, and 16 out of 113 were present in all cell-types (Figs. 3 middle 232 

panel, and S3B, Table S3A), suggesting that some disease risk variants are relevant to a 233 

particular cell-type while others influence gene regulation across several cell-types. To 234 
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expand on this, we assessed the overlap between our fine-mapped SNPs and Xiong et al.’s 235 

ROSMAP snATAC-seq cell-type-specific peaks (27) across seven major cell-types (Fig. 3 236 

middle panel). In addition, we examined the uniqueness of cell-type overlaps for these 237 

fine-mapped SNPs, defined as the number of cell-types with overlapping peaks. The high 238 

proportion of overlapping peaks and the similar patterns in cell-type-specific overlaps 239 

observed in Xiong et al.’s data further support the concordance between the two datasets 240 

(Fig. S3C). To reinforce this notion, we integrated the snRNA-seq dataset from three 241 

previous studies of the AD cortex (17, 20, 39) and plotted the expression of genes 242 

identified from GWAS summary statistics, where each gene was associated with the lead 243 

causal SNP, from its respective control group of distinct cell-types (Fig. 3 left panel). 244 

Additionally, we corroborated the association of the lead SNP and other fine-mapped 245 

SNPs in LD with their associated genes by cross-referencing cCREs and target genes, data 246 

which can be accessed through our online interactive database, scROAD. 247 

For AD, our analyses revealed that more than half of the 113 fine-mapped signals 248 

overlapped with accessible peaks found in microglia, a cell-type of particular interest in 249 

AD research. Notably, these peaks encompassed several known AD GWAS genes that 250 

have been extensively studied in microglia, including ABCA1, ADAM10, ADAM17, BIN1, 251 

INPP5D, NCK2, PICALM, and TREM2 (Fig. 3 middle panel). The enrichment of GWAS 252 

risk signals within microglia was consistent with the established pathophysiological role 253 

of these cells, particularly their involvement in inflammation in AD (40). AD risk variants 254 

at the INPP5D locus were found in accessible chromatin regions exclusively in microglia, 255 

and the INPP5D gene was expressed almost specifically in microglia as well (Fig. 3 256 

middle panel). 257 

While previous studies have demonstrated the enrichment of AD genetic risk SNPs 258 

specifically in microglia (17), we note that these risk genes are expressed in several cell-259 

types. For example, the risk variants of ADAM10 overlapped with accessible peaks from 260 

EX, INH, MG and ODC and its gene expression was detected across all cell-types. As the 261 

major constituent of 𝛼-secretase, ADAM10 cleaves APP towards a non-amyloidogenic 262 

pathway, thereby preventing A𝛽 generation (41). Furthermore, fine-mapping analyses 263 

revealed that BIN1 risk variants, a major risk factor for AD known to induce tau- and 264 

isoform-dependent neurotoxicity (42, 43), predominantly localize to accessible peaks 265 

associated with ASC, MG, ODC, and OPC. These findings give credence to previously 266 

reported disparate findings on the effects of BIN1 SNPs in microglia (44) and 267 

oligodendrocytes (17). Considering that a given gene can often be expressed in multiple 268 

cell-types, it is crucial to exercise caution when analyzing the effects of variants, as these 269 

effects may vary greatly among different cell-types. Similarly, GWAS variants in the 270 

TREM2 gene were identified within accessible peaks primarily associated with MG and 271 

EX. TREM2 plays a crucial role in various cellular processes, including cell proliferation, 272 

survival, phagocytosis, and regulation of inflammation (45). Notably, its defensive 273 

response against AD pathology, coupled with its upregulation in reactive microglia 274 

surrounding amyloid plaques, has been consistently observed across multiple studies, both 275 

in mouse models and human samples (40, 46, 47). 276 

Complementing our analyses of AD risk loci, we also performed fine-mapping analyses 277 

on GWAS risk loci for FTD, aiming to propose possible risk genes for FTD subtype PiD 278 

(Fig. 3, and Table S3A and B), with five of them intersecting with accessible chromatin 279 

regions in our snATAC-seq dataset. For example, one of the fine-mapped FTD risk loci, 280 

SLC30A8, encodes a zinc transporter and is a susceptible GWAS locus for type 2 diabetes 281 
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(48). Strikingly, there is a notable increase in the prevalence of both type 2 diabetes and 282 

dementia in older adults (49). We speculate that SLC30A8 could be an indirectly related 283 

risk locus for FTD. Moreover, among the identified FTD risk loci, GLDN stands out as 284 

another intriguing candidate. GLDN encodes gliomedin, a crucial protein involved in the 285 

formation of the nodes of Ranvier (50). These nodes are critical structures along the neural 286 

axons where action potentials are regenerated. Disruption of the nodes of Ranvier can 287 

result in the failure of the electrically resistive seal between the myelin and the axon, 288 

ultimately contributing to various neurological diseases (51). Given the fundamental role 289 

of gliomedin in maintaining axonal integrity, investigating GLDN variants within specific 290 

cell-types may provide valuable insights into their potential involvement in FTD 291 

pathogenesis. In particular, our snRNA-seq differential analyses between PiD and age-292 

matched controls revealed that GLDN was statistically significantly downregulated (Fig. 3 293 

right panel). Besides GLDN, in our snRNA-seq analyses, some of the AD GWAS genes, 294 

such as ADAM10, ADAM17, BIN1, APP, CLU, JAZF1, MAPT, PICALM, PLEKHA1, 295 

SLC24A4, SORL1, and UMAD1, were also differentially expressed in PiD (Table S4 A 296 

and B). While risk loci have been identified in our GWAS studies and cis-regulatory-297 

linked risk genes, several open chromatin regions that overlap with AD/FTD GWAS SNPs 298 

(Fig. 3) are also differentially accessible regions (DARs) in the PiD or AD vs. their age-299 

matched control comparison. There are 41 EX DARs and 12 ODC DARs in the PiD 300 

dataset and 21 DARs in the AD dataset, of which some overlap with SNPs identified in 301 

the AD/FTD GWAS fine mapping (Fig. S3E). These findings underscore the shared 302 

genetic mechanisms across tauopathies while also reflecting cell-type-specific chromatin 303 

accessibility differences. Furthermore, AD GWAS genes show a strong overlap with 304 

differentially expressed genes in PiD (Fisher’s Exact Test: p-value < 2.2×10-16, Table 305 

S3C), suggesting that these associations are not random. However, it remains crucial to 306 

determine how fine-mapped signals specifically relate to PiD. By integrating these genetic 307 

findings with our multi-omics data, we can gain deeper insights into the complex interplay 308 

between genetic risk factors and cellular processes contributing to PiD and AD pathology, 309 

particularly with regard to regulatory non-coding regions and gene expression in the 310 

corresponding cell-types. 311 

Neuron TF binding occupancy reveals dysregulation in PiD and AD 312 

To uncover gene regulatory mechanisms impacting neurons and glial cells in PiD and AD, 313 

we investigated co-accessible enhancer-promoter regions, focusing on genome-wide and 314 

gene-specific TF differential binding activities. Various gene regulatory network (GRN) 315 

approaches (52, 53) based on motif enrichment analyses often infer TF activity from 316 

overrepresented motifs without distinguishing functional binding from chromatin 317 

relaxation (24, 54), resulting in false positives (55), where “relaxed” open chromatin 318 

regions may not always indicate meaningful regulatory activity (Fig. S4 A and B). To 319 

address this limitation, our approach incorporates TF footprinting using the TOBIAS tool 320 

(56) to directly measure TF occupancy. This strategy resolves functional from non-321 

functional motif occurrences by identifying functional enhancer-TF interactions and 322 

advances our understanding of FTD and AD genetic risk signals, including the role of 323 

fine-mapped SNPs in putative regulatory functions. We performed chromatin cis co-324 

accessibility and TF occupancy prediction analyses on 609,675 cCREs (Table S2A) to 325 

examine disease-enriched signals in both PiD and AD. For each predominant cell-type, we 326 

implemented cis-regulatory co-accessibility (31) and trans-regulatory occupancy 327 

prediction (56), dividing the cells into PiD, AD, and their corresponding controls for 328 

detailed examination (Fig. 4A). 329 
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Our integrated cis- and trans-regulatory analyses approach allows us to explore disease-330 

enriched enhancer-promoter links, TF differential binding activity, and motif binding site 331 

disruption in neurons. Genome-wide TF differential binding scores were calculated in PiD 332 

and AD with their matching controls in neurons (Fig. 4B). We identified transcription 333 

factors BHLHE22, a TF previously indicated to play a key role in neural cell fate (57), 334 

along with other TFs (p-value < 0.05), which exhibit shared and enhanced binding activity 335 

in both PiD and AD compared with their respective controls. JDP2, a TF involved in 336 

apoptosis (58), along with other TFs, demonstrates increased binding activity only in AD. 337 

CTCF, a transcriptional regulator that acts on enhancers, promoters, and gene bodies (59), 338 

together with other TFs in the lower left quadrant, displays decreased binding activity in 339 

both PiD and AD compared to their controls. To ensure that the observed changes were 340 

not biased toward surviving neurons or influenced by sampling quality control, we 341 

calculated a neuronal vulnerability module score based on a list of vulnerable genes 342 

associated with reduced expression in disease conditions collected from Mathys et al. (60). 343 

This analysis demonstrated that our PiD snRNA-seq data includes both surviving and 344 

vulnerable neurons, with vulnerability module scores higher in controls compared to PiD 345 

(Fig. S4C). 346 

We investigated the binding of select transcription factors to the enhancer regions of their 347 

target genes in neurons to contextualize their variable binding activity. (Fig. 4 C to E). To 348 

accomplish this, a gene regulatory network for the transcription factors BHLHE22, CTCF, 349 

and JDP2 was established in both PiD and AD datasets for excitatory neurons (Figs. 4 B 350 

and C, and S4D). Several genes implicated in AD GWAS, including JAZF1, SORL1, 351 

PLEKHA1, and ADAM10, exhibited differential expression in EX in individuals with PiD, 352 

providing possible insights into shared molecular mechanisms between PiD and AD, 353 

suggesting potential convergent pathways underlying neurodegeneration in these 354 

conditions (Fig. 4C). Importantly, some of these fine-mapped GWAS genes within the TF 355 

network were further supported by significant eQTLs (36) (p-value < 1×10-5) observed in 356 

EX, reinforcing their importance in this cell-type (Fig. S4E). The differentially expressed 357 

TFs and genes we identified, positioned in the center of the network, are under the 358 

regulation of all three highlighted factors: CTCF, JDP2, and BHLHE22. Those regulated 359 

by two or a single TF are depicted on the outer ring of the network. We stress that these 360 

findings merely represent a simplified depiction of a highly complex regulatory network. 361 

Gene targets within this network are acknowledged to be subject to regulation, but it is 362 

important to note that the highlighted transcription factors do not solely govern their 363 

regulation. 364 

To complement our analyses of TF trans-regulatory network in neurons, we aimed to 365 

discern cis-regulatory elements and DNA-binding motifs that are enriched in either 366 

disease or control conditions, particularly within regions containing fine-mapped SNPs. 367 

Through the integration of the co-accessibility map with chromatin accessibility signals 368 

and GWAS statistics across the genomic axis, we elucidated potential disruptions in cis-369 

regulatory relationships caused by causal disease variants in a GWAS gene, ADAM10, 370 

which is also differentially expressed (Fig. 4 D and E). Additionally, we conducted 371 

sequence analyses to identify motifs that are disrupted in comparison to control 372 

conditions. This procedure was executed with the aim of assessing disease or control gene 373 

local enhancer accessibility and predicting potential disruptions in TF binding. 374 

We found alterations in the cis-regulatory mechanisms of ADAM10 in AD, a prominent 375 

anti-amyloidogenic candidate gene in AD pathology (41) (Fig. 4D). These changes were 376 
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identified in proximity to the fine-mapped lead ADAM10 SNP, rs442495, and in its strong 377 

