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Abstract 26 

Modern biology increasingly relies on large-scale screening to generate high dimensional datasets with potential to 27 
accelerate discovery. However, analysing these complex datasets remains challenging, particularly in applications 28 
where the underlying structure and groupings are unknown, and high dimensionality introduces noise and artifacts that 29 
make follow up studies difficult to prioritise. Here, we present an unsupervised consensus clustering tool that 30 
quantifies biologically meaningful patterns based on multi-scale data organisation to guide decision-making in high-31 
throughput screening. Using large-scale drug screening data in cancer cell lines and bacterium model, we demonstrate 32 
its ability to use diverse data inputs to prioritize robust drug clusters with shared biological mechanisms and conserved 33 
drug responses. This method addresses key limitations associated with prioritising robust, actionable hits from 34 
scalable screening data.  35 
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Advancements in high-throughput sequencing technologies have generated unprecedented volumes of biological 39 
data1,2. Traditional comparative analyses that require groups to be labelled a priori are inadequate for such complex 40 
datasets. Unsupervised clustering methods are therefore ideal to assist in identifying hidden structure in high-41 
dimensional feature spaces without prior assumptions. Clustering samples based on their molecular or phenotypic 42 
features enables data-driven approaches to discover meaningful relationships or shared mechanisms. Despite this, 43 
clustering high dimensional data remains challenging, particularly in applications where the number of true biological 44 
groupings are unknown and the signal is confounded by stochastic noise3.  45 

Consensus clustering methods have emerged as a solution to improve clustering sensitivity and robustness, 46 
particularly in the single cell and bulk transcriptomics field4,5. These approaches assume that true biological clusters 47 
remain stable despite varied hyperparameters or algorithms6. Rather than relying on a single clustering result, they 48 
aggregate multiple clustering solutions to build a similarity matrix representing how often objects co-cluster across 49 
iterations and then perform clustering on the compiled consensus matrix7. Despite improving overall cluster accuracy, 50 
existing methods do not provide a systematic approach to evaluate cluster quality5,8-13. Without an efficient way to 51 
determine the true underlying biological patterns and prioritise actionable data clusters, follow-up analysis becomes 52 
resource intensive and risky. Furthermore, clustering performance is inherently limited by the data quality, which can 53 
suffer in large-scale screens, making it essential to detect low-quality, stochastic clusters. In this study, we present 54 
UnTANGLeD, an unsupervised consensus clustering pipeline that identifies robust biological patterns in high-55 
dimensional data with post-hoc evaluation to quantifiably prioritise clusters for actionable and efficient follow-up.  56 

UnTANGLeD takes any dimensionality-reduced dataset following pre-processing and performs iterative clustering to 57 
evaluate signatures of similarity across increasing granularity. The co-clustering frequencies of object pairs are used to 58 
construct a consensus matrix, transforming raw distance into an interpretable robustness-based metric quantifying 59 
relationship consistency. By leveraging multi-resolution clustering, this method effectively denoises data, retaining 60 
genuine biological relationships that persist across multiple data scales while filtering out weak or spurious 61 
associations. It further employs a stability-driven approach to determine the optimal number of clusters that capture 62 
maximal information from the data. After hierarchical clustering, clusters are stratified based on internal coherence 63 
(correlation), robustness (silhouette score), and assessed for conservation across biological contexts. This provides 64 
researchers with an unbiased framework for prioritizing robust and biologically meaningful clusters for further 65 
investigation, optimizing resource allocation in screening scenarios with limited or no prior annotation (Figure 1a). 66 
Originally developed to identify gene programs from sparse, gene-trait association data14, we have established 67 
UnTANGLeD as a versatile pipeline for post-screening analysis integrating clustering, cluster optimisation, evaluation, 68 
and conservation metrics in one workflow applicable to diverse data modalities and experimental designs. In this study, 69 
we aim to demonstrate its utility across various large-scale screens, including a high-content imaging drug screen of 70 
ovarian cancer cell lines15, a gene deletion library in E. coli16, and profiling of transcriptional responses to drug 71 
perturbations1(Figure 1b).  72 

