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Abstract 29 

  Numerous protein-coding genes are associated with human diseases, yet 30 

approximately 90% of them lack targeted therapeutic intervention. While conventional 31 

computational methods, such as molecular docking, have facilitated the discovery of 32 

potential hit compounds, the development of genome-wide virtual screening against the 33 

expansive chemical space remains a formidable challenge. Here we introduce 34 

DrugCLIP, a novel framework that combines contrastive learning and dense retrieval 35 

to achieve rapid and accurate virtual screening. Compared to traditional docking 36 

methods, DrugCLIP improves the speed of virtual screening by up to seven orders of 37 

magnitude. In terms of performance, DrugCLIP not only surpasses docking and other 38 

deep learning-based methods across two standard benchmark datasets, but also 39 

demonstrates high efficacy in wet-lab experiments. Specifically, DrugCLIP 40 

successfully identified agonists with < 100 nM affinities for 5HT2AR, a key target in 41 

psychiatric diseases. For another target NET, whose structure is newly solved and not 42 

included in the training set, our method achieved a hit rate of 15%, with 12 diverse 43 

molecules exhibiting affinities better than bupropion. Additionally, two chemically 44 

novel inhibitors were validated by structure determination with Cryo-EM. Finally, a 45 

novel potential drug target TRIP12, with no experimental structures and inhibitors for 46 

reference, was used to challenge DrugCLIP. DrugCLIP achieved a hit rate of 17.5% by 47 

screening a pocket identified on an AlphaFold2-predicted structure, verified with multi-48 

cycle SPR assays. Molecules with the highest affinities also showed a dose-dependent 49 

inhibition to the enzymatic function of TRIP12. Building on this foundation, we present 50 

the results of a pioneering trillion-scale genome-wide virtual screening, encompassing 51 

approximately 10,000 AlphaFold2 predicted proteins within the human genome and 52 

500 million molecules from the ZINC and Enamine REAL database. This work 53 

provides an innovative perspective on drug discovery in the post-AlphaFold era, where 54 

comprehensive targeting of all disease-related proteins is within reach.  55 
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Introduction 56 

  The human genome comprises approximately 20,000 protein-coding genes (1), many 57 

of which are related to a variety of diseases. Despite this, only about 10% of these genes 58 

have been successfully targeted by FDA-approved drugs or have documented small-59 

molecule binders in the literature (2). This leaves a substantial portion of the druggable 60 

genome largely unexplored, representing a promising opportunity for therapeutic 61 

innovation. The scientific community is eager to translate biologically relevant targets 62 

into pharmaceutical breakthroughs. However, most researchers lack access to advanced 63 

high-throughput screening equipment or sufficient computational power to perform 64 

comprehensive virtual screenings. Additionally, proteins often function as parts of 65 

families or pathways, indicating that targeting single proteins may not always be the 66 

most effective strategy (3, 4). These limitations can significantly reduce the success rate 67 

of drug discovery, especially for new targets. Therefore, developing a comprehensive 68 

chemical database containing genome-wide virtual screening results would be an 69 

invaluable asset for the biomedical research community, with the potential to 70 

significantly accelerate the discovery of new drugs. 71 

  Given the impracticality of experimentally screening all human proteins, virtual 72 

screening has emerged as the only viable approach to tackle the vast number of potential 73 

targets. In classical computer-aided drug discovery (CADD), molecular docking serves 74 

as a foundational technique for target-based virtual screening. Despite advancements in 75 

simplified scoring functions, optimized algorithms, and hardware acceleration (5-9), 76 

molecular docking remains time-intensive, often requiring several seconds to minutes 77 

to evaluate each protein-ligand pair. For example, a recent large-scale docking 78 

campaign took two weeks to screen 1 billion molecules against a single target, even 79 

with the use of 10,000 CPU cores (10). As a result, the computational demands for 80 

genome-wide virtual screening are prohibitively high, rendering such efforts 81 

impractical with existing technologies. 82 
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  Artificial intelligence holds great promise for drug discovery. Various deep learning 83 

methods have been developed for virtual screening, focusing on predicting ligand-84 

receptor affinities (11-13). Yet, applying these methods to large-scale virtual screening 85 

still faces significant challenges. A primary issue is the inconsistency of affinity values 86 

due to heterogeneous experimental conditions (14, 15), which may negatively impact 87 

the performance of the trained model. Moreover, a notable distribution shift between 88 

training datasets and real-world testing scenarios hinders the generalizability of AI 89 

models, as real-world virtual screenings often involve a larger proportion of inactive 90 

molecules than those represented in the curated training sets (16). Additionally, the 91 

computational demands of deep learning models, with millions of parameters, pose a 92 

crucial bottleneck in inference speed, especially as chemical libraries and target 93 

numbers grow. Consequently, there is an urgent need for the development of more 94 

efficient and robust AI methodologies to effectively address these challenges. 95 

  In this work, we introduce DrugCLIP, a novel contrastive learning approach for 96 

virtual screening. Contrastive learning has demonstrated significant success in various 97 

applications like image-text retrieval (17), enzyme function annotation (18), and protein 98 

homology detection (19). The core innovation of DrugCLIP lies in its ability to 99 

distinguish potent binders from non-binding molecules with a given protein pocket by 100 

aligning their representations. This approach effectively mitigates the impact of noisy 101 

affinity labels and chemical library imbalances that have traditionally challenged virtual 102 

screening efforts. Moreover, the inference of DrugCLIP is highly efficient, achieving a 103 

speed improvement in several orders of magnitude.  104 

  Comprehensive in silico and wet-lab evaluations were conducted to assess the 105 

accuracy of the DrugCLIP model. Our model achieved state-of-the-art performance on 106 

two widely recognized virtual screening benchmarks, DUD-E (20) and LIT-PCBA (21), 107 

outperforming traditional docking-based screening methods and other deep neural 108 

networks. To further validate its performance, DrugCLIP was applied to screen 109 
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molecules for three real-world targets: 5HT2AR (5-hydroxytryptamine receptor 2A), 110 

NET (norepinephrine transporter), and TRIP12 (Thyroid Hormone Receptor Interactor 111 

12), while the last target, TRIP12, lacks experimental structures and inhibitors for 112 

reference. Remarkably, our model identified chemically diverse binders with adequate 113 

affinities, which were further validated through functional assays and structure 114 

determination. These results provide compelling evidence of the efficacy of our virtual 115 

screening method. 116 

  Finally, a genome-wide virtual screening was conducted using DrugCLIP on all 117 

human proteins predicted by AlphaFold2 (22, 23). In this process, we first define 118 

pockets for AlphaFold predictions with structure alignment (24), pocket detection 119 

software (25), and generative AI models. Next, we screened over 500 million drug-like 120 

molecules from the ZINC (26, 27) and Enamine REAL (28) databases against identified 121 

pockets. Notably, this unprecedented large-scale virtual screening was completed in just 122 

24 hours on a single computing node equipped with 8 A100 GPUs. Lastly, we applied 123 

a CADD cluster-docking pipeline to select chemically diverse and physically proper 124 

molecules for each pocket. These result in a dataset containing over 2 million potential 125 

hits targeting more than 20,000 pockets from around 10,000 human proteins. To the 126 

best of our knowledge, this is the first virtual screening campaign to perform more than 127 

10 trillion scoring operations on protein-ligand pairs, covering nearly half of the human 128 

genome. All molecules, scores, and poses have been made freely accessible at 129 

https://drug-the-whole-genome.yanyanlan.com, facilitating further research in drug 130 

discovery on a genome-wide scale. 131 

  132 
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Results 133 

The design of the DrugCLIP model 134 

  Unlike previous machine learning models that relied on regression to directly predict 135 

protein-ligand affinity values, DrugCLIP (Fig. 1) redefines virtual screening as a dense 136 

retrieval task. The key innovation lies in its training objective, which aims to learn an 137 

aligned embedding space for protein pockets and molecules, encoded by separate neural 138 

networks. Vector similarity metrics can then be employed to reflect their binding 139 

probability. Using contrastive loss during training, the similarity between protein 140 

pockets and their binders (positive protein-ligand pairs) is maximized, whereas the 141 

similarity between protein pockets and molecules binding to other targets (negative 142 

protein-ligand pairs) is minimized.  143 

  The training process of DrugCLIP includes two stages: pretraining and fine-tuning. 144 

The molecule and pocket encoders are pretrained with large-scale synthetic data and 145 

are further refined using experimentally determined protein-ligand complex structures 146 

during fine-tuning. 147 

  In the pretraining stage, the molecule encoder is initialized with Uni-Mol (29), a well-148 

established molecule encoder. With the molecule encoder frozen, the pocket encoder is 149 

randomly initialized and trained to align with the molecule encoder using contrastive 150 

learning (Fig. 1B). We developed a Protein Fragment-Surrounding Alignment (ProFSA) 151 

framework (Fig. 1A) to generate large-scale synthetic data specifically tailored for 152 

contrastive pretraining. In this approach, short peptide fragments are extracted from 153 

protein-only structures to serve as pseudo-ligands, while their surrounding regions are 154 

designated as pseudo-pockets. Intra-protein interactions share many features with 155 

protein–ligand interactions, including hydrogen bonding, ionic attraction, π-π stacking, 156 

and other non-covalent interactions (Fig. S1). In previous research on ligand-binding 157 

protein design, intra-protein packing has also been exploited to determine statistically 158 
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preferred orientations of chemical groups relative to the backbone of a contacting 159 

residue for protein-ligand interface modeling (30). This principle underlies the 160 

development of ProFSA. To further enhance model performance, we carefully calibrate 161 

the chemical property distributions of pseudo-ligands and binding pockets to closely 162 

match those observed in real complexes (Fig. S2 and S3), thereby minimizing the 163 

distribution gap between synthetic and real-world data. Technical details are provided 164 

in the “The Pretraining of the Pocket Encoder” section of the Methods. 165 

Applying the ProFSA framework to PDB (31) data yielded 5.5 million pseudo-166 

pocket and ligand pairs to facilitate the pretraining. The trained pocket encoder has been 167 

evaluated across various downstream tasks such as pocket property prediction (Table 168 

S1), pocket matching (Table S2), and protein-ligand affinity prediction (Table S3). 169 

Experimental results demonstrate that our pretrained pocket encoder exhibits strong 170 

performance, even in a zero-shot setting, outperforming many supervised learning-171 

based models as well as physical and knowledge-based models. These results 172 

underscore the success of the pretraining stage in obtaining meaningful pocket 173 

representations. 174 

  After pretraining, the molecule and pocket encoders are further fine-tuned (Fig. 1D) 175 

using 40,000 experimentally determined protein-ligand complex structures collected by 176 

the BioLip2 database (32). Given that the binding conformations of molecules are 177 

unknown and only their topologies are provided in virtual screening, we implemented 178 

a random conformation sampling strategy for data augmentation by using RDKit (33) 179 

for conformation generation. This augmentation allows DrugCLIP to train on data that 180 

more accurately reflects the variability of real-world screenings, thereby enhancing the 181 

model's performance and generalization ability. 182 

  In the screening process (Fig. 1E), we first use our trained encoders to represent 183 

molecules and pockets as vectors. Cosine similarities between the pocket and molecule 184 

embeddings are then computed, and candidate molecules are ranked according to these 185 
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similarity scores. Since the molecule representations can be computed offline, 186 

DrugCLIP screening is highly efficient, requiring only the calculation of a simple cosine 187 

similarity and subsequent ranking. Therefore, with proper pre-encoding and 188 

parallelization, DrugCLIP can evaluate trillion-level target-molecule pairs with a single 189 

GPU accelerator, which is more than 10,000,000 times faster compared with traditional 190 

computational methods like molecular docking.   191 
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 192 

Fig. 1 The framework of DrugCLIP. (A) In the pretraining stage, a large-scale synthetic dataset 193 

was created using the ProFSA strategy. Specifically, pseudo pocket-ligand pairs were 194 

constructed through a series of operations, including fragment segmentation, terminal 195 

correction, neighbor removal, and pocket detection, on protein data. (B) The pocket encoder is 196 

pretrained with pseudo pocket-ligand pairs in a contrastive distillation manner to transfer 197 

knowledge from a well-established molecular encoder to the pocket encoder. (C) During the 198 

fine-tuning process, experimentally determined protein-ligand pairs were used as training data, 199 

with multiple ligand conformations generated by RDKit. (D) In the fine-tuning stage, both the 200 

pocket and molecule encoders were updated using a contrastive loss, which maximizes the 201 

similarity between positive pairs and minimizes it between negative pairs. (E) The pipeline for 202 

virtual screening with DrugCLIP. The candidate molecules from the library were pre-encoded 203 

with the trained molecular encoder. For a given pocket, the trained pocket encoder converts it 204 

to a vector, and the cosine similarity is then utilized to select top ligands with the highest scores. 205 

 206 

   207 
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Evaluating DrugCLIP performance with benchmarks and wet-lab experiments 208 

We benchmarked DrugCLIP on two widely used virtual screening datasets, DUD-E  209 

(20) and LIT-PCBA (21). The DUD-E dataset contains 22,886 active compounds of 102 210 

protein targets. For each active compound, 50 decoys with similar physical properties 211 

but different structures are generated. In contrast, LIT-PCBA comprises approximately 212 

8,000 active and 2.64 million inactive compounds across 15 targets, derived from 213 

experimental results of the PubChem BioAssay database. DrugCLIP was compared 214 

with established physical-informed docking software, including Glide-SP (5), 215 

Autodock Vina (6), Surflex (34), and regression-oriented machine learning models, 216 

including NNscore (13), RFscore (35), Pafnucy (36), OnionNet (12), PLANET (11), 217 

Gnina (37), BigBind (38). In both sets of results (Fig. 2A and 2B, Table S4 and S5), 218 

DrugCLIP demonstrated a superior performance over all baseline methods in terms of 219 

EF1%, measuring the recall capacity of virtual screening models.  220 

  We also investigated the influence of molecule similarity, homology information, and 221 

protein structure accuracy on DrugCLIP's performance. After removing training 222 

samples containing similar molecular substructures or scaffolds to the test set, the 223 

performance drop of DrugCLIP remains marginal. Notably, it consistently outperforms 224 

the widely used commercial virtual screening software Glide-SP (Fig. 2C, Table S6). 225 

The robustness of DrugCLIP is not only to unseen molecular structures, but also to new 226 

protein families. Remarkably, even when test protein families were entirely excluded 227 

from the training set, DrugCLIP still outperformed one of the most popular virtual 228 

screening methods AutoDock Vina (Fig. 2C, Table S7), highlighting its strong 229 

generalization capability to new targets. Moreover, DrugCLIP shows exceptional 230 

robustness by outperforming AutoDock Vina even with a 3 Å RMSD error in the side 231 

chain conformations of protein pockets (Fig. 2D), indicating its robustness to structural 232 

inaccuracies.  233 
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  Furthermore, DrugCLIP is exceptionally efficient (Fig. 2E), making it highly suitable 234 

for large-scale screening tasks. For instance, DrugCLIP can complete the screening for 235 

