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Abstract 31 

Extrachromosomal DNA (ecDNA) drives oncogene amplification and intratumoral heterogeneity 32 

in aggressive cancers. While transposable element (TE) reactivation is common in cancer, its role 33 

on ecDNA remains unexplored. Here, we map the 3D architecture of MYC-amplified ecDNA in 34 

colorectal cancer cells and identify 68 ecDNA-interacting elements (EIEs)—genomic loci 35 

enriched for TEs that are frequently integrated onto ecDNA. We focus on an L1M4a1#LINE/L1 36 

fragment co-amplified with MYC, which functions only in the ecDNA amplified context. Using 37 

CRISPR-CATCH, CRISPR interference, and reporter assays, we confirm its presence on ecDNA, 38 

enhancer activity, and essentiality for cancer cell fitness. These findings reveal that repetitive 39 

elements can be reactivated and co-opted as functional rather than inactive sequences on ecDNA, 40 

potentially driving oncogene expression and tumor evolution. Our study uncovers a mechanism 41 

by which ecDNA harnesses repetitive elements to shape cancer phenotypes, with implications for 42 

diagnosis and therapy. 43 

 44 

  45 

Introduction 46 

Extrachromosomal DNA (ecDNA) is a prevalent form of oncogene amplification 47 

present in approximately 15% of cancers at diagnosis.1–5 EcDNAs are megabase-scale, circular 48 

DNA elements lacking centromeric and telomeric sequences and found as distinct foci apart from 49 

chromosomal DNA.6 Recent work has underscored the importance of ecDNA in tumor initiation 50 

and various aspects of tumor progression, such as accelerating intratumoral heterogeneity, 51 

genomic dysregulation, and therapeutic resistance.7–11 The biogenesis of ecDNA is complex and 52 

tied to mechanisms that induce genomic instability, such as chromothripsis and breakage-fusion-53 

bridge cycles, which are prevalent in tumor cells.6,12–17 54 

A key aspect of ecDNA function is their ability to hijack cis-regulatory elements that 55 

increase oncogene expression beyond the constraints imposed by endogenous chromosomal 56 

architecture.18–23 Consequently, their nuclear organization is tightly tied to their ability to amplify 57 

gene expression.18,20 Likewise, repetitive genomic elements provide a vast network of cryptic 58 

promoters or enhancers capable of re-wiring gene regulatory networks for proto-oncogene 59 

expression–including long-range gene regulation.24–26 By investigating the 3-dimensional 60 

organization of ecDNA, we identified an enrichment of repetitive elements associated with ecDNA 61 
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structural variation, which we classify as ecDNA-interacting elements (EIEs). We found that 62 

insertion of a particular EIE containing a fragment of an ancient L1M4a1 LINE within ecDNA 63 

leads to expression of said element that is critical for cancer cell fitness. Our data reveal a 64 

relationship between the presence of specific repetitive elements and aberrant expression of 65 

oncogenes on ecDNA. 66 

 67 

Results 68 

ecDNA structural variants enriched for repetitive element insertions 69 

To interrogate the conformational state of ecDNA, we performed Hi-C on COLO320DM 70 

colorectal cancer cells (Fig. 1A). Previous investigation of COLO320DM utilizing DNA 71 

fluorescent in situ hybridization (FISH) and whole-genome sequencing (WGS) identified a highly-72 

rearranged (up to 4.3 MB) ecDNA amplification containing several genes including the oncogene 73 

MYC and the long non-coding RNA PVT1.18,20 As a large fraction of the ecDNA in COLO320DM 74 

is derived from chromosome 8, with smaller contributions from chromosomes 6, 16, and 13, we 75 

elected to focus on the chromosome 8 amplified locus containing MYC and PVT1.20 76 

Analysis of the Hi-C maps identified 68 interactions between the chromosome 8 77 

amplified ecDNA locus and other chromosomes that displayed a striking pattern (Fig. 1B; 78 

Supplementary Table T1). By binning the data at 1kb resolution, we found that linear elements 79 

in the genome contacted the entirety of the megabase-scale ecDNA amplification in a distinctive 80 

stripe (Fig. 1B-C). These contacts were spread across all chromosomes in the genome 81 

(Supplementary Table T1). This atypical interaction pattern suggested a complex structural 82 

relationship between the chromosome 8 amplified ecDNA and the endogenous chromosome 83 

regions (Fig. 1B-C). Further inspection revealed these genomic interactions were enriched for 84 

transposable elements annotated as LINEs, SINEs, and LTRs (Fig. 1D; Extended Data Fig. 1A, 85 

Supplementary Table T2 and T3).  As these retrotransposons can acquire the ability to regulate 86 

transcription when active, we reasoned that the spatial relationship with oncogenes like MYC may 87 

be important for enhanced expression in COLO320DM cells.27,28 We hereafter referred to these 88 

1kb interactions, often containing retrotransposons, as ecDNA interacting elements (or, EIEs).  89 

While Hi-C is a widely-used method to map genome-wide chromatin interactions, it can 90 

be repurposed to identify structural variants, including rearrangements that are a hallmark of 91 

cancer genomes.29,30 We considered that the atypical striping pattern observed in our Hi-C data 92 
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was most likely a result of structural variation either in the COLO320 genome or structural 93 

variation due to insertion of repetitive elements into ecDNA. To discern between these two 94 

possibilities, we performed long-read nanopore sequencing (Methods). We chose long-read 95 

sequencing to also capture potential heterogeneity in insertion sites in the case of single or multiple 96 

integrations (Fig. 1E-F; Methods). We generated median read lengths of 67,000 bp with the 97 

longest read spanning 684,457 bases. Across the 68 EIEs identified, we determined that each 98 

participated in a broad spectrum of structural variation - some involved with hundreds or thousands 99 

of different rearrangement events (Extended Data Fig. 1B; Methods).  100 

 101 

EIE 14 is a “passenger” on MYC ecDNA 102 

After confirming that the identified EIEs were associated with structural rearrangements, 103 

we next investigated the overlap between ecDNA and EIE rearrangements. We first reconstructed 104 

ecDNA utilizing the CoRAL algorithm31, a pipeline that leverages long read data to accurately infer 105 

a set of ecDNA from the breakpoints (i.e., structural variation) associated with amplified regions 106 

of the genome (Methods). We found that reads containing EIEs often overlapped ecDNA intervals 107 

at greater coverage than expected from the average genome coverage of our dataset (approximately 108 

12.1), suggesting that these EIEs were contained on at least a subset of ecDNA amplifications 109 

(Figure 1E-F). We further investigated CoRAL’s reconstruction of COLO320DM’s complex and 110 

heterogeneous MYC-containing amplicon and identified a high-confidence breakpoint connecting 111 

a chromosome 3-amplified EIE (EIE14) to an intergenic region between CASC8 and MYC on the 112 

chromosome 8 amplification. (Figure 1G; Methods). 113 

We selected this EIE (EIE 14) for further characterization of EIE biology due to its 114 

proximity to MYC on the ecDNA and because it contains a segment with homology to L1M4a1, 115 

an ancient element distantly related to LINE-1. The percent of nucleotide conservation of this 116 

segment to the L1M4a1 consensus sequence is consistent with the L1M4a1’s Kimura divergence 117 

value of 34%. We reasoned that this degree of sequence divergence would allow us to specifically 118 

target and interrogate its function without unintentionally targeting other repetitive elements in the 119 

genome. We also found  a fragment of  LINE-1 PA2 and an ORF-2 like protein on EIE 14 120 

