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Abstract 
Summary: The price, quality and throughout of DNA sequencing continue to improve. 
Algorithmic innovations have allowed inference of a growing range of features from DNA 
sequencing data, quantifying nuclear, mitochondrial and evolutionary aspects of both 
germline and somatic genomes. To automate analyses of the full range of genomic 
characteristics, we created an extensible Nextflow meta-pipeline called metapipeline-DNA. 
Metapipeline-DNA analyzes targeted and whole-genome sequencing data from raw reads 
through pre-processing, feature detection by multiple algorithms, quality-control and data-
visualization. Each step can be run independently and is supported robust software 
engineering including automated failure-recovery, robust testing and consistent 
verifications of inputs, outputs and parameters. Metapipeline-DNA is cloud-compatible and 
highly configurable, with options to subset and optimize each analysis. Metapipeline-DNA 
facilitates high-scale, comprehensive analysis of DNA sequencing data. 

Availability: Metapipeline-DNA is an open-source Nextflow pipeline under the GPLv2 
license and is available at https://github.com/uclahs-cds/metapipeline-DNA. 
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Introduction 
High-throughput technologies have made biomedical research increasingly data-intensive. 
DNA sequencing is a key enabling technology, used both in routine clinical care and to 
support a wide range of research studies1. Ongoing improvements in DNA sequencing 
continue to reduce costs and enable new discoveries, like elucidation complex structural 
variants (SVs) and repetitive genomic regions by long-read sequencing2. Modern germline 
DNA sequencing studies routinely quantify single-nucleotide polymorphisms (SNPs), SVs, 
telomere length, mitochondrial copy number and variation, copy number and many other 
features3–5. 

DNA sequencing has been especially helpful in characterizing tumors. Cancers are 
characterized by widespread genomic rearrangements, variation in mutation clonality, 
specific patterns of somatic mutations associated with carcinogens or other features and a 
host of features absent or uncommon in germline genomes like kataegis and 
chromothripsis6. Comprehensive analyses of cancer sequencing can improve diagnosis, 
prognosis and management7,8. In many studies both a sample of a cancer and a 
“reference” normal sample from the same individual are sequenced to better distinguish 
somatic from germline variation and enable analysis of germline-somatic interactions. 

The growing availability of DNA sequencing has been paralleled by rapid development and 
adoption of both specific algorithms and workflow software. New discoveries often rely 
heavily on complex workflows comprising a mixture of established and novel algorithms9. 
These workflows, often termed “pipelines”, are implemented in a range of orchestration 
frameworks including Galaxy10, Snakemake11, Common Workflow Language (CWL)12 and 
Nextflow13. Workflows provide a way to automate processes by minimizing manual 
handling of data flow and facilitating stitching together of different tools to process raw data 
into refined forms such as lists of variants or quantitation of specific features. 

The use of complex workflows has placed a growing emphasis on standardization, 
extensibility, quality control and compute infrastructure. Workflow implementations 
routinely differ across research groups, with many groups creating their own. Many 
workflows lack key features like unit testing, integration testing, error-handling, fault-
tolerance, input-output verification, quality-control, data-visualization and use of multiple 
algorithms to create consensus calls14. Given the volume of data and the expense of 
compute, workflows are often bespoke to the high-performance computing environment 
used by a single group15. Portability of workflows to new environments is part of the “model 
to data” (M2D) paradigm in data sharing and processing16. M2D overcomes the cost, time 
and privacy risks of data-transfer by bringing models or algorithms to the computing 
system where data is stored. M2D thus necessitates that models be portable across 
providers and environments to support workflow usage in conjunction with good data 
management principles hinging on findability, accessibility, interoperability and 
reusability17. 

To address the need for a robust open-source DNA sequencing analysis pipeline, we 
created metapipeline-DNA. This Nextflow meta-pipeline is highly customizable and is 
capable of processing data from any stage of analysis. It can process DNA sequencing 
data starting from raw reads through alignment and recalibration, variant calling and even 
highly integrated analyses likely tumour subclonal reconstruction. Extensive quality control, 
testing and data-visualization are built into each individual step and into the full 
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metapipeline. It can work on multiple compute systems and clouds, facilitating analyses at 
any scale. 
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Figure 1: Data flow and visualizations. A. Data flow through metapipeline-DNA. B. Normalized tumour coverag
relative to the matched normal (log2R) and the B-allele frequency of individual SNPs laid out across the genome 
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support CNA detection. C. Example intersection diagram of consensus variants between 4 SNV callers: MuSE2, 
SomaticSniper, Strelka2 and Mutect2. D. Variant allele frequencies based on consensus between callers. VAFs are 
indicated for all combinations of consensus between one, two, three and four variant callers, with each data point 
representing one combination. The adjusted VAF is calculated as an average of all variants present in the combination. 
E. Sample combinations supported by metapipeline-DNA. The nT-mN (ex. 2T-2N) combination indicates any arbitrary 
numbers of normal and tumour samples. Each combination is automatically detected and considered during processing 
of all pipelines to select appropriate algorithms and processing modalities. F. Automatic and customizable interval usage 
in metapipeline-DNA. Original intervals undergo assessment and expansion at dbSNP sites with high coverage to 
produce expanded intervals. The option of using the expanded or the original intervals for downstream BAM recalibration 
and variant calling is parameterized with both options automated. 

