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Abstract 1 

Navigating around the world, we must adaptively allocate attention to our surroundings 2 
based on anticipated future stimuli and events. This allocation of spatial attention boosts 3 
visuocortical representations at attended locations and locally enhances perception. 4 
Indeed, spatial attention has often been analogized to a “spotlight” shining on the item 5 
of relevance. Although the neural underpinnings of the locus of this attentional spotlight 6 
have been relatively well studied, less is known about the size of the spotlight: to what 7 
extent can the attentional field be broadened and narrowed in accordance with 8 
behavioral demands? In this study, we developed a paradigm for dynamically estimating 9 
the locus and spread of covert spatial attention, inferred from visuocortical activity using 10 
fMRI in humans. We measured BOLD activity in response to an annulus while 11 
participants (4 female, 4 male) used covert visual attention to determine whether more 12 
numbers or letters were present in a cued region of the annulus. Importantly, the width 13 
of the cued area was systematically varied, calling for different sizes of the attentional 14 
spotlight. The deployment of attention was associated with an increase in BOLD activity 15 
in corresponding retinotopic regions of visual areas V1—V3. By modeling the 16 
visuocortical attentional modulation, we could reliably recover the cued location, as well 17 
as a broadening of the attentional modulation with wider attentional cues. This modeling 18 
approach offers a useful window into the dynamics of attention and spatial uncertainty.  19 

Significance Statement 20 

This study explores whether spatial attention can dynamically adapt by shifting and 21 
broadening the attentional field. While previous research has focused on the modulation 22 
of neural responses at attended locations, less is known about how the size of the 23 
attentional field is represented within visual cortex. Using fMRI, we developed a novel 24 
paradigm to estimate the spatial tuning of the attentional field and demonstrate that we 25 
were able to recover both the location as well as the width of the attentional field. Our 26 
findings offer new insights into the neural mechanisms underlying the deployment of 27 
spatial attention, contributing to a deeper understanding of how spatial attention 28 
supports visual perception. 29 
 30 
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Introduction 1 

We bounce attention around all the time. Take, for instance, when we’re monitoring 2 
oncoming traffic while driving. It isn’t sufficient to attend to the single most likely source 3 
of traffic. Instead, attention adaptively broadens and narrows to cover the anticipated 4 
spatial distribution of relevant events. The need to spread attention across different 5 
swaths of the visual field is driven, to a large degree, by spatial uncertainty: statistical 6 
regularities give us a general sense as to where something useful might happen, and this 7 
evolves from moment to moment. We navigate this uncertainty by dynamically deploying 8 
spatial attention. 9 

Covert spatial attention improves behavioral performance at attended locations 10 
at the cost of performance at unattended locations (Posner, 1980), leading to a common 11 
metaphor that spatial selective attention acts as a ‘spotlight’ or ‘zoom lens’ (Shaw and 12 
Shaw, 1977; Posner, 1980; Eriksen and St. James, 1986; Carrasco, 2011). This 13 
attentional ‘spotlight’ is characterized by a specific size and location and traverses the 14 
visual field based on behavioral demands (Eriksen and St. James, 1986; Castiello and 15 
Umiltà, 1990), selectively boosting information at the attended location within the visual 16 
system while suppressing information elsewhere. Animal studies have observed 17 
multiplicative increases in visuocortical neural responses at attended locations 18 
(McAdams and Maunsell, 1999; Maunsell, 2015) and human neuroimaging studies have 19 
found similar focal modulations of population responses (Kastner et al., 1998; 20 
Brefczynski and DeYoe, 1999; McMains and Somers, 2004; Datta and DeYoe, 2009; 21 
Sprague and Serences, 2013; Puckett and DeYoe, 2015; Samaha, Sprague and Postle, 22 
2016; Shioiri et al., 2016; Bloem and Ling, 2019; Bartsch et al., 2023). 23 

While neural modulation at the locus of attention has been relatively well studied, 24 
less is known regarding the neural signatures of the size of the attentional field 25 
(Yeshurun, 2019). Spreading attention over a larger region of visual space can decrease 26 
behavioral performance, but only a handful of studies have interrogated associated 27 
effects within visual cortex (Müller et al., 2003; Herrmann et al., 2010; Itthipuripat et al., 28 
2014; Feldmann-Wüstefeld and Awh, 2020). This is surprising, as the spatial distribution 29 
of the attentional field is a key feature in an influential theoretical model of attention 30 
(Reynolds and Heeger, 2009). The model assumes that the size of the attentional field 31 
can be adjusted based on task demands and that the interaction between attentional 32 
field size and stimulus-related factors can predict observed attentional gain effects. 33 

While the studies that have experimentally manipulated the attentional field size 34 
found evidence congruent with this prominent theory (Herrmann et al., 2010; Itthipuripat 35 
et al., 2014; Kınıklıoğlu and Boyaci, 2022), few studies have directly investigated the 36 
spatial extent of the attentional window and its concomitant neural representation. One 37 
neuroimaging study revealed that the attentional field expanded in the face of greater 38 
task-related uncertainty (Herrmann et al., 2010), while other studies showed that the 39 
responsive area of visual cortex increased in size, coupled with a decrease of the overall 40 
population response (Müller et al., 2003; Feldmann-Wüstefeld and Awh, 2020). While 41 
these studies are consistent with the notion that the attentional field size can be detected 42 
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in visual cortex, methods for dynamically recovering location and field size from moment 43 
to moment are lacking.  44 

In this study, we developed a paradigm that allowed us to dynamically 45 
characterize the spatial tuning of spatial attention across the visual field. Using fMRI in 46 
humans, we examined whether attentional modulation of the BOLD response spanned 47 
a larger area of visual cortex when participants were cued to perform attend to a larger 48 
region of space. Behavioral performance confirmed that participants could successfully 49 
allocate their attention to different-sized swaths of the visual field. This deployment of 50 
attention was associated with a modulation in cortical activity in the corresponding 51 
retinotopic areas of visual cortex. By modeling the location and spread of the 52 
visuocortical modulation, we dynamically recovered the cued location from the 53 
attentional activity with a high degree of fidelity, together with a broadening of the 54 
attentional modulation for wider attentional cues.  55 
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Results 1 