(Extended Data Fig. 1C-D).32,33 Although the mechanism generating the adjacency of the  121 

fragments remains uncertain, the L1M4a1-like segment harbors a polyA-signal–like motif 122 

(AAAAAG), supporting a model in which an L1PA2 transcript read through its own 3′ end and 123 
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terminated at this neighboring signal, producing a 3′-transduced RNA that could be mobilized in 124 

trans by LINE-1 enzyme (Extended Data Fig. 1C-D).32,33  125 

 126 

 To confirm the computational reconstruction of the ecDNA and the heterogeneity of 127 

different ecDNA molecules, we turned to CRISPR-CATCH - a method for isolating and 128 

sequencing ecDNA - to elucidate the size and variations of ecDNAs containing EIE 14 (Fig. 2A).22 129 

Targeting EIE 14 with two independent gRNAs, we successfully isolated ecDNA fragments from 130 

the COLO320DM cell line for sequencing (Fig. 2B).  Sequence analysis of these bands confirmed 131 

the presence of EIE 14, originally annotated on chromosome 3, to be inserted onto chromosome 8 132 

between the CASC8 and CASC11 genes approximately 200 kilobases away from MYC, in 133 

agreement with the long-read nanopore sequencing (Fig. 1G, Fig. 2C, Extended Data Fig.2A & 134 

B and Supplementary Table T4-T6). Multiple bands of different sizes on the PFGE gel indicated 135 

the presence of varying sizes of ecDNAs, all sharing the EIE 14 insertion within the chromosome 136 

8 amplicon (Fig. 2B-C).  Beyond EIE 14, the CRISPR-CATCH approach allowed us to capture 137 

and sequence a subset of EIEs initially identified through Hi-C analysis (Fig. 2D). The 138 

identification of the additional EIEs observed in the Hi-C data suggest that the “striping” between 139 

the ecDNA and endogenous chromosomes is an artifact of these sequences’ presence on ecDNAs, 140 

rather than true trans contacts, at least for this identified subset. Though the recent T2T genome 141 

build34 annotates EIE 14 to chromosome 3  (Extended Data Fig. 2C), we found evidence that the 142 

structural variant described here between EIE 14 and the MYC-containing amplicon region is 143 

identified as a translocation event between Chr8:128,533,830 and Chr3:111,274,086 in 144 

approximately 46% (minor allele frequency of 0.467646) of non-disease individuals 145 

(Supplementary Table T4 (row 7)).35 This suggests that this structural variant was pre-existing 146 

prior to cancer formation in the COLO320-originating patient and was subsequently amplified as 147 

a passenger on ecDNA.   148 

 149 

EIE 14 makes frequent contact with MYC  150 

We then utilized Optical Reconstruction of Chromatin Architecture (ORCA) to quantify 151 

the spatial relationship of EIE 14 with MYC (Fig. 2E). 36,37 Barcoded probes were designed 152 

targeting the unique portion of EIE 14 (1kb), MYC exon 2 (3.1kb), PVT1 exon 1 (2.5kb), and the 153 

endogenous chromosome 3 region flanking of EIE 14 (3kb) (Supplementary Table T7) to 154 
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determine the spatial organization of EIE 14 relative to the ecDNA. These specific exons were 155 

chosen to account for the fact that amplicon reconstruction of ecDNA in the COLO320DM cell 156 

line demonstrated an occasional rearrangement of MYC exon 2 replacement by PVT1 exon 1.20 157 

Since EIE 14 is classified as a repetitive element, we confirmed probe specificity by staining the 158 

EIE 14 locus in K562 cells that do not contain ecDNA. Indeed, we detect only 1-3 labeled regions 159 

in the non-amplified context (Extended Data Fig. 3A). In contrast, when labeling COLO320DM 160 

cells, EIE 14 colocalized with the ecDNA and amplified to a similar copy number per cell (Fig. 161 

2E, Extended Data Fig. 3B). The extensive structural variation detected in the long-read 162 

sequencing and the amplification of EIE 14 visualized by ORCA (Extended Data Fig. 3B) suggest 163 

a model where the element resides in the sequence amplified on ecDNA and participates in cis 164 

and/or trans-contacts with other ecDNA molecules. 165 

  166 

It has been proposed that amplified loci within ecDNA are able to regulate oncogene 167 

expression through cis-interactions on the same ecDNA molecule as well as trans-interactions 168 

between ecDNAs via a clustering mechanism.20 As such it is important to understand not only the 169 

structural variations of ecDNA, but also how they are arranged in the nucleus for a comprehensive 170 

understanding of potential regulatory function. We quantified the spatial distributions of MYC 171 

exon 2, PVT1 exon 1, and EIE 14; the imaged loci were fitted in 3-dimensions with a gaussian 172 

fitting algorithm to extract x,y,z coordinates (Fig. 3A-C, Methods). The copy number of identified 173 

loci varied from zero detected points to 150 per cell. On average, MYC had 29, PVT1 had 31 and 174 

EIE 14 had 22 copies per cell (Extended Data Fig. 3B). Similar distributions of points-per-cell, 175 

as well as strong correlation (r>0.7) between number of points per loci per cell (Extended Data 176 

Fig. 3C) suggests that this EIE is not inserted into multiple sites on a single ecDNA.  177 

Once the centroids of each point per cell were identified (Fig. 3C) we calculated the all-178 

to-all pairwise distance relationship (Fig. 3D). The off-diagonal pattern of distances between EIE 179 

14, MYC, and PVT1 suggested a tendency for these loci to cluster at genomic distances <1000nm. 180 

We further quantified the spatial relationships across all 1329 imaged cells by calculating the 181 

shortest pairwise distances between the three loci. To determine if these ecDNA molecules were 182 

spatially clustering in cells, we leveraged our observation that each ecDNA molecule carries a 183 

single copy of MYC and EIE 14. Thus, distances between MYC and other MYC loci should be 184 

closer than random if the ecDNA were spatially clustered. Random distances were simulated in a 185 
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sphere with the identical number of points per a given cell. The distribution of shortest pairwise 186 

distances between MYC and MYC and between EIE 14 and EIE 14 were left-shifted compared to 187 

the randomly simulated points, suggesting a nonrandom organization (Fig. 3E-F, p<1e-10). The 188 

median observed versus expected distances between each EIE 14 loci were 748 nm and 927 nm 189 

respectively and the median observed versus expected distances between each MYC loci were 190 

707nm and 814nm respectively.  191 

Previous work has proposed that enhancers can exert transcriptional regulation on 192 

promoters at a distance of up to 300 nm via accumulation of activating factors.38–41 To determine 193 

whether EIE 14 and MYC are within this regulatory distance range on ecDNA molecules, we 194 

calculated the pairwise distances between loci. Though the median distances between MYC and 195 

EIE 14 (797 nm) and PVT1 (585 nm) were greater than 300 nm, 12% and 20% of these loci, 196 

respectively, were within the regulatory range of  MYC (Extended Data Fig. 3D-E).  197 

To investigate the spatial relationship between EIE 14 and MYC while controlling for 198 

locus density, we calculated the degree of spatial clustering across distance intervals using Ripley’s 199 

