bioRxiv preprint doi: https://doi.org/10.1101/2024.09.02.610777; this version posted April 29, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

[EEN

Deep contrastive learning enables genome-wide virtual screening

Yinjun Jiat?*4"* Bowen Gao'®”, Jiaxin Tan**®"" Jiging Zheng*®%", Xin Hong",
Wenyu Zhu?!, Haichuan Tan'®, Yuan Xiao?>*®’, Liping Tan?>*®’, Hongyi Cai*?,
Yanwen Huang®®, Zhiheng Deng*8, Xiangwei Wu*8, Yue Jin?347  Yafei Yuan?*67,

Jiekang Tian!!, Wei He®, Weiying Ma?, Yagin Zhang!, Wei Zhang?**"#  Lei

oo o BAoWDN

Liu*8# Chuangye Yan?*%"# Yanyan Lan!®%#

7 Linstitute for Al Industry Research (AIR), Tsinghua University, Beijing, China.

8 2 School of Life Sciences, Tsinghua University, Beijing, China.

9 3 IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
10  # Tsinghua-Peking Center for Life Sciences, Beijing, China.

11 5 Department of Computer Science and Technology, Tsinghua University, Beijing,

12  China.

13  ©® Beijing Frontier Research Center for Biological Structure, Tsinghua University,

14 Beijing, China
15 7 State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China

16 8 New Cornerstone Science Laboratory, Ministry of Education Key Laboratory of
17  Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and

18  Systems Biology, Department of Chemistry, Tsinghua University, Beijing, China
19 9 School of Pharmaceutical Sciences, Tsinghua University, Beijing, China

20 10 State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical

21  Sciences, Peking University, Beijing 100191, China

22 1 Center of Pharmaceutical Technology, School of Pharmaceutical Sciences, Tsinghua

23 University, Beijing 100084, China

1/ 33


https://doi.org/10.1101/2024.09.02.610777
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.02.610777; this version posted April 29, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

24

25

26
27
28

made available under aCC-BY 4.0 International license.

12 Beijing Academy of Atrtificial Intelligence, Beijing, China.
* Contribute equally to this work.

# Correspondence and requests for materials should be addressed to Y.L.

(lanyanyan@air.tsinghua.edu.cn), C.Y. (yancy2019@tsinghua.edu.cn), L.L.

(lliu@mail.tsinghua.edu.cn), and W.Z. (wei_zhang@mail.tsinghua.edu.cn).

21/33


mailto:lanyanyan@air.tsinghua.edu.cn
mailto:yancy2019@tsinghua.edu.cn
mailto:lliu@mail.tsinghua.edu.cn
mailto:wei_zhang@mail.tsinghua.edu.cn
https://doi.org/10.1101/2024.09.02.610777
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.02.610777; this version posted April 29, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

29 Abstract

30 Numerous protein-coding genes are associated with human diseases, yet
31  approximately 90% of them lack targeted therapeutic intervention. While conventional
32  computational methods, such as molecular docking, have facilitated the discovery of
33 potential hit compounds, the development of genome-wide virtual screening against the
34  expansive chemical space remains a formidable challenge. Here we introduce
35 DrugCLIP, a novel framework that combines contrastive learning and dense retrieval
36  to achieve rapid and accurate virtual screening. Compared to traditional docking
37  methods, DrugCLIP improves the speed of virtual screening by up to seven orders of
38  magnitude. In terms of performance, DrugCLIP not only surpasses docking and other
39  deep learning-based methods across two standard benchmark datasets, but also
40  demonstrates high efficacy in wet-lab experiments. Specifically, DrugCLIP
41  successfully identified agonists with < 100 nM affinities for SHT2aR, a key target in
42  psychiatric diseases. For another target NET, whose structure is newly solved and not
43  included in the training set, our method achieved a hit rate of 15%, with 12 diverse
44 molecules exhibiting affinities better than bupropion. Additionally, two chemically
45  novel inhibitors were validated by structure determination with Cryo-EM. Finally, a
46  novel potential drug target TRIP12, with no experimental structures and inhibitors for
47  reference, was used to challenge DrugCLIP. DrugCLIP achieved a hit rate of 17.5% by
48  screening a pocket identified on an AlphaFold2-predicted structure, verified with multi-
49  cycle SPR assays. Molecules with the highest affinities also showed a dose-dependent
50 inhibition to the enzymatic function of TRIP12. Building on this foundation, we present
51  the results of a pioneering trillion-scale genome-wide virtual screening, encompassing
52  approximately 10,000 AlphaFold2 predicted proteins within the human genome and
53 500 million molecules from the ZINC and Enamine REAL database. This work
54 provides an innovative perspective on drug discovery in the post-AlphaFold era, where

55  comprehensive targeting of all disease-related proteins is within reach.
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56 Introduction

57 The human genome comprises approximately 20,000 protein-coding genes (/), many
58  of which are related to a variety of diseases. Despite this, only about 10% of these genes
59  have been successfully targeted by FDA-approved drugs or have documented small-
60  molecule binders in the literature (2). This leaves a substantial portion of the druggable
61 genome largely unexplored, representing a promising opportunity for therapeutic
62 innovation. The scientific community is eager to translate biologically relevant targets
63  into pharmaceutical breakthroughs. However, most researchers lack access to advanced
64  high-throughput screening equipment or sufficient computational power to perform
65 comprehensive virtual screenings. Additionally, proteins often function as parts of
66 families or pathways, indicating that targeting single proteins may not always be the
67  most effective strategy (3, 4). These limitations can significantly reduce the success rate
68  of drug discovery, especially for new targets. Therefore, developing a comprehensive
69 chemical database containing genome-wide virtual screening results would be an
70 invaluable asset for the biomedical research community, with the potential to

71  significantly accelerate the discovery of new drugs.

72 Given the impracticality of experimentally screening all human proteins, virtual
73 screening has emerged as the only viable approach to tackle the vast number of potential
74 targets. In classical computer-aided drug discovery (CADD), molecular docking serves
75  asafoundational technique for target-based virtual screening. Despite advancements in
76  simplified scoring functions, optimized algorithms, and hardware acceleration (5-9),
77  molecular docking remains time-intensive, often requiring several seconds to minutes
78 to evaluate each protein-ligand pair. For example, a recent large-scale docking
79  campaign took two weeks to screen 1 billion molecules against a single target, even
80  with the use of 10,000 CPU cores (/0). As a result, the computational demands for
81  genome-wide virtual screening are prohibitively high, rendering such efforts

82  impractical with existing technologies.
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83 Artificial intelligence holds great promise for drug discovery. Various deep learning
84  methods have been developed for virtual screening, focusing on predicting ligand-
85  receptor affinities (//-13). Yet, applying these methods to large-scale virtual screening
86  still faces significant challenges. A primary issue is the inconsistency of affinity values
87  due to heterogeneous experimental conditions (/4, /5), which may negatively impact
88  the performance of the trained model. Moreover, a notable distribution shift between
89 training datasets and real-world testing scenarios hinders the generalizability of Al
90 models, as real-world virtual screenings often involve a larger proportion of inactive
91 molecules than those represented in the curated training sets (/6). Additionally, the
92  computational demands of deep learning models, with millions of parameters, pose a
93  crucial bottleneck in inference speed, especially as chemical libraries and target
94  numbers grow. Consequently, there is an urgent need for the development of more

95 efficient and robust Al methodologies to effectively address these challenges.

96 In this work, we introduce DrugCLIP, a novel contrastive learning approach for
97  virtual screening. Contrastive learning has demonstrated significant success in various
98  applications like image-text retrieval (/7), enzyme function annotation (/8), and protein
99  homology detection (/9). The core innovation of DrugCLIP lies in its ability to
100  distinguish potent binders from non-binding molecules with a given protein pocket by
101  aligning their representations. This approach effectively mitigates the impact of noisy
102  affinity labels and chemical library imbalances that have traditionally challenged virtual
103  screening efforts. Moreover, the inference of DrugCLIP is highly efficient, achieving a

104  speed improvement in several orders of magnitude.

