

1 **HLA-E and NKG2A Mediate Resistance to BCG Immunotherapy in Non-Muscle-Invasive Bladder**
2 **Cancer**

3
4 D. Ranti^{1,2,3,4,5*}, H. Yu^{1,2,3,4*}, B. Salomé^{1,2,3,4,*}, S. Bang⁶, I. Duquesne^{1,2,3,4,5}, Y.A. Wang^{1,2,3,4,5}, C.
5 Bieber^{1,2,3,4,5}, T. Strandgaard^{7,8}, E. Merritt^{3,6}, G. Doherty^{9,10}, A. Narasimhan^{9,10}, I. Okulate^{1,2,3,4}, Sean
6 Houghton¹¹, B. Hug^{1,2,3,4,5}, J. Kim¹¹, H. Ravichandran¹¹, A. Demetriou^{1,2,3,4,5}, Z. Li^{1,2,3,4,9}, S. V.
7 Linskrog^{7,8}, A. N. M. Rangel da Silva^{1,2,3,4,12}, D.F. Ruan^{1,2,3,4}, J. Daza^{1,2,3,4,5}, J. Cris Ingles^{1,2,3,4}, R. Rai⁴, E.
8 Hegewisch-Solloa¹³, E.M. Mace¹³, R. Fernandez-Rodriguez^{2,4}, S. Izadmehr^{4,9}, A.M. Farkas^{3,4,9}, P. Cruz-
9 Encarnacion^{1,2}, S. Shroff^{6,14}, F. Patel^{3,15}, M. Tran^{3,4,9}, D. Youssef^{3,4,9}, A. Ananthanarayanan^{3,4,9} J.
10 Park^{1,2,3,4}, D. Geanon¹⁶, G. Kelly¹⁶, B. Lee¹⁶, K. Nie¹⁶, S. Miake-Lye¹⁶, H. Xie¹⁶, R. Chen¹⁶, C. Bi¹⁶, T.
11 Rizakos¹⁶, B. Villagomez¹⁶, T.H. Thin¹⁷, M. Garcia-Barros¹⁷, H. Brown¹⁷, B. Martin¹⁷, A. Mateo¹⁷, A.
12 Soto¹⁷, R. Sussman¹⁷, S. Shiwlani¹⁷, S. Francisco-Simon¹⁷, K.G. Beaumont^{6,14}, Y-C. Wang^{6,14}, L. Wang⁹,
13 R.P. Sebra^{6,14,18}, S. Smith¹⁹, M. Skobe^{2,4}, E. Clancy-Thompson²⁰, D. Palmer²⁰, S. Hammond²⁰, P. Yolmo²¹;
14 M. Koti²¹, B. D. Hopkins¹¹, P. Wiklund⁵, J. Zhu^{6,14}, J.J. Bravo-Cordero^{9,10}, R. Brody¹⁷, Z. Chen^{1,3,16}, S.
15 Kim-Schulze^{1,3,16}, L. Dyrskjøt^{7,8}, O. Elemento¹¹, A. Tocheva^{3,6}, W-M. Song⁶, N. Bhardwaj^{3,4,9}, M.D.
16 Galsky^{4,9}, J.P. Sfakianos^{5#} & A. Horowitz^{1,2,3,4#}

17
18
19
20 ¹Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York,
21 NY, USA

22 ²Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA

23 ³The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount
24 Sinai, New York, NY, USA

25 ⁴Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA

26 ⁵Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA

27 ⁶Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York,
28 NY, USA

29 ⁷Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark

30 ⁸Department of Clinical Medicine, Aarhus University, Aarhus, Denmark

31 ⁹Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at
32 Mount Sinai, New York, NY, USA

33 ¹⁰Microscopy and Advanced Bioimaging Core, Icahn School of Medicine at Mount Sinai, New York, NY,
34 USA

35 ¹¹Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY,
36 USA

37 ¹²Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil

38 ¹³Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New
39 York NY, USA

40 ¹⁴Icahn Institute for Data Science and Genomics Technology, Icahn School of Medicine at Mount Sinai,
41 New York, NY, USA

42 ¹⁵Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA

43 ¹⁶Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA

44 ¹⁷Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount
45 Sinai, New York, NY

46 ¹⁸Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA

47 ¹⁹Centre for Inflammation Research and Translational Medicine, Department of Biosciences, Brunel
48 University of London, London, UK

49 ²⁰AstraZeneca, Oncology R & D Unit, Gaithersburg, Maryland, USA

50 ²¹Department of Biomedical and Molecular Sciences, Cancer Research Institute, Queen's University,
51 Kingston, ON, CANADA

52 * These authors contributed equally

53 # Co-Senior author

54

55 **Running title.** HLA-E and NKG2A in BCG Resistance

56

57 **Keywords.** Non-muscle-invasive bladder cancer; BCG-unresponsive; NK cells;
58 Immunotherapy.

59

60

61 **Corresponding Authors:**

62 Amir Horowitz, PhD

63 Associate Professor of Immunology & Immunotherapy and Oncological Sciences

64 Lipschultz Precision Immunology Institute and Tisch Cancer Institute

65 Icahn School of Medicine at Mount Sinai

66 1425 Madison Ave., Box 1630

67 New York, New York 10029

68 Tel: (212) 659-9391 | Fax: (646) 537-9577

69 Email: amir.horowitz@mssm.edu

70

71 John P. Sfakianos, MD

72 Associate Professor of Urology

73 Icahn School of Medicine at Mount Sinai

74 1425 Madison Ave., L6-58, Box 1272

75 New York, New York 10029

76 Tel: (212) 659-9375

77 Email: john.sfakianos@m Mountsinai.org

78

79

80 **Conflict of Interest Disclosure Statement:** The authors declare no potential conflicts of interest.

81

82 **Word Count (excluding methods and references): 6705**

83 **Fig. Count: 6**
84 **Table Count: 0**
85

86 **SUMMARY**

87 Bacillus Calmette-Guérin (BCG) is the first-line therapy for high-grade non-muscle-invasive bladder
88 cancer (NMIBC), yet many patients experience recurrence due to immune evasion. We identify HLA-E
89 and NKG2A as mediators of adaptive resistance involving chronic activation of NK and T cells in BCG-
90 unresponsive tumors. Prolonged IFN- γ exposure enhances HLA-E and PD-L1 expression on recurrent
91 tumors, accompanied by the accumulation of NKG2A+ NK and CD8 T cells. HLA-E^{high} tumor cells
92 preferentially cluster near CXCL12-rich stromal regions with dense effector cell presence, underscoring a
93 spatially segregated tumor architecture. Although cytotoxic lymphocytes retain effector potential, their
94 activity is restrained by HLA-E/NKG2A and PD-L1/PD-1 pathways located in their immediate
95 neighborhood within the bladder tumor microenvironment. These data reveal a spatially organized
96 immune escape program that limits anti-tumor immunity. Our findings support dually targeting NKG2A
97 and PD-L1 checkpoint blockade as a rational, bladder-sparing strategy for patients with BCG-
98 unresponsive NMIBC.

99

100 **INTRODUCTION**

101 In non-muscle-invasive bladder cancer (NMIBC), *Bacillus Calmette-Guérin* (BCG) remains the only
102 FDA-approved frontline intravesical immunotherapy¹. Upon transurethral resection of the bladder tumor
103 (TURBT), BCG is administered weekly, intravesical, over six weeks as adjuvant therapy. BCG induces
104 inflammation and IFN- γ production via recruitment and activation of multiple immune lineages, including
105 monocytes, neutrophils, dendritic cells (DCs), T cells, and NK cells^{2,3}. Despite its use for over 40 years,
106 up to 40% of patients experience local recurrence, and up to 13% progress to muscle-invasive disease^{4,5}.
107 Radical cystectomy remains the only curative option for BCG-unresponsive patients, but is associated
108 with significant morbidity, including urinary diversion and reduced quality of life^{6,7}.

109

110 Adaptive immune resistance is a central mechanism by which tumors evade otherwise effective immune
111 surveillance⁸. The mechanisms underlying BCG resistance remain poorly understood. The six-week
112 induction regimen was based on anecdotal data from the 1970s, and only one formal immunologic dosing
113 study has been conducted, which did not address the duration or sustainability of the immune response^{9,10}.
114 While PD-L1 upregulation is observed in a subset of BCG-unresponsive tumors¹¹, PD-1/PD-L1 blockade
115 shows limited efficacy in NMIBC, with durable response rates of ~19%, and PD-L1 levels fail to
116 consistently predict treatment outcomes^{5,11-14}. These data suggest additional resistance pathways are active
117 in the bladder tumor microenvironment (TME).

118

119 HLA-E, a non-classical MHC class I molecule, delivers inhibitory signals via the NKG2A receptor
120 expressed on NK cells and a subset of CD8 T cells¹⁵⁻¹⁹. Preclinical studies have demonstrated that
121 blockade of NKG2A enhances cytotoxic activity of both NK and CD8 T cells, even in PD-1-resistant
122 models^{15,18}. Clinically, dual checkpoint blockade with anti-NKG2A (monalizumab) and anti-PD-L1
123 (durvalumab) doubled progression-free survival in patients with unresectable NSCLC compared to PD-L1
124 monotherapy^{20,21}. We previously showed the importance of the HLA-E/NKG2A axis in modulating the
125 functions of NK-like CD8 T cells in bladder cancer, with a heavy focus on treatment-naïve and muscle-
126 invasive tumors¹⁷.

127

128 In this study, we demonstrate that BCG therapy stimulates IFN- γ production by immune cells within
129 bladder tissue, which in turn not only upregulates PD-L1 on tumor and immune cells but also upregulates
130 HLA-E expression on bladder tumor cells. These HLA-E-expressing tumor cells co-localize with
131 NKG2A \square NK and T cells, whose infiltration is enhanced by BCG-induced chemoattractants. NKG2A \square
132 NK and T cells from BCG-treated tumors exhibit impaired TCR-independent, NK-like helper and
133 cytotoxic functions due to inhibitory interactions with HLA-E and PD-L1. Blocking NKG2A and PD-L1
134 restores their effector functions, supporting the potential of this combination therapy to overcome
135 resistance in BCG-unresponsive non-muscle-invasive bladder cancer.

136

137 RESULTS

138 **HLA-E increases on tumor cells upon BCG treatment and associates with proximity with NKG2A $^+$** 139 **NK cells and T cells**

140 We previously demonstrated that HLA-E expression in bladder tumors decreases as the disease
141 progresses, although expression levels were highly variable at the non-muscle invasive (NMI) stage¹⁷. We
142 here investigated the effects of BCG therapy on HLA-E expression within the NMI bladder tumor micro-
143 environment. We first profiled HLA-E expression by multiplexed immunohistochemistry (IHC) on 41
144 bladder tumor sections (840,348 cells in total) from BCG-naïve (n=17) and BCG-treated (n=24) patients.
145 We identified tumor cells and adjacent non-tumor epithelial cells as positive and negative for pan-
146 cytokeratin, respectively (Figure 1A and 1B). HLA-E^{bright} tumor cells were significantly more abundant in
147 BCG-treated unresponsive tumors (mean frequency 43.6%) compared to BCG-naïve tumors (mean
148 frequency of tumor cells: 43.6% vs 10.3%, p=0.0002) (Figure 1C). Further, within BCG-treated tumors,
149 we observed significantly higher HLA-E expression on tumor cells compared to normal epithelium in
150 adjacent, non-involved tissue (mean frequency of HLA-E^{bright} epithelial cells 21.6% vs 71.2%, p<0.0001)
151 (Figure 1D).

152

153 We next profiled abundance of NKG2A expression on CD3 $^+$ (T cells) and CD3 $^-$ (NK cells) cells in
154 bladder tumors as well as their proximity to HLA-E^{bright} vs HLA-E^{dim/neg} tumor cells (Figure 1E). We
155 observed a significant enrichment of NKG2A-expressing cells in BCG-unresponsive tumors (Figure 1F).
156 NKG2A $^+$ cells were comprised of similar proportions of NK and T cells in BCG-naïve and -unresponsive
157 tumors (Figure 1G). Proximity analyses revealed that NKG2A \square NK and T cells were preferentially
158 localized near HLA-E^{bright} tumor cells, rather than HLA-E^{dim} tumor cells (NKG2A $^+$ NK: p=1.7e-13,
159 NKG2A $^+$ T cells: p=1e-15). Finally, we performed proximity ligation analysis of HLA-E and NKG2A

160 interactions on bladder tumor sections from BCG-naïve (n=6) and BCG-unresponsive (n=4) patients
161 (Figure 1I). HLA-E and NKG2A interactions were increased in BCG-unresponsive tumors (p=0.009)
162 (Figure 1J). Overall, our results indicate a higher prevalence of an engaged HLA-E/NKG2A axis in
163 bladder tissue following recurrence in BCG-treated NMIBC bladder cancer patients.

164

165 **BCG therapy induces IFN- γ secretion, that can drive HLA-E expression levels on tumor cells**

166 We next performed targeted RNA sequencing using multiplexed *in situ* hybridization on BCG-naïve
167 (n=17) and BCG-unresponsive (n=19) tumors (Table S1). BCG-unresponsive tumors at the time of
168 recurrence were significantly enriched in gene pathways associated with numerous proinflammatory
169 pathways, including IFN- γ response signature, tumor inflammation and modulation of T cell function
170 (Figure S1A). *HLA-E* and *NKG2A* were represented in the lymphocyte trafficking and the cytotoxic
171 lymphocytes pathways, respectively.

172

173 The strong IFN- γ signature and enrichment of HLA-E^{bright} tumor cells in BCG-unresponsive tumors led us
174 to examine whether IFN- γ contributes to HLA-E upregulation on tumor cells in the recurrent TME after
175 BCG exposure. We first performed proteomic analyses (Olink) in urine supernatants of bladder cancer
176 patients undergoing BCG therapy. Prior to BCG treatment (“Dose 1”), IFN- γ concentration in urine was
177 comparable in BCG-responsive and BCG-unresponsive patients (Figure S1B). IFN- γ levels then increased
178 significantly during the six-dose induction cycle of BCG treatment. Following BCG treatment, IFN- γ
179 concentration in urine was higher in patients experiencing recurrence, compared to patients with no
180 evidence of disease (Figure 2A). To assess IFN- γ -driven tumor-intrinsic effects, primary NMIBC tumor
181 cells (n=10) and historical bladder cancer lines were cultured with recombinant IFN- γ . Wild-type (“WT”)
182 K562 cells, lacking class I HLA, remained unresponsive, while HLA-E-transduced K562 cells served as
183 positive controls. Across all primary tumor and bladder cancer line samples, IFN- γ significantly
184 upregulated PD-L1 and HLA-E expression, implicating this cytokine in promoting adaptive resistance
185 (Figure 2B). We then profiled by single-cell RNA sequencing (scRNASeq) the expression of *IFNG* in
186 non-muscle invasive bladder tumors (n=7). Using graph-based clustering, we identified twenty-two cell
187 populations, including immune cells, nonhematopoietic stromal cells, normal epithelial cells and tumor
188 cells (Figure 2C, Table S2). Of all the *IFNG*^{high} cells analyzed, *IFNG* was the most highly expressed in
189 CD8 T cells, CD4 T cells, NK cells and proliferating T cells, with additional intermediate expression in
190 myeloid cells (macrophages, monocytes, dendritic cells) (Figure 2D, Figure S1C). Collectively, our

191 findings suggest that IFN- γ is produced upon BCG treatment and contributes to the elevated tumor HLA-
192 E expression in patients with high-grade BCG-unresponsive disease.

193

194 ***HLA-E*^{high} tumors are in proximity with cytolytic cells in the bladder tumor microenvironment**

195 To spatially resolve the relationships between *HLA-E*^{high} tumor cells, stroma and immune infiltrates, we
196 performed 10x VisiumTM spatial transcriptomics (ST-seq) analysis of frozen bladder tumor sections from
197 treatment-naïve (n=4; 5767 Visium spots) and BCG-unresponsive (n=4; 7182 Visium spots) tumors
198 (Table S1). Clustering analysis based on the gene content and the regional features of the tumor tissue
199 revealed 12 unique clusters, where the least represented cluster (cluster 12) remained unclassified and was
200 removed from subsequent analyses (Figure 3A). Clusters were annotated based on their proportional
201 composition of immune, stromal and/or tumor cells defined using gene signatures derived from
202 scRNAseq analysis (Figure 3B). NK and CD8 T cells were mostly represented in five clusters (0, 1, 4, 7,
203 9), alongside other immune subpopulations, as well as stromal and tumor cells. We profiled the relative
204 abundance of each spatial cluster between BCG-naïve and BCG-unresponsive tumors (Figure 3C) and
205 observed substantial differences, where NK/T cell-containing spatial clusters 0, 4 and 6 were strongly
206 enriched in BCG-unresponsive tumors, while the neutrophil/myeloid cell/tumor cell-containing cluster 2
207 was enriched in BCG-naïve tumors (Figure 3C-3E, S2A). We then performed neighborhood analyses to
208 measure the proximity of *HLA-E*^{high} and *HLA-E*^{low} tumor cells to CD8 T cells, regulatory T cells (Tregs),
209 and NK cells. ST-seq VisiumTM spots are 55 μ m, so deconvolution analyses were initially performed to
210 better define which cell lineages are represented in each spot, as well as their relative abundances. In
211 BCG-unresponsive tumors, NK cells, CD8 T cells and Tregs were significantly closer to *HLA-E*^{HIGH}
212 tumor cells compared to *HLA-E*^{LOW} tumor cells, while no differences were observed in BCG-naïve tumors
213 (Figure 3F-3G, S2B). Collectively, our findings demonstrate that HLA-E-expressing bladder tumors are
214 in close proximity with cytolytic immune cells in the bladder tumor microenvironment upon BCG
215 treatment.