Results 
Overview 
metapipeline-DNA is a Nextflow meta-pipeline for analysis of DNA sequencing data. It can 
analyze both targeted and whole-genome sequencing with 16 pipelines (Table 1) that 
collectively transform raw sequencing reads into sets of detected variants and other 
genetic and evolutionary features (Figure 1A). Most individual pipelines can execute 
multiple alternative algorithms and create consensus calls. For example, subclonal copy 
number aberration detection uses two algorithms (FACETS and Battenberg) and produces 
visualizations including logR and BAF plots (Figure 1B). Similarly four separate algorithms 
can be executed for somatic single nucleotide variant (SNV) detection14, automatically 
generating a consensus set of predictions and variant-associated data-visualizations 
(Figure 1C-D). Each pipeline can be executed independently and can be extensively 
parameterized to customize the selection and tuning of algorithms. 

Several different sample run-modes are available, which we denote with the terminology 
nT-mN, where n indicates the number of tumour samples and m the number of reference 
samples (Figure 1E). Thus classic paired tumour-normal analysis is 1T-1N. Metapipeline-
DNA fully supports modes like 0T-1N (i.e. germline DNA sequencing), 0T-3N (e.g. family 
trios), 1T-0N (i.e. unpaired tumour-only sequencing) and arbitrary multi-region tumour 
sequencing (e.g. 5T-1N). The primary limitation to multi-sample analyses is compute 
resource availability – particularly RAM and scratch-disk space. Metapipeline-DNA 
automatically handles input types for each mode and only executes feasible pipelines, 
independent of user-selections. For example, in 0T modes, variant detection is restricted to 
germline variants without users having to provide manual guidance or parameterization. 

The default mode of metapipeline-DNA accepts unaligned reads in FASTQ18 format and 
executes all pipelines. A range of alternative entry-points are possible, including starting 
from an unaligned BAM, an aligned BAM19 or from CRAM files, with automatic BAM-to-
FASTQ conversions as needed. A few pipelines accept alternative entry-points, such as 
SNV and copy number aberration (CNA) calls for tumour subclonal reconstruction20 
(Figure 1A). Documentation of all dependencies, input and output formats is available on 
standardized structured GitHub pages: current states at writing are summarized in 
Supplementary Table 1. 

We engineered metapipeline-DNA to be intrinsically flexible with all necessary 
dependencies automatically identified and executed based on user selection. All run-
modes and dependency identification have defaults set to the most common behaviour 
across thousands of runs, but with easy parameterization. For example, when input data is 
already aligned the default is to use these alignments. Configuration parameters allow the 
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user to control whether reads are converted to FASTQ and re-aligned and whether aligned 
reads are recalibrated and so forth. 

In a similar way, metapipeline-DNA is flexible to the specific genome build used, and has 
been tested extensively with GRCh37, GRCh38 and GRCm39. It can run in two modes: 
WGS mode and targeted-sequencing mode, based on user parameterization. Targeted-
sequencing mode supports all subsets of the genome, including exome sequencing and 
arbitrary panels. Options are available to assess coverage, expand targets with off-target 
coverage sites and automatically use expanded target intervals for downstream processing 
(Figure 1F). 

Pipeline Input Formats Output Artefacts Algorithms Features 

Convert-
BAM2FASTQ 

BAM/CRAM FASTQ SAMtools Automatic detection of and 
conversion from CRAM to BAM 
before reversion to FASTQ in 
the event of CRAM input 

Support for both BAM and 
CRAM inputs 

Align-DNA FASTQ BAM BWA-MEM2 

HISAT2 

Duplicate marking 

Calculate-
targeted-
coverage 

BAM 

Target region 
BED 

Expanded regions 

Per-base depth in 
target regions and 
dbSNP sites  

Hybrid-selection 
metrics 

SAMtools 

BEDtools 

Automatic expansion of regions 
to off-target dbSNP loci with 
coverage 

Recalibrate-BAM BAM 

Target regions 

INDEL realigned 
and base-quality 
score recalibrated 
BAM 

GATK Support for target regions 

Local INDEL realignment 

Base-quality score recalibration 

Generate-SQC-
BAM 

BAM BAM statistics 

Coverage metrics 

SAMtools 

Picard 

Qualimap 

Customizable selection of QC 

Coverage reporting and 
visualization 

Call-gSNP BAM 

Target regions 

Per-sample GVCF 

Germline SNP VCF 

GATK Variant quality score 
recalibration 

Ambiguous variant filtration 

Call-mtSNV BAM/CRAM Mitochondrial SNV 
VCF 

MToolBox 

mitoCaller 

Mitochondrial read extraction 
support for BAM and CRAM 

Heteroplasmy calling 

Call-gSV BAM Germline SV VCF 

Germline SV BCF 

DELLY 

Manta 

Germline CNV calling 

Variant call QC 

Call-sSV BAM Somatic SV VCF 

Somatic SV BCF 

DELLY 

Manta 

Germline SV filtration 

Call-sSNV BAM 

Somatic SNV 
calls 

Panel of normal 

Somatic SNV VCFs Mutect2 

Strelka2 

SomaticSniper 

MuSE 

BCFtools-
Intersect 

Support for panel of normals 

Tumour-only mode 

Multi-tumour mode 

Consensus callset and 
visualization 

Variant allele frequency 
distribution by callset 

Call-sCNA BAM Somatic CNA VCF 
or TSV 

Battenberg 

FACETS 

Standardized visualization 

Option for customizing 
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Battenberg refit suggestions 

