

1 **A scalable, multi-resolution consensus clustering approach for prioritising robust signals from high-throughput
2 screens**

3 Shaine Chenxin Bao^{1,8}, Kathleen I. Pishas^{2,8}, Karla J Cowley³, Qiongyi Zhao¹, Emily C. A. Goodall¹, Ian R.
4 Henderson¹, Evanny Marinovic², Mark S. Carey^{4,5}, Ian G. Campbell^{2,6}, Kaylene J. Simpson^{3,6,7}, Dane Cheasley^{2,6,#},
5 Dalia Mizikovsky^{1,#}, Nathan J. Palpant^{1,#,*}

6 ¹ Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia

7 ²Peter MacCallum Cancer Centre, Melbourne Australia

8 ³Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Australia

9 ⁴Division of Gynecology Oncology, Department of Obstetrics and Gynecology, University of British Columbia,
10 Vancouver, British Columbia, V5Z 1M9, Canada

11 ⁵Department of Clinical Research, BC Cancer, Vancouver, British Columbia, V5Z 4E6, Canada.

12 ⁶The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia

13 ⁷ Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia

14 ⁸Co-first authors

15 [#]Co-senior authors

16 ^{*}Corresponding Author:

17 Professor Nathan Palpant BSc PhD

18 Institute for Molecular Bioscience

19 The University of Queensland

20 St. Lucia, QLD 4072, Australia

21 Tel: +61 0439241069

22 Email: n.palpant@imb.uq.edu.au

23

24

25

26 **Abstract**

27 Modern biology increasingly relies on large-scale screening to generate high dimensional datasets with potential to
28 accelerate discovery. However, analysing these complex datasets remains challenging, particularly in applications
29 where the underlying structure and groupings are unknown, and high dimensionality introduces noise and artifacts that
30 make follow up studies difficult to prioritise. Here, we present an unsupervised consensus clustering tool that
31 quantifies biologically meaningful patterns based on multi-scale data organisation to guide decision-making in high-
32 throughput screening. Using large-scale drug screening data in cancer cell lines and bacterium model, we demonstrate
33 its ability to use diverse data inputs to prioritize robust drug clusters with shared biological mechanisms and conserved
34 drug responses. This method addresses key limitations associated with prioritising robust, actionable hits from
35 scalable screening data.

36

37

38

9 Advancements in high-throughput sequencing technologies have generated unprecedented volumes of biological
10 data^{1,2}. Traditional comparative analyses that require groups to be labelled *a priori* are inadequate for such complex
11 datasets. Unsupervised clustering methods are therefore ideal to assist in identifying hidden structure in high-
12 dimensional feature spaces without prior assumptions. Clustering samples based on their molecular or phenotypic
13 features enables data-driven approaches to discover meaningful relationships or shared mechanisms. Despite this,
14 clustering high dimensional data remains challenging, particularly in applications where the number of true biological
15 groupings are unknown and the signal is confounded by stochastic noise³.

16 Consensus clustering methods have emerged as a solution to improve clustering sensitivity and robustness,
17 particularly in the single cell and bulk transcriptomics field^{4,5}. These approaches assume that true biological clusters
18 remain stable despite varied hyperparameters or algorithms⁶. Rather than relying on a single clustering result, they
19 aggregate multiple clustering solutions to build a similarity matrix representing how often objects co-cluster across
20 iterations and then perform clustering on the compiled consensus matrix⁷. Despite improving overall cluster accuracy,
21 existing methods do not provide a systematic approach to evaluate cluster quality^{5,8-13}. Without an efficient way to
22 determine the true underlying biological patterns and prioritise actionable data clusters, follow-up analysis becomes
23 resource intensive and risky. Furthermore, clustering performance is inherently limited by the data quality, which can
24 suffer in large-scale screens, making it essential to detect low-quality, stochastic clusters. In this study, we present
25 UnTANGLED, an unsupervised consensus clustering pipeline that identifies robust biological patterns in high-
26 dimensional data with post-hoc evaluation to quantifiably prioritise clusters for actionable and efficient follow-up.

27 UnTANGLED takes any dimensionality-reduced dataset following pre-processing and performs iterative clustering to
28 evaluate signatures of similarity across increasing granularity. The co-clustering frequencies of object pairs are used to
29 construct a consensus matrix, transforming raw distance into an interpretable robustness-based metric quantifying
30 relationship consistency. By leveraging multi-resolution clustering, this method effectively denoises data, retaining
31 genuine biological relationships that persist across multiple data scales while filtering out weak or spurious
32 associations. It further employs a stability-driven approach to determine the optimal number of clusters that capture
33 maximal information from the data. After hierarchical clustering, clusters are stratified based on internal coherence
34 (correlation), robustness (silhouette score), and assessed for conservation across biological contexts. This provides
35 researchers with an unbiased framework for prioritizing robust and biologically meaningful clusters for further
36 investigation, optimizing resource allocation in screening scenarios with limited or no prior annotation (**Figure 1a**).
37 Originally developed to identify gene programs from sparse, gene-trait association data¹⁴, we have established
38 UnTANGLED as a versatile pipeline for post-screening analysis integrating clustering, cluster optimisation, evaluation,
39 and conservation metrics in one workflow applicable to diverse data modalities and experimental designs. In this study,
40 we aim to demonstrate its utility across various large-scale screens, including a high-content imaging drug screen of
41 ovarian cancer cell lines¹⁵, a gene deletion library in *E. coli*¹⁶, and profiling of transcriptional responses to drug
42 perturbations¹ (**Figure 1b**).

