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Abstract

Navigating around the world, we must adaptively allocate attention to our surroundings
based on anticipated future stimuli and events. This allocation of spatial attention boosts
visuocortical representations at attended locations and locally enhances perception.
Indeed, spatial attention has often been analogized to a “spotlight” shining on the item
of relevance. Although the neural underpinnings of the locus of this attentional spotlight
have been relatively well studied, less is known about the size of the spotlight: to what
extent can the attentional field be broadened and narrowed in accordance with
behavioral demands? In this study, we developed a paradigm for dynamically estimating
the locus and spread of covert spatial attention, inferred from visuocortical activity using
fMRI in humans. We measured BOLD activity in response to an annulus while
participants (4 female, 4 male) used covert visual attention to determine whether more
numbers or letters were present in a cued region of the annulus. Importantly, the width
of the cued area was systematically varied, calling for different sizes of the attentional
spotlight. The deployment of attention was associated with an increase in BOLD activity
in corresponding retinotopic regions of visual areas V1—V3. By modeling the
visuocortical attentional modulation, we could reliably recover the cued location, as well
as a broadening of the attentional modulation with wider attentional cues. This modeling
approach offers a useful window into the dynamics of attention and spatial uncertainty.

Significance Statement

This study explores whether spatial attention can dynamically adapt by shifting and
broadening the attentional field. While previous research has focused on the modulation
of neural responses at attended locations, less is known about how the size of the
attentional field is represented within visual cortex. Using fMRI, we developed a novel
paradigm to estimate the spatial tuning of the attentional field and demonstrate that we
were able to recover both the location as well as the width of the attentional field. Our
findings offer new insights into the neural mechanisms underlying the deployment of
spatial attention, contributing to a deeper understanding of how spatial attention
supports visual perception.


https://doi.org/10.1101/2024.09.05.611383
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.05.611383; this version posted April 28, 2025. The copyright holder for this preprint (which

—
OCOWoOO~NOOOUGLA,WN

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

3

Introduction

We bounce attention around all the time. Take, for instance, when we’re monitoring
oncoming traffic while driving. It isn’t sufficient to attend to the single most likely source
of traffic. Instead, attention adaptively broadens and narrows to cover the anticipated
spatial distribution of relevant events. The need to spread attention across different
swaths of the visual field is driven, to a large degree, by spatial uncertainty: statistical
regularities give us a general sense as to where something useful might happen, and this
evolves from moment to moment. We navigate this uncertainty by dynamically deploying
spatial attention.

Covert spatial attention improves behavioral performance at attended locations
at the cost of performance at unattended locations (Posner, 1980), leading to a common
metaphor that spatial selective attention acts as a ‘spotlight’ or ‘zoom lens’ (Shaw and
Shaw, 1977; Posner, 1980; Eriksen and St. James, 1986; Carrasco, 2011). This
attentional ‘spotlight’ is characterized by a specific size and location and traverses the
visual field based on behavioral demands (Eriksen and St. James, 1986; Castiello and
Umilta, 1990), selectively boosting information at the attended location within the visual
system while suppressing information elsewhere. Animal studies have observed
multiplicative increases in visuocortical neural responses at attended locations
(McAdams and Maunsell, 1999; Maunsell, 2015) and human neuroimaging studies have
found similar focal modulations of population responses (Kastner et al., 1998;
Brefczynski and DeYoe, 1999; McMains and Somers, 2004; Datta and DeYoe, 2009;
Sprague and Serences, 2013; Puckett and DeYoe, 2015; Samaha, Sprague and Postle,
2016; Shioiri et al., 2016; Bloem and Ling, 2019; Bartsch et al., 2023).

While neural modulation at the locus of attention has been relatively well studied,
less is known regarding the neural signatures of the size of the attentional field
(Yeshurun, 2019). Spreading attention over a larger region of visual space can decrease
behavioral performance, but only a handful of studies have interrogated associated
effects within visual cortex (Muller et al., 2003; Herrmann et al., 2010; Itthipuripat et al.,
2014; Feldmann-Wustefeld and Awh, 2020). This is surprising, as the spatial distribution
of the attentional field is a key feature in an influential theoretical model of attention
(Reynolds and Heeger, 2009). The model assumes that the size of the attentional field
can be adjusted based on task demands and that the interaction between attentional
field size and stimulus-related factors can predict observed attentional gain effects.

While the studies that have experimentally manipulated the attentional field size
found evidence congruent with this prominent theory (Herrmann et al., 2010; Itthipuripat
et al., 2014; Kinikhoglu and Boyaci, 2022), few studies have directly investigated the
spatial extent of the attentional window and its concomitant neural representation. One
neuroimaging study revealed that the attentional field expanded in the face of greater
task-related uncertainty (Herrmann et al., 2010), while other studies showed that the
responsive area of visual cortex increased in size, coupled with a decrease of the overall
population response (Miiller et al., 2003; Feldmann-Wustefeld and Awh, 2020). While
these studies are consistent with the notion that the attentional field size can be detected
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in visual cortex, methods for dynamically recovering location and field size from moment
to moment are lacking.

In this study, we developed a paradigm that allowed us to dynamically
characterize the spatial tuning of spatial attention across the visual field. Using fMRI in
humans, we examined whether attentional modulation of the BOLD response spanned
a larger area of visual cortex when participants were cued to perform attend to a larger
region of space. Behavioral performance confirmed that participants could successfully
allocate their attention to different-sized swaths of the visual field. This deployment of
attention was associated with a modulation in cortical activity in the corresponding
retinotopic areas of visual cortex. By modeling the location and spread of the
visuocortical modulation, we dynamically recovered the cued location from the
attentional activity with a high degree of fidelity, together with a broadening of the
attentional modulation for wider attentional cues.
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Results

Behavioral performance indicates effective deployment of covert spatial attention

We set out to investigate the spatial distribution of attentional modulation within
visual cortex. To do so, we first ensured that participants (n=8) could successfully
allocate covert spatial attention to cued portions of the visual field. During the
experiment, participants’ task was to fixate the center of the screen and report whether
there were more numbers or letters in a cued peripheral region (Figure 1a). The cued
region varied in location and width: it could be centered on any of 20 polar angles and
could span any of four widths (18°, 54°, 90°, and 162° of polar angle). Task performance
indicated that participants used the cue effectively, as the proportion of correct
responses was significantly above chance for all width conditions (Figure 1b; t-test, all
p<.001). We verified, with eye tracking, that participants performed the task using
peripheral vision while maintaining central fixation. The upper bound of the 95% CI for
each participant’s average gaze eccentricity ranged from 0.29° (degrees of visual angle)
to 0.64° (mean = 0.48°; Figure 1c¢), suggesting that gaze did not exceed the cue annulus
at fixation and that participants used covert spatial attention to perform the task.

a. Attention task trial sequence Figure 1. a. Task schematic.
Participants were instructed to

maintain central fixation and use

18° 1 Cue presentation Digits & letters Response covert. spatial  attention 1o
1.355 0.55 1.055 determine whether there were

3 W = more numbers or letters present

within a cued region of a white
54° ) noise annulus. On each trial, the
red cue was displayed alone for

1.35 s and remained present

throughout the trial. Twenty digits

90° ) and letters were then presented
for 0.5 s, equally spaced and

‘ overlaid on the annulus.