LIT-PCBA in merely 38 seconds in the sequential computing mode, significantly faster 236 

than Glide docking (3 days), Uni-Dock (22 hours) (8), and another machine learning 237 

method PLANET (3 hours) (11). When a large number of molecules and pockets are 238 

evaluated, efficient parallel computing with GPUs can further reduce the time cost of 239 

the same amount of computation to 0.023 seconds. Moreover, the time consumption of 240 

DrugCLIP screening scales linearly with the simultaneous increase of target and 241 

molecule numbers (Fig. 2F), which can facilitate multi-target virtual screening.  242 

  These in silico results confirm that DrugCLIP possesses superior virtual screening 243 

capabilities, combining high performance, generalizability, robustness, and efficiency. 244 

In addition to in silico evaluation, we tested the DrugCLIP model on real-world targets 245 

using wet-lab experiments. We focused on two well-established targets for psychiatric 246 

diseases: the serotonin receptor 2A (5HT2AR) and the norepinephrine transporter (NET). 247 

5HT2AR is an emerging target for antidepressant development. Its agonists have 248 

demonstrated strong and long-lasting antidepressant effects in both rodent models and 249 

humans (39, 40). Previous research suggests that the recruitment of β-arrestin2 250 

following 5HT2AR activation is a key biochemical mechanism underlying these 251 

antidepressant effects (41, 42). 252 

In a pilot virtual screening experiment, 78 top-ranked compounds were ordered from 253 

ChemDiv, Inc. (https://www.chemdiv.com/), which is also the supplier for the screening 254 

of another two targets in the following sections. Eight of the 78 compounds were 255 

identified as positive agonists in a calcium flux assay, exhibiting a minimal activity of 256 

10% compared to serotonin (Fig. S4). The affinities of these compounds to 5HT2AR 257 

were further assessed using [³H]-labeled ketanserin competitive binding assays, with 258 

six showing a Ki of less than 10 μM (Table S8, Fig. S5 and S6). We then evaluated the 259 

cellular function of these hit compounds using NanoBit assays for β-arrestin2 260 
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recruitment, and all 6 compounds achieved an EC50 of less than 1 μM (Table S8, Fig. 261 

S5 and S6). The best compound achieves an affinity of 21.0 nM and exhibits an EC50 262 

of 60.3 nM with an Emax of 35.8% in the NanoBit assay. 263 

  Following the success of 5HT2AR, we targeted a well-established drug target, the 264 

norepinephrine transporter (NET), for depression and attention deficit hyperactivity 265 

disorder (ADHD). Although there are multiple FDA-approved inhibitors (43), the 266 

structures of NET with or without its inhibitors in complexes were not solved until 2024 267 

(44-46). The closest protein structure in our dataset is the dopamine transporter from 268 

Drosophila (47), which shares less than 60% similarity with NET. Therefore, screening 269 

against NET provides a more challenging test of our model’s ability to generalize to 270 

structurally new targets. 271 

  For this target, we ultimately selected 100 compounds considering chemical novelty 272 

and diversity. We tested their inhibition of NET protein by measuring the transport of 273 

[³H]-labeled norepinephrine in NET-containing liposomes. Among these compounds, 274 

15% of them exhibited more than 60% inhibition of NET, with 12 compounds 275 

demonstrating greater potency than the widely used antidepressant bupropion. 276 

  Unlike previous NET inhibitors that typically feature aliphatic nitrogen atoms 277 

capable of forming a salt bridge interaction with ASP75 of NET (44-46), our screening 278 

identified several hits with positively charged aromatic nitrogen atoms. Notably, two of 279 

these compounds, 0086-0043 and Y510-9709, demonstrated better IC50 (with values of 280 

1.14 μM and 0.31 μM, respectively) than bupropion (1.5 μM). Structural determination 281 

of the complexes between these compounds and the NET protein revealed that the 282 

aromatic rings indeed form more favorable interactions with NET: the isoquinoline ring 283 

of 0086-0043 engages in a T-shaped π-π interaction with PHE72, and the thiazole ring 284 

of Y510-9709 likely interacts with surrounding aromatic side chains like PHE323 and 285 

TYR152. These findings highlight the potential of the DrugCLIP model to provide new 286 

chemical insights for drug discovery. 287 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 29, 2025. ; https://doi.org/10.1101/2024.09.02.610777doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.02.610777
http://creativecommons.org/licenses/by/4.0/


 

 14 / 33 

 

 288 

Fig. 2 In silico benchmarking results of DrugCLIP and the wet-lab validation with NET. (A) 289 

The evaluation of DrugCLIP on the DUD-E dataset using the EF1% to assess model 290 

performance. The results of baseline models are taken from previous studies (11, 48, 49). (B) 291 

The evaluation of DrugCLIP on the LIT-PCBA dataset, also using the EF1% for performance 292 

measurement. The results of baseline models are taken from previous studies (11, 21, 38, 49-293 

51). (C) The assessment of DrugCLIP’s generalization ability was conducted by varying the 294 

identity cutoffs between testing targets or molecules and training data in DUD-E, with Glide-295 

SP and Vina represented as dashed lines. Protein similarities of 30%, 60%, and 90% are 296 

calculated by MMSeqs2 (52), and 0% indicates a protein family removal with HMMER (53) 297 

and PFAM (54). Molecular similarities of 30%, 60%, and 90% are calculated by Morgan2 298 

(ECFP4) fingerprints (55), and 0% indicates a molecule series removal defined by generic 299 

Murcko scaffolds (56). (D) The evaluation of DrugCLIP’s robustness regarding errors in pocket 300 

side-chain conformations was conducted by using RMSD values ranging from 0 Å to 3 Å, with 301 

Vina shown as a dashed line for reference. (E) The screening speed on the LIT-PCBA dataset, 302 
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compared with docking methods like Glide-SP and Uni-Dock, and the machine learning model 303 

PLANET. Speeds of baseline methods are taken from previous studies (8, 11). The time cost of 304 

Glide-SP is converted by using 128 CPU cores, as the setting of 16 CPU cores used in the 305 

original research is unfair to be compared with modern GPUs. For Uni-Dock, the time cost is 306 

estimated as 0.04s per ligand with 8 GPUs. As for DrugCLIP, sequential computing (DrugCLIP-307 

S) of all LIT-PCBA targets on an A100 GPU will take 38 seconds, because the number of 308 

molecules and pockets in this dataset is too small to be properly parallelized on modern GPUs. 309 

Therefore, we also report a speed of parallel computing (DrugCLIP-P) by screening 10M 310 

molecules for 100k pockets, which will take around 25 minutes with an A100 GPU. Under this 311 

setting, it will only take 0.023 seconds for the same amount of computation as LIT-PCBA. (F) 312 

An illustration of time consumption as the screening scale increases, with the x-axis 313 

representing the size of the compounds library, the y-axis representing the number of targets, 314 

and the z-axis representing the time cost of virtual screenings. DrugCLIP (the orange line) has 315 

a computational complexity of O(M+N), where M is the number of targets and N is the number 316 

of compounds, whereas most existing methods (the green line) have a complexity of O(MN). 317 

(G) The evaluation of 100 DrugCLIP identified compounds with radio-ligand transportation 318 

assays for NET inhibitor at a concentration of 10 μM, and 15 compounds showed inhibition 319 

larger than 60%. (H) The complex structure of 0086-0043 and NET was determined with Cryo-320 

EM. (I) The dose response curve of 0086-0043 in the radio-ligand transportation assay. (J) The 321 

complex structure of Y510-9709 and NET was determined with Cryo-EM. (K) The dose 322 

response curve of Y510-9709 in the radio-ligand transportation assay. 323 

  324 
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Applying DrugCLIP to AlphaFold-predicted structures 325 

After validating the DrugCLIP model through both in silico and wet-lab experiments, 326 

we apply it to computationally predicted protein structures. Recent breakthroughs in 327 

protein structure prediction—most notably the near-complete coverage of the human 328 

proteome by AlphaFold2 (22, 23)—have provided structural insights into many 329 

important drug targets lacking experimental data. This opens new avenues for structure-330 

based drug discovery beyond the limits of experimentally determined structures. 331 

Virtual screening using AlphaFold-predicted structures remains a topic of debate. 332 

The primary concern is that these predicted structures may lack the accuracy needed to 333 

replicate experimental conformations and effectively filter out inactive molecules (57, 334 

58). Despite this, some studies have shown that virtual screening with AlphaFold-335 

predicted structures can still yield reasonable results for certain targets (59, 60). Given 336 

the robustness of DrugCLIP to sidechain inaccuracies (Fig. 2D), we further assess the 337 

influence of predicted structure using a specialized DUD-E subset for virtual screening 338 

of AlphaFold predictions and apo structures (57). First, we observed that DrugCLIP is 339 

robust to the conformational variability inherent in AlphaFold2-predicted or apo 340 

structures, as long as the binding pockets are accurately defined through structural 341 

alignment with holo references (as shown in Exp. Pocket in Fig. 3B). For protein targets 342 

without homology structures, software like Fpocket (25) is usually used to identify 343 

potential pockets. In our experiments, using Fpocket outcomes resulted in a significant 344 

performance drop for DrugCLIP, with the EF1% value decreasing from 29.3% to 19.0% 345 

(Fig. 3B, Table S10), reflecting similar challenges observed with docking methods in 346 

both virtual screening (57) and conformation prediction (58). 347 

  To improve the utility of AlphaFold-predicted structures, we developed a strategy 348 

called GenPack (Generation-Packing, Fig. 3A). This strategy involves training 349 

molecular generative models conditioned on the backbone structures of protein pockets. 350 

While the generated molecules may not always be synthesizable, they help to localize 351 
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pockets more precisely and induce the pocket conformation into a more suitable state. 352 

After this generation step, side chains are reintroduced, and the overall conformation is 353 

refined using physical force fields. With the GenPack strategy, we significantly 354 

enhanced the screening power of AlphaFold-predicted structures, increasing EF1% 355 

value on the DUD-E subset from 19.0% to 24.1% (Fig. 3B, Table S10). As for apo 356 

structures, the performance boost from GenPack is more significant, where EF1% was 357 

improved from 11.5% to 20.4% (Fig. 3B, Table S10). Compared to the previous state-358 

of-the-art virtual screening method for apo or AlphaFold-predicted structures, IFD-MD 359 

(57, 61), our approach achieves superior performance in terms of active molecule 360 

enrichment. Additionally, GenPack improves the docking success rate when using 361 

AlphaFold2-predicted receptors, increasing it from 19.1% to 38.7% across all DUD-E 362 

targets with available AlphaFold2 structures (Fig. 3C, Table S12). 363 

To further understand the mechanism of GenPack’s performance boost to DrugCLIP 364 

and molecular docking, we conducted additional experiments to evaluate the pocket 365 

refinement by GenPack.  366 

We first investigated whether this process could refine pocket conformations to better 367 

resemble holo structures. Surprisingly, GenPack refinement did not improve the overall 368 

side-chain RMSD relative to holo structures. Furthermore, for AlphaFold2-predicted 369 

structures—regardless of whether GenPack refinement was applied—we observed no 370 

correlation between side-chain RMSD and either docking performance (measured by 371 

ligand docking pose RMSD, Fig. S10D) or screening performance (measured by 372 

ΔEF1%, Fig. S10B). Based on these findings, we conclude that GenPack does not 373 

improve the pocket conformation of AlphaFold2 structures, and pocket side-chain 374 

accuracy appears to have limited influence on virtual screening or docking performance 375 

in our setting. Similar results were also observed in the previous research of molecular 376 

docking with AlphFold2 predictions (58).  377 
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Since automated tools like Fpocket were less precise in detecting ligand-binding 378 

pockets compared to structural alignment approaches, we then conducted additional 379 

experiments to further investigate whether GenPack improves the pocket detection and 380 

localization for AlphaFold2 predictions. We found that the decrease in virtual screening 381 

performance, measured by ΔEF1%, is correlated with the precision of pocket detection, 382 

quantified by the intersection-over-union (IoU) between predicted and holo pockets (p 383 

< 0.005, Fig. S10A). Importantly, GenPack refinement improved the pocket IoU scores 384 

(the distribution curves on top of Fig. S10A), suggesting that it enhances pocket 385 

definition and, as a result, contributes to improved virtual screening outcomes.  386 

Nevertheless, the localization refinement is not correlated to the docking performance 387 

(Fig. S10C). 388 

Taken together, these results demonstrate that DrugCLIP, with the aid of GenPack, 389 

achieves superior virtual screening performance on apo or AlphaFold2-predicted 390 

structures compared with physically informed methods like IFD-MD. 391 

Beyond in silico evaluations, we further demonstrate the capabilities of GenPack and 392 

DrugCLIP using a novel and promising biological target, thyroid hormone receptor 393 

interactor 12 (TRIP12). TRIP12 is an E3 ubiquitin ligase (62) that represents a potential 394 

drug target implicated in cancers and neurodegenerative diseases. TRIP12 mediates the 395 

ubiquitination of p14ARF, leading to its degradation and consequently suppressing p53 396 

activity in cancer cells (63). In the nervous system, TRIP12 functions as a key regulator 397 

of GCase (glucocerebrosidase), targeting it for ubiquitin-mediated degradation, which 398 

leads to α-synuclein accumulation and aggregation, a pathological hallmark of 399 

Parkinson's disease (64). Despite its biological significance, TRIP12 remains 400 

challenging for drug discovery. Structures containing the catalytic HECT domain and 401 

small-molecule inhibitors for this target have not been released to date. This absence of 402 

structural data and chemical starting points positions TRIP12 as a particularly 403 
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challenging yet scientifically valuable target for validating the generalization 404 

capabilities of DrugCLIP and GenPack. 405 

We applied DrugCLIP to the predicted binding pocket near the catalytic site of 406 

TRIP12 (Fig. 3D), as identified from the AlphaFold-predicted structure. The top 1% of 407 

ranked compounds were finalized to a selection of 57 candidate compounds for 408 

experimental validation. Among these, 10 compounds demonstrated Kd values lower 409 

than 50 μM, as determined by surface plasmon resonance (SPR) assays, yielding a hit 410 

rate of 17.5% (Fig. 3E, Fig. S11, Table S14). The two best compounds, E599-0223 and 411 

G935-3912, showed affinities to TRIP12 of 10.8 μM and 11.9 μM, respectively (Fig. 412 

3F, G, I, J). Additionally, their dose-dependent inhibition of TRIP12’s ubiquitination 413 

activity was confirmed using fluorescent ubiquitination assays (Fig. 3H and K, Fig. 414 

S12), and they showed no off-target inhibition to E1 ubiquitin-activating enzyme and 415 