43 First, we analysed high content morphology imaging data measuring the phenotypic response of three low grade
44 serous ovarian carcinoma cell lines with unique genetic profiles (AOCS-2, VOA-6406, SLC58), and one normal
45 ovarian surface epithelial cell line (IOSE-523) exposed to a diverse library of 5,596 drugs, including FDA-approved
46 drugs, kinase inhibitors, methylation modulators, and investigational agents, at 3 different concentrations (10, 1,
47 0.1 μ M) (**Figure 2a**)¹⁵. We tested the utility for UnTANGLED to leverage the 2,175 imaging features to cluster over
48 16,750 drug conditions by their shared morphological changes in cells and prioritise robust drug clusters with shared
49 biological mechanisms. Raw datasets were pre-processed and reduced in dimensionality using principal component
50 analysis. To assess clustering stability across different granularities, 100 iterations of Seurat's shared nearest
51 neighbour (SNN) algorithm were run at increasing resolutions. These results were combined into a consensus matrix,
52 where each element represents the co-clustering frequency of any two drugs across all resolutions. This re-configures
53 the high-dimensional drug-by-imaging matrix into a sparse consensus matrix that quantifies the relationship strength
54 between all drug pairs (**Figure 2b**). UnTANGLED then performs agglomerative clustering using Ward's minimum
55 variance on the consensus matrix from 2 to 300 clusters, calculating the average silhouette score for each number of

36 clusters as a metric of cluster quality across the data set. The silhouette score (-1 to 1) assesses how similar each object
37 is to other objects in its assigned cluster and how different it is from objects in the nearest neighbouring cluster. As the
38 silhouette score is calculated on the consensus matrix, a high silhouette score indicates a stable, distinct grouping.
39 When increasing the number of clusters no longer improves the average silhouette score, no more biologically
40 distinctive groups can be gained by further subdividing the data. In our analysis, the optimal number of clusters was
41 defined at approximately 200 clusters across all four cell lines (**Figure 2c**).

42 Clusters were next stratified by the silhouette score, indicative of cluster robustness, and the average pairwise
43 correlation of imaging features within each cluster, indicative of intra-cluster similarity (**Extended Figure 1a-d**).
44 Given the genetic heterogeneity of ovarian cancer, we were interested in identifying drug mechanisms that induce
45 consistent phenotypic responses robust to genetic variation. To assess this, we evaluated the consistency of drug
46 clusters across cell lines using three conservation metrics. Many of the top ranked drug clusters, defined as those
47 scoring high on average silhouette and correlation scores, were significantly conserved across all four ovarian cell
48 lines (**Figure 2d**). To assess the biological significance of identified clusters, we performed hypergeometric tests to
49 evaluate the enrichment of annotated pathways for each drug cluster. Across all four cell lines, clusters were
50 significantly enriched for cancer-related pathways (**Extended Figure 1e-h**). For instance, the top ranked drug clusters
51 from cell line SLC58, were strongly enriched for key oncogenic pathways including *MAPK/ERK*¹⁷,
52 *PI3K/AKT/mTOR*¹⁸, and Cell cycle/DNA damage¹⁹ (**Figure 2d**). To reinforce these findings, we examined
53 representative microscopy images of cells treated with drugs from selected clusters. Top-ranked clusters exhibited
54 more consistent morphological changes in treated cells vs DMSO control, contrasting with inconsistent morphologies
55 in poorly ranked clusters (**Extended Figure 2**). Notably, the observed morphological changes closely aligned with the
56 enriched pathways for these clusters. For example, the drugs in top-ranked Cluster 200 from cell line SLC58 was
57 enriched for MAPK/ERK pathway and showed morphological changes including cell shrinkage, membrane blebbing,
58 and fragmented nuclei, consistent with apoptosis induction (**Figure 2e**). These observations align with the known role
59 of MAPK/ERK pathway in regulating cell proliferation and survival, particularly in low-grade serous ovarian cancer
60 pathogenesis^{17,20}, where its disruption can lead to apoptosis²¹. We further validated our clustering outputs using
61 Connectivity Map (CMap)¹, an independent dataset characterising changes in gene expression in response to drug
62 perturbations, focusing on breast, prostate cancer and leukaemia cell lines. This comparison allowed us to evaluate
63 whether the morphological signatures identified by imaging align with transcriptomic changes induced by the same
64 drugs. UnTANGLEd was applied to CMap to yield 175 drug clusters. Next, we assessed the conservation between
65 these transcriptomics-based clusters and our imaging-based clusters across all four ovarian cell lines, focusing on
66 drugs present in both datasets (**Extended Figure 3a**). Indeed, overlapping drug sets between the two modalities were
67 conserved, with stronger conservation observed in highly ranked clusters (**Figure 2f, Extended Figure 3b**), implying
68 concordant changes at the transcriptomic level and providing orthogonal validation to our clustering.