5 Participants had 1.25 s to indicate

162° Tim'e via button press whether more
digits or letters were present in
the cued region. The cue
remained stable for 5 trials (10
TRs, 15.5 s), had a width of 1, 3,
5, or 9 segments (18°, 54°, 90°, or

b. Behavioral task performance  c. Gaze distance from fixation

19 . 162°), and was centered on any of
— ‘4 S the 20 digit/letter slots. b.
8 * ;O'5 1 Behavioral task performance:
5 ’ S Group mean accuracy for each
&) = cue width. Error bars are SEM;
c c . L
o 8 gray circles show individual
€ .i' . 8 - i + participants. c. Group mean gaze
8 e N © y B eccentricity (in degrees of visual
o o 8 <., °. angle) for each cue width,
Q- . ©) 5 . . conventions as in b.

0.5 4 0

18° 54° 90° 162° 18° 54° 90° 162°


https://doi.org/10.1101/2024.09.05.611383
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.05.611383; this version posted April 28, 2025. The copyright holder for this preprint (which

17

18
19
20
21
22
23
24
25
26
27
28
29
30
31

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

6

Attentional modulation of BOLD responses broadens with cue width

We assessed the spatial distribution of attention by visualizing how the BOLD
response was modulated by the location and width of the cue. To do so, we used each
voxel’s population receptive field (pRF) to project BOLD responses for each attentional
cue into the visual field. The resulting 2D visual field maps were averaged across trials
for each cue width by rotating the maps, so the attentional cue aligned to 0° polar angle
(right horizontal meridian). The reconstructed visual field maps revealed that increasing
cue width led to a concomitant broadening of attentional modulation in cortex (Figure
2a). While this pattern was evident in all three early visual regions (V1-V3), the effect
appeared to strengthen when ascending the visuocortical hierarchy.

Next, we computed the one-dimensional profile of attentional modulation at a
fixed eccentricity. We were able to do this because we manipulated the location of the
attentional field only as a function of polar angle, so all cues directed the attentional field
to iso-eccentric locations. We selected voxels with pRFs that overlapped the white noise
annulus and sorted them according to their polar angle preference.

a. Attention: 2D BOLD activity reconstruction
Vi1

Figure 2. a. BOLD response
projected into the visual field for
each attentional cue width.
Heatmaps represent the group
mean BOLD activity using each
voxel’s population receptive field
(PRF) location within the visual
field, shown separately for V1,
V2, and V3. Maps were rotated to
align all attentional cue locations
to 0° polar angle (rightward).
Concentric circles indicated by
black dashed lines represent the
location of the white noise
annulus. b. Average spatial
modulation profiles at the
eccentricity of the annulus. The
spatial profiles were recentered
to 0° polar angle based on the
cue location. Solid lines

cuewictn represent the group mean BOLD
0.5 VA Vo V3 18°  response and shaded regions the
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For visualization purposes, the spatial response modulations were recentered to
align all cues at 0° polar angle and averaged across trials for each cue width separately.
Much like in the visual field reconstructions, there was a clear attentional modulation
centered on 0°, which broadened and shifted downwards with cue width — a pattern that
was particularly evident in area V3 (Figure 2b).

Dynamic model-based recovery of the attentional field

We next applied a modeling approach to estimate the location and width of
attentional modulation, allowing us to further investigate the spread of attention in visual
cortex. To do this, we averaged the spatial response profiles across TRs within each 10-
TR block, in which the cue maintained a consistent location and width, yielding between
27 and 53 averaged spatial response profiles per participant for each width condition.
We fit a generalized Gaussian function to each of these spatial profiles to estimate the
location and width of attentional modulation per spatial profile (see Figure 3a). The width
of attentional modulation was quantified in terms of the full width at half maximum
(FWHM) of the best fitting model prediction (see Figure 3b).

a. Generalized Gaussian model  b. Quantify attentional field

u=-90,0= 57,p=2
myy= 0,0=115B=2 u=-90,0= 74,=2.35
my=54,0= 57,3=8 my= 0,0=115B3=7.71

BOLD response
(a.u.)
$

BOLD response
(a.u.)
L

. —, .

-180 0 180 -180 0 180
Cued polar angle (°) Cued polar angle (°)

Figure 3. a. Modeling approach. The generalized Gaussian model is characterized by parameters for
location (u), scale (), and shape (8). b. Example model fits for two spatial profiles. Dots indicate BOLD
response for two attentional cues differing in position and width. Solid lines indicate the best fitting
model estimate. To quantify the attentional field, we extracted the location and gain (dashed arrows),
as well as the width (FWHM; solid arrows).