E2 ubiquitin-conjugating enzyme at the highest concentration (Fig. S13). To the best of 416 

our knowledge, these compounds represent the first publicly reported inhibitors of the 417 

ubiquitination function of TRIP12. 418 

Together, in silico and experimental results demonstrate that DrugCLIP is an 419 

effective virtual screening tool for AlphaFold-predicted protein structures. These 420 

findings highlight a promising path forward for structure-based drug discovery 421 

targeting proteins lacking experimentally determined structures.  422 

 423 
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 424 

Fig. 3 Applying DrugCLIP to AlphaFold-predicted structures with the aid of GenPack. (A) The 425 

GenPack (Generation-Packing) process for extracting pockets from AlphaFold2-predicted 426 

structures involves using Fpocket to detect initial pockets, removing sidechains, applying an 427 

AI-generative model to create molecules based on the backbone structure, and then performing 428 

sidechain packing with the generated molecules. (B) The EF1% comparisons for virtual 429 

screening on the DUD-E subset (57) of holo, AlphaFold2-predicted, and apo structures, using 430 
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different pocket definitions: structural alignment to holo structures (Exp. Pocket), pockets 431 

detected by Fpocket (Fpocket), and pockets generated by GenPack (Fpocket + GenPack). The 432 

performances of Glide-SP and IFD-MD are given as references. (C) The redocking RMSD 433 

comparisons for different pocket definitions: holo-pocket, pockets on AlphaFold2-predicted 434 

structures, and pockets on AlphaFold2-predicted structures refined by GenPack. The orange 435 

dashed line indicates the RMSD threshold of 2 Å, and the corresponding docking success 436 

rates are labeled above each column. (D) AlphaFold2-predicted structure of TRIP12, and the 437 

pocket used for virtual screening with DrugCLIP (orange dots). (E) pKd values of 57 selected 438 

compounds measured by single-cycle SPR in initial screening; green color indicates hit 439 

compounds with their Kd value lower than 50 μM, validated by following multi-cycle SPR 440 

assays. (F) Sensorgram of the multi-cycle SPR assay for E599-0223. (G) Steady-state binding 441 

curve of the multi-cycle SPR assay for E599-0223. (H) Enzyme activities of TRIP12 under 442 

different concentrations of E599-0223. (I) Sensorgram of the multi-cycle SPR assay for G935-443 

3912. (J) Steady-state binding curve of the multi-cycle SPR assay for G935-3912. (K) Enzyme 444 

activities of TRIP12 under different concentrations of G935-3912. 445 

  446 
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Genome-wide virtual screening with DrugCLIP 447 

  Finally, we introduced a genome-wide virtual screening pipeline to facilitate future 448 

drug discovery. We began with splitting all AlphaFold predictions of human proteins 449 

into high-confidence regions based on plDDT and PAE scores. For each region, we 450 

used homology alignment and Fpocket (25) along with GenPack to detect potential 451 

pockets. The DrugCLIP model was then employed to screen over 500 million drug-like 452 

molecules from the ZINC (26, 27) and Enamine REAL (28) databases. The screening 453 

process, which involved more than 10 trillion scoring operations on protein-ligand pairs, 454 

was completed in about 24 hours on a single computing node equipped with 8 A100 455 

GPUs. The top-ranked molecules were then clustered and further evaluated using 456 

molecular docking, filtering out poor poses with Glide score > -6 kcal/mol. The final 457 

database contains over 2 million potential hit molecules for more than 20,000 pockets 458 

from 10,000 human targets. All molecules, docking scores, and poses have been made 459 

freely accessible at https://drug-the-whole-genome.yanyanlan.com (Fig. 4A), 460 

facilitating further research and drug discovery processes. 461 

  Our genome-wide screening results cover a more extensive range of targets than 462 

ChEMBL (65), one of the most comprehensive databases for bioactive molecules. 463 

While UniProt (1) contains 20,436 reviewed human proteins, the latest ChEMBL 464 

release (ChEMBL 34) covers 4,810 of them. Moreover, not all targets in the ChEMBL 465 

database have high-affinity small-molecule binders; some targets only have peptide or 466 

antibody binders, or merely vague results from low-quality assays. In contrast, our 467 

database spans 9,908 targets, more than twice the number in ChEMBL and covers 468 

nearly half of the human genome (Fig. 4B). To visualize the difference between the two 469 

protein spaces, we encoded all protein sequences using the ESM1b model (66). The t-470 

SNE plot shows that our space encompasses a broader range of proteins, including 471 

many that are not closely related to those in ChEMBL (Fig. 4C).  472 
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  Our database includes a diverse range of targets, from well-studied proteins to less-473 

explored members of well-known families, as well as proteins with limited 474 

pharmacological understanding (Fig. 4C). For example, the c-Jun N-terminal kinase 3 475 

(JNK3) is a classical kinase target with many ligand-bound crystal structures (67, 68). 476 

DrugCLIP identified molecules that bind to the ATP-binding pockets, forming H-bonds 477 

with backbone atoms of MET149 in the hinge region. SLC45A2 belongs to the solute 478 

carrier (SLC) superfamily, many of which are important drug targets. Nevertheless, 479 

SLC45A2 has limited pharmacological studies. This gene plays a crucial role in 480 

pigmentation (69) and is widely expressed in cutaneous melanomas (70), with evidence 481 

suggesting its oncogenic potential (71). All molecules in the database could bind near 482 

L374, which is an important site for protein stability (69), thus having potential 483 

modulatory effects. Another interesting example OR6A2 belongs to the olfactory 484 

receptor family, whose members are mainly found to be expressed in olfactory receptor 485 

neurons, yet many of them are expressed in various other tissues with unexplored 486 

pharmaceutical potentials (72). OR6A2 is expressed in macrophages, sensing blood 487 

octanal and promoting the formation of atherosclerotic plaques (73). Our predicted 488 

molecules fit the orthosteric pocket of OR6A2 and can serve as potential inhibitors for 489 

treating atherosclerosis. The final example Sestrin-2 can sense leucine (74) and promote 490 

drug resistance of cancer cells (75), which belongs to a unique highly-conserved stress-491 

inducible protein family (PF04636 or IPR006730) with only three members in the 492 

human genome. Our database contains predicted molecules that bind to the same pocket 493 

of leucine (76) that may serve as good starting points for anti-cancer therapies. These 494 

examples highlight the potential of our database as a valuable resource for exploring 495 

the undrugged genome and facilitate future drug discovery. 496 

  497 
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 498 

Fig. 4 DrugCLIP enables genome-wide virtual screening. (A) The webpage for accessing our 499 

genome-wide virtual screening results at https://drug-the-whole-genome.yanyanlan.com 500 

(B) The Venn diagram of target numbers in different databases, with UniProt, DrugCLIP, and 501 

ChEMBL shown as different circles. (C) The t-SNE visualization and examples for the genome-502 

wide virtual screening results. Yellow dots indicate targets in our database, while the blue-white 503 

gradient represents targets in the ChEMBL database, with density ranging from high (blue) to 504 

low (white). 505 

  506 
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Conclusions and Discussions 507 

  With the rapid advancement of protein structure prediction methods and the 508 

availability of a comprehensive atlas of predicted protein structures for human and 509 

disease-related species (23, 77), we have entered a new era where effective drug 510 

discovery for all disease-related targets is within reach. In this paper, we introduce 511 

DrugCLIP, a groundbreaking contrastive learning based virtual screening approach that 512 

aims to achieve genome-wide drug discovery. The efficacy of DrugCLIP has been 513 

rigorously validated through both in silico benchmarks and wet-lab experiments. In 514 

well-established benchmarks, DrugCLIP consistently outperformed traditional docking 515 

software and contemporary machine learning models. Notably, for the 5HT2AR and 516 

NET targets, DrugCLIP identified diverse high-affinity binders and novel chemical 517 

entities. We further validated the capability of DrugCLIP on TRIP12, a particularly 518 

challenging target with no available structural and chemical information. DrugCLIP has 519 

identified the first reported small-molecule inhibitors of TRIP12, providing valuable 520 

starting points for this promising therapeutic target. These findings underscore the 521 

potential of DrugCLIP model as a reliable tool for virtual screening in real-world drug 522 

development. We demonstrate its application through a genome-wide virtual screening 523 

campaign, encompassing more than 20,000 pockets across approximately 10,000 524 

human proteins, using a chemical library of 500 million molecules from ZINC and 525 

Enamine REAL. Remarkably, DrugCLIP completes this trillion-level virtual screening 526 

campaign in just 24 hours using just a single computational node with 8 GPU 527 

accelerators. Beyond the screening results, we have generated over 2 million high-528 

confidence protein-ligand complex structures accompanied with their docking score. 529 

By making this extensive database freely accessible, we aim to make a substantial 530 

contribution to the research community, accelerating drug discovery and fostering 531 

innovation in therapeutic development. 532 
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  DrugCLIP is more than just a new tool. It represents a transformative shift in the 533 

development of new therapeutics, heralding a new paradigm in drug discovery. Its 534 

genome-wide virtual screening capability opens the door to truly end-to-end drug 535 

discovery on a genomic scale, allowing researchers to screen all relevant targets 536 

simultaneously, rather than focusing on a few promising targets. This expansive 537 

approach facilitates the creation of customized chemical libraries for advanced 538 

phenotypic screening with high-fidelity models such as organoids (78-80) or 539 

humanized mice (81-83), potentially reducing failure rates in drug development.  540 

  DrugCLIP paves the way for new advancements in AI-driven drug discovery. Its 541 

outstanding efficiency allows the screening scale to the largest ultra-large chemical 542 

library available today, e.g., 48 billion-compound Enamine REAL Space library. This 543 

effort pushes the boundaries of what virtual screening can achieve in drug discovery. 544 

Moreover, the release of these genome-wide virtual screening results could serve as a 545 

valuable resource for molecular generation, particularly through a retrieval-augmented 546 

generation approach (84, 85), enhancing our capacity for drug discovery and design. 547 
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Supplementary Results1

Benchmarking the performance of pocket pretraining with ProFSA2

To test the performance of the pretrained pocket encoder, we benchmark the encoder on three major benchmarks.3

The first task is about the pocket druggability prediction. We assess the effectiveness of ProFSA in predicting various4

physical and pharmaceutical properties of protein pockets, utilizing the druggability prediction dataset created by5

Uni-Mol [1]. This dataset comprises four separate regression tasks: Fpocket score, Druggability score, Total Solvent6

Accessible Surface Area (SASA), and Hydrophobicity score. The evaluation metric employed for these tasks is7

the Root Mean Square Error (RMSE), which measures the accuracy of the predictions. The baseline model we8

compared is the pocket encoder from the Uni-Mol [1]. The result is shown in Table S1.9

The second task is the zero-shot pocket matching, for which we use two datasets: the Kahraman dataset [2] and the10

TOUGH-M1 dataset [3]. The Kahraman dataset contains matched pockets from two non-homologous proteins that11

bind to the same ligand. It consists of 100 proteins binding to 9 different ligands. We use a reduced version of this12

dataset, excluding 20 PO4 binding pockets due to their low number of interactions. The TOUGH-M1 dataset, on13

the other hand, involves relaxing identical ligands to identify similar pockets and comprises 505,116 positive and14

556,810 negative protein pocket pairs derived from 7,524 protein structures. The baseline models we employed15

encompass various approaches, including PocketMatch [4], DeeplyTough [5] and IsoMIF [6]. Additionally, we16

consider established software tools like SiteEngine [7] and TM-align [8]. We also incorporate pretraining strategies,17

such as Uni-Mol [1] and CoSP [9]. The result is shown in Table S2.18

The third task is binding affinity prediction. We use the widely recognized PDBBind dataset (v2019) for predicting19

ligand binding affinity (LBA), following the strict 30% or 60% protein sequence identity splits and preprocessing20

protocols specified by Atom3D. These strict data splits are crucial for providing reliable and meaningful comparisons,21

especially in evaluating the robustness and generalization capabilities of the models. For each protein-ligand pair,22

we concatenate the protein embedding from our pretrained pocket encoder with the molecular embedding from23

the Uni-Mol molecular encoder and pass this combined representation through a multilayer perceptron (MLP) to24

generate the final binding affinity prediction. For our baseline models, we utilize a diverse range of methods including25

DeepDTA [10], B&B [11], TAPE [12], ProtTrans [13], HoloProt [14], IEConv [15], MaSIF [16], and several26

ATOM3D variants—3DCNN, ENN, and GNN [17]. Additionally, we incorporate ProNet [18] and pretraining27

approaches such as GeoSSL [19], EGNN-PLM [20], DeepAffinity [21], and Uni-Mol [1]. The result is shown in28

Table S3.29

1

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 29, 2025. ; https://doi.org/10.1101/2024.09.02.610777doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.02.610777
http://creativecommons.org/licenses/by/4.0/


Data and Code availability30

All input data are freely available from public sources.31

For ProFSA pretraining, the PDB database can be acquired from https://www.wwpdb.org/ftp/pdb-ftp-sites. The32

processed dataset is available at HuggingFace: https://huggingface.co/datasets/THU-ATOM/ProFSADB. Related33

code and model weights are available at: https://github.com/THU-ATOM/ProFSA.34

DrugCLIP is fine-tuned using the BioLip2 dataset, available on: https://zhanggroup.org/BioLiP/index.cgi. For35

the 6-fold version, please refer to Supplementary Materials 1. For all similarity-based splits, refer to Sup-36

plementary Materials 2 for the list of pre-filtered PDB IDs. Related code and model weights are available at:37

https://github.com/bowen-gao/DrugCLIP.38

GenPack is trained using the PDBBind2020 dataset, available at: https://www.pdbbind-plus.org.cn/download. For39

the list of pre-filtered PDB IDs based on pocket similarity to DUD-E, please refer to Supplementary Materials 3.40

Related code and model weights are available at: https://github.com/THU-ATOM/Pocket-Detection-of-DTWG.41

Datasets for benchmarking are downloaded from their official websites, including DUD-E (https://dude.docking.org/),42

LIT-PCBA (https://drugdesign.unistra.fr/LIT-PCBA/), and ATOM3D (https://www.atom3d.ai/). For the subset of 2743

DUD-E targets for apo and AlphaFold predictions, please refer to its original publication [22]. For all 96 DUD-E44

targets with available AlphaFold2 predictions, please see Supplementary Materials 4 for their gene names. The45

pocket matching and pocket property prediction benchmarks are acquired from their original publications [1, 2, 3].46

For wet-lab validation, we provide a reference pipeline using DrugCLIP and molecular docking. Note that human47

evaluation of candidate molecules can influence virtual screening outcomes. The reference pipeline is available at:48

https://github.com/THU-ATOM/DrugCLIP_screen_pipeline.49

All docking poses from the genome-wide screening are available at: https://drug-the-whole-genome.yanyanlan.com/.50

The unfiltered data can be accessed at: https://huggingface.co/datasets/THU-ATOM/GenomeScreen.51