105 Comprehensive in silico and wet-lab evaluations were conducted to assess the
106  accuracy of the DrugCLIP model. Our model achieved state-of-the-art performance on
107  two widely recognized virtual screening benchmarks, DUD-E (20) and LIT-PCBA (21),
108  outperforming traditional docking-based screening methods and other deep neural

109 networks. To further validate its performance, DrugCLIP was applied to screen
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110  molecules for three real-world targets: SHT2aR (5-hydroxytryptamine receptor 2A),
111 NET (norepinephrine transporter), and TRIP12 (Thyroid Hormone Receptor Interactor
112  12), while the last target, TRIP12, lacks experimental structures and inhibitors for
113  reference. Remarkably, our model identified chemically diverse binders with adequate
114  affinities, which were further validated through functional assays and structure
115  determination. These results provide compelling evidence of the efficacy of our virtual

116  screening method.

117 Finally, a genome-wide virtual screening was conducted using DrugCLIP on all
118  human proteins predicted by AlphaFold2 (22, 23). In this process, we first define
119  pockets for AlphaFold predictions with structure alignment (24), pocket detection
120  software (25), and generative Al models. Next, we screened over 500 million drug-like
121  molecules from the ZINC (26, 27) and Enamine REAL (28) databases against identified
122 pockets. Notably, this unprecedented large-scale virtual screening was completed in just
123 24 hours on a single computing node equipped with 8 A100 GPUs. Lastly, we applied
124 a CADD cluster-docking pipeline to select chemically diverse and physically proper
125  molecules for each pocket. These result in a dataset containing over 2 million potential
126  hits targeting more than 20,000 pockets from around 10,000 human proteins. To the
127  best of our knowledge, this is the first virtual screening campaign to perform more than
128 10 trillion scoring operations on protein-ligand pairs, covering nearly half of the human
129  genome. All molecules, scores, and poses have been made freely accessible at

130  https://drug-the-whole-genome.yanyanlan.com, facilitating further research in drug

131  discovery on a genome-wide scale.

132
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133 Results
134  The design of the DrugCLIP model

135 Unlike previous machine learning models that relied on regression to directly predict
136  protein-ligand affinity values, DrugCLIP (Fig. 1) redefines virtual screening as a dense
137  retrieval task. The key innovation lies in its training objective, which aims to learn an
138  aligned embedding space for protein pockets and molecules, encoded by separate neural
139  networks. Vector similarity metrics can then be employed to reflect their binding
140  probability. Using contrastive loss during training, the similarity between protein
141  pockets and their binders (positive protein-ligand pairs) is maximized, whereas the
142 similarity between protein pockets and molecules binding to other targets (negative

143  protein-ligand pairs) is minimized.

144 The training process of DrugCLIP includes two stages: pretraining and fine-tuning.
145  The molecule and pocket encoders are pretrained with large-scale synthetic data and
146  are further refined using experimentally determined protein-ligand complex structures

147  during fine-tuning.

148 In the pretraining stage, the molecule encoder is initialized with Uni-Mol (29), a well-
149  established molecule encoder. With the molecule encoder frozen, the pocket encoder is
150 randomly initialized and trained to align with the molecule encoder using contrastive
151  learning (Fig. 1B). We developed a Protein Fragment-Surrounding Alignment (ProFSA)
152  framework (Fig. 1A) to generate large-scale synthetic data specifically tailored for
153  contrastive pretraining. In this approach, short peptide fragments are extracted from
154  protein-only structures to serve as pseudo-ligands, while their surrounding regions are
155  designated as pseudo-pockets. Intra-protein interactions share many features with
156  protein—ligand interactions, including hydrogen bonding, ionic attraction, -7 stacking,
157  and other non-covalent interactions (Fig. S1). In previous research on ligand-binding

158  protein design, intra-protein packing has also been exploited to determine statistically
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159  preferred orientations of chemical groups relative to the backbone of a contacting
160 residue for protein-ligand interface modeling (30). This principle underlies the
161  development of ProFSA. To further enhance model performance, we carefully calibrate
162  the chemical property distributions of pseudo-ligands and binding pockets to closely
163  match those observed in real complexes (Fig. S2 and S3), thereby minimizing the
164  distribution gap between synthetic and real-world data. Technical details are provided

165 in the “The Pretraining of the Pocket Encoder” section of the Methods.

166 Applying the ProFSA framework to PDB (3/) data yielded 5.5 million pseudo-
167  pocket and ligand pairs to facilitate the pretraining. The trained pocket encoder has been
168  evaluated across various downstream tasks such as pocket property prediction (Table
169  SI), pocket matching (Table S2), and protein-ligand affinity prediction (Table S3).
170  Experimental results demonstrate that our pretrained pocket encoder exhibits strong
171  performance, even in a zero-shot setting, outperforming many supervised learning-
172  based models as well as physical and knowledge-based models. These results
173  underscore the success of the pretraining stage in obtaining meaningful pocket

174  representations.

175 After pretraining, the molecule and pocket encoders are further fine-tuned (Fig. 1D)
176  using 40,000 experimentally determined protein-ligand complex structures collected by
177  the BioLip2 database (32). Given that the binding conformations of molecules are
178  unknown and only their topologies are provided in virtual screening, we implemented
179  arandom conformation sampling strategy for data augmentation by using RDKit (33)
180  for conformation generation. This augmentation allows DrugCLIP to train on data that
181  more accurately reflects the variability of real-world screenings, thereby enhancing the

182  model's performance and generalization ability.

183 In the screening process (Fig. 1E), we first use our trained encoders to represent
184  molecules and pockets as vectors. Cosine similarities between the pocket and molecule

185 embeddings are then computed, and candidate molecules are ranked according to these
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186  similarity scores. Since the molecule representations can be computed offline,
187  DrugCLIP screening is highly efficient, requiring only the calculation of a simple cosine
188  similarity and subsequent ranking. Therefore, with proper pre-encoding and
189  parallelization, DrugCLIP can evaluate trillion-level target-molecule pairs with a single
190  GPU accelerator, which is more than 10,000,000 times faster compared with traditional

191  computational methods like molecular docking.
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193  Fig. 1 The framework of DrugCLIP. (A) In the pretraining stage, a large-scale synthetic dataset
194  was created using the ProFSA strategy. Specifically, pseudo pocket-ligand pairs were
195  constructed through a series of operations, including fragment segmentation, terminal
196 correction, neighbor removal, and pocket detection, on protein data. (B) The pocket encoder is
197  pretrained with pseudo pocket-ligand pairs in a contrastive distillation manner to transfer
198  knowledge from a well-established molecular encoder to the pocket encoder. (C) During the
199 fine-tuning process, experimentally determined protein-ligand pairs were used as training data,
200  with multiple ligand conformations generated by RDKit. (D) In the fine-tuning stage, both the
201  pocket and molecule encoders were updated using a contrastive loss, which maximizes the
202 similarity between positive pairs and minimizes it between negative pairs. (E) The pipeline for
203  virtual screening with DrugCLIP. The candidate molecules from the library were pre-encoded
204 with the trained molecular encoder. For a given pocket, the trained pocket encoder converts it
205  to avector, and the cosine similarity is then utilized to select top ligands with the highest scores.