Behavioral performance indicates effective deployment of covert spatial attention 2 
We set out to investigate the spatial distribution of attentional modulation within 3 

visual cortex. To do so, we first ensured that participants (n=8) could successfully 4 
allocate covert spatial attention to cued portions of the visual field. During the 5 
experiment, participants’ task was to fixate the center of the screen and report whether 6 
there were more numbers or letters in a cued peripheral region (Figure 1a). The cued 7 
region varied in location and width: it could be centered on any of 20 polar angles and 8 
could span any of four widths (18°, 54°, 90°, and 162° of polar angle). Task performance 9 
indicated that participants used the cue effectively, as the proportion of correct 10 
responses was significantly above chance for all width conditions (Figure 1b; t-test, all 11 
p<.001). We verified, with eye tracking, that participants performed the task using 12 
peripheral vision while maintaining central fixation. The upper bound of the 95% CI for 13 
each participant’s average gaze eccentricity ranged from 0.29° (degrees of visual angle) 14 
to 0.64° (mean = 0.48°; Figure 1c), suggesting that gaze did not exceed the cue annulus 15 
at fixation and that participants used covert spatial attention to perform the task. 16 

Figure 1. a. Task schematic. 
Participants were instructed to 
maintain central fixation and use 
covert spatial attention to 
determine whether there were 
more numbers or letters present 
within a cued region of a white 
noise annulus. On each trial, the 
red cue was displayed alone for 
1.35 s and remained present 
throughout the trial. Twenty digits 
and letters were then presented 
for 0.5 s, equally spaced and 
overlaid on the annulus. 
Participants had 1.25 s to indicate 
via button press whether more 
digits or letters were present in 
the cued region. The cue 
remained stable for 5 trials (10 
TRs, 15.5 s), had a width of 1, 3, 
5, or 9 segments (18°, 54°, 90°, or 
162°), and was centered on any of 
the 20 digit/letter slots. b. 
Behavioral task performance: 
Group mean accuracy for each 
cue width. Error bars are SEM; 
gray circles show individual 
participants. c. Group mean gaze 
eccentricity (in degrees of visual 
angle) for each cue width, 
conventions as in b. 
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Attentional modulation of BOLD responses broadens with cue width 17 
 We assessed the spatial distribution of attention by visualizing how the BOLD 18 
response was modulated by the location and width of the cue. To do so, we used each 19 
voxel’s population receptive field (pRF) to project BOLD responses for each attentional 20 
cue into the visual field. The resulting 2D visual field maps were averaged across trials 21 
for each cue width by rotating the maps, so the attentional cue aligned to 0° polar angle 22 
(right horizontal meridian). The reconstructed visual field maps revealed that increasing 23 
cue width led to a concomitant broadening of attentional modulation in cortex (Figure 24 
2a). While this pattern was evident in all three early visual regions (V1–V3), the effect 25 
appeared to strengthen when ascending the visuocortical hierarchy. 26 

Next, we computed the one-dimensional profile of attentional modulation at a 27 
fixed eccentricity. We were able to do this because we manipulated the location of the 28 
attentional field only as a function of polar angle, so all cues directed the attentional field 29 
to iso-eccentric locations. We selected voxels with pRFs that overlapped the white noise 30 
annulus and sorted them according to their polar angle preference.  31 

Figure 2. a. BOLD response 
projected into the visual field for 
each attentional cue width. 
Heatmaps represent the group 
mean BOLD activity using each 
voxel’s population receptive field 
(pRF) location within the visual 
field, shown separately for V1, 
V2, and V3. Maps were rotated to 
align all attentional cue locations 
to 0° polar angle (rightward). 
Concentric circles indicated by 
black dashed lines represent the 
location of the white noise 
annulus. b. Average spatial 
modulation profiles at the 
eccentricity of the annulus. The 
spatial profiles were recentered 
to 0° polar angle based on the 
cue location.  Solid lines 
represent the group mean BOLD 
response and shaded regions the 
SEM across participants. 
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For visualization purposes, the spatial response modulations were recentered to 32 
align all cues at 0° polar angle and averaged across trials for each cue width separately. 33 
Much like in the visual field reconstructions, there was a clear attentional modulation 34 
centered on 0°, which broadened and shifted downwards with cue width – a pattern that 35 
was particularly evident in area V3 (Figure 2b).  36 
Dynamic model-based recovery of the attentional field  37 
 We next applied a modeling approach to estimate the location and width of 38 
attentional modulation, allowing us to further investigate the spread of attention in visual 39 
cortex. To do this, we averaged the spatial response profiles across TRs within each 10-40 
TR block, in which the cue maintained a consistent location and width, yielding between 41 
27 and 53 averaged spatial response profiles per participant for each width condition. 42 
We fit a generalized Gaussian function to each of these spatial profiles to estimate the 43 
location and width of attentional modulation per spatial profile (see Figure 3a). The width 44 
of attentional modulation was quantified in terms of the full width at half maximum 45 
(FWHM) of the best fitting model prediction (see Figure 3b).  46 

Figure 3. a. Modeling approach. The generalized Gaussian model is characterized by parameters for 
location (𝜇), scale (𝜎), and shape (𝛽). b. Example model fits for two spatial profiles. Dots indicate BOLD 
response for two attentional cues differing in position and width. Solid lines indicate the best fitting 
model estimate. To quantify the attentional field, we extracted the location and gain (dashed arrows), 
as well as the width (FWHM; solid arrows). 

Can we dynamically recover the attentional field from activity within visual cortex? 47 
Model fits explained a substantial proportion of variance in the spatial profiles of BOLD 48 
activity (V1: for 18° cues, mean [standard deviation] of R2 = 0.42 [0.03]; for 54° cues, 0.43 49 
[0.03]; for 90° cues, 0.44 [0.03]; for 162° cues, 0.42 [0.03]; V2: for 18° cues, 0.51 [0.05]; 50 
for 54° cues, 0.54 [0.05]; for 90° cues, 0.54 [0.04]; for 162° cues, 0.55 [0.04]; V3: for 18° 51 
cues, 0.50 [0.03]; for 54° cues, 0.56 [0.04]; for 90° cues, 0.55 [0.03]; for 162° cues, 0.51 52 
[0.02]). To interpret the estimated model parameters, we excluded the bottom 20% of 53 
fits based on a pooled R2 across V1, V2, and V3, leaving roughly equal proportions of 54 
included blocks across cue width conditions (18°: mean [standard deviation] = 0.78 55 
[0.04], 54°: 0.83 [0.05], 90°: 0.83 [0.04], 162°: 0.77 [0.07]). 56 
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To assess how well the model-estimated attentional field matched the cued 57 
location, we first calculated the angular error between the cue center and the model's 58 
estimated location parameter. The angular error distribution across blocks, separated by 59 
width condition, is shown in Figure 4 for one example participant to display block-to-60 
block variation. The model reliably captured the location of the attentional field with low 61 
angular error and with no systematic directional bias. This result was observed across 62 
participants. We next examined the absolute angular error to assess the overall accuracy 63 
of our estimates. The group mean absolute angular error in V1 was 41.9° (SEM=2.86°), 64 
in V2 was 32.2° (2.31°), and in V3 was 24.7° (1.54°). Additionally, the magnitude of the 65 
absolute error did not vary linearly with the width of the cue in V1 or V2 (regression slopes 66 
tested against zero at the group level using a t-test; V1: t(7)=0.65, p=.537; V2: t(7)=1.24, 67 
p=.253; Figure 5). In V3, we observed a small but statistically significant increase in 68 
absolute error magnitude associated with greater cue widths (mean slope=1.4, t(7)=4.18, 69 
p=.004). 70 