52

Materials and Methods53

The design of DrugCLIP54

The DrugCLIP model has a molecule encoder and a pocket encoder. These two encoders are aligned by contrastive55

learning.56

Both encoders are based on the Uni-Mol architecture [1], a transformer architecture that takes 3D atomic features as57

input. For the molecule encoder, we directly utilize the pretrained weights from Uni-Mol for initialization, leveraging58

its learned representations for small molecules. The pocket encoder is pretrained to be aligned with the molecule59

encoder in a contrastive distillation manner [23] with the ProFSA dataset.60

The training of the DrugCLIP model is under a contrastive learning framework. Given a batch of encoded61

protein-ligand pairs {(𝑝1, 𝑚1), (𝑝2, 𝑚2), . . . , (𝑝𝑛, 𝑚𝑛)}, where 𝑝𝑖 is the embedding of the protein pocket i obtained62

from the pocket encoder. 𝑚𝑖 is the embedding of the corresponding ligand i encoded by the molecular encoder.63

The objective is to learn embeddings such that the representations of true (positive) protein-ligand pairs are closer64

together in the embedding space, while the representations of incorrect (negative) pairs are further apart.65

To accomplish this, we use a contrastive learning framework with a batch softmax approach, which involves two66

main loss functions.67

The first loss is designed to find the correct ligand 𝑚𝑖 for a given protein pocket 𝑝𝑖 . The loss function for this68

objective can be written as:69

Lp2m = − 1
𝑁

𝑁∑︁
𝑖=1

log
exp(sim(𝑝𝑖 , 𝑚𝑖)/𝜏)∑𝑁
𝑗=1 exp(sim(𝑝𝑖 , 𝑚 𝑗 )/𝜏)

. (1)

sim(𝑝𝑖 , 𝑚 𝑗 ) represents a similarity measure between the protein pocket embedding 𝑝𝑖 and ligand embedding70

𝑚 𝑗 . Here we use the cosine similarity. 𝜏 is the temperature parameter controlling the sharpness of the softmax71

distribution.72

2
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The second loss aims to find the correct protein pocket 𝑝𝑖 from a batch of pocket candidates given a ligand 𝑚𝑖:73

Lm2p = − 1
𝑁

𝑁∑︁
𝑖=1

log
exp(sim(𝑚𝑖 , 𝑝𝑖)/𝜏)∑𝑁
𝑗=1 exp(sim(𝑚𝑖 , 𝑝 𝑗 )/𝜏)

. (2)

The final contrastive loss for training the model is the sum of the two losses:74

L = Lp2m + Lm2p. (3)

The pretraining of the pocket encoder75

The pocket pretraining uses the protein fragment-surroundings alignment (ProFSA) framework. The Protein Data76

Bank (PDB) [24] contains a vast amount of protein-only data. Interestingly, small molecule-protein interactions77

often mirror the non-covalent interactions found within proteins themselves [25]. Such similarity is shown in Fig.78

S1. Leveraging this similarity, we first extract fragments from protein structures that closely resemble known ligands79

and define the surrounding regions as the associated pockets of these pseudo-ligands.80

In the initial phase, we iteratively isolate protein fragments ranging from 1 to 8 residues, ensuring these segments are81

continuous from the N-terminal to the C-terminal while excluding any discontinuous sites or non-standard amino82

acids. To minimize artifacts introduced by the cleavage of peptide bonds during fragment segmentation, we apply83

terminal modifications: acetylation at the N-terminus and amidation at the C-terminus. For the N-terminus, we84

cap with an acetyl group constructed from the actual C, CA, and O atoms of the previous residue in the protein85

structure. For the C-terminus, we apply amidation using the N atom from the following residue. All capping atoms86

are extracted directly from neighboring residues within the same experimentally resolved structure, ensuring physical87

plausibility and avoiding steric clashes. These modifications result in the formation of pseudo-ligands.88

In the subsequent phase, to focus on long-range interactions, we exclude the five nearest residues on each side of the89

fragment. We then designate the pocket as the surrounding residues that have at least one heavy atom within a 6 Å90

distance from the fragment.91

The derived pseudo-complexes undergo stratified sampling based on the distribution observed in the PDBbind202092

dataset [26, 27], considering critical parameters such as pocket sizes (measured by the number of residues) and93

ligand sizes (expressed as effective residue numbers, calculated by dividing the molecular weight by 110 Da).94

Another key metric is the relative solvent-accessible surface area (rBSA), which we calculate using the FreeSASA95

package [28]. The pseudo-complexes are sampled to approximate the distributions seen in the PDBbind dataset96

[26, 27], particularly in terms of rBSA and the joint distribution of pocket-ligand size. This ensures the dataset’s97

representativeness and its suitability for training ligand-oriented contrastive learning models, as shown in Fig. S298

and Fig. S3.99

The final dataset comprises 5.5 million ligand-protein pairs, significantly larger than any existing protein-ligand100

complex structure dataset.101

The ProFSA pretraining objective is also a batch softmax loss, where the Uni-Mol molecular encoder is used for102

the pseudo-ligands. During the training, the weights of the molecular encoder are frozen. This setup allows us103

to distill knowledge from the pretrained molecular encoder into the pocket encoder, enhancing its ability to learn104

interaction-aware representations of protein pockets. During the pretraining phase, the batch size is 4 × 48 on 4105

NVIDIA A100 GPUs. We use the Adam optimizer with a learning rate of 0.0001. The max training epochs is 100.106

We use polynomial decay for the learning rate with a warmup ratio of 0.06.107

The fine-tuning process of DrugCLIP108

We use ligand-receptor complex data from the BioLip2 [29] database, removing redundant entries (proteins with109

a sequence identity > 90% and binding to the same ligand) and cleaning the dataset to obtain around 43,980110

high-quality protein-ligand complexes (a list of all PDB IDs in the training set is included the Supplementary111

3

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 29, 2025. ; https://doi.org/10.1101/2024.09.02.610777doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.02.610777
http://creativecommons.org/licenses/by/4.0/


Materials 1). The binding pocket for each protein is defined as the set of residues with at least one atom within 6 Å112

of any ligand atom. During training, we use ligand conformations sampled by RDKit rather than their co-crystal113

conformations to minimize the discrepancy between training and actual virtual screening conditions, as the true114

conformations of candidate molecules are unknown during screening. This approach reflects the practical scenario115

of virtual screening, where true crystal conformations are typically unavailable for large compound libraries. To116

enhance model robustness, we apply a data augmentation strategy by generating up to 10 conformations per molecule.117

In each training epoch, one conformation is randomly selected, allowing the model to learn from structural variability118

and generalize better across different conformations.119

We use an ensemble model for most applications unless stated otherwise, including wet-lab validations with the NET120

and TRIP12 target and the final genome-wide virtual screening. These applications follow a 6-fold cross-validation121

strategy: the dataset is split into six folds, and the model is trained on five while validated on the remaining fold in122

each iteration.123

For the 5HT2AR target, we adopt an 8-fold cross-validation strategy and apply data augmentation techniques,124

including HomoAug and ligand augmentation using the ChEMBL dataset [30], following the DrugCLIP method125

[31].126

We train the model with a batch size of 48 on 4 NVIDIA A100 GPUs. The optimizer is Adam with a learning rate of127

1e-3. adam betas are 0.9 and 0.999, adam eps is 1e-8. The max epochs is set to be 200. We use polynomial decay128

for the learning rate and the warm-up ratio is 0.06.129

Ensembling multiple pockets and models during screening130

As described above, we obtain six model weights through 6-fold cross-validation. During virtual screening, these131

six model weights are used to generate six different predictions, which are then combined using mean pooling to132

achieve a robust virtual screening result.133

During virtual screening, a target of interest may have multiple pocket conformations. For any candidate molecule,134

we use a max pooling approach to determine the maximum score between the molecule and the different pockets.135

However, because different pockets may have varying score ranges, this can introduce bias when applying max136

pooling. To address this, we normalize the scores using an adjusted robust z-score before performing the max137

pooling. Specifically, for a list of scores 𝑋:138

Adjusted Robust Z-Score =
𝑥𝑖 − Median(𝑋)

MAD(𝑋)
0.675

, (4)

MAD(𝑋) = Median( |𝑥𝑖 − Median(𝑋) |). (5)

In silico validation with DUD-E and LIT-PCBA dataset139

The DUD-E (Directory of Useful Decoys: Enhanced) dataset [32] is a widely used resource in drug discovery140

research, particularly for evaluating the performance of virtual screening methods. It includes data on 102 protein141

targets with 22,886 active compounds known to bind to these proteins, along with a set of decoy molecules that are142

similar in physical properties but different in structure from the active compounds.143

LIT-PCBA [33] is a benchmark dataset derived from the PubChem BioAssay database, designed for evaluating144

machine learning models in virtual screening and drug discovery. In the LIT-PCBA dataset, actives and decoys are145

defined based on experimental results from the PubChem BioAssay database. The dataset contains approximately146

1.5 million compounds across 15 targets.147

For the DUD-E and LIT-PCBA benchmarks, we use a single (non-ensemble) model trained on datasets filtered at148

90% sequence identity using MMseqs2 [34]. In the homology removal test on the DUD-E benchmark, a single149

model is trained and evaluated on datasets filtered at 30%, 60%, and 90% identity via MMseqs2. The most stringent150

homology removal is performed using HMMER [35, 36] and the Pfam database [37]. As for ligand novelty analysis,151
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we excluded training samples that their molecules are similar to any active molecules in the DUD-E test set by152

ECFP4 (Morgan2 by RDKit) similarity at cut-offs of 30%, 60% and 90%. For the strictest test, we remove all153

training samples that share the same generic Murcko scaffold as active molecules in DUD-E (indicated by 0%154

similarity in Fig. 2C.155

For each target in the DUD-E or LIT-PCBA dataset, we rank candidate molecules (including both actives and decoys)156

based on their cosine similarity score. This score is calculated between the encoded embeddings of the pocket and157

molecule using the DrugCLIP model. The Enrichment Factor (EF) is then calculated to evaluate the ability of the158

model to prioritize active compounds over decoys. EF quantifies how many more actives are retrieved within the159

top-ranked subset than would be expected by random chance. It is typically defined as:160

EF𝛼 =
NTB𝛼

NTB𝑡 × 𝛼
, (6)

where NTB𝛼 is the number of true active compounds (True Binders) identified within the top 𝛼 fraction of the161

screened list. NTB𝑡 is the total number of true active compounds in the entire dataset. 𝛼 is the fraction of the dataset162

considered. In this manuscript, we use 𝛼 = 1%, denoted as EF1%.163

EF is closely related to the concept of recall capacity in the early retrieval stage. Specifically, recall at the top 𝛼164

fraction is defined as Recall𝛼 =
NTB𝛼

NTB𝑡
. Substituting this into the EF formula yields:165

EF𝛼 =
Recall𝛼
𝛼

.

This shows that EF𝛼 is essentially a normalized form of early recall, indicating how much better the model performs166

compared to random selection. A higher EF implies a stronger early recall capacity — the ability to identify true167

actives within the top-ranked results when only a small portion of the dataset is considered.168

Molecule selection for wet-lab experiments of 5HT2AR, NET and TRIP12169

In general, for each target, DrugCLIP automatically enriches 1% to 2% molecules of the given chemical library.170

Around 200 chemically diversified molecules were picked from the top-ranked molecules by human experts, with the171

aid of clustering software and fingerprints like MACCS or ECFP. Glide docking will be performed on at most these172

picked diversity sets, and all molecules with docking scores lower than -6 will be manually examined. Based on the173

chemical structures, docking poses, and docking scores, around 100 molecules will be ordered from the chemical174

supplier. Additional physical property filters and novelty filters will be applied if necessary.175

The virtual screening for 5HT2AR utilizes experimentally determined structures including 6A93, 6A94 [38], 6WGT,176

6WH4, 6WHA [39], 7RAN [40], 7VOD, 7VOE [41], 7WC4, 7WC5, 7WC6, 7WC7, 7WC8, 7WC9 [42]. As for177

NET, structures used for virtual screening include 8HFE, 8HFF, 8HFG, 8HFI, 8HFL, 8I3V [43], where 8HFE is178

modified to ligand-bound complex structures using human serotonin transporter structures as templates [44, 45].179

For 5HT2AR, the top 2% molecules are extracted, and for NET, the top 1% molecules are extracted. Then, simple180

drug-likeness filters are applied, with a molecular weight threshold of 550 and a QED [46] threshold of 0.5. The181

novelty filter excludes molecules that have large ECFP4 similarities to known actives. Known actives are obtained182

from the ChEMBL database [30], and defined as molecules with a pChEMBEL value > 5, or comments like "active".183

The ECFP4 similarity thresholds are set to 0.45 and 0.35 for 5HT2AR and NET, respectively.184

There is no available experimental structure and active molecules for the HETC domain of TRIP12. The GenPack-185

generated pockets are used for DrugCLIP virtual screening, and they are downloaded from our website (pocket 1,186

https://drug-the-whole-genome.yanyanlan.com/drug/Q14669). An updated version of ChemDiv chemical collections187

was prefiltered with a similar set of rules as Table S15. No additional property and novelty filter is applied outside188

the standard procedure.189

All molecules used in these experiments are from chemical collections of ChemDiv, Inc. (https://www.chemdiv.com/),190

and chemicals are purchased from the TopScience (Tao Shu) Company.191
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Functional assays of 5HT2AR192

The primary screening was conducted via calcium flux assays. All molecules were dissolved in DMSO at 10mM,193

including the positive control IHCH-7079 [42] and the negative control Risperidone. Calcium flux assays in the194

agonist mode were conducted by Pharmaron, Beijing, China.195

Briefly, Flp-In-CHO-5HT2A cells used in the experiment were cultured in complete medium composed of Ham’s196

F-12K (Hyclone, SH30526.01), 10% FBS (Gibco, 10999141), Penicillin-Streptomycin (Gibco, 15140122), and197

Hygromycin B (Invivogen, ant-hg-5) at a final concentration of 600 μg/mL. The cells were maintained under standard198

conditions at 37°C with 5% CO2 to ensure optimal cell density. On the first day of the experiment, the cultured cells199

were centrifuged and resuspended in an antibiotic-free medium consisting of Ham’s F-12K (Hyclone, SH30526.01)200

and 10% DFBS (ThermoFisher Scientific, 30067334). Approximately 7,000 cells per well were then seeded into201

384-well plates (Corning, 3764) and incubated overnight. The following day, the medium in the 384-well plates was202

removed, and the cells were thoroughly washed with an assay buffer composed of Hank’s Balanced Salt Solution203

(HBSS) (Gibco, 14025076) supplemented with 20 mM HEPES (Gibco, 15630080). After washing, 20 μL of assay204

buffer was left in each well. The 20x Component A from the FLIPR Calcium 6 Assay Kit (Molecular Devices,205

R8191) was diluted to 2x, and 5 mM probenecid was added. A 20 μL aliquot of this dilution was then added to each206

well, and the plate was incubated at 37°C for 2 hours. Subsequently, 5x concentrated test solutions of the compounds207

of interest and a serotonin reference solution were prepared. Using the FLIPR Tetra (Molecular Devices) system, 10208

μL of each test compound solution was transferred to the respective wells of the 384-well plate, and the assay results209

were recorded. Calcium flux assays were repeated three times and recorded relative values were averaged.210