First, we analysed high content morphology imaging data measuring the phenotypic response of three low grade 73 
serous ovarian carcinoma cell lines with unique genetic profiles (AOCS-2, VOA-6406, SLC58), and one normal 74 
ovarian surface epithelial cell line (IOSE-523) exposed to a diverse library of 5,596 drugs, including FDA-approved 75 
drugs, kinase inhibitors, methylation modulators, and investigational agents, at 3 different concentrations (10, 1, 76 
0.1µM) (Figure 2a)15. We tested the utility for UnTANGLeD to leverage the 2,175 imaging features to cluster over 77 
16,750 drug conditions by their shared morphological changes in cells and prioritise robust drug clusters with shared 78 
biological mechanisms. Raw datasets were pre-processed and reduced in dimensionality using principal component 79 
analysis. To assess clustering stability across different granularities, 100 iterations of Seurat’s shared nearest 80 
neighbour (SNN) algorithm were run at increasing resolutions. These results were combined into a consensus matrix, 81 
where each element represents the co-clustering frequency of any two drugs across all resolutions. This re-configures 82 
the high-dimensional drug-by-imaging matrix into a sparse consensus matrix that quantifies the relationship strength 83 
between all drug pairs (Figure 2b). UnTANGLeD then performs agglomerative clustering using Ward’s minimum 84 
variance on the consensus matrix from 2 to 300 clusters, calculating the average silhouette score for each number of 85 
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clusters as a metric of cluster quality across the data set. The silhouette score (-1 to 1) assesses how similar each object 86 
is to other objects in its assigned cluster and how different it is from objects in the nearest neighbouring cluster. As the 87 
silhouette score is calculated on the consensus matrix, a high silhouette score indicates a stable, distinct grouping. 88 
When increasing the number of clusters no longer improves the average silhouette score, no more biologically 89 
distinctive groups can be gained by further subdividing the data. In our analysis, the optimal number of clusters was 90 
defined at approximately 200 clusters across all four cell lines (Figure 2c). 91 

Clusters were next stratified by the silhouette score, indicative of cluster robustness, and the average pairwise 92 
correlation of imaging features within each cluster, indicative of intra-cluster similarity (Extended Figure 1a-d). 93 
Given the genetic heterogeneity of ovarian cancer, we were interested in identifying drug mechanisms that induce 94 
consistent phenotypic responses robust to genetic variation. To assess this, we evaluated the consistency of drug 95 
clusters across cell lines using three conservation metrics. Many of the top ranked drug clusters, defined as those 96 
scoring high on average silhouette and correlation scores, were significantly conserved across all four ovarian cell 97 
lines (Figure 2d). To assess the biological significance of identified clusters, we performed hypergeometric tests to 98 
evaluate the enrichment of annotated pathways for each drug cluster. Across all four cell lines, clusters were 99 
significantly enriched for cancer-related pathways (Extended Figure 1e-h). For instance, the top ranked drug clusters 100 
from cell line SLC58, were strongly enriched for key oncogenic pathways including MAPK/ERK17, 101 
PI3K/AKT/mTOR18, and Cell cycle/DNA damage19 (Figure 2d). To reinforce these findings, we examined 102 
representative microscopy images of cells treated with drugs from selected clusters. Top-ranked clusters exhibited 103 
more consistent morphological changes in treated cells vs DMSO control, contrasting with inconsistent morphologies 104 
in poorly ranked clusters (Extended Figure 2). Notably, the observed morphological changes closely aligned with the 105 
enriched pathways for these clusters. For example, the drugs in top-ranked Cluster 200 from cell line SLC58 was 106 
enriched for MAPK/ERK pathway and showed morphological changes including cell shrinkage, membrane blebbing, 107 
and fragmented nuclei, consistent with apoptosis induction (Figure 2e). These observations align with the known role 108 
of MAPK/ERK pathway in regulating cell proliferation and survival, particularly in low-grade serous ovarian cancer 109 
pathogenesis17,20, where its disruption can lead to apoptosis21. We further validated our clustering outputs using 110 
Connectivity Map (CMap)1, an independent dataset characterising changes in gene expression in response to drug 111 
perturbations, focusing on breast, prostate cancer and leukaemia cell lines. This comparison allowed us to evaluate 112 
whether the morphological signatures identified by imaging align with transcriptomic changes induced by the same 113 
drugs. UnTANGLeD was applied to CMap to yield 175 drug clusters. Next, we assessed the conservation between 114 
these transcriptomics-based clusters and our imaging-based clusters across all four ovarian cell lines, focusing on 115 
drugs present in both datasets (Extended Figure 3a). Indeed, overlapping drug sets between the two modalities were 116 
conserved, with stronger conservation observed in highly ranked clusters (Figure 2f, Extended Figure 3b), implying 117 
concordant changes at the transcriptomic level and providing orthogonal validation to our clustering.  118 

