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Abstract

Modern biology increasingly relies on large-scale screening to generate high dimensional datasets with potential to
accelerate discovery. However, analysing these complex datasets remains challenging, particularly in applications
where the underlying structure and groupings are unknown, and high dimensionality introduces noise and artifacts that
make follow up studies difficult to prioritise. Here, we present an unsupervised consensus clustering tool that
guantifies biologically meaningful patterns based on multi-scale data organisation to guide decision-making in high-
throughput screening. Using large-scale drug screening data in cancer cell lines and bacterium model, we demonstrate
its ability to use diverse datainputsto prioritize robust drug clusters with shared biological mechanisms and conserved
drug responses. This method addresses key limitations associated with prioritising robust, actionable hits from
scalable screening data.
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Advancements in high-throughput sequencing technologies have generated unprecedented volumes of biological
data™. Traditional comparative analyses that require groups to be labelled a priori are inadequate for such complex
datasets. Unsupervised clustering methods are therefore ideal to assist in identifying hidden structure in high-
dimensional feature spaces without prior assumptions. Clustering samples based on their molecular or phenotypic
features enables data-driven approaches to discover meaningful relationships or shared mechanisms. Despite this,
clustering high dimensional data remains challenging, particularly in applications where the number of true biological
groupings are unknown and the signal is confounded by stochastic noise®.

Consensus clustering methods have emerged as a solution to improve clustering sensitivity and robustness,
particularly in the single cell and bulk transcriptomics field"®. These approaches assume that true biological clusters
remain stable despite varied hyperparameters or algorithms®. Rather than relying on a single clustering result, they
aggregate multiple clustering solutions to build a similarity matrix representing how often objects co-cluster across
iterations and then perform clustering on the compiled consensus matrix’. Despite improving overall cluster accuracy,
existing methods do not provide a systematic approach to evaluate cluster quality®®™3. Without an efficient way to
determine the true underlying biological patterns and prioritise actionable data clusters, follow-up analysis becomes
resource intensive and risky. Furthermore, clustering performance is inherently limited by the data quality, which can
suffer in large-scale screens, making it essential to detect low-quality, stochastic clusters. In this study, we present
UNnTANGLeD, an unsupervised consensus clustering pipeline that identifies robust biological patterns in high-
dimensional data with post-hoc evaluation to quantifiably prioritise clustersfor actionable and efficient follow-up.

UNTANGLeD takes any dimensionality-reduced dataset following pre-processing and performs iterative clustering to
evaluate signatures of similarity across increasing granularity. The co-clustering frequencies of object pairs are used to
congdruct a consensus matrix, transforming raw distance into an interpretable robustness-based metric quantifying
relationship consistency. By leveraging multi-resolution clustering, this method effectively denoises data, retaining
genuine biological relationships that persist across multiple data scales while filtering out weak or spurious
associations. It further employs a stability-driven approach to determine the optimal number of clusters that capture
maximal information from the data. After hierarchical clustering, clusters are stratified based on internal coherence
(correlation), robustness (silhouette score), and assessed for conservation across biological contexts. This provides
researchers with an unbiased framework for prioritizing robust and biologically meaningful clusters for further
invegtigation, optimizing resource allocation in screening scenarios with limited or no prior annotation (Figure 1a).
Originally developed to identify gene programs from sparse, gene-trait association data™, we have established
UNnTANGLeD asa versatile pipeline for post-screening analysis integrating clustering, cluster optimisation, evaluation,
and conservation metrics in one workflow applicable to diverse data modalities and experimental designs. In this study;,
we aim to demonstrate its utility across various large-scale screens, including a high-content imaging drug screen of
ovarian cancer cell lines™, a gene deletion library in E. coli'®, and profiling of transcriptional responses to drug
perturbations'(Figure 1b).