216

217 **Geographic organization and cellular interactions in the tumor segregate the microenvironment
218 through local chemotactic hubs while fueling tumor growth**

219 To better understand why *HLA-E* expression on tumor cells stratifies their proximity to immune effector
220 cells, we profiled bladder tumor cell composition by scRNAseq in treatment-naïve NMI bladder tumors
221 (n=3) and in bladder tumors (n=4) from patients who recurred after BCG therapy (Table S1). UMAP
222 clustering analysis revealed seven major subsets of tumor cells (Figure 4A, Table S2) with varying *HLA-*

223 *E* expression and distribution depending on BCG exposure (Figure 4B). Cluster B7 displayed the highest
224 expression of *HLA-E* and was the most represented in BCG-unresponsive patients. The transcriptomic
225 signature of bladder tumors expressing high *HLA-E* levels was enriched in genes associated with
226 inflammation and response to interferons (IFN- α , IFN- \square), compared to their *HLA-E*^{low} counterparts
227 (Figure 4C). *HLA-E*^{low} tumor cells were significantly more proliferative (*MKI67*) compared to *HLA-E*^{high}
228 tumor cells ($p= 2.1e-179$). Conversely, *HLA-E*^{high} tumor cells displayed significantly greater expression of
229 *ACKR3* (CXCR7) ($p= 3.5e-57$) and to a lesser extent *CXCR4* ($p= 1.7e-50$) (Figure 4D). The ligands for
230 CXCR4 and CXCR7 include CXCL11 and CXCL12, which gene expressions in the bladder TME were
231 the highest in myeloid cells and stromal cells, respectively (Figure S3A). To better understand how these
232 chemotactic networks affect the spatial organization of tumor cells within the TME, we applied the
233 scRNAseq gene signatures to ST-sequencing. *CXCL11* gene did not pass the quality control test for
234 spatial transcriptomics. We therefore evaluated the proximity of the *HLA-E*^{high/low} tumor cells to
235 *CXCL12*^{high/low} stromal cells. We found *HLA-E*^{high} and *HLA-E*^{low} bladder tumors to be spatially distinct,
236 with *HLA-E*^{high} tumors being closer to areas displaying higher stromal expression of their chemokine
237 receptor ligand, *CXCL12*, while no difference was observed when comparing their proximity to
238 *CXCL12*^{low} stromal cells (Figure 4E-F, Figure S3B-C).

239
240 We next examined the spatial relationships between NK and CD8 T cells and their surrounding
241 immunosuppressive networks. In our scRNAseq data, *HLA-E* was most highly expressed in neutrophils.
242 Neutrophils also displayed elevated expression of genes encoding additional activating ligands for T cells
243 and NK cells, including the CD7 ligand (*SECTM1*), the LFA-1 ligand (*ICAM3*) and the ligand for the T
244 cell immune checkpoint BTLA (*TNFRSF14*) (Table S2, Figure 4G). These findings suggest potential
245 interactions between neutrophils and NK/CD8 T cells. Using ST-sequencing, we further demonstrated
246 that neutrophils are positioned in closer proximity to NK and CD8 T cells within the bladder TME
247 (Figure 4H-I, S3D). mReg DCs were recently described as mature DCs that express high levels of
248 immunoregulatory molecules. Accordingly, mReg DCs expressed the highest levels of the gene encoding
249 for PD-L1 (*CD274*) together with high expression of *CMTM6*, a stabilizer of PD-L1 at the cell surface^{22,23}
250 (Table S2). mReg DCs also showed high expression of ligands for the TIGIT (*NECTIN-2*), CTLA-4
251 (*CD80*, *CD86*), CD200R (*CD200*) and Tim-3 (*LGALS9*) immune checkpoint pathways (Table S2, Figure
252 4J). mReg DCs were additionally located in close proximity to NK and CD8 T cells in the bladder TME
253 (Figure 4K-L, Figure S3E). Collectively, these results highlight a spatial tumor dichotomy and show that

254 NK and CD8 T cells are associated with neutrophil- and mReg DCs-driven immunosuppressive networks
255 within the bladder TME.

256
257 ***KLRC1*^{high} NK and CD8 T cells offer specialized helper and cytolytic effector functions in bladder**
258 **tumors.**

259 We next characterized the NKG2A⁺ cell compartment in NMI tumors in response to BCG treatment. We
260 first profiled NK cell transcriptomic signatures by single-cell RNA sequencing. Building on two recent
261 seminal resources for transcriptional reference mapping of human NK cells in solid tissues^{24,25}, we
262 integrated the newly defined gene signatures to annotate functional states to bladder tumor-derived NK
263 cells: Group 1 stressed CD56^{bright}, Group 2 typical CD56^{bright}, Group 3 effector CD56^{dim}, Group 4
264 adaptive CD56^{dim}, Group 5 activated CD56^{dim} and Group 6 typical CD56^{dim} NK cells (Figure 5A, Table
265 S3). Those groups mirrored the five NK subgroups that we obtained by unbiased clustering, with Groups
266 1 and 2 NK cells representing approximately 80% of the total tumor-infiltrating NK cells (Figure S4A,
267 Table S3). We similarly referenced mapped gene signatures for NK1, NK2, and NK3 subsets as recently
268 demonstrated by Rebuffet et al^{25,26}, where these definitions most closely reflect a traditional
269 developmental trajectory of NK cells across human tissues. NK2 and NK-intermediate cells represent
270 immature CD56^{bright} NK cells, while NK3 cells include terminally mature and adaptive NK cells. Our
271 comparative analysis revealed an enrichment of NK-intermediate cells representing the original clusters 1
272 and 2, and NK1B cells representing the original clusters 3 and 4. Both NK1B and NK-intermediate
273 signatures were shared among the original cluster 5 suggesting transitional properties of this NK cell
274 subset (Figure S4A and S4B, Table S3). Group 2 NK cells were the most abundant NK cell subset in the
275 bladder TME, independently of BCG treatment status (Figure 5B), and expressed the highest levels of
276 *KLRC1* (Figure 5C). They tracked very closely with previous descriptions of this functional state across
277 many other human tissues by Netskar et al²⁴. We then evaluated the transcriptome of NK cells depending
278 on their expression of *KLRC1*. *KLRC1*^{high} cells displayed stronger expression of genes encoding tissue-
279 resident memory markers (*ZNF683*, *ITGAE*, *CXCR6*), pro-inflammatory chemokines (*XCL2*, *CSF1*) and
280 NK checkpoints (*TNFRSF18*, *CD96*, *TIGIT*) while *KLRC1*^{low} cells displayed a stronger cytolytic and
281 activating signatures (*GZMB*, *GZMH*, *GZMM*, *NKG7*, *FGFBP2*, *IFNG*, *CD69*) (Figure 5D, Table S3).

282
283 We recently showed that the effects of NKG2A extend beyond NK cells in bladder cancer, where its
284 expression is associated with T cell exhaustion and the acquisition of NK-like functions by CD8 T cells¹⁷.
285 We therefore investigated the expression of NKG2A on CD8 T cells in NMI tumors. Unbiased clustering

286 analysis revealed eight main CD8 T cell clusters, with a trend toward enrichment of the “*NFIL3* effector”,
287 “Early exhausted” and “Terminally exhausted” clusters following BCG treatment (Figure 5E-F, Table
288 S3). Those three clusters displayed the highest *KLRC1* expression (Figure 5G). We then profiled the
289 transcriptome of CD8 T cells depending on *KLRC1* expression. *KLRC1*^{high} CD8 T cells showed higher
290 expression of genes encoding T cell checkpoints (*TIGIT*, *ENTPD1*, *CTLA4*), tissue-residency memory
291 molecules (*ITGA1*), NK cell activation markers (*CD226*), cytotoxic mediators (*FASLG*, *GNLY*, *GZMB*)
292 and proliferation marker (*MKI67*) (Figure 5H, Table S3).

293
294 We next compared the transcriptome of *KLRC1*^{high} NK cells (Group 2 NK cells) and *KLRC1*^{high} CD8 T
295 cells. In the bladder TME, Group 2 NK cell signature was more associated with the production of pro-
296 inflammatory chemokines (*XCL1*, *XCL2*) and cytokines (*CSF1*, *AREG*), while *KLRC1*^{high} CD8 T cells
297 displayed higher levels of cytolytic mediators (*GZMA*, *FASLG*). The tissue-residency memory program
298 was more pronounced in *KLRC1*^{high} NK cells but remained lower compared to *KLRC1*^{high} CD8 T cells.
299 Another crucial distinction between those two subsets laid in the exclusive expression of T cell
300 exhaustion markers by *KLRC1*^{high} CD8 T cells. Finally, while *CXCR3* was expressed in both *KLRC1*^{high}
301 and *KLRC1*^{low} CD8 T cells, its expression levels were increased upon higher *KLRC1* expression in NK
302 cells (Figure 5I, Table S3). *CXCR3* is a chemokine receptor that promotes cell migration towards
303 concentration gradients of CXCL9, CXCL10 and CXCL11. We found the genes encoding for these three
304 chemokine ligands to be the most highly expressed in dendritic cells, macrophages and monocytes within
305 the bladder TME (Figure S4C). To better understand the dynamic nature of this chemotactic signaling
306 during BCG treatment, we sampled urine supernatants from patients with high-grade NMIBC before and
307 during the six-week induction cycle and time of first cystoscopy (12-16 weeks) from two cohorts: Mount
308 Sinai Hospital, New York, USA and Aarhus University, Aarhus, Denmark. We performed multiplexed
309 qPCR by Olink ProteomicsTM to profile 92 soluble analytes associated with inflammation and immune
310 response. In the Mount Sinai cohort, CXCL9, CXCL10, and CXCL11 were among the molecules that
311 were upregulated upon the six BCG doses. Opportunistically, we had access to another clinical dataset of
312 BCG-treated patients with NMIBC at Aarhus University with an overlapping but nonredundant Olink
313 ProteomicsTM analysis. CXCL9, CXCL10, and CXCL11 were also upregulated following BCG exposure,
314 at time of first cystoscopy (Figure S3D). Overall, our results suggest that the CXCR3 chemotactic axis
315 might promote NKG2A⁺ NK and CD8 T cell migration within the bladder TME, where NKG2A
316 expression on NK cells is linked to a pro-inflammatory helper profile, and its expression on CD8 T cells
317 is linked to a cytolytic profile.

318

319

320 **Cytolytic effector functions are impaired in BCG-treated tumors but can be effectively restored by
321 anti-NKG2A and anti-PD-L1 blockade**

322 In order to evaluate the potential for anti-NKG2A and anti-PD-L1 in restoring cytolytic functions upon
323 BCG resistance, we tested the effects of the HLA-E/NKG2A and PD-1/PD-L1 axes on NK cells and NK-
324 like CD8 T cell functions in BCG-treated bladder tumors. TILs were isolated from BCG-unresponsive
325 tumors (n=4) and expanded up to 13 days in the presence of low dose IL-2, IL-7 and IL-15 as well as
326 anti-CD3, -CD28 and -CD2 stimulating agents. TGF- β was added in the last three days to promote
327 NKG2A expression, as we previously reported¹⁷. NK cells and CD8 T cells made up 0.7% and 16% of all
328 expanded TILs and NKG2A was expressed in 29% and 13% of NK and CD8 T cells, respectively (Figure
329 S5A-S5B). We measured TCR-independent NK-like functions of NK cells and CD8 T cells by co-
330 culturing expanded TILs with an artificial HLA class I^{-/-} K562 acute myeloid leukemia tumor model, as
331 previously described¹⁷. K562 cells that were stably transduced with HLA-E were pre-stimulated during 24
332 hours with recombinant IFN- γ in order to induce PD-L1 expression (Figure S5C). Flow cytometry was
333 performed upon 6h co-cultures of TILs with HLA-E^{+/+} PD-L1^{+/+} K562 cells in the presence or absence of
334 anti-PD-L1 blockade or combined anti-PD-L1 and anti-NKG2A blockade (Figure 6A). CD56 was then
335 used as a surrogate for NKG2A as use of monalizumab precluded our ability for detecting NKG2A with
336 antibodies by flow cytometry. NK cells and CD56⁺ CD8 T cells displayed greater degranulation and IFN-
337 γ production to HLA class I^{-/-} K562 cells compared to *ex vivo* activity, and their response was diminished
338 when K562 cells stably expressed HLA-E or HLA-E and PD-L1. NK cell activation was restored in
339 response to both HLA-E⁺ and HLA-E⁺ PD-L1⁺ K562 cells when pre-treated with anti-NKG2A Ab alone
340 or in combination with anti-PD-L1 Ab (CD107a: 2.1-fold increase, p=0.02; IFN- γ : 1.6-fold increase,
341 p=0.05). TCR-independent activation of CD56⁺ CD8 TILs tended to increase upon anti-NKG2A
342 blockade, and this increase became significant in the presence of both anti-NKG2A and anti-PD-L1 Abs
343 (CD107a: 1.75-fold increase, p=0.02; IFN- γ : 1.8-fold increase, p=0.007) (Figure 6B). Collectively, the
344 data show impairment of NK cell and NK-like CD8 T cell functions through the HLA-E/NKG2A and
345 PD-L1/PD-1 immunosuppressive axes and suggest a potential effect of anti-NKG2A and anti-PD-L1
346 blockade in managing tumor recurrence after failing BCG therapy.

347

348 **DISCUSSION**

349 Intravesical administration of BCG is initiated as adjuvant immunotherapy, as complete tumor
350 resection is the initial diagnostic and therapeutic step in NMIBC. As a result, standard of care BCG
351 immunotherapy is delivered into an inflamed bladder mucosa with minimal residual disease rather than
352 against an established tumor²⁷. Yet, treatment improvements for NMIBC, especially for BCG-
353 unresponsive patients, remain limited. This may reflect the lack of work connecting the timing of tumor
354 recurrence, the reasoning for the recurrence, and the state of the immune system at the time of recurrence.
355 Poor dosing study designs and lack of understanding of the mechanisms underlying a therapeutic
356 response to intravesical BCG have led to a significant gap in knowledge and benefit for patients with
357 NMIBC compared to muscle-invasive or metastatic disease.

358

359 Adaptive resistance can be driven by tumor-intrinsic and/or extrinsic mechanisms in overcoming
360 immune pressures²⁸⁻³¹. This complex process involves multiple non-redundant checkpoints that have
361 evolved in humans. Cancers highjack a critical function applied in normal tissues, whereby negative
362 feedback “turns off” immune responses following resolution of, e.g., infection or wound. For instance,
363 evidence from mouse and human studies demonstrates that interferons, while stimulating a robust anti-
364 tumor response, also upregulate immune-suppressive factors in the setting of prolonged activation. In
365 melanoma, IFN- γ from CD8 T cells was shown to upregulate tumor PD-L1 expression and mediate
366 infiltration of FOXP3⁺ regulatory T cell pathways within the TME³². In a broader meta-analysis across 18
367 tumor indications, including bladder cancer, inflammatory mediators including IFN- γ were associated
368 with inhibitory immune checkpoints, including PD-L1/L2^{33,34}. Despite emerging evidence positioning
369 pro-tumorigenic roles for IFN- γ , there are well-established anti-tumor functions mediated through IFN- γ
370 that are critical for anti-PD-L1 immunotherapy³⁵. Anti-tumor inflammation, therefore, exists along a
371 continuum where an equilibrium is necessary for appropriate immunotherapeutic efficacy³⁶.

372

373 In our investigation, we examined the primary resistance mechanisms to BCG therapy and
374 assessed the impact of BCG-induced inflammation on the dynamic interplay between tumor and immune
375 cell populations. Using both prospective and retrospective NMIBC specimens collected before, during,
376 and after BCG treatment, we observed a pervasive inflammatory response in both BCG responders and
377 non-responders. Our analyses revealed significantly higher expression of HLA-E in bladder tumors which
378 recurred after BCG therapy compared to their BCG-naïve counterparts. This upregulation of HLA-E may
379 be driven by the sustained and elevated IFN- γ concentrations observed at time of recurrence. Tumors with
380 the highest HLA-E expression were found in closest proximity to NKG2A \square NK and T cells,

381 underscoring the potential importance of the HLA-E/NKG2A immune checkpoint axis in BCG resistance.
382 A novel aspect of our study is the spatially resolved insight into the consequences of IFN- γ dysregulation
383 and patterns of tumor-immune cell homing. Spatial and scRNAseq analyses of the bladder TME
384 demonstrated that NK cells and NKG2A⁺ CD8 T cells move closer to HLA-E^{high} tumor cells in recurrent
385 tumor settings, which is mediated through a network of chemotactic signaling. Immunosuppressive
386 pathways associated with neutrophils and mReg DCs were also found in close proximity to NK cells and
387 CD8 T cells. BCG treatment induced expression of ligands for CXCR3, that is expressed on NKG2A⁺ NK
388 cells and CD8 T cells, suggesting the involvement of this chemotactic pathway in the recruitment of those
389 effectors in the bladder TME. Tumor cells were spatially distinct based on their expression of HLA-E,
390 with HLA-E^{high} tumor cells being specifically close to stromal cells that express CXCL12. This suggests
391 an immune evasion mechanism in which HLA-E^{high} tumor cells - responding to stroma-derived CXCL12 -
392 may act as 'decoys' to help protect HLA class I-negative tumor cells.

393

394 We also identified NKG2A receptor expression as a key factor in shaping the anti-tumor effector
395 functions of NK and CD8 T cells in the bladder TME. NKG2A \square NK cells displayed a stronger helper
396 profile, whereas NKG2A \square CD8 T cells exhibited a more potent cytolytic profile. This suggests that
397 NKG2A expression on NK and CD8 T cells encodes distinct yet complementary programs that may
398 cooperate in eliminating tumor cells lacking HLA-E. NKG2A-enriched NK and CD8 T cells from BCG-
399 unresponsive patients responded to *in vitro* stimulation with MHC-I-lacking K562 tumor cells, in line with
400 our previous findings showing that NKG2A⁺ CD8 T cells display TCR-independent innate-like
401 functions¹⁷. However, their functional response to HLA-E \square PD-L1 \square K562 tumor cells was robustly
402 increased in the presence of combined NKG2A/PD-L1 blockade. Collectively, our findings depict a
403 landscape of immune dysregulation in BCG-resistant bladder cancer, prominently characterized by
404 elevated tumor HLA-E expression, altered immune-tumor spatial relationships, and chemokine-driven
405 cell positioning, with implications for targeting the HLA-E/NKG2A axis in therapy.