Call-SRC SNV calls 

CNA calls 

SNV clustering 

Reconstructed 
phylogeny 

PyClone 

PyClone-VI 

PhyloWGS 

DPClust 

FastClone 

CliP 

CONIPHER 

Customizable combinations of 
clustering algorithm and 
phylogeny algorithm 

Standardized clustering and 
phylogeny formats 

StableLift Variant calls 
(gSNP, sSNV, 
sSV, gSV) 

Lifted variant calls 
in target reference 
genome 

StableLift Customizable direction of 
liftover 

Customizable selection of 
model for stability prediction 

Call-
GeneticAncestry 

Germline variant 
calls 

Called genetic 
ancestry 

ADMIXTURE 

PLINK2 

Support for VCF and PLINK 
inputs 

Annotate-VCF Variant calls Annotated variant 
calls 

SnpEff 

Funcotator 

VEP 

Support for variant 
normalization 

Customizable selection of 
annotation databases 

Calculate-
mtDNA-
CopyNumber 

Sample 
coverage 

Mitochondrial copy 
number calculated 
based on coverage 

 Support for extensible range of 
coverage sources 

Table 1: metapipeline-DNA Constituent Pipelines. Pipelines encompassed within metapipeline-DNA and their inputs, 
outputs, algorithms, and key features. Inputs that are italicized are optional and inputs separated by “/” represent a list of 
choices from which one must be chosen. 

Data Visualization & Quality-Control 
metapipeline-DNA includes a range of quality control steps and pipelines to assess data 
quality at many levels, including reads, alignments and variant calls. The pipeline for back-
conversion from BAM/CRAM to FASTQ includes built-in checks, including SAM flag and 
alignment statistics generation and read count comparison before and after conversion to 
FASTQ (to ensure no loss of reads due to file corruption or parallelization scatter-gather 
failures, for example). These quality-controls produce a variety of data-visualizations and 
reports. For example, alignment quality is inferred from BAM (or CRAM) files in a range of 
ways including coverage distributions over the genome (or target region with or without 
padding; Figure 2A-B). Reads are quantified by a range of quality metrics, including total 
counts, mapping qualities, GC content, insert sizes, read lengths, duplications and others. 
Figure 2C shows an example of read number stratified by a range of quality groupings. A 
range of software are used to generate these metrics, including SAMtools19, Picard21 and 
Qualimap22. Pileup summaries at common sites are generated and used as a precursor to 
estimate contamination across samples. Visualization is also built into the SV calling 
pipelines to produce representations of structural variants and their categorization 
(inversion, insertion, breakend/translocation) in circos plots (Figure 2D). 

In targeted-sequencing mode, additional coverage assessment is performed through per-
base read depth calculations at target regions and well-characterized off-target 
polymorphic sites provided from dbSNP23. The workflow also generates an expanded set 
of targets encompassing the original target regions plus user-defined polymorphic sites 
(typically dbSNP) enriched in coverage over a user-defined threshold. Metapipeline-DNA 
provides with configuration to automatically use the expanded targets with BAM 
recalibration and variant calling pipelines. 
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Figure 2: Alignment and coverage metrics. A. Percent of bases in the genome at each fold of coverage for normal an
tumour samples (each line represents one sample) for all five WGS PCAWG patients. Each line represents a differe
sample, with the percentage of bases calculated using the coverage metrics. B. Distribution of mean and media
coverage across all samples, highlighting two rough separations arising from the normal samples and tumour sample

 and 
rent 
dian 
ples 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 25, 2025. ; https://doi.org/10.1101/2024.09.04.611267doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.04.611267
http://creativecommons.org/licenses/by-nc/4.0/


  Patel et al.
 

 Page 9 of 19 
 

with the normal samples being in the lower coverage separation. C. Distributions of read numbers across alignment 
metrics including mapped/unmapped, low mapping quality, duplication and paired. D. Circos plot of somatic structural 
variants categorized into inversions, insertions and breakend/translocations. 

Variants are additionally evaluated for stability across reference genomes: StableLift24 is 
available as an optional workflow to support liftover of sSVs, gSVs, sSNVs and gSNPs 
between GRCh37 and GRCh38. In addition to liftover, the pipeline annotates variants with 
databases such as dbSNP23 and applies a model to assign a stability score to each variant 
to indicate the likelihood of the variant being consistently represented across the two 
reference genome builds. Variant type-specific assessment is also performed. For 
example, germline SNP calls undergo filtration using models built from variant quality 
scores for both SNPs and Indels. Somatic SNVs are assessed based on consensus 
between callers and associated variant allele frequencies. The consensus approach 
across callers allows for filtering of SNV calls to reduce the rate of false positives made by 
a single caller. 

Germline SNP calls undergo genetic sex-specific evaluations to reduce the rate of false 
positives. Variants on chromosomes X and Y in non-pseudo-autosomal regions25–27 
(PARs) are extracted and filtered based on the genetic sex. In XY samples, heterozygous 
genotype calls are removed and homozygous genotype calls are converted to 
hemizygous. In XX samples, all chromosome Y variant calls are removed. This reduces 
the false positive rate of variant calls made on the sex chromosomes. 