Can we dynamically recover the attentional field from activity within visual cortex?
Model fits explained a substantial proportion of variance in the spatial profiles of BOLD
activity (V1: for 18° cues, mean [standard deviation] of R? = 0.42 [0.03]; for 54° cues, 0.43
[0.03]; for 90° cues, 0.44 [0.03]; for 162° cues, 0.42 [0.03]; V2: for 18° cues, 0.51 [0.05];
for 54° cues, 0.54 [0.05]; for 90° cues, 0.54 [0.04]; for 162° cues, 0.55 [0.04]; V3: for 18°
cues, 0.50 [0.03]; for 54° cues, 0.56 [0.04]; for 90° cues, 0.55 [0.03]; for 162° cues, 0.51
[0.02)]). To interpret the estimated model parameters, we excluded the bottom 20% of
fits based on a pooled R? across V1, V2, and V3, leaving roughly equal proportions of
included blocks across cue width conditions (18°: mean [standard deviation] = 0.78
[0.04], 54°: 0.83 [0.05], 90°: 0.83 [0.04], 162°: 0.77 [0.07]).
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To assess how well the model-estimated attentional field matched the cued
location, we first calculated the angular error between the cue center and the model's
estimated location parameter. The angular error distribution across blocks, separated by
width condition, is shown in Figure 4 for one example participant to display block-to-
block variation. The model reliably captured the location of the attentional field with low
angular error and with no systematic directional bias. This result was observed across
participants. We next examined the absolute angular error to assess the overall accuracy
of our estimates. The group mean absolute angular error in V1 was 41.9° (SEM=2.86°),
in V2 was 32.2° (2.31°), and in V3 was 24.7° (1.54°). Additionally, the magnitude of the
absolute error did not vary linearly with the width of the cue in V1 or V2 (regression slopes
tested against zero at the group level using a t-test; V1: {(7)=0.65, p=.537; V2: t(7)=1.24,
p=.253; Figure 5). In V3, we observed a small but statistically significant increase in
absolute error magnitude associated with greater cue widths (mean slope=1.4, t(7)=4.18,
p=.004).

_ _ , . Cuio""‘dth i . Figure 4. Attentional field
Attentlonc’:ﬂ f|e|d |OCEI'[IOﬂ 18 5 90° WM 162 parameter estimates for an
s~ 180 17 Vi 180 1 V2 180 T v3  example participant. The full
g ‘ parameter estimate
o 1 1 1 distributions across blocks
o 0 158 o +8-0- o 180 for location, width, gain, and
% baseline are shown for one
D 1 T ] example participant in V1, V2,
C .
< g0 | 180 . 180 4 and V3. Median parameter

-180 .
) ) ) estimates are shown by the
Attentional field width white points, with the box
360 1 Vi 360 - V2 360 T V3  plot representing the 25th to
g 1 ) | 75th percentile, and whiskers
= extending to all non-outlier
% 180 180 180 A points.
0 A 0 4 0 A
Attentional gain modulation
@ 4 - V1 4 V2 4 V3
n |
e
80
DH 21 2 2 4
- ) ¥
O 0 0 A 0
m

Baseline offset

AR ERAR ANIMA

o
1

~
1
'
~
1
~
1

BOLD response
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71 Next, we evaluated the width of the attentional field by visualizing the distribution
72  of FWHM for the same example participant (Figure 4), and at the group level (Figure 5).
73 Confirming the broadening of the attentional field observed in the visual field
74  reconstruction maps, we found that the estimated FWHM increased with greater cue

Attentional field location Figure 5. Attentional field
— 90 - Vi 9 - V2 90 - V3 parameter estimafces.
; Group results for location,
o ] | | width, gain, and baseline
o) estimates. Overall group
kS W mean and standard error
= 15 W o\’,/‘ are shown in solid black,
5: separated by cue width
Attentional field width Individual ~ _ participant
210 210 Vo 210 - median estimates are
] Vi ] shown in grey. The
T _ _ example participant from
= Figure 4 is indicated by a
T 1 M 1 denser dashed dark gray
% | | line with triangle symbols
to aid in comparison.
50 - 50 - ———— 50 - ——
Attentional gain modulation
[O) 1.5 - VA 3 - V2 1.5 - V3
n
=
25 \
A S
= he +*o——+ |
_] R ——r
a —
m
0 - O | B B B O | B B B
Baseline offset
) V1 . V2 . V3
n
g 0 0 0
q= =
O -0.5 -0.5 1 -0.5 A
m . . =
18° 54° 90°  162° 18° 54° 90°  162° 18°54° 90°  162°
Cue width Cue width Cue width

75 widths in V2 and V3 (V2 t(7)=5.63, p<.001; V3 (7)=6.49, p<.001). The effect was not
76  statistically significant in V1 (¢(7)=1.68, p=.136).

77 We also assessed the gain of the attentional modulation in the model (Figure 4
78 and 5 for the example participant and group data, respectively). We observed no
79  significant relationship between gain and cue width in V1 and V2 (V1 t(7)=-.54, p=.605;
80 V2 t(7)=-2.19, p=.065), though we did find a significant effect in V3 illustrating that gain
81 decreases with cue width ({(7)=-3.12, p=.017). We also found that the overall gain was
82 greaterin V2 and V3 compared to V1 (paired t-test, both p<=.01).
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83 Finally, we examined the baseline offset (Figure 4 example participant, and
84  Figure 5 group data). No significant relationship was observed between cue width and
85 Dbaseline offset in any of the three brain regions (V1, #(7)=-1.05, p=.330; V2, t(7)=-2.00,
86 p=.086; V3, t(7)=-1.61, p=.152).