K spatial point pattern analysis (See Methods, Fig. 3G).  MYC exhibited the strongest clustering 200 

with EIE 14 at distances less than 200 nm (K-value > 1), and this behavior approached a random 201 

distribution at greater distances (K-value ~ 1; Fig. 3G,H).  While, on average, distances between 202 

MYC and EIE 14 were further than MYC and PVT1 (Extended Data Fig. 3D-E, at distances <300 203 

nm EIE 14 and  PVT1 displays a similar clustering behavior with MYC Fig. 3H). This clustering 204 

suggests that EIE 14 is acting as a proximity-dependent regulator of MYC reminiscent of enhancer-205 

promoter interactions.42 Altogether, the spatial clustering behavior of this ecDNA species 206 

measured here and previously20, the propensity for MYC to engage in “enhancer hijacking”43, and 207 

the ability of reactivated repetitive elements to engage in long-range gene activation27 suggests 208 

that any genomically linear separation of MYC and EIE 14 is overcome in both cis- (interaction 209 

with MYC on the same ecDNA molecule) and trans (ecDNA-ecDNA interactions). 210 

EIE 14 is critical for cancer cell fitness and displays enhancer activity 211 

To test whether the identified transposable elements are important for the cancer cell 212 

proliferation, we performed a CRISPR interference (CRISPRi) growth screen targeting a subset of 213 

EIEs in COLO320DM cells engineered to stably express dCas9-KRAB(Fig. 4A-B).46 We were 214 

able to target 36 out of the 68 EIEs with sgRNAs that met the following criteria: (1) must meet 215 

stringent specificity criteria to reduce potential off targets intrinsic to repetitive sequences (see 216 
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Methods) and (2) have at least two sgRNAs per EIE. We also included 125 non-targeting controls 217 

(NTC) that were introduced into cells with the EIE sgRNAs via lentiviral transduction 218 

(Supplementary Table T10). Post-transduction, we monitored cell proliferation at multiple time 219 

points: 4 days (baseline), 3 days after baseline, 14 days, and 1 month (30 days), followed by deep 220 

sequencing to quantify sgRNA frequencies (Fig. 4B). We obtained highly reproducible guide 221 

counts across replicates and timepoints(Extended Data Fig. 4B-C).  222 

Our data showed that the growth phenotype curve for three out of thirty six of our 223 

targeted EIEs at various time points indicated a Z-score of less than -1, which suggested a 224 

significant negative impact on cell viability, with an acute growth defect after only 3 days (Fig. 225 

4B, Extended Data Fig. 4, Supplementary Tables T8 and T9). These elements were categorized 226 

as evolutionarily older based on their retrotransposition activity in the human genome and spanned 227 

classes (LINEs, SINEs, LTRs) (Supplementary Table 11). The enrichment of old TEs may be 228 

confounded by the relative ease of targeting sequences with increased sequence divergence. They 229 

are generally found in gene poor regions making it unlikely that silencing would lead to secondary 230 

effects from heterochromatin spreading. Collectively, these results suggest that a subset of our 231 

targeted EIEs, including EIE 14, can contribute to cancer cell growth and fitness. We speculate 232 

that this is related to EIE interaction with MYC, as knockdown of this oncogene has been shown 233 

to have similar effects on COLO320DM growth and survival.47,48 Additionally, three out of thirty 234 

six of the measured EIEs also had a Z-score greater than 1, indicating a significant increase of cell 235 

growth or fitness. The identity of these elements also spanned element classes with two (EIE 68 236 

and EIE 45) being located within two uncharacterized ncRNAs and one (EIE 57) within the first 237 

exon of the ANKRD30B protein coding gene which has been implicated in cell proliferation.49 238 

Further investigation of these hits are warranted in future studies to explain their positive effects 239 

on cell growth, especially those within the uncharacterized ncRNA regions. 240 

 241 

The strongest growth defect was observed for perturbation of EIE 14 (Fig. 4B), which 242 

when combined with our finding of its co-localization with ecDNA-amplified MYC (Fig. 3H), 243 

suggests a potential enhancer-like regulatory role  for this EIE. To examine the epigenetic 244 

landscape of this element we leveraged copy-number normalized ChIP-seq  measuring H3 lysine 245 

27 acetylation (H3K27ac), BRD4 occupancy, and ATAC-seq accessibility data. These epigenetic 246 

features are all commonly associated with enhancer activity.18,50,51 Notably, many EIEs, including 247 
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EIE14 were accessible in COLO320DM cells (Fig. 4C-D, Extended Data Fig. 5).  The measured 248 

accessibility of EIE 14 contrasts the normally silenced H3 lysine 9 trimethylation (H3k9me3) state  249 

across annotated human cell lines (Fig. 4E).44,45 Cross-referencing our identified EIEs with 250 

accessibility data from other ecDNA containing cell lines demonstrated that accessibility of EIEs 251 

is a more generalizable phenomenon beyond COLO320DM cells (Extended Data Fig. 5). 252 

Altogether, the accessibility and proximal clustering of EIE14 points towards active regulatory 253 

potential of this element in COLO320DM cells, while identification of accessible EIEs across cell 254 

lines suggests a broader functional relevance of EIE regulatory potential on ecDNA (Extended 255 

Data Fig. 5).50,51  256 

To determine whether EIE 14 activity is a consequence of ecDNA formation, we 257 

performed RNA-FISH on the sequence-specific 1kb segment of EIE 14  in COLO320DM and 258 

isogenic COLO320HSR cells. The HSR or homogeneously staining region cell line contains a 259 

similar copy number amplification of the MYC-amplified portion of chromosome 8, but the 260 

majority of these copies have integrated into chromosomes (Fig. 5A).18 We reasoned that if the 261 

unique extrachromosomal context of ecDNA facilitates activation of EIE 14, we should not see 262 

evidence of its activity in the COLO320HSR genome-integrated context. Indeed, we observed 263 

distinct transcription events in the DM line (median n=8 transcripts per cell) but not in the HSR 264 

line(median n=0 transcripts per cell; Fig. 5B, Extended Data Fig. 6A-B).  265 

Finally, to directly test the ability for the EIE 14 sequence to act as an enhancer of MYC 266 

expression, we performed a luciferase reporter assay measuring its ability to activate transcription 267 

TK and MYC promoters (Fig. 5C).20,52 EIE 14 significantly increased MYC promoter-mediated 268 

reporter gene expression relative to the promoter only control, signifying bona fide enhancer 269 

activity (Fig. 5C). Separating EIE 14 into L1M4a1 and L1PA2 fragments further demonstrated 270 

that both sequences can individually act as enhancers, with an additive  effect when combined 271 

(Extended Data Fig. 6C). In sum, the enhancer-associated features and regulatory activity of the 272 

luciferase assay suggested that EIE 14, and possibly other EIEs, have been co-opted as regulatory 273 

sequences when found on ecDNA, influencing the expression of ecDNA-borne oncogenes (Fig. 274 

5D).  275 

 276 

  277 

Discussion 278 
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This study uncovers a mechanism by which transposable elements (TEs), typically silenced 279 

by heterochromatin, may acquire regulatory potential when amplified on extrachromosomal DNA 280 