Software-Engineering & Pipeline Robustness 
We placed a heavy focus on generating re-usable and extensible software that could 
automatically detect and recover from common errors, particularly in the compute 
environment. This led us to adopt or create a series of development practices and pipeline 
features aimed at maximizing quality. All software is open-source, available on GitHub 
(https://github.com/uclahs-cds/metapipeline-DNA), with transparent tracking of issues and 
discussions. Development followed a test-driven approach using NFTest14. Metapipeline-
DNA has a suite of 95 unit, integration and regression tests that are run for each new 
release with testing performed for different stages of execution from end-to-end tests to 
individual pipeline tests. The tests utilize publicly available simulated sequencing data from 
the ICGC-TCGA DREAM Somatic Mutation Calling Tumour Heterogeneity (SMC-Het) 
Challenge28 sub-sampled at various sequencing depths to facilitate different tests. Our 
extensive use of Docker containers allows seamless co-existence of multiple pipeline 
versions, and the combination of automated testing and containerization facilitates rapid 
updating with new features or dependency versions. Standardized GitHub issue templates 
support robust reporting of both bugs and new feature-requests, allowing ideal 
collaboration (Supplementary Figure 1). At writing, development has involved 43 
contributors making 1,382 pull-requests and 46 individuals making 1,117 suggestions, 
feature-requests and issue-reports across 17 repositories. 

Bioinformatics data has high intrinsic variability, and bioinformatics software can be prone 
to significant numbers of failures – particularly in heterogeneous computing environments. 
Failure handling is built into metapipeline-DNA to predict and minimize wasted 
computation. We automated input and parameter validation to catch issues prior to 
commitment of compute resources29. Proactive validation of pipeline parameters is 
implemented to avoid errors prior to resource commitment. Individual pipelines are 
modularized and fault-tolerant such that errors or failures in one pipeline stay isolated from 
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and do not terminate other pipelines that are not direct dependencies. metapipeline-DNA 
can be easily re-run in cases of failure, triggered starting from prior partial results with a 
simple parameterization. 

All outputs are organized with standardized directory and naming structures 
(Supplementary Figure 2). Filenames have been standardized to provide dataset, 
organism and sample information in a consistent way across pipelines. metapipeline-DNA 
similarly organizes log-files to ensure saving of and ready access to the metapipeline-DNA 
logs, individual pipeline-level logs and compute partition logs. These logs capture 
execution and resource usage metrics for every process. Robust tooling has been 
developed around process and pipeline execution to ensure logs are captured for both 
successful and failing steps to enable debugging and record-keeping. Scripts have been 
created that automatically “crawl” over a series of pipeline runs to extract and tabulate 
information about run success, compute resources and other features. 

Compute Infrastructure 
metapipeline-DNA includes compute-agnostic customizability of execution and scheduling 
in distributed workflows. It has been tested and validated on both the Azure and AWS 
clouds. Execution follows the pattern of a single leading job responsible for submission 
and monitoring of per-sample or per-patient analysis jobs. Execution is currently performed 
with the Slurm executor with optional specification of compute partitions30. Parameters 
also exist to control rate of job submission and amount of parallelization/resources usage. 
Once configured and submitted, metapipeline-DNA automatically handles processing of an 
entire cohort with input parsing and job submission without user intervention. Real-time 
monitoring is available through email notifications sent from a server watching individual 
step start, end and status. The choice of executor itself is parameterized and can be easily 
extended to other environments. 

metapipeline-DNA includes optimizations for disk usage, including (optional) eager 
intermediate file removal and built in checks to allow for optimized disk usage (performing 
I/O operations from high-performance working disks). Resource allocation for individual 
steps is also automatically handled, with pipelines running in parallel as available 
resources allows. Resource-related robustness is also built into pipelines to detect memory 
allocation failures from individual tools and automatically retry processes with higher 
allocations. 

Case Studies 
We assessed the performance of germline SNP XY filtration using the Genome in a Bottle 
(GIAB) HG002 sample31. Variant calls generated by pipeline-call-gSNP were assessed 
through comparison with the GIAB HG002 XY small variant benchmark v1.0 as the truth 
set31. Both raw variant calls and XY filtered variant calls were compared to demonstrate a 
decrease in false positive (FP) variant calls from 1,347 INDELs (FDR = 0.054) to 221 
INDELs (FDR = 0.009) and 7,563 SNPs (FDR = 0.083) to 1,290 SNPs (FDR = 0.015). The 
true positive (TP) and false negative (FN) rates remain consistent through filtration, 
demonstrating the effectiveness of XY filtration in improving precision without adversely 
affecting sensitivity. Figure 3A shows these results, highlighting elimination of 1,126 false-
positive INDEL calls and 6,273 false-positive SNP calls in a single sample from this 
procedure. 
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As an additional demonstration and benchmark, ten normal-tumour pairs were processed 
through the entirety of metapipeline-DNA. Five pairs were selected from the Pan-Cancer 
Analysis of Whole Genomes (PCAWG)32 63 dataset and another five from The Cancer 
Genome Atlas (TCGA)33. The PCAWG-63 samples were sequenced with whole-genome 
sequencing and derived from multiple cancer types: one from uterine corpus endometrial 
carcinoma, one from biliary tract carcinoma, and three from esophageal adenocarcinoma. 
The samples had a median coverage of 63x (range: 45-65x) for the tumour samples and 
38x (range: 34-54x) for the normal samples. The TCGA samples were derived from soft 
tissue sarcoma samples sequenced with exome-targeted sequencing. Both pairs were 
processed using metapipeline-DNA from alignment to subclonal reconstruction. The 
PCAWG-63 samples were processed with both GRCh38 and GRCh37, with similar 
runtimes across the two reference builds at an average of 81.76 hours (95% CI: ± 14.23) 
for GRCh38 and 83.36 hours (95% CI: ± 12.99) for GRCh37. Across the ten pairs, memory 
usage peaked in call-sSNV (average ± 95% CI: 48.54GB ± 2.30 and 29.32GB ± 3.82 for 
PCAWG63 GRCh37 and TCGA GRCh38 respectively) and in align-DNA (average ± 95% 
CI: 51.42 ± 5.07 for PCAWG63 GRCh38). Runtimes and peak memory usage of 
metapipeline-DNA for these samples are visualized in Figure 3B and summarized in 
Supplementary Table 2. Both run-times and memory usage are a function of compute 
hardware and parameter selection and can be extensively tuned and optimized. 