87 Temporal interval analysis

88 In the previous analyses, we leveraged the fact that the attentional cue remained
89 constant for 5-trial blocks (spatial profiles were computed by averaging BOLD
90 measurements across a block of 10 TRs). We next examined the degree to which we
91  were able to recover the attentional field on a moment-by-moment (TR-by-TR) basis. To
92 do this, we systematically adjusted the number of TRs that contributed to the averaged
93 spatial response profile. To maintain a constant number of observations across the
94 temporal interval conditions, we randomly sampled a subset of TRs from each block.
95 This allowed us to determine the amount of data needed to recover the attentional field,
96 with a goal of examining the usability of our modeling approach in future paradigms
97 involving more dynamic deployment of spatial attention.
98 When we systematically varied the number of TRs included for each model fit (1,
99 2,3, 5, or 10 TRs), we found a significant effect of cue width on recovered FWHM when
100 averaging two or more TRs in V3 (all {(7)>=2.38, all p<=.049), and ten TRs in V2 (results
101  as reported in prior section; Figure 6a). As described above, V1 did not reliably show a
102  significant relationship between cue width and FWHM, even when averaging ten TRs.
103  We found that increasing the number of TRs had a small but significant positive effect
104 on FWHM estimates in V2 and V3 (V2, mean slope=2.7, t(7)=2.95, p=.021; V3, mean
105 slope=1.16, t(7)=3.22, p=.015), although a significant effect was not observed in V1
106  (t(7)=1.82, p=.111).
107 The number of TRs significantly affected the absolute angular error associated
108 with the estimated location of the attentional field (Figure 6b). Error magnitude
109 decreased with TRs in all three visual regions (all 1(7)<=-4.48, all p<=.003), suggesting
110 that more data yielded more accurate estimates, though absolute angular error remained
111 consistently below chance (90°) even when fitting the model to single-TR BOLD
112  responses. Angular error remained stable across width conditions in V1 and V2 (V1, ¢(7)=-
113 .55, p=.598; V2, t(7)=1.92, p=.098), though we found that larger cue width had a small
114  but significant effect associated with larger errors in V3 (mean slope=.02, t(7)=3.28,
115  p=.014).
116 The estimated gain of the attentional modulation showed a dependence on
117 number of TRs, with more TRs associated with lower gain estimates in V1 and V3 (V1,
118  t(7)=-7.21, p<.001; V3, t(7)=-9.97, p<.001), though this was not clearly observed in V2
119  (¢(7)=-1.60, p=.154). There was no evident dependence of gain on cue width in V1 and
120 V2 (V1 t(7)=-.19, p=.856; V2 t(7)=-2.34, p=.052), though we did observe a significant
121  relationship in V3 (t(7)=-2.86, p=.024; Figure 6c¢).
122 The baseline offset tended to increase with number of TRs across all three brain
123 regions (V1, £(7)8.79, p<.001; V2, t(7)=6.5, p<.001; V3, £(7)=5.59, p=.001; Figure 6d).
124  Baseline offset did not show a significant dependence on cue width in any region (V1,
125  t(7)=1.47, p=.186; V2, {(7)=-2.16, p=.068; V3, t(7)=-1.67, p=.139).
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Finally, the model's goodness of fit improved with more data, with larger R?
associated with greater numbers of TRs included in the average profiles (all t(7)>=2.99,
all p<=0.020), though all R* were above 0.3 across all visual regions even for single-TR
model fits. We did not observe a dependence of R? on cue width (all #(7)<=1.26, all
p>=.249; Figure 6e).
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Figure 6. Effect of number of TRs. Model fits were computed using BOLD data averaged across
different temporal intervals (1, 2, 3, 5, or 10 TRs). Group means (with SEM) are plotted for FWHM,
absolute angular error, gain, baseline estimates, and R?, separated by cue width, brain region, and the
number of TRs used for each model fit.
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131  Width of the attentional field mimics perceptual modulation

132 While the attentional field broadened as expected when participants were cued
133 to attend to a larger portion of the white noise annulus, the size of the estimated
134  attentional modulation was greater than the true size of the cued region. The cue width
135 varied between 18° and 162°, whereas the width estimate derived from spatial profiles
136 of BOLD modulation varied between 103° and 179° (Figure 5). We wondered what the
137 underlying cause of this disparity might be. One possibility is that the BOLD-derived
138 FWHM might tend to overestimate the retinotopic extent of the modulation, perhaps
139 driven by binning and smoothing processing steps to create the 1D spatial profiles. If
140 this were the case, we would expect to obtain similar FWHM estimates when modeling
141 the perceptual modulations as well. Alternatively, the true subjective attentional field
142  might be consistently broader than cued, despite the presence of nearby distractors. If
143  this were the case, modulation driven by perceptual differences should not result in the
144  same large FWHM estimates.

145 To address this, we compared our estimates of the attentional field with
146  equivalent estimates for spatial profiles induced by a perceptual manipulation. In this
147  additional experiment, we varied the contrast intensity of sections of the white noise
148 annulus. Participants were not asked to deploy spatial attention to the stimulus and were
149 instead instructed to perform a color change detection task at fixation. The regions of
150 increased noise contrast matched the attentional cue widths (18°, 54°, 90°, and 162°,
151 plus an additional intermediate width of 126°), and were centered on one of the four
152  cardinal locations (0°, 90°, 180°, 270° polar angle).

153 As expected, we observed a broadening of the spatial profile of BOLD modulation
154 in all three visual areas as the region of increased contrast widened (Figure 7a). Using
155 anidentical modeling procedure, we estimated the spatial profile of the perceptual BOLD
156  modulation. The model-based estimates revealed that the mean magnitude of angular
157  error between the model-estimated location and the center of the contrast stimulus had
158 no significant dependence on contrast width in any of the three brain regions (magnitude
159  of all {4)<=.915, all p>=.412). The recovered FWHM increased with contrast width in
160 both V1 and V3 (Figure 7b; V1, t(4)=6.94, p=.002; V3 t(4)=11.34, p<.001), though this
161 effect was not clearly observed in V2 (t(4)=1.37, p=.242). The estimated gain modulation
162 also did not show a relationship to contrast width in any of the visual areas (magnitude
163  of all t(4)<=1.71, all p>=0.163). Finally, we did not observe a significant relationship
164 between contrast width and baseline offset in any visual area (magnitude of all
165  t(4)<=1.93, all p>=0.125). In sum, the group results for model estimates revealed that: 1)
166 the model was highly accurate in estimating the location of the contrast increment; 2)
167 FWHM of the spatial profiles broadened across contrast widths, 3) the gain and baseline
168 remained stable across contrast widths (Figure 7b).

169 Mirroring the results from the attentional manipulation, FWHM estimates
170 systematically exceeded the nominal size of the perceptually modulated region of the
171  visual field. Comparing the estimated FWHMs of the perceptual and attentional spatial
172  profiles (Figure 7c) revealed that the estimated widths were highly comparable (Pearson
173  correlation r=0.664 across width conditions and visual regions). Importantly, the relative
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174  differences in FWHM show meaningful effects of both cue and contrast width in a similar
175  manner for attentional and perceptual forms of modulation.
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Figure 7. a. Spatial profiles of perceptual modulation. Solid lines represent the group mean BOLD
activity and shaded regions the SEM. b. Group level parameter estimates. Overall group mean and
standard error are shown for the absolute angular error, FWHM, gain and baseline, separated by
contrast width and brain region. c. Comparison of FWHM estimates obtained from the attentional
manipulation and the physical contrast manipulation. Dot color indicates brain region; each point
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for a given width condition across participants.
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Discussion

We investigated the topographic spread of spatial attention in human visual cortex
by characterizing the spatial profile of BOLD responses while participants attended to
different portions of the visual field. Behavioral performance confirmed that participants
used the fixation cue to dynamically allocate attention to different swaths of the visual
field. Attention allocation was associated with a modulation in the BOLD response in
corresponding retinotopic areas of visual cortex. To characterize the topography of that
modulation, our approach involved selecting voxels with pRF preferred eccentricities
that overlapped our white noise annulus, and organizing those voxels into one-
dimensional profiles of attentional modulation as a function of preferred polar angle. This
allowed us to model the location and spread of the attentional field and test how well it
tracked the nominal location and width of the cue presented at fixation. Using a
generalized Gaussian model, the cued location could be recovered with high fidelity. We
observed a broadening of the estimated attentional field in areas V2 and V3 with the cue
width, suggesting our method was capable of dynamically recovering the location and
size of the attentional field from moment to moment. We also found that the estimated
spatial spread of the attentional modulation (as indicated by the recovered FWHM) was
consistently wider than the cued region itself. We therefore compared the spread of the
attention field with the spatial profile of a perceptually induced width manipulation. The
results were comparable in both the attentional and perceptual versions of the task,
suggesting that cueing attention to a region results in a similar 1D spatial profile to when
the stimulus contrast is simply increased in that region.