(ecDNA).53–55 Somatically active retrotransposition events56 as induced by LINEs and SINEs, are 281 

abundant in the human genome and represent a major source of genetic variation.57 Across cancer 282 

types, retrotransposon insertions contribute significantly to structural variation, genomic 283 

rearrangements, copy number alterations, and mutations—including in colorectal cancer.58–65 The 284 

activity of these elements in cancer can induce genomic instability and drive the acquisition of 285 

malignant traits. For instance, when reactivated LINE-1 elements are inserted into the APC tumor 286 

suppressor gene in colorectal cancer, they disrupt gene function and confer a selective advantage.66 287 

In other contexts, TEs act as bona fide transcriptional enhancers, amplifying oncogenic gene 288 

expression and promoting tumorigenesis.67 289 

Here, we describe the enhancer-like activity of a specific identified element, EIE 14, which  290 

becomes active through its association with ecDNA (Fig. 5D). EcDNAs, which are randomly 291 

segregated during cell division, are subject to strong selective pressure.10 The recurrent co-292 

amplification of TEs on ecDNA-containing cell lines suggests they may contribute to ecDNA 293 

fitness and oncogenic function. We show that retrotransposons like L1M4a1/EIE 14 can escape 294 

the inactive chromatin environment of their native genomic loci when inserted within the 295 

transcriptionally permissive landscape of ecDNA.18 In fact, we demonstrate that EIE 14 is only 296 

transcriptionally active in the context of ecDNA and not in the endogenous chromosomal context 297 

of the copy-number matched, isogenic COLO320 HSR cells. The context-specific transcription 298 

suggests a purely epigenetic regulation imbued by the local environment of ecDNA. This 299 

environment enables EIE 14 to potentially influence nearby oncogenes such as MYC. Given that 300 

LINEs have been shown to exhibit enhancer-like behavior when reactivated,27,28,68 the clustering 301 

of ecDNA molecules observed through ORCA may further enhance spatial feedback69 of both cis- 302 

and trans-regulatory interactions of EIE 14 with oncogenic targets.  303 

Although EIE 14 is incapable of autonomous transposition and lacks a complete L1M4a1 304 

sequence, its subsequent activity upon integration into ecDNA suggest that degenerate ancient 305 

sequences may become functionally active under the right conditions. Previous work has shown 306 

that single nucleotide polymorphisms associated with familial cancer risk often affect the 307 

biochemical activity of noncoding enhancer elements linked to oncogenes activated in cancer.70,71 308 
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Our results extend this model by proposing that inherited variation in ancient TE insertions, such 309 

as EIE 14 near MYC, can create latent enhancers that become activated when the oncogene locus 310 

is excised into ecDNA. 311 

Perturbation of EIE 14 through CRISPRi resulted in impaired cell growth in COLO320DM 312 

cells, indicating that its reactivation contributes to the colorectal cancer phenotype. Quantifying 313 

the precise downregulation of MYC is constrained by ecDNA heterogeneity, a narrow temporal 314 

window in MYC-addicted cells, rapid growth arrest and subsequent loss of successfully targeted 315 

cells. While this functional evidence supports a potential oncogenic role, further studies focusing 316 

on in vivo analyses are necessary to determine whether TEs on ecDNA are sufficient to confer a 317 

survival advantage or correlate with poor patient prognosis. Notably, recurrent LINE-1 318 

amplification on ecDNA have been observed in primary esophageal cancer, providing in vivo 319 

support for the clinical relevance of this phenomenon.72 320 

Finally, the amplification of retrotransposable elements onto ecDNA introduces a 321 

mechanism for increasing ecDNA structural variation, leveraging the 40% of the genome 322 

composed of typically silenced repetitive elements. Retrotranspositions are, in fact, the second-323 

most frequent type of structural variant in colorectal adenocarcinomas.73 Just as transposons have 324 

played a major role in bacterial plasmid evolution through cycles of insertion and recombination,74 325 

our findings allude to a parallel evolutionary trajectory in human oncogenic ecDNAs. The 326 

transcriptionally permissive state of ecDNA enables these elements to potentiate oncogene 327 

activation and selection—making them both prognostic biomarkers and potential therapeutic 328 

targets. 329 

 330 
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Figure legends 369 

  Figure 1: Identification of ecDNA interacting elements (EIEs) 370 

a. Method schematic of Hi-C performed in the ecDNA containing COLO320DM cell line. 371 

b. Identification of ecDNA-interacting elements (EIEs). 68 Individual EIEs were manually 372 

annotated across all chromosomes based on the interaction across the entirety of the MYC-373 

amplified region of chromosome 8. The visualization represents the ecDNA from chromosome 8 374 

with 3 examples of ecDNA-interacting elements (EIEs) localized on other chromosomes.  375 

c. An example of a specific interaction, EIE 14 on chromosome 3, is enlarged and associated genes 376 

are shown for both loci. Arrow and purple hexagon indicate EIE.  377 

d. Overlap fraction of EIE sequence and annotated LINE, SINE, and LTR elements reported in 378 

RepBase. EIEs are clustered according to similarity in overlap fraction across these three classes 379 

of repetitive elements. 380 

e. Pipeline for using Oxford Nanopore ultra-long read sequencing to identify the overlap of ecDNA 381 

genomic intervals and EIE-containing reads. 382 

f. The number of reads that contain a particular EIE and overlap with an ecDNA interval in the 383 

COLO320DM cell line. Counts are reported as log10(1+x). Average genome coverage (12.1) is 384 

represented as a red dashed line. 385 

g. Reconstruction of the ecDNA breakpoint graph for COLO320DM from Oxford Nanopore ultra-386 

long read data using the CoRAL algorithm. The EIE14 region is highlighted in red and the 387 

breakpoint indicating its translocation to the amplified chr8 locus is annotated.  388 

Source numerical data are available in source data. 389 

 390 

 Figure 2: CRISPR-CATCH Elucidates ecDNA Composition and EIE Insertions 391 

  392 

a. Schematic diagram illustrating the CRISPR-CATCH experiment designed to isolate and 393 

characterize ecDNA components. The process involves the use of guide RNA targeting the EIE 394 

14 from chromosome 3. DNA is embedded in agarose, followed by pulse-field gel electrophoresis 395 

(PFGE), allowing for the band extraction and subsequent next-generation sequencing (NGS) of 396 

ecDNA fragments.  397 

b. The PFGE gel image displays the separation of DNA fragments, lines from left ladder, ladder, 398 

empty lane, Negative control, sgRNA #1, sgRNA #2 and band numbers for NGS seen in C-D. EIE 399 

14 targeted by the guide RNAs leads to cutting of the ecDNA's chromosome 8 sequences to form 400 

multiple discrete bands, confirming EIE 14 insertion onto ecDNA. sgRNA #1 401 

ATATAGGACAGTATCAAGTA; sgRNA #2 TATATTATTAGTCTGCTGAA; Full EIE 14 402 

sequences from long-read sequencing is in Supplementary Table T6. 403 

c. Whole genome sequencing  results confirm the presence of EIE 14, originally annotated on 404 

chromosome 3, within the ecDNA, between the CASC8 and CASC11 genes, approximately 200 405 

kilobases upstream from MYC. The dotted line indicates the position of this insertion. Each band 406 

is an ecDNA molecule of a different size that contains the EIE 14 insertion.   407 
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d. Additional EIEs identified in the initial Hi-C screen, captured, and sequenced in the CRISPR-408 