LD block, potentially disrupting the DNA-binding motif. Consequently, these disruptions 378 

may result in diminished transcription factor (TF) binding activity in disease compared to 379 

their corresponding control group. We further investigated the gene locus TF binding 380 

activity in those highlighted fine-mapped accessible regions. We selected five TFs from 381 

the top-ranked TFs based on the average log2(fold change) of the TF binding score. For 382 

example, we found forkhead box O1 (FOXO1), SATB homeobox 1 (SATB1), POU class 5 383 

homeobox 1 (POU5F1), Paired box 4 (PAX4), and peroxisome proliferator-activated 384 

receptor (PPAR) transcription factors enriched in highlighted regions identified for 385 

ADAM10 in EX (Fig. 4e). Previous studies have investigated the potential roles of 386 

FOXO1, SATB1, and POU5F1 in the development of AD (61-63). Notably, FOXO TF 387 

families were indicated as mediators of stress adaptation, which promotes the resilience of 388 

cells as a key regulator in other pathways, such as metabolism, cell cycle, and redox 389 

regulation (64). The transcription factor PAX4 has been investigated in the contexts of 390 

both AD and Type 2 Diabetes (T2D), and is known to function as a key link in the 391 

common pathways of both diseases (65). 392 

To thoroughly examine the differences in gene expression in EX between disease and 393 

control groups, we arranged and compared all selected differentially expressed genes 394 

(DEGs) and transcription factors (TFs) side by side for PiD and AD (Fig. 4 F and G). The 395 

fold change in gene expression indicates the robustness of biological changes between 396 

diseases and highlights the role of certain genes and TFs in disease development. Among 397 

those top-selected genes, identified based on its absolute fold change and cis-regulatory 398 

co-accessibility score, CALM1 has been linked to the progression from mild cognitive 399 

impairment (MCI) to AD through involvement in the neurotrophin signaling pathway, 400 

which contributes to neuronal development, survival, and plasticity (66). Additionally, 401 

CALM1 participates in dysregulated ligand-receptor (LR) interactions (67). Its 402 

downregulation in both PiD (FDR-adjusted p-value = 5.57×10-6, Table S4A) and AD 403 

(FDR-adjusted p-value = 0.011, Table S4B) samples suggests a common role of CALM1 404 

in the pathogenesis of both diseases. Similarly, TARBP1 showed a notable decrease in 405 

both PiD and AD (Fig. 4 C and F). TARBP1 encodes the TAR RNA binding protein 1 406 

(TRBP), which participates as a methyltransferase enzyme in post-transcriptional gene 407 

regulation through its involvement in RNA processing pathways and is associated with 408 

inattention symptoms (68). Whereas we had previously identified the differential 409 

regulation of the distal enhancer of the UBE3A gene (Fig. 2E), we further found that 410 

UBE3A expression was statistically significant decreased in EX in PiD (FDR-adjusted p-411 

value = 1.04 ×10-14, Table S4A), regulated by CTCF and BHLHE22 (Fig. 4 C and F).  412 

We conducted a detailed examination of the alterations in TFs’ expression levels between 413 

diseased and control states. Our analyses revealed a general trend of pervasive 414 

downregulation of TF expression across PiD samples, when compared to the changes 415 

observed between AD and its respective control group, despite a few TFs showing 416 

upregulation (Figs. 4G, and S4 F and G). A similar trend was observed in Rexach et al.’s 417 

behavioral variant FTD dataset (7), where reduced TF expression was consistent across 418 

disease samples compared to controls (Fig. S4H). This trend highlights a broader 419 

downregulation of TFs in PiD but not in AD (Fig. S4G). These unique regulatory patterns 420 

displayed in PiD emphasize the complexity of these mechanisms. Among the 421 

differentially expressed TFs, we observed RORA, which plays an essential role in energy 422 

and lipid metabolism (69), is statistically significantly upregulated in both PiD (FDR-423 

adjusted p-value = 1.14 ×10-20, Table S4A) and AD (FDR-adjusted p-value = 0.002, Table 424 
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S4B). Aberrant energy metabolism is the critical factor for cell integrity maintenance and 425 

neurodegeneration. Another notable differentially expressed TF, STAT1, demonstrated a 426 

different expression pattern across PiD (FDR-adjusted p-value = 4.61 ×10-14, Table S4A) 427 

and AD (not statistically significant), implying its distinct involvement in the regulatory 428 

mechanisms underlying different neurodegenerative disorders or different stages of 429 

disorders. Prior research has indicated that decreased STAT1 expression correlates with a 430 

higher risk of conversion to MCI and can be considered a preclinical indication of AD 431 

development (70). The preceding analyses and these data provide a likely genetic 432 

mechanism for two distinct dementias, based on differential TF binding activity on the 433 

enhancer or promoter regions of its target gene, coupled with analyses shown on gene 434 

expression. 435 

In inhibitory neurons (INH), we highlighted two TFs, JDP2 and NRF1. JDP2, a 436 

transcription factor linked to apoptosis (58), emerged as one of the top TFs based on Tn5 437 

bias-subtracted TF differential footprinting binding scores in AD. NRF1, a master 438 

regulator of proteasome genes, plays a critical role in proteasome-mediated protein 439 

degradation, a process whose dysregulation has been implicated in neurodegenerative 440 

diseases (71). In contrast to JDP2, although NRF1 was not among the top TFs with 441 

differential footprinting binding scores in excitatory neurons (EX), it was identified as one 442 

of the top factors within the INH TF network (Figs. S5 A to C). Notably, both JDP2 and 443 

NRF1 are also expressed in EX, suggesting shared regulatory mechanisms between these 444 

neuronal subtypes (Figs. 4 B and G, and S4 F and G). These findings complement our 445 

results in EX, highlighting both cell-type-specific and shared transcriptional regulatory 446 

mechanisms in neurons, which may have important implications for understanding their 447 

roles in neurodegeneration. 448 

TF binding occupancy reveals glial responses in PiD and AD 449 

We investigated the regulatory role of several TFs in glial cells in PiD and AD. Given the 450 

importance of TFs in modulating gene expression, we focused on identifying the top 451 

differential binding TFs, distinguishing those specific to PiD and those shared with AD. 452 

Among the selected TFs, we explored the regulatory effects of microglial TF SPI1, a well-453 

known AD GWAS risk gene (12), Friend leukemia integration 1 (FLI1), and Transcription 454 

Factor Dp-1 (TFDP1) (Figs. 5A, and S6D), to shed light on the potential roles of these 455 

TFs in the pathogenesis of PiD and AD. In our snATAC-seq analyses of microglial cells, 456 

we observed increased differential binding activities of FLI1 and SPI1 in both PiD and 457 

AD. SPI1 is known to be associated with the normal development of microglial cells in 458 

the brain (72), and Ets-related transcription factor FLI1 has been established as a regulator 459 

of gene activity during cellular differentiation (73) (Fig. 5A). However, TFDP1, a 460 

potential global modulator of chromatin accessibility by controlling histone transcription 461 

(74), shows contrasting differential binding activities when comparing PiD with AD (Fig. 462 

5A), suggesting potential discrepancy in genome-wide TFDP1 TF binding activity 463 

between diseases. Among the top-selected targets, we observed a statistically significant 464 

downregulation of MAF in AD (FDR-adjusted p-value = 2.28×10-8, Table S4B), a gene 465 

identified as an AD GWAS risk gene and a differentially expressed TF (12), regulated by 466 

SPI1. Interestingly, we did not observe any notable difference in MAF expression in PiD 467 

(Figs. 5B, and S6A). Additionally, another AD DEG, CX3CR1 (FDR-adjusted p-value = 468 

1.53×10-25, Table S4B), was also regulated by SPI1 but not markedly dysregulated in PiD. 469 

CX3CR1 has been implicated in both neuroprotective and detrimental effects by regulating 470 

inflammation in neurological disorders (75). Furthermore, our analyses revealed the 471 
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differential expression of several other GWAS risk genes regulated by TFDP1, FLI1, and 472 

SPI1, including GLDN, ZFHX3, USP6NL, SORL1, MS4A4A, INPP5D, and RASGEF1C 473 

(12). 474 

In astrocytes, we observed a consistent trend among most TFs, where the majority 475 

displayed either increased or decreased binding scores in both PiD and AD. Notably, a 476 

subgroup of TFs from the activating protein-1 (AP-1) family, namely JUND, JUNB, and 477 

FOS, exhibited pronounced enrichment in both PiD and AD (Figs. 5C, and S6E). For 478 

instance, JUND from the AP-1 TF family, known for its strong correlations with pTau and 479 

amyloid-beta (76), demonstrated similar patterns. Additionally, BACH1, primarily 480 

recognized as a transcriptional suppressor (77), showed a positive correlation with both 481 

PiD and AD. These findings suggest some potential convergence of top-selected TFs’ 482 

activity in astrocytes across PiD and AD. Specifically, JUND’s inferred role in astrocyte 483 

APOE expression, which is shown to be downregulated in AD (FDR-adjusted p-value = 484 

3.14×10-4, Table S4B) but not statistically significant in PiD (Figs. 5D, and S6B), 485 

underscores its involvement in AD-related processes. At the same time, we identified 486 

hypoxia-inducible factor-1 alpha (HIF1A), regulated by both JUND and BACH1, as 487 

downregulated in PiD (FDR-adjusted p-value = 4.35×10-6, Table S4A) but not statistically 488 

significant in AD, which may align with previous reports suggesting that the loss of 489 

HIF1A within astrocytes protects neurons from cell death (78). Our observations 490 

underscore potential regulatory changes in astrocytes, characterized by the regulatory 491 

activation mediated by AP-1 family TFs and the transcriptional suppression facilitated by 492 

BACH1. Furthermore, the dysregulation of APOE expression and HIF1A levels in 493 

astrocytes highlights the complex regulatory networks that influence astrocyte function 494 

and contribute to disease progression in AD and PiD. 495 

In oligodendrocytes, we observed a predominant trend where the majority of TFs 496 

exhibited either increased binding activity in both PiD and AD or unique patterns specific 497 

to each disease state (Figs. 5E, and S6F). Noteworthy among these are the transcriptional 498 

suppressors HES1 and ZBTB33 (79, 80), which displayed enriched differential binding 499 

scores in both PiD and AD. Moreover, our analyses revealed that these two transcriptional 500 

repressors were associated with the downregulation of ADAM10, PLEKHA1, and JAZF1, 501 

and the upregulation of BIN1 and MAPT, consistent with broader transcriptional changes 502 

across multiple DEGs (Figs. 5E, and S6C). This suggests the intricate and multifaceted 503 

nature of the transcriptional processes, which may be relevant to both PiD and AD, or 504 

specific to one of these conditions, indicating shared or condition-specific regulatory 505 

mechanisms. Furthermore, MAPT, a gene encoding tau protein to keep the function of 506 

microtubules and axonal transport, which ZBTB33 also regulates, is differentially 507 

expressed in both PiD and AD. Additionally, the downregulation of FOXO1, known to 508 

protect against age-progressive axonal degeneration (81), further underscores the intricate 509 

interplay between transcriptional regulation and neurodegenerative processes in 510 

oligodendrocytes. 511 

To further evaluate the reliability of the observed transcriptional changes, we analyzed the 512 

percentage of cells expressing selected genes, grouped by samples and color-coded by 513 

diagnosis (Fig. S7 A to C). This analysis encompassed both downregulated and 514 

upregulated DEGs in PiD, as well as GWAS risk genes expressed in the selected cell-type, 515 

as highlighted in TF regulatory network (Figs. 5 B, D, and F). Despite the inherent 516 

sparsity of snRNA-seq data, the percentage expression of genes exhibited consistent 517 

patterns across individuals, with no single sample disproportionately influencing the 518 
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results. These stable trends across libraries and individuals affirm the robustness of the 519 

observed differences in gene expression and support the conclusions drawn from these 520 

analyses. 521 

Cis-regulatory linked HGE impacts gene expression in disease synaptic pathology 522 

We have elucidated the shared and distinct changes in the pathways between these two 523 

frontal cortical degenerative diseases related to the prominent features, glial activation, 524 

neuroinflammation, synaptic dysfunction, and synapse loss of AD and related dementia 525 