69 To contextualize UnTANGLEd's performance and its advantages, we benchmarked it against two widely used
70 traditional clustering approaches, k-means and hierarchical clustering, on dimensionality reduced data. K-means
71 iteratively assigns data points to their nearest cluster centres and recalculates centres until convergence, while
72 hierarchical clustering progressively merges similar points or clusters based on a defined distance metric. While
73 attempting to identify optimal cluster numbers using silhouette scores, we found that both methods' scores rapidly fell
74 and plateaued near 0, despite dimensionality reduction of the dataset, indicating their inability to maintain or quantify
75 meaningful cluster separation (**Figure 3a, Extended Figure 4a**). By contrast, UnTANGLEd demonstrated the ability
76 to improve clustering quality with increasing cluster granularity. For comparison, we set the cluster number to 200 for
77 all methods based on the previously determined optimal cluster number and evaluated the resulting clusters based on
78 internal quality metrics (silhouette and correlation scores), biological relevance (pathway enrichment), and shared
79 drug mechanism (cell-line conservation). UnTANGLEd consistently produced a clear stratification pattern where
80 clusters in the upper right quadrant with both high internal coherence and distinctiveness showed stronger biological
81 relevance, evidenced by increased pathway enrichment and cross-cell line conservation (**Figure 3b, Extended Figure**
82 **1a-d**). K-means clusters showed uniformly poor silhouette scores despite varying correlation values, indicating an

3 inability to form biologically distinct clusters (**Extended Figure 4b**). Unlike UnTANGLEd and k-means which
4 produced normally distributed cluster size (**Figure 3c**), hierarchical clustering produced either very small, highly
5 correlated clusters due to feature redundancy or large, catch-all clusters with decreased robustness (**Extended Figure**
6 **4c, Extended Figure 5**). In addition, neither silhouette nor correlation scores effectively stratified clusters by
7 biological relevance for both k-means and hierarchical clustering (**Extended Figure 6**).

8 To assess each method's ability to prioritize biologically meaningful clusters, we first examined the average
9 significance for clusters showing significant pathway enrichment and cell-line conservation. As shown in **Extended**
10 **Figure 4d-e**, UnTANGLEd clusters on average demonstrated greater conservation across genetically diverse ovarian
11 cancer cell lines compared to k-means and hierarchical clustering, though statistical significance was reached in cell
12 line VOA-6406 only. While aggregated performance metrics across all clusters showed modest differences between
13 methods, we hypothesized that biological relevance would not be uniformly distributed across all clusters but would
14 correlate with internal quality metrics. To test this, we stratified clusters into top (highest 25%) and bottom (lowest
15 25%) quartiles based on their average silhouette and correlation scores. We then performed Fisher's exact tests to
16 assess whether the proportions of biologically significant clusters differed between clustering methods (**Extended**
17 **Table 1a-b**). This analysis revealed that UnTANGLEd's top-ranked clusters contained significantly more cell-line
18 conserved clusters compared to those generated by k-means and hierarchical clustering ($OR \leq 0.1, p < 1.3 \times 10^{-10}$)
19 (**Figure 3d**), highlighting its ability to identify consistent drug responses despite genetic heterogeneity between cell
20 lines. Significantly more UnTANGLEd top-ranked clusters showed stronger transcriptional correlation in the CMap
21 dataset compared to hierarchical clustering ($OR = 0.05, p = 3 \times 10^{-10}$), with a modest advantage over k-means ($OR =$
22 $0.71, p = 0.4$), indicating morphology-based drug clusters prioritised by UnTANGLEd tend to induce similar gene
23 expression patterns. UnTANGLEd had significantly more pathway enriched clusters in its top-ranked clusters
24 compared to k-means ($OR = 0.28, p = 0.038$) and a similar proportion compared to hierarchical clustering ($OR = 0.99,$
25 $p = 1.0$) (**Figure 3d**). When comparing between upper and bottom quartile (**Extended Table 2**), UnTANGLEd had
26 significantly more cell-line conserved clusters in upper quartile while no significance is observed for k-means and
27 hierarchical clustering (**Figure 3d**). Most importantly, UnTANGLEd's internal quality metrics correlation (Spearman's
28 $\rho = 0.168$) and silhouette (Spearman's $\rho = 0.277$) scores aligned more strongly with external biological validation
29 measures (pathway enrichment and cross-cell line conservation) on a continuous scale (**Figure 3e**). This enables more
30 confident prioritization of promising drug clusters for downstream investigation without requiring extensive *a priori*
31 biological knowledge. Collectively, these data demonstrate that UnTANGLEd effectively parses large-scale
32 morphology data to reveal robust, meaningful drug groupings characterized by strong pathway enrichment, high cross-
33 cell line conservation, and alignment with orthogonal gene expression data. By grouping drugs by their phenotypic
34 effects on fundamental cancer mechanisms across genetically distinct ovarian cell lines, UnTANGLEd prioritises
35 robust drug clusters with metrics that help inform downstream decision making.