We assessed our consensus-based sSNV calling workflow and its consensus callset using 
the PCAWG samples with targeted deep-sequencing (mean coverage of 653x) validation 
as a truth set. The true positive rate (TPR) for the samples ranged from 0.87 to 0.93 with 
false discovery rate (FDR) ranging from 0.05 to 0.11 (Figure 3C). To demonstrate 
phylogenetic reconstruction, we subsampled 5,000 SNVs and used CNA calls (average 
138 per sample; Figure 3D). Variant allele frequencies aggregated over all combinations 
of consensus calls are shown for all samples in Supplementary Figure 3. 
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Figure 3: Use-cases and benchmarking. A. TP, FN and FP variant calls comparing raw SNP and INDEL calls with X
filtered variant calls against the GIAB HG002 truth set. Numbers represent the number of variant calls with reduction 
false discovery rate with filtration highlighted in red. B. Time and memory usage of pipelines per sample for the thre
different processing cohorts: PCAWG with GRCh38, PCAWG with GRCh37 and TCGA with GRCh38. Time is measure
as wall-clock time taken by each pipeline and the total time taken by metapipeline-DNA. Memory is measured as th
peak RAM usage by any single process by any pipeline. C. TP, FN and FP variant calls comparing consensus call-SN
calls from the PCAWG-5 samples against a set of validation variant calls made from targeted deep-sequencing of th
same samples. Numbers represent the number of variant calls. D. Reconstructed phylogeny of tumour sample
SA478344, SA528788 and SA528876 using consensus SNV callset comprising variants called by at least two out of fo
SNV callers (MuSE2, SomaticSniper, Strelka2, Mutect2) and FACETS CNAs. Nodes represent identified subclones wi
the evolutionary history depicted over SNV accumulation. Along the x-axis is the cellular prevalence (CP), indicating th
fraction of all cells comprising each subclone.  
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Discussion 
metapipeline-DNA was designed to facilitate analysis of DNA sequencing data at scale 
while retaining the configurability and flexibility needed in academic environments. This is 
a key contrast to field programmable gate array (FPGA) approaches such as DRAGEN34, 
which attain outstanding speed through hardware optimization at the expense of 
algorithmic flexibility and evolution. As the field of genomics evolves, the ability to quickly 
integrate and test emerging methods continues to be extremely important, highlighting a 
limitation of fixed-function hardware solutions. 

metapipeline-DNA fills this key niche of supporting the rapidly expanding volume of 
sequencing data, supporting a range of existing tools and algorithms and remaining 
flexible for ongoing expansion. By easing and optimizing the multi-step analyses intrinsic to 
DNA sequencing data, it reduces the barrier to incorporating new methods and analyzing 
large datasets. Indeed, it is entirely feasible for metapipeline-DNA to leverage and 
incorporate FPGA-enabled and graphics processing units (GPU)-accelerated methods 
directly as part of its modular structure (e.g. for alignment); this is a key area of ongoing 
development. 

Individual pipelines within metapipeline-DNA are modular, creating a plug-and-play 
architecture that can be adapted to support additional technologies as they become 
available. Algorithms and workflows for processing long-read data, for example, pose an 
avenue for expanding the meta-pipeline as such tools mature and long-read datasets 
become more common. The context of DNA also brings up the possibility of similar meta-
pipelines for other biological molecules such as RNA and proteins. Workflows across 
different biomolecules can share the architecture, automation and quality-control of 
metapipeline-DNA in a way that allows improvements to any single pipeline to improve the 
others. Such workflows are currently under development to provide a similar level of 
configurability and extensibility for analyses of RNA and protein data. 