Primary hits were defined as molecules that induced > 10% response of the 5-HT reference. These molecules211

were then verified with radio-ligand comparative binding assays, which were conducted by WuXi Biology. First,212

5HT2A-HEK293 cells were cultured, and the cell membranes were harvested to serve as the source of 5HT2AR213

protein, hereafter referred to as the membrane solution, at a concentration of 2.55 mg/mL. According to the214

experimental design, the test compounds and the reference compound, ketanserin (Sigma-S006), were diluted and 1215

μL of each was added to the respective reaction wells. Following this, 100 μL of the membrane solution was added216

to each well. Next, 100 μL of 3H-ketanserin was added to each well to achieve a final concentration of 1 nM. The217

plates were then sealed and incubated on a shaker at 300 rpm for 1 hour at room temperature. After incubation,218

50 μL of 0.3% PEI (Sigma, P3143) solution was added to the Unifilter-96 GF/B filter plates (Perkin Elmer) and219

incubated for 30 minutes at room temperature. The reaction mixture from each well was then transferred to the filter220

plates, followed by filtration using a Perkin Elmer Filtermate Harvester. The wells were washed four times with 50221

mM Tris-HCl buffer. Subsequently, the filter plates were dried at 50°C for 1 hour. Once dried, the filter plates were222

sealed at the bottom using Unifilter-96 backing tape (Perkin Elmer), and 50 μL of Microscint 20 cocktail (Perkin223

Elmer, 6013329) was added to each well. Finally, the top of the plates was sealed with TopSeal-A film (Perkin224

Elmer). The prepared plates were then placed in a MicroBeta2 Reader (Perkin Elmer) for counting. Radio-ligand225

comparative binding assays were replicated twice.226

Molecules that showed adequate affinities to 5HT2AR were further tested with NanoBit assays measuring the227

recruitment of the β-arrestin2 protein. NanoBit assays were also conducted by Wuxi Biology. On the first day of228

the experiment, cultured 5HT2A-HEK293 cells were collected. The HEK293 cells were first washed with DPBS229

solution and then treated with an appropriate amount of 0.25% trypsin-EDTA solution for 5 minutes at 37°C. After230

digestion, the reaction was quenched by adding an appropriate amount of complete medium, and the mixture was231

gently mixed. The cells were then centrifuged at 1000 rpm at room temperature to collect the cell pellet. The cells232

were resuspended to a concentration of 750,000 cells/mL. A 40 μL aliquot of the cell suspension was added to each233

well of a 384-well plate (Greiner, 781090) and incubated overnight. On the following day, 5 μL of appropriately234

diluted test samples and control samples were added to each well, followed by the addition of diluted NanoBit235

assay solution (Promega, N2012). The reaction mixture was incubated at 37°C for 30 minutes. After incubation,236

the experimental data were read using the Envision2104 (PerkinElmer, 2814243) system. NanoBit assays were237

6

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 29, 2025. ; https://doi.org/10.1101/2024.09.02.610777doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.02.610777
http://creativecommons.org/licenses/by/4.0/


replicated twice.238

All IC50 and K𝑑 values were fitted with GraphPad Prism.239

For structural analysis of hit molecules, molecules are docked to 7WC8 [42] with Glide-SP, and a template of OLC240

is used for V008-4481 with a RMSD tolerance of 5 Å241

Functional assays of NET242

Cells used for NET functional assays included Escherichia coli and HEK293F. The Escherichia coli strain DH5α243

was cultured in LB medium (Sigma) at 37 ℃ to generate and amplify plasmids for NET. Mammalian HEK293F244

cells were maintained in SMM 293-TII medium (Sino Biological) at 37°C with 5% CO2 for protein expression.245

The full-length human wild-type NET cDNA (UniProt ID: P23975) was inserted into the pCAG vector using the246

KpnI and XhoI restriction sites, with an N-terminal FLAG tag. NET overexpression was achieved in HEK293F247

cells. For transfection, 2 mg of plasmid DNA and 4 mg of polyethylenimine (Polysciences) were pre-incubated248

in 50 ml of fresh SMM 293-TII medium for 15 minutes before being added to one liter of HEK293F cells at a249

density of 2.0 × 106 cells/ml. After 48 hours of shaking at 37°C, 5% CO2, and 220 rpm, the cells were collected via250

centrifugation, resuspended in lysis buffer (20 mM Tris-HCl pH 8.0, 150 mM NaCl), frozen in liquid nitrogen, and251

stored at -80°C for later use.252

For protein purification, the thawed cell pellet was solubilized in lysis buffer containing protease inhibitors (5 μg/ml253

aprotinin, 1 μg/ml pepstatin, 5 μg/ml leupeptin; Amresco) and 2% (w/v) DDM (Anatrace) at 4°C for 2 hours,254

followed by centrifugation at 20,000 g at 4°C for 1 hour. The resulting supernatant was applied to anti-FLAG M2255

resin (Sigma), which was washed with 15 column volumes (CV) of buffer (20 mM Tris-HCl pH 8.0, 150 mM NaCl,256

0.02% (w/v) DDM). The protein was eluted with 6 CV of the wash buffer containing 0.4 mg/ml FLAG peptide at257

4°C. The eluted protein was concentrated and further purified by size-exclusion chromatography using a Superose258

6 Increase 10/300 GL column (GE Healthcare) in buffer (20 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.02% (w/v)259

DDM). The peak fractions were collected and concentrated for subsequent experiments.260

Then, purified NET protein was reconstructed into liposomes to form proteoliposomes. The E. coli polar lipid261

extract (Avanti), with 20% (wt %) cholesterol added, was resuspended to 20 mg/ml in buffer A (25 mM HEPES pH262

7.4, 150 mM KCl). This mixture underwent ten freeze-thaw cycles using liquid nitrogen and was then extruded 21263

times through 0.4 μm polycarbonate membranes (GE Healthcare). The resulting liposomes were pre-treated with264

1% n-octyl-β-D-glucoside (β-OG; Anatrace) for 30 minutes at 4°C. They were then incubated with 200 μg/ml of265

purified NET protein (wild-type or mutants) for 1 hour at 4°C. To remove the detergents, the mixture was treated266

overnight with 250 mg/ml Bio-Beads SM2 (Bio-Rad) at 4°C, followed by an additional 1-hour incubation with 100267

mg/ml Bio-Beads SM2. After five more freeze-thaw cycles and 21 additional extrusion passes, the proteoliposomes268

were collected by ultracentrifugation at 100,000 g for 1 hour at 4°C, washed twice, and resuspended to 100 mg/ml in269

buffer A for the subsequent uptake assay.270

Each uptake assay was conducted by adding 2 μl of proteoliposomes to 96.5 μl of buffer B (25 mM HEPES pH271

7.4, 150 mM NaCl) along with 0.5 μl (0.5 μCi, 12.3 Ci/mmol) of Levo-[7-3H]-Norepinephrine and 1 μl of 50272

μM valinomycin. To assess the single-point inhibitory activity of the screened small molecules, proteoliposomes273

were incubated with these compounds, while Desipramine and Bupropion were used as positive controls for NET274

inhibition. All inhibitors were added at a concentration of 1 μM in a volume of 1 μl. The uptake of the radiolabeled275

substrates was halted after 60 seconds by rapidly filtering the solution through 0.22 μm GSTF filters (Millipore)276

and washing with 2.5 ml of ice-cold buffer B. Filters were then incubated with 0.5 ml of Optiphase HISAFE 3277

(PerkinElmer) overnight, and radioactivity was measured using a MicroBeta2® Microplate Counter (PerkinElmer).278

For IC50 determination of antidepressants, proteoliposomes were pre-incubated with varying concentrations of the279

drugs for 30 minutes before the addition of isotope-labeled substrates. IC50 values were calculated using GraphPad280

Prism 8, applying non-linear regression to fit the data to the equation:281

𝑌 =
100

1 + 10(log IC50−𝑋) ·HillSlope , (7)
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with option: ‘log(inhibitor) vs. normalized response—Variable slope’. X represents the log of the inhibitor282

concentration, Y represents the normalized response (ranging from 100% to 0%), and HillSlope starts with an initial283

value of -1.284

All experiments were conducted in triplicate using biologically independent samples. Data were normalized to285

the wild-type protein to express values relative to 100%. Non-specific binding was accounted for by using control286

liposomes without protein insertion, ensuring that only specific interactions were measured.287

Synthesis of 0086-0043 and Y510-9709288

Both molecules were synthesized by Bellen Chemistry Company.289

For Y510-9709 (5-(4-chlorophenyl)-2,3-dihydrothiazolo[2,3-b]thiazol-4-ium bromide), first synthesize compound290

2 (1-(4-chlorophenyl)-2-((4,5-dihydrothiazol-2-yl)thio)ethan-1-one). To a solution of compound 1 (2-bromo-1-291

(4-chlorophenyl)ethan-1-one) (10.0 g, 42.8 mol, 1.0 eq) and thiazolidine-2-thione (5.1 g, 42.8 mmol, 1.0 eq) in292

EtOH (150 mL) and DMF (50 mL) was added TEA (4.3 g, 42.8 mol, 1.0 eq). The reaction mixture was stirred at293

room temperature for 2 h. HPLC showed no compound 1 remained. The reaction mixture was poured into crushed294

ice and filtered to give compound 2 (9.6 g, 82.5%) as a yellow solid. 1H NMR (300 MHz, CDCl3): δ ppm 8.00 –295

7.90 (m, 2H), 7.50 – 7.40 (m, 2H), 4.62 (s, 2H), 4.17 (t, J = 8.1 Hz, 2H), 3.43 (t, J = 7.8 Hz, 2H). LCMS: 272.0296

([M+H]+).297

Then, The solution of compound 2 (2.5 g, 9.2 mmol, 1.0 eq) in 30% HBr in AcOH (25 mL) was stirred at 120298

°C for 3 h. TLC and HPLC showed no compound2 remained. The reaction was allowed to be cooled to room299

temperature and concentrated in vacuo to give the residue, which was triturated with MeOH (7.5 mL) and filtered to300

give Y510-9709 (1.1 g, 35.7%) as an off-white solid. 1H NMR (400 MHz, DMSO-d6): δ ppm 7.90 (s, 1H), 7.68 (s,301

4H), 4.70 (t, J = 8.0 Hz, 2H), 4.10 (t, J = 8.4 Hz, 2H). LCMS: 254.0 ([M-Br]+).302

For 0086-0043( 2-(2-oxo-2-phenylethyl)isoquinolin-2-ium chloride), The solution of 2-chloro-1-phenylethan-1-303

one (2.0 g, 12.9 mol, 1.0 eq) and isoquinoline (1.7 g, 12.9 mmol, 1.0 eq) in ACN (12 mL) was stirred at room304

temperature for 16 h. HPLC showed no 2-chloro-1-phenylethan-1-one remained. The reaction mixture was filtered305

to give 0086-0043 (1.3 g, 35.4%) as an off-white solid. 1H NMR (400 MHz, DMSO-d6): δ ppm 10.06 (s, 1H), 8.76306

(d, J = 6.8 Hz, 1H), 8.69 (d, J = 6.8 Hz, 1H), 8.56 (d, J = 8.4 Hz, 1H), 8.43 (d, J = 8.4 Hz, 1H), 8.39 – 8.28 (m, 1H),307

8.20 – 8.04 (m, 3H), 7.81 (t, J = 7.6 Hz, 1H), 7.69 (t, J = 7.6 Hz, 2H), 6.66 (s, 2H). LCMS: 248.1 ([M-Cl]+).308

The structure determination of NET and its inhibitors309

For cryo-EM samples, 4μl purified NET protein was applied to glow-discharged Quantifoil holey carbon grids310

(Quantifoil Au R1.2/1.3, 300 mesh). Protein was concentrated to approximately 10 mg/ml and separately incubated311

with 2 mM Y510-9709 or 0086-0043 for 30 min before freezing. After applying the protein, the grids were blotted312

for 3 s with 100% humidity at 4 °C and plunge frozen in liquid ethane cooled by liquid nitrogen with Vitrobot (Mark313

IV, Thermo Fisher Scientific).314

Cryo-EM data were collected on a 300 kV Titan Krios G3i equipped with a Gatan K3 detector and a GIF Quantum315

energy filter (slit width 20 eV). The defocus values ranged from -1.5 to -2.0 μm. Each stack of 32 frames was316

exposed for 2.56 s, and the exposure time of each frame was 0.08 s. The micrographs were automatically collected317

with AutoEMation program [47] in super-resolution counting mode with a binned pixel size of 1.083 Å. The total318

dose of each stack was about 50 e−/Å2. All 32 frames in each stack were aligned and summed using the whole-image319

motion correction program MotionCor2 [48].320

All dose-weighted micrographs were manually inspected and imported into cryoSPARC [49]. Micrographs with an321

estimated CTF resolution worse than 4 Å were excluded during exposure curation. CTF parameters were estimated322

using patch-CTF. They were used for initial good templates generation via 2D classification. Initial good templates323

were generated via 2D classification, using the previously reported NET structure [50] (NET–DSP, PDB code:324

8FHI) as a reference. The Template Picker tool was used for all particle picking tasks. For the NET_Y510-9709 and325

NET_0086-0043 datasets, 3,204,486 and 9,008,886 particles were extracted from 2,918 and 4,687 micrographs,326
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respectively. Particles were initially extracted with a box size of 192 and then cropped to 128 to speed up calculations.327

The initial good reference for 3D classification was derived from the NET-DSP dataset, while bad references were328

generated using the graphical user interface (GUI) of UCSF ChimeraX [51]. Global pose estimation was performed329

using Non-uniform refinement, followed by local refinement for the first round of local pose assignment. A second330

round of local pose estimation was conducted using 3D classification (without image alignment), followed by another331

round of local refinement (Fig.S8). This process yielded 507,444 and 506,286 particles representing the inward-open332

conformation, resulting in resolutions of 2.87 Å for NET_Y510-9709 and 2.98 Å for NET_0086-0043, respectively.333

The atomic coordinates of NET in the presence of Y510-9709 or 0086-0043 have been deposited in the Protein Data334

Bank (http://www.rcsb.org) under accession codes 9JEL and 9JF3. The corresponding electron microscopy maps335

are available in the Electron Microscopy Data Bank (https://www.ebi.ac.uk/pdbe/emdb/) under accession codes336

EMD-61420 and EMD-61426.337

The training and inference of the GenPack generative model338

We have developed a GenPack model that operates within a continuous parameter space, incorporating a noise-339

reduced sampling strategy inspired by MOLCRAFT [52]. Unlike full-atom approaches, our method focuses solely340

on the given backbone atoms to minimize the impact of potential structural variations between apo and holo states of341

the proteins. We meticulously curate a dataset comprising 14,616 protein-ligand pairs from the PDBbind database,342

which we divide into a training set of 13,137 pairs and a validation set of 1,479 pairs (Supplementary Materials 3).343