36 To further illustrate its utility, we evaluated UnTANGLEd on two additional high dimension screening data. First,
37 applied to a genome-wide *E. coli* single gene-deletion library screened against 324 stress conditions¹⁶, UnTANGLEd
38 effectively grouped gene-deletion mutants based on shared phenotypic responses, stratifying highly robust gene
39 clusters enriched for shared biological processes to environmental stresses. It similarly identified condition clusters
40 with similar gene signatures across mutants, prioritizing clusters with increased drug target enrichment (**Extended**
41 **Figure 7**). Likewise, in analysing CMap's transcriptional responses to over 1,000 drug perturbations across three other
42 tumour cell lines (Luminal A breast cancer, prostate cancer and leukaemia)¹, UnTANGLEd identified highly
43 conserved drug clusters with shared mechanisms of action and drug indication enrichment based on their perturbed
44 gene expression signatures (**Extended Figure 8**).

45 This study demonstrates that UnTANGLEd outperforms conventional clustering approaches by integrating multi-
46 resolution consensus building with systematic cluster stratification based on internal coherence, robustness, and
47 biological conservation. Traditional methods often analyse data at a single granularity level, producing a fixed
48 snapshot of biological complexity while suffering from sensitivity to parameter choices, noise-induced artifacts, and
49 inability to determine the optimal number of clusters. Current consensus clustering methods aim to improve sensitivity

30 and robustness through (1) iteratively applying the same or multiple algorithms with varying hyperparameters such as
31 distance metrics^{5,8} (2) clustering repeatedly on subsampled or perturbed data^{10,11} (3) combining results from multiple
32 algorithms^{12,13}, or (4) leveraging deep learning based approach such as network fusion²². Unfortunately, these methods
33 predominantly optimise at a fixed resolution or discrete granularity level, essentially taking different views of the
34 same biological structure rather than exploring how stable the structures are across a continuous spectrum of
35 granularity. Critically, existing methods lack a systematic framework to evaluate final cluster quality and prioritize
36 promising clusters for follow up, limiting their utility in screening applications where identifying the most promising
37 biological signals is a priority. UnTANGLEd addresses these limitations by leveraging co-occurrence patterns across
38 100 increasing granularity levels to build a consensus that preserves robust relationships across multiple data scales,
39 while providing metrics to prioritize the most significant clusters, enabling efficient identification of meaningful
40 patterns in high-dimensional screening datasets. To facilitate broad adoption, we provide UnTANGLEd as a user-
41 friendly R package, offering a versatile clustering and prioritisation workflow to guide actionable insights from any
42 highly complex dataset with applications spanning drug discovery, target identification, disease subtyping, biomarker
43 selection with potential for application in non-biological contexts.