This work builds on the concept of an attentional ‘spotlight’ or ‘zoom lens’ that has
long been theorized to aid in spatial attention (Shaw and Shaw, 1977; Posner, 1980;
Eriksen and St. James, 1986; Carrasco, 2011). By flexibly adjusting and shifting the focus
of the spotlight, visual representations are selectively enhanced in a region of the visual
field. However, the empirical evidence demonstrating that attention can change its
spread across the visual field by modulating brain responses is surprisingly lacking
(Yeshurun, 2019). Our understanding of how the attentional window interacts with spatial
representations is mainly based on behavioral reports (Gobell, Tseng and Sperling, 2004;
Palmer and Moore, 2009; Herrmann et al., 2010; Beilen et al., 2011; Taylor et al., 2015;
Huang et al., 2017; Kiniklioglu and Boyaci, 2022), but see (Muller et al., 2003; Hopf et al.,
2006; Itthipuripat et al., 2014; Tkacz-Domb and Yeshurun, 2018; Feldmann-Wistefeld
and Awh, 2020). We introduced a novel modeling approach that recovered the location
and the size of the attentional field. Our data show that the estimated spatial spread of
attentional modulation (as indicated by the recovered FWHM) consistently broadened
with the cue width, replicating prior work (Miller et al., 2003; Herrmann et al., 2010). Our
results go beyond prior work by linking the spatial profiles to pRF estimates, allowing us
to quantify the spread of both attentional and perceptual modulation in degrees of polar
angle. Interestingly, the FWHM estimates for the attentional and perceptual spatial
profiles were highly similar. Additionally, for area V3 we replicate that the population
response magnitude decreased with cue width (Mdller et al., 2003; Feldmann-W(stefeld
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and Awh, 2020). One innovation of our method is that it directly reconstructs attention-
driven modulations of responses in visual cortex, setting it apart from other methods,
such as inverted encoding models (e.g. Sprague and Serences, 2013). Finally, we
demonstrated that our method has potential to be used in more dynamic settings, in
which changes in the attentional field need to be tracked on a shorter timescale.

The ability to change the size of the attentional field is a crucial component in an
influential theoretical model of attention. This model proposes that the interaction
between stimulus properties (such as its size and specific features) and the attentional
field can explain a wide variety of attentional effects reported in behavioral and
neurophysiological studies (Herrmann et al., 2010; ltthipuripat et al., 2014; Bloem and
Ling, 2019; Jigo, Heeger and Carrasco, 2021). The present study sought to address this
gap, with our results showing that the visuocortical attentional field broadened as we
increased the cue width (Figure 5). This provides compelling evidence that the attention-
related cortical response can, in fact, flexibly vary in its position and spatial distribution.

The observed effects of attentional field width were unlikely to be directly
attributable to variation in task difficulty. Participants' task in our study was to
discriminate whether more numbers or more letters were presented within a cued region
of an iso-eccentric annulus of white noise. For our different cue widths, the ratios of
numbers and letters were selected to be as similar as possible given the size and spacing
of our stimuli. Changes in accuracy across the three larger cue widths were small and
non-monotonic, implying task difficulty was dissociable from width per se. This
dissociation bolsters the interpretability of our model fits; nevertheless, future work
should further investigate how task difficulty interacts with the spread of the attentional
field and the amplitude of attention-related BOLD effects (cf. Ress, Backus and Heeger,
2000).

In this study, we modeled the attentional field using a one-dimensional
distribution. This approach aligned with our experimental design, as the attentional cue
was manipulated only as a function of polar angle. However, we know that spatial
processing varies substantially as a function of eccentricity. Spatial resolution is highest
at the fovea and rapidly drops in the periphery (Anton-Erxleben and Carrasco, 2013). The
spatial distribution of attention will presumably also vary with eccentricity and will likely
take on different functional properties close to the fovea, where spatial resolution is high,
compared to the far periphery where spatial resolution is low (Intriligator and Cavanagh,
2001; Jigo, Heeger and Carrasco, 2021). Future work can help provide a better
understanding of the contribution of spatial attention by considering how the attentional
field interacts with these well described spatial variations across the visual field.
Measuring the full spatial distribution of the attentional field (across both eccentricity and
polar angle) will shed light on how spatial attention guides perception by interacting with
the non-uniformity of spatial representations.

The spread of the attentional field likely influences the degree to which spatial
resolution at the attended location is transformed, leading to enhanced behavioral
performance. Spatial attention was vital for this task, as enhanced spatial perception
allowed the participants to better discriminate all stimuli within the cued region (Anton-
Erxleben and Carrasco, 2013). Future work could unpack the degree to which the size
of the attentional field influences the spatial resolution of visual cortical representations
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88 (Klein, Harvey and Dumoulin, 2014; Vo, Sprague and Serences, 2017; Tungok, Carrasco
89 and Winawer, 2024), and how this influences spatial perception.
90 Beyond addressing core questions related to the function of spatial attention, this
91 method also lays groundwork for addressing questions about spatial predictive
92 uncertainty and belief updating. Prior work on these topics has relied almost entirely on
93 inferring participants' predictions from their behavior, often requiring participants to
94  report overt point predictions (Nassar et al., 2010; McGuire et al., 2014; D’Acremont and
95 Bossaerts, 2016; Nassar, Bruckner and Frank, 2019), or inferring participants'
96 predictions from their sequences of decisions (Daw et al., 2006; Behrens et al., 2007;
97 Payzan-LeNestour and Bossaerts, 2011; Payzan-LeNestour et al., 2013). These
98 approaches have shed light on how we dynamically adapt our learning and belief
99 updating processes over time in differently structured contexts. However, methods for
100 recovering information about full predictive belief distributions have been limited, relying
101  on indirect measurements such as eye movements (O’Reilly et al., 2013; Bakst and
102  McGuire, 2021, 2023), and physiological measures of uncertainty and surprise in EEG
103 and pupillometry (Preuschoff, 't Hart and Einhauser, 2011; Nassar et al., 2012; Nassar,
104  Bruckner and Frank, 2019). The methods developed here offer a potential way to recover
105 the location and width of a spatial predictive distribution via the attentional field in
106 contexts in which it is unknown a priori and might be dependent on how a given
107 participant has integrated previous sequential evidence. Future work could extend this
108 method to more directly interrogate how predictive uncertainty is represented
109 throughout the brain on a moment-by-moment basis.
110 In summary, we found evidence that people could dynamically adapt the spread
111 of spatial attention, and that the retinotopic extent of attentional modulation of the BOLD
112  response reflected this dynamic adaptation. These findings address a gap in our
113 understanding of spatial attentional control, supporting core theoretical models of
114  attention. Our modeling approach also lays the groundwork to address further questions
115 related to how the attentional field interacts with the non-uniformity of spatial
116  representations and how uncertainty in spatial contexts is represented in the human
117 brain.
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Materials and Methods