206

207
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208  Evaluating DrugCLIP performance with benchmarks and wet-lab experiments

209 We benchmarked DrugCLIP on two widely used virtual screening datasets, DUD-E
210  (20) and LIT-PCBA (27). The DUD-E dataset contains 22,886 active compounds of 102
211  protein targets. For each active compound, 50 decoys with similar physical properties
212  but different structures are generated. In contrast, LIT-PCBA comprises approximately
213 8,000 active and 2.64 million inactive compounds across 15 targets, derived from
214 experimental results of the PubChem BioAssay database. DrugCLIP was compared
215  with established physical-informed docking software, including Glide-SP (9),
216  Autodock Vina (6), Surflex (34), and regression-oriented machine learning models,
217  including NNscore (/3), RFscore (35), Patnucy (36), OnionNet (/2), PLANET (/1),
218  Gnina (37), BigBind (38). In both sets of results (Fig. 2A and 2B, Table S4 and S5),
219  DrugCLIP demonstrated a superior performance over all baseline methods in terms of

220  EF1%, measuring the recall capacity of virtual screening models.

221 We also investigated the influence of molecule similarity, homology information, and
222  protein structure accuracy on DrugCLIP's performance. After removing training
223  samples containing similar molecular substructures or scaffolds to the test set, the
224 performance drop of DrugCLIP remains marginal. Notably, it consistently outperforms
225  the widely used commercial virtual screening software Glide-SP (Fig. 2C, Table S6).
226  The robustness of DrugCLIP is not only to unseen molecular structures, but also to new
227  protein families. Remarkably, even when test protein families were entirely excluded
228  from the training set, DrugCLIP still outperformed one of the most popular virtual
229  screening methods AutoDock Vina (Fig. 2C, Table S7), highlighting its strong
230  generalization capability to new targets. Moreover, DrugCLIP shows exceptional
231  robustness by outperforming AutoDock Vina even with a 3 A RMSD error in the side
232  chain conformations of protein pockets (Fig. 2D), indicating its robustness to structural

233  inaccuracies.
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234 Furthermore, DrugCLIP is exceptionally efficient (Fig. 2E), making it highly suitable
235  for large-scale screening tasks. For instance, DrugCLIP can complete the screening for
236  LIT-PCBA in merely 38 seconds in the sequential computing mode, significantly faster
237  than Glide docking (3 days), Uni-Dock (22 hours) (&), and another machine learning
238  method PLANET (3 hours) (/7). When a large number of molecules and pockets are
239  evaluated, efficient parallel computing with GPUs can further reduce the time cost of
240  the same amount of computation to 0.023 seconds. Moreover, the time consumption of
241  DrugCLIP screening scales linearly with the simultaneous increase of target and

242  molecule numbers (Fig. 2F), which can facilitate multi-target virtual screening.

243 These in silico results confirm that DrugCLIP possesses superior virtual screening
244  capabilities, combining high performance, generalizability, robustness, and efficiency.
245  In addition to in silico evaluation, we tested the DrugCLIP model on real-world targets
246  using wet-lab experiments. We focused on two well-established targets for psychiatric

247  diseases: the serotonin receptor 2A (SHT2aR) and the norepinephrine transporter (NET).

248 SHT2aR is an emerging target for antidepressant development. Its agonists have
249  demonstrated strong and long-lasting antidepressant effects in both rodent models and
250 humans (39, 40). Previous research suggests that the recruitment of B-arrestin2
251 following SHT24R activation is a key biochemical mechanism underlying these

252  antidepressant effects (41, 42).

253 In a pilot virtual screening experiment, 78 top-ranked compounds were ordered from

254  ChembDiyv, Inc. (https://www.chemdiv.com/), which is also the supplier for the screening

255  of another two targets in the following sections. Eight of the 78 compounds were
256  identified as positive agonists in a calcium flux assay, exhibiting a minimal activity of
257  10% compared to serotonin (Fig. S4). The affinities of these compounds to SHT2aR
258  were further assessed using [*H]-labeled ketanserin competitive binding assays, with
259  six showing a K of less than 10 uM (Table S8, Fig. S5 and S6). We then evaluated the

260  cellular function of these hit compounds using NanoBit assays for [-arrestin2
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261  recruitment, and all 6 compounds achieved an ECs of less than 1 uM (Table S8, Fig.
262 S5 and S6). The best compound achieves an affinity of 21.0 nM and exhibits an ECsg

263  of 60.3 nM with an Enax of 35.8% in the NanoBit assay.

264 Following the success of SHT2aR, we targeted a well-established drug target, the
265  norepinephrine transporter (NET), for depression and attention deficit hyperactivity
266  disorder (ADHD). Although there are multiple FDA-approved inhibitors (43), the
267  structures of NET with or without its inhibitors in complexes were not solved until 2024
268  (44-46). The closest protein structure in our dataset is the dopamine transporter from
269  Drosophila (47), which shares less than 60% similarity with NET. Therefore, screening
270  against NET provides a more challenging test of our model’s ability to generalize to

271  structurally new targets.

272 For this target, we ultimately selected 100 compounds considering chemical novelty
273  and diversity. We tested their inhibition of NET protein by measuring the transport of
274  [*H]-labeled norepinephrine in NET-containing liposomes. Among these compounds,
275  15% of them exhibited more than 60% inhibition of NET, with 12 compounds

276  demonstrating greater potency than the widely used antidepressant bupropion.

277 Unlike previous NET inhibitors that typically feature aliphatic nitrogen atoms
278  capable of forming a salt bridge interaction with ASP75 of NET (44-46), our screening
279  identified several hits with positively charged aromatic nitrogen atoms. Notably, two of
280  these compounds, 0086-0043 and Y510-9709, demonstrated better ICso (with values of
281  1.14 uM and 0.31 uM, respectively) than bupropion (1.5 uM). Structural determination
282  of the complexes between these compounds and the NET protein revealed that the
283  aromatic rings indeed form more favorable interactions with NET: the isoquinoline ring
284  of 0086-0043 engages in a T-shaped n-7 interaction with PHE72, and the thiazole ring
285  of Y510-9709 likely interacts with surrounding aromatic side chains like PHE323 and
286  TYRI152. These findings highlight the potential of the DrugCLIP model to provide new

287  chemical insights for drug discovery.
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289  Fig. 2 In silico benchmarking results of DrugCLIP and the wet-lab validation with NET. (A)
290 The evaluation of DrugCLIP on the DUD-E dataset using the EF1% to assess model
291  performance. The results of baseline models are taken from previous studies (11, 48, 49). (B)
292  The evaluation of DrugCLIP on the LIT-PCBA dataset, also using the EF1% for performance
293  measurement. The results of baseline models are taken from previous studies (/1, 21, 38, 49-
294 5]). (C) The assessment of DrugCLIP’s generalization ability was conducted by varying the
295  identity cutoffs between testing targets or molecules and training data in DUD-E, with Glide-
296  SP and Vina represented as dashed lines. Protein similarities of 30%, 60%, and 90% are
297  calculated by MMSeqs2 (52), and 0% indicates a protein family removal with HMMER (53)
298 and PFAM (54). Molecular similarities of 30%, 60%, and 90% are calculated by Morgan2
299  (ECFP4) fingerprints (55), and 0% indicates a molecule series removal defined by generic
300  Murcko scaffolds (56). (D) The evaluation of DrugCLIP’s robustness regarding errors in pocket
301  side-chain conformations was conducted by using RMSD values ranging from 0 A to 3 A, with
302  Vina shown as a dashed line for reference. (E) The screening speed on the LIT-PCBA dataset,
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303  compared with docking methods like Glide-SP and Uni-Dock, and the machine learning model
304  PLANET. Speeds of baseline methods are taken from previous studies (8, 17). The time cost of
305  Glide-SP is converted by using 128 CPU cores, as the setting of 16 CPU cores used in the
306  original research is unfair to be compared with modern GPUs. For Uni-Dock, the time cost is
307  estimated as 0.04s per ligand with 8 GPUs. As for DrugCLIP, sequential computing (DrugCLIP-
308  S) of all LIT-PCBA targets on an A100 GPU will take 38 seconds, because the number of
309  molecules and pockets in this dataset is too small to be properly parallelized on modern GPUs.
310  Therefore, we also report a speed of parallel computing (DrugCLIP-P) by screening 10M
311  molecules for 100k pockets, which will take around 25 minutes with an A100 GPU. Under this
312  setting, it will only take 0.023 seconds for the same amount of computation as LIT-PCBA. (F)
313  An illustration of time consumption as the screening scale increases, with the x-axis
314  representing the size of the compounds library, the y-axis representing the number of targets,
315  and the z-axis representing the time cost of virtual screenings. DrugCLIP (the orange line) has
316  acomputational complexity of O(M+N), where M is the number of targets and N is the number
317  of compounds, whereas most existing methods (the green line) have a complexity of O(MN).
318  (G) The evaluation of 100 DrugCLIP identified compounds with radio-ligand transportation
319  assays for NET inhibitor at a concentration of 10 uM, and 15 compounds showed inhibition
320  larger than 60%. (H) The complex structure of 0086-0043 and NET was determined with Cryo-
321  EM. (I) The dose response curve of 0086-0043 in the radio-ligand transportation assay. (J) The
322  complex structure of Y510-9709 and NET was determined with Cryo-EM. (K) The dose
323  response curve of Y510-9709 in the radio-ligand transportation assay.