The volume of data and size of individual samples being generated and processed in 
sequencing studies is often very large. With that comes a need for optimization of analysis 
pipelines’ data handling. Metapipeline-DNA contains several disk usage optimizations to 
efficiently handle large amounts of data while minimizing I/O operations and cross-file 
system data movement. The framework connecting analyses automatically identifies 
necessary outputs from dependent pipelines and makes it available without any redundant 
copying or duplication. There are additional enhancements that are underway to minimize 
duplicated data and disk usage of metapipeline-DNA by building plugins to enable moving 
of files rather than copying when possible and optimizing individual pipelines to avoid 
shuffling around large output files. 

metapipeline-DNA is a highly customizable DNA sequencing analysis pipeline combining 
speed and flexibility in a modular framework to enable processing of data at any point from 
read alignment to tumour subclonal reconstruction. By facilitating the integration of diverse 
tools and supporting the rapid development of new methodologies, it positions itself as a 
versatile platform for future enhancements as novel DNA sequencing and analysis 
methods are developed. 
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Methods 
Analysis Cohort 

To demonstrate the use of metapipeline-DNA, we chose ten normal-tumour pairs. Five 
were WGS pairs from PCAWG-63: one from uterine corpus endometrial carcinoma donor 
DO43506, one from biliary tract carcinoma donor DO218695 and three from esophageal 
adenocarcinoma donors DO50342, DO50407 and DO50311. Five were exome sequencing 
pairs of soft tissue sarcoma pairs from TCGA donors TCGA-QQ-A8VD, TCGA-X6-A8C6, 
TCGA-HS-A5N8, TCGA-DX-A1L2 and TCGA-HB-A2OT32,33. 

Alignment and Variant Calling 

Sequencing reads were aligned to the GRCh38.p7 reference build including decoy contigs 
from GATK using BWA-MEM235 (v2.2.1) in paired-end mode followed by duplicate marking 
with MarkDuplicatesSpark using GATK36 (v4.2.4.1). For the GRCh37 runtime 
benchmarking, alignment was performed to the GRCh37 reference build including decoy 
contigs. The results alignments were recalibrated through Indel realignment using GATK 
(v3.7.0) and base-quality score recalibration using GATK (v4.2.4.1). Quality metrics were 
generated using SAMtools19 (v1.18) stats and Picard21 (v3.1.0) CollectWgsMetrics. 
Germline SNPs were called using HaplotypeCaller from GATK (v4.2.4.1) followed by 
variant recalibration using GATK (v4.2.4.1). Germline SNPs underwent XY filtration using 
Hail37 (v0.2.113) with benchmarking assessment performed using Hap.py38 (v0.3.15). 
Genetic ancestry was called using germline SNPs and INDELs as inputs using 
ADMIXTURE39 (v1.3.0) and PLINK40,41 (2.00a4.5lm). Germline SVs were called using 
Delly242 (v1.2.6) and Manta43 (v1.6.0). Mitochondrial SNVs were called using mitoCaller3 
(v1.0.0). Somatic SNVs were called using MuSE244 (v2.0.4), SomaticSniper45 (v1.0.5.0), 
Strelka246 (v2.9.10) and Mutect236 (v4.5.0.0) followed by a consensus workflow to identify 
variants called by two or more callers using BCFtools47 (v1.17) with quality control plots 
generated with BPG48 (v7.1.0) and VennDiagram49 (v1.7.4). Somatic SVs were called 
using Delly242 (v1.2.6) and Manta43 (v1.6.0) and visualized with circlize50 (v0.4.16). 
Somatic CNAs were called using CNV_FACETS51 (v0.16.0) for the PCAWG sample and 
using Battenberg52 (v2.2.9) for the TCGA sample with visualization generated using BPG48 
(v7.1.0). Taking the consensus set of somatic SNV calls and the CNA calls, subclonal 
reconstruction was performed using PyClone-VI53 (v0.1.2), PhyloWGS54 (v2205be1) and 
FastClone55 (v1.0.9). Variant liftover was performed using BCFtools47 (v1.20) and stability 
prediction using StableLift24 (v1.0.0). Variant annotation was done using SnpEff56 (v5.1d), 
Funcotator36 (v4.2.4.1) and VEP57 (v101.0) and ClinVar58 (v20211016). Reconstructed 
phylogeny was visualized using CEV59 (v2.0.0). Data validation was performed with 
PipeVal29 (v5.1.0) and data processing was done using Nextflow13 (v23.04.2). 

  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 25, 2025. ; https://doi.org/10.1101/2024.09.04.611267doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.04.611267
http://creativecommons.org/licenses/by-nc/4.0/


  Patel et al.
 

 Page 15 of 19 
 

Acknowledgements 
The authors gratefully acknowledge the ongoing support of all present and past members 
of the Boutros lab in providing suggestions, practical use-cases and support. The authors 
also acknowledge the Office of Health Informatics and Analytics at UCLA Health IT for 
their infrastructure support, particularly high-performance compute provisioning, data 
management and resource tuning. 

Conflict of Interest Statement 
PCB sits on the Scientific Advisory Boards of Intersect Diagnostics Inc., BioSymetrics Inc. 
and previously sat on that of Sage Bionetworks. All other authors have no conflicts of 
interest to declare. 

Funding Sources 
This study was conducted with the support of the National Institutes of Health through 
awards R01CA268380, P30CA016042, R01CA244729, R01CA270108, U2CCA271894, 
U24CA248265 and U54HG012517, and of the Department of Defense through awards 
W81XWH2210247 and W81XWH2210751. NKW, HKW, JO, RA and CZ were supported 
by the Jonsson Comprehensive Cancer Center Fellowship. AEG was supported by the 
Howard Hughes Medical Institute Gilliam Fellowship. NZ was supported by the National 
Institute of Health through awards T32HG002536 and F31CA281168. LYL was supported 
by the Canadian Institutes of Health Research Vanier Fellowship and the Ontario Graduate 
Scholarship. SW was supported by the UCLA Tumor Cell Biology Training Program 
through the USHHS Ruth L. Kirschstein Institutional National Research Service Award 
T32CA009056. BN was supported by the National Library of Medicine T15LM013976 
Training Grant and ASCO Young Investigator Award. BLT was supported by the UCLA 
Cancer Center Support Grant (P30CA016042) and the National Institutes of Health 
through awards U2CCA271894, U24CA248265, R01CA272678. RH was supported by 
EMBO Postdoctoral Fellowship ALTF 1131-2021 and the Prostate Cancer Foundation 
Young Investigator Award 22YOUN32. RA was supported by awards T32GM008042 and 
T32GM152342. 