CATCH gel bands from (B), each EIE is one one vertical shaded box with coordinates and denote 409 

insertion events within the ecDNA.  410 

e. ORCA (Optical Reconstruction of Chromatin Architecture) visualization of the COLO320DM 411 

cell nucleus. The max-projected images show the spatial arrangement of the MYC oncogene, EIE 412 

14 and the PVT1 locus, labeled in different colors for two different cells. Left most panel is an 413 

overlay of all images registered to nm precision (see Methods).The scale bar represents 5 414 

micrometers. Chr3 probe maps to the breakpoints of the EIE 14 origin inside CD96 intron.  415 

Source numerical data and unprocessed blot are available in source data. 416 

 417 

Figure 3: EIE 14 spatially clusters with MYC  418 

a. X, Y, Z projections of MYC exon (purple), PVT1 (blue), and EIE 14 (pink) 419 

b. Endogenous coordinates of all three measured genomic regions.  420 

c. Single cell projection of the 3D fitted points from (A).  421 

d. Pairwise distances between MYC (purple), PVT1 (blue), and EIE 14 (pink) of a single cell. 422 

Number of fitted points per genomic region n=60, n=43, and n=25 respectively.   423 

e. Histogram of distribution of distances of the observed shortest pairwise EIE 14 to EIE 14 424 

distances and the expected shortest pairwise distances of points randomly simulated in a sphere 425 

(two-tailed Wilcoxon ranksum p<1e-10) of n=1329 analyzed cells across 2 biological replicates. 426 

f. As in (E) but for MYC to MYC shortest pairwise distances (Two-tailed Wilcoxon ranksum p<1e-427 

10).  428 

g. Schematic of Ripley’s K function to describe clustering behaviors over different nucleus 429 

volumes. Top shows the nucleus divided into different shell intervals and how the K value is 430 

plotted for increasing radius (r). Bottom shows an example of what clustered K(r)>1 vs. random 431 

K(r)~1 points could look like. K-values greater than one indicate clustering behavior relative to a 432 

random distribution over that given distance interval (r), K values ~ one denote random 433 

distribution, while K values less than one indicate dispersion behavior  434 

h. The average K(r) value across distance intervals of 0.01 to 0.5 um in 0.02 um step sizes to 435 

describe the clustering relationship of PVT1 and EIE 14 relative to MYC across different distance 436 

intervals (um). Error bars denote SEM. (Two-tailed Wilcoxon ranksum p=0.01442).  437 

Source numerical data are available in source data. 438 

 439 

Figure 4: EIE 14 is important for cell proliferation and has enhancer signatures 440 

a. Schematic of the CRISPRi screening strategy used to evaluate the regulatory potential of  the 441 

68 EIEs by designing 4-6 gRNAs per element for a total of 257 genomic regions tested and 125 442 

non-targeting control sgRNAs. The screen involved the transduction of cells with a lentivirus 443 

expressing dCas9-KRAB and the sgRNAs such that each cell received 1 sgRNA, followed by 444 

calculation of cell growth phenotype over a series of time points (Baseline(4 days), Baseline + 3 445 

days, Baseline + 14 days, and Baseline + 1 month). The screen was further filtered on guide 446 

specificity (methods) and 36/68 targeted EIEs met the qualifying threshold.  447 
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b. The growth phenotype of COLO320DM cells 2 weeks post-transduction, relative to non-448 

targeting control (NTC). Each point represents the average guide effect (Z-score) for sgRNAs 449 

targeting the 36 qualifying EIEs, ranked by their impact on cell growth. EIE 14 is indicated by 450 

dashed rectangle with negative Z-score < -1 (significant negative impact on cell viability). See 451 

Extended Data for additional timepoints. Positive hits are labeled in pink with their corresponding 452 

EIE.  453 

c. UCSC Genome Browser multi-region view showing the locations of the EIEs within the 454 

genome. Each EIE is indicated by a vertical bar. The browser displays the annotations for genes 455 

and repetitive elements such as Alu, LINE, and LTR elements (RepeatMasker), ATAC-seq 456 

dataset20 is normalized for copy number (see Methods). 457 

d. Zoom-in of EIE 14’s histone marks: enrichment of H3K27 acetylation18, BRD4 binding20, and 458 

ATAC-seq peaks. ChIP data was normalized to input to control for copy number.  ATAC-seq data 459 

was normalized to library size (methods). 460 

e. H3K9me3 histone modification of EIE 14 across ENCODE cell lines.44,45  461 

 462 

 463 

Figure 5: ecDNA context is critical for EIE 14 enhancer activity  464 

 465 

a. (Top) Schematic outlining COLO320DM cell line as high copy number and high ecDNA vs 466 

HSR- as high copy number but low ecDNA.  467 

b. RNA-FISH labeling for  EIE 14 and MYC exon 2 transcription in COLO320 DM and HSR. 468 

Median transcripts for EIE 14 are 4 and 0 for the DM and HSR cells ( two-tailed wilcoxon ranksum  469 

p=8.22 10-94), respectively.  DM cells have a median of 14 MYC transcripts and HSR cells have 470 

a median of 8 transcripts per cell (two-tailed wilcoxon ranksum  p=2.18 10-66).  n=712 cells (DM) 471 

n=681 (HSR) across 2 biological replicates.  472 

c. Luciferase enhancer assay schematics and fold change in luciferase signal driven by either MYC 473 

or TK promoter normalized to promoter-only construct. n=4 biological replicates. EIE 14 474 

compared to positive control (PVT1 positive control from20). P-values obtained from two-tailed 475 

unpaired t-test. Error bars are standard deviations from the mean.  476 

d. Schematic outlining EIE 14 as a translocation event in healthy patients where EIE 14 is normally 477 

inactive across annotated cell lines (Fig. 5A). EIE 14 gains regulatory potential when it is amplified 478 

within ecDNA as a consequence of translocation near MYC. EIE 14 can then act as a regulator of 479 

MYC in both cis- and trans-contacts within and between ecDNAs.  480 

Source numerical data and images are available in source data. 481 

 482 

 483 

 484 
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 639 

 640 

 641 

 642 

Methods 643 

Cell culture 644 

Cell lines were obtained from ATCC. COLO320DM (CCL-220) and COLO320-HSR (CCL-645 

220.1) cells were maintained in RPMI; Life Technologies, Cat# 11875-119 supplemented with 646 

10% fetal bovine serum (FBS; Hyclone, Cat# SH30396.03) and 1% penicillin-streptomycin (pen-647 

strep; Thermo Fisher, Cat# 15140-122). All cell lines were routinely tested for mycoplasma 648 

contamination. Presence of ecDNA in cell lines was confirmed via metaphase spreads.  649 

  650 

Hi-C  651 
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Ten million cells were fixed in 1% formaldehyde in aliquots of one million cells each for 10 652 

minutes at room temperature and combined after fixation. We performed the Hi-C assay following 653 

a standard protocol to investigate chromatin interactions within colorectal cancer cells.1 HiC 654 

libraries were sequenced on an Illumina HiSeq 4000 with paired-end 75 bp read lengths. Paired-655 

end HiC reads were aligned to hg19 genome with the HiC- Pro pipeline.2 Pipeline was set to default 656 

and set to assign reads to DpnII restriction fragments and filter for valid pairs. The data was then 657 

binned to generate raw contact maps which then underwent ICE normalization to remove biases. 658 