324
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325  Applying DrugCLIP to AlphaFold-predicted structures

326 After validating the DrugCLIP model through both in silico and wet-lab experiments,
327  we apply it to computationally predicted protein structures. Recent breakthroughs in
328  protein structure prediction—most notably the near-complete coverage of the human
329 proteome by AlphaFold2 (22, 23)—have provided structural insights into many
330 important drug targets lacking experimental data. This opens new avenues for structure-

331  based drug discovery beyond the limits of experimentally determined structures.

332 Virtual screening using AlphaFold-predicted structures remains a topic of debate.
333  The primary concern is that these predicted structures may lack the accuracy needed to
334  replicate experimental conformations and effectively filter out inactive molecules (57,
335  58). Despite this, some studies have shown that virtual screening with AlphaFold-
336  predicted structures can still yield reasonable results for certain targets (59, 60). Given
337  the robustness of DrugCLIP to sidechain inaccuracies (Fig. 2D), we further assess the
338 influence of predicted structure using a specialized DUD-E subset for virtual screening
339  of AlphaFold predictions and apo structures (57). First, we observed that DrugCLIP is
340 robust to the conformational variability inherent in AlphaFold2-predicted or apo
341  structures, as long as the binding pockets are accurately defined through structural
342  alignment with holo references (as shown in Exp. Pocket in Fig. 3B). For protein targets
343  without homology structures, software like Fpocket (25) is usually used to identify
344 potential pockets. In our experiments, using Fpocket outcomes resulted in a significant
345  performance drop for DrugCLIP, with the EF1% value decreasing from 29.3% to 19.0%
346  (Fig. 3B, Table S10), reflecting similar challenges observed with docking methods in

347  both virtual screening (57) and conformation prediction (58).

348 To improve the utility of AlphaFold-predicted structures, we developed a strategy
349  called GenPack (Generation-Packing, Fig. 3A). This strategy involves training
350 molecular generative models conditioned on the backbone structures of protein pockets.

351  While the generated molecules may not always be synthesizable, they help to localize
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352  pockets more precisely and induce the pocket conformation into a more suitable state.
353  After this generation step, side chains are reintroduced, and the overall conformation is
354  refined using physical force fields. With the GenPack strategy, we significantly
355  enhanced the screening power of AlphaFold-predicted structures, increasing EF1%
356  value on the DUD-E subset from 19.0% to 24.1% (Fig. 3B, Table S10). As for apo
357  structures, the performance boost from GenPack is more significant, where EF1% was
358  improved from 11.5% to 20.4% (Fig. 3B, Table S10). Compared to the previous state-
359  of-the-art virtual screening method for apo or AlphaFold-predicted structures, IFD-MD
360 (57, 61), our approach achieves superior performance in terms of active molecule
361  enrichment. Additionally, GenPack improves the docking success rate when using
362  AlphaFold2-predicted receptors, increasing it from 19.1% to 38.7% across all DUD-E

363  targets with available AlphaFold2 structures (Fig. 3C, Table S12).

364 To further understand the mechanism of GenPack’s performance boost to DrugCLIP
365  and molecular docking, we conducted additional experiments to evaluate the pocket

366  refinement by GenPack.

367 We first investigated whether this process could refine pocket conformations to better
368  resemble /olo structures. Surprisingly, GenPack refinement did not improve the overall
369  side-chain RMSD relative to holo structures. Furthermore, for AlphaFold2-predicted
370  structures—regardless of whether GenPack refinement was applied—we observed no
371  correlation between side-chain RMSD and either docking performance (measured by
372 ligand docking pose RMSD, Fig. S10D) or screening performance (measured by
373  AEF1%, Fig. S10B). Based on these findings, we conclude that GenPack does not
374  improve the pocket conformation of AlphaFold2 structures, and pocket side-chain
375  accuracy appears to have limited influence on virtual screening or docking performance
376  in our setting. Similar results were also observed in the previous research of molecular

377  docking with AlphFold2 predictions (58).
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378 Since automated tools like Fpocket were less precise in detecting ligand-binding
379  pockets compared to structural alignment approaches, we then conducted additional
380 experiments to further investigate whether GenPack improves the pocket detection and
381  localization for AlphaFold2 predictions. We found that the decrease in virtual screening
382  performance, measured by AEF1%, is correlated with the precision of pocket detection,
383  quantified by the intersection-over-union (IoU) between predicted and 4olo pockets (p
384  <0.005, Fig. S10A). Importantly, GenPack refinement improved the pocket IoU scores
385  (the distribution curves on top of Fig. S10A), suggesting that it enhances pocket
386  definition and, as a result, contributes to improved virtual screening outcomes.

387  Nevertheless, the localization refinement is not correlated to the docking performance

388  (Fig. S10C).

389 Taken together, these results demonstrate that DrugCLIP, with the aid of GenPack,
390 achieves superior virtual screening performance on apo or AlphaFold2-predicted

391  structures compared with physically informed methods like IFD-MD.

392 Beyond in silico evaluations, we further demonstrate the capabilities of GenPack and
393  DrugCLIP using a novel and promising biological target, thyroid hormone receptor
394  interactor 12 (TRIP12). TRIP12 is an E3 ubiquitin ligase (62) that represents a potential
395  drug target implicated in cancers and neurodegenerative diseases. TRIP12 mediates the
396  ubiquitination of p14AREF, leading to its degradation and consequently suppressing p53
397  activity in cancer cells (63). In the nervous system, TRIP12 functions as a key regulator
398  of GCase (glucocerebrosidase), targeting it for ubiquitin-mediated degradation, which
399 leads to a-synuclein accumulation and aggregation, a pathological hallmark of
400 Parkinson's disease (64). Despite its biological significance, TRIP12 remains
401  challenging for drug discovery. Structures containing the catalytic HECT domain and
402  small-molecule inhibitors for this target have not been released to date. This absence of

403  structural data and chemical starting points positions TRIP12 as a particularly
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404  challenging yet scientifically valuable target for validating the generalization

405  capabilities of DrugCLIP and GenPack.

406 We applied DrugCLIP to the predicted binding pocket near the catalytic site of
407 TRIP12 (Fig. 3D), as identified from the AlphaFold-predicted structure. The top 1% of
408 ranked compounds were finalized to a selection of 57 candidate compounds for
409  experimental validation. Among these, 10 compounds demonstrated K4 values lower
410  than 50 uM, as determined by surface plasmon resonance (SPR) assays, yielding a hit
411  rate of 17.5% (Fig. 3E, Fig. S11, Table S14). The two best compounds, E599-0223 and
412 (935-3912, showed affinities to TRIP12 of 10.8 uM and 11.9 pM, respectively (Fig.
413  3F, G, 1, J). Additionally, their dose-dependent inhibition of TRIP12’s ubiquitination
414  activity was confirmed using fluorescent ubiquitination assays (Fig. 3H and K, Fig.
415  S12), and they showed no off-target inhibition to E1 ubiquitin-activating enzyme and
416  E2 ubiquitin-conjugating enzyme at the highest concentration (Fig. S13). To the best of
417  our knowledge, these compounds represent the first publicly reported inhibitors of the

418  ubiquitination function of TRIP12.

419 Together, in silico and experimental results demonstrate that DrugCLIP is an
420  effective virtual screening tool for AlphaFold-predicted protein structures. These
421  findings highlight a promising path forward for structure-based drug discovery

422  targeting proteins lacking experimentally determined structures.