406

407 Our findings suggest that all NMIBC patients at the time of tumor recurrence show signs of a
408 hallmark anti-tumor immune response dominantly driven by IFN- γ . BCG-unresponsive tumors see
409 uniform increases in chemotactic cytokines and inflammatory pathways that should otherwise function to
410 suppress tumor growth. Further, increased expression of inhibitory ligands on BCG-unresponsive tumor
411 cells was observed, suggesting that inflammatory stimuli had been prolonged and triggered feedback
412 mechanisms responsible for immune evasion. These results are seen on multiple levels, including bulk

413 and single-cell RNA sequencing, spatial sequencing, multiplex imaging, and flow cytometry. This implies
414 that when tumors recur, for reasons beyond the scope of this study, they are met by an overactive status of
415 the immune system ill-equipped to combat them. Here, we, for the first time, link both established and
416 novel concepts to identify a key mechanism of resistance to immunotherapy in bladder cancer. This might
417 not be unique to bladder cancer, but BCG as a treatment for bladder cancer uniquely exacerbates this
418 phenomenon.

419

420 Previous analyses profiling urine analytes between the BCG naïve and third dose timepoints
421 demonstrated that three doses of BCG induced an inflammatory response hundreds of times above
422 baseline levels of cytokines, including but not limited to IP-10, MIP-1 β , IL-8, IL-6, and TNF α ³⁷.
423 Importantly, the third dose-response dwarfed the magnitude of the first dose-response, suggesting that
424 repeated exposure increases the magnitude of inflammation³⁷. While these data did not profile out to the
425 time of tumor recurrence, they lend credence to the theory that all patients experience a ubiquitous and
426 increasingly powerful immune response to repeated doses of BCG. Importantly, our findings confirm
427 these previous observations. Further, they demonstrate that inflammation is sustained even throughout the
428 six-week treatment interruption at time of first cystoscopy and do not equilibrate to baseline levels.

429

430 Clinical efficacy in checkpoint blockade is dependent on reinvigorating effector cells expressing
431 high levels of the targeted checkpoint(s). Our findings reinforce both the use of NKG2A to reinvigorate
432 cytolytic effector and helper functions by NK and CD8 T cells, as well as the potential to exploit a critical
433 mechanism of tumor resistance, whereby chemokines lure in effector cells to take on exhausted
434 phenotypes. Recent clinical evidence emerging from interim results of the randomly controlled Phase II
435 COAST trial demonstrated significantly prolonged survival in non-small cell lung cancer (NSCLC)
436 patients treated with monalizumab combined with durvalumab compared to standard of care durvalumab
437 alone for treatment of unresectable stage 3 NSCLC²⁰. This combination is currently being further
438 evaluated in a larger Phase III trial (PACIFIC-9, NCT05221840) following these promising early results.
439 Collectively, our data demonstrate that elevated tumor expression of HLA-E and PD-L1 and chronic
440 activation of NKG2A-expressing NK and CD8 T cells are hallmark features of resistance to BCG
441 immunotherapy in NMIBC tumors and that integrating NKG2A-blockade into combination
442 immunotherapy strategies may prove particularly effective in settings of BCG-unresponsive, high-grade
443 NMIBC.

444

445 Based on the data generated from this study, we recently designed and began accrual of a Phase 2
446 trial of durvalumab (MEDI4736) and monalizumab in NMIBC. The Phase 2 trial: ENHANCE (Elevated
447 NKG2A and HLA-E Amplify NK and CD8 T-cell Engagers) (clinicaltrials.gov ID: NCT06503614)
448 investigates the effects of monalizumab (anti-NKG2A Ab) plus durvalumab (anti-PD-L1 Ab) for
449 combination checkpoint blockade in high-grade BCG-unresponsive (and exposed) NMIBC as a bladder-
450 sparing immunotherapy strategy. In this trial, an exploratory objective is to assess the relationship
451 between baseline tumor HLA-E expression and NKG2A abundance and clinical outcomes to facilitate
452 development of HLA-E as a potential biomarker for patient selection in future clinical trials intending to
453 target NKG2A.

454 Our study has notable limitations. Our sample sizes, while being the largest NMIBC spatial
455 sequencing and single-cell RNA sequencing cohorts available, are small and present a potentially limited
456 view of the disease. Further, certain genes of relevance, e.g., *KLRC1*, *CXCL9*, *CXCL10*, *CXCL11*,
457 *CXCR3*, *CXCR4* did not pass our quality control and, therefore, had to be omitted for subsequent spatial
458 sequencing analyses. Additionally, as BCG is administered as an adjuvant therapy, we are only afforded
459 access to bladder tissues after treatment if tumor recurs. Thus, it was not feasible to profile bladder tissues
460 in the absence of tumor following exposure to BCG. Future studies might benefit from a neoadjuvant
461 approach, where tumor tissue can be sampled and profiled for potential therapeutic responses to BCG.

462
463 Collectively, our analyses suggest that the current guidelines on immunotherapy for BCG-
464 unresponsive NMIBC could be improved via a multi-cell-targeting immunotherapy approach that exploits
465 NK cells to improve T cell-targeted immunotherapies. Randomized trials from bladder and other tumor
466 indications have shown that PD-1/PD-L1 stratification fails to predict response to immunotherapy with
467 anti-PD-1/PD-L1 antibodies: IMvigor210, JAVELIN bladder 100, and CheckMate-275 (NCT02108652,
468 NCT01772004, NCT02387996) all saw that PD-1/PD-L1 biomarker stratification alone did not
469 effectively stratify response rates. In comparison, recent results using *KLRC1* (NKG2A) expression in the
470 pre-treatment tumor significantly improved predicted anti-PD-L1 response rates in the IMvigor210
471 cohort, but only in the CD8^{high} *PDCD1* (PD-1)^{high} group¹⁷. In fact, where IHC stratification of PD-L1
472 expression has failed to predict immunotherapeutic responses, *KLRC1* stratification in IMvigor210
473 showed protective effects were restricted to the PD-L1 IC high group. In conclusion, while our analysis
474 does not exclude the presence of alternative checkpoints, it lends evidence to the hypothesis that
475 combination immunotherapy strategies dually targeting NK and T cells may hold the key to improved
476 outcomes for patients with high-grade NMIBC.

477

478 **ACKNOWLEDGMENTS**

479 We thank Mary Anne O'Donnell (Precision Immunology Institute, Icahn School of Medicine at Mount
480 Sinai) for critically reviewing the manuscript; Deepta Bhattacharya (University of Arizona) for kindly
481 providing HLA-E⁺ K562 tumors. We acknowledge the expertise and assistance of the Dean's Flow
482 Cytometry Center of Research Excellence at Mount Sinai. The A.H. and J.P.S labs were supported by
483 funding from P30CA196521, R01CA269954-01, R21CA274148, BCAN (Bladder Cancer Advocacy
484 Network) No. 961726, R01CA301050, and R21AI130760A. The N.B. lab was supported by funding
485 from the Department of Defense Peer Review Cancer Research program Translational team Award No.
486 W81XWH1910269 and from the Parker Institute for Cancer Immunotherapy No.AGR-11611SOW1. The
487 J.J.B-C lab was supported by funding from R01CA244780, R61CA278402, the Irma T. Hirsch Trust and
488 the Emerging Leader Award from the Mark Foundation. The L.D lab was supported by funding from the
489 Danish Cancer Society. The O.E lab was supported by the following grants: NCI250233, OT2CA297580,
490 U24CA264032, R01AI187598, R01CA271915, U01DA058527, R01CA271619, R01CA271545,
491 R01NS111997, R01NS127984, R01CA269954, U19AI168632, OT2OD032720, 80NSSC23K0832,
492 CGCATF2023100030, HHWF240412, and LLS702723. A.N.M.R.S was part of the A.H lab as part of an
493 existing collaboration with Dr. Leonardo Oliveira Reis (UroScience, University of Campinas-UNICAMP,
494 Campinas, São Paulo, Brazil) and National Council for Scientific and Technological Development
495 (CNPq-Brazil Edital 26/2021- Process 402562/2022-4) and received the following fellowship: CNPq-
496 PDE process 201230/2024-0.

497

498

499 **AUTHOR CONTRIBUTIONS**

500 D.R., H.Y., Y.A.W., C.B., J.D., B.S., M.G., N.B., J.P.S., and A.H. conceived the project and experiments,
501 analyzed the data and wrote the manuscript. J.P.S., R.M., P.W., M.G., and R.B. provided access to the
502 human samples. Additionally, L.D. provided analyses on data derived from human samples at Aarhus
503 University Hospital. D.R., H.Y., Y.A.W., C.B., A.D., S.B., W-M.S., J.D., B.S., D-F.R., F.P. E.M., A.T.,
504 J-A.C-F., B.D.H., T.S., S.V.L., S.H., J.K., performed the experiments or analyzed data. A.M.F, M.T.,
505 J.Z., K.G.B, L.W, R.P.S, S.S, Y-C.W, and Y.A.W. collected the RNA sequencing data. D.G., G.K.,
506 R.M.d-R, B.L., S.K-S. acquired sample data using Olink proteomics. T.H.T, M.G-B, R.B., E.H-S,
507 E.M.M, C.B., R.F-G, M.S, H.R, A.N., G.D., and J.J.B-C. performed the imaging experiments. S.S., E.C-

508 T., D.P., and S.H. provided intellectual input. Authors affiliated with the Tisch Cancer Institute were
509 supported by the National Cancer Institute Cancer Center Support Grant P30CA196521.

510

511 **DECLARATION OF INTERESTS**

512 A.H. receives research funds from Astra Zeneca and has recently served on the advisory boards of
513 Immunorizon, Purple Biotech, enGene, and Moexa Pharmaceuticals. N.B. is an extramural member of the
514 Parker Institute for Cancer Immunotherapy, receives research funds from Regeneron, Harbor Biomedical,
515 DC Prime, and Dragonfly Therapeutics and is on the advisory boards of Neon Therapeutics, Novartis,
516 Avidea, Boehringer Ingelheim, Rome Therapeutics, Rubius Therapeutics, Roswell Park Comprehensive
517 Cancer Center, BreakBio, Carisma Therapeutics, CureVac, Genotwin, BioNTech, Gilead Therapeutics,
518 Tempest Therapeutics, and the Cancer Research Institute. LD has sponsored research agreements with
519 C2i Genomics, Veracyte, Natera, AstraZeneca, Photocure, and Ferring and serves in an
520 advisory/consulting role for Ferring, MSD, Cystotech, and UroGen. LD has received speaker honoraria
521 from AstraZeneca, Pfizer, and Roche.

522 **MAIN FIGURE TITLES AND LEGENDS**

523

524 **Figure 1: HLA-E increases on tumor cells upon BCG treatment and associates with proximity with**
525 **NKG2A⁺ NK cells and T cells**

526 **(A-D)** IHC was performed on bladder tumor and adjacent non-involved tissues from BCG-naïve and
527 BCG-unresponsive NMIBC patients.

528 **(A)** Representative digital pathology analyses identifying tumor, adjacent tissue along with exposed areas
529 of glass to be excluded from subsequent analyses.

530 **(B)** Representative density map showing gradient of HLA-E tumor expression.

531 **(C)** Summary analysis of frequency of tumor cells that are HLA-E-bright and HLA-E-dim/negative in
532 BCG-naïve (n=17) and BCG-unresponsive (“unresp.”, n=24) NMIBC tumors. The p-value was obtained
533 using an independent two-sided t-test.

534 **(D)** Summary analysis of frequency of HLA-E^{bright} epithelial cells in tumor and adjacent, non-involved
535 bladder tissues from BCG-unresponsive patients with NMIBC. The p-value was obtained using a paired t-
536 test. Lines show matching samples from a same donor.

537 **(E-J)** IHC was performed on NMIBC tumors (n=41 tumors).

538 **(E)** Representative digital pathology analysis on one BCG-naïve and one BCG-unresponsive NMIBC
539 tumor section highlighting nuclear expression of DAPI and identification of CD3⁺NKG2A⁺ T cells, CD3-
540 NKG2A⁺ NK cells and tumor cells with bright or dim/negative expression of HLA-E.

541 **(F)** Frequencies of NKG2A⁺ cells in BCG-naïve (n=17) and BCG-unresponsive (“unresp.”, n=24) tumors.

542 **(G)** Frequencies of NK cells within the NKG2A⁺ cell compartment in BCG-naïve (n=17) and BCG-
543 unresponsive (n=24) tumors.

544 **(H)** Proximity analysis measuring the cell distance from CD3⁻ NKG2A⁺ NK cells or CD3⁺NKG2A⁺ T
545 cells and tumor cells, depending on the tumor cell expression of HLA-E. P-values were assessed via
546 independent two-sided t-test.

547 **(I-J)** Interactions between HLA-E and NKG2A were profiled using an immunofluorescence-based
548 proximity ligation assay in bladder tumors from NMIBC patients (n=10).

549 **(I)** Representative staining in one BCG-naïve (left) and one BCG-unresponsive (right) patient.

550 **(J)** Summary analysis of the interactions between HLA-E and NKG2A in BCG-naïve (n=6) and BCG-
551 unresponsive (n=4) tumors. The p-value was assessed via independent two-sided t-test.

552

553 **Figure 2: BCG therapy induces IFN- \square secretion, that increases HLA-E and PD-L1 expression**
554 **levels on tumor cells**

555 (A) Olink protein analysis was performed on urine supernatants of patients undergoing BCG therapy.
556 IFN- \square concentrations were compared between dose 1 and dose 6 of the first induction cycle (left panel)
557 and between non-evidence of disease (absence of tumor) and recurrence cases of BCG-treated patients
558 (right panel). Lines show matching samples from a same patient. P-values were obtained with paired (left)
559 or unpaired (right) t-tests.

560 (B) Flow cytometry was performed on primary CD45 $^{-}$ tumor cells from NMIBC patients and
561 immortalized bladder tumor lines *ex vivo* and upon 24 hour stimulation with rhIFN- \square . Representative
562 (left) and summary (right) expression of PD-L1 and HLA-E in triplicate experiments.

563 (C-D) Since-cell RNA sequencing was performed on *ex vivo* bladder tumors (n=3 BCG-naïve, n=4 BCG-
564 unresponsive).

565 (C) UMAP clustering analysis. Each color represents a cluster.

566 (D) Distribution of the *IFNG*^{high} cells across all clusters.

567

568 **Figure 3: HLA-E^{high} tumors are in proximity with cytolytic effector cells in the bladder tumor**
569 **micro-environment**

570 (A-G) Spatial transcriptomics sequencing (ST-seq) analysis was performed on NMIBC tumors (n=8).

571 (A) UMAP visualization of the ST-clusters. Each color represents one cluster.

572 (B) Relative composition of the ST-clusters across immune, stromal and tumor cell subtypes (columns) as
573 defined by scRNAseq analysis. The size of each bubble indicates its relative enrichment and the shading
574 of the surrounding boxes represents the significance by FDR (corrected p-values).

575 (C) Relative enrichment of each ST-cluster in BCG-naïve (N=4) and BCG-unresponsive (N=4) tumors.

576 (D) Distribution of each cluster in BCG-naïve and BCG-unresponsive tumor specimens. Each color
577 represents one cluster.

578 (E) Representative ST-seq images showing the distribution of ST-clusters in one BCG-naïve (left) and
579 one BCG-unresponsive (right) NMIBC tumor specimens. Each color represents one cluster.

580 (F) Representative ST-seq images from one BCG-naïve (left) and one BCG-unresponsive (right) NMIBC
581 tumor specimens showing proximity analyses of *HLA-E*^{low} and *HLA-E*^{high} tumor cells as well as NK cells,
582 CD8 T cells, and Tregs alone or in combination. Each dot represents one cell type.

583 (G) Summary comparisons of proximity of *HLA-E*^{low} and *HLA-E*^{high} tumor cells to NK cells, CD8 T cells
584 and Tregs. p-values were determined using two-sided Wilcoxon test.

585

586 **Figure 4: Geographic organization and cellular interactions in the tumor segregate the**
587 **microenvironment through local chemotactic hubs while fueling tumor growth**

588 (A-D) Single-cell RNA sequencing was performed on ex vivo bladder tumors (n=3 BCG-naïve, n=4
589 BCG-unresponsive) and tumor cells selected for further analyses.

590 (A) UMAP visualization of bladder tumor cells from unsupervised clustering. Each color represents one
591 cluster.

592 (B) Average expression of HLA-E per cluster (left) and distribution of the bladder tumor cell clusters in
593 BCG-naïve and BCG-unresponsive NMIBC tumors (right).

594 (C) Pathway analysis of Hallmark gene networks that are significantly differentially expressed on HLA-
595 E^{high} and HLA-E^{low} bladder tumor cells.

596 (D) Differential expression in HLA-E^{high} and HLA-E^{low} tumors of key genes of interest.

597 (E-L) Spatial transcriptomics sequencing (ST-seq) was performed on ex vivo bladder tumors (n=4 BCG-
598 naïve, n=4 BCG-unresponsive)

599 (E) Representative ST-seq image from one NMIBC tumor highlighting the proximity of stromal cells and
600 tumor cells according to *HLA-E* expression in the tumors and *CXCL12* expression in the stromal cells.

601 (F) Summary graph of the proximity between *HLA-E*^{low/high} tumors and *CXCL12*^{high} spots.

602 (G) Average expression in all cell populations of genes of interest that are upregulated in neutrophils and
603 their ligands/receptors.

604 (H) Representative ST-seq image from one NMIBC tumor highlighting the proximity of NK and CD8 T
605 cells to neutrophils.

