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Abstract 17 

Protocol design and benchmarking is central to optimising model development using human pluripotent stem cell 18 

derived cardiomyocytes (hPSC-CMs). By applying data mining to decades of research and hundreds of peer reviewed 19 

studies, we evaluate how protocol variables associate with common properties of cardiac functional and physiological 20 

maturation. This resource is publicly accessible through CMPortal, a community-oriented website that provides data-21 

driven tools for researchers to navigate leverage decades of knowledge for benchmarking protocol designs and outcomes 22 

for their dedicated applications in developmental biology, disease modelling, and drug screening. 23 
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Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are a widely used model for cardiac research, 37 

enabling studies of development, physiology, disease mechanisms, and drug responses.1 However, maturing hPSC-CMs 38 

toward adult-like phenotypes remains an ongoing challenge for modeling adult cardiac biology.2 Despite development 39 

of maturation strategies involving specialized media, co-culture systems, and various types of matrix and biomaterials, 40 

optimizing protocol conditions suitable for modelling adult heart phenotypes remain challenging due to high variability 41 

in experimental design and outcomes. 42 

Ewoldt et al.3,4 recently reviewed 300 study designs and demonstrate that while maturity outcomes have improved over 43 

time, no significant differences exist between maturation strategies. They highlight difficulties in parsing individual 44 

effects of protocol variables due to complex design variables and inconsistent reporting, drawing attention to the need 45 

for data-driven approaches and community-oriented benchmarking strategies to improve the accuracy and efficiency of 46 

hPSC-CM protocol design. 47 

Here, we develop a data-driven platform that offers user-guided analyses of protocol features and their association with 48 

functional outcomes. Rather than assuming direct correlations exist between protocol factors and physiological 49 

maturation, we use an unsupervised approach that enables detection of bidirectionality and context-dependency allowing 50 

parameters to be independently assessed. 51 

We first expanded the Ewoldt database3 to 322 studies, including 14 metabolic maturation studies and 8 publications to 52 

capture recent developments in the field. We also added protocol design features including cell line sex, ancestry, and 53 

transcriptomic markers of myofilament isoform switching. The final database has standardized nomenclature across 400 54 

protocol features spanning five categories: experimental design variables (e.g., media composition factors, plating 55 

densities, matrix), analysis methods (e.g., imaging techniques, electrophysiology approaches), cell profiles (details about 56 

cell line including sex, ancestry, and source), study characteristics (e.g., publication year, journal), and measured 57 

outcomes (e.g., measured sarcomere length, contractile force, calcium handling, myofilament isoforms) (Figure 1A). 58 

We applied a hybrid strategy combining conventional statistics and data mining to assess protocol features against 117 59 

target parameters, such as 18 maturity indicators, cell profiles, and applications in disease and pharmacological modeling 60 

(Tables S1 and S2). Numerical measurements were binned into quantiles (e.g. Q1, Q2, etc.) to enable analysis of 61 

protocols ranked by their maturity outcomes. One-hot encoding was used to derive a data format suitable for machine 62 

learning, which also accounts for the significant missing data and assumes protocol variables, when not used or reported, 63 

are still potentially causal. 64 

For data mining, we used random forest classifiers with 10,000 permuted feature sets to associate protocol designs with 65 

target parameters through Shannon entropy and Gini impurity, allowing the detection of statistically robust associations 66 

even in small and sparsely reported datasets (Figure 1A and Table S3). Dimensionality reduction via UMAP 67 

demonstrated high protocol heterogeneity across studies, consistent with reported findings3 (Figure 1B). Despite this 68 

heterogeneity, polynomial regression confirmed that the database sufficiently captures protocol features for target 69 

endpoints relating to best and worst performing quantiles in a data-limited setting (Figure 1C). Quality checks using 70 

Jaccard index analysis confirmed that data transformation preserved feature distinctiveness (Figure S1). 71 