Figure 4. Attentional field 
parameter estimates for an 
example participant. The full 
parameter estimate 
distributions across blocks 
for location, width, gain, and 
baseline are shown for one 
example participant in V1, V2, 
and V3. Median parameter 
estimates are shown by the 
white points, with the box 
plot representing the 25th to 
75th percentile, and whiskers 
extending to all non-outlier 
points.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2025. ; https://doi.org/10.1101/2024.09.05.611383doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.05.611383
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

Next, we evaluated the width of the attentional field by visualizing the distribution 71 
of FWHM for the same example participant (Figure 4), and at the group level (Figure 5). 72 
Confirming the broadening of the attentional field observed in the visual field 73 
reconstruction maps, we found that the estimated FWHM increased with greater cue 74 

widths in V2 and V3 (V2 t(7)=5.63, p<.001; V3 t(7)=6.49, p<.001). The effect was not 75 
statistically significant in V1 (t(7)=1.68, p=.136).  76 

We also assessed the gain of the attentional modulation in the model (Figure 4 77 
and 5 for the example participant and group data, respectively). We observed no 78 
significant relationship between gain and cue width in V1 and V2 (V1 t(7)=-.54, p=.605; 79 
V2 t(7)=-2.19, p=.065), though we did find a significant effect in V3 illustrating that gain 80 
decreases with cue width (t(7)=-3.12, p=.017). We also found that the overall gain was 81 
greater in V2 and V3 compared to V1 (paired t-test, both p<=.01).  82 

Figure 5. Attentional field 
parameter estimates. 
Group results for location, 
width, gain, and baseline 
estimates. Overall group 
mean and standard error 
are shown in solid black, 
separated by cue width 
and brain region. 
Individual participant 
median estimates are 
shown in grey. The 
example participant from 
Figure 4 is indicated by a 
denser dashed dark gray 
line with triangle symbols 
to aid in comparison.  
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Finally, we examined the baseline offset (Figure 4 example participant, and 83 
Figure 5 group data). No significant relationship was observed between cue width and 84 
baseline offset in any of the three brain regions (V1, t(7)=-1.05, p=.330; V2, t(7)=-2.00, 85 
p=.086; V3, t(7)=-1.61, p=.152). 86 
Temporal interval analysis 87 

In the previous analyses, we leveraged the fact that the attentional cue remained 88 
constant for 5-trial blocks (spatial profiles were computed by averaging BOLD 89 
measurements across a block of 10 TRs). We next examined the degree to which we 90 
were able to recover the attentional field on a moment-by-moment (TR-by-TR) basis. To 91 
do this, we systematically adjusted the number of TRs that contributed to the averaged 92 
spatial response profile. To maintain a constant number of observations across the 93 
temporal interval conditions, we randomly sampled a subset of TRs from each block. 94 
This allowed us to determine the amount of data needed to recover the attentional field, 95 
with a goal of examining the usability of our modeling approach in future paradigms 96 
involving more dynamic deployment of spatial attention. 97 

When we systematically varied the number of TRs included for each model fit (1, 98 
2, 3, 5, or 10 TRs), we found a significant effect of cue width on recovered FWHM when 99 
averaging two or more TRs in V3 (all t(7)>=2.38, all p<=.049), and ten TRs in V2 (results 100 
as reported in prior section; Figure 6a). As described above, V1 did not reliably show a 101 
significant relationship between cue width and FWHM, even when averaging ten TRs. 102 
We found that increasing the number of TRs had a small but significant positive effect 103 
on FWHM estimates in V2 and V3 (V2, mean slope=2.7, t(7)=2.95, p=.021; V3, mean 104 
slope=1.16, t(7)=3.22, p=.015), although a significant effect was not observed in V1 105 
(t(7)=1.82, p=.111).  106 

The number of TRs significantly affected the absolute angular error associated 107 
with the estimated location of the attentional field (Figure 6b). Error magnitude 108 
decreased with TRs in all three visual regions (all t(7)<=-4.48, all p<=.003), suggesting 109 
that more data yielded more accurate estimates, though absolute angular error remained 110 
consistently below chance (90°) even when fitting the model to single-TR BOLD 111 
responses. Angular error remained stable across width conditions in V1 and V2 (V1, t(7)=-112 
.55, p=.598; V2, t(7)=1.92, p=.098), though we found that larger cue width had a small 113 
but significant effect associated with larger errors in V3 (mean slope=.02, t(7)=3.28, 114 
p=.014).  115 

The estimated gain of the attentional modulation showed a dependence on 116 
number of TRs, with more TRs associated with lower gain estimates in V1 and V3 (V1, 117 
t(7)=-7.21, p<.001; V3, t(7)=-9.97, p<.001), though this was not clearly observed in V2 118 
(t(7)=-1.60, p=.154). There was no evident dependence of gain on cue width in V1 and 119 
V2 (V1 t(7)=-.19, p=.856; V2 t(7)=-2.34, p=.052), though we did observe a significant 120 
relationship in V3 (t(7)=-2.86, p=.024; Figure 6c).  121 

The baseline offset tended to increase with number of TRs across all three brain 122 
regions (V1, t(7)8.79, p<.001; V2, t(7)=6.5, p<.001; V3, t(7)=5.59, p=.001; Figure 6d). 123 
Baseline offset did not show a significant dependence on cue width in any region (V1, 124 
t(7)=1.47, p=.186; V2, t(7)=-2.16, p=.068; V3, t(7)=-1.67, p=.139). 125 
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Finally, the model's goodness of fit improved with more data, with larger R2 126 
associated with greater numbers of TRs included in the average profiles (all t(7)>=2.99, 127 
all p<=0.020), though all R2 were above 0.3 across all visual regions even for single-TR 128 
model fits. We did not observe a dependence of R2 on cue width (all t(7)<=1.26, all 129 
p>=.249; Figure 6e). 130 