Firg, we analysed high content morphology imaging data measuring the phenotypic response of three low grade
serous ovarian carcinoma cell lines with unique genetic profiles (AOCS-2, VOA-6406, SLC58), and one normal
ovarian surface epithelial cell line (IOSE-523) exposed to a diverse library of 5,596 drugs, including FDA-approved
drugs, kinase inhibitors, methylation modulators, and investigational agents, at 3 different concentrations (10, 1,
0.1uM) (Figure 2a)™. We tested the utility for UNTANGLeD to leverage the 2,175 imaging features to cluster over
16,750 drug conditions by their shared morphological changes in cells and prioritise robust drug clusters with shared
biological mechanisms. Raw datasets were pre-processed and reduced in dimensionality using principal component
analysis. To assess clustering dability across different granularities, 100 iterations of Seurat’s shared nearest
neighbour (SNN) algorithm were run at increasing resolutions. These results were combined into a consensus matrix,
where each element represents the co-clustering frequency of any two drugs across all resolutions. This re-configures
the high-dimensional drug-by-imaging matrix into a sparse consensus matrix that quantifies the relationship strength
between all drug pairs (Figure 2b). UnTANGLeD then performs agglomerative clustering using Ward’s minimum
variance on the consensus matrix from 2 to 300 clusters, calculating the average silhouette score for each number of
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clusters as a metric of cluster quality acrossthe data set. The silhouette score (-1 to 1) assesses how similar each object
isto other objects in its assigned cluster and how different it isfrom objects in the nearest neighbouring cluster. Asthe
silhouette score is calculated on the consensus matrix, a high silhouette score indicates a stable, distinct grouping.
When increasing the number of clusters no longer improves the average silhouette score, no more biologically
digtinctive groups can be gained by further subdividing the data. In our analysis, the optimal number of clusters was
defined at approximately 200 clusters across al four cell lines (Figure 2c).

Clusters were next stratified by the silhouette score, indicative of cluster robustness, and the average pairwise
correlation of imaging features within each cludter, indicative of intra-cluster similarity (Extended Figure la-d).
Given the genetic heterogeneity of ovarian cancer, we were interested in identifying drug mechanisms that induce
consistent phenotypic responses robust to genetic variation. To assess this, we evaluated the consistency of drug
clusters across cell lines using three conservation metrics. Many of the top ranked drug clusters, defined as those
scoring high on average silhouette and correlation scores, were significantly conserved across all four ovarian cell
lines (Figure 2d). To assess the hiologica significance of identified clusters, we performed hypergeometric tests to
evaluate the enrichment of annotated pathways for each drug cluster. Across all four cell lines, clusters were
significantly enriched for cancer-related pathways (Extended Figure 1le-h). For instance, the top ranked drug clusters
from cell line SLC58, were strongly enriched for key oncogenic pathways including MAPK/ERK',
PI3K/AKT/mMTOR®, and Cell cycle/DNA damage'® (Figure 2d). To reinforce these findings, we examined
representative microscopy images of cells treated with drugs from selected clusters. Top-ranked clusters exhibited
more consistent morphological changes in treated cells vs DM SO control, contrasting with inconsistent morphologies
in poorly ranked clusters (Extended Figure 2). Notably, the observed morphological changes closely aligned with the
enriched pathways for these clusters. For example, the drugs in top-ranked Cluster 200 from cell line SLC58 was
enriched for MAPK/ERK pathway and showed morphological changes including cell shrinkage, membrane blebbing,
and fragmented nuclei, consistent with apoptosis induction (Figure 2e). These observations align with the known role
of MAPK/ERK pathway in regulating cell proliferation and survival, particularly in low-grade serous ovarian cancer
pathogenesis'”?, where its disruption can lead to apoptosis™. We further validated our clustering outputs using
Connectivity Map (CMap)*, an independent dataset characterising changes in gene expression in response to drug
perturbations, focusing on breast, prostate cancer and leukaemia cell lines. This comparison allowed us to evaluate
whether the morphological signatures identified by imaging align with transcriptomic changes induced by the same
drugs. UnTANGLeD was applied to CMap to yield 175 drug clusters. Next, we assessed the conservation between
these transcriptomics-based clusters and our imaging-based clusters across all four ovarian cell lines, focusing on
drugs present in both datasets (Extended Figure 3a). Indeed, overlapping drug sets between the two modalities were
conserved, with stronger conservation observed in highly ranked clusters (Figure 2f, Extended Figure 3b), implying
concordant changes at the transcriptomic level and providing orthogonal validation to our clustering.