  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 25, 2025. ; https://doi.org/10.1101/2024.09.04.611267doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.04.611267
http://creativecommons.org/licenses/by-nc/4.0/


  Patel et al.
 

 Page 16 of 19 
 

  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 25, 2025. ; https://doi.org/10.1101/2024.09.04.611267doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.04.611267
http://creativecommons.org/licenses/by-nc/4.0/


  Patel et al.
 

 Page 17 of 19 
 

References 
1. Shendure, J. et al. DNA sequencing at 40: past, present and future. Nature 550, 345–

353 (2017). 
2. Logsdon, G. A., Vollger, M. R. & Eichler, E. E. Long-read human genome sequencing 

and its applications. Nature Reviews Genetics 21, 597–614 (2020). 
3. Ding, J. et al. Assessing mitochondrial DNA variation and copy number in lymphocytes 

of 2,000 Sardinians using tailored sequencing analysis tools. PLOS Genetics 11, 
(2015). 

4. Zhang, Y. et al. Association of Mitochondrial DNA Copy Number With Brain MRI 
Markers and Cognitive Function: A Meta-analysis of Community-Based Cohorts. 
Neurology 100, 1930–1943 (2023). 

5. Gauthier, J., Vincent, A. T., Charette, S. J. & Derome, N. A brief history of 
bioinformatics. Briefings in Bioinformatics 20, 1981–1996 (2019). 

6. Puttick, C. et al. MHC Hammer reveals genetic and non-genetic HLA disruption in 
cancer evolution. Nature Genetics 56, 2121–2131 (2024). 

7. Chakravarty, D. & Solit, D. B. Clinical cancer genomic profiling. Nature Reviews 
Genetics 22, 483–501 (2021). 

8. Sosinsky, A. et al. Insights for precision oncology from the integration of genomic and 
clinical data of 13,880 tumors from the 100,000 Genomes Cancer Programme. Nature 
Medicine 30, 279–289 (2024). 

9. Cremin, C. J., Dash, S. & Huang, X. Big data: Historic advances and emerging trends 
in biomedical research. Current Research in Biotechnology 4, 138–151 (2022). 

10. The Galaxy Community. The Galaxy platform for accessible, reproducible and 
collaborative biomedical analyses: 2022 update. Nucleic Acids Research 50, 354–351 
(2022). 

11. Köster, J. & Rahmann, S. Snakemake – A scalable bioinformatics workflow engine. 
Bioinformatics 28, 2520–2522 (2012). 

12. Crusoe, M. R. et al. Methods Included: Standardizing Computational Reuse and 
Portability with the Common Workflow Language. Communications of the ACM 65, 54–
63 (2022). 

13. Di Tommaso, P. et al. Nextflow enables reproducible computational workflows. Nature 
Biotechnology 35, 316–319 (2017). 

14. Patel, Y. et al. NFTest: automated testing of Nextflow pipelines. Bioinformatics 40, 
(2024). 

15. Dash, S., Shakyawar, S. K., Sharma, M. & Kaushik, S. Big data in healthcare: 
management, analysis and future prospects. Journal of Big Data 6, 54 (2019). 

16. Ellrott, K. et al. Reproducible biomedical benchmarking in the cloud: lessons from 
crowd-sourced data challenges. Genome Biology 20, (2019). 

17. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and 
stewardship. Scientific Data 3, 160018 (2016). 

18. Cock, P. J. A., Fields, C. J., Goto, N., Heuer, M. L. & Rice, P. M. The Sanger FASTQ 
file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. 
Nucleic Acids Research 36, 1767–1771 (2009). 

19. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 
2078–2079 (2009). 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 25, 2025. ; https://doi.org/10.1101/2024.09.04.611267doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.04.611267
http://creativecommons.org/licenses/by-nc/4.0/


  Patel et al.
 

 Page 18 of 19 
 

20. Salcedo, A. et al. Crowd-sourced benchmarking of single-sample tumor subclonal 
reconstruction. Nature Biotechnology (2024). 

21. Broad Institute. Picard Toolkit. (Broad Institute, GitHub repository, 2019). 
22. Okonechnikov, K., Conesa, A. & García-Alcalde, F. Qualimap 2: advanced multi-

sample quality control for high-throughput sequencing data. Bioinformatics 32, 292–
294 (2016). 

23. Sherry, S. T., Ward, M. & Sirotkin, K. dbSNP – Database for Single Nucleotide 
Polymorphisms and Other Classed of Minor Genetic Variation. Genome Res 9, 677–
679 (1999). 

24. Wang, N. K. et al. StableLift: Optimized Germline and Somatic Variant Detection 
Across Genome Builds. Preprint at https://doi.org/10.1101/2024.10.31.621401 (2024). 

25. Flaquer, A., Rappold, G. A., Wienker, T. F. & Fischer, C. The human pseudoautosomal 
regions: a review for genetic epidemiologists. Eur J Hum Genet 16, 771–779 (2008). 