Figure 6. Effect of number of TRs. Model fits were computed using BOLD data averaged across 
different temporal intervals (1, 2, 3, 5, or 10 TRs). Group means (with SEM) are plotted for FWHM, 
absolute angular error, gain, baseline estimates, and R2, separated by cue width, brain region, and the 
number of TRs used for each model fit. 
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Width of the attentional field mimics perceptual modulation 131 
 While the attentional field broadened as expected when participants were cued 132 
to attend to a larger portion of the white noise annulus, the size of the estimated 133 
attentional modulation was greater than the true size of the cued region. The cue width  134 
varied between 18° and 162°, whereas the width estimate derived from spatial profiles 135 
of BOLD modulation varied between 103° and 179° (Figure 5). We wondered what the 136 
underlying cause of this disparity might be. One possibility is that the BOLD-derived 137 
FWHM might tend to overestimate the retinotopic extent of the modulation, perhaps 138 
driven by binning and smoothing processing steps to create the 1D spatial profiles. If 139 
this were the case, we would expect to obtain similar FWHM estimates when modeling 140 
the perceptual modulations as well. Alternatively, the true subjective attentional field 141 
might be consistently broader than cued, despite the presence of nearby distractors. If 142 
this were the case, modulation driven by perceptual differences should not result in the 143 
same large FWHM estimates. 144 

To address this, we compared our estimates of the attentional field with 145 
equivalent estimates for spatial profiles induced by a perceptual manipulation. In this 146 
additional experiment, we varied the contrast intensity of sections of the white noise 147 
annulus. Participants were not asked to deploy spatial attention to the stimulus and were 148 
instead instructed to perform a color change detection task at fixation. The regions of 149 
increased noise contrast matched the attentional cue widths (18°, 54°, 90°, and 162°, 150 
plus an additional intermediate width of 126º), and were centered on one of the four 151 
cardinal locations (0°, 90°, 180°, 270° polar angle). 152 

As expected, we observed a broadening of the spatial profile of BOLD modulation 153 
in all three visual areas as the region of increased contrast widened (Figure 7a). Using 154 
an identical modeling procedure, we estimated the spatial profile of the perceptual BOLD 155 
modulation. The model-based estimates revealed that the mean magnitude of angular 156 
error between the model-estimated location and the center of the contrast stimulus had 157 
no significant dependence on contrast width in any of the three brain regions (magnitude 158 
of all t(4)<=.915, all p>=.412). The recovered FWHM increased with contrast width in 159 
both V1 and V3 (Figure 7b; V1, t(4)=6.94, p=.002; V3 t(4)=11.34, p<.001), though this 160 
effect was not clearly observed in V2 (t(4)=1.37, p=.242). The estimated gain modulation 161 
also did not show a relationship to contrast width in any of the visual areas (magnitude 162 
of all t(4)<=1.71, all p>=0.163). Finally, we did not observe a significant relationship 163 
between contrast width and baseline offset in any visual area (magnitude of all 164 
t(4)<=1.93, all p>=0.125). In sum, the group results for model estimates revealed that: 1) 165 
the model was highly accurate in estimating the location of the contrast increment; 2) 166 
FWHM of the spatial profiles broadened across contrast widths, 3) the gain and baseline 167 
remained stable across contrast widths (Figure 7b). 168 

Mirroring the results from the attentional manipulation, FWHM estimates 169 
systematically exceeded the nominal size of the perceptually modulated region of the 170 
visual field. Comparing the estimated FWHMs of the perceptual and attentional spatial 171 
profiles (Figure 7c) revealed that the estimated widths were highly comparable (Pearson 172 
correlation r=0.664 across width conditions and visual regions). Importantly, the relative 173 
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differences in FWHM show meaningful effects of both cue and contrast width in a similar 174 
manner for attentional and perceptual forms of modulation. 175 

176 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. a. Spatial profiles of perceptual modulation. Solid lines represent the group mean BOLD 
activity and shaded regions the SEM. b. Group level parameter estimates. Overall group mean and 
standard error are shown for the absolute angular error, FWHM, gain and baseline, separated by 
contrast width and brain region. c. Comparison of FWHM estimates obtained from the attentional 
manipulation and the physical contrast manipulation. Dot color indicates brain region; each point 
represents the mean FWHM for a given width condition across participants.  
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Discussion 1 

We investigated the topographic spread of spatial attention in human visual cortex 2 
by characterizing the spatial profile of BOLD responses while participants attended to 3 
different portions of the visual field. Behavioral performance confirmed that participants 4 
used the fixation cue to dynamically allocate attention to different swaths of the visual 5 
field. Attention allocation was associated with a modulation in the BOLD response in 6 
corresponding retinotopic areas of visual cortex. To characterize the topography of that 7 
modulation, our approach involved selecting voxels with pRF preferred eccentricities 8 
that overlapped our white noise annulus, and organizing those voxels into one-9 
dimensional profiles of attentional modulation as a function of preferred polar angle. This 10 
allowed us to model the location and spread of the attentional field and test how well it 11 
tracked the nominal location and width of the cue presented at fixation. Using a 12 
generalized Gaussian model, the cued location could be recovered with high fidelity. We 13 
observed a broadening of the estimated attentional field in areas V2 and V3 with the cue 14 
width, suggesting our method was capable of dynamically recovering the location and 15 
size of the attentional field from moment to moment. We also found that the estimated 16 
spatial spread of the attentional modulation (as indicated by the recovered FWHM) was 17 
consistently wider than the cued region itself. We therefore compared the spread of the 18 
attention field with the spatial profile of a perceptually induced width manipulation. The 19 
results were comparable in both the attentional and perceptual versions of the task, 20 
suggesting that cueing attention to a region results in a similar 1D spatial profile to when 21 
the stimulus contrast is simply increased in that region. 22 