To contextualize UnTANGLeD's performance and its advantages, we benchmarked it against two widely used 119 
traditional clustering approaches, k-means and hierarchical clustering, on dimensionality reduced data. K-means 120 
iteratively assigns data points to their nearest cluster centres and recalculates centres until convergence, while 121 
hierarchical clustering progressively merges similar points or clusters based on a defined distance metric. While 122 
attempting to identify optimal cluster numbers using silhouette scores, we found that both methods' scores rapidly fell 123 
and plateaued near 0, despite dimensionality reduction of the dataset, indicating their inability to maintain or quantify 124 
meaningful cluster separation (Figure 3a, Extended Figure 4a). By contrast, UnTANGLeD demonstrated the ability 125 
to improve clustering quality with increasing cluster granularity. For comparison, we set the cluster number to 200 for 126 
all methods based on the previously determined optimal cluster number and evaluated the resulting clusters based on 127 
internal quality metrics (silhouette and correlation scores), biological relevance (pathway enrichment), and shared 128 
drug mechanism (cell-line conservation). UnTANGLeD consistently produced a clear stratification pattern where 129 
clusters in the upper right quadrant with both high internal coherence and distinctiveness showed stronger biological 130 
relevance, evidenced by increased pathway enrichment and cross-cell line conservation (Figure 3b, Extended Figure 131 
1a-d). K-means clusters showed uniformly poor silhouette scores despite varying correlation values, indicating an 132 
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inability to form biologically distinct clusters (Extended Figure 4b). Unlike UnTANGLeD and k-means which 133 
produced normally distributed cluster size (Figure 3c), hierarchical clustering produced either very small, highly 134 
correlated clusters due to feature redundancy or large, catch-all clusters with decreased robustness (Extended Figure 135 
4c, Extended Figure 5). In addition, neither silhouette nor correlation scores effectively stratified clusters by 136 
biological relevance for both k-means and hierarchical clustering (Extended Figure 6).  137 

To assess each method's ability to prioritize biologically meaningful clusters, we first examined the average 138 
significance for clusters showing significant pathway enrichment and cell-line conservation. As shown in Extended 139 
Figure 4d-e, UnTANGLeD clusters on average demonstrated greater conservation across genetically diverse ovarian 140 
cancer cell lines compared to k-means and hierarchical clustering, though statistical significance was reached in cell 141 
line VOA-6406 only. While aggregated performance metrics across all clusters showed modest differences between 142 
methods, we hypothesized that biological relevance would not be uniformly distributed across all clusters but would 143 
correlate with internal quality metrics. To test this, we stratified clusters into top (highest 25%) and bottom (lowest 144 
25%) quartiles based on their average silhouette and correlation scores. We then performed Fisher's exact tests to 145 
assess whether the proportions of biologically significant clusters differed between clustering methods (Extended 146 
Table 1a-b). This analysis revealed that UnTANGLeD's top-ranked clusters contained significantly more cell-line 147 
conserved clusters compared to those generated by k-means and hierarchical clustering (OR <= 0.1, p < 1.3x10-10) 148 
(Figure 3d), highlighting its ability to identify consistent drug responses despite genetic heterogeneity between cell 149 
lines. Significantly more UnTANGLeD top-ranked clusters showed stronger transcriptional correlation in the CMap 150 
dataset compared to hierarchical clustering (OR = 0.05, p = 3×10��), with a modest advantage over k-means (OR = 151 
0.71, p = 0.4), indicating morphology-based drug clusters prioritised by UnTANGLeD tend to induce similar gene 152 
expression patterns. UnTANGLeD had significantly more pathway enriched clusters in its top-ranked clusters 153 
compared to k-means (OR = 0.28, p = 0.038) and a similar proportion compared to hierarchical clustering (OR = 0.99, 154 
p = 1.0) (Figure 3d). When comparing between upper and bottom quartile (Extended Table 2), UnTANGLeD had 155 
significantly more cell-line conserved clusters in upper quartile while no significance is observed for k-means and 156 
hierarchical clustering (Figure 3d). Most importantly, UnTANGLeD's internal quality metrics correlation (Spearman's 157 
ρ = 0.168) and silhouette (Spearman's ρ = 0.277) scores aligned more strongly with external biological validation 158 
measures (pathway enrichment and cross-cell line conservation) on a continuous scale (Figure 3e). This enables more 159 
confident prioritization of promising drug clusters for downstream investigation without requiring extensive a priori 160 
biological knowledge. Collectively, these data demonstrate that UnTANGLeD effectively parses large-scale 161 
morphology data to reveal robust, meaningful drug groupings characterized by strong pathway enrichment, high cross-162 
cell line conservation, and alignment with orthogonal gene expression data. By grouping drugs by their phenotypic 163 
effects on fundamental cancer mechanisms across genetically distinct ovarian cell lines, UnTANGLeD prioritises 164 
robust drug clusters with metrics that help inform downstream decision making.  165 

