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Abstract

Protocol design and benchmarking is central to optimising model development using human pluripotent stem cell
derived cardiomyocytes (hPSC-CMs). By applying data mining to decades of research and hundreds of peer reviewed
studies, we evaluate how protocol variables associate with common properties of cardiac functional and physiological
maturation. This resource is publicly accessible through CMPortal, a community-oriented website that provides data-
driven tools for researchers to navigate leverage decades of knowledge for benchmarking protocol designs and outcomes
for their dedicated applications in developmental biology, disease modelling, and drug screening.
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Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are a widely used model for cardiac research,
enabling studies of development, physiology, disease mechanisms, and drug responses.' However, maturing hPSC-CMs
toward adult-like phenotypes remains an ongoing challenge for modeling adult cardiac biology.? Despite development
of maturation strategies involving specialized media, co-culture systems, and various types of matrix and biomaterials,
optimizing protocol conditions suitable for modelling adult heart phenotypes remain challenging due to high variability
in experimental design and outcomes.

Ewoldt et al.>* recently reviewed 300 study designs and demonstrate that while maturity outcomes have improved over
time, no significant differences exist between maturation strategies. They highlight difficulties in parsing individual
effects of protocol variables due to complex design variables and inconsistent reporting, drawing attention to the need
for data-driven approaches and community-oriented benchmarking strategies to improve the accuracy and efficiency of
hPSC-CM protocol design.

Here, we develop a data-driven platform that offers user-guided analyses of protocol features and their association with
functional outcomes. Rather than assuming direct correlations exist between protocol factors and physiological
maturation, we use an unsupervised approach that enables detection of bidirectionality and context-dependency allowing
parameters to be independently assessed.

We first expanded the Ewoldt database® to 322 studies, including 14 metabolic maturation studies and 8 publications to
capture recent developments in the field. We also added protocol design features including cell line sex, ancestry, and
transcriptomic markers of myofilament isoform switching. The final database has standardized nomenclature across 400
protocol features spanning five categories: experimental design variables (e.g., media composition factors, plating
densities, matrix), analysis methods (e.g., imaging techniques, electrophysiology approaches), cell profiles (details about
cell line including sex, ancestry, and source), study characteristics (e.g., publication year, journal), and measured
outcomes (e.g., measured sarcomere length, contractile force, calcium handling, myofilament isoforms) (Figure 1A).

We applied a hybrid strategy combining conventional statistics and data mining to assess protocol features against 117
target parameters, such as 18 maturity indicators, cell profiles, and applications in disease and pharmacological modeling
(Tables S1 and S2). Numerical measurements were binned into quantiles (e.g. Q1, Q2, etc.) to enable analysis of
protocols ranked by their maturity outcomes. One-hot encoding was used to derive a data format suitable for machine
learning, which also accounts for the significant missing data and assumes protocol variables, when not used or reported,
are still potentially causal.

For data mining, we used random forest classifiers with 10,000 permuted feature sets to associate protocol designs with
target parameters through Shannon entropy and Gini impurity, allowing the detection of statistically robust associations
even in small and sparsely reported datasets (Figure 1A and Table S3). Dimensionality reduction via UMAP
demonstrated high protocol heterogeneity across studies, consistent with reported findings® (Figure 1B). Despite this
heterogeneity, polynomial regression confirmed that the database sufficiently captures protocol features for target
endpoints relating to best and worst performing quantiles in a data-limited setting (Figure 1C). Quality checks using
Jaccard index analysis confirmed that data transformation preserved feature distinctiveness (Figure S1).

Data mining revealed alignment between protocol variables and expected biological impacts on cardiomyocyte
maturation (Figures 1D-E). For example, Q1 contractility protocols were significantly associated with Wnt modulation,
fibroblast inclusion, and matrix stiffness which are well established factors impacting sarcomere assembly and force
generation.>® Importantly, we identified that identical maturation strategies could be linked to both best and worst
maturation outcomes, demonstrating that this approach identifies context-dependent effects of protocol variables and
not simply assume their generalized effects (Figure 1F). Specifically, the findings suggest that maturation parameters
can be independently modulated by distinct sets of protocol variables, challenging the assumption that improving one
cardiac maturity metric necessarily enhances all others.