Additionally, we use 101 protein-ligand pairs from the DUD-E database as our test set. To prevent data leakage, we344

excluded all proteins from the training and validation sets that share a FLAPP similarity score greater than 0.9 with345

any target in the test set. FLAPP [53] is a tool used to estimate the structural similarity (alignment rate) between346

two pockets. Pockets are defined by extracting backbone atoms within a 10 Å radius of the ligands. The training347

is conducted on a single NVIDIA A100 GPU with a learning rate of 5e-4 for 60 epochs, resulting in our pocket348

location optimization model.349

During inference, Fpocket [54] is initially employed to detect pockets approximately 10 Å in size, after which our350

SBDD model generates potential ligand molecules conditioned on backbone atoms only. Subsequently, side-chain351

atoms are introduced to the complex structure, and the complex structures are relaxed with Prime software in the352

Schrodinger Suite. The protein residues with at least one heavy atom within a 6 Å radius of the generated ligands353

are selected as the final pocket region. This approach ensures a focus on critical interactions within the binding site354

while reducing noise and irrelevant structures, thereby facilitating accurate pocket detection.355

Evaluating the effectiveness of GenPack model356

To evaluate the effectiveness of the GenPack model, we conducted experiment on the targets of DUD-E.357

We conducted two types of experiments to evaluate the effectiveness of the GenPack algorithm in refining protein358

structures.359

In the first experiment, we utilized AlphaFold-predicted structures of protein targets, optimized using GenPack, to360

perform virtual screening against the DUD-E dataset. The screening performance was assessed using the Enrichment361

Factor (EF) metric. We identified AlphaFold2 (AF2) structures corresponding to the UniProt entries of DUD-E362

targets in the AlphaFold database, yielding a total of 96 targets. For the GenPack results, five conformations were363

sampled for each target, and the best-performing conformation was selected for evaluation. The detailed results are364

provided in Table S11.365

Additionally, we evaluated the performance of GenPack on apo structures. The corresponding results are also366

presented in Table S10. The apo structures were obtained from a previous research [22] and encompass 27 protein367

targets included in the DUD-E dataset.368

In the second experiment, we assessed the structural accuracy of GenPack-refined proteins through redocking.369

Specifically, we docked the original ligand back into the GenPack-generated protein structure and measured the370

Root-Mean-Square Deviation (RMSD) between the redocked and the original ligand conformations. Results371
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presented in Table S12 and S13. For pockets without GenPack optimization, five docking poses were generated, and372

the best one was selected. For GenPack-optimized pockets, five pocket conformations were generated; for each373

conformation, only a single docking pose was used. The best result among these five pocket conformations was then374

selected.375

We also measure the correlation of the pockets localization, sidechain accuracy and docking or virtual screening376

effects, shown in Fig. S10. We show in Fig. S10A the impact of the GenPack method on pocket localization377

performance, measured by Intersection over Union (IoU), and on virtual screening effectiveness compared to holo378

structure. Pocket localization ability is assessed by the IoU between the predicted pocket and the corresponding holo379

pocket. Here, the virtual screening metric EF1% represents the reduction in enrichment factor when using Fpocket380

prediction of AlphaFold structures relative to holo structures. As the IoU with the holo structure increases, the381

reduction in EF1% correspondingly decreases. The GenPack method enables Fpocket results more spatially aligned382

with the holo pockets, thereby narrowing the performance gap in EF1%.383

Fig. S10B illustrates the relationship between side-chain RMSD of the predicted pocket and the reduction in EF1%.384

The observed p-value is relatively large, suggesting that the correlation is not statistically significant within the385

DUD-E dataset. Moreover, the GenPack method does not substantially alter the distribution of side-chain RMSD386

between Fpocket-predicted pockets and their corresponding holo pockets.387

Fig. S10C and D examine the relationship between structural pocket accuracy and Glide-SP docking performance,388

as measured by ligand RMSD. In Fig. S10C, the correlation between pocket IoU (with respect to holo pockets) and389

docking accuracy is evaluated, with both docking grid centers and pocket definitions obtained through structural390

alignment. The results suggest no significant difference in ligand docking pose RMSD as a function of pocket391

localization accuracy. Similarly, Fig. S10D investigates the impact of side-chain RMSD of the predicted pocket392

(relative to the holo structure) on docking accuracy. The analysis reveals no evident correlation between ligand393

RMSD and variations in side-chain conformations, indicating that deviations in side-chain positioning have minimal394

effect on docking pose accuracy.395

Protein expression and purification of TRIP12396

The plasmid encoding human TRIP12 (442-1992) gene was cloned into the pGEX-4T-1 vector, which was fused397

with an N-terminal GST tag followed by an HRV 3C protease cleavage site. This construct was synthesized and398

optimized for Escherichia coli overexpression by GenScript (Nanjing, China).399

The recombinant plasmid was transformed into BL21 (DE3) cells and then cultured in Luria Broth media containing400

50 µg/mL ampicillin at 37°C. When the optical density of the culture reached 0.6–0.8, protein expression was401

induced by adding 0.4 mM IPTG at 16°C. After overnight incubation, cells were harvested by centrifugation at402

5000 × g for 30 min at 4°C and resuspended in the lysis buffer (50 mM HEPES, 150 mM NaCl, pH 7.5). Cells were403

then lysed by ultrasonication and the lysate was centrifuged at 12500 × g for 30 min at 4°C to remove precipitates.404

The supernatant was applied to Glutathione beads for 2 h at 4°C, and target proteins fused with GST tag were eluted405

with elution buffer (50 mM HEPES, 150 mM NaCl, 30 mM Glutathione, pH 7.5). After removing the GST tag with406

HRV 3C protease, proteins were further purified with ion exchange chromatography (HiTrap Heparin column, GE407

Healthcare) followed by size exclusion chromatography (Superdex 6 Increase column, GE Healthcare).408

Surface Plasmon Resonance (SPR) analysis409

Surface plasmon resonance experiments were performed using a Biacore 8k (Cytiva) at 25°C. TRIP12 was410

immobilized on a CM7 sensor chip (Cytiva) using standard amine coupling chemistry. Briefly, the carboxymethylated411

dextran surface was activated with a 1:1 mixture of 0.4 M EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide)412

and 0.1 M NHS (N-hydroxysuccinimide) for 420 s. The protein (50 µg/mL in 10 mM sodium acetate, pH 4.0) was413

then injected over the activated surface until reaching approximately 12000 response units (RU). Remaining activated414

groups were blocked with 1 M ethanolamine-HCl (pH 8.5). A reference flow cell was prepared by activating and415

blocking the surface without protein immobilization.416
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Compounds were dissolved in DMSO and diluted in running buffer (PBS pH 7.4, containing 0.05% Tween-20 and417

2% DMSO) to maintain a constant DMSO concentration. To account for bulk refractive index changes caused by418

DMSO, solvent correction was performed using a series of running buffer containing four DMSO concentrations419

ranging from 0.5% to 4%. Concentration ranges were adjusted for each compound to enable accurate determination420

of 𝐾d values. Different compounds required different concentration series depending on their binding characteristics.421

A serial dilution series of each compound was injected over the immobilized protein and reference surfaces at a flow422

rate of 30 µL/min.423

In the screening experiments, single-cycle kinetics was employed with a series of increasing compound concentrations424

injected sequentially with a contact time of 120 s followed by a 240 s dissociation phase after the final injection.425

For affinity validation experiments, multi-cycle kinetics was performed where each compound concentration was426

injected individually with a contact time of 120 s and a dissociation time of 200 s before regeneration of the sensor427

surface. After solvent correction was performed, sensorgrams were referenced by subtracting both reference flow428

cell and blank buffer injection responses. For both single-cycle and multi-cycle kinetic experiments, steady-state429

binding responses were fitted to a 1:1 binding model using Biacore Evaluation Software to determine the equilibrium430

dissociation constant (𝐾d).431

Determine the enzyme activity of TRIP12 with the in vitro ubiquitination assay432

In vitro ubiquitination assays were performed with a specific K48diUbprox-K29 substrate, as previously described433

[55]. In brief, 0.5 µM Uba1, 4 µM Ubch7, 0.25 µM TRIP12, 2 µM fluorescent K48-linked diUb with lysine to434

arginine mutation at the distal LYS29 site and keeping the proximal LYS29 unchanged (named K48diUbprox-K29),435

80 µM WT Ub, and either varying concentrations of E599-0223 or G935-3912 (dissolved in DMSO) or DMSO436

alone (as control) were mixed at 37°C for 2 minutes in the reaction buffer (50 mM HEPES, pH 7.5, 150 mM NaCl,437

10 mM MgCl2, and 5 mM ATP). The reaction was terminated with 4× SDS sample buffer with DTT, and analyzed438

by SDS-PAGE followed by fluorescence imaging and Coomassie Brilliant Blue dye (Bio-Rad).439

E1~Ub and E2~Ub thioester formation assay with fluorescent Ub440

The conditions for the E1~Ub thioester formation assay are as follows: 0.5 µM Uba1, 10 µM fluorescent Ub, and441

either 400 µM E599-0223 or G935-3912 dissolved in DMSO (or DMSO alone as control) were mixed at 37°C for442

5 minutes in the reaction buffer (50 mM HEPES, pH 7.5, 150 mM NaCl, 10 mM MgCl2, and 5 mM ATP). The443

reaction was terminated with 4× SDS sample buffer, with or without DTT, and analyzed by SDS-PAGE followed444

by fluorescence imaging and Coomassie Brilliant Blue dye (Bio-Rad). The E2~Ub thioester formation assay was445

performed under the same conditions, except that 5 µM Ubch7 was additionally included in the reaction.446

Pocket Detection for all AlphaFold2 predicted human proteins447

The AlphaFold DB [56, 57] contains predicted structures for 20,504 human proteins identified by UniProt accessions.448

Among these, 208 proteins are larger than 2500 amino acids (AAs), and their Pairwise Alignment Error (PAE)449

cannot be accessed through the official website. Consequently, only 20,296 proteins are used for pocket detection.450

Not all AlphaFold2 predictions are accurate. Two types of inaccuracies can be avoided by examining the pLDDT451

and PAE scores. First, we remove all residues with a pLDDT score below 50. The remaining structures exhibit high452

local accuracy, but the interactions between protein domains may still be incorrect. To address this, the PAE is453

symmetrized and used as precomputed metrics for agglomerative clustering. The average linkage method is applied,454

and the PAE threshold for clustering is set at 15 Å. Each cluster is then regarded as a confidently predicted protein455

super-domain, and protein fragments shorter than 10 AAs are removed to ensure stability during refinement. From456

the 20,296 proteins, we have identified 24,692 super-domains, covering 17,188 proteins (69.6%).457

For each super-domain, we utilize two methods to detect potential pockets. First, we implement a template-based458

structural alignment approach. Each super-domain is aligned with proteins from the PDBbind database [26, 27].459

When a local structure of the super-domain exhibited high structural similarity to a known pocket from PDBbind, it460
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is considered a likely pocket. Specifically, TM-align [58] is used for structural alignment, with a TM-score threshold461

of 0.6 to ensure significant overall similarity. The corresponding ligands from PDBbind are mapped to the identified462

pocket location in the super-domain using a rotation matrix, thereby confirming the pocket. We then calculate the463

local alignment IoU (intersection over union) for the pocket, defined as the ratio of the number of aligned amino464

acids in the pocket to the number of the union of amino acids in both the super-domain and the PDBbind protein465

pockets. Alignments with an IoU exceeding 0.6 are retained. Since all super-domains are single-chain proteins, only466

proteins from PDBbind with single-chain pockets are used for template matching. We also exclude ligand-receptor467

pairs from the PDBbind database where the ligand contains more than 800 atoms. In addition to the approach above,468

for each super-domain, Fpocket software [54] is used for pocket detection. However, the accuracy of pocket detection469

using Fpocket alone is limited, and the side-chain conformation of the apo pocket is not suitable for molecular470

docking. To address this, we adopt the proposed GenPack method to refine the pocket.471

The chemical library for the genome-wide virtual screening472

ZINC database is pre-filtered by anodyne reactivity and lead-like properties (molecular weight is no less than 200473

and up to 500, logP is up to 5). The resulting subset contains 2,782 tranches, and over 609 million protomers are474

downloaded from ZINC20 [59]. Enamine REAL database is downloaded from VirtualFlow [60] in the format of475

PDBQT. The whole database contains 46570 tranches, over 1337 million protomers. Both databases are filtered by476

cutoff rules for molecular properties calculated from SMILES and structural alert patterns using RDKit. Molecules477

of properties meeting the rules in Table S15 are kept for subsequential research. For ZINC, SMILES strings are478

matched to 3D structures in PDBQT by ZINC id. For REAL, SMILES strings are first extracted from remarks in479

PDBQT files; if errors like syntax errors due to the letter ’q’ in SMILES occurred, they are then converted from480

PDBQT structures via Open Babel. A regular expression filter is applied to REAL to exclude PDBQT files with481

overflowed atom coordinate digits.482

The genome-wide virtual screening483

All pockets and molecules are pre-encoded with DrugCLIP models. Then cosine similarities of their embeddings484

are calculated with Pytorch [61] with 8 A100 GPUs. Then, scores from 6 models and multiple pocket replicas are485

ensembled as discussed previously. The top 100,000 molecules for each pocket are obtained, and clustered into486

around 100 clusters with an ECFP4 cut-off of 0.15. Finally, the remaining molecules are docked to the pocket replica487

with the highest fitness with Glide-SP software from the Schrodinger Suite. Only molecules with a DrugCLIP488

Zscore > 4 and Glide Score < -6 are included in the final database.489

490
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Supplementary Tables and Figures.491

Fig. S1. Visualizations of non-covalent interactions shared by both real protein-ligand pairs and pseudo
protein-ligand pairs.
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Fig. S2. The joint distributions of pocket size and ligand size are examined for the PDBBind dataset, our ProFSA
dataset before applying stratified sampling, and the ProFSA dataset after stratified sampling.
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Fig. S3. Comparisons between the ProFSA dataset and the PDBBind dataset are made based on the distributions of
relative Binding Surface Area (rBSA) for ligand-pocket pairs
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Fig. S4. Wet-lab validations of DrugCLIP with 5HT2AR. The screening results of 78 DrugCLIP identified
molecules using calcium flux assays for 5HT2AR agonist at a concentration of 10 µM. Eight molecules showed
signals larger than 10%. Orange color indicates positive controls, and green color indicates hit molecules.
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Fig. S5. Primary hit molecules of 5HT2AR and the known actives with the largest similarity scores. All similarity
scores were calculated with Canvas software from the Schrodinger Suite with the ECFP4 fingerprint.
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Fig. S6. Dosage response curves of primary hits of 5HT2AR in radio-ligand competitive binding assays and NanoBit
assays.
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Fig. S7. Primary hit molecules of NET and the known actives with the largest similarity scores. All similarity
scores were calculated with Canvas software from the Schrodinger Suite with the ECFP4 fingerprint.
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Fig. S8. Data processing of NET datasets. (A-B) Representative micrograph and 2D class averages of NET. (C) The
flowchart for the data processing of NET bound to Y510-9709 or 0086-0043.
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Fig. S9. Cryo-EM analysis of NET datasets. Left panel: NET bound to Y510-9709; Right panel: NET bound to
0086-0043. Various assessments of the cryo-EM reconstruction are presented. These include (A) local resolution
maps; (B) gold-standard Fourier shell correlation (FSC) curves; (C) angular distribution of the particles used for the
final reconstruction.