44

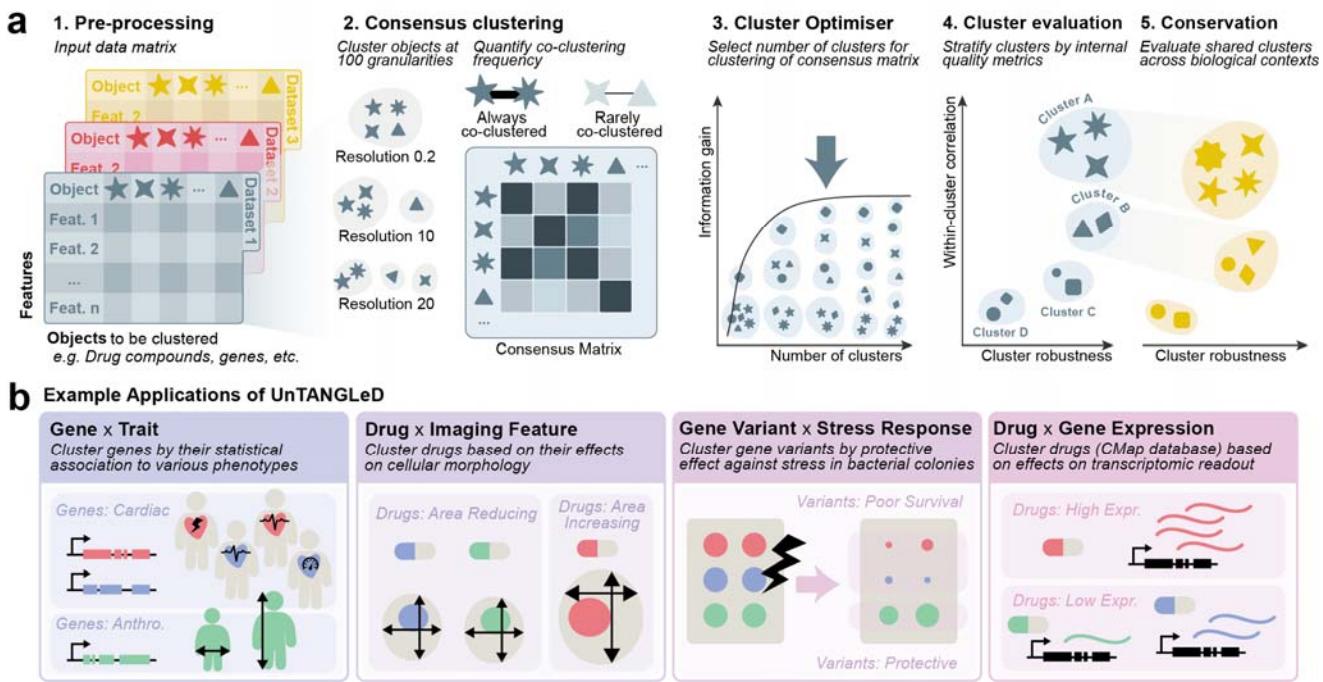
45 **Acknowledgements**

46 This work has been supported by grant funding from the NHMRC (MRFCDDM000033 to NP and 2007625 to NP)
47 and the National Heart Foundation of Australia (106721 to NP). The Victorian Centre for Functional Genomics
48 RRID:SCR_025582 (K.J.S.) is funded by the Australian Cancer Research Foundation (ACRF), Phenomics Australia,
49 through funding from the Australian Government's National Collaborative Research Infrastructure Strategy (NCRIS)
50 program, the Peter MacCallum Cancer Centre Foundation and the University of Melbourne Collaborative Research
51 Infrastructure Program. KIP acknowledges funding from the Victorian Cancer Agency (Mid-Career Low Survival
52 Cancer Philanthropic Research Fellowship, APP MCRF23014) and the Department of Defense (Ovarian Cancer
53 Research Program Pilot Award, APP OC220022). KJS, IGC, and DC acknowledge support from the Medical Research
54 Future Fund (APP1200264) and Therapeutic Innovation Australia through the Pipeline Accelerator Scheme. DC
55 further acknowledges funding from the Victorian Cancer Agency (MCRF19046) and the Ovarian Cancer Research
56 Foundation (GA-2024-02). M.S.C and D.C would like to acknowledge additional support from the BC Cancer
57 Foundation, Vancouver General Hospital/UBC Hospital Foundation, the Janet D. Cottrelle Foundation, Cure Our
58 Ovarian Cancer, Ovarian Cancer Canada/OVCAN, and the Cancer Research Society. We gratefully acknowledge the
59 patients and their families, including the MacKenzie, Lawler, MacRae, Ho, Luther, Ludemann, and Schmid families.
60 We also thank Professor John Hooper (Mater Research) and the Australian Ovarian Cancer Study for generating and
61 providing cell lines used in this study. We thank Jennii Luu and Robert Vary from the Victorian Centre for Functional
62 Genomics for their screening support. We thank Compounds Australia for the provision of compounds and logistical
63 support. We also thank Sophie Shen for her assistance with the schematic in Figure 1.

64 Code Availability: The code used in this study is available upon request.

65 **Disclosures**

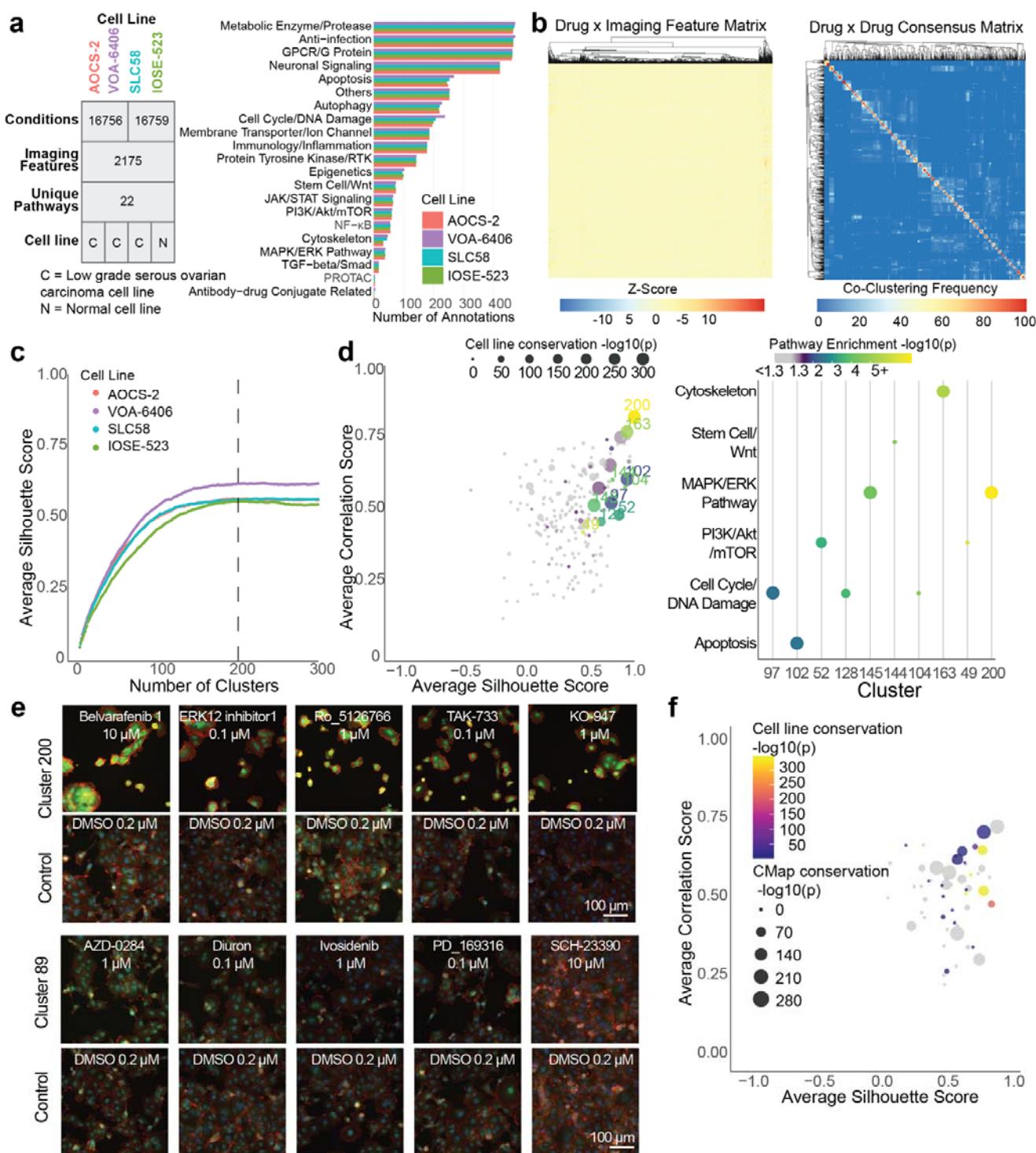
66 No conflicts of interest are reported for any of the authors.