To contextualize UnTANGLeD's performance and its advantages, we benchmarked it against two widely used
traditional clustering approaches, k-means and hierarchical clustering, on dimensionality reduced data. K-means
iteratively assigns data points to their nearest cluster centres and recalculates centres until convergence, while
hierarchical clustering progressively merges similar points or clusters based on a defined distance metric. While
attempting to identify optimal cluster numbers using silhouette scores, we found that both methods' scores rapidly fell
and plateaued near O, despite dimensionality reduction of the dataset, indicating their inability to maintain or quantify
meaningful cluster separation (Figure 3a, Extended Figure 4a). By contrast, UnTANGLeD demonstrated the ability
to improve clustering quality with increasing cluster granularity. For comparison, we set the cluster number to 200 for
all methods based on the previously determined optimal cluster number and evaluated the resulting clusters based on
internal quality metrics (silhouette and corrdation scores), biological relevance (pathway enrichment), and shared
drug mechanism (cell-line conservation). UnTANGLeD consistently produced a clear dratification pattern where
clusters in the upper right quadrant with both high internal coherence and digtinctiveness showed stronger biological
relevance, evidenced by increased pathway enrichment and cross-cell line conservation (Figure 3b, Extended Figure
la-d). K-means clusters showed uniformly poor silhouette scores despite varying correlation values, indicating an
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inability to form biologically distinct clusters (Extended Figure 4b). Unlike UnTANGLeD and k-means which
produced normally distributed cluster size (Figure 3c), hierarchical clustering produced either very small, highly
correlated clusters due to feature redundancy or large, catch-all clusters with decreased robustness (Extended Figure
4c, Extended Figure 5). In addition, neither silhouette nor correlation scores effectively stratified clusters by
biological relevance for both k-means and hierarchical clustering (Extended Figure 6).

To assess each method's ability to prioritize biologically meaningful clusters, we first examined the average
significance for clusters showing significant pathway enrichment and cell-line conservation. As shown in Extended
Figure 4d-e, UnTANGLEeD clusters on average demonstrated greater conservation across genetically diverse ovarian
cancer cell lines compared to k-means and hierarchical clustering, though statistical significance was reached in cell
line VOA-6406 only. While aggregated performance metrics across all clusters showed modest differences between
methods, we hypothesized that biological relevance would not be uniformly distributed across all clusters but would
correlate with internal quality metrics. To test this, we dratified clusters into top (highest 25%) and bottom (lowest
25%) quartiles based on their average silhouette and correlation scores. We then performed Fisher's exact tests to
assess whether the proportions of biologically significant clusters differed between clustering methods (Extended
Table l1a-b). This analysis revealed that UnTANGLeD's top-ranked clusters contained significantly more cell-line
conserved clusters compared to those generated by k-means and hierarchical clustering (OR <= 0.1, p < 1.3x10™)
(Figure 3d), highlighting its ability to identify consistent drug responses despite genetic heterogeneity between cell
lines. Significantly more UnTANGLeD top-ranked clusters showed stronger transcriptional correlation in the CMap
dataset compared to hierarchical clustering (OR = 0.05, p = 3x10011J), with a modest advantage over k-means (OR =
0.71, p = 0.4), indicating morphology-based drug clusters prioritised by UnTANGLeD tend to induce similar gene
expression patterns. UnTANGLeD had significantly more pathway enriched clusters in its top-ranked clusters
compared to k-means (OR = 0.28, p = 0.038) and a similar proportion compared to hierarchical clustering (OR = 0.99,
p = 1.0) (Figure 3d). When comparing between upper and bottom quartile (Extended Table 2), UnTANGLeD had
significantly more cell-line conserved clusters in upper quartile while no significance is observed for k-means and
hierarchical clustering (Figure 3d). Most importantly, UnTANGLeD's internal quality metrics correlation (Spearman's
p = 0.168) and silhouette (Spearman's p = 0.277) scores aligned more strongly with external biological validation
measures (pathway enrichment and cross-cell line conservation) on a continuous scale (Figure 3e). This enables more
confident prioritization of promising drug clusters for downstream investigation without requiring extensive a priori
biological knowledge. Collectively, these data demonstrate that UnTANGLeD effectively parses large-scale
morphology datato reveal robust, meaningful drug groupings characterized by strong pathway enrichment, high cross-
cell line conservation, and alignment with orthogonal gene expression data. By grouping drugs by their phenotypic
effects on fundamental cancer mechanisms across genetically distinct ovarian cell lines, UnTANGLeD prioritises
robust drug clusters with metrics that help inform downstream decision making.