606 (I) Summary graph of the neutrophils deconvolution scores in spots that are neighbors of NK/CD8T cells
607 vs other cells.

608 (J) Average expression in all cell populations of genes of interest that are upregulated in mReg DCs and
609 their ligands/receptors.

610 (K) Representative ST-seq image from one NMIBC tumor highlighting the proximity of NK and CD8 T
611 cells to mReg DCs.

612 (L) Summary graph of the mReg DCs deconvolution scores in spots that are neighbors of NK/CD8T cells
613 vs other cells

614

615 **Figure 5: Bladder tumors are enriched with *KLRC1*^{high} NK and CD8 T cells that offer helper and**
616 **cytolytic effector functions.**

617 (A-I) Single-cell RNA sequencing was performed on *ex vivo* bladder tumors (n=3 BCG-naïve, n=4 BCG-
618 unresponsive). Further analyses were then performed on selected NK cells or CD8 T cells.
619 (A) UMAP visualization of NK cells from the bladder tumors, showing the Groups 1-6 clusters defined
620 by Netskar et al²⁴
621 (B) Distribution of the Groups 1-6 NK clusters in BCG-naïve and BCG-unresponsive tumors
622 (C) For each of the six NK clusters, violin plot displaying *KLRC1* expression (top) and list of key genes
623 of interests (bottom)
624 (D) Differential transcriptomic signature between *KLRC1*^{high} and *KLRC1*^{low} NK cells.
625 (E) UMAP visualization of CD8 T cells from the bladder tumors, showing eight clusters from unbiased
626 cluster analysis
627 (F) Distribution of the eight CD8 T cell clusters in BCG-naïve and BCG-unresponsive tumors
628 (G) For each of the eight CD8 T cell clusters, violin plot displaying *KLRC1* expression (top) and list of
629 key genes of interests (bottom)
630 (H) Differential transcriptomic signature between *KLRC1*^{high} and *KLRC1*^{low} CD8 T cells.
631 (I) Heatmap displaying the expression of key genes of interest between Groups 1-6 NK cells and
632 *KLRC1*^{high/low} CD8 T cells.

633
634 **Figure 6: NKG2A and PD-L1 blockade increase NK and CD8 T cell-mediated antitumor activity in**
635 **BCG-unresponsive patients**

636 (A-C) Tumor-infiltrating lymphocytes (TILs) were expanded *in vitro* from BCG-unresponsive bladder
637 tumors (n=4) during 13 days in the presence of IL-2 and CD3/CD28/CD2 T cell activator, prior to a 6-
638 hour co-culture with K562 cell lines. NK and CD8 T cell functions were then assessed using flow
639 cytometry. “WT” K562: Wild-type (HLA-E⁻) K562 ; “E+” K562: HLA-E-induced K562; “L1+E+” K562:
640 HLA-E induced K562 that were stimulated with IFN- \square to induce PD-L1 expression.
641 (A) Representative and (B) summary expression of IFN- \square and CD107a by NK cells and CD56⁺ CD8 T
642 cells after co-culture with HLA-E^{-/+} PD-L1^{-/+} K562 cell lines in the presence or absence of anti-PDL1
643 and/or anti-NKG2A antibodies.

644
645
646

647 **STAR METHODS**

648

649 **RESOURCE AVAILABILITY**

650

651 **Lead contact**

652 Further information and requests for resources and reagents should be directed to and will be fulfilled by
653 the Lead Contact Amir Horowitz (amir.horowitz@mssm.edu).

654

655 **Materials availability**

656 This study did not generate new unique reagents.

657

658 **Data and Code availability**

659 The single-cell RNAsequencing and spatial-sequencing data generated by the authors have been uploaded
660 to the Gene Expression Omnibus (GSE276014 and GSE276015) and will be made publicly available
661 upon publication of this manuscript.

662 The algorithms used in this study will be made available at <https://github.com>.

663

664 **KEY RESOURCE TABLE**

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Anti-human HLA-E PerCP Cy5.5	BioLegend	Cat#342609; RRID#AB_2565434
Anti-human PD-L1 PE	BioLegend	Cat#124308; RRID#AB_2073556
Anti-human CD3 (IHC)	Abcam	Cat#ab135372; RRID#AB_2884903
Anti-human NKp46 (IHC)	Innate Pharma	N/A
Anti-human HLA-E (IHC)	Abcam	Cat#ab2216; RRID#AB_302895
Anti-human NKG2A (IHC)	Abcam	Cat#ab260035; RRID#AB_2895228
Anti-human CD107a BV785	BioLegend	Cat#328644; RRID#AB_2565968
Anti-human IFN γ PE-Cy7	BioLegend	Cat#502527; RRID#AB_1626154
Durvalumab	AstraZeneca	N/A

Monalizumab	AstraZeneca	N/A
Chemicals, peptides and recombinant proteins		
RPMI-1640 Medium	Thermo Fischer Scientific	Cat#22400-089
DPBS, no calcium, no magnesium	Thermo Fischer Scientific	Cat#14190-250
Fetal Bovine Serum	Thermo Fischer Scientific	Cat#16000044
L-glutamine	Corning Inc.	Cat#25-005-CI
Human AB serum	Millipore Sigma	Cat#H4522
MEM Non essential amino acids	Thermo Fisher Scientific	Cat#11140050
Sodium Pyruvate	Thermo Fisher Scientific	Cat#11360070
Penicillin-Streptomycin	Thermo Fisher Scientific	Cat#15140122
Recombinant human IL-2	Clinigen, Inc.	Proleukin
Recombinant human IL-7	Peprotech	Cat#200-07
Recombinant human IL-12p70	Peprotech	Cat#200-12
Recombinant human IL-15	Peprotech	Cat#200-15
0.5M EDTA	Thermo Fischer Scientific	Cat#15575-020
DMSO	Fisher Scientific	Cat#D1391
Recombinant Human IFN- α		
Diluent 2 NT solution	Navinci	Cat#NF.1.100.03
Buffer 1 NT	Navinci	Cat#NB.2.100.17
Enzyme 1 NT	Navinci	Cat#NF.2.100.11
Buffer 2 NT	Navinci	Cat#NT.2.100.01
Enzyme 2 NT	Navinci	Cat#NF.2.100.15
Post-block NT reagent	Navinci	Cat#NF.1.100.01
Post-block supplement NT	Navinci	Cat#NT.2.100.04
Prolong Gold Antifade reagent	Invitrogen	Cat#P36930
DAPI	BioLegend	Cat#422801
Monensin	BioLegend	Cat#420701

Brefeldin A	BioLegend	Cat#420601
Paraformaldehyde	Electron Microscopy Sciences	Cat#15710
Anti-mouse Navenibody M1 NT	Navinci	Cat#NB.1.100.06
Anti-rabbit Navenibody R2 NT	Navinci	Cat#NB.1.100.07
Critical commercial assays		
Human tumor dissociation kit	Miltenyi Biotec	Cat#130-095-929
ImmunoCult™Human CD3/CD28/CD2 T Cell Activator	Stemcell Technologies	Cat#10970
ImmunoCult™Human CD3/CD28 T Cell Activator	Stemcell Technologies	Cat#10971
Zombie NIR™ Fixable Viability Kit	BioLegend	Cat#423106
Deposited data		
scRNAseq data	N/A	GSE276014
Spatial-seq data	N/A	GSE276015
Experimental models: Cell lines		
K562	Gift from D. Bhattacharya	N/A
HLA-E+ K562	Gift from D. Bhattacharya	N/A
253J	Provided by J. Sfakianos	RRID: CVCL_7935
639V	Provided by J. Sfakianos	RRID: CVCL_1048
5637	Provided by J. Sfakianos	RRID: CVCL_0126
J82	Provided by J. Sfakianos	RRID: CVCL_0359
KU-19-19	Provided by J. Sfakianos	RRID: CVCL_1344
MGHU3	Provided by J. Sfakianos	RRID: CVCL_9827
RT4	Provided by J. Sfakianos	RRID: CVCL_0036
RT112	Provided by J. Sfakianos	RRID: CVCL_1670
SW1710	Provided by J. Sfakianos	RRID: CVCL_1721

T24	Provided by J. Sfakianos	RRID: CVCL_0554
UMUC3	Provided by J. Sfakianos	RRID: CVCL_1783
Software and algorithms		
GraphPad Prism Software v10.5.0	GraphPad Software, Inc.	https://www.graphpad.com
Cytobank	Beckman Coulter	https://cytobank.org
Python 3.8.1	Python Software Foundation	https://www.python.org/
HALO™ Software	Indica Labs, Inc.	https://indicalab.com/halo/
LAS X software, v3.7.5.24914	Leica Microsystems	https://www.leica-microsystems.com/products/microscope-software/p/leica-las-x-ls/#
Imaris software 10.1.1	Oxford Instruments	https://imaris.oxinst.com/
Cytobank	Beckman Coulter	https://cytobank.org
R	R Foundation	https://www.r-project.org
Space Ranger Software Suite v.1.0	10x Genomics, Inc.	https://www.10xgenomics.com/software/space-ranger
Seurat v5.3.0	Butler et al., 2025	https://cran.r-project.org/web/packages/Seurat/index.html
SeuratObject v5.1.0	Hoffman et al., 2025	https://cran.r-project.org/web/packages/SeuratObject/index.html
MAST v1.32.0	https://doi.org/10.1186/s13059-015-0844-5	https://github.com/RGLab/MAST
Giotto v4.2.2	https://doi.org/10.1186/s13059-021-02286-2	https://github.com/drieslab/Giotto
ACAT v0.9.1	Liu, 2018	https://github.com/yaowuliu/ACAT
CARD v3.0-5	https://doi.org/10.1038/s41587-022-01273-7	https://github.com/YMa-lab/CARD

ggplot2 v3.5.2	Wickham et al., 2025	https://cran.r-project.org/web/packages/ggplot2/index.html
ggrepel v0.9.6	Slowikowski et al., 2024	https://cran.r-project.org/web/packages/ggrepel/index.html
ggpubr v0.6.1	Kassambara, 2025	https://cran.r-project.org/web/packages/ggpubr/index.html
ggbeeswarm v0.7.2	Clarke, 2023	https://cran.r-project.org/web/packages/ggbeeswarm/index.html
pheatmap v1.0.13	Kolde, 2025	https://cran.r-project.org/web/packages/pheatmap/index.html
gridExtra v2.3	Auguie et al., 2025	https://cran.r-project.org/web/packages/gridExtra/index.html
cowplot v1.2.0	Wilke, 2025	https://cran.r-project.org/web/packages/cowplot/index.html
scales v1.4.0	Wickham et al., 2025	https://cran.r-project.org/web/packages/scales/index.html
RcolorBrewer v1.1-3	Neuwirth, 2022	https://cran.r-project.org/web/packages/RColorBrewer/index.html
Matrix v1.7-3	Bates et al., 2025	https://cran.r-project.org/web/packages/Matrix/index.html
effectsize v1.0.1	Ben-Shachar et al., 2025	https://cran.r-project.org/web/packages/effectsize/index.html

		project.org/web/packages/effectsize/index.html
RANN v2.6.2	Jefferis et al., 2024	https://cran.r-project.org/web/packages/RANN/index.html
plyr v1.8.9	Wickham, 2023	https://cran.r-project.org/web/packages/plyr/index.html
dplyr v1.1.4	Wickham et al., 2023	https://cran.r-project.org/web/packages/dplyr/index.html
reshape2 v1.4.4	Wickham, 2020	https://cran.r-project.org/web/packages/reshape2/index.html
tidyverse v2.0.0	Wickham, 2023	https://cran.r-project.org/web/packages/tidyverse/index.html
jsonlite v2.0.0	Ooms et al., 2025	https://cran.r-project.org/web/packages/jsonlite/index.html
readxl v1.4.5	Wickham et al., 2025	https://cran.r-project.org/web/packages/readxl/index.html
openxlsx v4.2.8	Schauberger et al., 2025	https://cran.r-project.org/web/packages/openxlsx/index.html
data.table v1.17.8	Barrett et al., 2025	https://cran.r-project.org/web/packages/data.table/index.html
deldir v2.0-4	Turner et al., 2024	https://cran.r-project.org/web/packages/deldir/index.html

		x.html
patchwork v1.3.1	Pedersen et al., 2025	https://cran.r-project.org/web/packages/patchwork/index.html
anndata v0.12.2	Virshup et al., 2024	https://github.com/scverse/anndata
scanpy v1.11.4	Wolf et al., 2018	https://scanpy.org
Squidpy v1.6.5	Palla et al., 2022	https://github.com/scverse/squidpy
Scvi-tools v1.2.0	Gayoso et al., 2022	https://scvi-tools.org
Pandas v2.2.2	McKinney et al., 2010	https://pandas.pydata.org
Scipy v1.16.1	Virtanen et al., 2020	https://scipy.org/
Matplotlib v3.10.0	Hunter et al., 2007	https://matplotlib.org
Seaborn v0.13.2	Waskom et al., 2021	https://seaborn.pydata.org/

665

666

667 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

668 **Human subsets**

669 Patients at Mount Sinai Hospital (MSH) were enrolled in the study following Institutional Review
670 Board (IRB) approval (protocol 10-1180). 10-1180 covers the use of patient tissues in a biorepository and
671 allows for prospective collection of blood, urine, and tissue samples from enrolled patients. Formalin-
672 fixed paraffin-embedded (FFPE) blocks from BCG patients were obtained retrospectively from the
673 biorepository and prospectively for patients receiving treatment. For prospective patients, samples were
674 collected on the day of surgery and throughout BCG immunotherapy. Due to IRB limits on the collection,
675 blood and urine samples were taken at the first dose, third dose, and sixth dose of the induction cycle; at
676 every follow-up cystoscopy; and at the third maintenance cycle dose. Tumor samples were taken at every
677 possible timepoint. BCG naïve was defined as any patient who had yet to receive BCG, regardless of past
678 treatment with other chemotherapies. BCG-unresponsive was defined as any patient with recurrent tumors
679 following at least five of six induction doses of BCG at time of first evaluation.

680

681 **Cell lines**

682 HLA-E+ and Wild-type K562 cell lines were kindly provided by Deepta Bhattacharya and propagated as
683 recently described (Berrien-Elliott et al., 2020). HLA-E+ K562 cells were generated using the AAVS1-
684 EF1a donor plasmid containing the coding sequence for human HLA-E. The K562 were electroporated
685 using a Bio-Rad Gene Pulse electroporation system. HLA-E+ cells were sorted to >98% purity. Bladder
686 cancer cell lines were provided by John Sfakianos: 253J(RRID: CVCL_7935),
687 639V(RRID:CVCL_1048), 5637(RRID: CVCL_0126), J82(RRID: CVCL_0359), KU-19-19(RRID:
688 CVCL_1344), MGHU3(RRID: CVCL_9827), RT4(RRID: CVCL_0036), RT112(RRID: CVCL_1670),
689 SW1710(RRID:CVCL_1721), T24(RRID: CVCL_0554), UMUC3(RRID: CVCL_1783).

690

691 **METHOD DETAILS**

692 **Sample processing**

693 Urine samples from bladder cancer patients were spun down to collect cell-free urine, that was
694 stored at -80C. Tumor tissues obtained from transurethral resections of bladder tumor (TURBT) were
695 placed into RPMI medium immediately after removal and transferred to the laboratory for additional
696 processing. Bladder from radical cystectomies was bivalved; samples of visible tumor were extracted and
697 placed in RPMI medium, and the tumor was transferred to the laboratory for additional processing. Fresh
698 tumor samples underwent a variety of different processing techniques based on the planned experiment.
699 Tumor used for spatial sequencing was placed in a 10 mm x 10 mm cryomold with optimal cutting
700 temperature (OCT) media and frozen down on a thermal block immersed in liquid nitrogen. Tumor
701 tissues were digested using tumor dissociation enzymes (Miltenyi, 130-095-929) and a GentleMACS
702 machine (program 37C_h_TDK_3) at 37C. Mechanically and enzymatically separated tissues were
703 filtered through a 70 μ M cell strainer and assessed on Countess II (ThermoFisher) for viability and cell
704 numbers.

705

706 **Multiplex Immunohistochemistry**

707 Sections of tumors for immunohistochemical (IHC) staining were taken at a thickness of 3-mm from
708 formalin fixed paraffin-embedded (FFPE) blocks. H&E-stained sections were performed every 5 - 10
709 slices. The Ventana Discovery Ultra (Roche Diagnostics) machine was used to automatically bake,
710 deparaffinize, and condition the slices. The RUO Discovery Universal (v21.00.0019) was used to perform
711 chromagen IHC on sequential slices. Primary antibodies included CD3, HLA-E, NKp46, and NKG2A

712 and were utilized for staining on NMIBC tumors. All slices followed the same protocol, which included a
713 60 minute incubation at 37°C; secondary antibodies using OmniMap HRP or NP DISCOVERY (Roche
714 Diagnostics); signal detection using Discovery OmniMap. Nuclear counterstaining with Mayer's
715 hematoxylin; and conversion to high-resolution images via the NanoZoomer S10 Digital slide scanner
716 (Hamamatsu).

717

718 **Tumor and CD3⁺ T cell expression and proximity analyses**

719 Prior to analysis, all slides were reviewed and regions of interest were annotated by a board-certified
720 pathologist (R.B.). Tissue artifacts, including torn, folded, and damaged tissue, were excluded from any
721 analyses. The HALOTM (Indica Labs, Inc.) digital image analysis platform, a semi-automated platform
722 using machine learning to segment and label stained sections, was utilized for quantitative analyses. Halo
723 AITM and train-by-example classification, segmentation, and random forest classification was used to
724 separate chromogenic stains and generate tabular data for downstream analysis. Slide features of each
725 tumor, including cell lineages (tumor, stroma, and immune) and slide features (such as glass) were
726 characterized. Glass was excluded from all downstream analyses. Classified cell classes were tabulated,
727 and positive staining cells were stratified into expression tertiles (dim, moderate, and bright). Calibration
728 for intensity expression was performed using tonsil tissues from healthy human tonsil. In addition to cell
729 counts, total surface area (mm²) was recorded to facilitate density calculations. Statistical analyses were
730 performed using Python 3.8.1.