To further illustrate its utility, we evaluated UnTANGLeD on two additional high dimension screening data. First, 166 
applied to a genome-wide E. coli single gene-deletion library screened against 324 stress conditions16, UnTANGLeD 167 
effectively grouped gene-deletion mutants based on shared phenotypic responses, stratifying highly robust gene 168 
clusters enriched for shared biological processes to environmental stresses. It similarly identified condition clusters 169 
with similar gene signatures across mutants, prioritizing clusters with increased drug target enrichment (Extended 170 
Figure 7). Likewise, in analysing CMap's transcriptional responses to over 1,000 drug perturbations across three other 171 
tumour cell lines (Luminal A breast cancer, prostate cancer and leukaemia)1, UnTANGLeD identified highly 172 
conserved drug clusters with shared mechanisms of action and drug indication enrichment based on their perturbed 173 
gene expression signatures (Extended Figure 8).  174 

This study demonstrates that UnTANGLeD outperforms conventional clustering approaches by integrating multi-175 
resolution consensus building with systematic cluster stratification based on internal coherence, robustness, and 176 
biological conservation. Traditional methods often analyse data at a single granularity level, producing a fixed 177 
snapshot of biological complexity while suffering from sensitivity to parameter choices, noise-induced artifacts, and 178 
inability to determine the optimal number of clusters. Current consensus clustering methods aim to improve sensitivity 179 
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and robustness through (1) iteratively applying the same or multiple algorithms with varying hyperparameters such as 180 
distance metrics5,8 (2) clustering repeatedly on subsampled or perturbed data10,11 (3) combining results from multiple 181 
algorithms12,13, or (4) leveraging deep learning based approach such as network fusion22. Unfortunately, these methods 182 
predominantly optimise at a fixed resolution or discrete granularity level, essentially taking different views of the 183 
same biological structure rather than exploring how stable the structures are across a continuous spectrum of 184 
granularity.  Critically, existing methods lack a systematic framework to evaluate final cluster quality and prioritize 185 
promising clusters for follow up, limiting their utility in screening applications where identifying the most promising 186 
biological signals is a priority.  UnTANGLeD addresses these limitations by leveraging co-occurrence patterns across 187 
100 increasing granularity levels to build a consensus that preserves robust relationships across multiple data scales, 188 
while providing metrics to prioritize the most significant clusters, enabling efficient identification of meaningful 189 
patterns in high-dimensional screening datasets. To facilitate broad adoption, we provide UnTANGLeD as a user-190 
friendly R package, offering a versatile clustering and prioritisation workflow to guide actionable insights from any 191 
highly complex dataset with applications spanning drug discovery, target identification, disease subtyping, biomarker 192 
selection with potential for application in non-biological contexts. 193 
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 217 

Figure 1: Unsupervised clustering prioritisation pipeline and application of UnTANGLeD across different data 218 
modalities  219 