Participants. Eight healthy adults (4 female, 4 male, mean age = 30) participated in the
main attention experiment, five of whom also participated in a second experiment
featuring a contrast manipulation. All participants had normal or corrected-to-normal
vision. All procedures were approved by the Boston University Institutional Review
Board, and informed consent was obtained from all participants.

Apparatus and stimuli. Participants were presented with stimuli generated using
PsychoPy (v1.85.1; Peirce, 2007) on a MacBook Pro. The visual stimuli were displayed
on a rear-projection screen (subtending ~20°x16° visual angle) using a VPixx
Technologies PROPixx DLP LED projector (maximum luminance 306 cd/m?).
Participants viewed the screen through a front surface mirror. Participants were placed
comfortably in the scanner with padding to minimize head motion.

Procedure.

Attentional width manipulation. Participants were instructed to fixate a central point
(radius 0.08° visual angle) while dynamic pixelwise white noise (flickering at 10 Hz, 50%
contrast) was presented in the periphery (annulus spanning 4.6° to 7.4° visual angle).
The annulus was segmented into 20 bins (18° polar angle per bin) by white grid lines
radiating from a white circle at the center of the screen (radius 0.25°), passing behind
the annulus, and terminating at 8.5° eccentricity. In the middle of each bin, a number or
letter (height: 2.1°) was superimposed on the white noise annulus (see Figure 1a). For a
subset of the participants (3 out of 8) the screen distance inside the scanner was
changed, therefore for those participants the letter size was 1.86° visual angle, and the
white noise annulus spanned 4.1° to 6.5° visual angle. The set of possible letters included
all lowercase letters of the Latin alphabet except a, b, €, g, i, 0, and u. The set of numbers
included 2, 3, 4, 5, 7, and 8.

Participants were cued to attend covertly to a contiguous subset of the bins and
their task was to report, via button press, whether there were more numbers or letters
present within the cued region. The cue was a bold red segment on the central white
circle, which corresponded to 1, 3, 5, or 9 bins (18°, 54°, 90°, or 162° polar angle; see
Figure 1a). The true proportion of letters versus numbers was controlled within each cue
width condition. For cued regions of 1 bin, there was either a single number or letter in
the bin. For cued regions of 3 bins, the ratio was always 2:1 (either two numbers and one
letter or vice versa). For cued regions of 5 bins, the ratio was 3:2, and for cued regions
of 9 bins, the ratio was 6:3. The ratios were selected to be as similar as possible given
the size and spacing of our stimuli (aside from the one-bin cue, the proportions for the
other cues were 0.67, 0.60 and 0.67). Cues could be centered on any of the 20 bins.

Participants completed 8 to 12 runs of the task (mean = 10.4), with each run
lasting 341 s and containing 100 trials. Each cue remained constant for a block of five
trials (lasting 15.5 s, 10 TRs), although the letters and numbers within the cued region
changed on every trial. Thus, each participant saw 20 unique cues (combinations of cue
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location and width) per run. Each run began and ended with 15.5 s of the dynamic noise
annulus.

During each ftrial, the cue and white noise annulus were presented alone for 1.35
s. The numbers and letters were then displayed for 0.5 s. Thereafter, the cue and white
noise remained visible while the participant had 1.25 s to indicate whether there had
been more digits or letters within the cued region, resulting in a total trial duration of 3.1
s (2 TRs). No accuracy feedback was provided during the main experiment. However, all
participants completed three training runs with trial-by-trial feedback prior to the scan
session. During training runs, the response window was shortened to 1 s and the
remaining 0.25 s presented feedback in the form of a change in color of the fixation point
(blue for correct responses and orange for incorrect responses).

Physical contrast manipulation. A subset of participants (n=5) also participated in an
experiment that enhanced the physical contrast intensity of the dynamic visual noise in
segments of the annulus. This additional experiment was carried out during the same
scan session and allowed for benchmarking the detectability of stimulus-evoked
modulation in visual cortex using our analyses. The stimuli and trial structure were similar
to the attentional manipulation. The task differed in the following ways: (1) the contrast
of the white noise annulus was increased to 100% for segments of the annulus
corresponding to 1, 3, 5, 7 or 9 bins (18°, 54°, 90°, 126°, or 162° polar angle), with a
Gaussian rolloff (o = 15°) that spanned 25% of the furthest included bins and 25% of the
adjacent excluded bins; (2) the enhanced segments were always centered on the
cardinal directions (0°, 90°, 180°, and 270° polar angle); (3) the contrast increase
remained constant for 15.5 seconds (10 TRs); (4) participants performed a color change
detection task at fixation. Each unique combination of 4 locations and 5 widths of the
contrast enhancement was shown once per run, with the order randomized. To estimate
a baseline response, each run started and ended with 15.5 seconds without contrast
modulation. Participants completed two runs total, each lasting 341 seconds (220 TRs).

Throughout the physical contrast runs, participants were instructed to fixate on a
central point (radius 0.08° visual angle) and to press a button when the fixation point
switched color (alternating white and red). The fixation point remained a color for at least
one second and then had a 10% probability of switching every 100 ms. No cue was
presented associated with the regions of increased contrast. Additionally, no letters or
numbers were superimposed on the white noise annulus.