731

732 **Proximity Ligation Assay: sample preparation**

733 The NaveniFlexTM Proximity Ligation Assay (PLA) was performed according to the manufacturer's
734 instructions using NaveniFlex Tissue MR ATTO647N (Navinci, Sweden). PLA was performed on
735 sections of tumor taken at a thickness of 3-mm from formalin fixed paraffin-embedded (FFPE) blocks.
736 H&E-stained reviewed with pathologist. Briefly, after deparaffinization, rehydration, and antigen
737 retrieval, slides were blocked with Block NT blocking solution (Navinci, NT.1.100.01) for 60 min at 37
738 °C in a preheated humidity chamber and then incubated with mouse anti-HLA-E (clone: MEM-E/02,
739 Abcam, 1:200) and rabbit anti-NKG2A (clone: EPR23737-127, Abcam, 1:2000) diluted in Diluent 1 NT
740 solution (Navinci, NB.1.100.02) overnight at 4°C. As negative controls, two (tonsillectomy) slides were
741 incubated in antibody diluent with only one primary antibody each. After washing, the slides were
742 incubated with the PLA probes corresponding to the primary antibodies using anti-mouse Navenibody
743 M1 NT (Navinci, NB.1.100.06) and anti-rabbit Navenibody R2 NT (NB.1.100.07) in Diluent 2 NT

744 solution (Navinci, Navinci, NF.1.100.03) for 60 min at 37 °C. Slides were then processed for ligation
745 using reaction 1 reagent containing Buffer 1 NT (Navinci, NB.2.100.17) and Enzyme 1 NT (Navinci,
746 NF.2.100.11) and subsequently reaction 2 reagent containing Buffer 2 NT (NT.2.100.01) and Enzyme 2
747 NT (Navinci, NF.2.100.15) and incubated for 30 min at 37 °C and 90 min at 37 °C, respectively. The
748 slides were washed and incubated with post-block NT reagent (Navinci, NF.1.100.01) in post-block
749 supplement NT (Navinci, NT.2.100.04) for 30 min at 37 °C, then processed for detection, counter-stained
750 with DAPI, and mounted with coverslips using Prolong Gold Antifade reagent (Invitrogen, P36930).

751

752 **Proximity Ligation Assay: images capture**

753 Images were captured at the Microscopy and Advanced Bioimaging Core of the Icahn School of
754 Medicine at Mount Sinai. A Leica DMI8 (Leica Microsystems, Germany) was equipped with a HC PL
755 APO CS 10x/0.4 (Part Number 506285; Leica Microsystems, Germany) objective lens. A SpectraX
756 fluorescence illuminator (Lumencor, Oregon, USA) with multiple narrow-band light emitting diodes
757 provided illumination (LEDs used: 395/25nm for DAPI, 470/24nm for autofluorescence channel, and
758 640/30nm for Navinci signal). The microscope and light source were controlled by LAS X software,
759 version 3.7.5.24914 (Leica Microsystems, Germany). For fluorescence excitation, the following
760 illumination settings were used: a 395nm LED set to 50% (147mW at the SpectraX output port) for DAPI
761 signal, captured at 20 milliseconds of exposure; a 470nm LED set to 44% (86mW), captured at 70
762 milliseconds for an autofluorescence channel; and a 640nm LED set to 100% (231mW), captured at 150
763 milliseconds for the target signal. A multi-band pass filter set (Part Number 11525366; Leica
764 Microsystems, Germany) was used to separate fluorophore emission (Dichroic 415/490/570/660nm;
765 Emission bands: 430/35, 515/40, 595/40, 720/100nm). Images were captured using a Leica DFC9000GT
766 monochrome camera set to 12-bit depth, 2x2 (4-pixel) binning and “Low Noise” Gain mode. Images were
767 captured in montage at 10% overlap, merged (“Smooth” blending option) and then saved in the
768 proprietary LIF (“Leica Image File”) format before being converted to IMS (Imaris) format for analysis.

769

770 **Proximity Ligation Assay: images analyses**

771 Image analysis was performed using Imaris software 10.1.1 (Oxford Instruments, Concord MA). A
772 surface for the green background channel was created using the surface creation wizard with the
773 following parameters – Enable Region Of Interest = false, Enable Region Growing = false, Enable

774 Tracking = false, Enable Classify = false, Enable Shortest Distance = false, Enable Smooth = true,
775 Surface Grain Size = 2.00 μm , Enable Eliminate Background = false, Active Threshold = true, Enable
776 Automatic Threshold = false, Manual Threshold Value = 1900, Active Threshold B = false. Masked
777 channels were created by subtracting the intensities within the green surface from the blue and far-red
778 channels: the mask intensity was set to 0 for inside the green surface while the outside was set to the
779 original channel's value. A new surface was created using the surface creation wizard for the masked far-
780 red channel using the following parameters – Enable Region Of Interest = false, Enable Region Growing
781 = false, Enable Tracking = false, Enable Classify = false, Enable Shortest Distance = false, Enable
782 Smooth = true, Surface Grain Size = 2.00 μm , Enable Eliminate Background = false, Active Threshold =
783 true, Enable Automatic Threshold = false, Manual Threshold Value = 1600, Active Threshold B = false.
784 An area filter was applied to this far-red surface to remove surfaces whose area was larger than 50 μm^2 . A
785 DAPI surface was created using surface creation wizard with the parameters – Enable Region Of Interest
786 = false, Enable Region Growing = true, Enable Tracking = false, Enable Classify = false, Enable Shortest
787 Distance = true, Enable Smooth = true, Surface Grain Size = 2.00 μm , Enable Eliminate Background =
788 true, Diameter Of Largest Sphere = 7.50 μm , Active Threshold = true, Enable Automatic Threshold =
789 false, Manual Threshold Value = 10, Active Threshold B = false, Region Growing Estimated Diameter =
790 6.00 μm , Region Growing Morphological Split = false, Filter Seed Points = "Quality" above 60.0, Filter
791 Surfaces = "Number of Voxels Img=1" between 10.0 and 500, to obtain individual nuclei within the field
792 of views. Finally, a fourth surface was created by applying the filter – Overlapped Area to Surfaces
793 (Minimum = 0.050 μm^2 , Maximum = false) to obtain the DAPI surfaces that were in contact with the far-
794 red channel. The counts of total number of nuclei and nuclei overlapping with the masked far-red surfaces
795 were extracted from the statistics tab of Imaris.

796

797 **Protein concentration measurement**

798 OLINK Proteomics®- inflammation panel and immuno-oncology 92 assays panel were used to profile
799 cell-free urine supernatant from the Mount Sinai and the Aarhus university cohorts, respectively. Cell-free
800 urine supernatant and serum samples were randomized in a 96-well plate. and incubated overnight
801 alongside negative controls with an incubation mix (incubation solution, incubation stabilizer, A-probes,
802 and B-probes) at 4°C. Samples were then incubated with an extension mix (High purity water, PEA
803 solution, PEA enzyme, PCR polymerase) for 5 min and placed on a thermal cycler. Following the thermal
804 cycler, samples were incubated with a detection mix (detection solution, High purity water, detection
805 enzyme, PCR polymerase) and transferred to a chip. Primers were loaded onto the chip, and the chip was

806 profiled using the Fluidigm IFC controller HX with the Fluidigm Biomark Reader. Data were normalized
807 using extension and interplate controls and a correction factor. The resulting data were reported in
808 normalized protein expression (NPX) units on a log2 scale. In order to determine the suitable statistical
809 test, a Shapiro-Wilk's test was used to assess for normality, and a Kruskal-Wallis test was used in every
810 instance in which one or both samples were not normally distributed. An independent T-test was used in
811 the event both samples were normally distributed. All statistically significant p values were then used to
812 assess adjusted p values via the Benjamini-Hochberg correction, with an alpha of 0.05. All statistically
813 significant genes between the BCG naïve and sixth induction dose time points are shown.

814

815 **IFN- γ stimulation of tumor cells**

816 Cell lines and CD45- isolated primary tumor cells were incubated in media optimized for high viability
817 for 72 hours (RPMI-1640 supplemented with 20% fetal bovine serum). Tumor cells were expanded until
818 they were confluent in two T175 flasks. Following expansion, cells were cultured in 100 ng / mL of IFN- γ
819 for a total of 24 hours in a 24 well plate. Following co-culture, cell lines were trypsinized and primary
820 tumors were gently removed from the solid phase by a cell scraper. HLA-E and PD-L1 levels were
821 assessed via Flow Cytometry. Cells were stained in 4C FACS buffer (phosphate-buffered saline (PBS)
822 with 2% heat-inactivated FBS and EDTA 2 mM) for 30 minutes. Subsequently, cells were washed in
823 PBS, incubated for 20 minutes in a viability dye, washed again with PBS, and resuspended in 2%
824 paraformaldehyde. The experiment was performed in triplicate, with three readouts per cell line per
825 experimental condition. Samples were acquired with an LRS-Fortessa (BD Biosciences), and data were
826 analyzed using the CytoBank software. When staining for HLA-E, cells were first stained 20 minutes
827 with HLA-E prior to staining with additional PD-L1. In CytoBank, several gates were applied to generate
828 the final dataset. A live/dead gate was applied, followed by a gate to remove doublets and isolate singlets.
829 Lastly, the data was arcsinh transformed prior to analysis.

830

831 **Single-cell RNA sequencing: Data preprocessing**

832 Single-cell RNA sequencing (scRNA-seq) analysis was performed using Python and R. After loading,
833 genes expressed in fewer than three cells were excluded from later analyses. Cells with < 200 or > 8000
834 unique genes, as well as cells containing >20% mitochondrial gene transcripts, were discarded. Doublet
835 cells were screened by scrublet, where expected doublet rate was set at 5.0%, and detected doublet rate
836 was 0.0%. Subsequent data was preprocessed with the Scanpy package and normalization was performed
837 by dividing feature counts for each cell by total counts for that cell, scaling by a factor of 10,000, and

838 natural log transformation. Next, scvi model was set up to correct batch-effects. Then we performed
839 scaling and principal component analysis (PCA) on the batch-corrected data. Using the first 50 principal
840 components (PCs), graph-based clustering and UMAP dimensionality reduction was performed to reveal
841 16 cell clusters. Clusters were assigned major cell types by UCDeconvolve. Myeloid cells or CD8 T cells
842 and NK cells were further reclustered and reannotated with Seurat. Subcluster-specific marker genes were
843 identified using the FindAllMarkers function, and marker genes with a natural-log fold change (FC) >
844 0.25 and expressed in $\geq 25\%$ of cells were used to annotate cell cluster identities based on known cell
845 type markers³⁸⁻⁴⁰: CD8 T cells ($CD8A^{\text{high}}$, $CD3G^{\text{high}}$), CD4 T cells ($CD4^{\text{high}}$, $CD3G^{\text{high}}$), Regulatory T cells
846 ($CD4^{\text{high}}$, $CD3G^{\text{high}}$, $FOXP3^{\text{high}}$), NK cells ($CD8A^{\text{low}}$, $CD3G^{\text{low}}$, $GNLY^{\text{high}}$), monocytes ($CD14^{\text{high}}$, LYZ^{high} ,
847 $FCGR3A^{\text{high}}$), macrophages ($C1QA^{\text{high}}$), DC1 ($CLEC9A^{\text{high}}$, $XCL1^{\text{high}}$), DC2 ($FCER1A^{\text{high}}$, $CD1C^{\text{high}}$),
848 mReg DCs ($LAMP3^{\text{high}}$). All scRNAseq analyses were performed using distinct samples without repeated
849 measurements.

850

851 Single-cell RNA sequencing: Subclustering analyses

852 We performed subclustering analysis on 18,520 bladder tumor cells using Seurat v5 workflow. We
853 integrated tumor cell transcriptomes across samples using Canonical Correlation Analysis (CCA)
854 integration with the IntegrateLayers() function (dimensional reduction for correction = pca). Leiden
855 clustering (resolution = 0.4) was applied to the shared nearest neighbors (SNN) (dims = 1:10). This
856 resulted in the identification of 9 heterogeneous tumor subclusters, distinctly separated on the UMAP
857 plot. Each subcluster was profiled by the expression of tumor marker genes (EPCAM, UPK2) and
858 cytokines (CXCL1, CXCL2, CXCL3, IFNGR1, etc.). Subcluster B1 was removed from further analysis
859 as it was identified as normal bladder cells with low EPCAM (tumor-related marker genes) , and
860 subcluster B8 was removed due to high PTPRC expression, indicating a high presence of immune cells
861 (CD45+). Differentially expressed gene (DEG) analysis (MAST, R version 1.2.1)⁴² and enrichment
862 pathway analysis⁴³ further characterized the subclusters, highlighting their distinct biological profiles
863 (Figure 2).

864 NK cells were similarly subclustered using Seurat (resolution=0.5, dims=1:10). 5 subclusters were
865 revealed by unsupervised clustering. Using TransferData() in Seurat, we mapped our NK cells to publicly
866 available subclustered NK cell data: Rebiffet et al. 2024 (NK1A, NK1B, NK1C, NK2, NK3, NKint), and
867 Netskar et al. 2024 (NK of group 1 through 6) for comparison.

868

869 **Spatial transcriptomics: data generation**

870 Spatial transcriptomic data were generated by Visium Spatial Gene Expression. We obtained eight spatial
871 sections consisting of four pre-BCG and four post-BCG samples after review of samples by a board-
872 certified pathologist. Sequencing data were aligned on GRCh38 and quantified using the Space Ranger
873 Software Suite (version 1.0, 10x Genomics). The data were processed to characterize major cell types and
874 their spatial patterns using Giotto workflow ⁴⁴. Briefly, low quality spots (number of expressed genes
875 lower than or equal to 100), and lowly expressed genes (expressed in less than 10 spots) were removed.
876 The raw counts were log2(x+1) transformed, batch-adjusted and filtered for spot wise features using
877 Pearson residuals approach by Lause et al ⁴⁵. The spatial network of nearest spots by Delaunay
878 triangulation was calculated to identify spatially co-expressed genes in neighboring spots via BinSpect-
879 kmeans algorithm ⁴⁴, and distinct spatial domains by Hidden Markov Random Field (HMRF) model ⁴⁴.
880 Then, transcriptomes from different spatial samples were integrated by Harmony using the top 10
881 principal components from each samples to identify the clusters ⁴⁶. The integrated clusters were identified
882 by Leiden clustering ⁴⁴ with at clustering resolution (γ) at 0.8 using *FindNeighbors()* and *FindClusters()*
883 functions in Seurat R package. Subsequently, we identified 12 spatial clusters to profile the spatial
884 transcriptomic landscape. Differentially expressed genes (DEGs) between KLRC1⁺ versus KLRC1⁻ cells
885 were found using the *FindMarkers* function from the Seurat R package, where cells with KLRC1
886 expression greater than 0 in the RNA assay were labeled as KLRC1⁺.
887

888 **Spatial transcriptomics: Identification of HLA-E high/low tumor subsets**

889 As HLA-E expressions are not specific to tumors and HLA-E high/low tumor markers have not been
890 established, we designed a workflow to first infer the voxels with tumor presence, then identify HLA-E
891 expressing tumors to scrutinize the HLA-E high/low tumors. To this end, we performed a cell type
892 deconvolution on the spatial transcriptomes. Cell Atlas Reconstruction from Spatially mapped Data
893 (CARD) method ⁴⁷. CARD is a computational approach that reconstructs cell-type-specific expression
894 profiles from spatially mapped transcriptomic data, facilitating the estimation of cell-type proportions
895 within tissue sections. This involved provision of reference single-cell transcriptomes with tumor cells
896 grouped by HLA-E^{high} and HLA-E^{low} tumor labels (high: HLA-E gene expression > 0, low: HLA-E=0).
897 These tumor labels were utilized as the inputs to calculate the relative abundances of the tumor subsets on
898 the spatial voxels by CARD. To further scrutinize the detection of HLA-E high tumors in the spatial
899 transcriptome (ST) data, we applied additional thresholds to require voxels with i) high HLA-E
900 expressions, and ii) highly abundant HLA-E high tumor/stromal cells as inferred by CARD ⁴⁷. Per

901 section, high HLA-E expression voxels were identified as those with HLA-E expression values greater
902 than zero and a z-score of inferred HLA-E^{high} tumor/stromal cell abundance > 1.645 (90% confidence).
903 Conversely, low HLA-E expression voxels were identified as those with an absence of HLA-E expression
904 (HLA-E expression equal to zero) and a z-score of inferred HLA-E^{low} tumor/stromal cell abundance $>$
905 1.645 (90% confidence). Similarly, we detected high confidence voxels with NK cells, CD8 T-cells and
906 Treg cells by further applying the abundance z-score > 1.645 for further analyses.

907

908 **Spatial transcriptomics: Proximity analysis between different cell types**

909 We evaluated the proximity between different immune subsets (NK, CD8+ T, and regulatory T (Treg)
910 cells) and HLA-E^{high/low} tumor cells to observe if distinct cytotoxic immune micro-environments are
911 present, conditioned on tumoral HLA-E expression status. Upon identifying high confidence voxels with
912 HLA-E^{high/low} tumor/stromal cells and the immune cell types, we calculated the pairwise Euclidean
913 distances between the tumor/stromal cells and each immune cell type. To retrieve actual distance between
914 voxels, the matrix was refined using the computeCellDistance function from the CellChat v2 library in R
915 to incorporate the scale factors in the spatial coordinates ⁴⁸. For each voxel with HLA-E^{high/low}
916 tumor/stromal cell presence, its overall distance to an immune cell type was calculated as the mean
917 distance over the 10 nearest neighboring voxels with the respective immune cell presence. These
918 distances were summarized across each section by taking the average over all HLA-E^{high/low} tumor/stroma
919 voxels, yielding the overall proximity with each immune cell type per section. These overall proximity
920 values were compared between pre-BCG and post-BCG groups by Wilcoxon Rank-sum test.