423
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Fig. 3 Applying DrugCLIP to AlphaFold-predicted structures with the aid of GenPack. (A) The

GenPack (Generation-Packing) process for extracting pockets from AlphaFold2-predicted

structures involves using Fpocket to detect initial pockets, removing sidechains, applying an

Al-generative model to create molecules based on the backbone structure, and then performing

sidechain packing with the generated molecules. (B) The EF1% comparisons for virtual

screening on the DUD-E subset (57) of holo, AlphaFold2-predicted, and apo structures, using
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431  different pocket definitions: structural alignment to folo structures (Exp. Pocket), pockets
432  detected by Fpocket (Fpocket), and pockets generated by GenPack (Fpocket + GenPack). The
433  performances of Glide-SP and IFD-MD are given as references. (C) The redocking RMSD
434  comparisons for different pocket definitions: holo-pocket, pockets on AlphaFold2-predicted
435  structures, and pockets on AlphaFold2-predicted structures refined by GenPack. The orange
436  dashed line indicates the RMSD threshold of 2 A, and the corresponding docking success
437  rates are labeled above each column. (D) AlphaFold2-predicted structure of TRIP12, and the
438  pocket used for virtual screening with DrugCLIP (orange dots). (E) pKa values of 57 selected
439  compounds measured by single-cycle SPR in initial screening; green color indicates hit
440  compounds with their K4 value lower than 50 puM, validated by following multi-cycle SPR
441  assays. (F) Sensorgram of the multi-cycle SPR assay for E599-0223. (G) Steady-state binding
442  curve of the multi-cycle SPR assay for E599-0223. (H) Enzyme activities of TRIP12 under
443  different concentrations of E599-0223. (I) Sensorgram of the multi-cycle SPR assay for G935-
444 3912.(J) Steady-state binding curve of the multi-cycle SPR assay for G935-3912. (K) Enzyme

445 activities of TRIP12 under different concentrations of G935-3912.

446
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447  Genome-wide virtual screening with DrugCLIP

448 Finally, we introduced a genome-wide virtual screening pipeline to facilitate future
449  drug discovery. We began with splitting all AlphaFold predictions of human proteins
450 into high-confidence regions based on pIDDT and PAE scores. For each region, we
451  used homology alignment and Fpocket (25) along with GenPack to detect potential
452  pockets. The DrugCLIP model was then employed to screen over 500 million drug-like
453  molecules from the ZINC (26, 27) and Enamine REAL (28) databases. The screening
454 process, which involved more than 10 trillion scoring operations on protein-ligand pairs,
455  was completed in about 24 hours on a single computing node equipped with 8 A100
456  GPUs. The top-ranked molecules were then clustered and further evaluated using
457  molecular docking, filtering out poor poses with Glide score > -6 kcal/mol. The final
458  database contains over 2 million potential hit molecules for more than 20,000 pockets
459  from 10,000 human targets. All molecules, docking scores, and poses have been made

460 freely accessible at https://drug-the-whole-genome.yanyanlan.com (Fig. 4A),

461  facilitating further research and drug discovery processes.

462 Our genome-wide screening results cover a more extensive range of targets than
463 ChEMBL (65), one of the most comprehensive databases for bioactive molecules.
464  While UniProt (/) contains 20,436 reviewed human proteins, the latest ChEMBL
465  release (ChEMBL 34) covers 4,810 of them. Moreover, not all targets in the ChEMBL
466  database have high-affinity small-molecule binders; some targets only have peptide or
467  antibody binders, or merely vague results from low-quality assays. In contrast, our
468  database spans 9,908 targets, more than twice the number in ChEMBL and covers
469  nearly half of the human genome (Fig. 4B). To visualize the difference between the two
470  protein spaces, we encoded all protein sequences using the ESM1b model (66). The t-
471  SNE plot shows that our space encompasses a broader range of proteins, including

472  many that are not closely related to those in ChEMBL (Fig. 4C).
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473 Our database includes a diverse range of targets, from well-studied proteins to less-
474  explored members of well-known families, as well as proteins with limited
475  pharmacological understanding (Fig. 4C). For example, the c-Jun N-terminal kinase 3
476  (JNK3) is a classical kinase target with many ligand-bound crystal structures (67, 68).
477  DrugCLIP identified molecules that bind to the ATP-binding pockets, forming H-bonds
478  with backbone atoms of MET 149 in the hinge region. SLC45A2 belongs to the solute
479  carrier (SLC) superfamily, many of which are important drug targets. Nevertheless,
480 SLCA45A2 has limited pharmacological studies. This gene plays a crucial role in
481  pigmentation (69) and is widely expressed in cutaneous melanomas (70), with evidence
482  suggesting its oncogenic potential (77). All molecules in the database could bind near
483 L1374, which is an important site for protein stability (69), thus having potential
484  modulatory effects. Another interesting example OR6A2 belongs to the olfactory
485  receptor family, whose members are mainly found to be expressed in olfactory receptor
486  neurons, yet many of them are expressed in various other tissues with unexplored
487  pharmaceutical potentials (72). OR6A2 is expressed in macrophages, sensing blood
488  octanal and promoting the formation of atherosclerotic plaques (73). Our predicted
489  molecules fit the orthosteric pocket of OR6A2 and can serve as potential inhibitors for
490 treating atherosclerosis. The final example Sestrin-2 can sense leucine (74) and promote
491  drug resistance of cancer cells (75), which belongs to a unique highly-conserved stress-
492  inducible protein family (PF04636 or IPR006730) with only three members in the
493  human genome. Our database contains predicted molecules that bind to the same pocket
494  of leucine (76) that may serve as good starting points for anti-cancer therapies. These
495  examples highlight the potential of our database as a valuable resource for exploring

496  the undrugged genome and facilitate future drug discovery.

497
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507 Conclusions and Discussions

508 With the rapid advancement of protein structure prediction methods and the
509 availability of a comprehensive atlas of predicted protein structures for human and
510  disease-related species (23, 77), we have entered a new era where effective drug
511  discovery for all disease-related targets is within reach. In this paper, we introduce
512  DrugCLIP, a groundbreaking contrastive learning based virtual screening approach that
513 aims to achieve genome-wide drug discovery. The efficacy of DrugCLIP has been
514  rigorously validated through both in silico benchmarks and wet-lab experiments. In
515  well-established benchmarks, DrugCLIP consistently outperformed traditional docking
516  software and contemporary machine learning models. Notably, for the SHT2aR and
517 NET targets, DrugCLIP identified diverse high-affinity binders and novel chemical
518 entities. We further validated the capability of DrugCLIP on TRIP12, a particularly
519  challenging target with no available structural and chemical information. DrugCLIP has
520 identified the first reported small-molecule inhibitors of TRIP12, providing valuable
521  starting points for this promising therapeutic target. These findings underscore the
522  potential of DrugCLIP model as a reliable tool for virtual screening in real-world drug
523  development. We demonstrate its application through a genome-wide virtual screening
524  campaign, encompassing more than 20,000 pockets across approximately 10,000
525  human proteins, using a chemical library of 500 million molecules from ZINC and
526  Enamine REAL. Remarkably, DrugCLIP completes this trillion-level virtual screening
527  campaign in just 24 hours using just a single computational node with 8 GPU
528  accelerators. Beyond the screening results, we have generated over 2 million high-
529  confidence protein-ligand complex structures accompanied with their docking score.
530 By making this extensive database freely accessible, we aim to make a substantial
531  contribution to the research community, accelerating drug discovery and fostering

532  innovation in therapeutic development.
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533 DrugCLIP is more than just a new tool. It represents a transformative shift in the
534  development of new therapeutics, heralding a new paradigm in drug discovery. Its
535 genome-wide virtual screening capability opens the door to truly end-to-end drug
536  discovery on a genomic scale, allowing researchers to screen all relevant targets
537  simultaneously, rather than focusing on a few promising targets. This expansive
538 approach facilitates the creation of customized chemical libraries for advanced
539  phenotypic screening with high-fidelity models such as organoids (78-80) or

540  humanized mice (8§7-83), potentially reducing failure rates in drug development.