Data mining revealed alignment between protocol variables and expected biological impacts on cardiomyocyte 72 

maturation (Figures 1D-E). For example, Q1 contractility protocols were significantly associated with Wnt modulation, 73 

fibroblast inclusion, and matrix stiffness which are well established factors impacting sarcomere assembly and force 74 

generation.5,6 Importantly, we identified that identical maturation strategies could be linked to both best and worst 75 

maturation outcomes, demonstrating that this approach identifies context-dependent effects of protocol variables and 76 

not simply assume their generalized effects (Figure 1F). Specifically, the findings suggest that maturation parameters 77 

can be independently modulated by distinct sets of protocol variables, challenging the assumption that improving one 78 

cardiac maturity metric necessarily enhances all others. 79 

We next used a spearman correlation analysis of all continuous variables in the database (n=31) to assess whether 80 

maturity measurements recapitulate expected physiological relationships (Table S4). Indeed, the data demonstrates that 81 

across hundreds of peer-reviewed studies, there are significant positive correlations between expected parameters 82 

including resting membrane potential and conduction velocity (ρ=1, p<0.01), as well as contractile force and 3D tissue 83 
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size (ρ=0.33, p<0.05) (Figure 1G). Interestingly, the database also identifies protocol correlations that provide important 84 

considerations in co-culture design. Different cell type compositions revealed positive, null, and negative effects on 85 

maturity indicators including calcium kinetics and sarcomere length (Figure 1H). 86 

We integrated these findings into a community-oriented web resource, CMPortal (https://palpantlab.com/cmportal). The 87 

Database Viewer enables searching of the 322 curated protocols based on five feature categories using techniques from 88 

simple keyword matching to multi-criteria searches, with options to toggle column visibility, export customized datasets, 89 

and evaluate relevant protocols of interest (Figures 2A-C). The Variable Search enables researchers to identify studies 90 

and protocols based on topic areas and/or sets of protocol variables which enables unsupervised discovery of relevant 91 

protocols based on desired and/or associated protocol features, even when the published protocols do not report the 92 

selected metrics (Figure 2D). The Protocol Benchmarking tool enables researchers to evaluate differentiation and 93 

maturation protocols against database standards. By uploading or manually selecting protocol features and the user’s 94 

own experimental measurements, the tool compares protocols through a radar chart that highlights maturity indicators 95 

across multiple categories and visually distinguishes between predicted, normal-range, and outlier experimental values 96 

(Figures 2E-F). Lastly, the Enrichment Browser allows researchers to identify protocol features significantly associated 97 

with specific outcomes which serves as the data foundation for the search and benchmarking features. (Figure 2G).  98 

We aimed to validate an unexpected finding from the database showing that contractility and sarcomere length are not 99 

correlated maturation endpoints (Figure 2H), each having distinct protocol variable enrichments governing their 100 

maturation (Table S2). This finding suggests that the Frank-Starling effect, one of the most fundamental principles 101 

governing the relationship between heart pump function and load, develops through independent mechanisms. We 102 

investigated this by first identifying enriched protocol characteristics of Q1 and Q5 contractility, choosing backbone 103 

media compositions involving DMEM+fatty acids (FA) (Q1 contractility) and RPMI+B27 (Q5 contractility) (Figure 104 

2I). DMEM+FA confers enhanced contractile maturity due to the high calcium concentration7 and fatty acids5 that 105 

mimic postnatal development. As shown in data mining, impedance-based measurements showed significantly higher 106 

peak contraction amplitude in DMEM+FA versus RPMI+B27 (Figure 2J), which was also supported by RNA-seq data 107 

showing higher metabolic activity from glycolysis to mature fatty acid oxidation in DMEM+FA cells (Figure 2K). 108 

Consistent with the database correlation, contractility changes occurred without significant variation in sarcomere length 109 

(Figure 2L). This supports our observation that fundamental features of cardiac maturation, including interdependent 110 

mechanisms controlling heart function like the Frank-Starling relationship, are not necessarily mechanistically linked in 111 

development. CMPortal allows for unsupervised discovery of these context-dependent protocol variables, enabling 112 

users to independently optimize protocols for specific functions. 113 

CMPortal represents the first quantitative approach to overcome significant analytical difficulties of unreported, sparse 114 

protocol data, successfully associating context-dependent protocol variables with cell modelling outcomes. These 115 

findings challenge a fundamental but rarely challenged assumption that hPSC-CM maturity advances uniformly across 116 

all metrics. Instead, the results support a modularised paradigm to develop protocols through selected metrics based on 117 

experimental goals, aligning with recent literature demonstrating that attributes of hPSC-CM maturation can be 118 

compartmentalized.8 We translate these findings into user-friendly tools provided on a public website for researchers to 119 

evaluate, design, and benchmark protocols. CMPortal provides a streamlined approach to literature review, inform 120 

experimental design, and facilitate protocol benchmarking for understanding cardiac biology, diseases, and drug 121 

responses as a community-oriented resource for hPSC-CM research. 122 
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Figure 1. CMPortal database construction and hybrid data mining approach. 137 