This work builds on the concept of an attentional ‘spotlight’ or ‘zoom lens’ that has 23 
long been theorized to aid in spatial attention (Shaw and Shaw, 1977; Posner, 1980; 24 
Eriksen and St. James, 1986; Carrasco, 2011). By flexibly adjusting and shifting the focus 25 
of the spotlight, visual representations are selectively enhanced in a region of the visual 26 
field. However, the empirical evidence demonstrating that attention can change its 27 
spread across the visual field by modulating brain responses is surprisingly lacking 28 
(Yeshurun, 2019). Our understanding of how the attentional window interacts with spatial 29 
representations is mainly based on behavioral reports (Gobell, Tseng and Sperling, 2004; 30 
Palmer and Moore, 2009; Herrmann et al., 2010; Beilen et al., 2011; Taylor et al., 2015; 31 
Huang et al., 2017; Kınıklıoğlu and Boyaci, 2022), but see (Müller et al., 2003; Hopf et al., 32 
2006; Itthipuripat et al., 2014; Tkacz-Domb and Yeshurun, 2018; Feldmann-Wüstefeld 33 
and Awh, 2020). We introduced a novel modeling approach that recovered the location 34 
and the size of the attentional field. Our data show that the estimated spatial spread of 35 
attentional modulation (as indicated by the recovered FWHM) consistently broadened 36 
with the cue width, replicating prior work (Müller et al., 2003; Herrmann et al., 2010). Our 37 
results go beyond prior work by linking the spatial profiles to pRF estimates, allowing us 38 
to quantify the spread of both attentional and perceptual modulation in degrees of polar 39 
angle. Interestingly, the FWHM estimates for the attentional and perceptual spatial 40 
profiles were highly similar. Additionally, for area V3 we replicate that the population 41 
response magnitude decreased with cue width (Müller et al., 2003; Feldmann-Wüstefeld 42 
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and Awh, 2020). One innovation of our method is that it directly reconstructs attention-43 
driven modulations of responses in visual cortex, setting it apart from other methods, 44 
such as inverted encoding models (e.g. Sprague and Serences, 2013). Finally, we 45 
demonstrated that our method has potential to be used in more dynamic settings, in 46 
which changes in the attentional field need to be tracked on a shorter timescale.  47 

The ability to change the size of the attentional field is a crucial component in an 48 
influential theoretical model of attention. This model proposes that the interaction 49 
between stimulus properties (such as its size and specific features) and the attentional 50 
field can explain a wide variety of attentional effects reported in behavioral and 51 
neurophysiological studies (Herrmann et al., 2010; Itthipuripat et al., 2014; Bloem and 52 
Ling, 2019; Jigo, Heeger and Carrasco, 2021). The present study sought to address this 53 
gap, with our results showing that the visuocortical attentional field broadened as we 54 
increased the cue width (Figure 5). This provides compelling evidence that the attention-55 
related cortical response can, in fact, flexibly vary in its position and spatial distribution.  56 

The observed effects of attentional field width were unlikely to be directly 57 
attributable to variation in task difficulty. Participants' task in our study was to 58 
discriminate whether more numbers or more letters were presented within a cued region 59 
of an iso-eccentric annulus of white noise. For our different cue widths, the ratios of 60 
numbers and letters were selected to be as similar as possible given the size and spacing 61 
of our stimuli. Changes in accuracy across the three larger cue widths were small and 62 
non-monotonic, implying task difficulty was dissociable from width per se. This 63 
dissociation bolsters the interpretability of our model fits; nevertheless, future work 64 
should further investigate how task difficulty interacts with the spread of the attentional 65 
field and the amplitude of attention-related BOLD effects (cf. Ress, Backus and Heeger, 66 
2000).  67 

In this study, we modeled the attentional field using a one-dimensional 68 
distribution. This approach aligned with our experimental design, as the attentional cue 69 
was manipulated only as a function of polar angle. However, we know that spatial 70 
processing varies substantially as a function of eccentricity. Spatial resolution is highest 71 
at the fovea and rapidly drops in the periphery (Anton-Erxleben and Carrasco, 2013). The 72 
spatial distribution of attention will presumably also vary with eccentricity and will likely 73 
take on different functional properties close to the fovea, where spatial resolution is high, 74 
compared to the far periphery where spatial resolution is low (Intriligator and Cavanagh, 75 
2001; Jigo, Heeger and Carrasco, 2021). Future work can help provide a better 76 
understanding of the contribution of spatial attention by considering how the attentional 77 
field interacts with these well described spatial variations across the visual field. 78 
Measuring the full spatial distribution of the attentional field (across both eccentricity and 79 
polar angle) will shed light on how spatial attention guides perception by interacting with 80 
the non-uniformity of spatial representations. 81 

The spread of the attentional field likely influences the degree to which spatial 82 
resolution at the attended location is transformed, leading to enhanced behavioral 83 
performance. Spatial attention was vital for this task, as enhanced spatial perception 84 
allowed the participants to better discriminate all stimuli within the cued region (Anton-85 
Erxleben and Carrasco, 2013). Future work could unpack the degree to which the size 86 
of the attentional field influences the spatial resolution of visual cortical representations 87 
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(Klein, Harvey and Dumoulin, 2014; Vo, Sprague and Serences, 2017; Tünçok, Carrasco 88 
and Winawer, 2024), and how this influences spatial perception.  89 

Beyond addressing core questions related to the function of spatial attention, this 90 
method also lays groundwork for addressing questions about spatial predictive 91 
uncertainty and belief updating. Prior work on these topics has relied almost entirely on 92 
inferring participants' predictions from their behavior, often requiring participants to 93 
report overt point predictions (Nassar et al., 2010; McGuire et al., 2014; D’Acremont and 94 
Bossaerts, 2016; Nassar, Bruckner and Frank, 2019), or inferring participants' 95 
predictions from their sequences of decisions (Daw et al., 2006; Behrens et al., 2007; 96 
Payzan-LeNestour and Bossaerts, 2011; Payzan-LeNestour et al., 2013). These 97 
approaches have shed light on how we dynamically adapt our learning and belief 98 
updating processes over time in differently structured contexts. However, methods for 99 
recovering information about full predictive belief distributions have been limited, relying 100 
on indirect measurements such as eye movements (O’Reilly et al., 2013; Bakst and 101 
McGuire, 2021, 2023), and physiological measures of uncertainty and surprise in EEG 102 
and pupillometry (Preuschoff, ’t Hart and Einhauser, 2011; Nassar et al., 2012; Nassar, 103 
Bruckner and Frank, 2019). The methods developed here offer a potential way to recover 104 
the location and width of a spatial predictive distribution via the attentional field in 105 
contexts in which it is unknown a priori and might be dependent on how a given 106 
participant has integrated previous sequential evidence. Future work could extend this 107 
method to more directly interrogate how predictive uncertainty is represented 108 
throughout the brain on a moment-by-moment basis. 109 

In summary, we found evidence that people could dynamically adapt the spread 110 
of spatial attention, and that the retinotopic extent of attentional modulation of the BOLD 111 
response reflected this dynamic adaptation. These findings address a gap in our 112 
understanding of spatial attentional control, supporting core theoretical models of 113 
attention. Our modeling approach also lays the groundwork to address further questions 114 
related to how the attentional field interacts with the non-uniformity of spatial 115 
representations and how uncertainty in spatial contexts is represented in the human 116 
brain.117 
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Materials and Methods 1 