(82, 83). Building upon these findings, we reasoned that these data further provide a 526 

unique opportunity to identify human-specific regulatory elements responsible for 527 

maintaining the integrity of human cortical neurons and driving cortical neurogenesis. 528 

We further explored regulatory elements driving cortical neurogenesis unique to humans 529 

using a previously compiled gene list that showed increased activity specifically in the 530 

developing human brain, when comparing gene expression between mice, macaques, and 531 

humans (84). Through overlapping human-gained enhancer (HGE) with snATAC-seq 532 

peaks from PiD and AD (Table S5), we identified an enhancer element that is both a 533 

differentially accessible peak in PiD and an HGE. Using chromatin co-accessibility 534 

analyses, we bioinformatically linked this differential accessible enhancer to UBE3A, even 535 

though it is located more than 40kbp away from its UTRs and around 80kbp away from its 536 

coding region (Fig. S8A). As a gene implicated in neuronal activity, UBE3A codes for a 537 

protein that plays a critical role in neuronal functioning, regulating proliferation and 538 

apoptosis (85). UBE3A loss-of-function mutation has been observed in individuals with 539 

Angelman Syndrome, while autism-linked UBE3A gain of function mutation was recently 540 

reported in a mouse model showing neurobehavioral deficits (86, 87). The cis-regulatory 541 

identified distal enhancers and HGE of UBE3A in neurons are more accessible in PiD 542 

(FDR-adjusted p-value = 4.40 ×10-5, Table S2C) (Figs. 2E, and 6A). 543 

We hypothesized that the active HGE would enhance the expression of UBE3A or mitigate 544 

suppressive effects leading to its downregulation. Conversely, the elimination of this 545 

active HGE would presumably result in reduced levels of UBE3A. To validate whether 546 

this imputed enhancer is indeed the putative enhancer of UBE3A, we conducted CRISPR-547 

edited experiments in iPSCs, wherein we targeted and excised the HGE region 548 

(chr15:25,479,200-25,482,595) (Fig. 6 A to C). CRISPR-modified (UBE3A KD) and 549 

isogenic control (WT) iPSCs were differentiated into cortical neurons using a modified 550 

NGN2 induction protocol (88) (Methods). After 28 days, cortical neuron populations from 551 

both WT and UBE3A KD lines retained some NES-positive neural progenitor cells (Fig. 552 

6B), and roughly 75% of nuclei co-localized with the mature neuronal marker MAP2 with 553 

no statistically significant difference noted with UBE3A KD (p-value = 0.5687, unpaired t-554 

test, two-tailed; Fig. S8B). Additionally, there was no notable expression difference in the 555 

early cortical layer marker, TBR1, seen with UBE3A KD (p-value = 0.8135, unpaired t-556 

test, two-tailed; Fig. S8C), at greater than 50% in both populations. No substantial 557 

differences in marker expression were observed, confirming the neuronal identity of both 558 

the edited and unedited lines. In theory, if the predicted enhancer does regulate gene 559 

activity, removing it would interfere with its control mechanisms, resulting in reduced 560 

activity of the target gene. This approach has previously been employed to identify 561 

enhancers that regulate neocortical development (89). RNA-seq analyses performed on 28 562 

days in vitro neurons revealed downregulation of UBE3A in the UBE3A KD neurons, 563 

confirming the predicted UBE3A HGE region regulates UBE3A expression (Fig. 6 D and 564 
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E), and that the perturbation of UBE3A expression affected the expression of other genes 565 

(Fig. 6D). These genes are associated with the downregulation of protein ubiquitination, 566 

apoptosis, heterochromatin organization, cAMP-dependent protein kinase activity, and 567 

disruptions in various metabolic processes (Fig. 6F). 568 

Given the intricate nature of human tissue, particularly in the context of disease 569 

conditions, our subsequent analyses in data derived from human tissue noted an enriched 570 

activity of chromatin accessibility (average log2FC > 0, Table S2C) for all distal peaks 571 

associated with UBE3A in the EX. Despite this, we observed a decrease in the proteomic 572 

and transcriptomic levels of UBE3A. In our immunofluorescence staining of UBE3A, we 573 

noted a statistically significant decrease in UBE3A levels in human PFC (Fig. 6G). 574 

Furthermore, our analyses of snRNA-seq DEGs in PiD also revealed UBE3A as one of the 575 

downregulated genes (Fig. 6 H and I). In our gene ontology analyses, we found that the 576 

downregulated genes were involved in various processes related to neuronal integrity, 577 

brain morphogenesis, neuron cell-cell adhesion, axon guidance, cell fate determination via 578 

the Wnt signaling pathway, and UBE3A-related ubiquitin-dependent protein catabolic 579 

processes. Conversely, among the upregulated terms, we observed enrichment in 580 

processes related to microtubule organization and tau protein regulation (Fig. 6J). 581 

The discordance between increased snATAC-seq enhancer signal and decreased snRNA-582 

seq gene expression for UBE3A may be attributed to a regulatory phenomenon where the 583 

chromatin region becomes more accessible to counteract the downregulation of its target 584 

genes. At the subcluster level, our integrated analysis of EX revealed consistent 585 

downregulation of UBE3A gene expression accompanied by increased chromatin 586 

accessibility at the UBE3A enhancer across most subclusters (Fig. S9 A to C). Subclusters 587 

EX4 and EX8, where fewer than 5% of cells exhibited accessible UBE3A enhancers, were 588 

excluded from this interpretation. The remaining subclusters (EX1 to EX3, EX5 to EX7) 589 

showed a consistent pattern of decreased UBE3A expression alongside elevated enhancer 590 

accessibility. This observation suggests that the discrepancy between increased snATAC-591 

seq enhancer signal and decreased snRNA-seq gene expression for UBE3A cannot be 592 

explained solely by subcluster-specific differences, indicating the involvement of broader 593 

regulatory mechanisms. These findings underscore the complexity of regulatory dynamics 594 

within the disease context and highlight the need for further investigation into the 595 

regulatory processes underlying these observations. 596 

Discussion  597 

 598 

Single-cell sequencing has been used to characterize the cell-type and cell state-specific 599 

changes in Alzheimer’s disease pathology extensively. While recent efforts have extended 600 

these approaches to other tauopathies (7, 90, 91), they remain comparatively understudied, 601 

particularly in Pick’s disease. In this study, we generated single-nucleus epigenomic and 602 

transcriptomic data from postmortem human brain tissue samples of Pick’s disease and 603 

cognitively normal controls. By integrating the analyses on cis- and trans-regulatory 604 

mechanisms with gene expression data, our approach at single-cell resolution enabled us 605 

to investigate the cellular diversity of the human PFC to compare shared and distinct 606 

regulatory mechanisms between these two tauopathies in excitatory neurons, astrocytes, 607 

microglia, and oligodendrocytes, and pinpoint the cell-type specific, disease-associated 608 

alterations. Meta-analyses in genome-wide association studies, supplemented with the 609 

assistance of snATAC and snRNA data, utilized AD and FTD GWAS genes and revealed 610 

putative and dysregulated risk genes for PiD. Systematic analyses of alteration in TF 611 
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binding activity on promoter-enhancer links in both a genome-wide scale and gene-local 612 

region in PiD and AD revealed distinct and shared TF-regulatory networks from neurons 613 

and glial cells. Our single-nucleus data and customized approach to investigating cis- and 614 

trans-regulatory mechanisms altered in PiD and AD pathology led to the creation of an 615 

online interactive database, scROAD, which researchers are free to explore. We 616 

additionally generated RNA-seq data from iPSC-derived neurons following CRISPR-Cas9 617 

editing, allowing us to validate imputed promoter-enhancer regulatory linkage from 618 

possible target genes involved in disease progression. 619 

 620 

Although the precise molecular mechanisms driving PiD pathology remain elusive, our 621 

study provides insights into the intricate landscape of gene regulation in PiD, particularly 622 

the challenges in interpreting distal regulatory elements. Our differential analyses 623 

highlight the utility of our identified promoter-enhancer links in elucidating regulatory 624 

mechanisms and revealed widespread chromatin accessibility and gene expression 625 

changes linked to PiD and AD pathology across major cell-types. These alterations, 626 

spanning chromatin accessibility and expression of genes tied to synaptic signaling, 627 

apoptotic pathways, neuronal activity regulation, cellular stress responses, and 628 

intercellular communication, may indicate compensatory neuron-oligodendrocyte 629 

crosstalk that attempts to re-establish homeostasis by differentially modulating specific 630 

gene programs. Some promoter-enhancer connections facilitated increased chromatin 631 

accessibility, potentially serving as a compensatory mechanism to mitigate the 632 

dysregulation of target genes. Other alterations, including positive regulation of 633 

endocytosis, genes responsible for cellular metabolic processes, and genes encoding 634 

cellular response to unfolded/misfolded protein in astrocytes and microglia, may 635 

contribute to glial cell differentiation or immune activation in PiD and AD. Disruptions in 636 

the metabolic processes and cellular stress response compromise the balance in the 637 

cellular microenvironment and consequently contribute to the progression of PiD and AD. 638 

 639 

While the causative molecular mechanisms of PiD remain unknown, our work offers 640 

insights that assist in unraveling the nature of gene regulation in PiD, especially regarding 641 

genomic loci with well-described heritable disease risk. We capitalized on the AD and 642 

FTD GWAS data to identify genes associated with phenotypic variability between PiD 643 

and AD because of similar pathological and clinical traits, such as tauopathies and 644 

cognitive decline. GWAS have been widely used to enhance our understanding of 645 

polygenic human traits and to reveal clinically relevant risk variants for 646 

neurodegeneration. Notably, we identified genetic risk variants that overlapped with 647 

specific cell-types to narrow down the potential non-coding variants underlying disease 648 

susceptibility. Furthermore, our analysis revealed that AD GWAS genes showed a 649 

substantial overlap with differentially expressed genes in PiD cases, suggesting that these 650 

associations are not random. This highlights the potential convergent regulatory 651 

mechanisms that may be shared between PiD and AD, despite the distinct clinical 652 

manifestations. Although this method has enabled the investigation of cell-type-specific 653 

disease-associated regulatory mechanisms, key limitations of the snATAC-seq assay 654 

without variant calling in PiD samples leave the opportunity for future studies and 655 

improvements. 656 

 657 

Cell demise constitutes a defining characteristic of neurodegenerative ailments, including 658 

Pick’s and Alzheimer’s disease. More pronounced alterations in chromatin accessibility 659 

and gene expression were observed in excitatory neurons and oligodendrocytes in PiD 660 

compared to AD. In agreement with a previously observed association of rapid 661 
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progression and early disease onset in PiD compared to AD (3, 33), as well as 662 

spatiotemporal differences (7), we found an elevation in the fold change in chromatin 663 

accessibility of dysregulation among genes and TFs, especially in excitatory neurons. 664 

Additionally, in excitatory neurons from PiD, we observed a complex regulatory 665 

mechanism that downregulated genes strongly associated with increased chromatin-666 

accessible regions for the same genes through cis-regulated promoter-enhancer links, 667 

including genes responsible for neuronal activity and signaling, for example, UBE3A. A 668 

major contribution of our study lies in the identification of cell-type-specific enhancer-669 

promoter pairs, potentially facilitating gene-regulatory alterations in PiD and AD, along 670 

with the TFs likely to bind to these regulatory elements within the respective cell-types. 671 

Our investigation into cis-regulatory elements and DNA-binding motifs, particularly in 672 

regions harboring fine-mapped SNPs, has uncovered potential disruptions in regulatory 673 

relationships, exemplified by the anti-amyloidogenic gene ADAM10. These disruptions, 674 

proximal to disease-associated SNPs, may lead to diminished TF binding activity and 675 

subsequent dysregulation of target gene expression. Furthermore, our analyses utilized the 676 

gene-specific-enhancer-binding TFs’ information to construct a TF regulatory network in 677 

neurons and demonstrated alterations in PiD and AD. We also provide insights into the 678 

regulatory landscape of TFs in glial cells across PiD and AD. We identified differential 679 

binding activities of TFs, such as SPI1, known as a major AD GWAS risk gene in 680 

microglia and associated with its development, JUND in astrocytes, known for its strong 681 

correlations with pTau and amyloid-beta, and transcriptional suppressors HES1 and 682 