Population receptive field mapping. Population receptive field (pRF) estimates were
obtained for each participant in a separate scan session. We used the experimental
procedure as described in the Human Connectome Project 7T Retinotopy dataset
(Benson et al., 2018). Stimuli were composed of a pink noise background with colorful
objects and faces at various spatial scales, displayed on a mean luminance gray
background. Stimuli were updated at a rate of 15 Hz while participants performed a color
change detection task at fixation. Participants viewed two types of mapping stimuli: (1)
contracting/expanding rings and rotating wedges; (2) moving bar stimuli (Dumoulin and
Wandell, 2008; Kay et al., 2013). A total of 4-6 scans (300 TRs) were collected for each
participant (2-3 scans per stimulus type). In this session, the field of view was restricted
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88 to the occipital cortex to maximize SNR, thereby limiting the brain regions for which we
89 had pRF estimates to V1, V2, and V3.
90
91 MRI data acquisition. All MRl data were acquired at Boston University’s Cognitive
92 Neuroimaging Center (Boston, Massachusetts) on a research-dedicated Siemens
93 Prisma 3T scanner using a 64-channel head coil. A scanning session lasted 2 hours.
94  All functional neuroimaging data were acquired using a simultaneous multislice (SMS)
95 gradient echo echoplanar acquisition protocol (Moeller et al., 2010; Setsompop et al.,
96 2012): 2 mm isotropic voxels; FoV = 212 x 212 mm; 72 axial slices; TR = 1.55 s; TE =
97 35.60 ms; flip angle = 72°; multiband acceleration factor 4. We computed distortion field
98 maps by using a spin echo echoplanar protocol with opposite y-axis phase encoding
99 directions (2 mm isotropic voxels; FOV =212 x 212 mm; TR = 8850 ms; TE = 70.80 ms;
100 flip angle = 90°). During a separate scan session, we acquired a whole-brain anatomical
101  scanusing a T1-weighted multi-echo MPRAGE 3d sequence (1 mm isotropic; FoV = 256
102 x 256 mm; 176 sagittal slices; TR = 2530 ms; TE = 1.69 ms; flip angle = 7°), and the pRF
103 scans (occipital coverage only; right-left phase encoding; 2 mm isotropic voxels; FoV =
104 136 x 136 mm; 36 slices; TR =1 s; TE = 35.4 ms; flip angle = 64°; multiband acceleration
105 factor 3).
106
107  MRI data analysis.
108  Structural data preprocessing. Whole brain T1-weighted anatomical data were analyzed
109 using the standard ‘recon-all’ pipeline provided by Freesurfer software (Freesurfer
110 version 5.3, (Fischl, 2012)), generating cortical surface models, whole-brain
111 segmentation, and cortical parcellations.
112
113  Functional data preprocessing. All analyses were performed in the native space for each
114  participant. First, EPI distortion correction was applied to all fMRI BOLD time-series data
115 using a reverse phase-encode method (Andersson, Skare and Ashburner, 2003)
116 implemented in FSL (Smith et al., 2004). All functional data were then preprocessed using
117  FS-FAST (Fischl, 2012), including standard motion-correction procedures, Siemens slice
118 timing correction, and boundary-based registration between anatomical and functional
119 volumetric spaces (Greve and Fischl, 2009). To facilitate voxel-wise analysis, no
120 volumetric smoothing was performed and across-run within-modality robust rigid
121  registration was applied (Reuter, Rosas and Fischl, 2010), with the middle time-point of
122  the first run serving as the target volume, and the middle time-point of each subsequent
123 run used as a movable volume for alignment. Lastly, data were detrended (0.005 Hz
124  high-pass filter) and converted to percent signal change for each voxel independently
125  using custom code written in MATLAB (version 2020b).
126
127  Population receptive field mapping and voxel selection. The time series were analyzed
128 using the analyzePRF toolbox in MATLAB, implementing a compressive spatial
129 summation pRF model (Kay et al., 2013). The results of the pRF analysis were used to
130 manually draw boundaries between early visual regions (V1, V2, and V3), which served
131  as our regions of interest (ROIs).
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132 Within each ROI, pRF modeling results were used to constrain voxel selection
133 used in the main experiment. We excluded voxels with a preferred eccentricity outside
134  the bounds of the pRF stimulus (<0.7° and >9.1°), with a pRF size smaller than 0.01°, or
135  with poor spatial selectivity as indicated by the pRF model fit (R*> < 10%). Following our
136 2D visualizations (see below), we further constrained voxel selection by only including
137  voxels whose pRF overlapped with the white noise annulus. We included all voxels with
138 an estimated eccentricity within the annulus bounds, as well as voxels with an estimated
139  pRF size that would overlap the annulus.

140

141 2D visualizations of attentional modulation. To visualize the topography of attentional
142  modulation under different cue widths, we projected the average BOLD responses for a
143 given block (10 TRs with a consistent cue location and width, shifted by 3 TRs [4.65 s]
144  to compensate for the hemodynamic delay) into the visual field using each voxel’s pRF
145 location. This method is similar to that described in (Favila, Kuhl and Winawer, 2022).
146  First, we computed the Cartesian (x,y) coordinates from the pRF eccentricity and polar
147 angle estimates for each voxel. Then, within a given ROI, we interpolated the BOLD
148 responses over (x,y) space to produce a full-field representation. Each representation
149 was then z-scored to allow for comparison across blocks, cue conditions, and
150 participants. Finally, the representation was rotated so that the center of the cue was
151  aligned to the right horizontal meridian (see Figure 2a).

152

153 1D spatial profile of attentional modulation. We also examined the spatial profile of
154  attentional modulation as a function of polar angle. Voxels with pRFs overlapping the
155 white noise annulus were grouped into 60 bins according to their pRF polar angle
156 estimate (6° polar angle bin width). We computed a median BOLD response within each
157  Dbin. This facilitated the recentering of each profile to align all cue centers for subsequent
1568 combining across trials. To improve the signal-to-noise ratio, the resulting profile was
159 smoothed with a moving average filter (width 18° polar angle; see Figure 2b).

160

161  Model fitting. We quantified the spatial profile of attentional modulation with a
162 generalized Gaussian model (Nadarajah, 2005). The generalized Gaussian function (G)
163 combines Gaussian and Laplace distributions:

G = exp{— |x—y|ﬁ} (1)

o

164  The function has free parameters for location (1), scale (o), and shape (8). The shape
165 parameter enables the tails of the distribution to become heavier than Gaussian (when
166 B < 2), or lighter than Gaussian (when g > 2); as B — oo, the model approaches a
167  uniform distribution.