HiCCUPS function in Juicer3 was then used to call high confidence loops. Visualization was done 659 

using Juicebox https://aidenlab.org/juicebox/ 660 

  661 

Analysis of EIEs for repetitive element overlap 662 

To assess the overlap of classes of repetitive elements with our identified EIEs, we obtained the 663 

“RepeatMasker” and “Interrupted Repeats” tracks from UCSC Genome Browser for hg19. For 664 

each EIE, we computed the fraction of the sequence that overlapped with the merged BED file 665 

containing the RepeatMasker and Interreputed Repeats annotations. We report the overlap 666 

separately for LINE, SINE, and LTR repetitive element classes. Importantly, each EIE is exactly 667 

1kb long so no length normalization is performed. To compute an expected proportion, we 668 

computed the fraction of hg19 covered by each repetitive element class. The results are reported 669 

in Figure 1D and Extended Data Figure 1A.   670 

 671 

Whole Genome Sequencing (WGS) with Oxford Nanopore  672 

High-molecular weight (HMW) genomic DNA was extracted from approximately 6 million 673 

COLO320DM cells using the Monarch HMW DNA Extraction Kit for Tissue (NEB #T3060L) 674 

following the Oxford Nanopore Ultra-Long DNA Sequencing Kit V14 protocol. After extracting 675 

HMW gDNA, we constructed Nanopore libraries using the Oxford Nanopore Ultra-Long DNA 676 

Sequencing Kit V14 (SQK-ULK114) kit according to manufacturer’s instructions. We sequenced 677 

libraries on an Oxford Nanopore PromethION using a 10.4.1. Flow Cell (FLO-PRO114M) 678 

according to manufacturer’s instructions. Basecalls from raw POD5 files were computed using 679 

Dorado (v.0.2.4). 680 

  681 

Identifying, re-mapping EIE-containing reads, and detecting structural variants 682 
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We first identified Nanopore reads containing a single element by aligning reads with minimap24 683 

and filtered out reads that were not mapped by the algorithm (denoted by “*” in the RNAME 684 

column of the BAM entry). Then, taking these reads we performed genomic alignment once again 685 

using minimap2 against hg19. 686 

From these new alignments of only the reads found to contain the element under 687 

consideration, we performed two analyses for each element. First, we detected structural variant 688 

detection using Sniffles2.5 Second, we identified overlap of reads with ecDNA-containing 689 

intervals that were reconstructed with long reads (see section “Reconstruction of ecDNA 690 

amplicons with long-read data”). In this second analysis (presented in Figure 1F), we counted 691 

the number of reads covering regions contained with cycles reconstructed with CoRAL 692 

algorithm.6While this analysis does not explicitly account for reads that originate from 693 

chromosomal or extrachromosomal regions, we reasoned that elements that were carried on 694 

ecDNA would be amplified and thus these elements would be highly covered; on the other hand, 695 

regions that were were primarily chromosomal would be represented by a similar number of reads 696 

to the overall genome coverage.  697 

 698 

Reconstruction of ecDNA amplicons with long-read data 699 

We reconstructed ecDNA amplicons from ultra-long Oxford Nanopore reads using the CoRAL 700 

algorithm.6 Briefly, this algorithm determines focally amplified regions of the genome using 701 

CNVkit7 and then finds reads that support this focally amplified region. In doing so, CoRAL 702 

identifies genomic breakpoints between the focally amplified seed region and disparate parts of 703 

the genome to create a “breakpoint graph”. From this breakpoint graph, putative ecDNA cycles 704 

are identified. We report the breakpoint graph in Figure 1G which includes a breakpoint between 705 

EIE14 (annotated on chr3) and an intergenic region between CASC8 and MYC on chr8. 706 

  In addition to detecting EIE14 on the MYC-amplifying ecDNA in COLO320DM, we 707 

additionally quantified the number of reads that span a given EIE and any part of the COLO320DM 708 

genome amplified as ecDNA. We report the number reads that support an EIE as amplified on 709 

ecDNA in Figure 1F. 710 

 In Extended Data Figure 2B we visualized reads connecting EIE14 on chr3 with the chr8 711 

ecDNA-amplified region using Ribbon (v 2.0.0).8 712 

 713 
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ATAC-seq analysis and normalization 714 

ATAC-seq and ChIP-seq data for COLO320DM and SNU16 was obtained from Hung, Yost et. 715 

al. 20219 and for PC3 and GBM39KT from Wu et. al. 201910. Previously, ATAC-seq data was 716 

mapped to hg19. While ChIP-seq data was normalized to input, as input is not sequenced with 717 

ATAC-seq, these data were further normalized by library size.  Specifically, ATAC-seq data was 718 

converted to a bedGraph reporting number of reads supporting a base position; then, these densities 719 

were converted to parts-per-10million by dividing each position’s density by a normalization 720 

factor based on the total library size. This library size-normalized data was used for downstream 721 

plotting 722 

 723 

 724 

Transposable element old versus young classification 725 

To classify transposable elements (TEs) as old or young, we conducted a classification of EIE 726 

sequences listed in Supplementary Table T2. Elements were categorized based on their known 727 

evolutionary activity in humans. Young elements were defined as those from recently active 728 

subfamilies, including L1HS, L1PA2, SVA, and AluY, which are known to have current or recent 729 

retrotransposition activity in the human genome. Classifications can be found in Supplementary 730 

Table 11.  731 

 732 

  733 

CRISPR interference 734 

The pHR-SFFV-dCas9-BFP-KRAB (Addgene, Cat# 46911) plasmid was modified to dCas9-BFP-735 

KRAB-2A-Blast as previously described.11 Lentiviral particles were produced by co-transfecting 736 

HEK293T cells with the plasmid along with packaging plasmids psPAX2 and pMD2.G using a 737 

standard transfection method. Viral supernatants were harvested at 48 and 72 hours post-738 

transfection, filtered through a 0.45 μm filter, and concentrated by ultracentrifugation at 25,000 739 

rpm for 2 hours at 4°C. Cells were transduced with lentivirus, incubated for 2 days, selected with 740 

1ug/ml blasticidin for 10–14 days, and BFP expression was analyzed by flow cytometry.  741 

We took sgRNA specificity into account from the design phase of the CRISPRi screen. Our guide 742 

selection criteria included off-target scoring from Hsu et al. (2013)11 and filtering. We designed 743 

the library in benchling https://benchling.com with multiple independent sgRNAs per EIE element. 744 
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This redundancy helps distinguish on-target biological effects from off-target noise. To increase 745 

our stringency and ensure that the effects of low-efficiency or low-specificity guides do not 746 

interfere with the interpretation of the screen, we used FlashFry12 to score our gRNAs with multiple 747 

tools (Supplementary Table 12) and specifically selected the CRISPRi specificity score 748 

developed by Jost et al. 202013 for filtering.  We only report effects for elements with at least two 749 

guides that achieved a specificity score greater than 0.2, which is a standard cutoff for this type of 750 

scoring parameter (similar to the Doench et al. 201614 CDF score).The oligo pool encoding guides 751 

(Supplementary table T10) were synthesized by Twist Bio and inserted into addgene Plasmid 752 

#52963 lentiGuide-Puro digested with Esp3I enzyme (NEB). The oligo pool was sequence 753 

validated. To investigate the effects of CRISPR interference, we utilized a lentiviral delivery 754 

system to introduce sgRNAs into cells stably expressing the dCas9-KRAB repressor.Lentiviral 755 

particles were produced as described above. The viral titer was determined by transducing 756 