(A) Schematic overview of the workflow for integrating and analysing 322 hPSC-CM studies to evaluate protocol 138 

designs and target parameters. 139 

(B) UMAP visualizations project the database by five feature categories, enabling assessment of variability in protocol 140 

components and identification of shared trends, with annotations shown in color. 141 

(C) Relationship between the number of significant enrichments and the number of training protocols. A polynomial 142 

model fitted to the best and worst quantiles of maturity indicators (pink and purple) suggests a plateau at 20–30 out of 143 

413 protocol features significantly associated with maturity metrics. Grey indicates target parameters for intermediate 144 

maturity quantiles, cell profile, and study characteristics. 145 

(D–E) Bar plots showing protocol feature metadata for the highest (D) and lowest (E) contraction force quantiles, based 146 

on enrichments with p<0.025. Yellow bars indicate the number of studies reporting the relevant variables; purple bars 147 

represent the confidence in true feature enrichment. Log-odds ratio (logOR) and Fisher’s exact test (FET) estimate 148 

overall directionality of enrichment. Co-reporting bias is calculated as the percentage of enriched features co-published 149 

more often than expected by chance, using the mean Jaccard Index (JI) distribution for a matched number of features. 150 

(F) Stacked bar plot compares maturation strategies revealing significant context-dependent effects on maturation 151 

properties. 152 

(G) Table summarizing representative Spearman correlations among numerical protocol features, showing expected 153 

associations (full data in Table S4). 154 

(H) Spearman correlation plots of cardiac cell ratios in 3D cultures show opposing relationships with sarcomere length 155 

and calcium relaxation time as maturity indicators. 156 

 Figure 2. CMPortal website interface and experimental use cases. 157 

(A) Database Viewer allows users to explore 322 hPSC-CM protocols across 483 protocol features, and to install the 158 

filtered database.  159 

(B) Pie charts of the database show media and substrate usage of metabolic maturation protocols.   160 

(C) Example UMAPs show segregation of studies by the protocol feature categories. Cell line ancestry shows distinct 161 

trends of protocol variable and analysis method usage. Common media, like most features, show no clear trends. 162 

(D) Variable Search enables protocols retrieval by any desired and/or significantly enriched features by target parameters. 163 

(E) Protocol Benchmarking module enables users to upload and compare protocols against the database using 164 

experimental data and reference ranges estimated with the feature enrichments.  165 

(F) Radar plot generated by CMPortal for comparing maturation outcomes between Protocol 80 and 250 which are 166 

amongst the most cited studies in the database. The plot shows protocol 80 being associated to properties of higher 167 

transcriptional and contractile maturation, but lower electrophysiological and calcium handling maturation. Hallow 168 

datapoints are estimated with enrichments when no experimental data is available.  169 

(G) Enrichment Browser retrieves enrichments across the 117 target parameters. 170 
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(H) Spearman correlation of pairwise, co-reported values of contractility and sarcomere length in 322 protocols. No 171 

significance was found.  172 

(I) CMPortal-informed experiment designed to compare the impact of media composition on contractility.  173 

(J) Representative traces and bar plot of impedance-based contractile measurements in hPSC-CM across time show 174 

higher peak amplitude for DMEM+FA and RPMI+B27 cells.  175 

(K) Bulk RNA-seq analysis of pathway-specific gene panels indicates metabolic reprogramming towards higher 176 

maturity in hPSC-CMs cultured in DMEM+FA compared to RPMI+B27.  177 

(L) Representative alpha-actinin staining (green), DAPI (blue) in fixed hPSC-CM confirms independence of 178 

contractility from sarcomere length. Bar charts values are mean ± standard error whiskers with student’s t-test 179 

significance (G, I). *P<0.05, **P<0.01,***P<0.001, ****P<0.0001, ns: non-significant.  Study Char. : Study 180 

Characteristic; Meas. Endp.: Measured Endpoint; Sarco. Length: Sarcomere Length.  181 
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