21

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 29, 2025. ; https://doi.org/10.1101/2024.09.02.610777doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.02.610777
http://creativecommons.org/licenses/by/4.0/


Fig. S10. Analysis of the impact of sidechain accuracy and pocket definition on virtual screening and molecular
docking performance. (A) Correlation between pocket IoU compared with holo pockets to EF1% performance
decreases. Green dots indicate samples of Fpocket predictions, while orange dots indicate refined pockets by
GenPack. The curves at the top of the plot represent the marginal distribution of pocket IoU. (B) Correlation
between pocket sidechain RMSD compared with holo pockets to EF1% performance decreases. Green dots indicate
samples of Fpocket predictions, while orange dots indicate refined pockets by GenPack. The curves at the top of the
plot represent the marginal distribution of sidechain RMSD. (C) Correlation between pocket IoU compared with
holo pockets to Glide-SP docking accuracy measured by ligand RMSD. Green dots indicate samples using
AlphaFold2 predictions as receptors, while orange dots indicate docking with AlphaFold2 structures refined by
GenPack. Both docking grid centers and pocket definitions are acquired via structural alignments. The curves at the
top of the plot represent the marginal distribution of pocket IoU. (D) Correlation between pocket sidechain RMSD
compared with holo pockets to Glide-SP docking accuracy measured by ligand RMSD. Green dots indicate samples
using AlphaFold2 predictions as receptors, while orange dots indicate docking with AlphaFold2 structures refined
by GenPack. Both docking grid centers and pocket definitions are acquired via structural alignments. The curves at
the top of the plot represent the marginal distribution of sidechain RMSD.
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Fig. S11. Sensorgrams and steady-state binding curves of the multi-cycle SPR assay for all hit compounds.

23

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 29, 2025. ; https://doi.org/10.1101/2024.09.02.610777doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.02.610777
http://creativecommons.org/licenses/by/4.0/


E599-0223

Repeat 1 Repeat 2

0min2min

2Ub

G935-3912

3Ub
4Ub

10

15

25

35
40
50

20

10

15

25

35
40
50

20
2Ub

3Ub
4Ub

0   100  200  400 μM

0min 2min

0   100  200  400 μM

0min2min

0   100  200  400 μM

0min 2min

0   100  200  400 μM

2Ub

3Ub
4Ub

10

15

25

35
40
50

20

Fluorescence
detection

Fluorescence
detection

0min2min

0   100  200  400 μM

0min 2min

0   100  200  400 μM

0min2min

0   100  200  400 μM

0min 2min

0   100  200  400 μM

Repeat 1 Repeat 2Fluorescence
detection

10

15

25

35
40
50

20

2Ub

3Ub
4Ub

Repeat 3 Repeat 4 Fluorescence
detection

Repeat 3 Repeat 4

A

kD
a

kD
a

kD
a

kD
a

E599-0223 G935-3912

B

Fig. S12. Measuring inhibitory effects of hit compounds to TRIP12 via fluorescent ubiquitination assay. Gel images
are representative of independent biological replicates (𝑛 = 4 for all panels).(A) TRIP12-dependent in vitro
ubiquitination on fluorescent K48-linked diUb with lysine to arginine mutation at the distal LYS29 site and keeping
the proximal LYS29 unchanged (named K48diUbprox-K29) with E599-0223. (B) TRIP12-dependent in vitro
ubiquitination on K48diUbprox-K29 with G935-3912.
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Fig. S13. E599-0223 and G935-3912 do not inhibit E1 and E2 enzymes. White circles indicate reactions terminated
by SDS, while dark circles indicate reactions terminated by SDS and DTT, which will break thioester bonds. (A) In
vitro E1∼Ub thioester assay on fluorescent Ub with E599-0223. (B) In vitro E2∼Ub thioester assay on fluorescent
Ub with E599-0223. (C) In vitro E1∼Ub thioester assay on fluorescent Ub with G935-3912. (D) In vitro E2∼Ub
thioester assay on fluorescent Ub with G935-3912. Gel images are representative of independent biological
replicates (𝑛 = 2 for all panels).
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Table S1. Druggability prediction results for pocket pretrining, using the RMSE metric.

Fpocket ↓ Druggability ↓ Total SASA ↓ Hydrophobicity ↓

Finetuning
Uni-Mol 0.1140 0.1001 20.73 1.285

ProFSA 0.1077 0.0934 20.01 1.275

Zero-shot
Uni-Mol 0.1419 0.1246 49.00 17.03

ProFSA 0.1228 0.1106 30.50 13.07
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Table S2. Pocket matching results for pocket pretraining, using the AUC metric.

Methods Kahraman(w/o PO4) ↑ TOUGH-M1 ↑

Traditional
SiteEngine 0.64 0.73

IsoMIF 0.75 -

Zero-shot
Uni-Mol 0.66 0.76

ProFSA 0.80 0.82

Finetuning
DeeplyTough 0.67 0.91

ProFSA 0.85 0.94
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Table S3. Results on LBA prediction task for pocket pertaining, using pearson and spearman correlation

Method
Sequence Identity 30% Sequence Identity 60%

RMSE ↓ Pearson ↑ Spearman ↑ RMSE ↓ Pearson ↑ Spearman ↑

Sequence
Based

DeepDTA 1.866 0.472 0.471 1.762 0.666 0.663

B&B 1.985 0.165 0.152 1.891 0.249 0.275

TAPE 1.890 0.338 0.286 1.633 0.568 0.571

ProtTrans 1.544 0.438 0.434 1.641 0.595 0.588

Structure
Based

HoloProt 1.464 0.509 0.500 1.365 0.749 0.742

ATOM3D-3DCNN 1.416 0.550 0.553 1.621 0.608 0.615

ATOM3D-GNN 1.601 0.545 0.533 1.408 0.743 0.743

ProNet 1.463 0.551 0.551 1.343 0.765 0.761

Pretraining
Based

GeoSSL 1.451 0.577 0.572 - - -

EGNN-PLM 1.403 0.565 0.544 1.559 0.644 0.646

Uni-Mol 1.520 0.558 0.540 1.619 0.645 0.653

ProFSA 1.377 0.628 0.620 1.334 0.764 0.762
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Table S4. Benchmark the performance of DrugCLIP on the DUD-E dataset.

Method AUC ↑ BEDROC ↑ EF1% ↑

Vina [62] 71.60 – 7.32

Glide-SP [62] 76.70 40.70 16.18

NNScore [63] 68.30 12.20 4.02

RF-Score [63] 65.21 12.41 4.52

Pafnucy [63] 63.11 16.50 3.86

OnionNet [63] 59.71 8.62 2.84

PLANET [62] 71.60 – 8.83

GNINA [64] 76.70 – 20.90

DrugCLIP 77.42 39.86 24.61

29

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 29, 2025. ; https://doi.org/10.1101/2024.09.02.610777doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.02.610777
http://creativecommons.org/licenses/by/4.0/


Table S5. Benchmark the performance of DrugCLIP on the LIT-PCBA dataset.

Method AUC ↑ BEDROC ↑ EF1% ↑

Surflex [65] 51.47 – 2.50

Vina [66] 56.93 3.70 1.71

Glide-SP [62] 53.57 4.00 3.41

NNScore [66] 55.70 2.50 1.70

RF-Score [64] 57.10 – 1.67

Pafnucy [67] – – 5.32

PLANET [62] 55.58 – 3.28

GNINA [64] 61.00 5.40 4.61

BigBind [68] 59.07 – 3.55

DrugCLIP 59.54 7.29 5.36
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Table S6. DUD-E benchmark results with removal of similar molecules from the training set based on ECFP4
similarities and scaffolds.

Method AUC ↑ BEDROC ↑ EF1% ↑

ECFP4 Sim 0.9 77.60 39.48 24.08

ECFP4 Sim 0.6 79.02 40.82 25.27

ECFP4 Sim 0.3 77.61 31.92 19.10

Scaffold 78.10 33.25 19.97
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Table S7. DUD-E benchmark results with removal of homologous targets from the training set based on protein
sequence similarities and protein families.

Method AUC ↑ BEDROC ↑ EF1% ↑

90% Identity 77.31 39.86 24.61

60% Identity 75.50 32.75 19.57

30% Identity 73.93 29.71 17.91

0% Identity 69.79 16.37 9.18

32

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 29, 2025. ; https://doi.org/10.1101/2024.09.02.610777doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.02.610777
http://creativecommons.org/licenses/by/4.0/


Table S8. The biochemical and cellular parameters of initially screened positive compounds.

Compound number 𝐾i (nM)
𝛽-arr2 NanoBiT

EC50 (nM) 𝐸𝑚𝑎𝑥 (%)

L589-1477 3201.5 961.5 24.9

F344-0441 68.4 65.0 23.4

8525-0266 - - -

E958-2025 138.5 163.8 14.6

F343-0414 - - -

F670-0198 1224.2 771.2 23.0

V006-3328 3510.6 599.3 23.4

V008-4481 21.0 60.3 35.8
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Table S9. Cryo-EM data collection, refinement and validation statistics.

Category Y510-9709 0086-0043

Data collection and processing

Magnification 64,000 64,000

Voltage (kV) 300 300

Electron exposure (e−/Å2) 50 50

Defocus range (𝜇m) -1.5 to -2.0 -1.5 to -2.0

Pixel size (Å) 1.0825 1.0825

Symmetry imposed C2 C2

Raw movies 2,918 2,687

Particle number 507 k 506 k

Map resolution (Å) 2.98 2.87

FSC threshold 0.143 0.143

Map resolution range (Å) 40–2.8 40–2.7

Refinement

Protein residues 548 548

Ligand Y510-9709:1 Cl- 0086-0043:1 Cl-

B factors (Å2)

Protein 25.76 50.53

Ligand 32.09 38.45

Water 30.28 48.95

R.m.s. deviations

Bond lengths (Å) 0.004 0.003

Bond angles (◦) 0.666 0.631

Validation

MolProbity score 1.64 1.41

Clashscore 6.27 5.37

Ramachandran plot

Favored (%) 96.32 97.24

Allowed (%) 3.68 2.76

Disallowed (%) 0.00 0.00

PDB code 9JEL 9JF3

EMDB code EMD-61420 EMD-61426
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Table S10. The virtual screening performance of DrugCLIP on the DUD-E subset using different pockets on 27
DUD-E targets.

Method AUC ↑ BEDROC ↑ EF1% ↑

holo - Exp pocket 81.64 46.73 29.31

holo - fpocket 78.29 39.56 23.89

holo - fpocket + GenPack 80.58 46.57 28.48

AF2 - Exp pocket 78.56 42.27 25.88

AF2 - fpocket 74.47 32.11 18.96

AF2 - fpocket + GenPack 79.66 39.97 24.14

apo - Exp pocket 79.44 41.92 26.09

apo - fpocket 69.12 20.59 11.56

apo - fpocket + GenPack 75.59 34.16 20.43
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Table S11. The virtual screening performance of DrugCLIP on all DUD-E targets with AF2 predictions using
different pockets on 96 DUD-E targets.

Method AUC ↑ BEDROC ↑ EF1% ↑

holo - Exp pocket 77.31 38.88 23.97

holo - fpocket 53.72 5.87 3.19

holo - fpocket + GenPack 75.38 34.49 20.52

AF2 - Exp pocket 79.24 39.75 24.14

AF2 - fpocket 69.85 22.93 13.21

AF2 - fpocket + GenPack 76.28 29.43 17.02
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Table S12. Comparison of mean RMSD and success ratios at different RMSD cutoffs for holo, AF2, and
AF2-GenPack structures on 96 DUD-E targets.

Structure Mean RMSD ↓ RMSD<2 Ratio ↑ RMSD<3 Ratio ↑ RMSD<4 Ratio ↑

holo 1.93 69.07% 80.41% 87.62%

AF2 5.02 19.10% 31.46% 40.45%

AF2-GenPack 3.72 38.71% 48.39% 58.06%
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Table S13. Comparison of mean RMSD and success ratios at different RMSD cutoffs for holo, AF2, AF2-GenPack,
apo, and apo-GenPack structures on 27 DUD-E targets.

Structure Mean RMSD ↓ RMSD<2 Ratio ↑ RMSD<3 Ratio ↑ RMSD<4 Ratio ↑

holo 2.57 66.67% 70.37% 70.37%

AF2 5.90 7.69% 23.08% 34.62%

AF2-GenPack 4.41 14.81% 40.74% 54.15%

apo 5.54 22.22% 29.63% 29.63%

apo-GenPack 4.48 25.93% 37.04% 51.85%
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Table S14. The SPR results of TRIP12 for all wet-lab tested molecules

ID QualityAffinity_Chi2(RU) SteadyStateAffinity_pKd Rmax(RU) offset(RU) Type QualityAffinity_Chi2(RU) SteadyStateAffinity_pKd Rmax(RU) offset(RU) Type Smiles

8017-6463 9.060000e+00 6.326979 340.0 -296.0 Single 30.2000 4.787812 77.6 -6.7 Multi CC(C)(C)c1cc(cc(c1O)C(C)(C)C)C(=O)Cn1c2ccccc2n2nc(CCC(O)=O)c(=O)nc12

V010-7557 1.780000e+00 5.617983 112.0 -76.1 Single 3.4700 4.545155 35.9 -1.0 Multi COc1ccc(cc1N1CCN(CC1)S(=O)(=O)c1ccc(cc1)C(C)C)S(=O)(=O)NCC1CCCO1

G428-0140 3.880000e-01 4.856985 20.9 -10.3 Single 0.0527 4.616185 22.8 -1.0 Multi CCc1ccc(NC(=O)CS(=O)(=O)c2ccc3NC(C)=NS(=O)(=O)c3c2)cc1

C519-1339 1.370000e+01 4.812479 53.3 -5.5 Single 5.6800 4.714443 14.1 4.4 Multi CCOc1ccc(CCNC(=O)c2cn(CC)c3ccc(cc3c2=O)S(=O)(=O)N2CCCC2)cc1OCC

G935-3912 8.320000e+00 4.679854 29.0 -6.2 Single 1.2700 4.924453 46.9 3.5 Multi Cc1nn(CC(=O)N2CCc3ccccc23)c(C)c1S(=O)(=O)N1CCCC(C1)C(=O)Nc1cc(C)ccc1C

E599-0223 1.510000e+00 4.623423 62.4 -6.8 Single 0.3680 4.966576 38.3 0.7 Multi CCCN1CCN(CC1)c1cc2n(CCC)cc(c(=O)c2cc1F)S(=O)(=O)c1ccc(CC)cc1