To further illugtrate its utility, we evaluated UnTANGLeD on two additional high dimension screening data. First,
applied to a genome-wide E. coli single gene-deletion library screened against 324 stress conditions'®, UnTANGLeD
effectively grouped gene-deletion mutants based on shared phenotypic responses, dratifying highly robust gene
clusters enriched for shared biological processes to environmental stresses. It similarly identified condition clusters
with similar gene signatures across mutants, prioritizing clusters with increased drug target enrichment (Extended
Figure 7). Likewise, in analysing CMap's transcriptional responses to over 1,000 drug perturbations across three other
tumour cell lines (Luminal A breast cancer, prostate cancer and leukaemia)’, UnTANGLeD identified highly
conserved drug clusters with shared mechanisms of action and drug indication enrichment based on their perturbed
gene expression signatures (Extended Figure 8).

This study demonstrates that UnTANGLeD outperforms conventional clustering approaches by integrating muilti-
resolution consensus building with systematic cluster dratification based on internal coherence, robustness, and
biological conservation. Traditional methods often analyse data at a single granularity level, producing a fixed
snapshot of biological complexity while suffering from sensitivity to parameter choices, noise-induced artifacts, and
inability to determine the optimal number of clusters. Current consensus clustering methods aim to improve sensitivity
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and robustness through (1) iteratively applying the same or multiple algorithms with varying hyperparameters such as
distance metrics®® (2) clustering repeatedly on subsampled or perturbed data'®** (3) combining results from multiple
agorithms'*3, or (4) leveraging deep learning based approach such as network fusion?. Unfortunately, these methods
predominantly optimise at a fixed resolution or discrete granularity level, essentially taking different views of the
same biological structure rather than exploring how stable the structures are across a continuous spectrum of
granularity. Critically, existing methods lack a systematic framework to evaluate final cluster quality and prioritize
promising clusters for follow up, limiting their utility in screening applications where identifying the most promising
biological signalsis a priority. UnTANGLeD addresses these limitations by leveraging co-occurrence patterns across
100 increasing granularity levels to build a consensus that preserves robust relationships across multiple data scales,
while providing metrics to prioritize the most significant clusters, enabling efficient identification of meaningful
patterns in high-dimensional screening datasets. To facilitate broad adoption, we provide UnTANGLeD as a user-
friendly R package, offering a versatile clustering and prioritisation workflow to guide actionable insights from any
highly complex dataset with applications spanning drug discovery, target identification, disease subtyping, biomarker
selection with potential for application in non-biological contexts.
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Figure 1: Unsupervised clustering prioritisation pipeline and application of UnTANGLeD across different data
modalities