Participants. Eight healthy adults (4 female, 4 male, mean age = 30) participated in the 2 
main attention experiment, five of whom also participated in a second experiment 3 
featuring a contrast manipulation. All participants had normal or corrected-to-normal 4 
vision. All procedures were approved by the Boston University Institutional Review 5 
Board, and informed consent was obtained from all participants. 6 
 7 
Apparatus and stimuli. Participants were presented with stimuli generated using 8 
PsychoPy (v1.85.1; Peirce, 2007) on a MacBook Pro. The visual stimuli were displayed 9 
on a rear-projection screen (subtending ~20°x16° visual angle) using a VPixx 10 
Technologies PROPixx DLP LED projector (maximum luminance 306 cd/m2). 11 
Participants viewed the screen through a front surface mirror. Participants were placed 12 
comfortably in the scanner with padding to minimize head motion. 13 
 14 
Procedure. 15 
Attentional width manipulation. Participants were instructed to fixate a central point 16 
(radius 0.08° visual angle) while dynamic pixelwise white noise (flickering at 10 Hz, 50% 17 
contrast) was presented in the periphery (annulus spanning 4.6° to 7.4° visual angle). 18 
The annulus was segmented into 20 bins (18° polar angle per bin) by white grid lines 19 
radiating from a white circle at the center of the screen (radius 0.25°), passing behind 20 
the annulus, and terminating at 8.5° eccentricity.  In the middle of each bin, a number or 21 
letter (height: 2.1°) was superimposed on the white noise annulus (see Figure 1a). For a 22 
subset of the participants (3 out of 8) the screen distance inside the scanner was 23 
changed, therefore for those participants the letter size was 1.86° visual angle, and the 24 
white noise annulus spanned 4.1º to 6.5º visual angle. The set of possible letters included 25 
all lowercase letters of the Latin alphabet except a, b, e, g, i, o, and u. The set of numbers 26 
included 2, 3, 4, 5, 7, and 8. 27 

Participants were cued to attend covertly to a contiguous subset of the bins and 28 
their task was to report, via button press, whether there were more numbers or letters 29 
present within the cued region. The cue was a bold red segment on the central white 30 
circle, which corresponded to 1, 3, 5, or 9 bins (18°, 54°, 90°, or 162° polar angle; see 31 
Figure 1a). The true proportion of letters versus numbers was controlled within each cue 32 
width condition. For cued regions of 1 bin, there was either a single number or letter in 33 
the bin. For cued regions of 3 bins, the ratio was always 2:1 (either two numbers and one 34 
letter or vice versa). For cued regions of 5 bins, the ratio was 3:2, and for cued regions 35 
of 9 bins, the ratio was 6:3. The ratios were selected to be as similar as possible given 36 
the size and spacing of our stimuli (aside from the one-bin cue, the proportions for the 37 
other cues were 0.67, 0.60 and 0.67). Cues could be centered on any of the 20 bins. 38 

Participants completed 8 to 12 runs of the task (mean = 10.4), with each run 39 
lasting 341 s and containing 100 trials. Each cue remained constant for a block of five 40 
trials (lasting 15.5 s, 10 TRs), although the letters and numbers within the cued region 41 
changed on every trial. Thus, each participant saw 20 unique cues (combinations of cue 42 
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location and width) per run. Each run began and ended with 15.5 s of the dynamic noise 43 
annulus. 44 

During each trial, the cue and white noise annulus were presented alone for 1.35 45 
s. The numbers and letters were then displayed for 0.5 s. Thereafter, the cue and white 46 
noise remained visible while the participant had 1.25 s to indicate whether there had 47 
been more digits or letters within the cued region, resulting in a total trial duration of 3.1 48 
s (2 TRs). No accuracy feedback was provided during the main experiment. However, all 49 
participants completed three training runs with trial-by-trial feedback prior to the scan 50 
session. During training runs, the response window was shortened to 1 s and the 51 
remaining 0.25 s presented feedback in the form of a change in color of the fixation point 52 
(blue for correct responses and orange for incorrect responses).  53 
 54 
Physical contrast manipulation. A subset of participants (n=5) also participated in an 55 
experiment that enhanced the physical contrast intensity of the dynamic visual noise in 56 
segments of the annulus. This additional experiment was carried out during the same 57 
scan session and allowed for benchmarking the detectability of stimulus-evoked 58 
modulation in visual cortex using our analyses. The stimuli and trial structure were similar 59 
to the attentional manipulation. The task differed in the following ways: (1) the contrast 60 
of the white noise annulus was increased to 100% for segments of the annulus 61 
corresponding to 1, 3, 5, 7 or 9 bins (18°, 54°, 90°, 126°, or 162° polar angle), with a 62 
Gaussian rolloff (σ = 15°) that spanned 25% of the furthest included bins and 25% of the 63 
adjacent excluded bins; (2) the enhanced segments were always centered on the 64 
cardinal directions (0°, 90°, 180°, and 270° polar angle); (3) the contrast increase 65 
remained constant for 15.5 seconds (10 TRs); (4) participants performed a color change 66 
detection task at fixation. Each unique combination of 4 locations and 5 widths of the 67 
contrast enhancement was shown once per run, with the order randomized. To estimate 68 
a baseline response, each run started and ended with 15.5 seconds without contrast 69 
modulation. Participants completed two runs total, each lasting 341 seconds (220 TRs).  70 