We next used a spearman correlation analysis of all continuous variables in the database (n=31) to assess whether
maturity measurements recapitulate expected physiological relationships (Table S4). Indeed, the data demonstrates that
across hundreds of peer-reviewed studies, there are significant positive correlations between expected parameters

including resting membrane potential and conduction velocity (p=1, p<0.01), as well as contractile force and 3D tissue
2
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size (p=0.33, p<0.05) (Figure 1G). Interestingly, the database also identifies protocol correlations that provide important
considerations in co-culture design. Different cell type compositions revealed positive, null, and negative effects on
maturity indicators including calcium kinetics and sarcomere length (Figure 1H).

We integrated these findings into a community-oriented web resource, CMPortal (https://palpantlab.com/cmportal). The
Database Viewer enables searching of the 322 curated protocols based on five feature categories using techniques from
simple keyword matching to multi-criteria searches, with options to toggle column visibility, export customized datasets,
and evaluate relevant protocols of interest (Figures 2A-C). The Variable Search enables researchers to identify studies
and protocols based on topic areas and/or sets of protocol variables which enables unsupervised discovery of relevant
protocols based on desired and/or associated protocol features, even when the published protocols do not report the
selected metrics (Figure 2D). The Protocol Benchmarking tool enables researchers to evaluate differentiation and
maturation protocols against database standards. By uploading or manually selecting protocol features and the user’s
own experimental measurements, the tool compares protocols through a radar chart that highlights maturity indicators
across multiple categories and visually distinguishes between predicted, normal-range, and outlier experimental values
(Figures 2E-F). Lastly, the Enrichment Browser allows researchers to identify protocol features significantly associated
with specific outcomes which serves as the data foundation for the search and benchmarking features. (Figure 2G).

We aimed to validate an unexpected finding from the database showing that contractility and sarcomere length are not
correlated maturation endpoints (Figure 2H), each having distinct protocol variable enrichments governing their
maturation (Table S2). This finding suggests that the Frank-Starling effect, one of the most fundamental principles
governing the relationship between heart pump function and load, develops through independent mechanisms. We
investigated this by first identifying enriched protocol characteristics of Q1 and QS5 contractility, choosing backbone
media compositions involving DMEM-+fatty acids (FA) (Q1 contractility) and RPMI+B27 (Q5 contractility) (Figure
2I). DMEM+FA confers enhanced contractile maturity due to the high calcium concentration’ and fatty acids’ that
mimic postnatal development. As shown in data mining, impedance-based measurements showed significantly higher
peak contraction amplitude in DMEM+FA versus RPMI+B27 (Figure 2J), which was also supported by RNA-seq data
showing higher metabolic activity from glycolysis to mature fatty acid oxidation in DMEM+FA cells (Figure 2K).
Consistent with the database correlation, contractility changes occurred without significant variation in sarcomere length
(Figure 2L). This supports our observation that fundamental features of cardiac maturation, including interdependent
mechanisms controlling heart function like the Frank-Starling relationship, are not necessarily mechanistically linked in
development. CMPortal allows for unsupervised discovery of these context-dependent protocol variables, enabling
users to independently optimize protocols for specific functions.

CMPortal represents the first quantitative approach to overcome significant analytical difficulties of unreported, sparse
protocol data, successfully associating context-dependent protocol variables with cell modelling outcomes. These
findings challenge a fundamental but rarely challenged assumption that hPSC-CM maturity advances uniformly across
all metrics. Instead, the results support a modularised paradigm to develop protocols through selected metrics based on
experimental goals, aligning with recent literature demonstrating that attributes of hPSC-CM maturation can be
compartmentalized.® We translate these findings into user-friendly tools provided on a public website for researchers to
evaluate, design, and benchmark protocols. CMPortal provides a streamlined approach to literature review, inform
experimental design, and facilitate protocol benchmarking for understanding cardiac biology, diseases, and drug
responses as a community-oriented resource for hPSC-CM research.

Acknowledgements

This work has been supported by grant funding from the NHMRC (MRFCDDMO000033 and 2007625 to NP), the lan
Potter Foundation (31111380 to NP), and the National Heart Foundation of Australia (106721 to NP). J.E.H.
acknowledges the support of a Snow Medical Research Foundation Fellowship, Grant No. SMRF2019-060. Microscopy
was performed at the Institute for Molecular Bioscience Microscopy Facility which was established with the support of
the Australian Cancer Research Foundation (ACRF). We thank Meredith Redd for her assistance with project design.


https://doi.org/10.1101/2024.09.04.611313
http://creativecommons.org/licenses/by-nd/4.0/