HEK293T cells with serial dilutions of virus and assessing transduction efficiency via flow 757 

cytometry for GFP expression. 758 

For transduction, cells were seeded at a density of 1 × 10^6 cells per well in 6-well plates and 759 

transduced overnight with lentivirus at a low multiplicity of infection (MOI) of 0.3, ensuring single 760 

sgRNA integration per cell. The following day, the medium was replaced with fresh growth 761 

medium. Two days post-transduction, cells were selected with 0.5 μg/mL puromycin for 4 days to 762 

enrich successfully transduced cells. GFP expression was monitored by flow cytometry to assess 763 

transduction efficiency. Post-selection, cells were harvested at multiple time points: baseline (day 764 

4 after transduction), day 3, week 1, and month 1 (30 days). Genomic DNA was extracted using 765 

the DNeasy Blood & Tissue Kit (Qiagen) following the manufacturer's instructions. 766 

Integrated sgRNA sequences were amplified from genomic DNA using a multi-step PCR process. 767 

First, sgRNA cassettes were amplified using Primer set 1: hU6_pcr_out_fw 768 

(tggactatcatatgcttaccgtaacttgaaagt) and efs_pcr_rev (ctaggcaccggatcaattgccga). PCR reactions 769 

contained 0.8 μL each of 25 μM primers, 1-2 μg genomic DNA, water, and 25 μL NEB 2x master 770 

mix in a total volume of 50 μL. PCR conditions included an initial 3 min at 98°C, followed by 15-771 

17 cycles of 20 s at 98°C, 20 s at 58°C, and 30 s at 72°C, concluding with a final extension for 1 772 

min at 72°C. PCR products (~400 bp) were verified by gel electrophoresis and purified. The second 773 

PCR step added Illumina sequencing adapters using primers (P5 stagger -hu6 and 774 
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p7adpt_spRNAl105nt_rev). Reactions contained 10-50 ng purified PCR1 product, 0.8 μL each 775 

primer, water, and 25 μL NEB 2x master mix in 50 μL total volume, PCR 30 s at 98°C followed 776 

by 6 cycles of 15 s at 98°C, 15 s at 60°C, and 30 s at 72°C, finishing with 1 min at 72°C. PCR 777 

products (200-300 bp) were gel-verified and purified using AMPure XP beads. A final indexing 778 

PCR step was performed using Truseq-based P5 and P7 indexing primers. Reactions contained 10-779 

50 ng DNA from PCR2, 0.8 μL each primer, water, and 25 μL NEB 2x master mix in 50 μL total 780 

volume. Conditions included 30 s at 98°C followed by 6 cycles of 15 s at 98°C, 15 s at 63°C, and 781 

30 s at 72°C, ending with a 1-min extension at 72°C. Products were purified with AMPure XP 782 

beads and sequenced on an Illumina NextSeq platform using single-end 50 bp reads. Sequencing 783 

data were processed to quantify sgRNA representation at each time point, allowing analysis of 784 

sgRNA abundance dynamics over the experiment duration. 785 

  786 

CRISPRi fitness screen analysis 787 

To compute the effect of each guide on cell fitness, we first quantified guide counts from 788 

sequencing libraries. To normalize counts across libraries, we converted raw guide counts to 789 

counts-per-million (CPM) and retained guides that had CPM values of at least 20 across all days 790 

tested. We also filtered out guides with high off-target scores (Supplementary Table 12, 0.2 791 

cutoff from optimized CRISPRi design parameters13) and did not evaluate EIEs with <2guide after 792 

filtering. After confirming that normalized guide abundances were robust across replicates, we 793 

proceeded with our analysis using the average of guide replicates at each time point. We next 794 

scored the relative fitness of each guide against the non-targeting controls (NTC) by computing 795 

the ratio of CPM values between a guide and the NTC at the particular time point. Finally, we 796 

transformed this distribution to z-scores and reported this as the relative fitness effect of each 797 

guide. 798 

  799 

CRISPR-CATCH  800 

In our study, we employed the CRISPR-CATCH (Cas9-Assisted Targeting of Chromosome 801 

segments) technique to isolate and analyze extrachromosomal DNA (ecDNA) structures. 802 

Following the standard protocol15, we designed two single-guide RNAs (sgRNAs) targeting 803 

specific enhancer regions: sgRNA #1 (ATATAGGACAGTATCAAGTA) and sgRNA #2 804 
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(TATATTATTAGTCTGCTGAA). These sgRNAs directed the Cas9 nuclease to introduce 805 

double-strand breaks at the targeted sites, linearizing the circular ecDNA molecules. The linearized 806 

DNA was then subjected to pulsed-field gel electrophoresis (PFGE) using S. cerevisiae and H. 807 

wingei DNA ladders as molecular weight markers to facilitate size-based separation. Distinct DNA 808 

bands corresponding to the targeted ecDNA were excised from the gel for downstream analyses, 809 

including sequencing.  810 

 811 

Probe Design 812 

Probes were designed against human genome assembly hg19, tiling the regions in Supplemental 813 

Table T7 using the probe designing software described previously.16,17 We restricted choice of the 814 

40mer targeting region of the probes to a GC range of 20-80%, a melting temperature of 65-90 815 

degrees centigrade, and excluded sequences with non-unique homology (cut off of 17mer 816 

homology to any other sequence in the genome) or with homology to common repetitive elements 817 

in the human genome listed in repbase (cut off of 14mer). Targeting probes were then appended 818 

with a 20mer barcode per target region. Probe design software is available at 819 

https://github.com/BoettigerLab/ORCA-public. Finalized probe libraries were ordered as an oligo-820 

pool from Genscript.  821 

  822 

ORCA imaging 823 

ORCA hybridization was performed as previously described.17,18 Briefly, 40mm Bioptechs 824 

coverslips were prepared with EMD Millipore™ Poly-D-Lysine Solution (1 mg/mL, 20mL, dilute 825 

1:10)(Sigma, cat. No. A003E) for 40 minutes. Coverslips were then rinsed 3x in 1x PBS. Cells 826 

were passaged onto the coverslips and allowed to adhere overnight. The next day, the coverslip 827 

with cells were rinsed 3 times in 1x PBS and then fixed for 10 minutes in 4% PFA. For DNA 828 

imaging: Cells were then permeabilized in 0.5% Triton-x 1x PBS for 10 minutes followed by 5 829 

minutes of denaturing in 0.1M HCL. A 35-minute incubation in hybridization buffer prepared 830 

samples for the primary probe. Primary probes were added (1ug) directly to the sample in 831 

hybridization solution and then the sample was heated to 90 degrees celsius for 3 minutes. An 832 

overnight 42-degree incubation (or at least 8 hour incubation) was performed followed by post-833 

fixation in 8% PFA + 2% glutaraldehyde in 1× PBS before being stored in 2x SSC or used 834 

immediately for imaging. For RNA imaging, the HCL, heat, and post-fixation steps were omitted. 835 
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  836 

DNA samples were imaged on one of two different homebuilt setups designed for ORCA, “scope-837 

1”, “scope-3”, depending on instrument availability.  Microscope design parameters were 838 

deposited in the Micro-Meta App.19  The design and assembly of the “scope-1” system is described 839 

in detail in our prior protocol paper.20  Both systems use a similar auto-focus system, fluidics 840 

system, and sCMOS camera (Hamamatsu FLASH 4.0), though scope-3 had a larger field of view 841 