921

922 **Spatial transcriptomics: Cell type enrichment across spatial clusters**

923 We tested if each pan-section cluster shows enriched presence of distinct cell populations and subsets as
924 characterized by the scRNA-seq. To this end, for each section, we leveraged the inferred abundances of
925 different cell types in the spatial voxels by CARD, and tested if a cell type has significantly higher
926 abundances in each pan-section cluster than the other voxels by Wilcoxon Rank-sum test. Then, the
927 overall enrichments of each cell type within pre-BCG or post-BCG group were summarized by combining
928 the Wilcoxon test p-value across the sections via aggregated Cauchy association test (ACAT). The
929 enriched cell types per pan-section cluster in pre-BCG or post-BCG group were called with ACAT
930 summarized FDR < 0.05 and number of sections with significant enrichments (Wilcoxon FDR < 0.05) $>$
931 1.

932

933 **In situ hybridization and targeted RNA sequencing**

934 FFPE sections from 40 retrospective NMIBC cases were obtained from the institutional biorepository and
935 used for targeted RNA sequencing. RNA was extracted from five and ten μ m sections. HTG EdgeSeq
936 lysis buffer was added to lyse and permeabilize the samples. Nuclease protection probes (NPPs) were
937 added to the lysed samples and hybridized to the target mRNA. A nuclease was added to digest non-
938 hybridized mRNA and excess NPPs. The nuclease digestion reaction was finalized with a termination
939 solution followed by heat-mediated denaturation of the enzyme. Each sample was used as a template for
940 PCR reactions with specially designed primers. Each primer contains a unique barcode that is used for
941 sample identification and multiplexing. Samples were analyzed simultaneously on an Illumina sequencing
942 platform to prepare the library. All samples and controls were quantified in triplicates. No template
943 control (NTC) reactions were made for each master mix used during the qPCR process to test the absence
944 of a probe or qPCR contamination. Molecular-grade water was used in place of a test sample in the NTC
945 reactions using the same volume as the template. Sufficient concentration of sample for library pooling,
946 appropriate dilution for the library pool, and volume of denaturation reagents to add to the library were
947 determined by HTG library calculator. 2N NaOH and heat (98C, 4 minutes) were used for library
948 denaturation. The denatured library was loaded into the well of the NextSeq sequencing cartridge.
949 Sequencing was performed using an Illumina NextSeq sequencer. The sequencing data on mRNA
950 expression of target genes were imported into HTG EdgeSeq parser software. HTG biostatistics
951 department performed quality control analyses and normalized the data. Data were returned from the
952 sequencer as demultiplexed FASTQ files with four files per assay well. The HTG EdgeSeq parser
953 software aligned the FASTQ files to the probe list and collated the data.

954

955 **mRNA *in situ* hybridization: Gene set enrichment analysis**

956 gene set enrichment analysis (GSEA) was performed on the targeted RNA sequencing data. Specifically,
957 we used paired patient samples before and after BCG exposure in the BCG recurrent patient population
958 only. We used custom gene sets, as well as all Hallmark gene sets from the Broad Institute's MSigDB, as
959 inputs for the enrichment analysis ⁴⁹. Statistical significance was set at $p < 0.05$. All gene sets found to be
960 statistically significant were evaluated for leading-edge genes, defined as the genes that contribute most to
961 the enrichment score and associated p-value. The leading-edge genes from statistically significant gene
962 sets in the GSEA were collated and used to assess for group differences between the paired HTG patient
963 samples. We performed these analyses specifically on the BCG-recurrent cohort. Prior to any analyses, a
964 Shapiro-Wilk test, chosen for suitability in small sample sizes, was used to assess for normality ⁵⁰. All

965 samples with $p < 0.05$ were considered not normally distributed, and a Kruskal-Wallis test was performed
966 to assess for group differences ⁵¹. All other samples were assessed using an independent T-test. Genes
967 with statistically significant differences between the BCG naïve and the BCG-unresponsive populations
968 were then visualized on radar plots.

969

970 **Tumor-infiltrating lymphocytes (TILs) Expansion**

971 TILs were expanded by seeding single cells tumor dissociate at 10^5 cells/well in 48-well Costar® flat-
972 bottom plates (Corning Inc., NY) in complete TIL medium, consisting of RPMI 1640 with L-glutamine
973 (Corning Inc., NY), 10% human AB serum (MiliporeSigma, MO), 1% nonessential amino acids (Thermo
974 Fisher Scientific, MA), 1% sodium pyruvate (Thermo Fisher Scientific, MA), 1% penicillin/streptomycin
975 (Thermo Fisher Scientific, MA), and 3000 IU/ml interleukin-2 (Proleukin®, kindly provided by
976 Clinigen). Cells were stimulated using 25 μ l ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator
977 (STEMCELL Technologies, Vancouver, BC) and seeded on 1.5×10^6 feeder cells, which were derived
978 from healthy control PBMCs (New York Blood Center, NY) and irradiated at 50 Gy. TILs were incubated
979 at 37°C, 5% CO₂ and maintained by replacement with fresh complete TIL medium every 2 days. After
980 three weeks, expanded TIL lines were frozen in 10% DMSO (MiliporeSigma, MO), 90% FBS
981 (MiliporeSigma, MO) and stored in LN₂.

982

983 **TIL Co-culture with K562s Expressing Checkpoints**

984 For co-culture and surface stain of PD-L1 and HLA-E, three separate K562 tumor lines of K562 cells
985 were generated using 400 ng/ml of IFN- γ for 72 hours: WT, E+, and E+/PD-L1+ lines. Two separate
986 rounds of stimulation were performed on K562 tumors after reaching steady-state expansion. First, K562
987 tumors were co-cultured at a concentration of 0.5×10^6 viable cells / mL with 200 and 400 ng / mL of
988 IFN- γ in R10 media in order to assess the induction of HLA-E and PD-L1 with high doses of IFN- γ . At
989 every 24-hour interval, cell concentration and viability were assessed using a hemocytometer, and K562
990 tumors were split to a concentration of 0.5×10^6 live cells / mL. At 72 hours of incubation, cells were
991 spun at 1650 RPM, washed with FACS buffer (PBS, 5% FBS, 0.2% EDTA), resuspended in 5 mL of
992 FACS buffer, and assessed for concentration and viability. 0.5×10^6 live cells were removed, and spun to
993 remove the FACS buffer. K562 tumors were first incubated with zombie near infrared (NIR) at a dilution
994 of 1 in 1000 for 20 minutes at room temperature. Following the zombie stain, cells were washed in 1 mL
995 of FACS buffer, and incubated with PD-L1 (PE; Biolegend cat #124308), and HLA-E (per-CP CY5.5;
996 Biolegend cat #342609) antibodies in a 1:25 dilution cocktail for 30 minutes on ice in the dark. Cells were

997 washed again in FACS buffer and suspended in 400 μ L of fixative buffer (2% paraformaldehyde in PBS).
998 HLA-E and PD-L1 levels were then assessed using flow cytometry.
999 Tumor-infiltrating lymphocytes (TILs) from four BCG-unresponsive NMIBC patients which had been
1000 expanded using the protocol listed above were thawed and seeded at a concentration of 1×10^6 live cells /
1001 mL in a stimulatory media consisting of ImmunoCult, CD3/CD28 tetramer (25 μ L/mL), IL-2 (10 IU/mL),
1002 IL-7 (10 ng/mL), and IL-15 (10 ng/mL). Cells were seeded and plated in a 96 round-bottom plate. At days
1003 three, five, seven, and nine, 50% of the media was aspirated and replaced with fresh media at twice the
1004 initial concentration of cytokines, without CD3/28 tetramer. At day 10, TGF- β , Immunocult, IL-2
1005 (10IU/mL), IL-7 (10ng/mL), IL-15 (10ng/mL), CD3/CD28 tetramer (25 μ L/mL), TGF- β (5ng/mL) was
1006 provided to stimulate expression of NKG2A on the TILs.
1007 At day 13, the stimulation was complete, and the TILs were co-cultured with combinations of the K562
1008 cells expressing forms of PD-L1 and HLA-E. In total, 12 experimental co-culture conditions were
1009 conducted for each patients' TIL sample (n=4): two control wells (ex-vivo, and stimulated with a CD3/28
1010 spike); with K562 WT cells, HLA-E $^+$ cells, or HLA-E $^+$ PD-L1 $^+$ cells without antibody; TILs in the
1011 presence of HLA-E $^+$ or HLA-E $^+$ PD-L1 $^+$ K562s with durvalumab alone, or both durvalumab plus
1012 monalizumab; and lastly, TILs and WT K562s in the presence of monalizumab and durvalumab.
1013 TILs were cultured in TIL medium, consisting of RPMI 1640 with L-glutamine (Corning Inc., NY), 10%
1014 human AB serum (MiliporeSigma, MO), 1% nonessential amino acids (Thermo Fisher Scientific, MA),
1015 1% sodium pyruvate (Thermo Fisher Scientific, MA), 1% penicillin, streptomycin (Thermo Fisher
1016 Scientific, MA). Cultures were performed in 96-well u-bottom plates (Corning Inc., NY). TILs were
1017 added to each well at a concentration of 3×10^5 cells/condition in TIL medium. K562s were
1018 resuspended in TIL medium and added at 5×10^4 singe-cell equivalents/condition. Anti-CD28
1019 (BioLegend, CA) was added to each well at 1 μ g/ml and anti-CD107a-BV785 (BioLegend, CA) was
1020 added to each well at 0.3 μ g/ml. Monalizumab was added to the TILs a final concentration of 10 μ g/ml,
1021 and durvalumab was added to the K562s for a final concentration of 10 μ g/ml. TILs and K562s were
1022 cultured separately for 20 minutes at 37°C prior to co-culture. The K562s and TILs were then combined,
1023 thoroughly resuspended, and gently spun for 5 seconds before being returned to the incubator. Plates were
1024 incubated at 37°C and 5% CO₂, and after 1 hour of incubation, 0.5X Brefeldin (BioLegend, CA) and 0.5X
1025 Monensin (BioLegend, CA) was added to each tube for a final volume of 500 μ l, followed by an
1026 additional 15 hours of incubation. At hour 16 plates were spun and supernatant was removed; all samples
1027 were washed with 200 μ L of PBS. Samples were resuspended in 50 μ L of zombie near infrared (NIR) at a
1028 1:3000 dilution, and incubated for 20 minutes in the dark at room temperature. Samples were washed

1029 again, spun, supernatant was removed, and incubated in 50 μ L of TruStain FCX, diluted 1:200, for 20
1030 minutes in the dark at 4°C. 50 μ L of the surface antibody master mix (anti-CD3, -CD8, -CD56, -CD4, -PD-
1031 1, -NKG2A) was added at 20 minutes, and returned to the fridge to incubate in the dark at 4°C for 30
1032 more minutes. Plates were washed twice more in FACS buffer, and were suspended in 0.2% FBS FACS
1033 buffer for storage until intracellular staining.

1034 12 hours prior to sample acquisition, intracellular staining was performed for IFN- γ . 100 μ L of
1035 intracellular staining permeabilization wash buffer (BioLegend) was added to each well, the plates were
1036 spun, and supernatant discarded. This was performed 2 additional times with 200 μ L of permeabilization
1037 wash buffer. 50 μ L of the intracellular staining antibody mix was added to each well, and the plates were
1038 incubated for 20 minutes at 4°C. The plates were washed in 0.2% FBS FACS buffer and resuspended for
1039 storage in 0.2% FBS FACS buffer

1040 **References**

1. Redelman-Sidi, G., Glickman, M.S., and Bochner, B.H. (2014). The mechanism of action of BCG therapy for bladder cancer--a current perspective. *Nat Rev Urol* 11, 153-162. 10.1038/nrurol.2014.15.
2. Ranti, D., Bieber, C., Wang, Y.S., Sfakianos, J.P., and Horowitz, A. (2022). Natural killer cells: unlocking new treatments for bladder cancer. *Trends Cancer*. 10.1016/j.trecan.2022.03.007.
3. Sfakianos, J.P., Salome, B., Daza, J., Farkas, A., Bhardwaj, N., and Horowitz, A. (2021). *Bacillus Calmette-Guerin (BCG): Its fight against pathogens and cancer*. *Urol Oncol* 39, 121-129. 10.1016/j.urolonc.2020.09.031.
4. Kamat, A.M., Li, R., O'Donnell, M.A., Black, P.C., Roupret, M., Catto, J.W., Comperat, E., Ingersoll, M.A., Witjes, W.P., McConkey, D.J., and Witjes, J.A. (2018). Predicting Response to Intravesical Bacillus Calmette-Guerin Immunotherapy: Are We There Yet? A Systematic Review. *Eur Urol* 73, 738-748. 10.1016/j.eururo.2017.10.003.
5. Li, R., Hensley, P.J., Gupta, S., Al-Ahmadi, H., Babjuk, M., Black, P.C., Brausi, M., Bree, K.K., Fernandez, M.I., Guo, C.C., et al. (2024). Bladder-sparing Therapy for *Bacillus Calmette-Guerin*-unresponsive Non-muscle-invasive Bladder Cancer: International Bladder Cancer Group Recommendations for Optimal Sequencing and Patient Selection. *Eur Urol* 86, 516-527. 10.1016/j.eururo.2024.08.001.
6. Hedgepeth, R.C., Gilbert, S.M., He, C., Lee, C.T., and Wood, D.P., Jr. (2010). Body image and bladder cancer specific quality of life in patients with ileal conduit and neobladder urinary diversions. *Urology* 76, 671-675. 10.1016/j.urology.2010.01.087.
7. Muller, G., Butea-Bocu, M., Brock, O., Hanske, J., Pucheril, D., Noldus, J., and Otto, U. (2020). Association between Development of Metabolic Acidosis and Improvement of Urinary Continence after Ileal Neobladder Creation. *J Urol* 203, 585-590. 10.1097/JU.0000000000000583.
8. Sharma, P., Hu-Lieskovan, S., Wargo, J.A., and Ribas, A. (2017). Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. *Cell* 168, 707-723. 10.1016/j.cell.2017.01.017.
9. Morales, A., Eidinger, D., and Bruce, A.W. (1976). Intracavitory *Bacillus Calmette-Guerin* in the treatment of superficial bladder tumors. *J Urol* 116, 180-183. 10.1016/s0022-5347(17)58737-6.
10. Morales, A. (2017). BCG: A throwback from the stone age of vaccines opened the path for bladder cancer immunotherapy. *Can J Urol* 24, 8788-8793.
11. Kates, M., Matoso, A., Choi, W., Baras, A.S., Daniels, M.J., Lombardo, K., Brant, A., Mikkilineni, N., McConkey, D.J., Kamat, A.M., et al. (2020). Adaptive Immune Resistance to Intravesical BCG in Non-Muscle Invasive Bladder Cancer: Implications for Prospective BCG-Unresponsive Trials. *Clin Cancer Res* 26, 882-891. 10.1158/1078-0432.CCR-19-1920.
12. Pfai, J.L., Katims, A.B., Alerasool, P., and Sfakianos, J.P. (2021). Immunotherapy in non-muscle-invasive bladder cancer: current status and future directions. *World J Urol* 39, 1319-1329. 10.1007/s00345-020-03474-8.
13. Balar, A.V., Kamat, A.M., Kulkarni, G.S., Uchio, E.M., Boormans, J.L., Roumiguie, M., Krieger, L.E.M., Singer, E.A., Bajorin, D.F., Grivas, P., et al. (2021). Pembrolizumab monotherapy for the treatment of high-risk non-muscle-invasive bladder cancer unresponsive to BCG (KEYNOTE-057): an open-label, single-arm, multicentre, phase 2 study. *Lancet Oncol* 22, 919-930. 10.1016/S1470-2045(21)00147-9.
14. Necchi, A., Roumiguie, M., Kamat, A.M., Shore, N.D., Boormans, J.L., Esen, A.A., Lebret, T., Kandori, S., Bajorin, D.F., Krieger, L.E.M., et al. (2024). Pembrolizumab monotherapy for high-risk non-muscle-invasive bladder cancer without carcinoma in situ and unresponsive to BCG (KEYNOTE-057): a single-arm, multicentre, phase 2 trial. *Lancet Oncol* 25, 720-730. 10.1016/S1470-2045(24)00178-5.

1088 15. van Montfoort, N., Borst, L., Korrer, M.J., Sluijter, M., Marijt, K.A., Santegoets, S.J., van Ham, V.J., Ehsan, I., Charoentong, P., Andre, P., et al. (2018). NKG2A Blockade Potentiates CD8 T Cell Immunity Induced by Cancer Vaccines. *Cell* *175*, 1744-1755 e1715. 10.1016/j.cell.2018.10.028.

1089 16. Andre, P., Denis, C., Soulard, C., Bourbon-Caillet, C., Lopez, J., Arnoux, T., Blery, M., Bonnafous, C., Gauthier, L., Morel, A., et al. (2018). Anti-NKG2A mAb Is a Checkpoint Inhibitor that Promotes Anti-tumor Immunity by Unleashing Both T and NK Cells. *Cell* *175*, 1731-1743 e1713. 10.1016/j.cell.2018.10.014.

1090 17. Salomé, B., Sfakianos, J.P., Ranti, D., Daza, J., Bieber, C., Charap, A., Hammer, C., Banchereau, R., Farkas, A.M., Ruan, D.F., et al. (2022). NKG2A and HLA-E define a novel alternative immune checkpoint axis in bladder cancer. *Cancer Cell* *40*, 1-17. 10.1016/j.ccr.2022.08.005.

1091 18. Kamiya, T., Seow, S.V., Wong, D., Robinson, M., and Campana, D. (2019). Blocking expression of inhibitory receptor NKG2A overcomes tumor resistance to NK cells. *J Clin Invest* *129*, 2094-2106. 10.1172/JCI123955.