(a) Schematic overview of the UnTANGLeD workflow. (b) Representative applications of UnTANGLeD across 220 
diverse biological data modalities. 221 
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 222 

Figure 2: Unsupervised clustering reveals biologically meaningful drug clusters based on cellular morphology  223 

(a) Dataset characteristics for the four cell lines analysed (3 genetically variable ovarian cancer: AOCS-2, VOA-6406, 224 
SLC58; 1 normal: IOSE-523). Each cell line was treated with a 5596-compound library for 72 hours. The table shows 225 
the number of unique conditions (compound at varying concentrations), imaging features initially extracted, unique 226 
pathways. Bar plot displays the distribution of annotated biological pathways across all compounds. (b) 227 
Transformation of high-dimensional data into a sparse similarity matrix. Heatmaps of a subset of the dense, raw drug-228 
by-imaging matrix (top) and the sparse drug-by-drug consensus matrix (bottom). The consensus matrix represents 229 
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drug co-clustering frequency across 100 iterations of Seurat clustering at resolutions 0.2 to 20 with an interval of 0.2. 230 
(c) Determination of optimal cluster number using average silhouette scores across 2-300 clusters for all four cell lines. 231 
~200 clusters were selected for all cell lines based on the average silhouette score plateau point (indicated by dashed 232 
line). (d) Scatter plot of clusters in cell line SLC58 stratified by average cluster silhouette score and correlation score. 233 
Pathway annotations for the top 10 clusters with the highest pathway enrichment -log10 p-adjust for cell line SLC58. 234 
Size indicates conservation significance (Conservation -log10 p-adjust) across cell lines while colour represents 235 
pathway enrichment significance (Enrichment -log10 p-adjust). (e) Representative microscopy images of cells (1 field 236 
per well) from cell line SLC58 treated with selected drug conditions from example top-ranked Cluster 200 and 237 
bottom-ranked Cluster 89. Images shown with DMSO control and 100μm scale bar. Cells were stained with DAPI 238 
(nucleus; blue), CellMask (plasma membrane; green) and phalloidin/rhodamine (F-actin; red; red). (f) Orthogonal 239 
validation of clusters using transcriptomic data. Scatter plot of UnTANGLeD clusters stratified by average silhouette 240 
score and correlation score. Size indicates -log10 p.adjust conservation significance of UnTANGLeD drug clusters 241 
with those derived from Connectivity Map (CMap) using gene expression, limited to clusters containing more than 5 242 
overlapping drugs. 243 

 244 

Figure 3: UnTANGLeD outperforms traditional clustering methods in prioritising biologically robust drug 245 
clusters. 246 

 (a) Comparison of average silhouette scores across increasing cluster numbers (2-300) for UnTANGLeD (blue), k-247 
means (orange), and hierarchical (green) clustering. (b) Scatter plot comparing cluster quality metrics (average 248 
silhouette score vs. average correlation score) for UnTANGLeD (blue), K-means (orange), and hierarchical (green) 249 
clustering. Dot size indicates conservation significance across cell lines (-log10 p-adjust). (c) Distribution of cluster 250 
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sizes for UnTANGLeD (blue), k-means (orange), and hierarchical clustering (green). (b-c) Data shown for SLC58 cell 251 
line. (d) Comparison of significant cluster ratios compiled from four cell lines combined across UnTANGLeD (blue), 252 
k-means (orange), and hierarchical (green) clustering for three biological relevance metrics. Top quartile shows top-253 
performing clusters (>75% quantile) while bottom quartile shows bottom-performing clusters (<25% quantile), as 254 
defined by 75th of 25th percentile of average correlation and silhouette scores for each individual cell line. Biological 255 
significance is defined as followed: CMap correlation Z-score (>2), conservation (adj. p-value <0.05), and pathway 256 
enrichment (adj. p-value <0.05). Statistical significance between methods and between top and bottom quartiles was 257 
calculated using Fisher's exact test (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001). (e) Boxplots comparing the 258 
distribution of Spearman correlation coefficients between internal quality metrics (silhouette score, correlation score) 259 
with biological relevance metrics (pathway enrichment and cell line conservation) for UnTANGLeD (blue), K-means 260 
(orange) and Hierarchical clustering (green). Plotted with median, interquartile range and outliers.  261 
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