26. Freije, D., Helms, C., Watson, M. S. & Donis-Keller, H. Identification of a second 
pseudoautosomal region near the Xq and Yq telomeres. Science 258, 1784–1787 
(1992). 

27. Veerappa, A. M., Padakannaya, P. & Ramachandra, N. B. Copy number variation-
based polymorphism in a new pseudoautosomal region 3 (PAR3) of a human X-
chromosome-transposed region (XTR) in the Y chromosome. Funct Integr Genomics 
13, 285–293 (2013). 

28. Salcedo, A. et al. A community effort to create standards for evaluating tumor 
subclonal reconstruction. Nat Biotechnol 38, 97–107 (2020). 

29. Patel, Y. et al. PipeVal: light-weight extensible tool for file validation. Bioinformatics 40, 
(2024). 

30. Yoo, A. B., Jette, M. A. & Grondona, M. SLURM: Simple Linux Utility for Resource 
Management. in Lecture Notes in Computer Science 2862 (2003). 

31. Wagner, J. et al. Small variant benchmark from a complete assembly of X and Y 
chromosomes. Nat Commun 16, 497 (2025). 

32. The Cancer Genome Atlas Research Network. Comprehensive and Integrated 
Genomic Characterization of Adult Soft Tissue Sarcomas. Cell 171, 950–965 (2017). 

33. The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer 
analysis of whole genomes. Nature 578, 82–93 (2020). 

34. Behera, S. et al. Comprehensive genome analysis and variant detection at scale using 
DRAGEN. Nature Biotechnology (2024). 

35. Vasimuddin, M., Misra, S., Li, H. & Aluru, S. Efficient Architecture-Aware Acceleration 
of BWA-MEM for Multicore Systems. IEEE Parallel and Distributed Processing 
Symposium (2019). 

36. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for 
analyzing next-generation DNA sequencing data. Genome Res 20, 1297–303 (2010). 

37. Hail Team. Hail 0.2.133-4c60fddb171a. 
38. Illumina. Illumina hap.py. 
39. Alexander, D. H. & Lange, K. Enhancements to the ADMIXTURE algorithm for 

individual ancestry estimation. BMC Bioinformatics 12, 246 (2011). 
40. Shaun Purcell. PLINK. 
41. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based 

linkage analyses. Am J Hum Genet 81, 559–575 (2007). 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 25, 2025. ; https://doi.org/10.1101/2024.09.04.611267doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.04.611267
http://creativecommons.org/licenses/by-nc/4.0/


  Patel et al.
 

 Page 19 of 19 
 

42. Rausch, T. et al. DELLY: structural variant discovery by integrated paired-end and 
split-end analysis. Bioinformatics 28, 333–339 (2012). 

43. Chen, X. et al. Manta: rapid detection of structural variants and indels for germline and 
cancer sequencing applications. Bioinformatics 32, 1220–1222 (2016). 

44. Ji, S., Montierth, M. D. & Wang, W. MuSE: A Novel Approach to Mutation Calling with 
Sample-Specific Error Modeling. Methods Mol Biol 2493, 21–27 (2022). 

45. Larson, D. E. et al. SomaticSniper: identification of somatic point mutations in whole 
genome sequencing data. Bioinformatics 28, 311–317 (2012). 

46. Kim, S. et al. Strelka2: fast and accurate calling of germline and somatic variants. 
Nature Methods 15, 591–594 (2018). 

47. Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, (2021). 
48. P’ng, C. et al. BPG: Seamless, automated and interactive visualization of scientific 

data. BMC Bioinformatics 20, (2019). 
49. Chen, H. & Boutros, P. C. VennDiagram: a package for the generation of highly-

customizable Venn and Euler diagrams in R. BMC Bioinformatics 12, (2011). 
50. Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize Implements and enhances 

circular visualization in R. Bioinformatics 30, 2811–2812 (2014). 
51. Shen, R. & Seshan, V. E. FACETS: allele-specific copy number and clonal 

heterogeneity analysis tool for high-throughput DNA sequencing. Nucleic Acids 
Research 44, (2016). 

52. Nik-Zainal, S. et al. The life history of 21 breast cancers. Cell 149, 994–1007 (2012). 
53. Gillis, S. & Roth, A. PyClone-VI: scalable inference of clonal population structures 

using whole genome data. BMC Bioinformatics 21, (2020). 
54. Deshwar, A. G. et al. PhyloWGS: Reconstructing subclonal composition and evolution 

from whole-genome sequencing of tumors. Genome Biology 16, (2015). 
55. Xiao, Y. et al. FastClone is a probabilistic tool for deconvoluting tumor heterogeneity in 

bulk-sequencing samples. Nature Communications 11, (2020). 
56. Cingolani, P. et al. A program for annotating and predicting the effects of single 

nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster 
strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012). 

57. McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol 17, 122 (2016). 
58. Landrum, M. J. et al. ClinVar: public archive of relationships among sequence variation 

and human phenotype. Nucleic Acids Res 42, D980-985 (2014). 
59. Winata, H. K., Knight, D., Salcedo, A., Wu, S. & Boutros, P. C. CEV: Visualization of 

Cancer Evolution. (2024). 
 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 25, 2025. ; https://doi.org/10.1101/2024.09.04.611267doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.04.611267
http://creativecommons.org/licenses/by-nc/4.0/