ZBTB33 in oligodendrocytes, shedding light on their potential roles in disease 683 

pathogenesis. Moreover, the downstream dysregulation of TFs and genes associated with 684 

the highlighted TFs, including CX3CR1, MAPT, and FOXO1, emphasizes the intricate 685 

regulatory mechanisms implicated in neurodegenerative processes, with some alterations 686 

shared between PiD and AD, while others are uniquely observed in either condition. 687 

 688 

The identification of functional regulatory elements in human excitatory neurons and the 689 

validation of their functions in iPSC-derived neurons enhance our understanding of 690 

epigenomic discovery. Leveraging these findings, we identified human-specific regulatory 691 

elements crucial for maintaining the integrity of cortical neurons in a neurodegenerative 692 

disorder, providing valuable annotations. Subsequent CRISPR-edited experiments in 693 

iPSCs confirmed the regulatory role of a putative enhancer in UBE3A expression. 694 

Furthermore, our observation of enriched chromatin accessibility near UBE3A in 695 

excitatory neurons, despite decreased UBE3A expression in snRNA-seq, highlights the 696 

complexity of gene regulation in the context of disease. 697 

 698 

This study represents an important step in identifying PiD risk genes and leveraging 699 

transcription factor occupancy to predict regulatory mechanisms but has notable 700 

limitations. Small sample sizes, especially for rare cell-types, limited the power of 701 

analyses, making it difficult to detect subtle gene expression changes and chromatin 702 

accessibility patterns at refined subcluster levels. Statistical noise and variability inherent 703 

to snRNA-seq and snATAC-seq data further complicated these analyses. DARs in 704 

snATAC-seq were not interpreted in isolation in our study; instead, they were used in 705 

conjunction with transcription factor (TF) differential binding analyses to support the 706 

identification of putative CREs linked to differentially expressed genes. This integrative 707 

approach mitigates the risk of overinterpreting noisy DARs and strengthens the biological 708 

relevance of our regulatory inferences. Nonetheless, to further improve statistical power 709 

and resolution, larger datasets and higher-resolution techniques will be essential to 710 

improve robustness and resolution in future studies. Discrepancies in library preparation 711 
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between PiD and AD datasets could introduce biases in data interpretation. To mitigate 712 

this, we compared disease versus control data within each study, applied stringent quality 713 

control, and used normalization and batch effect correction to harmonize data while 714 

preserving biological signals. Additionally, the relatively high abundance of 715 

oligodendrocytes in our dataset may partially reflect technical factors related to nuclei 716 

isolation and capture efficiency; nonetheless, emerging evidence suggests that 717 

oligodendrocytes contribute to neurodegenerative processes, and future studies focusing 718 

on this cell-type may offer valuable insights into the pathogenesis of PiD and AD. 719 

 720 

Survival bias is another key limitation. Although we calculated a neuronal vulnerability 721 

module score, per Mathys et al. (60), to account for surviving neurons, this issue remains a 722 

challenge in single-cell studies. While our analysis included both surviving and vulnerable 723 

neurons in the PiD dataset, further investigation in dedicated studies is needed. The 724 

absence of PiD-specific GWAS data presents another constraint, limiting the direct 725 

applicability of FTD GWAS fine-mapping results to PiD. Despite incorporating AD and 726 

FTD GWAS data for overlap analysis, PiD’s rarity and unique pathology underscore the 727 

need for targeted genetic studies. Technical limitations, such as insufficient sequencing 728 

coverage and challenges with PCR-based library preparation, also restricted our ability to 729 

analyze MAPT haplotypes (92), hindering a full exploration of the MAPT locus in PiD 730 

pathology. 731 

 732 

Although the study highlights key regulatory dynamics, such as increased UBE3A 733 

enhancer accessibility, these changes do not always result in corresponding gene 734 

expression increases. Additional layers, such as nonsense-mediated mRNA decay (NMD) 735 

or disease-related chromatin changes like relaxation and heterochromatin loss, could 736 

intervene and complicate these relationships. Future studies integrating advanced multi-737 

omic approaches, including chromatin conformation assays and proteomics, will be 738 

crucial for unraveling the complex interplay between chromatin accessibility, gene 739 

expression, and disease-associated regulatory mechanisms in PiD. 740 

 741 

Overall, our findings offer critical insights into the regulatory landscapes of PiD and AD, 742 

underscoring the value of integrated genomic approaches in unraveling the molecular 743 

mechanisms underlying neurodegenerative disorders. By highlighting the intricate 744 

interplay between transcriptional regulation and disease progression, this work emphasizes 745 

the need for a deeper understanding of these regulatory networks as a foundation for 746 

developing targeted and effective therapeutic strategies. 747 

 748 

 749 

 750 

Materials and Methods 751 

 752 

Postmortem human brain tissue 753 

Human postmortem frontal cortex brain samples were obtained from UCI MIND’s 754 

Alzheimer’s Disease Research Center (ADRC), Harvard and Mt. Sinai tissue repositories. 755 

All participants, or participants’ legal representatives, provided written informed consent 756 

for the study. 50 mg of tissue from each sample (n = 9 control brain and n = 7 Pick’s 757 

brain) was dissected and aliquoted into a 1.5 ml tube inside a prechilled tissue dissection 758 

box as described previously (93). Samples were also selected based upon several 759 

covariates, including age, sex, postmortem interval (PMI), and disease comorbidity. 760 

Sample information is available in Table S1. 761 
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 762 

Immunofluorescence 763 

PFA-fixed human postmortem brain tissues (PFC region) were sectioned at 30 µm using a 764 

cryotome (Leica SM2010R). Sections were then rehydrated and washed in 1X sterile PBS 765 

and permeabilized using 1X sodium citrate buffer pH 6.0 (heated at 95°C for 10 mins). 766 

After blocking with 3% BSA solution or serum, sections were incubated with diluted 767 

primary antibodies (as per manufacture’s recommendation) at 4°C overnight (IBA1 768 

antibody; Cat #NC9288364; 1:1000; Fisher Scientific, GFAP Polyclonal Antibody; Cat 769 

#PA3-16727; 1:500; ThermoFisher, p-tau (AT8) Cat #MN1020; 1:250; ThermoFisher; 770 

UBE3A; Cat #10344-1-AP; 1:1000; Proteintech, Anti neurofilament protein; Cat 771 

#837904; 1:1000; Biolegend). Secondary antibodies were selected and diluted according 772 

to the manufacturer’s instruction and incubated for 1.5-2 hrs. Sections were then washed 773 

(3X with PBS), mounted and cover slipped using anti-fade mounting media. Slides were 774 

imaged (20x/40x/60x) using Nikon ECLIPSE Ti2 inverted microscope. Images from 3 775 

randomly selected areas of each slice were used for analyses. 776 

 777 

snATAC-seq tissue processing and nuclei isolation 778 

Frozen brain tissue pieces were placed in 500 µL chilled 0.1X Lysis Buffer (1X lysis 779 

buffer diluted with lysis dilution buffer; please refer to snATAC-seq protocol (93) for 780 

more details) and immediately homogenized 15 times using a pellet pestle (Fisherbrand™ 781 

Pellet Pestle™ Cordless Motor with RNase-Free Disposable Pellet Pestles, Cat#12-141-782 

364). The homogenized tissues were then incubated for 15 mins followed by addition of 783 

500 µl of chilled Wash Buffer and filtration through a 70 µm Cell Strainer (Miltenyi 784 

Biotech). In the next step, a sucrose gradient (Nuclei PURE Prep Nuclei Isolation Kit, Cat 785 

#NUC201-1KT, Sigma) was prepared and nuclei were spun at 13,000 x g for 45 minutes 786 

at 4°C. After centrifugation, the debris and myelin from the top of the sucrose gradient 787 

were removed. Nuclei were resuspended, washed, filtered (through a 40 µm cell strainer), 788 

counted (using a cell counter), and then incubated in a Transposition Mix. 789 

 790 

snATAC-seq library preparation and sequencing 791 

Transposed nuclei were loaded on 10X Genomics Next GEM Chip H (10x Genomics) to 792 

generate single-cell GEMS. GEMs were then transferred, incubated, and cleaned for 793 

further processing. Single nuclei ATAC-seq libraries were prepared using the Chromium 794 

Single Cell ATAC v2 (10x Genomics) reagents kit as per the manufacturer’s instructions. 795 

Library size distribution and average fragment length of each library were assessed with 796 

Agilent TapeStation High Sensitivity D5000 ScreenTapes and the concentrations were 797 

quantified using a Qubit Fluorometer. Libraries were sequenced on a NovaSeq 6000 798 

(Illumina) in paired-end mode (read1N: 50 cycles, index i7: 8, index i5:16 cycles, read 799 

2N:50 cycles) to generate approximately 500 M reads per sample. 800 

 801 

snRNA-seq library preparation and sequencing 802 

45-50 mg of fresh frozen brain tissue (PFC) was homogenized in EZ Lysis buffer (Cat 803 

#NUC101-1KT, Sigma-Aldrich) and incubated for 10 min on ice before being passed 804 

through a 70 µm filter. The fresh tube with filtered homogenate was then centrifuged at 805 

500 g for 5 min at 4°C and resuspended in an additional 1 mL of lysis buffer. After 806 

another centrifugation samples were incubated in Nuclei Wash and Resuspension buffer 807 

(1xPBS, 1% BSA, 0.2U/l RNase inhibitor) for 5 min. To remove myelin contaminants and 808 

debris, we prepared sucrose gradients and centrifuged the tubes at 13,000 g for 45 min at 809 

4°C. Next, a debris removal solution (Cat #130-109-398, Miltenyi Biotec) was added to 810 

the nuclei suspension (and centrifuged at 3,000g 10 mins at 4°C) for a second round of 811 
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cleanup. Debris-free clean nuclei suspension was then diluted in nuclei buffer (with BSA 812 

and RNase) before processing with the Nuclei Fixation Kit (Parse Biosciences). After 813 

fixation and permeabilization, nuclei were cryopreserved with DMSO until the day of 814 

library preparation. Libraries were prepared using EVERCODE™ WT V3 kit (Parse 815 

Bioscience) and quantified using Qubit dsDNA HS assay kit (Cat #Q32851, Invitrogen). 816 

D5000 HS kit (Cat #5067-5592, Cat #5067-5593; Agilent) was used for measuring the 817 

average fragment length of each library. Libraries were sequenced using Illumina Novaseq 818 

6000 S4 platform (paired-end sequencing) for a sequencing depth of 50,000 read 819 

pairs/nuclei. 820 

 821 

Human iPSCs 822 

The ADRC76 iPSC line (94) was provided by the UCI ADRC Induced Pluripotent Stem 823 

Cell Core. ADRC76 was generated from fibroblasts from an 83-year-old, white, male with 824 

no known disease. CRISPR/Cas9 editing was performed by UCI’s Stem Cell Research 825 

Center CRISPR Core to generate a homozygous deletion of the UBE3A enhancer region. 826 

Two guide RNAs were designed to the UBE3A enhancer region (chr15:25,479,200-827 

25,482,595) and delivered with Cas9 as a RNP complex via electroporation. Clone C-14 828 

(UBE3A KD) was selected and used for all experiments. Sanger sequencing was used to 829 

confirm the deletion, revealing a 1bp allelic difference in the deletion due to NHEJ-based 830 

DNA repair. Karyotyping was performed by Cell Line Genetics to ensure genomic 831 

integrity after CRISPR/Cas9 editing. Immunocytochemistry was used to confirm 832 

expression of pluripotency markers OCT4, SOX2, and SSEA4. 833 

 834 

Cortical neuron pellet generation 835 

Cortical neurons were generated as previously described (88) with some modifications. 836 

Induced pluripotent cell lines were maintained in mTeSR Plus medium (Stem Cell 837 