Throughout the physical contrast runs, participants were instructed to fixate on a 71 
central point (radius 0.08° visual angle) and to press a button when the fixation point 72 
switched color (alternating white and red). The fixation point remained a color for at least 73 
one second and then had a 10% probability of switching every 100 ms. No cue was 74 
presented associated with the regions of increased contrast. Additionally, no letters or 75 
numbers were superimposed on the white noise annulus. 76 
 77 
Population receptive field mapping. Population receptive field (pRF) estimates were 78 
obtained for each participant in a separate scan session. We used the experimental 79 
procedure as described in the Human Connectome Project 7T Retinotopy dataset 80 
(Benson et al., 2018). Stimuli were composed of a pink noise background with colorful 81 
objects and faces at various spatial scales, displayed on a mean luminance gray 82 
background. Stimuli were updated at a rate of 15 Hz while participants performed a color 83 
change detection task at fixation. Participants viewed two types of mapping stimuli: (1) 84 
contracting/expanding rings and rotating wedges; (2) moving bar stimuli (Dumoulin and 85 
Wandell, 2008; Kay et al., 2013). A total of 4-6 scans (300 TRs) were collected for each 86 
participant (2-3 scans per stimulus type). In this session, the field of view was restricted 87 
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to the occipital cortex to maximize SNR, thereby limiting the brain regions for which we 88 
had pRF estimates to V1, V2, and V3. 89 
 90 
MRI data acquisition. All MRI data were acquired at Boston University’s Cognitive 91 
Neuroimaging Center (Boston, Massachusetts) on a research-dedicated Siemens 92 
Prisma 3T scanner using a 64-channel head coil. A scanning session lasted 2 hours.  93 
All functional neuroimaging data were acquired using a simultaneous multislice (SMS) 94 
gradient echo echoplanar acquisition protocol (Moeller et al., 2010; Setsompop et al., 95 
2012): 2 mm isotropic voxels; FoV = 212 x 212 mm; 72 axial slices; TR = 1.55 s; TE = 96 
35.60 ms; flip angle = 72º; multiband acceleration factor 4. We computed distortion field 97 
maps by using a spin echo echoplanar protocol with opposite y-axis phase encoding 98 
directions (2 mm isotropic voxels; FOV = 212 x 212 mm; TR = 8850 ms; TE = 70.80 ms; 99 
flip angle = 90°). During a separate scan session, we acquired a whole-brain anatomical 100 
scan using a T1-weighted multi-echo MPRAGE 3d sequence (1 mm isotropic; FoV = 256 101 
x 256 mm; 176 sagittal slices; TR = 2530 ms; TE = 1.69 ms; flip angle = 7°), and the pRF 102 
scans (occipital coverage only; right-left phase encoding; 2 mm isotropic voxels; FoV = 103 
136 x 136 mm; 36 slices; TR = 1 s; TE = 35.4 ms; flip angle = 64°; multiband acceleration 104 
factor 3). 105 
 106 
MRI data analysis. 107 
Structural data preprocessing. Whole brain T1-weighted anatomical data were analyzed 108 
using the standard ‘recon-all’ pipeline provided by Freesurfer software (Freesurfer 109 
version 5.3, (Fischl, 2012)), generating cortical surface models, whole-brain 110 
segmentation, and cortical parcellations.  111 
 112 
Functional data preprocessing. All analyses were performed in the native space for each 113 
participant. First, EPI distortion correction was applied to all fMRI BOLD time-series data 114 
using a reverse phase-encode method (Andersson, Skare and Ashburner, 2003) 115 
implemented in FSL (Smith et al., 2004). All functional data were then preprocessed using 116 
FS-FAST (Fischl, 2012), including standard motion-correction procedures, Siemens slice 117 
timing correction, and boundary-based registration between anatomical and functional 118 
volumetric spaces (Greve and Fischl, 2009). To facilitate voxel-wise analysis, no 119 
volumetric smoothing was performed and across-run within-modality robust rigid 120 
registration was applied (Reuter, Rosas and Fischl, 2010), with the middle time-point of 121 
the first run serving as the target volume, and the middle time-point of each subsequent 122 
run used as a movable volume for alignment. Lastly, data were detrended (0.005 Hz 123 
high-pass filter) and converted to percent signal change for each voxel independently 124 
using custom code written in MATLAB (version 2020b). 125 
  126 
Population receptive field mapping and voxel selection. The time series were analyzed 127 
using the analyzePRF toolbox in MATLAB, implementing a compressive spatial 128 
summation pRF model (Kay et al., 2013). The results of the pRF analysis were used to 129 
manually draw boundaries between early visual regions (V1, V2, and V3), which served 130 
as our regions of interest (ROIs).  131 
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Within each ROI, pRF modeling results were used to constrain voxel selection 132 
used in the main experiment. We excluded voxels with a preferred eccentricity outside 133 
the bounds of the pRF stimulus (<0.7° and >9.1°), with a pRF size smaller than 0.01°, or 134 
with poor spatial selectivity as indicated by the pRF model fit (R2 < 10%). Following our 135 
2D visualizations (see below), we further constrained voxel selection by only including 136 
voxels whose pRF overlapped with the white noise annulus. We included all voxels with 137 
an estimated eccentricity within the annulus bounds, as well as voxels with an estimated 138 
pRF size that would overlap the annulus. 139 
 140 
2D visualizations of attentional modulation. To visualize the topography of attentional 141 
modulation under different cue widths, we projected the average BOLD responses for a 142 
given block (10 TRs with a consistent cue location and width, shifted by 3 TRs [4.65 s] 143 
to compensate for the hemodynamic delay) into the visual field using each voxel’s pRF 144 
location. This method is similar to that described in (Favila, Kuhl and Winawer, 2022). 145 
First, we computed the Cartesian (x,y) coordinates from the pRF eccentricity and polar 146 
angle estimates for each voxel. Then, within a given ROI, we interpolated the BOLD 147 
responses over (x,y) space to produce a full-field representation. Each representation 148 
was then z-scored to allow for comparison across blocks, cue conditions, and 149 
participants. Finally, the representation was rotated so that the center of the cue was 150 
aligned to the right horizontal meridian (see Figure 2a). 151 
 152 
1D spatial profile of attentional modulation. We also examined the spatial profile of 153 
attentional modulation as a function of polar angle. Voxels with pRFs overlapping the 154 
white noise annulus were grouped into 60 bins according to their pRF polar angle 155 
estimate (6° polar angle bin width). We computed a median BOLD response within each 156 
bin. This facilitated the recentering of each profile to align all cue centers for subsequent 157 
combining across trials. To improve the signal-to-noise ratio, the resulting profile was 158 
smoothed with a moving average filter (width 18° polar angle; see Figure 2b).  159 
 160 
Model fitting. We quantified the spatial profile of attentional modulation with a 161 
generalized Gaussian model (Nadarajah, 2005). The generalized Gaussian function (G) 162 
combines Gaussian and Laplace distributions: 163 

The function has free parameters for location (𝜇), scale (𝜎), and shape (𝛽). The shape 164 
parameter enables the tails of the distribution to become heavier than Gaussian (when 165 
𝛽	 < 	2), or lighter than Gaussian (when 𝛽	 > 	2); as 𝛽	 → ∞, the model approaches a 166 
uniform distribution.  167 
 168 
Next, 𝐺 was normalized to range between 0 and 1, and vertically scaled and shifted by 169 
two additional free parameters for gain (𝑎) and baseline offset (𝑏): 170 