541 DrugCLIP paves the way for new advancements in Al-driven drug discovery. Its
542  outstanding efficiency allows the screening scale to the largest ultra-large chemical
543  library available today, e.g., 48 billion-compound Enamine REAL Space library. This
544  effort pushes the boundaries of what virtual screening can achieve in drug discovery.
545  Moreover, the release of these genome-wide virtual screening results could serve as a
546  valuable resource for molecular generation, particularly through a retrieval-augmented

547  generation approach (84, 85), enhancing our capacity for drug discovery and design.
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1 Supplementary Results
2 Benchmarking the performance of pocket pretraining with ProFSA

s To test the performance of the pretrained pocket encoder, we benchmark the encoder on three major benchmarks.
4 The first task is about the pocket druggability prediction. We assess the effectiveness of ProFSA in predicting various
s physical and pharmaceutical properties of protein pockets, utilizing the druggability prediction dataset created by
s Uni-Mol [1]. This dataset comprises four separate regression tasks: Fpocket score, Druggability score, Total Solvent
7 Accessible Surface Area (SASA), and Hydrophobicity score. The evaluation metric employed for these tasks is
s the Root Mean Square Error (RMSE), which measures the accuracy of the predictions. The baseline model we
o compared is the pocket encoder from the Uni-Mol [1]. The result is shown in Table S1.

10 The second task is the zero-shot pocket matching, for which we use two datasets: the Kahraman dataset [2] and the
11 TOUGH-MI1 dataset [3]. The Kahraman dataset contains matched pockets from two non-homologous proteins that
12 bind to the same ligand. It consists of 100 proteins binding to 9 different ligands. We use a reduced version of this
13 dataset, excluding 20 POy4 binding pockets due to their low number of interactions. The TOUGH-M1 dataset, on
12 the other hand, involves relaxing identical ligands to identify similar pockets and comprises 505,116 positive and
15 556,810 negative protein pocket pairs derived from 7,524 protein structures. The baseline models we employed
16 encompass various approaches, including PocketMatch [4], DeeplyTough [5] and IsoMIF [6]. Additionally, we
17 consider established software tools like SiteEngine [7] and TM-align [8]. We also incorporate pretraining strategies,
18 such as Uni-Mol [1] and CoSP [9]. The result is shown in Table S2.

19 The third task is binding affinity prediction. We use the widely recognized PDBBind dataset (v2019) for predicting
2 ligand binding affinity (LBA), following the strict 30% or 60% protein sequence identity splits and preprocessing
21 protocols specified by Atom3D. These strict data splits are crucial for providing reliable and meaningful comparisons,
22 especially in evaluating the robustness and generalization capabilities of the models. For each protein-ligand pair,
23 we concatenate the protein embedding from our pretrained pocket encoder with the molecular embedding from
24 the Uni-Mol molecular encoder and pass this combined representation through a multilayer perceptron (MLP) to
25 generate the final binding affinity prediction. For our baseline models, we utilize a diverse range of methods including
26 DeepDTA [10], B&B [11], TAPE [12], ProtTrans [13], HoloProt [14], IEConv [15], MaSIF [16], and several
27 ATOM3D variants—3DCNN, ENN, and GNN [17]. Additionally, we incorporate ProNet [18] and pretraining
23 approaches such as GeoSSL [19], EGNN-PLM [20], DeepAfinity [21], and Uni-Mol [1]. The result is shown in
20 Table S3.
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30 Data and Code availability

st All input data are freely available from public sources.

32 For ProFSA pretraining, the PDB database can be acquired from https://www.wwpdb.org/ftp/pdb-ftp-sites. The
a3 processed dataset is available at HuggingFace: https://huggingface.co/datasets/THU-ATOM/ProFSADB. Related
s+ code and model weights are available at: https://github.com/THU-ATOM/ProFSA.

s DrugCLIP is fine-tuned using the BioLip2 dataset, available on: https://zhanggroup.org/BioLiP/index.cgi. For
s the 6-fold version, please refer to Supplementary Materials 1. For all similarity-based splits, refer to Sup-
37 plementary Materials 2 for the list of pre-filtered PDB IDs. Related code and model weights are available at:
s https://github.com/bowen-gao/DrugCLIP.

s GenPack is trained using the PDBBind2020 dataset, available at: https://www.pdbbind-plus.org.cn/download. For
a0 the list of pre-filtered PDB IDs based on pocket similarity to DUD-E, please refer to Supplementary Materials 3.
41 Related code and model weights are available at: https://github.com/THU-ATOM/Pocket-Detection-of-DTWG.

42 Datasets for benchmarking are downloaded from their official websites, including DUD-E (https://dude.docking.org/),
43 LIT-PCBA (https://drugdesign.unistra.fr/LIT-PCBA/), and ATOM3D (https://www.atom3d.ai/). For the subset of 27
4 DUD-E targets for apo and AlphaFold predictions, please refer to its original publication [22]. For all 96 DUD-E
45 targets with available AlphaFold2 predictions, please see Supplementary Materials 4 for their gene names. The
4 pocket matching and pocket property prediction benchmarks are acquired from their original publications [1, 2, 3].
47 For wet-lab validation, we provide a reference pipeline using DrugCLIP and molecular docking. Note that human
4 evaluation of candidate molecules can influence virtual screening outcomes. The reference pipeline is available at:
49 https://github.com/THU-ATOM/DrugCLIP_screen_pipeline.

so All docking poses from the genome-wide screening are available at: https://drug-the-whole-genome.yanyanlan.com/.
st The unfiltered data can be accessed at: https://huggingface.co/datasets/THU-ATOM/GenomeScreen.

52

ss Materials and Methods

s« The design of DrugCLIP

ss  The DrugCLIP model has a molecule encoder and a pocket encoder. These two encoders are aligned by contrastive
ss learning.
57 Both encoders are based on the Uni-Mol architecture [1], a transformer architecture that takes 3D atomic features as
ss input. For the molecule encoder, we directly utilize the pretrained weights from Uni-Mol for initialization, leveraging
so its learned representations for small molecules. The pocket encoder is pretrained to be aligned with the molecule
eo encoder in a contrastive distillation manner [23] with the ProFSA dataset.
st The training of the DrugCLIP model is under a contrastive learning framework. Given a batch of encoded
e protein-ligand pairs {(py,m1), (p2,m2), ..., (pn,myn)}, where p; is the embedding of the protein pocket i obtained
ss from the pocket encoder. m; is the embedding of the corresponding ligand i encoded by the molecular encoder.
s« The objective is to learn embeddings such that the representations of true (positive) protein-ligand pairs are closer
65 together in the embedding space, while the representations of incorrect (negative) pairs are further apart.
es To accomplish this, we use a contrastive learning framework with a batch softmax approach, which involves two
&7 main loss functions.
es The first loss is designed to find the correct ligand m; for a given protein pocket p;. The loss function for this
s Objective can be written as:

exp(sim(p;, mi) /)

1 N
£p2m =% log - . (1)
N &= 3 exp(sim(pi, mj) /1)

70 sim(p;,m;) represents a similarity measure between the protein pocket embedding p; and ligand embedding
7 m;. Here we use the cosine similarity. 7 is the temperature parameter controlling the sharpness of the softmax

72 distribution.
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73 The second loss aims to find the correct protein pocket p; from a batch of pocket candidates given a ligand m;:

1< exp(sim(m;, p;) /7)
L = —— 10g - Lo . (2)
D S exp(sim(my, p;)/7)
7+ The final contrastive loss for training the model is the sum of the two losses:
L= £p2m + -Em2p~ (3)

75 The pretraining of the pocket encoder

7 The pocket pretraining uses the protein fragment-surroundings alignment (ProFSA) framework. The Protein Data
77 Bank (PDB) [24] contains a vast amount of protein-only data. Interestingly, small molecule-protein interactions
78 often mirror the non-covalent interactions found within proteins themselves [25]. Such similarity is shown in Fig.
79 S1. Leveraging this similarity, we first extract fragments from protein structures that closely resemble known ligands
so and define the surrounding regions as the associated pockets of these pseudo-ligands.

st In the initial phase, we iteratively isolate protein fragments ranging from 1 to 8 residues, ensuring these segments are
g2 continuous from the N-terminal to the C-terminal while excluding any discontinuous sites or non-standard amino
s3 acids. To minimize artifacts introduced by the cleavage of peptide bonds during fragment segmentation, we apply
s« terminal modifications: acetylation at the N-terminus and amidation at the C-terminus. For the N-terminus, we
s cap with an acetyl group constructed from the actual C, CA, and O atoms of the previous residue in the protein
g structure. For the C-terminus, we apply amidation using the N atom from the following residue. All capping atoms
s7  are extracted directly from neighboring residues within the same experimentally resolved structure, ensuring physical
s plausibility and avoiding steric clashes. These modifications result in the formation of pseudo-ligands.

s In the subsequent phase, to focus on long-range interactions, we exclude the five nearest residues on each side of the
o fragment. We then designate the pocket as the surrounding residues that have at least one heavy atom within a 6 A
91 distance from the fragment.