7

8 **Figure 1: Unsupervised clustering prioritisation pipeline and application of UnTANGLeD across different data**
9 **modalities**

10 **(a)** Schematic overview of the UnTANGLeD workflow. **(b)** Representative applications of UnTANGLeD across
11 diverse biological data modalities.

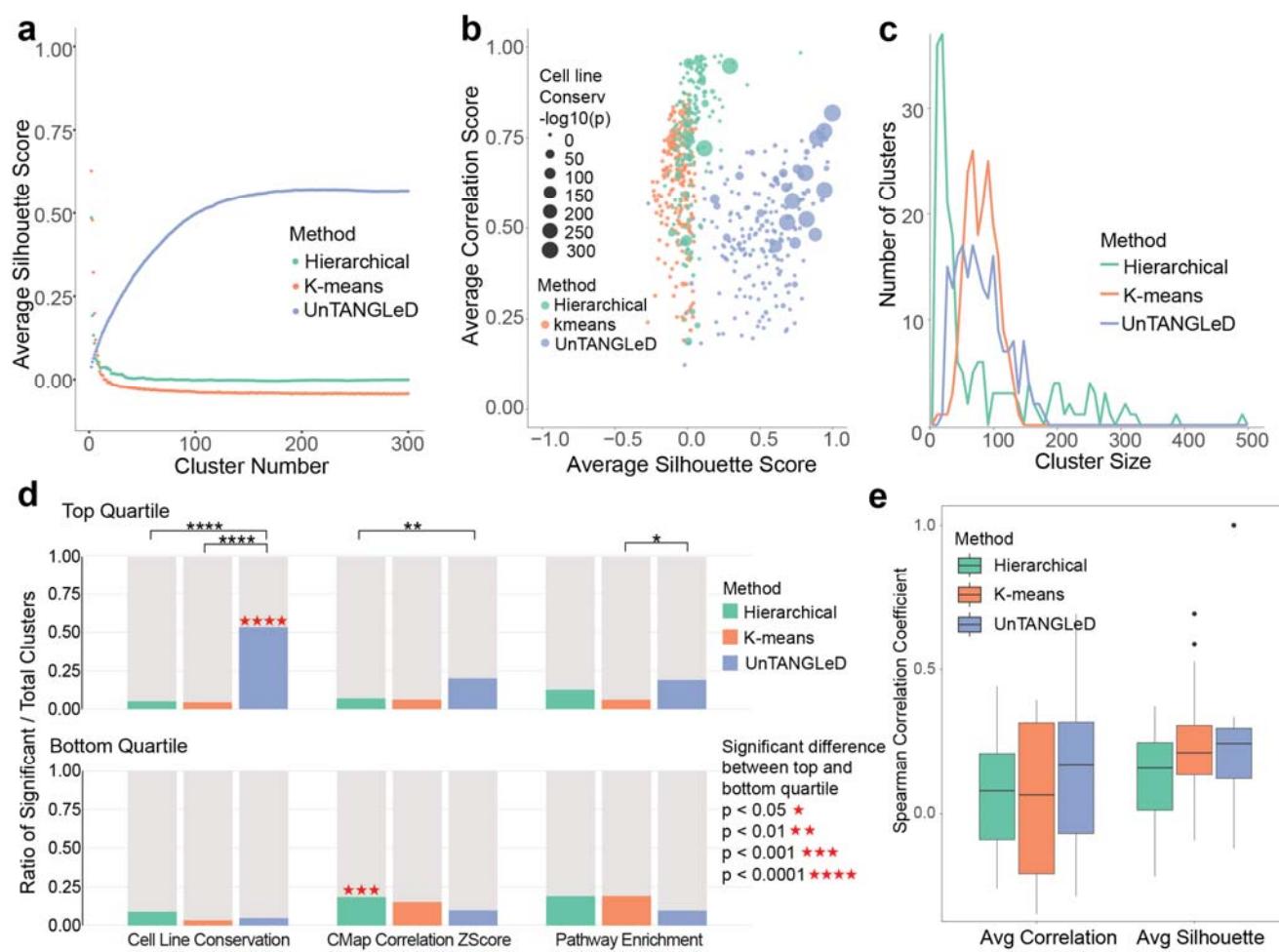


?2

?3 **Figure 2: Unsupervised clustering reveals biologically meaningful drug clusters based on cellular morphology**