Y600-3111 4.370000e+00 4.580044 91.7 -22.7 Single 8.2600 4.493495 73.3 -11.1 Multi COC(=O)c1cc(NC(=O)CN2CCC(CC2)C(O)(c2ccccc2)c2ccccc2)cc(c1)C(=O)OC

F946-0535 4.360000e+01 4.441291 116.0 -15.2 Single 21.2000 4.304518 106.3 -5.6 Multi COc1ccc(cc1S(=O)(=O)Nc1ccc(cc1)C(C)C)-c1ccc(=O)n(n1)-c1c(C)noc1C

P772-0064 2.200000e+01 4.391474 51.9 1.4 Single 8.6100 4.321482 72.6 -4.1 Multi CC(C)OC(=O)c1c(C)nc(nc1C(=O)N1CCN(C(C)C1)C(=O)NC1CCCCC1)-c1ccccc1

V020-2228 2.920000e+00 4.289037 168.0 -13.4 Single 5.3100 4.463442 95.4 -3.6 Multi CCCc1nc(N2CCCN(CC2)C(=O)COc2ccc(Cl)cc2)c2c(C)nn(-c3ccc(F)cc3)c2n1

K061-0077 2.200000e+00 4.168130 29.9 -4.1 Single NaN NaN NaN NaN Multi COC(=O)C(NC(=O)c1cc2nc(cc(n2n1)C(F)(F)F)-c1ccc(OC)cc1)C12CC3CC(CC(C3)C1)C2

C142-0073 7.460000e-01 4.138466 26.1 -6.8 Single NaN NaN NaN NaN Multi CCN(CC)c1ccc(cc1)C1C(C(=O)OC2CCCC2)=C(C)NC2=C1C(=O)C(C(C)C2)C(=O)OC

K786-5190 2.060000e-01 4.122053 55.1 -9.7 Single NaN NaN NaN NaN Multi CCOC(=O)N1CCN(CC1)S(=O)(=O)N1CCCC(C1)C(=O)NCCc1ccc(OCC)c(OCC)c1

P207-9156 7.330000e-01 4.042872 16.7 2.3 Single NaN NaN NaN NaN Multi CC(=O)NCCOc1ccc(NS(=O)(=O)c2ccc(cc2)N2CCCC2=O)cc1OCCNC(C)=O

Y600-2033 1.810000e+00 3.995679 17.0 0.2 Single NaN NaN NaN NaN Multi COC(=O)c1cn(cc(C(=O)OC)c1=O)-c1ccc(cc1)S(=O)(=O)Nc1nccc(C)n1

E587-0629 1.410000e+01 3.943095 106.0 -2.8 Single NaN NaN NaN NaN Multi CCOC(=O)c1ccccc1NC(=O)CSc1cn(CC(=O)N2CC(C)OC(C)C2)c2ccccc12

E958-0998 2.650000e-01 3.879426 21.5 3.4 Single NaN NaN NaN NaN Multi COc1ccc(OC)c(NCc2cccn2-c2nnc(s2)N2CCN(CC2)C2CCCCC2)c1

F711-0682 1.260000e-01 3.795880 33.8 3.2 Single NaN NaN NaN NaN Multi CC(=O)Nc1ccc(NC(=O)CSc2ncc(CO)n2CC(=O)NCc2ccc(F)cc2)cc1

G345-0122 1.420000e-03 3.749580 30.6 6.2 Single NaN NaN NaN NaN Multi CCC(C)NC(=O)Cn1c2cc(OC)c(OC)cc2c(=O)n(Cc2ccc(cc2)C(=O)NCCC(C)C)c1=O

2578-0155 1.810000e+01 3.744727 59.5 1.5 Single NaN NaN NaN NaN Multi CC(NS(=O)(=O)c1ccc2-c3ccc(cc3C(=O)c2c1)S(=O)(=O)NC(C)C(O)=O)C(O)=O

V006-3720 5.040000e+00 3.737549 245.0 -2.2 Single NaN NaN NaN NaN Multi CC(C)[C@@H]1CC[C@@H](C)C[C@H]1OCC(=O)N1CCN(Cc2cc(=O)c(OCc3cc(C)cc(C)c3)co2)CC1

G310-0054 1.190000e-03 3.684030 10.2 1.0 Single NaN NaN NaN NaN Multi CCOC(=O)c1cc(on1)-c1ccc(s1)S(=O)(=O)Nc1cccc(c1)C(=O)OCC

E859-1181 2.140000e+00 3.642065 170.0 11.8 Single NaN NaN NaN NaN Multi COc1ccc(cc1)-n1nc2c(nnc(C)c2c1C)N1CCCC(C1)C(=O)NCCC1=CCCCC1

V008-2057 2.080000e-01 3.632644 239.0 -6.5 Single NaN NaN NaN NaN Multi COc1ccc(cc1OC)C(CC(=O)N1CCN(C\C=C\c2ccccc2)CC1)c1cn(C)c2ccccc12

P207-9139 2.970000e+02 3.431798 345.0 17.1 Single NaN NaN NaN NaN Multi COC(=O)[C@@H]1C[C@@H](CN1C(=O)OCC1c2ccccc2-c2ccccc12)Oc1ccc(cn1)C(O)=O

Y502-0934 1.240000e+00 3.414539 785.0 -11.7 Single NaN NaN NaN NaN Multi CC(=O)OCC1=C(N2C(SC1)C(NC(=O)c1cnn3c(cc(nc13)C1CC1)C(F)F)C2=O)C(O)=O

Y505-3218 7.630000e-01 3.403403 117.0 -1.4 Single NaN NaN NaN NaN Multi C\C(NNC(=O)c1cc(nn1C)C(F)(F)F)=C1/C(=O)OC(C)=CC1=O

V023-1376 1.290000e+00 3.354578 953.0 6.1 Single NaN NaN NaN NaN Multi COc1ccccc1-n1nc(CN(C(C)C)C(=O)CC2CCCC2)c2CN(Cc3ccccc3F)CCc12

Y041-7510 1.710000e-02 3.353596 137.0 -8.4 Single NaN NaN NaN NaN Multi CC[C@@H](C)[C@H](Nc1ccc2-c3c(CC[C@H](NC(C)=O)c2cc1=O)cc(OC)c(OC)c3OC)C(O)=O

SC76-0628 2.010000e+00 3.341035 334.0 2.9 Single NaN NaN NaN NaN Multi [H][C@@]12C[C@]1(COc1ccc(F)cc1)C(=O)N(CC(=O)N(CC)Cc1cnn(CC)c1C)c1ccccc21

P218-3113 5.720000e+00 3.337242 0.0 6.3 Single NaN NaN NaN NaN Multi CN(CC(=O)N1CCCn2nc(cc2C1)-c1ccc(C)c(C)c1)S(=O)(=O)c1ccc2n(C)c(=O)oc2c1

4119-0071 1.370000e+00 3.271646 284.0 3.9 Single NaN NaN NaN NaN Multi CC(C)OC(=O)Nc1ccc2CCc3ccccc3N(C(=O)CCN3CCN(CCO)CC3)c2c1

F830-0228 2.250000e-01 3.191114 67.8 4.0 Single NaN NaN NaN NaN Multi COc1cc(cc(OC)c1OC)-c1noc(Cn2cnc3n(Cc4ccc(C)cc4)nnc3c2=O)n1

V026-0672 2.210000e-01 3.107349 286.0 -1.0 Single NaN NaN NaN NaN Multi COc1ccc(cc1OC)-c1ccc(nn1)N1CCCN(CC1)C(=O)CN(CC(C)C)C(=O)c1cccs1

G953-0096 1.020000e-01 3.015923 32.1 -2.3 Single NaN NaN NaN NaN Multi CCOC(=O)c1c(NC(=O)Cn2c(nc(C)c(CC)c2=O)-n2nc(C)cc2C)sc2CCCCCc12

E551-0174 4.330000e-01 2.886057 389.0 2.9 Single NaN NaN NaN NaN Multi COC(=O)c1ccc(NC(=O)CSc2ccc3nnc(CCNS(=O)(=O)c4ccc(C)cc4)n3n2)cc1

F449-3472 3.290000e-01 2.856985 699.0 2.5 Single NaN NaN NaN NaN Multi CCOC(=O)C1CCN(CC1)C(=O)CN(C)c1nn2c(NC(C)(C)C)c(nc2s1)-c1ccc(C)cc1

Y041-4192 2.400000e-02 2.617983 434.0 -8.0 Single NaN NaN NaN NaN Multi OC(=O)[C@H]1CC[C@H](CNC(=O)Cc2csc(n2)-c2ccc(OC(F)(F)F)cc2)CC1

8018-9104 9.240000e-01 2.570248 907.0 7.2 Single NaN NaN NaN NaN Multi COc1ccc(cc1)C(CNC(=O)c1cc(c(Cl)cc1N(C)C)S(=O)(=O)N(C)C)N1CCOCC1

T501-1408 1.040000e+00 2.267606 6290.0 5.7 Single NaN NaN NaN NaN Multi Cc1ccccc1Cc1c(C)nc2c(cnn2c1C)C(=O)N1CCCC(Cc2nncn2Cc2ccccc2)C1

V027-6124 7.610000e-01 2.204120 5250.0 -3.0 Single NaN NaN NaN NaN Multi Cc1c(nn(c1Oc1ccc(NC(=O)C2CC2)cc1S(=O)(=O)NC(C)(C)C)-c1cccc(C)c1C)C(O)=O

E456-0650 2.260000e+00 1.863279 7050.0 4.4 Single NaN NaN NaN NaN Multi CCN1CCN(Cc2ccc(NC(=O)C3C(N(CCOC)C(=O)c4ccccc34)c3cccs3)cc2)CC1

K786-4151 1.280000e+01 0.224754 1520000.0 12.6 Single NaN NaN NaN NaN Multi CCOc1ccccc1CN1CCC(CNC(=O)c2ccc(Sc3ccc(C)cc3)c(NC(C)=O)c2)CC1

L933-0359 1.070000e+00 0.130768 37000.0 -0.9 Single NaN NaN NaN NaN Multi CC(=O)c1ccc(NC(=O)NC2CCN(CC2)c2nc3cccnc3n(Cc3ccccc3)c2=O)cc1

H025-3300C 1.690000e+01 0.099633 1390000.0 -7.0 Single NaN NaN NaN NaN Multi CCn1c2nc(CCc3ccc(Oc4ccc(cc4)N4CCNCC4)cc3)n(C)c2c(=O)n(CC)c1=O

K091-0599 1.420000e+02 0.057992 1460000.0 -2.5 Single NaN NaN NaN NaN Multi CC(=O)NS(=O)(=O)c1ccc(N\C=C2\N=C(OC2=O)c2cccc3ccccc23)cc1

K788-9310 1.520000e+06 -0.053078 42400000.0 -1060.0 Single NaN NaN NaN NaN Multi CCN1CCN(CCNC(=O)c2ccc(\C=C3\Sc4ccccc4N(Cc4ccccc4C)C3=O)cc2)CC1

V023-4733 3.720000e+00 -0.100371 822000.0 4.1 Single NaN NaN NaN NaN Multi COc1cc(ccc1OCC1CCC1)-c1nc(=O)c(CCC(=O)N2CCSCC2)n[nH]1

8013-0459 1.020000e+00 -0.227887 968000.0 -1.6 Single NaN NaN NaN NaN Multi Cc1ccc(cc1S(=O)(=O)N1CCOCC1)-c1nn(CC(=O)NCc2ccccn2)c(=O)c2ccccc12

K216-8310 5.700000e+01 -0.283301 415000.0 0.6 Single NaN NaN NaN NaN Multi CCOc1cc(CNC(=O)c2ccc3nc(CC)c(CC)nc3c2)cc(OCC)c1OCC

D305-0221 2.130000e+01 -0.311754 3300000.0 -0.3 Single NaN NaN NaN NaN Multi CCN1CCN(Cc2nc3cc(NC(=O)COc4cc(C)ccc4C(C)C)ccc3n2C)CC1

D475-0124 1.600000e-01 -0.442480 920000.0 -7.0 Single NaN NaN NaN NaN Multi CCCNC(=O)Cc1c(C)nn(c1O)-c1nc(cs1)-c1ccc(C)cc1

K089-0136 1.940000e+01 -0.506505 8760000.0 -1.8 Single NaN NaN NaN NaN Multi COc1ccc(\C=N\NC(=O)c2cc(n[nH]2)C(C)(C)C)cc1CN1CCc2cc(OC)c(OC)cc2C1C

F288-0030 1.840000e+02 -0.514548 7090000.0 -13.7 Single NaN NaN NaN NaN Multi COc1cc(NC(=O)CSC2=NC3(CCN(C)CC3)N=C2c2ccc(cc2)C(C)(C)C)cc(OC)c1

K617-0161 5.850000e-01 -0.623249 248000.0 -4.4 Single NaN NaN NaN NaN Multi COc1cc(ccc1OC(C)=O)\C=C(/NC(=O)C1CCCCC1)C(=O)N1CC2CC(C1)c1cccc(=O)n1C2

J057-0910 5.260000e+01 -0.736397 5100000.0 3.6 Single NaN NaN NaN NaN Multi Cc1ccc(cc1)-c1nnc(o1)-c1cccc(c1)S(=O)(=O)Nc1ccc(cc1)C(O)=O

F470-0947 8.810000e+00 -1.041393 1050000.0 -0.6 Single NaN NaN NaN NaN Multi CC(C)CNC(=O)c1ccc2c(c1)n1c(nn(CC(=O)Nc3ccc(cc3)C(C)C)c1=O)n(C(C)C)c2=O
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Table S15. Molecular database filter rules. These rules were concluded based on druglike-ness rules, public
structural alerts, and the world (drug) subset of ZINC quantile numbers. Additional constraints on flexibility-related
properties were imposed to prevent a sharp increase in the computational cost of molecular docking.

Property Limitation

Molecular weight (0, 500]

Number of rings [1, 7]

Number of H-bond donors [0, 5]

Number of H-bond acceptors [0, 10]

ClogP [-3, 5]

Topological polar surface area (TPSA) [0, 140]

Number of rotatable bonds [0, 10]

Number of aromatic rings [1, 7]

Max size of ring [3, 8]

Number of isomers [1, 4]

Fraction of N or O [0.001, 0.4]

Fraction of heteroatoms [0.001, 0.5]

Number of contiguous rotatable bonds [0, 4]

Number of contiguous non-ring bonds [0, 6]

Allowed atom types {H, C, N, O, F, Cl, Br, I, S, P}

No matching structural alert catalogs PAINS, ZINC, CHEMBL_Glaxo, CHEMBL_BMS,

CHEMBL_SureChEMBL, CHEMBL_Inpharmatica, NIH

No matching patterns Multi-ether-ester (#[6]-#[8,#16;!a]-#[6].#[6]-#[8,#16;!a]-#[6])

Di-guanidine (#[7]∼#[6](∼#[7])∼#[7]∼#[6](∼#[7])∼#[7])
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