Technologies Cat #100-0276) on GelTrex basement membrane (ThermoFisher Cat 838 

#A1413302) and passaged using ReLeSR (Stem Cell Technologies Cat #100-0484) at 839 

80% confluence in the presence of CEPT (Chroman1-Tocris Cat #7163, Emricasan-Seleck 840 

Chemicals Cat #S7775, Polyamine supplement - Sigma Cat #P8483, Trans-ISRIB-R&D 841 

Systems-5284) (95). UBE3A mutant and parental lines were transfected via Nucleofection 842 

(LONZA Cat #VPH-5022) of the PB-TO-hNGN2 (Addgene Cat #172115*) plasmid and 843 

purified in the presence of 200 ng/mL Puromycin (Invivogen ant-pr-1) until the majority 844 

of cells showed plasmid expression as determined by BFP expression. Once a high BFP 845 

expression had been established, iPSCs dissociated to single cell with Accutase 846 

(ThermoFisher Cat #NC9464543) and seeded at 1 x 106 cells per GelTrex coated 6 well in 847 

Induction media: Knockout DMEM/F12 (ThermoFisher); N2 supplement 100X 848 

(ThermoFisher); non-essential amino acids 100X (ThermoFisher), and supplemented with 849 

Doxycycline at a final concentration of 1µM (Sigma) and CEPT. The medium was 850 

changed every day. After 3 days, Uridine (U) and Fluorodeoxyuridine (FdU) were both 851 

added at 1mM (Sigma Cat #3750, Sigma Cat #0503). On day 4, the induced cells were 852 

passaged as single cells with Accutase and seeded at 2 x 106 cells per Poly-D-Lysine 853 

coated 6 wells (Sigma Cat #P6407) in Cortical Neuron Culture Medium 1 (CM1): 1:1 854 

Knockout DMEM/F12: BrainPhys neuronal medium without Phenol-Red (STEMCELL 855 

Technologies); B27 supplement, 50X (ThermoFisher); BDNF (10 µg/ml, STEMCELL 856 

Technolgies ) in PBS containing 0.1% BSA (ThermoFisher); NT-3 (10 µg/ml, Preprotech) 857 

in PBS containing 0.1% BSA, GDNF (10 µg/ml, STEMCELL Technologies) in PBS 858 

containing 0.1% BSA; laminin final con. 1 µg/ml (ThermoFisher), Doxycycline (1 µM), U 859 

(1 µM), and FdU (1 µM). Cells were maintained an additional 24 days with half media 860 

changes every 3-4 days first with CM1 (day 7), then Cortical Neuron Culture Medium 2 861 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2025. ; https://doi.org/10.1101/2024.09.06.611761doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.06.611761
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript Template                                                                           Page 19 of 50 

 

(CM2) starting at day 10. CM2: BrainPhys neuronal medium without Phenol-Red 862 

(STEMCELL Technologies); B27 supplement, 50X (ThermoFisher); BDNF (10 µg/ml, 863 

STEMCELL Technologies) in PBS containing 0.1% BSA (ThermoFisher); NT-3 (10 864 

µg/ml, Preprotech) in PBS containing 0.1% BSA, GDNF (10 µg/ml, STEMCELL 865 

Technologies) in PBS containing 0.1% BSA; laminin final con. 1 µg/ml (ThermoFisher), 866 

Doxycycline (1 µM), U (1 µM), and FdU (1 µM). Three successive passages of each cell 867 

line were differentiated in parallel with pellets collected and flash froze for RNAseq at D0, 868 

D4, and D28 along with PFA fixed coverslips. 869 

 870 

Cortical differentiation immunocytochemistry and image analysis 871 

After 28 days in culture, cortical neuron populations were fixed with 4% 872 

paraformaldehyde (Fisher Scientific #50980487) for 10 minutes at room temperature, then 873 

washed three times with PBS (Corning #21030CV). Cells were permeabilized with 0.3% 874 

Triton-X (Sigma #T8787) in PBS for 10 minutes and then blocked with 2% goat serum 875 

(ThermoFisher #16210-064), 3% BSA (ThermoFisher #15260-037), 0.1% Triton-X, and 876 

0.3M Glycine (Fisher #BP381-1) in PBS for 1 hour at room temperature and then 877 

incubated in primary antibody diluted in block, overnight at 4ºC (anti-Nestin (1:1000) 878 

Millipore MAB5326, anti-MAP2 (1:1000; Synaptic Systems 188004), anti-TBR1 (1:250; 879 

Abcam ab31940). Primary antibody was removed, and cells washed three times with PBS 880 

and then incubated for 1 hour in secondary antibody diluted 1:1000 in block, in the dark at 881 

room temperature (Alexa Fluor Goat IgG (H+L) Secondary Antibody, ThermoFisher 882 

Scientific). Cells were washed with PBS for three times and then washed in PBS 883 

containing Hoechst 33342 (Sigma #14533) for 10 minutes and then a final wash in PBS. 884 

Coverslips were mounted with Fluoromount-G® (Fisher #OB10001) and allowed to dry. 885 

40x images were acquired with an Olympus FLUOVIEW FV 3000 confocal microscope 886 

and 20x images were acquired at 20X on a Keyence BZ-X810 Widefield Microscope, 4 887 

random images were taken per coverslip from each replicate differentiation. TBR1 888 

positive cells and total nuclei (Hoechst) were quantified using Imaris Spots tool (Imaris 889 

Single Full software, BITPLANE) while MAP2 area was analyzed using Imaris Surface 890 

tool and the colocalization tool was used to count the number of nuclei were within the 891 

MAP2 positive surface. Both MAP2 positive nuclei and TBR1 positive cell counts were 892 

normalized by total nuclei per image. TBR1 and MAP2 expression values were analyzed 893 

using GraphPad Prism software using a Student’s two-tailed t-test, assuming equal 894 

variance. 895 

 896 

RNAseq experiments with iPSC neurons 897 

Total RNA was extracted from iPSC-derived neurons using the Direct-zol RNA Miniprep 898 

kit (Zymo Research) following the manufacturer’s protocol. RNA quantity was measured 899 

using Qubit Fluorometric Quantitation, and RNA integrity was assessed using the RNA 900 

Integrity Number (RIN) on an Agilent 4100 Tapestation. Stranded Total RNA-Seq 901 

libraries were prepared using EvoPlus V2 kits (Roche), multiplexed, and sequenced on an 902 

Illumina platform to an average depth of approximately 50 million reads per sample. Raw 903 

FASTQ files were aligned to the human reference genome (GRCh38) using RNA-STAR 904 

(v 2.7), and transcript abundances were quantified in transcripts per million (TPM) using 905 

Salmon (v 1.10). Genes with TPM values greater than 1 in at least 20% of the samples 906 

were selected for downstream analysis. Differential gene expression analysis was 907 

performed using a linear regression model that accounted for batch effects, including those 908 

from library preparation and sequencing. 909 

 910 

Processing snATAC-seq data 911 
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We used Cellranger-atac count (v 2.0.0) to map raw snATAC-seq reads to the GRCh38 912 

reference genome (downloaded from the 10x Genomics website) in each sample, 913 

quantifying chromatin accessibility for each cell barcode. First, we used the ArchR 914 

function createArrowFiles to format the output of Cellranger-atac, removing barcodes 915 

with transcription start site (TSS) enrichment less than 4 and fewer than 1000 fragments. 916 

This function also yields a barcodes-by-genomic-bins “tile matrix” and a “gene score 917 

matrix” which aggregates chromatin accessibility information proximal to each gene. We 918 

next used the R package ArchRtoSignac (93) to convert our dataset from ArchR to Signac 919 

format to proceed with downstream analyses in Signac. We next performed analyses of 920 

our recently generated snATAC-seq samples from PiD donors and cognitively normal 921 

controls with our previous snATAC-seq dataset of AD donors and controls as the 922 

reference dataset. We filtered snATAC-seq data with thresholds of TSS enrichment > 5 923 

and fragment counts > 1500, similar to with the high-quality data standards established by 924 

Xiong et al (27). Following this, we created a merged object of the PiD and AD snATAC-925 

seq datasets and generated an integrated, dimensionally-reduced representation using the 926 

Seurat function FindIntegrationAnchors, with reciprocal latent semantic indexing (RLSI) 927 

as the dimensionality reduction method. Using this anchor set, we performed transfer 928 

learning with the Seurat function FindTransferAnchors to predict cell-type identities for 929 

nuclei in the PiD dataset, based on annotations from the AD dataset. This transfer learning 930 

analysis assigned a probability score to each nucleus in the PiD dataset for its cell-type 931 

assignment. While some nuclei were confidently mapped to a single cell-type, others 932 

showed ambiguous mappings across multiple cell-types. To ensure high-confidence 933 

mappings, we filtered the PiD dataset to include only nuclei with a maximum prediction 934 

probability of 0.95. Subsequently, we conducted a final integrated analysis using LSI 935 

dimensionality reduction and Harmony, incorporating the biological sample as a covariate 936 

to account for batch effects. To ensure a fair and accurate comparison between PiD and 937 

AD, we implemented several measures, including rigorous batch correction and evaluation 938 

of UMAP visualizations of cell-type distributions across datasets. These steps confirmed 939 

that the observed contrasts between case and control groups were not confounded by batch 940 

effects, enabling robust comparative analyses of cell-type distributions. But to avoid 941 

potential confusion in our experimental design and comparison, we re-plotted UMAPs 942 

(Fig. S1C, Figs. 1, B to D) for PiD and AD separately against their respective control 943 

groups. 944 

 945 

Processing snRNA-seq data 946 

We used split-pipe ParseBio pipeline (v 1.0.3) to map snRNA-seq reads to the GRCh38 947 

reference transcriptome (downloaded from the Ensembl website) in each sample, 948 

quantifying unique molecular identifiers (UMI) for each cell barcode. Next, we accounted 949 

for potential ambient RNA contamination by applying Cellbender remove-background (v 950 

0.2.0) to model the ambient signal and remove it from the UMI counts matrix for each 951 

sample. We then identified barcodes mapping to multiple nuclei (multiplets) by applying 952 

Scrublet (v 0.2.3) with default settings to each sample. We applied an initial quality 953 

control (QC) filter to remove barcodes with fewer than 250 UMI. Further, we applied 954 

sample-specific filters to remove barcodes in the top 5% of UMI, the percentage of 955 

mitochondrial reads, and the multiplet score within each sample. We finally applied a 956 

dataset-wide cutoff to remove barcodes with greater than 20,000 UMI, greater than 0.2 957 

multiplet score, and greater than 5% mitochondrial reads, resulting in 68,999 barcodes for 958 

clustering analysis. We next performed clustering analysis with Scanpy with the following 959 

steps. First, we normalized gene expression for each cell by the total UMI counts in all 960 

genes and log transform using sc.pp.normalize total and sc.pp.log1p. Second, we 961 
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performed feature selection using sc.pp.highly_variable_genes using the “Seurat v3” 962 

option for the feature selection method, retaining 3,000 genes for downstream analyses. 963 

Third, we scaled the normalized expression matrix for these 3,000 genes to unit variance 964 

and centered at zero mean using the sc.pp.scale function. Fourth, we performed linear 965 

dimensionality reduction with principal component analysis (PCA) using the sc.tl.pca 966 

function, which we then corrected on the basis of the sample of origin using Harmony. 967 

Fifth, we constructed a cell neighborhood graph using the top 30 harmonized PCs using 968 

sc.pp.neighbors function. We visualized this cell neighborhood graph using UMAP with 969 

the function sc.tl.umap. We performed an initial round of Leiden clustering with a high-970 

resolution parameter (resolution = 3) to reveal additional clusters of low-quality cells 971 

which may have escaped our previous QC filtering, and to annotate major cell-types based 972 

on a panel of canonical marker genes. After removing two low-quality clusters, we split 973 

apart the dataset by major cell lineages (excitatory neurons, inhibitory neurons, 974 

oligodendrocytes, and astrocytes) to perform sub-clustering analyses, yielding our final 975 

clustered and processed snRNA-seq dataset. 976 

 977 

Differential accessible open chromatin analyses 978 

We systematically performed the analyses of differential open chromatin accessibility 979 

across each cellular type. This involved contrasting the disease states with their respective 980 

control conditions. For all the differential analyses employed, differentially accessible 981 

peak scrutiny was facilitated by implementing logistic regression (test.use = ‘LR’) to draw 982 

comparisons between cellular groupings. Logistics regression was utilized based on the 983 

accessibility interface of a specified open chromatin region (OCR) within varying groups 984 

of the selected cell-type. This is a protocol recommended by the Signac package (v 1.9.0) 985 