?4 (a) Dataset characteristics for the four cell lines analysed (3 genetically variable ovarian cancer: AOCS-2, VOA-6406, SLC58; 1 normal: IOSE-523). Each cell line was treated with a 5596-compound library for 72 hours. The table shows the number of unique conditions (compound at varying concentrations), imaging features initially extracted, unique pathways. Bar plot displays the distribution of annotated biological pathways across all compounds. (b) Transformation of high-dimensional data into a sparse similarity matrix. Heatmaps of a subset of the dense, raw drug-by-imaging matrix (top) and the sparse drug-by-drug consensus matrix (bottom). The consensus matrix represents

30 drug co-clustering frequency across 100 iterations of Seurat clustering at resolutions 0.2 to 20 with an interval of 0.2.
 31 (c) Determination of optimal cluster number using average silhouette scores across 2-300 clusters for all four cell lines.
 32 ~200 clusters were selected for all cell lines based on the average silhouette score plateau point (indicated by dashed
 33 line). (d) Scatter plot of clusters in cell line SLC58 stratified by average cluster silhouette score and correlation score.
 34 Pathway annotations for the top 10 clusters with the highest pathway enrichment -log10 p-adjust for cell line SLC58.
 35 Size indicates conservation significance (Conservation -log10 p-adjust) across cell lines while colour represents
 36 pathway enrichment significance (Enrichment -log10 p-adjust). (e) Representative microscopy images of cells (1 field
 37 per well) from cell line SLC58 treated with selected drug conditions from example top-ranked Cluster 200 and
 38 bottom-ranked Cluster 89. Images shown with DMSO control and 100 μ m scale bar. Cells were stained with DAPI
 39 (nucleus; blue), CellMask (plasma membrane; green) and phalloidin/rhodamine (F-actin; red; red). (f) Orthogonal
 40 validation of clusters using transcriptomic data. Scatter plot of UnTANGLEd clusters stratified by average silhouette
 41 score and correlation score. Size indicates -log10 p.adjust conservation significance of UnTANGLEd drug clusters
 42 with those derived from Connectivity Map (CMap) using gene expression, limited to clusters containing more than 5
 43 overlapping drugs.



15 **Figure 3: UnTANGLEd outperforms traditional clustering methods in prioritising biologically robust drug**
 16 **clusters.**

17 (a) Comparison of average silhouette scores across increasing cluster numbers (2-300) for UnTANGLEd (blue), k-
 18 means (orange), and hierarchical (green) clustering. (b) Scatter plot comparing cluster quality metrics (average
 19 silhouette score vs. average correlation score) for UnTANGLEd (blue), K-means (orange), and hierarchical (green)
 20 clustering. Dot size indicates conservation significance across cell lines (-log10 p-adjust). (c) Distribution of cluster

51 sizes for UnTANGLeD (blue), k-means (orange), and hierarchical clustering (green). **(b-c)** Data shown for SLC58 cell
52 line. **(d)** Comparison of significant cluster ratios compiled from four cell lines combined across UnTANGLeD (blue),
53 k-means (orange), and hierarchical (green) clustering for three biological relevance metrics. Top quartile shows top-
54 performing clusters (>75% quantile) while bottom quartile shows bottom-performing clusters (<25% quantile), as
55 defined by 75th of 25th percentile of average correlation and silhouette scores for each individual cell line. Biological
56 significance is defined as followed: CMap correlation Z-score (>2), conservation (adj. p-value <0.05), and pathway
57 enrichment (adj. p-value <0.05). Statistical significance between methods and between top and bottom quartiles was
58 calculated using Fisher's exact test (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001). **(e)** Boxplots comparing the
59 distribution of Spearman correlation coefficients between internal quality metrics (silhouette score, correlation score)
60 with biological relevance metrics (pathway enrichment and cell line conservation) for UnTANGLeD (blue), K-means
61 (orange) and Hierarchical clustering (green). Plotted with median, interquartile range and outliers.

62

63 **References**

64 1 Subramanian, A. et al. A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles.
65 Cell 171, 1437-1452 e1417 (2017). <https://doi.org/10.1016/j.cell.2017.10.049>

66 2 Regev, A. et al. The Human Cell Atlas. Elife 6 (2017). <https://doi.org/ARTN e2704110.7554/eLife.27041>

67 3 Donoho, D. L. High-dimensional data analysis: The curses and blessings of dimensionality. AMS Math
68 Challenges Lecture 1(2000), 32. (2000).