(2048x2048 108 nm pixels) compared to scope-1 (1024x1024 154 nm pixels).  842 

 843 

RNA samples were imaged on a different homebuilt setup designed for ORCA designated as the 844 

“Yale lumencor system”. This system uses a similar auto-focus system and fluidics system, with 845 

a sCMOS camera (Hamamatsu ORCA BT fusion) with a field of view (2304x2304 108nm pixels) 846 

and Olympus PlanApo 60x objective .  847 

  848 

Automated fluidics handling is described in detail in our prior protocol paper.17 Briefly, fluid 849 

exchange between each imaging step was performed by a homebuilt robotic setup. The system 850 

used a 3-axis CNC router engraver, buffer reservoirs and hybridization wells (96-well plate) on 851 

the 3-axis stage, ETFE tubing, imaging chamber (FCS2, Bioptechs), a needle, and peristaltic pump 852 

(Gilson F155006). The needle was moved between buffers or hybridization wells and was flown 853 

across the samples through tubing using the peristaltic pump. Open-source software for the control 854 

of the fluidics system is described in the “Software Availability” section below. 855 

  856 

Sequential imaging of ORCA probes was conducted alternating between hybridization of 857 

fluorescent adapter probes, readout probes complementary to the barcodes on the primary probe 858 

sequences, imaging, and stripping of probes, as described previously.17,18 Briefly, a z-stack was 859 

acquired over 10um at 250nm step size where each step alternated lasers between data channel and 860 

fiducial. Readout probes were labeled with Alexa-750 fluorophores.  Fiducial probe was labeled 861 

in cy3 and added only in the initial round.  RNA imaging was performed with the EIE 14 probe 862 

labeled with the Alexa-750 and the MYC probe labeled with the Cy5 fluorophores.  863 

 864 

Sequence for the fiducial: /5Cy3/AGCTGATCGTGGCGTTGATGCCGGGTCGAT 865 

Sequence of Cy5: /5Cy5/TGGGACGGTTCCAATCGGATC 866 
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Sequence of the 750:/5Alex750N/ACCTCCGTTAGACCCGTCAG 867 

 868 

Image processing 869 

Image processing was performed with custom MATLAB functions available: 870 

https://github.com/BoettigerLab/ORCA-public. Briefly, cells were max projected and pixel-scale 871 

alignment was computed across all fields of view off of the fiducial signal. This alignment was 872 

then applied in 3D across all 250 nm z steps. Cellpose21 was then used to segment individual cells. 873 

A cell-by-cell fine scale (subpixel) alignment was then computed and aligned individual cells were 874 

then ready for 3D-spot calling. The individual ecDNA spots and their 3D positions computed to 875 

sub-pixel accuracy using the corresponding raw 3D image stacks and the 3D DaoSTORM function 876 

in storm-analysis toolbox [DOI: 10.5281/zenodo.3528330] an open source software for single-877 

molecule localization, adapted for dense and overlapping emitters following the DaoSTORM 878 

algorithm.22 DaoSTORM was run in the 2d-fixed mode, as the 3D fitting modes are for estimating 879 

axial position from astigmatism in the xy plane, rather than computing it directly from a z-stack. 880 

The fixed-width PSF of the microscope is pre-computed using 100 nm (sub-diffraction) 881 

fluorescent beads. A minimum detection threshold of 30 sigma was used for the fit.  The z-position 882 

of the localizations was computed using Gaussian fit to the vertically stacked localizations, with 883 

an axial Gaussian width also pre-computed from z-stack images with 100 nm fluorescent beads. 884 

Additional information can be found in the read-the-docs for storm-analysis: https://storm-885 

analysis.readthedocs.io/en/latest/.   886 

  887 

Minimum pairwise distance quantification  888 

All pairwise distances between genomic regions were calculated on a per-cell basis. The shortest 889 

distances were saved for each MYC centroid and EIE 14 and PVT1 such that each MYC centroid 890 

has one corresponding shortest distance per EIE 14 and PVT1. For each cell, a sphere radius r=4um 891 

(the average radius of cells calculated with Cellpose mask) with randomly simulated points 892 

corresponding to the number of MYC, EIE 14, and PVT1 centroids.  The same minimum pairwise 893 

distance quantification was calculated on the randomly simulated points.  894 

  895 

Ripley’s K quantification  896 
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To calculate the density corrected distance ratios a distance cutoff of 2um and an interval density 897 

of 0.01:0.01:2 was used. The spatial relationship between MYC and EIE 14 and MYC and PVT1 898 

were quantified as follows: On a per-cell basis the distance density function was calculated, 899 

truncated at the specified cutoff. A uniform distribution was then computed over the same interval 900 

and a ratio of these values was taken. This ratio was then corrected by the volume of the interval 901 

shell.  902 

  903 

Reporter plasmid construction and transfection 904 

All plasmids are made with Gibson assembly (NEB HIFI DNA assembly kit) according to 905 

manufacturer’s protocol. We used a plasmid from this publication9 containing the MYC promoter 906 

(chr8:128,745,990–128,748,526, hg19) driving NanoLuc luciferase (PVT1p-nLuc) and a 907 

constitutive thymidine kinase (TK) promoter driving Firefly luciferase, this plasmid was used as 908 

negative control. pGL4-tk-luc2 (Promega) plasmids with an enhancer (chr8:128347148–909 

128348310) was used as positive control.9 In the test plasmid, the cis-enhancer was replaced by 910 

1.7 kb sequence of EIE 14 or by Part #1: L1PA2 or by Part #2: L1M4a1 (Supplementary Table 911 

T13). To assess luciferase reporter expression, COLO320DM cells were seeded into a 24-well 912 

plate with 100,000 cells per well. Reporter plasmids were transfected into cells the next day with 913 

lipofectamine 3000 following the manufacturer’s protocol, using 0.25 μg DNA per well.  914 

Luciferase levels were quantified using Nano-Glo Dual reporter luciferase assay (Promega).  915 

  916 

Statistics and reproducibility  917 

 All statistical tests used, replicate information, and sample size information are reported in the 918 

figure legends. No statistical method was used to predetermine sample size. No samples or data 919 

points were excluded. The experiments were not randomized. The investigators were not blinded 920 

to the conditions of the experiments during data analysis. 921 

 922 

 923 

Data availability 924 

All sequencing data generated in this study is available through the Gene Expression Omnibus 925 

(GEO) accession number GSE277492.  926 
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE277492 and BioProject NCBI ID: 927 

1162466. https://www.ncbi.nlm.nih.gov/bioproject/1162466  928 

Raw RNA imaging data related to figure 5 is hosted here: 929 

https://doi.org/10.5281/zenodo.16921322  930 

All raw imaging data related to the DNA  is available upon request as it is large. The  processed 931 

data tables from image analysis recording x,y,z positions of RNA and DNA can be found: 932 

https://github.com/sedona-Eve/Kraft_Murphy_Jones_ecDNA/ 933 

 934 

Code Availability 935 

The image analysis code is publicly available at: https://github.com/BoettigerLab/ORCA-public/ 936 

and https://storm-analysis.readthedocs.io/en/latest/analysis.html. Code for reconstructing  937 

amplicons from long read data with the CoRAL algorithm is also publicly available: 938 

https://github.com/AmpliconSuite/CoRAL 939 
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