𝐺 = 	𝑒𝑥𝑝 1− 3
𝑥 − 𝜇
𝜎 3

!
4 (1) 
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We fit the five free parameters (𝜇, 𝜎, 𝛽, 𝑎, 𝑏) using the MATLAB optimization tool fmincon, 171 
minimizing the squared error between the model prediction and the 1D profile described 172 
above. To avoid local minima, we first ran a grid search to find the initialization values 173 
with the lowest SSE (6 possible values for 𝜇, equally spaced between 0 and 360°, 174 
crossed with 6 possible values for 𝜎, equally spaced between 9º and 162° polar angle; 175 
𝛽 = 4; 𝑎 = 1; 𝑏 = 0). We imposed the following parameter bounds on the search: 𝜎: [6°, 176 
180° polar angle], 𝛽: [1.8, 50], and 𝑎: [0, 20]. 𝜇 was unbounded, but was wrapped to 177 
remain within [0°, 360°].  178 

From the model fits we computed the following summary metrics: 1) angular error, 179 
defined as the polar-angle distance between the true and estimated location; 2) the full 180 
width at half-maximum (FWHM) of the best-fitting generalized Gaussian function, which 181 
served as our measure of the width of attentional modulation. The FWHM was controlled 182 
mainly by the scale parameter (𝜎) but also to a lesser degree by the shape parameter (𝛽; 183 
see Figure 3a); 3) the gain modulation of the spatial profile (𝑎); 4) the model's goodness 184 
of fit quantified as the percentage of explained variance (R2) in the spatial response 185 
profile: 186 

Statistical testing. To assess how the attentional cue width manipulation influenced the 187 
1D spatial profile of BOLD modulation, we tested whether the computed summary 188 
metrics (absolute angular error, FWHM, gain, and baseline) varied as a function of cue 189 
width. Specifically, we performed a linear regression for each metric within each subject 190 
and tested whether the slopes differed from zero at the group level using a t-test. This 191 
was done independently for each ROI. No multiple comparison correction was applied, 192 
as the different tests for each region are treated as separate questions. However, using 193 
a threshold of 0.017 for p-values would correct for comparisons across the three brain 194 
regions. When testing whether the number of TRs impacted our metrics, the linear 195 
regression used both cue width and number of TRs as explanatory variables.  196 
 197 
Eye-position monitoring. Gaze data were collected for all participants using an MR-198 
compatible SR Research EyeLink 1000+ eye tracker sampling at 1 kHz. Data from blink 199 
periods were excluded from analysis. Participants maintained fixation throughout the 200 
task, with average gaze eccentricity below 0.5° for all participants. Gaze eccentricity did 201 
not significantly vary by cued width (pairwise comparison of width conditions using a 202 
paired t-test, all p >= 0.205 with Bonferroni correction for multiple comparisons) nor 203 
location (pairwise comparison, all p >= 0.522 with Bonferroni correction for multiple 204 
comparisons). Additionally, we examined the number of fixations to the white noise 205 

𝑦: = 𝑎 ⋅ 𝐺 + 𝑏	 (2) 

𝑅" 	= 1 −
(𝑦	 −	𝑦:)"

(𝑦	 −	𝑦?)"
	 (3) 
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annulus itself. No participant had more than 16 fixations (out of 800-1200 trials) to the 206 
annulus during the task, further suggesting that participants successfully maintained 207 
fixation.208 
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Figure 1. 

 
  

 
 
Figure 1. a. Task schematic. Participants were instructed to maintain central fixation and use covert spatial 
attention to determine whether there were more numbers or letters present within a cued region of a white noise 
annulus. On each trial, the red cue was displayed alone for 1.35 s and remained present throughout the trial. Twenty 
digits and letters were then presented for 0.5 s, equally spaced and overlaid on the annulus. Participants had 1.25 
s to indicate via button press whether more digits or letters were present in the cued region. The cue remained 
stable for 5 trials (10 TRs, 15.5 s), had a width of 1, 3, 5, or 9 segments (18°, 54°, 90°, or 162°), and was centered 
on any of the 20 digit/letter slots. b. Behavioral task performance: Group mean accuracy for each cue width. Error 
bars are SEM; gray circles show individual participants. c. Group mean gaze eccentricity (in degrees of visual angle) 
for each cue width, conventions as in b. 
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Figure 2 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 
a. BOLD 

response projected into the visual field for each attentional cue width. Heatmaps represent the group 
mean BOLD activity using each voxel’s population receptive field (pRF) location within the visual field, 
shown separately for V1, V2, and V3. Maps were rotated to align all attentional cue locations to 0° polar 
angle (rightward). Concentric circles indicated by black dashed lines represent the location of the white 
noise annulus. b. Average spatial modulation profiles at the eccentricity of the annulus. The spatial 
profiles were recentered to 0° polar angle based on the cue location.  Solid lines represent the group 
mean BOLD response and shaded regions the SEM across participants. 
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Figure 3 

Figure 3. a. Modeling approach. The generalized Gaussian model is characterized by parameters for 
location (𝜇), scale (𝜎), and shape (𝛽). b. Example model fits for two spatial profiles. Dots indicate BOLD 
response for two attentional cues differing in position and width. Solid lines indicate the best fitting 
model estimate. To quantify the attentional field, we extracted the location and gain (dashed arrows), 
as well as the width (FWHM; solid arrows). 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2025. ; https://doi.org/10.1101/2024.09.05.611383doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.05.611383
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4. 

 
  

 
Figure 4. Attentional field parameter estimates for an example participant. The full parameter 
estimate distributions across blocks for location, width, gain, and baseline are shown for one 
example participant in V1, V2, and V3. Median parameter estimates are shown by the white points, 
with the box plot representing the 25th to 75th percentile, and whiskers extending to all non-outlier 
points. 
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Figure 5. 

 
  

 
Figure 5. Attentional field parameter estimates. Group results for location, width, gain, and baseline 
estimates. Overall group mean and standard error are shown in solid black, separated by cue width 
and brain region. Individual participant median estimates are shown in grey. The example participant 
from Figure 4 is indicated by a denser dashed dark gray line with triangle symbols to aid in 
comparison. 
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Figure 6. 

 
  

 

Figure 6. Effect of number of TRs. Model fits were computed using BOLD data averaged across 
different temporal intervals (1, 2, 3, 5, or 10 TRs). Group means (with SEM) are plotted for FWHM, 
absolute angular error, gain, baseline estimates, and R2, separated by cue width, brain region, and 
the number of TRs used for each model fit. 
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Figure 7. 

 

 
Figure 7. a. Spatial profiles of perceptual modulation. Solid lines represent the group mean BOLD 
activity and shaded regions the SEM. b. Group level parameter estimates. Overall group mean and 
standard error are shown for the absolute angular error, FWHM, gain and baseline, separated by 
contrast width and brain region. c. Comparison of FWHM estimates obtained from the attentional 
manipulation and the physical contrast manipulation. Dot color indicates brain region; each point 
represents the mean FWHM for a given width condition across participants.   
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