69 4 Monti, S., Tamayo, P., Mesirov, J. & Golub, T. Consensus clustering: A resampling-based method for class
70 discovery and visualization of gene expression microarray data. Machine Learning 52, 91-118 (2003).
71 <https://doi.org/10.1023/A:1023949509487>

72 5 Kiselev, V. Y. et al. SC3: consensus clustering of single-cell RNA-seq data. Nat Methods 14, 483-486 (2017).
73 <https://doi.org/10.1038/nmeth.4236>

74 6 Fred, A. L. & Jain, A. K. Combining multiple clusterings using evidence accumulation. IEEE Trans Pattern
75 Anal Mach Intell 27, 835-850 (2005). <https://doi.org/10.1109/TPAMI.2005.113>

76 7 Strehl, A. & Ghosh, J. Cluster Ensembles A Knowledge Reuse Framework for Combining Multiple Partitions.
77 J Mach Learn Res 3, 583-617 (2002).

78 8 Rissolo, D. et al. clusterExperiment and RSEC: A Bioconductor package and framework for clustering of single-
79 cell and other large gene expression datasets. PLoS Comput Biol 14, e1006378 (2018).
80 <https://doi.org/10.1371/journal.pcbi.1006378>

81 9 Wilkerson, M. D. & Hayes, D. N. ConsensusClusterPlus: a class discovery tool with confidence assessments
82 and item tracking. Bioinformatics 26, 1572-1573 (2010). <https://doi.org/10.1093/bioinformatics/btq170>

83 10 Peyvandipour, A., Shafi, A., Saberian, N. & Draghici, S. Identification of cell types from single cell data using
84 stable clustering. Sci Rep 10, 12349 (2020). <https://doi.org/10.1038/s41598-020-66848-3>

85 11 Sonpatki, P. & Shah, N. Recursive Consensus Clustering for novel subtype discovery from transcriptome data.
86 Sci Rep 10, 11005 (2020). <https://doi.org/10.1038/s41598-020-67016-3>

87 12 Huh, R., Yang, Y., Jiang, Y., Shen, Y. & Li, Y. SAME-clustering: Single-cell Aggregated Clustering via
88 Mixture Model Ensemble. Nucleic Acids Res 48, 86-95 (2020). <https://doi.org/10.1093/nar/gkz959>

89 13 Yang, Y. et al. SAFE-clustering: Single-cell Aggregated (from Ensemble) clustering for single-cell RNA-seq
90 data. Bioinformatics 35, 1269-1277 (2019). <https://doi.org/10.1093/bioinformatics/bty793>

|1 14 Mizikovsky, D., Sanchez, M. N., Nefzger, C. M., Partida, G. C. & Palpant, N. J. Organization of gene
|2 programs revealed by unsupervised analysis of diverse gene-trait associations. Nucleic Acids Research 50 (2022).
|3 <https://doi.org/10.1093/nar/gkac413>

|4 15 Pishas, K. I. et al. High-throughput drug screening identifies novel therapeutics for Low Grade Serous
|5 Ovarian Carcinoma. Sci Data 11, 1024 (2024). <https://doi.org/10.1038/s41597-024-03869-x>

|6 16 Nichols, R. J. et al. Phenotypic landscape of a bacterial cell. Cell 144, 143-156 (2011).
|7 <https://doi.org/10.1016/j.cell.2010.11.052>

|8 17 Shrestha, R. et al. Multiomics Characterization of Low-Grade Serous Ovarian Carcinoma Identifies Potential
|9 Biomarkers of MEK Inhibitor Sensitivity and Therapeutic Vulnerability. Cancer Res 81, 1681-1694 (2021).
|0 <https://doi.org/10.1158/0008-5472.CAN-20-2222>

|1 18 Mabuchi, S., Kuroda, H., Takahashi, R. & Sasano, T. The PI3K/AKT/mTOR pathway as a therapeutic target
|2 in ovarian cancer. Gynecol Oncol 137, 173-179 (2015). <https://doi.org/10.1016/j.ygyno.2015.02.003>

|3 19 Huang, T. T., Lampert, E. J., Coots, C. & Lee, J. M. Targeting the PI3K pathway and DNA damage response
|4 as a therapeutic strategy in ovarian cancer. Cancer Treat Rev 86 (2020). <https://doi.org/ARTN 10202110.1016/j.ctrv.2020.102021>

|6 20 Grisham, R. N. et al. Low-grade serous ovarian cancer: expert consensus report on the state of the science. Int
|7 J Gynecol Cancer 33, 1331-1344 (2023). <https://doi.org/10.1136/ijgc-2023-004610>

|8 21 Cagnol, S. & Chambard, J. C. ERK and cell death: Mechanisms of ERK-induced cell death - apoptosis,
|9 autophagy and senescence. Febs J 277, 2-21 (2010). <https://doi.org/10.1111/j.1742-4658.2009.07366.x>

|0 22 Tran, B., Tran, D., Nguyen, H., Ro, S. & Nguyen, T. scCAN: single-cell clustering using autoencoder and
|1 network fusion. Sci Rep 12, 10267 (2022). <https://doi.org/10.1038/s41598-022-14218-6>

|2