(96). The differential analyses were executed in Signac by deploying the same 986 

FindMarkers function found in Seurat (v 4.3.0). The accessible peaks that exhibited an 987 

adjusted p-value (corrected by Bonferroni method) of less than 0.05, accompanied by a 988 

minimum cellular fraction (min.pct > 0.05) in either of the two groups, were categorized 989 

as differentially accessible peak between the cellular groupings. We ran a comparative 990 

analysis of chromatin accessibility between the two diagnosis groups, specifically Pick’s 991 

disease (PiD) and Alzheimer’s disease (AD), and their age-appropriate cognitively normal 992 

counterparts. This was conducted within the human single-nucleus ATAC-seq dataset. 993 

The differential accessibility findings were visualized using a Complexheatmap (97), 994 

divided by diagnosis comparison and hierarchically aggregated based on the avg log2FC 995 

of differentially accessible peaks. This enabled us to focus on changes specific to each 996 

cellular type within each genomic classification. Finally, to single out the biological 997 

pathways and processes exhibiting a notable enrichment within our promoter differentially 998 

accessible peak sets or promoters of cis-regulatory-associated differentially accessible 999 

peaks present in distal and intronic regions, we invoked the support of the GREAT R 1000 

package (v 2.0.2) (98, 99). Source of variation analysis was conducted using the 1001 

variancePartition R package (v 1.32.5) (100) to assess the contribution of experimental 1002 

variables to variation in both gene expression and chromatin accessibility in single-cell 1003 

data, and to inform covariate selection in both the differential gene expression and 1004 

differential chromatin accessibility models (Fig. S10 A and B). In addition, we 1005 

systematically tested the effect of including different covariates on differential chromatin 1006 

accessibility outcomes to evaluate model sensitivity and potential overfitting (Fig. S10 C 1007 

to G). 1008 

 1009 

Differential gene expression analyses 1010 
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We identified unbiased marker genes in each of our snRNA-seq clusters by a one-versus-1011 

all differential gene expression test using the Seurat (v 4.3.0) function FindAllMarkers 1012 

with MAST as our differential expression model. We used sequencing biological sample 1013 

and total number of UMIs per cell as model covariates. We performed differential 1014 

expression analyses to compare gene expression signatures in cells from PiD and control 1015 

samples in each of our major cell-types (excitatory neurons, inhibitory neurons, 1016 

oligodendrocytes, OPCs, astrocytes, pericytes, endothelial cells, and microglia). Similar to 1017 

our cluster marker gene test, we used MAST as our differential expression module with 1018 

biological sample, sex, and number of UMI as model covariates. We used the R package 1019 

enrichR (v 3.0) to perform pathway enrichment analyses for the DEGs in our excitatory 1020 

neuron population. 1021 

 1022 

Statistical fine-mapping of candidate causal variants residue within cell-type specific 1023 

accessible peaks from the snATAC-seq data 1024 

We sourced comprehensive genome-wide association studies (GWAS) pertinent to 1025 

Alzheimer’s Disease (AD) (12) and frontotemporal degeneration (FTD) (13). The 1026 

summary data pertaining to the AD GWAS was procured from the European 1027 

Bioinformatics Institute GWAS Catalog (accession number: GCST90027158), whilst the 1028 

FTD GWAS summary data was retrieved from the International Frontotemporal Dementia 1029 

Genetics Consortium. To streamline the output files of the GWAS summary statistics from 1030 

each dataset, we employed a uniformly designed pipeline, MungeSumstats (101). The 1031 

application of this tool was governed by parameters that have been specified 1032 

comprehensively in our GitHub repository. To further elucidate the role of single 1033 

nucleotide polymorphisms (SNPs) pertaining to AD, we fine-mapped these SNPs within a 1034 

1-Mb window of the lead variants of AD risk loci that had been unearthed in the initial 1035 

GWAS investigation (12). In addition to the AD SNPs, the detection of lead SNPs 1036 

associated with FTD (13) required the identification of specific genetic markers encased 1037 

within a 1-Mb spectrum present on all chromosomes. The selection criteria for these 1038 

markers were established based on the statistical significance of their corresponding p-1039 

values. To accommodate all SNPs within the linkage disequilibrium (LD) block, we 1040 

estimated pairwise LD between SNPs within the 1-Mb window of the GWAS lead variant. 1041 

This estimation was performed using PLINK (v 1.9 and v 2.0) (102). Once the lead SNPs 1042 

from the FTD and AD GWAS had been secured, the identified data was customized 1043 

according to the corresponding 1-MB range LD matrix, within the sparse multiple 1044 

regression model. This model was then implemented in the fine-mapping instrument, Sum 1045 

of Single Effects (SuSiE) (103, 104). We managed to acquire a number of credible sets 1046 

(CSs) for identified FTD and AD GWAS risk loci with high probability (a posterior 1047 

inclusion probability: PIP > 0.95). In order to prioritize these credible sets, we aligned 1048 

SNP locations with our snATAC-seq open chromatin regions. The fine-mapped casual 1049 

SNPs within the identified cell-types were assessed for credibility by cross-referencing the 1050 

GWAS risk genes’ expression level across all cell-types using control data from published 1051 

resources (17, 20, 39). The final step included checking two scores - the probability of 1052 

being loss-of-function intolerant (pLI) and the loss-of-function observed/expected upper-1053 

bound fraction (LOEUF) for the prioritized GWAS risk loci. These scores reflect the 1054 

integrity of a gene or transcript in tolerating protein truncating variation (38). 1055 

 1056 

Utilizing publicly available datasets 1057 

We obtained the sequence data from three peer-reviewed single-nucleus RNA sequencing 1058 

(snRNA-seq) studies related to Alzheimer’s Disease (AD) (17, 20, 39). The datasets 1059 

represented in the works of Mathys et al. (2019), and Zhou et al. (2020) were accessed via 1060 
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the Synapse platform (referenced under syn18485175 and syn21670836, respectively). In 1061 

the context of the dataset for the Morabito et al. (2021) study, which was formulated by 1062 

our research team, a download was not necessitated, but you can access it under 1063 

syn22079621. Although the pipeline was largely consistent, there were minor deviations 1064 

in terms of parameter adjustments as per the individual requirements of each dataset. A 1065 

comprehensive delineation of these nuanced changes is documented in our GitHub 1066 

repository. Additionally, to enhance the reliability of our analyses, we incorporated 1067 

PsychENCODE scQTL datasets from Pratt et al. (34) and Emani et al. (35), DLPFC 1068 

snRNA-seq scQTL data from Fujita et al. (36), and neuronal and glial caQTL data from 1069 

Zeng et al. (37). These datasets were leveraged to validate key findings from our 1070 

snATAC-seq analyses. Specifically, we focused on significant eQTLs (p-value < 1×10ˆ-5) 1071 

associated with fine-mapped GWAS genes within the TF regulatory networks identified in 1072 

this study. Furthermore, we cross-referenced our peak sets with Xiong et al.’s epigenomic 1073 

data (27), further substantiating the robustness of our findings. 1074 

 1075 

Finding co-accessible peaks with Cicero to establish putative enhancer-promoter 1076 

linkage 1077 

We initiated the conversion of the SeuratObject into the CellDataSet framework utilizing 1078 

the as.cell_data_set function offered within the SeuratWrappers toolkit (v 0.3.0). This was 1079 

subsequently transformed into a Cicero object through the application of the 1080 

make_cicero_cds function taken from the Cicero package (v 1.3.4.11). The run_cicero 1081 

function, a key component of the Cicero suite, was then employed to calibrate the co-1082 

accessibility of open chromatin peaks across the genome for each cell-type. The 1083 

predominant objective here was to predict cis-regulatory interactions within a genomic 1084 

window of 300,000 base pairs. The construction of a linkage co-accessibility score for 1085 

each associating pair of accessible peaks was completed using a graphical LASSO 1086 

regression model. This package and approach were based on techniques detailed in the 1087 

Cicero method (31). The understanding being that an increased co-accessibility score 1088 

denoted a stronger bond between an OCR pair and hence, greater confidence could be 1089 

assigned to this pairing within a given dataset. Within the total ensemble of OCR pairs, we 1090 

prioritized our examination on pairs identified as enhancer-promoter. The rationale for this 1091 

selective focus stemmed from the potential for the enhancer-enhancer pair’s co-1092 

accessibility score to originate from inherent enhancer-enhancer interactions. This in turn 1093 

could lead to a perceivable reduction in the co-accessibility scoring for the enhancer-1094 

promoter pair. Lastly, a comparative study was undertaken to calculate the delta co-1095 

accessibility score within identical OCR pairs. In this step, diseased states were compared 1096 

with their corresponding control settings. The purpose of this comparison was to highlight 1097 

any enhanced enhancer-promoter linkages that could potentially be contributing to the 1098 

advancement of the disease. 1099 

 1100 

Characterizing biological functions of putative enhancer-promoter linkage 1101 

We used NMF (v 0.23.0) as implemented in the R NMF package using k = 25 matrix 1102 

factors on the cis-regulatory-linked-enhancer accessibility matrix averaged by each 1103 

snATAC-seq cluster split by cells from PiD control and PiD samples, as well as AD 1104 

control and AD samples, yielding 25 enhancer modules. The NMF basis matrix (W) was 1105 

used to assign each enhancer to its top associated module, and the NMF coefficient matrix 1106 

(H) was used to determine which cell cluster that each module was most associated with. 1107 

We applied NMF with a factorization rank of k = 25 to decompose the enhancer-by-1108 

cluster matrix derived from cis-regulatory-linked enhancer accessibility values. While the 1109 

factorization yielded 25 enhancer modules, Fig. 2B highlights a focused subset of 9 1110 
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modules that exhibited clear cell-type-specific accessibility patterns most relevant to the 1111 

aims of the figure. The remaining modules were not excluded from downstream analysis, 1112 

but were omitted from this particular plot to maintain visual clarity and focus. To identify 1113 

biological processes associated with these enhancer modules, we used the enrichR (v 3.0) 1114 

package to query enriched GO terms for the set of target genes in each enhancer module in 1115 

the GO Biological Processes 2021, GO Cellular Component 2021, GO Molecular 1116 

Function 2021 databases, Human WikiPathway 2021 and Human KEGG 2021. 1117 

 1118 

Transcription factor Occupancy prediction on snATAC-seq chromatin accessibility 1119 

TOBIAS (56) stands as a robust, precise, and rapid footprinting framework, facilitating a 1120 

comprehensive exploration of TF binding occupancy for numerous TFs concurrently on a 1121 

genome-wide scale as well as at the gene local region. We want to use this ATAC-seq 1122 

analysis toolkit to investigate the kinetics of transcription factor (TF) binding in PiD, AD 1123 

and their distinctions compared to respective control conditions, and we turn to TOBIAS 1124 

for its capabilities as the ATAC-seq TF footprinting analyses toolkit. Our initial steps 1125 

involved the extraction and categorization of cell barcodes based on both cell-type and 1126 

diagnosis. Subsequently, we compiled distinct .bam files for each condition, serving as the 1127 

requisite input format for the TOBIAS ATACorrect step. This particular tool within 1128 

TOBIAS corrects the inherent insertion bias of Tn5 transposition. Following this 1129 

correction process, the central task in footprinting commenced with the identification of 1130 

protein binding regions across the entire genome. Utilizing single-base pair cut site tracks 1131 

generated by ATACorrect, TOBIAS FootprintScores was employed to compute a 1132 

continuous footprinting score across these regions. This approach enhances the prediction 1133 

of binding for transcription factors even with lower footprintability, characterized by 1134 

weaker footprints. Subsequently, the footprints were plotted using the function 1135 