(a) Schematic overview of the UnTANGLeD workflow. (b) Representative applications of UNTANGLeD across
diverse biological data modalities.
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Figure 2: Unsupervised clustering revealsbiologically meaningful drug cluster sbased on cellular mor phology

(a) Dataset characteristics for the four cell lines analysed (3 genetically variable ovarian cancer: AOCS-2, V OA-6406,
SLC58; 1 normal: I0SE-523). Each cell line was treated with a 5596-compound library for 72 hours. The table shows
the number of unique conditions (compound at varying concentrations), imaging features initially extracted, unique
pathways. Bar plot displays the distribution of annotated biological pathways across all compounds. (b)
Transformation of high-dimensional data into a sparse similarity matrix. Heatmaps of a subset of the dense, raw drug-
by-imaging matrix (top) and the sparse drug-by-drug consensus matrix (bottom). The consensus matrix represents
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drug co-clustering frequency across 100 iterations of Seurat clustering at resolutions 0.2 to 20 with an interval of 0.2.
(c) Determination of optimal cluster number using average silhouette scores across 2-300 clusters for all four cell lines.
~200 clusters were selected for all cell lines based on the average silhouette score plateau point (indicated by dashed
line). (d) Scatter plot of clustersin cell line SLC58 dratified by average cluster silhouette score and correlation score.
Pathway annotations for the top 10 clusters with the highest pathway enrichment -log10 p-adjust for cell line SLC58.
Size indicates conservation significance (Conservation -logl0 p-adjust) across cell lines while colour represents
pathway enrichment significance (Enrichment -log10 p-adjust). (€) Representative microscopy images of cells (1 field
per well) from cell line SLC58 treated with selected drug conditions from example top-ranked Cluster 200 and
bottom-ranked Cluster 89. Images shown with DM SO control and 100um scale bar. Cells were stained with DAPI
(nucleus; blue), CellMask (plasma membrane; green) and phalloidin/rhodamine (F-actin; red; red). (f) Orthogonal
validation of clusters using transcriptomic data. Scatter plot of UnTANGLeD clusters stratified by average silhouette
score and correlation score. Size indicates -logl0 p.adjust conservation significance of UnTANGLeD drug clusters
with those derived from Connectivity Map (CMap) using gene expression, limited to clusters containing more than 5
overlapping drugs.
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Figure 3: UnTANGLeD outperforms traditional clustering methods in prioritisng biologically robust drug
clusters.

(&) Comparison of average silhouette scores across increasing cluster numbers (2-300) for UnTANGLeD (blue), k-
means (orange), and hierarchical (green) clustering. (b) Scatter plot comparing cluster quality metrics (average
silhouette score vs. average correlation score) for UnTANGLeD (blue), K-means (orange), and hierarchical (green)
clustering. Dot size indicates conservation significance across cell lines (-logl0 p-adjust). (c) Distribution of cluster
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sizesfor UnTANGLeD (blue), k-means (orange), and hierarchical clustering (green). (b-c) Data shown for SLC58 cell
line. (d) Comparison of significant cluster ratios compiled from four cell lines combined across UnTANGLeD (blue),
k-means (orange), and hierarchical (green) clustering for three biological relevance metrics. Top quartile shows top-
performing clusters (>75% quantile) while bottom quartile shows bottom-performing clusters (<25% quantile), as
defined by 75" of 25™ percentile of average correlation and silhouette scores for each individual cell line. Biological
significance is defined as followed: CMap correlation Z-score (>2), conservation (adj. p-value <0.05), and pathway
enrichment (adj. p-value <0.05). Statistical significance between methods and between top and bottom quartiles was
calculated using Fisher's exact test (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001). (€) Boxplots comparing the
distribution of Spearman correlation coefficients between internal quality metrics (silhouette score, correlation score)
with biological relevance metrics (pathway enrichment and cell line conservation) for UnTANGLeD (blue), K-means
(orange) and Hierarchical clustering (green). Plotted with median, interquartile range and outliers.
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