131

132
133
134
135
136

137

138
139

140
141

142
143
144
145

146
147
148
149
150

151
152

153
154

155
156

157

158
159

160

161
162

163

164
165

166
167
168
169

170

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.04.611313; this version posted August 26, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

Declaration of interests

N.J.P is cofounder and advisor for Infensa Bioscience, a biotechnology company focused on the development of peptide
therapeutics for stroke and heart attack. J.E.H. is a cofounder, scientific advisor, and holds equity in Dynomics, a
biotechnology company focused on the development of heart failure therapeutics. J.E.H. is a co-inventor on patents for
bioengineered human cardiac tissue patches. J.E.H. is co-inventor on licensed patents for engineered heart muscle, and
patents relating to cardiac organoid maturation and therapeutics.

Figure 1. CMPortal database construction and hybrid data mining approach.

(A) Schematic overview of the workflow for integrating and analysing 322 hPSC-CM studies to evaluate protocol
designs and target parameters.

(B) UMAP visualizations project the database by five feature categories, enabling assessment of variability in protocol
components and identification of shared trends, with annotations shown in color.

(C) Relationship between the number of significant enrichments and the number of training protocols. A polynomial
model fitted to the best and worst quantiles of maturity indicators (pink and purple) suggests a plateau at 20—30 out of
413 protocol features significantly associated with maturity metrics. Grey indicates target parameters for intermediate
maturity quantiles, cell profile, and study characteristics.

(D-E) Bar plots showing protocol feature metadata for the highest (D) and lowest (E) contraction force quantiles, based
on enrichments with p<0.025. Yellow bars indicate the number of studies reporting the relevant variables; purple bars
represent the confidence in true feature enrichment. Log-odds ratio (logOR) and Fisher’s exact test (FET) estimate
overall directionality of enrichment. Co-reporting bias is calculated as the percentage of enriched features co-published
more often than expected by chance, using the mean Jaccard Index (JI) distribution for a matched number of features.

(F) Stacked bar plot compares maturation strategies revealing significant context-dependent effects on maturation
properties.

(G) Table summarizing representative Spearman correlations among numerical protocol features, showing expected
associations (full data in Table S4).

(H) Spearman correlation plots of cardiac cell ratios in 3D cultures show opposing relationships with sarcomere length
and calcium relaxation time as maturity indicators.

Figure 2. CMPortal website interface and experimental use cases.

(A) Database Viewer allows users to explore 322 hPSC-CM protocols across 483 protocol features, and to install the
filtered database.

(B) Pie charts of the database show media and substrate usage of metabolic maturation protocols.

(C) Example UMAPs show segregation of studies by the protocol feature categories. Cell line ancestry shows distinct
trends of protocol variable and analysis method usage. Common media, like most features, show no clear trends.

(D) Variable Search enables protocols retrieval by any desired and/or significantly enriched features by target parameters.

(E) Protocol Benchmarking module enables users to upload and compare protocols against the database using
experimental data and reference ranges estimated with the feature enrichments.

(F) Radar plot generated by CMPortal for comparing maturation outcomes between Protocol 80 and 250 which are
amongst the most cited studies in the database. The plot shows protocol 80 being associated to properties of higher
transcriptional and contractile maturation, but lower electrophysiological and calcium handling maturation. Hallow
datapoints are estimated with enrichments when no experimental data is available.

(G) Enrichment Browser retrieves enrichments across the 117 target parameters.
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(H) Spearman correlation of pairwise, co-reported values of contractility and sarcomere length in 322 protocols. No
significance was found.

(I) CMPortal-informed experiment designed to compare the impact of media composition on contractility.

(J) Representative traces and bar plot of impedance-based contractile measurements in hPSC-CM across time show
higher peak amplitude for DMEM+FA and RPMI+B27 cells.

(K) Bulk RNA-seq analysis of pathway-specific gene panels indicates metabolic reprogramming towards higher
maturity in hPSC-CMs cultured in DMEM+FA compared to RPMI+B27.

(L) Representative alpha-actinin staining (green), DAPI (blue) in fixed hPSC-CM confirms independence of
contractility from sarcomere length. Bar charts values are mean + standard error whiskers with student’s z-test
significance (G, I). *P<0.05, **P<0.01,***P<0.001, ****P<0.0001, ns: non-significant. Study Char. : Study
Characteristic; Meas. Endp.: Measured Endpoint; Sarco. Length: Sarcomere Length.
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