168

169 Next, G was normalized to range between 0 and 1, and vertically scaled and shifted by
170 two additional free parameters for gain (a) and baseline offset (b):
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9=a-G+b )

171 We fit the five free parameters (u, g, 8, a, b) using the MATLAB optimization tool fmincon,
172  minimizing the squared error between the model prediction and the 1D profile described
173 above. To avoid local minima, we first ran a grid search to find the initialization values
174  with the lowest SSE (6 possible values for u, equally spaced between 0 and 360°,
175 crossed with 6 possible values for o, equally spaced between 9° and 162° polar angle;
176 B =4;a =1; b =0). We imposed the following parameter bounds on the search: a: [6°,
177  180° polar angle], g: [1.8, 50], and a: [0, 20]. u was unbounded, but was wrapped to
178  remain within [0°, 360°].

179 From the model fits we computed the following summary metrics: 1) angular error,
180 defined as the polar-angle distance between the true and estimated location; 2) the full
181  width at half-maximum (FWHM) of the best-fitting generalized Gaussian function, which
182  served as our measure of the width of attentional modulation. The FWHM was controlled
183 mainly by the scale parameter (o) but also to a lesser degree by the shape parameter (5;
184  see Figure 3a); 3) the gain modulation of the spatial profile (a); 4) the model's goodness
185  of fit quantified as the percentage of explained variance (R? in the spatial response
186  profile:

-9

R2 =1 -
oy — )2

(3)

187  Statistical testing. To assess how the attentional cue width manipulation influenced the
188 1D spatial profile of BOLD modulation, we tested whether the computed summary
189 metrics (absolute angular error, FWHM, gain, and baseline) varied as a function of cue
190 width. Specifically, we performed a linear regression for each metric within each subject
191  and tested whether the slopes differed from zero at the group level using a t-test. This
192  was done independently for each ROIl. No multiple comparison correction was applied,
193 as the different tests for each region are treated as separate questions. However, using
194  a threshold of 0.017 for p-values would correct for comparisons across the three brain
195 regions. When testing whether the number of TRs impacted our metrics, the linear
196 regression used both cue width and number of TRs as explanatory variables.

197

198 Eye-position monitoring. Gaze data were collected for all participants using an MR-
199 compatible SR Research EyelLink 1000+ eye tracker sampling at 1 kHz. Data from blink
200 periods were excluded from analysis. Participants maintained fixation throughout the
201  task, with average gaze eccentricity below 0.5° for all participants. Gaze eccentricity did
202 not significantly vary by cued width (pairwise comparison of width conditions using a
203 paired t-test, all p >= 0.205 with Bonferroni correction for multiple comparisons) nor
204  location (pairwise comparison, all p >= 0.522 with Bonferroni correction for multiple
205 comparisons). Additionally, we examined the number of fixations to the white noise
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206 annulus itself. No participant had more than 16 fixations (out of 800-1200 trials) to the
207 annulus during the task, further suggesting that participants successfully maintained
208 fixation.
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Figure 1.
a. Attention task trial sequence
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Figure 1. a. Task schematic. Participants were instructed to maintain central fixation and use covert spatial
attention to determine whether there were more numbers or letters present within a cued region of a white noise
annulus. On each trial, the red cue was displayed alone for 1.35 s and remained present throughout the trial. Twenty
digits and letters were then presented for 0.5 s, equally spaced and overlaid on the annulus. Participants had 1.25
s to indicate via button press whether more digits or letters were present in the cued region. The cue remained
stable for 5 trials (10 TRs, 15.5 s), had a width of 1, 3, 5, or 9 segments (18°, 54°, 90°, or 162°), and was centered
on any of the 20 digit/letter slots. b. Behavioral task performance: Group mean accuracy for each cue width. Error
bars are SEM; gray circles show individual participants. c. Group mean gaze eccentricity (in degrees of visual angle)
for each cue width, conventions as in b.
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Figure 2
a. Attention: 2D BOLD activity reconstruction
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response projected into the visual field for each attentional cue width. Heatmaps represent the group
mean BOLD activity using each voxel’s population receptive field (pRF) location within the visual field,
shown separately for V1, V2, and V3. Maps were rotated to align all attentional cue locations to 0° polar
angle (rightward). Concentric circles indicated by black dashed lines represent the location of the white
noise annulus. b. Average spatial modulation profiles at the eccentricity of the annulus. The spatial
profiles were recentered to 0° polar angle based on the cue location. Solid lines represent the group
mean BOLD response and shaded regions the SEM across participants.
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a. Generalized Gaussian model  b. Quantify attentional field
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Figure 3. a. Modeling approach. The generalized Gaussian model is characterized by parameters for
location (u), scale (), and shape (8). b. Example model fits for two spatial profiles. Dots indicate BOLD
response for two attentional cues differing in position and width. Solid lines indicate the best fitting
model estimate. To quantify the attentional field, we extracted the location and gain (dashed arrows),
as well as the width (FWHM; solid arrows).
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Figure 4. Attentional field parameter estimates for an example participant. The full parameter
estimate distributions across blocks for location, width, gain, and baseline are shown for one
example participant in V1, V2, and V3. Median parameter estimates are shown by the white points,
with the box plot representing the 25th to 75th percentile, and whiskers extending to all non-outlier

points.
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Figure 5. Attentional field parameter estimates. Group results for location, width, gain, and baseline
estimates. Overall group mean and standard error are shown in solid black, separated by cue width
and brain region. Individual participant median estimates are shown in grey. The example participant
from Figure 4 is indicated by a denser dashed dark gray line with triangle symbols to aid in
comparison.
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Figure 6.
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Figure 6. Effect of number of TRs. Model fits were computed using BOLD data averaged across
different temporal intervals (1, 2, 3, 5, or 10 TRs). Group means (with SEM) are plotted for FWHM,
absolute angular error, gain, baseline estimates, and R?, separated by cue width, brain region, and
the number of TRs used for each model fit.
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Figure 7.
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Figure 7. a. Spatial profiles of perceptual modulation. Solid lines represent the group mean BOLD
activity and shaded regions the SEM. b. Group level parameter estimates. Overall group mean and
standard error are shown for the absolute angular error, FWHM, gain and baseline, separated by
contrast width and brain region. c. Comparison of FWHM estimates obtained from the attentional
manipulation and the physical contrast manipulation. Dot color indicates brain region; each point
represents the mean FWHM for a given width condition across participants.
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