1092 19. Pereira, B.I., Devine, O.P., Vukmanovic-Stejic, M., Chambers, E.S., Subramanian, P., Patel, N., Virasami, A., Sebire, N.J., Kinsler, V., Valdovinos, A., et al. (2019). Senescent cells evade immune clearance via HLA-E-mediated NK and CD8(+) T cell inhibition. *Nat Commun* *10*, 2387. 10.1038/s41467-019-10335-5.

1093 20. Herbst, R.S., Majem, M., Barlesi, F., Carcereny, E., Chu, Q., Monnet, I., Sanchez-Hernandez, A., Dakhil, S., Camidge, D.R., Winzer, L., et al. (2022). COAST: An Open-Label, Phase II, Multidrug Platform Study of Durvalumab Alone or in Combination With Oleclumab or Monalizumab in Patients With Unresectable, Stage III Non-Small-Cell Lung Cancer. *J Clin Oncol*, JCO2200227. 10.1200/JCO.22.00227.

1094 21. Barlesi, F., Cho, B.C., Goldberg, S.B., Yoh, K., Zimmer Gelatti, A.C., Mann, H., Gopinathan, A., Bielecka, Z.F., Newton, M., and Aggarwal, C. (2024). PACIFIC-9: Phase III trial of durvalumab + oleclumab or monalizumab in unresectable stage III non-small-cell lung cancer. *Future Oncol*, 1-11. 10.1080/14796694.2024.2354160.

1095 22. Li, J., Zhou, J., Huang, H., Jiang, J., Zhang, T., and Ni, C. (2023). Mature dendritic cells enriched in immunoregulatory molecules (mregDCs): A novel population in the tumour microenvironment and immunotherapy target. *Clin Transl Med* *13*, e1199. 10.1002/ctm2.1199.

1096 23. Burr, M.L., Sparbier, C.E., Chan, Y.C., Williamson, J.C., Woods, K., Beavis, P.A., Lam, E.Y.N., Henderson, M.A., Bell, C.C., Stolzenburg, S., et al. (2017). CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. *Nature* *549*, 101-105. 10.1038/nature23643.

1097 24. Netskar, H., Pfefferle, A., Goodridge, J.P., Sohlberg, E., Dufva, O., Teichmann, S.A., Brownlie, D., Michaelsson, J., Marquardt, N., Clancy, T., et al. (2024). Pan-cancer profiling of tumor-infiltrating natural killer cells through transcriptional reference mapping. *Nat Immunol*. 10.1038/s41590-024-01884-z.

1098 25. Rebuffet, L., Melsen, J.E., Escalier, B., Basurto-Lozada, D., Bhandoola, A., Bjorkstrom, N.K., Bryceson, Y.T., Castriconi, R., Cichocki, F., Colonna, M., et al. (2024). High-dimensional single-cell analysis of human natural killer cell heterogeneity. *Nat Immunol*. 10.1038/s41590-024-01883-0.

1099 26. Vivier, E., Rebuffet, L., Narni-Mancinelli, E., Cornen, S., Igarashi, R.Y., and Fantin, V.R. (2024). Natural killer cell therapies. *Nature* *626*, 727-736. 10.1038/s41586-023-06945-1.

1100 27. Chang, S.S., Boorjian, S.A., Chou, R., Clark, P.E., Daneshmand, S., Konety, B.R., Pruthi, R., Quale, D.Z., Ritch, C.R., Seigne, J.D., et al. (2016). Diagnosis and Treatment of Non-Muscle Invasive Bladder Cancer: AUA/SUO Guideline. *J Urol* *196*, 1021-1029. 10.1016/j.juro.2016.06.049.

1135 28. Cristescu, R., Mogg, R., Ayers, M., Albright, A., Murphy, E., Yearley, J., Sher, X., Liu, X.Q., Lu, H., Nebozhyn, M., et al. (2018). Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. *Science* *362*. 10.1126/science.aar3593.

1136 29. Wang, L., Sfakianos, J.P., Beaumont, K.G., Akturk, G., Horowitz, A., Sebra, R.P., Farkas, A.M., Gnijatic, S., Hake, A., Izadmehr, S., et al. (2021). Myeloid Cell-associated Resistance to PD-1/PD-L1 Blockade in Urothelial Cancer Revealed Through Bulk and Single-cell RNA Sequencing. *Clin Cancer Res*. 10.1158/1078-0432.CCR-20-4574.

1137 30. Strandgaard, T., Nordentoft, I., Birkenkamp-Demtroder, K., Salminen, L., Prip, F., Rasmussen, J., Andreasen, T.G., Lindskrog, S.V., Christensen, E., Lamy, P., et al. (2023). Field Cancerization Is Associated with Tumor Development, T-cell Exhaustion, and Clinical Outcomes in Bladder Cancer. *Eur Urol*. 10.1016/j.eururo.2023.07.014.

1138 31. Strandgaard, T., Lindskrog, S.V., Nordentoft, I., Christensen, E., Birkenkamp-Demtröder, K., Andreasen, T.G., Lamy, P., Kjær, A., Ranti, D., Wang, Y.A., et al. (2022). Elevated T-cell Exhaustion and Urinary Tumor DNA Levels Are Associated with Bacillus Calmette-Guérin Failure in Patients with Non-muscle-invasive Bladder Cancer. *European Urology*. <https://doi.org/10.1016/j.eururo.2022.09.008>.

1139 32. Spranger, S., Spaapen, R.M., Zha, Y., Williams, J., Meng, Y., Ha, T.T., and Gajewski, T.F. (2013). Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. *Sci Transl Med* *5*, 200ra116-200ra116. 10.1126/scitranslmed.3006504.

1140 33. Rooney, M.S., Shukla, S.A., Wu, C.J., Getz, G., and Hacohen, N. (2015). Molecular and genetic properties of tumors associated with local immune cytolytic activity. *Cell* *160*, 48-61. 10.1016/j.cell.2014.12.033.

1141 34. Ribas, A. (2015). Adaptive Immune Resistance: How Cancer Protects from Immune Attack. *Cancer Discov* *5*, 915-919. 10.1158/2159-8290.Cd-15-0563.

1142 35. Grasso, C.S., Tsoi, J., Onyshchenko, M., Abril-Rodriguez, G., Ross-Macdonald, P., Wind-Rotolo, M., Champhekar, A., Medina, E., Torrejon, D.Y., Shin, D.S., et al. (2020). Conserved Interferon- γ Signaling Drives Clinical Response to Immune Checkpoint Blockade Therapy in Melanoma. *Cancer Cell* *38*, 500-515.e503. 10.1016/j.ccell.2020.08.005.

1143 36. Gocher, A.M., Workman, C.J., and Vignali, D.A.A. (2022). Interferon- γ : teammate or opponent in the tumour microenvironment? *Nat Rev Immunol* *22*, 158-172. 10.1038/s41577-021-00566-3.

1144 37. Bisiaux, A., Thiounn, N., Timsit, M.O., Eladaoui, A., Chang, H.H., Mapes, J., Mogenet, A., Bresson, J.L., Prié, D., Béchet, S., et al. (2009). Molecular analyte profiling of the early events and tissue conditioning following intravesical bacillus calmette-guerin therapy in patients with superficial bladder cancer. *J Urol* *181*, 1571-1580. 10.1016/j.juro.2008.11.124.

1145 38. Zhang, X., Lan, Y., Xu, J., Quan, F., Zhao, E., Deng, C., Luo, T., Xu, L., Liao, G., Yan, M., et al. (2019). CellMarker: a manually curated resource of cell markers in human and mouse. *Nucleic Acids Res* *47*, D721-d728. 10.1093/nar/gky900.

1146 39. Glass, D.R., Tsai, A.G., Oliveria, J.P., Hartmann, F.J., Kimmey, S.C., Calderon, A.A., Borges, L., Glass, M.C., Wagar, L.E., Davis, M.M., and Bendall, S.C. (2020). An Integrated Multi-omic Single-Cell Atlas of Human B Cell Identity. *Immunity* *53*, 217-232.e215. 10.1016/j.immuni.2020.06.013.

1147 40. Magri, G., Comerma, L., Pybus, M., Sintes, J., Lligé, D., Segura-Garzón, D., Bascones, S., Yeste, A., Grasset, E.K., Gutzeit, C., et al. (2017). Human Secretory IgM Emerges from Plasma Cells Clonally Related to Gut Memory B Cells and Targets Highly Diverse Commensals. *Immunity* *47*, 118-134.e118. 10.1016/j.immuni.2017.06.013.

1148 41. Hao, Y., Stuart, T., Kowalski, M.H., Choudhary, S., Hoffman, P., Hartman, A., Srivastava, A., Molla, G., Madad, S., and Fernandez-Granda, C. (2024). Dictionary learning for integrative, multimodal and scalable single-cell analysis. *Nature biotechnology* *42*, 293-304.

1183 42. Finak, G., McDavid, A., Yajima, M., Deng, J., Gersuk, V., Shalek, A.K., Slichter, C.K., Miller, H.W., McElrath, M.J., and Prlic, M. (2015). MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. *Genome biology* 16, 1-13.

1184 43. Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdóttir, H., Tamayo, P., and Mesirov, J.P. (2011). Molecular signatures database (MSigDB) 3.0. *Bioinformatics* 27, 1739-1740.

1185 44. Dries, R., Zhu, Q., Dong, R., Eng, C.-H.L., Li, H., Liu, K., Fu, Y., Zhao, T., Sarkar, A., and Bao, F. (2021). Giotto: a toolbox for integrative analysis and visualization of spatial expression data. *Genome biology* 22, 1-31.

1186 45. Lause, J., Berens, P., and Kobak, D. (2021). Analytic Pearson residuals for normalization of single-cell RNA-seq UMI data. *Genome biology* 22, 1-20.

1187 46. Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K., Baglaenko, Y., Brenner, M., Loh, P.-r., and Raychaudhuri, S. (2019). Fast, sensitive and accurate integration of single-cell data with Harmony. *Nature methods* 16, 1289-1296.

1188 47. Ma, Y., and Zhou, X. (2022). Spatially informed cell-type deconvolution for spatial transcriptomics. *Nature biotechnology* 40, 1349-1359.

1189 48. Jin, S., Plikus, M.V., and Nie, Q. (2023). CellChat for systematic analysis of cell-cell communication from single-cell and spatially resolved transcriptomics. *BioRxiv*, 2023.2011.2005.565674.

1190 49. Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J.P., and Tamayo, P. (2015). The Molecular Signatures Database (MSigDB) hallmark gene set collection. *Cell Syst* 1, 417-425. 10.1016/j.cels.2015.12.004.

1191 50. Shapiro, S.S., and Wilk, M.B. (1965). An Analysis of Variance Test for Normality (Complete Samples). *Biometrika* 52, 591-611. 10.2307/2333709.

1192 51. Kruskal, W.H., and Wallis, W.A. (1952). Use of Ranks in One-Criterion Variance Analysis. *Journal of the American Statistical Association* 47, 583-621. 10.2307/2280779.