PlotAggregate to visualize and compare the aggregated signals across the specified 1136 

conditions. This step serves to provide a tangible representation of TF binding occupancy 1137 

and facilitates comparative analyses of these changes under different diagnosis conditions 1138 

in each cell-type. 1139 

 1140 

Transcription factor Regulatory Network Construction 1141 

To construct a comprehensive TF regulatory network, we integrated insights from Cicero 1142 

(31) and TOBIAS (56). First, leveraging Cicero, we focused on the predicted cis-1143 

regulatory interactions within a 300,000 base pair window, and grouped them based on the 1144 

genomic class around its target gene identified by accessible promoter peaks. By 1145 

prioritizing the examination of enhancer-promoter pairs within the ensemble of OCR 1146 

pairs, we discerned potential interactions crucial for regulatory difference. 1147 

Simultaneously, using TOBIAS, we explored TF binding activity in the selected gene 1148 

local region by applying ATAC-seq footprinting analyses to identify protein binding 1149 

regions across the genome. Following that, we utilized knowledge of accessible peaks’ 1150 

cis-regulatory activity and gene local region TF binding activity to construct a TF 1151 

regulatory network for selected target genes using R package igraph (v 2.0.1.9005). This 1152 

approach combines co-accessibility from Cicero and footprinting from TOBIAS, 1153 

providing a nuanced perspective on the regulatory landscape. The resultant TF regulatory 1154 

network offers a multifaceted depiction of the interplay between TFs, enhancers, and 1155 

promoters, enhancing our ability to decipher the intricacies of gene regulation in the 1156 

context of PiD and AD. In the network, top-selected genes were filtered to include only 1157 

those with an adjusted p-value < 0.05 and expressed in at least 5% of cells (pct > 0.05). 1158 

From this set, we further prioritized genes within the top 50% of co-access scores derived 1159 

from cis-regulatory link calculations, with TF binding on the cis-regulatory elements 1160 
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confirmed by TOBIAS package. Next, we retained the top 10 or fewer genes with the 1161 

largest absolute log fold changes for both upregulated and downregulated genes associated 1162 

with the selected transcription factors (TFs) in the TF network. 1163 

 1164 

 1165 

  1166 
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 1851 
Fig. 1. snMulti-omics for the study of cellular diversity in the PiD and AD brain. (A) 1852 

Immunofluorescence characterization of PiD, AD and control; and schematic 1853 

representation of the samples used in this study, sequencing experiments and 1854 

downstream bioinformatic analyses, created with BioRender.com. Representative 1855 

quadruple immunofluorescence images for IBA1 (red), GFAP (magenta), amyloid 1856 

plaque (blue), and AT8/p-tau (green) from prefrontal cortex region of postmortem 1857 

human brain tissues of age- and sex-matched control (n = 3), AD (n = 5) and PiD 1858 

(n = 5) cases. Images were captured using Nikon ECLIPSE Ti2 inverted 1859 
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microscope (20X). (B, C) Uniform Manifold Approximation and Projection 1860 

(UMAP) visualizations for single-nucleus ATAC-seq data (B) and single-nucleus 1861 

RNA-seq data (C) from Pick’s disease and age-matched control. (D) UMAP 1862 

visualizations for single-nucleus ATAC-seq and RNA-seq data from Alzheimer’s 1863 

disease and age-matched control. (E) Coverage plots for canonical cell-type 1864 

markers: GFAP (chr17:44905000-44916000) for astrocytes, SYNPR 1865 

(chr3:63278010-63278510) for neurons, SLC17A6 (chr11:22338004-22345067) 1866 

for excitatory neurons, GAD2 (chr10:26214210-26241766) for inhibitory neurons, 1867 

CSF1R (chr5:150056500-150087500) for microglia, MOBP (chr3:39467000-1868 

39488000) for oligodendrocytes, PDGFRA (chr4:54224871-54300000) for 1869 

pericytes and endothelial cells in the PiD dataset. The gray bar within each box 1870 

highlights the promoter regions. 1871 
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 1872 
 1873 

Fig. 2. Open chromatin classification and epigenetically distinct cell-types through 1874 

putative promoter-enhancer links in the human PiD and AD prefrontal 1875 

cortex. (A) Schematics of putative promoter-enhancer linkage. (B) NMF heatmap 1876 

of putative enhancer scaled chromatin activity in PiD, AD, and their matching 1877 

controls. (C) Correlation heatmap of putative promoter-enhancer co-accessibility. 1878 

(D) Peak-type and biotype classification of differentially accessible peaks (p-value 1879 
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< 0.05). (E) Heatmaps of fold changes (Disease vs. Control) on normalized 1880 

chromatin accessibility of differential accessible promoters and distal in excitatory 1881 

neurons, astrocytes, microglia, and oligodendrocytes (FDR-adjusted p-value < 0.05 1882 

and abs(log2FC) > 0.5), with gene ontology acquired from GREAT and examples 1883 

of promoters and distal regions’ cis-regulatory linked gene as in panel (A). 1884 
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 1885 
 1886 

Fig. 3. Cell-type-specific fine-mapped causal SNPs from FTD and AD GWAS risk 1887 

loci. Left panel: The left dot-plot shows the gene expression in each cell-type from 1888 

the control samples of three public snRNA-seq datasets (17, 20, 39). Middle panel: 1889 
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Fine-mapped SNPs from identified FTD and AD GWAS risk loci showing overlap 1890 

with open chromatin regions from snATAC-seq and GWAS risk gene expression 1891 

in major cell-types. The fine-mapping column using Sum of Single Effects (SuSiE) 1892 

shows all of the snATAC-seq cell-type-specific open chromatin regions 1893 

overlapping credible sets, defined as the groups of SNPs containing the causal 1894 

variant, (PIP > 0.95). The closest gene to the credible set is indicated on the left. 1895 

The r2 indicates the average correlation between the SNPs in the credible set. Both 1896 

the probability of being loss-of-function intolerant (pLI) and loss-of-function 1897 

observed/expected upper bound fraction (LOEUF) are from gnomAD (38) 1898 

(gnomAD v4.0 UCSC). In the pLI column, a value closer to 1 indicates that the 1899 

gene cannot tolerate protein-truncating variation. In the LOEUF column, a value 1900 

closer to 0 indicates that the GWAS risk gene is constrained or mutation intolerant. 1901 

The overlapped snATAC-seq OCR columns, including SNPs overlapped with 1902 

peaks in this study and in Xiong et al. (27), reflect the cell-types of those causal 1903 

SNPs from a credible set that are present or absent. Right panel: The two dot-plots 1904 

on the right show the snRNA-seq differentially expressed GWAS genes in each 1905 

cell-type between PiD and age-matched control samples, and between AD and 1906 

age-matched control samples (17). A complete set of the fine-mapped SNPs and 1907 

credible sets with a PIP > 0.95 shown for FTD and AD is available in Table S3. 1908 

Data on fine-mapped SNPs with cCREs and their associated target genes can be 1909 

accessed through our online interactive database, scROAD.  1910 

 1911 
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 1912 
Fig. 4. Excitatory neuronal related transcription factor dysregulation and gene 1913 

expression changes associated with PiD and AD pathology. (A) Schematic of 1914 

co-accessible mapping between putative enhancer and promoter for the target gene 1915 

as well as the TF binding activity at its local regions. (B) Genome-wide Tn5 bias-1916 

subtracted TF differential footprinting binding scores of PiD and AD in excitatory 1917 

neurons (EX) compared to the corresponding controls. (C) Transcription factor 1918 

(TF) regulatory networks showing the predicted candidate target genes for the 1919 

following TFs: CTCF, BHLHE22, and JDP2 in EX. Highlighted transcription 1920 
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factors and other differentially expressed TFs are shown in yellow. Upregulated 1921 

differentially expressed genes are shown in red and square. Downregulated 1922 

differentially expressed genes are shown in blue and in a circle. The gene of 1923 

interest, UBE3A, is downregulated, shown in pink and in a circle. Differentially 1924 

expressed GWAS risk genes are displayed in bright blue. Edges representing the 1925 

linkage of TF-target gene regulation are shown in purple for PiD and sienna for 1926 

AD. (D) Delta co-accessibility of ADAM10 and its open chromatin regions in EX 1927 

for both AD and PiD with their corresponding controls. Highlighted regions in 1928 

dark yellow represent all SuSiE fine-mapped SNPs (Fig. 3) close to the target 1929 

gene. (E) Fold changes of TFs binding in the SuSiE fine-mapped regions for both 1930 

AD and PiD. (F) Dot-plot of differentially expressed genes in PiD and AD versus 1931 

their respective controls. (G) Dot-plot of differentially expressed GWAS risk 1932 

genes and TFs in PiD and AD versus their respective controls. 1933 

 1934 

 1935 
 1936 

Fig. 5. Glial changes in transcription factor dysregulation and gene expression in PiD 1937 

and AD progression. (A, C, E) Genome-wide Tn5 bias-subtracted TF differential 1938 

footprinting binding score of PiD and AD in microglia (MG) (A), astrocytes (ASC) 1939 

(C), and oligodendrocytes (ODC) (E) compared to their corresponding controls. 1940 

(B, D, F) TF regulatory networks showing the predicted candidate target genes for 1941 

MG (B), ASC (D), and ODC (F). Highlighted transcription factors and 1942 

differentially expressed TFs are shown in yellow. Upregulated differentially 1943 

expressed genes are shown in red and square. Downregulated differentially 1944 
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expressed genes are shown in blue and in a circle. The differentially expressed 1945 

GWAS risk genes are displayed in bright blue. Edges representing the linkage of 1946 

TF-target gene regulation are shown in purple for PiD and sienna for AD. 1947 

 1948 

 1949 
 1950 

Fig. 6. Mapping distal candidate cis-Regulatory Elements (cCREs) involved in 1951 

synaptic function to their target genes. (A) Delta co-accessibility of UBE3A and 1952 

enlarged CRISPR-edited enhancer regions of UBE3A in salmon and differentially 1953 

accessible peaks in yellow overlap with intronic regions of long intergenic non-1954 

protein coding RNA 22 (LINC02250). (B) iPSC-derived neurons assessment, Left: 1955 
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Representative 40X images of 28-day WT and UBE3A KD cultures showing 1956 

MAP2 (magenta) and NESTIN (green) expression. Scale bar = 10 µm. Right: 1957 

Representative 20X images showing MAP2 (magenta), NESTIN (green), TBR1 1958 

(magenta), and Hoechst (blue) expression. Scale bar = 30 µm. (C) Experimental 1959 

design for human-gained enhancer (HGE) CRISPR-Cas9 for UBE3A, RNA-seq 1960 

performed on iPSC-derived neurons after 28 days of development. (D) Volcano 1961 

plot of DEGs from RNA-seq (UBE3AKD vs WT), n = 3 per group. (E) UBE3A 1962 

expression from RNA-seq (UBE3AKD vs WT).  (F) Gene ontology of upregulated 1963 

and downregulated DEGs from RNA-seq (UBE3AKD vs WT). (G) Representative 1964 

immunofluorescence images for UBE3A (red), neurofilament marker (green), and 1965 

DAPI (blue) from postmortem human brain tissue (PFC) of control (n=3), AD 1966 

(n=5) and PiD (n=5) cases. 60X Images were captured using Nikon ECLIPSE Ti2 1967 

inverted microscope. Scale bar = 30 µm. (H) UBE3A expression from snRNA-seq 1968 

in EX. (I) snRNA-seq DEG analyses in EX. (J) Gene ontology of upregulated and 1969 

downregulated DEGs from snRNA-seq (PiD vs Control). 1970 

 1971 

 1972 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2025. ; https://doi.org/10.1101/2024.09.06.611761doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.06.611761
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

1 

 

 

 

 

Supplementary Materials for 
 

Single-nucleus multi-omics identifies shared and distinct pathways in Pick’s 

and Alzheimer’s disease 

 
Zechuan Shi, Sudeshna Das, Samuel Morabito et al. 