92 The derived pseudo-complexes undergo stratified sampling based on the distribution observed in the PDBbind2020
93 dataset [26, 27], considering critical parameters such as pocket sizes (measured by the number of residues) and
e ligand sizes (expressed as effective residue numbers, calculated by dividing the molecular weight by 110 Da).
95 Another key metric is the relative solvent-accessible surface area (rBSA), which we calculate using the FreeSASA
9 package [28]. The pseudo-complexes are sampled to approximate the distributions seen in the PDBbind dataset
97 [26, 27], particularly in terms of rBSA and the joint distribution of pocket-ligand size. This ensures the dataset’s
98 representativeness and its suitability for training ligand-oriented contrastive learning models, as shown in Fig. S2
99 and Fig. S3.

10 The final dataset comprises 5.5 million ligand-protein pairs, significantly larger than any existing protein-ligand
101 complex structure dataset.

12 The ProFSA pretraining objective is also a batch softmax loss, where the Uni-Mol molecular encoder is used for
10s  the pseudo-ligands. During the training, the weights of the molecular encoder are frozen. This setup allows us
104 to distill knowledge from the pretrained molecular encoder into the pocket encoder, enhancing its ability to learn
105 interaction-aware representations of protein pockets. During the pretraining phase, the batch size is 4 x 48 on 4
16 NVIDIA A100 GPUs. We use the Adam optimizer with a learning rate of 0.0001. The max training epochs is 100.
107 We use polynomial decay for the learning rate with a warmup ratio of 0.06.

108 The fine-tuning process of DrugCLIP

e We use ligand-receptor complex data from the BioLip2 [29] database, removing redundant entries (proteins with
1o a sequence identity > 90% and binding to the same ligand) and cleaning the dataset to obtain around 43,980

11 high-quality protein-ligand complexes (a list of all PDB IDs in the training set is included the Supplementary
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Materials 1). The binding pocket for each protein is defined as the set of residues with at least one atom within 6 A
of any ligand atom. During training, we use ligand conformations sampled by RDKit rather than their co-crystal
conformations to minimize the discrepancy between training and actual virtual screening conditions, as the true
conformations of candidate molecules are unknown during screening. This approach reflects the practical scenario
of virtual screening, where true crystal conformations are typically unavailable for large compound libraries. To
enhance model robustness, we apply a data augmentation strategy by generating up to 10 conformations per molecule.
In each training epoch, one conformation is randomly selected, allowing the model to learn from structural variability
and generalize better across different conformations.

We use an ensemble model for most applications unless stated otherwise, including wet-lab validations with the NET
and TRIP12 target and the final genome-wide virtual screening. These applications follow a 6-fold cross-validation
strategy: the dataset is split into six folds, and the model is trained on five while validated on the remaining fold in
each iteration.

For the SHT,4R target, we adopt an 8-fold cross-validation strategy and apply data augmentation techniques,
including HomoAug and ligand augmentation using the ChEMBL dataset [30], following the DrugCLIP method
[31].

We train the model with a batch size of 48 on 4 NVIDIA A100 GPUs. The optimizer is Adam with a learning rate of
le-3. adam betas are 0.9 and 0.999, adam eps is le-8. The max epochs is set to be 200. We use polynomial decay

for the learning rate and the warm-up ratio is 0.06.

Ensembling multiple pockets and models during screening

As described above, we obtain six model weights through 6-fold cross-validation. During virtual screening, these
six model weights are used to generate six different predictions, which are then combined using mean pooling to
achieve a robust virtual screening result.

During virtual screening, a target of interest may have multiple pocket conformations. For any candidate molecule,
we use a max pooling approach to determine the maximum score between the molecule and the different pockets.
However, because different pockets may have varying score ranges, this can introduce bias when applying max
pooling. To address this, we normalize the scores using an adjusted robust z-score before performing the max

pooling. Specifically, for a list of scores X:

x; — Median(X)

Adjusted Robust Z-Score = MAD(X) s )
0.675
MAD(X) = Median(|x; — Median(X)|). 5)

In silico validation with DUD-E and LIT-PCBA dataset

The DUD-E (Directory of Useful Decoys: Enhanced) dataset [32] is a widely used resource in drug discovery
research, particularly for evaluating the performance of virtual screening methods. It includes data on 102 protein
targets with 22,886 active compounds known to bind to these proteins, along with a set of decoy molecules that are
similar in physical properties but different in structure from the active compounds.

LIT-PCBA [33] is a benchmark dataset derived from the PubChem BioAssay database, designed for evaluating
machine learning models in virtual screening and drug discovery. In the LIT-PCBA dataset, actives and decoys are
defined based on experimental results from the PubChem BioAssay database. The dataset contains approximately
1.5 million compounds across 15 targets.

For the DUD-E and LIT-PCBA benchmarks, we use a single (non-ensemble) model trained on datasets filtered at
90% sequence identity using MMseqs2 [34]. In the homology removal test on the DUD-E benchmark, a single
model is trained and evaluated on datasets filtered at 30%, 60%, and 90% identity via MMseqs2. The most stringent
homology removal is performed using HMMER [35, 36] and the Pfam database [37]. As for ligand novelty analysis,
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we excluded training samples that their molecules are similar to any active molecules in the DUD-E test set by
ECFP4 (Morgan2 by RDK:it) similarity at cut-offs of 30%, 60% and 90%. For the strictest test, we remove all
training samples that share the same generic Murcko scaffold as active molecules in DUD-E (indicated by 0%
similarity in Fig. 2C.

For each target in the DUD-E or LIT-PCBA dataset, we rank candidate molecules (including both actives and decoys)
based on their cosine similarity score. This score is calculated between the encoded embeddings of the pocket and
molecule using the DrugCLIP model. The Enrichment Factor (EF) is then calculated to evaluate the ability of the
model to prioritize active compounds over decoys. EF quantifies how many more actives are retrieved within the

top-ranked subset than would be expected by random chance. It is typically defined as:

NTB,

EFy = ———,
NTB; x a

Q)

where NTB,, is the number of true active compounds (True Binders) identified within the top « fraction of the
screened list. NTB; is the total number of true active compounds in the entire dataset. « is the fraction of the dataset
considered. In this manuscript, we use @ = 1%, denoted as EF1%.

EF is closely related to the concept of recall capacity in the early retrieval stage. Specifically, recall at the top @
_ NTB,

fraction is defined as Recall,, = NTE. - Substituting this into the EF formula yields:
EF, = Recalla.
a

This shows that EF,, is essentially a normalized form of early recall, indicating how much better the model performs
compared to random selection. A higher EF implies a stronger early recall capacity — the ability to identify true
actives within the top-ranked results when only a small portion of the dataset is considered.

Molecule selection for wet-lab experiments of SHT>4R, NET and TRIP12

In general, for each target, DrugCLIP automatically enriches 1% to 2% molecules of the given chemical library.
Around 200 chemically diversified molecules were picked from the top-ranked molecules by human experts, with the
aid of clustering software and fingerprints like MACCS or ECFP. Glide docking will be performed on at most these
picked diversity sets, and all molecules with docking scores lower than -6 will be manually examined. Based on the
chemical structures, docking poses, and docking scores, around 100 molecules will be ordered from the chemical
supplier. Additional physical property filters and novelty filters will be applied if necessary.