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

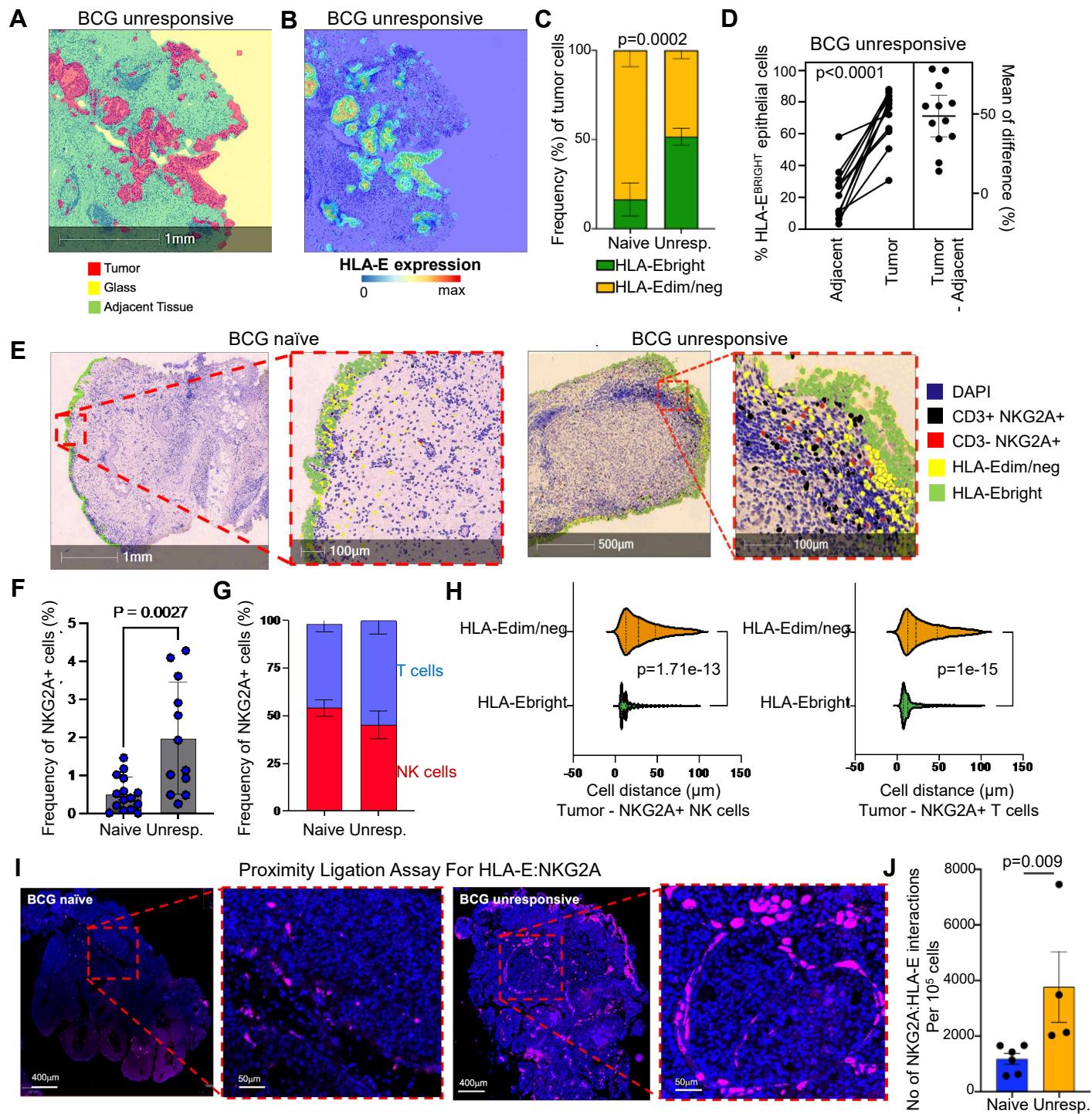


Figure 1

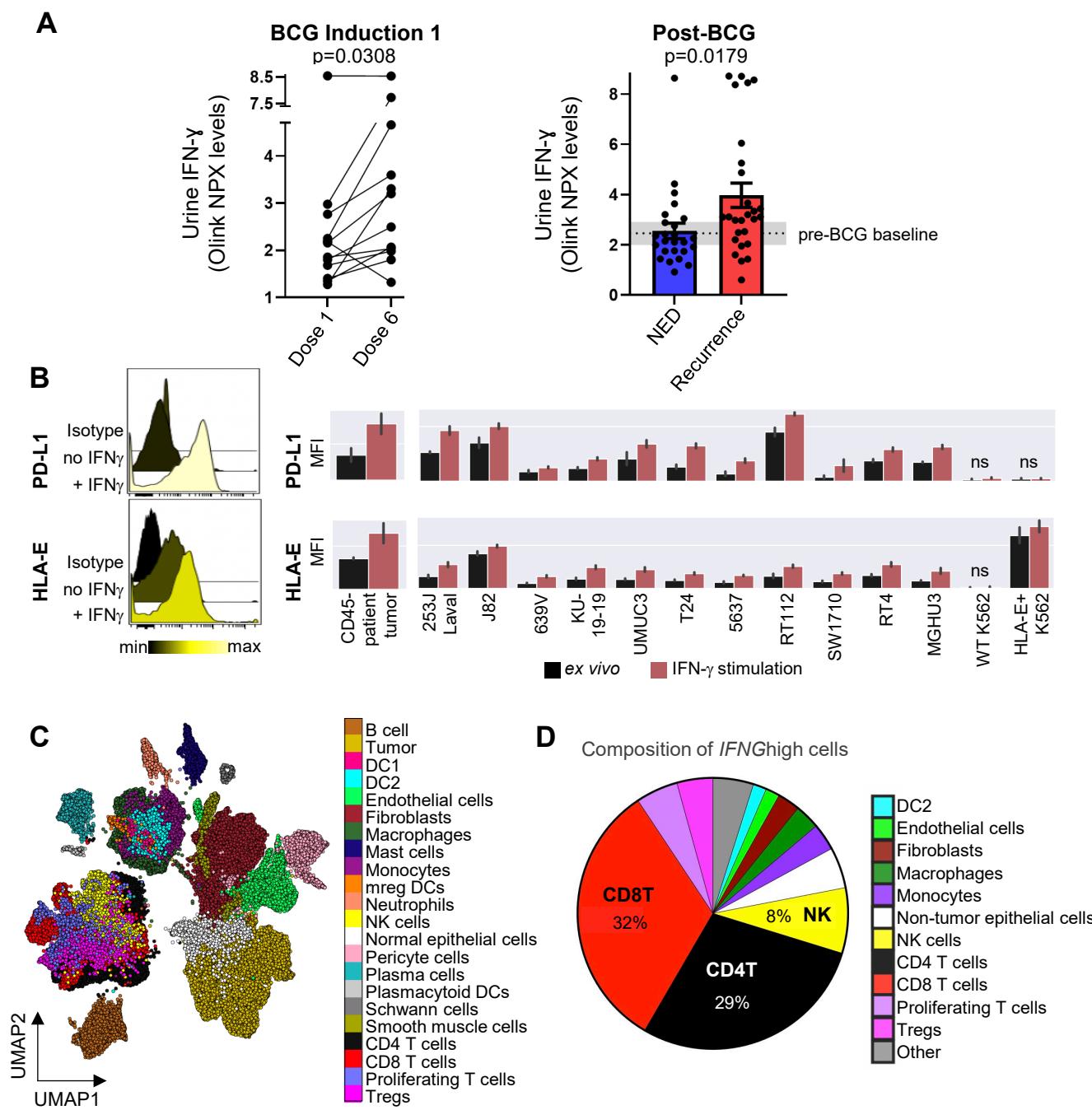
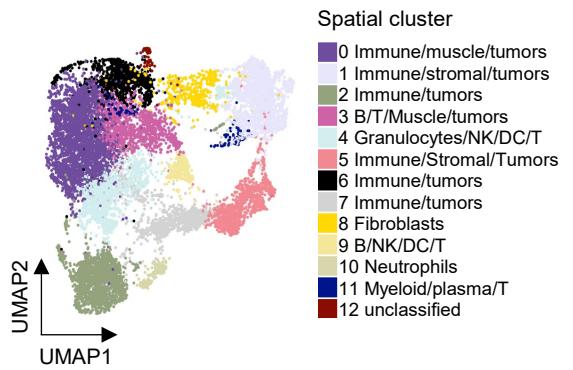
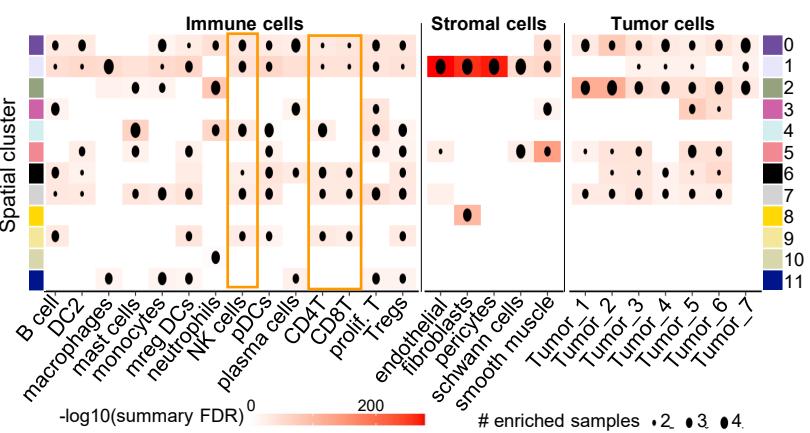
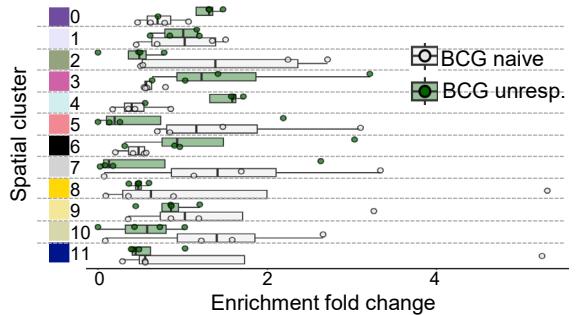
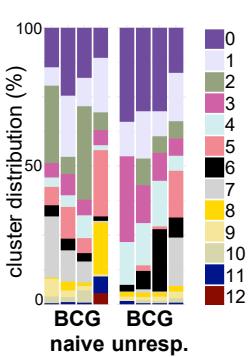
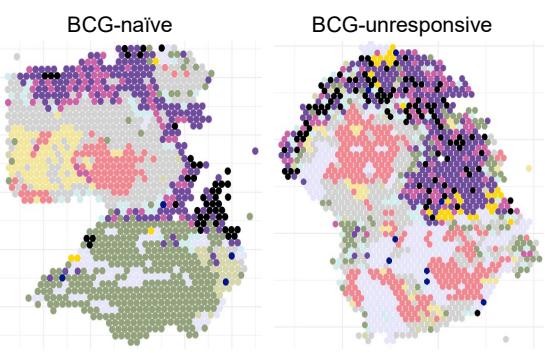
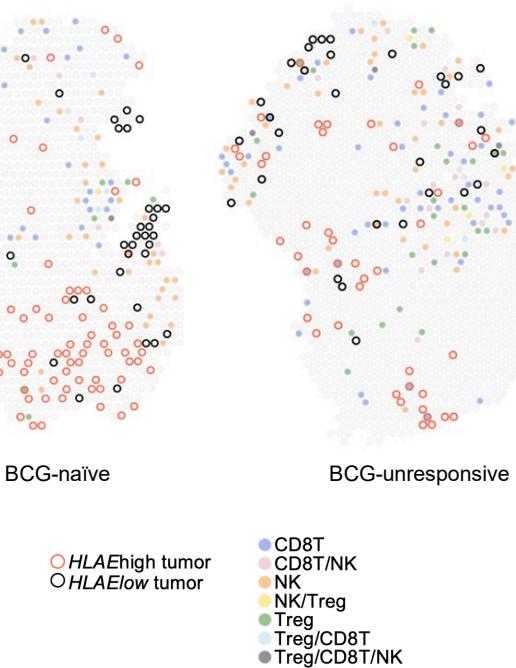




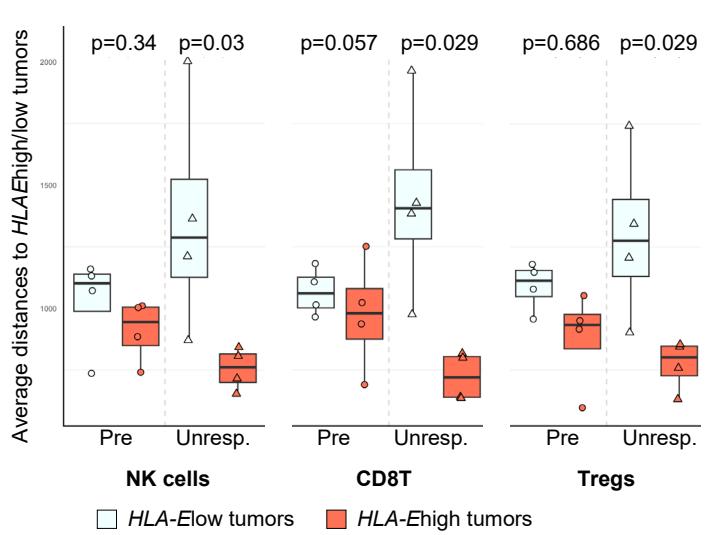
Figure 2


A


B


C


D


E

F

G

Figure 3

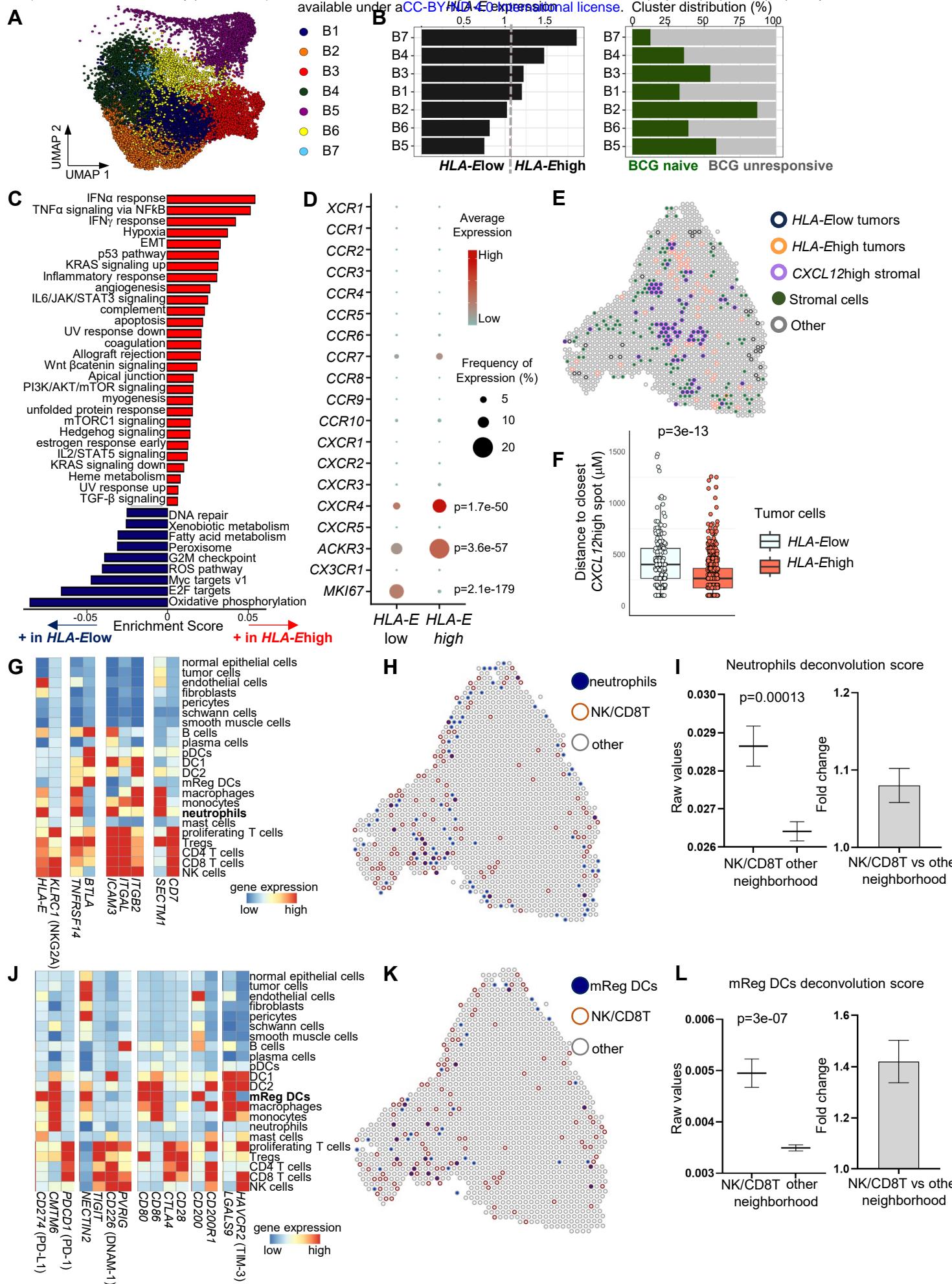
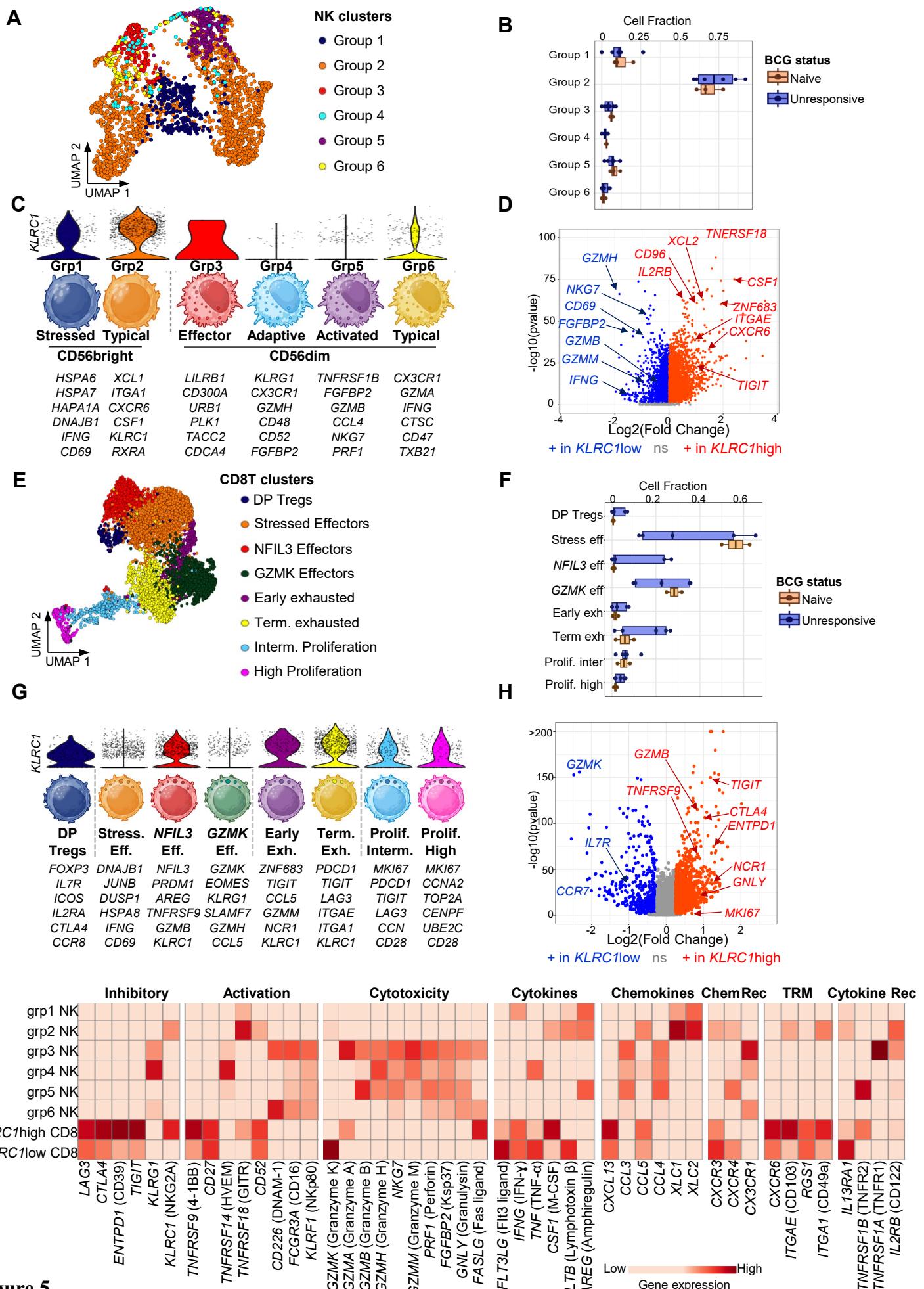



Figure 4

Figure 5

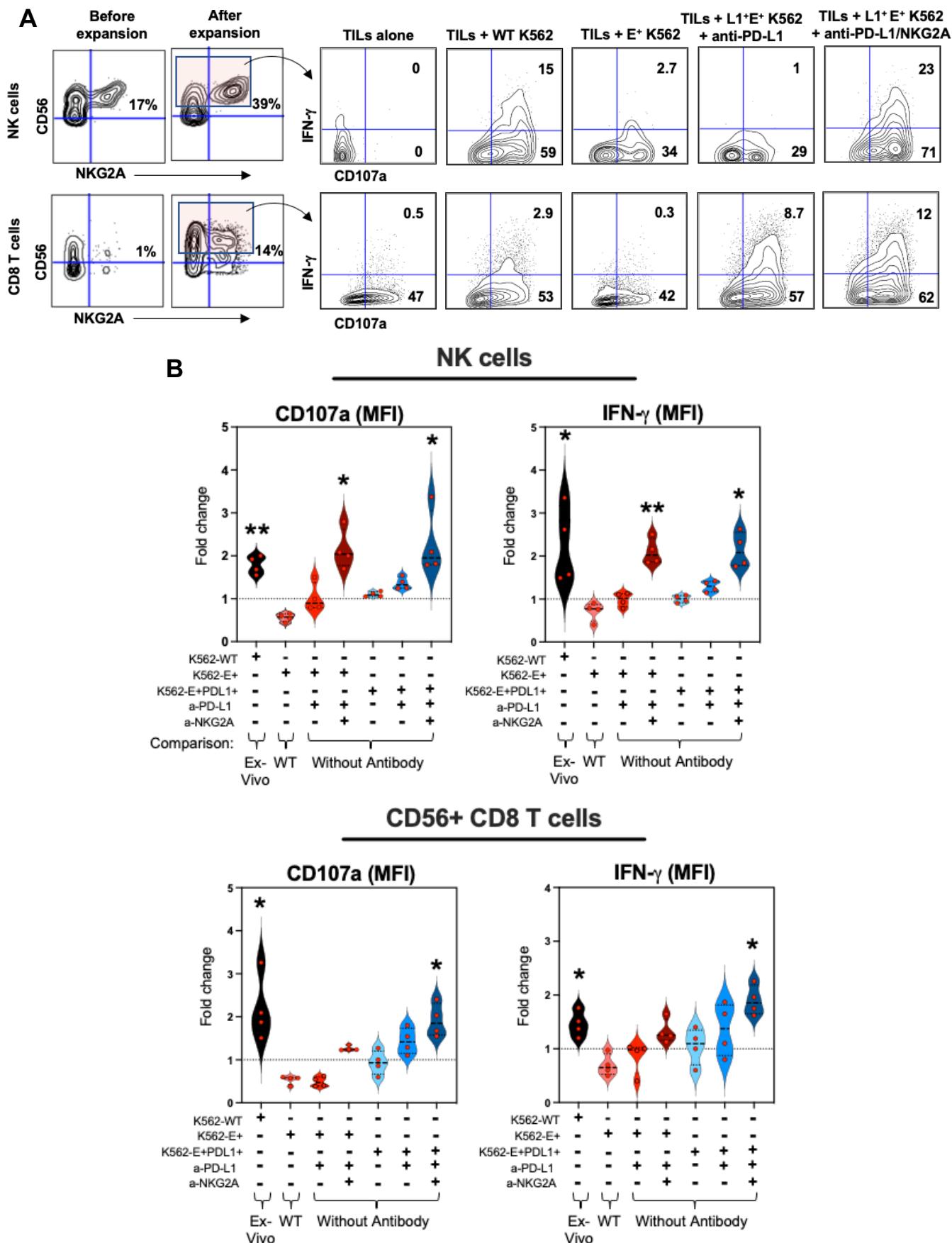


Figure 6