 
*Corresponding author. Email: vswarup@uci.edu 

 

 

 

 

 

This PDF file includes: 

 

Supplementary Text 

Figs. S1 to S10 

Tables S1 to S5 

Data S1 

 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2025. ; https://doi.org/10.1101/2024.09.06.611761doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.06.611761
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

2 

 

 

Supplementary Text 

 

scROAD Interactive Database 

 

We have developed scROAD (Single-cell Regulatory Occupancy Archive in Dementia), an 

interactive online resource designed to explore single-cell cCREs (candidate cis-regulatory 

elements) transcription factor occupancy data. This database provides comprehensive 

information derived from snATAC-seq analysis of human postmortem prefrontal cortex (PFC) 

tissue, with a specific focus on Alzheimer’s Disease (AD) and Pick’s Disease (PiD). scROAD 

enables researchers to perform exploratory searches for genes, transcription factors (TFs), and 

SNPs, as well as to visualize transcription factor regulatory networks. Additionally, users can 

download the data for their own research purposes. 

 

Accessible at http://swaruplab.bio.uci.edu/scROAD, this resource is freely available for 

noncommercial research purposes. By providing high-resolution regulatory data, scROAD 

supports the broader scientific community in advancing our understanding of transcriptional 

regulation in dementia and fosters the generation of novel hypotheses and discoveries. 
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Fig. S1. Quality control and cell type annotations of the PiD and AD snMulti-omic datasets.  

(A) Violin plot showing the number of peak counts in the samples from the PiD PFC snATAC-

seq dataset. (B) Violin plot showing the number of UMI, genes and mitochondrial percentage in 
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the samples from the PiD PFC snRNA-seq dataset. (C) Integrated Uniform Manifold 

Approximation and Projection (UMAP) visualizations by diagnosis for snRNA-seq and 

snATAC-seq data from PiD and AD. (D) Uniform Manifold Approximation and Projection 

(UMAP) visualizations for clusters of snRNA-seq data from PiD. (E) Heatmap of canonical cell-

type markers for snRNA-seq data from PiD. (F) Coverage plots for canonical cell-type markers 

in AD dataset: GFAP (chr17:44905000-44916000) for astrocytes, SYNPR (chr3:63278010-

63278510) for neurons, SLC17A6 (chr11:22338004-22345067) for excitatory neurons, GAD2 

(chr10:26214210-26241766) for inhibitory neurons, CSF1R (chr5:150056500-150087500) for 

microglia, MOBP (chr3:39467000-39488000) for oligodendrocytes, PDGFRA (chr4:54224871-

54300000) for Pericytes and Endothelial cells in PiD dataset. The gray bar within each box 

highlights the promoter regions.  
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Fig. S2. Comprehensive analysis of peak overlaps, cis-regulatory construction and changes 

in PiD and AD.  

(A) Proportion of peaksets overlapped between Xiong et al. (27) and this study. (B) Number of 

peaks overlapped between this study and Xiong et al. (C) Genomic type classification of 

differential open accessible regions grouped by cell types (P-value < 0.05) between PiD and AD 

with their respective controls. (D) Ridgeline plot showing the distance of imputed enhancers 

from the promoters. (E) Heatmaps of fold changes (Disease vs. Control) on normalized 

chromatin accessibility of differential accessible intronic regions in excitatory neurons, 

astrocytes, microglia and oligodendrocytes (FDR adjusted P-value < 0.05 and abs(log2FC) > 

0.5), gene ontology acquired from GREAT and examples of promoters and distal regions’ cis-

regulatory linked gene as in the panel of Fig. 2E. (F) Over-representation analysis (ORA) of 

DEGs (snRNA-seq) and DARs (snATAC-seq) from PiD and AD.  
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Fig. S3. Integration and validation of GWAS fine-mapped SNPs with open chromatin 

regions in FTD and AD.  

(A) The schematic of analyses showing the summary of Frontotemporal Dementia (FTD) and 

Alzheimer’s Disease GWAS meta-analyses, fine-mapping, and other data processing steps to 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2025. ; https://doi.org/10.1101/2024.09.06.611761doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.06.611761
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

8 

 

link causal SNPs to snATAC-seq accessible peaks in specific cell types. (B) Histogram of 

Overlapped Credible Sets with this study: Count vs. Overlapped Cell Types. It describes a 

histogram that displays the count of overlapped credible sets and their associated number of 

overlapped cell types. (C) Histogram of Overlapped Credible Sets with Xiong et al. (27): Count 

vs. Overlapped Cell Types. (D) Distribution of QTLs (34-37) overlapped with peak types from 

this study. (E) Counts of DARs in a 2000 bp window of overlapped SNPs by dataset and cell 

type from this study. 

 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2025. ; https://doi.org/10.1101/2024.09.06.611761doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.06.611761
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

9 

 

 

Fig. S4. EX transcription factor dynamics and differential expression in PiD and AD.  

(A) Open chromatin co-accessibility plot with TF binding occupancy calculation. (B) Two open 

chromatin scenarios in PiD and control; scenario 1: Open chromatin with TF binding (footprint) 

in PiD; scenario 2: Open chromatin without TF binding (no footprint) in PiD. (C) Vulnerability 

module score (60) of neurons, EX and INH, in PiD. (D) Aggregated TF footprints of CTCF 
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(MA0139.1), BHLHE22 (MA1635.1), and JDP2 (MA0656.1) in AD and PiD. (E) Significant 

AD sc-eQTLs (p-value < 1×10ˆ-5) from Fujita et al. (36) by cell type. (F) PiD snRNA all 

significantly differential expressed TFs. (G) Heatmap of average expression difference of 

highlighted TFs and top selected differentially TFs regulated by highlighted TFs between PiD or 

AD with their matched control (FDR-adjusted p-value < 0.05). (H) Dotplot of differentially 

expressed TFs in Rexach et al. (7) bvFTD versus their respective controls. 
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Fig. S5. INH TF binding difference and regulatory networks in PiD and AD.  

(A) Genome-wide Tn5 bias-subtracted TF differential footprinting binding score of PiD and AD 

in INH. (B) NRF1 and JDP2 TF regulatory networks showing the predicted candidate target 

genes for INH. (C) Dot-plot of the differentially expressed genes and TFs in PiD and AD versus 

their respective controls. 
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Fig. S6. Aggregated footprints of TFs in MG, ASC, and ODC.  

(A, B, C) Dot-plot of the differentially expressed gene, differentially expressed GWAS risk 

genes, and TFs in PiD and AD versus their respective controls in MG (A), ASC (B), and ODC 
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(C). (D) Aggregated TF footprints of Spi1 (MA0080.6), TFDP1 (MA1122.1) and FLI1 

(MA0475.2) in PiD and AD. (E) Aggregated TF footprints of BACH1 (MA1633.2) and JUND 

(MA0491.2) in PiD and AD. (F) Aggregated TF footprints of ZBTB33 (MA0527.1) and HES1 

(MA1099.2) in PiD and AD. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2025. ; https://doi.org/10.1101/2024.09.06.611761doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.06.611761
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

14 

 

 

Fig. S7. Percentages of cells expressing selected genes in TF.  

(A) Microglia: percentages of cells expressing selected genes in the TF network. (B) Astrocyte: 

percentages of cells expressing selected genes in the TF network. (C) Oligodendrocyte: 

percentages of cells expressing selected genes in the TF network. 
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Fig. S8. UBE3A enhancer accessibility and iPSC-derived neurons confirmation.  

(A) Delta co-accessibility of UBE3A and its open chromatin regions in EX for both AD and PiD 

with their corresponding controls. Highlighted regions in salmon represent CRISPR-edited 

enhancer regions to the UBE3A. (B) Quantification of DAPI nuclei colocalized with MAP2 

expression, normalized to total nuclei. (C) Quantification of TBR1 positive nuclei normalized to 

total nuclei. Points represent individual images, n=4 per coverslip, n=1 coverslip per 3 

differentiation replicates. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 6, 2025. ; https://doi.org/10.1101/2024.09.06.611761doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.06.611761
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

16 

 

 

Fig. S9. Subclustering analysis on EX.  

(A) UMAP of snRNA-seq EX subcluster. (B) UMAP of snATAC-seq EX subcluster. (C) 

Summary table of differential expression and accessibility analyses of EX subcluster. 
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Fig. S10. Covariate partitioning and impact of covariate selection on the number of 

statistically significant differentially accessible regions (DARs). (A) Source of variation 

analysis showing the proportion of gene expression variance explained by each covariate used in 

the differential expression model in snRNA-seq. (B) Source of variation analysis showing the 

proportion of chromatin accessibility variance explained by each covariate used in the 

differential expression model in snATAC-seq. (C) Number of statistically significant DARs per 

cell type with covariates (age, sex, postmortem interval, number of fragments) for AD data from 

Xiong et al., 2023, Cell (27). DARs were reprocessed using the same covariates as in snRNA-

seq. (D) Number of statistically significant DARs per cell type with covariates (sex, sample, 

number of fragments) for AD data from Morabito et al., 2021, Nature Genetics (17). (E) Number 

of statistically significant DARs per cell type with covariates (sex, sample, number of fragments) 

for PiD data from this study. No covariates were used in the original analysis. (F) Number of 

statistically significant DARs per cell type without any covariates for AD data from Morabito et 

al., 2021, Nature Genetics (17). (G) Number of statistically significant DARs per cell type 

without any covariates for PiD data from this study. 
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Table S1. Summary of supplementary tables providing metadata, marker analysis, and cell 

counts for PiD and AD datasets.  

(Table S1A) Metadata for PiD and AD. (Table S1B) Results from snATAC-seq FindAllMarkers 

analysis on gene activity. (Table S1C) Cell counts for each cell type across snATAC-seq and 

snRNA-seq datasets. (Table S1D) Results from snRNA-seq FindAllMarkers analysis on gene 

expression. 

 

Table S2. Summary of snATAC-seq peaks and differential accessibility regions (DARs) in 

PiD and AD datasets. 

(Table S2A) Complete peak set of snATAC-seq for both PiD and AD. (Table S2B) Summary 

counts of peak type and biotype in PiD and AD DARs (p < 0.05). (Table S2C) DAR analysis for 

PiD vs Control (pct > 0.05), including all statistics, not just significant ones. 

 

Table S3. Fine-mapping and GWAS enrichment analysis in PiD and AD datasets. 

(Table S3A) Overlap of snATAC-seq peaks with SuSiE fine-mapped credible sets (PIP > 0.95) 

and Xiong et al., 2023 (27). (Table S3B) Complete list of SuSiE fine-mapped credible sets (PIP 

> 0.95). (Table S3C) GWAS gene enrichment analysis in PiD DGE. 

 

Table S4. Differential gene expression (DGE) analysis in PiD and AD datasets. 

(Table S4A) DGE results using MAST glm for PiD vs Control. (Table S4B) DGE results using 

MAST glm for AD vs Control. 

 

Table S5. Human-gain enhancers (HGE) overlapped with snATAC-seq peaks in PiD and 

AD datasets. 

 

Data S1. iPSC CRISPR KO Karyotype and Pluripotency Data Files. 

(File 1) Project_Report_UBE3A__Swarup_6_30_22.pdf contains the design and results of the 

UBE3A CRISPR knockout experiment, including the knockout design strategy, experimental 

outcomes, quality control data for generated cell lines, and validation of iPSC characteristics. 

(File 2) Microarray REPORT CLG-46814_ADRC76.pdf is the microarray report for the parental 

iPSC line ADRC76, derived from fibroblasts and provided by the UCI Alzheimer’s Disease 

Research Center (ADRC) iPSC Core. (File 3) Microarray REPORT CLG-46815_C40.pdf 

corresponds to Clone 40 derived from the ADRC76 iPSC line. (File 4) Microarray REPORT 

CLG-46816_C14.pdf corresponds to Clone 14 derived from the ADRC76 iPSC line. 
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