The virtual screening for SHT,4R utilizes experimentally determined structures including 6A93, 6A94 [38], 6WGT,
6WH4, 6WHA [39], 7RAN [40], 7VOD, 7VOE [41], TWC4, TWCS5, TWC6, TWC7, TWCS, TWC9 [42]. As for
NET, structures used for virtual screening include SHFE, 8HFF, 8HFG, 8HFI, S8HFL, 813V [43], where 8HFE is
modified to ligand-bound complex structures using human serotonin transporter structures as templates [44, 45].
For SHT;AR, the top 2% molecules are extracted, and for NET, the top 1% molecules are extracted. Then, simple
drug-likeness filters are applied, with a molecular weight threshold of 550 and a QED [46] threshold of 0.5. The
novelty filter excludes molecules that have large ECFP4 similarities to known actives. Known actives are obtained
from the ChHEMBL database [30], and defined as molecules with a pChEMBEL value > 5, or comments like "active".
The ECFP4 similarity thresholds are set to 0.45 and 0.35 for SHT,5R and NET, respectively.

There is no available experimental structure and active molecules for the HETC domain of TRIP12. The GenPack-
generated pockets are used for DrugCLIP virtual screening, and they are downloaded from our website (pocket 1,
https://drug-the-whole-genome.yanyanlan.com/drug/Q14669). An updated version of ChemDiv chemical collections
was prefiltered with a similar set of rules as Table S15. No additional property and novelty filter is applied outside
the standard procedure.

All molecules used in these experiments are from chemical collections of ChemDiv, Inc. (https://www.chemdiv.com/),

and chemicals are purchased from the TopScience (Tao Shu) Company.
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Functional assays of SHT,AR

The primary screening was conducted via calcium flux assays. All molecules were dissolved in DMSO at 10mM,
including the positive control IHCH-7079 [42] and the negative control Risperidone. Calcium flux assays in the
agonist mode were conducted by Pharmaron, Beijing, China.

Briefly, Flp-In-CHO-5HT2A cells used in the experiment were cultured in complete medium composed of Ham’s
F-12K (Hyclone, SH30526.01), 10% FBS (Gibco, 10999141), Penicillin-Streptomycin (Gibco, 15140122), and
Hygromycin B (Invivogen, ant-hg-5) at a final concentration of 600 pg/mL. The cells were maintained under standard
conditions at 37°C with 5% CO; to ensure optimal cell density. On the first day of the experiment, the cultured cells
were centrifuged and resuspended in an antibiotic-free medium consisting of Ham’s F-12K (Hyclone, SH30526.01)
and 10% DFBS (ThermoFisher Scientific, 30067334). Approximately 7,000 cells per well were then seeded into
384-well plates (Corning, 3764) and incubated overnight. The following day, the medium in the 384-well plates was
removed, and the cells were thoroughly washed with an assay buffer composed of Hank’s Balanced Salt Solution
(HBSS) (Gibco, 14025076) supplemented with 20 mM HEPES (Gibco, 15630080). After washing, 20 pL of assay
buffer was left in each well. The 20x Component A from the FLIPR Calcium 6 Assay Kit (Molecular Devices,
R8191) was diluted to 2x, and 5 mM probenecid was added. A 20 pL aliquot of this dilution was then added to each
well, and the plate was incubated at 37°C for 2 hours. Subsequently, 5x concentrated test solutions of the compounds
of interest and a serotonin reference solution were prepared. Using the FLIPR Tetra (Molecular Devices) system, 10
pL of each test compound solution was transferred to the respective wells of the 384-well plate, and the assay results
were recorded. Calcium flux assays were repeated three times and recorded relative values were averaged.
Primary hits were defined as molecules that induced > 10% response of the 5-HT reference. These molecules
were then verified with radio-ligand comparative binding assays, which were conducted by WuXi Biology. First,
SHT2A-HEK?293 cells were cultured, and the cell membranes were harvested to serve as the source of SHT4R
protein, hereafter referred to as the membrane solution, at a concentration of 2.55 mg/mL. According to the
experimental design, the test compounds and the reference compound, ketanserin (Sigma-S006), were diluted and 1
pL of each was added to the respective reaction wells. Following this, 100 pL of the membrane solution was added
to each well. Next, 100 pL of 3H-ketanserin was added to each well to achieve a final concentration of 1 nM. The
plates were then sealed and incubated on a shaker at 300 rpm for 1 hour at room temperature. After incubation,
50 pL of 0.3% PEI (Sigma, P3143) solution was added to the Unifilter-96 GF/B filter plates (Perkin Elmer) and
incubated for 30 minutes at room temperature. The reaction mixture from each well was then transferred to the filter
plates, followed by filtration using a Perkin Elmer Filtermate Harvester. The wells were washed four times with 50
mM Tris-HCI buffer. Subsequently, the filter plates were dried at 50°C for 1 hour. Once dried, the filter plates were
sealed at the bottom using Unifilter-96 backing tape (Perkin Elmer), and 50 pL of Microscint 20 cocktail (Perkin
Elmer, 6013329) was added to each well. Finally, the top of the plates was sealed with TopSeal-A film (Perkin
Elmer). The prepared plates were then placed in a MicroBeta2 Reader (Perkin Elmer) for counting. Radio-ligand
comparative binding assays were replicated twice.

Molecules that showed adequate affinities to SHT,AR were further tested with NanoBit assays measuring the
recruitment of the p-arrestin2 protein. NanoBit assays were also conducted by Wuxi Biology. On the first day of
the experiment, cultured SHT2A-HEK293 cells were collected. The HEK293 cells were first washed with DPBS
solution and then treated with an appropriate amount of 0.25% trypsin-EDTA solution for 5 minutes at 37°C. After
digestion, the reaction was quenched by adding an appropriate amount of complete medium, and the mixture was
gently mixed. The cells were then centrifuged at 1000 rpm at room temperature to collect the cell pellet. The cells
were resuspended to a concentration of 750,000 cells/mL. A 40 pL aliquot of the cell suspension was added to each
well of a 384-well plate (Greiner, 781090) and incubated overnight. On the following day, 5 pL of appropriately
diluted test samples and control samples were added to each well, followed by the addition of diluted NanoBit
assay solution (Promega, N2012). The reaction mixture was incubated at 37°C for 30 minutes. After incubation,

the experimental data were read using the Envision2104 (PerkinElmer, 2814243) system. NanoBit assays were
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replicated twice.

All IC5p and K, values were fitted with GraphPad Prism.

For structural analysis of hit molecules, molecules are docked to 7WC8 [42] with Glide-SP, and a template of OLC
is used for V008-4481 with a RMSD tolerance of 5 A

Functional assays of NET

Cells used for NET functional assays included Escherichia coli and HEK293F. The Escherichia coli strain DH5a
was cultured in LB medium (Sigma) at 37 °C to generate and amplify plasmids for NET. Mammalian HEK293F
cells were maintained in SMM 293-TII medium (Sino Biological) at 37°C with 5% CO2 for protein expression.
The full-length human wild-type NET cDNA (UniProt ID: P23975) was inserted into the pCAG vector using the
Kpnl and Xhol restriction sites, with an N-terminal FLAG tag. NET overexpression was achieved in HEK293F
cells. For transfection, 2 mg of plasmid DNA and 4 mg of polyethylenimine (Polysciences) were pre-incubated
in 50 ml of fresh SMM 293-TII medium for 15 minutes before being added to one liter of HEK293F cells at a
density of 2.0 x 100 cells/ml. After 48 hours of shaking at 37°C, 5% CO2, and 220 rpm, the cells were collected via
centrifugation, resuspended in lysis buffer (20 mM Tris-HCI pH 8.0, 150 mM NaCl), frozen in liquid nitrogen, and
stored at -80°C for later use.

For protein purification, the thawed cell pellet was solubilized in lysis buffer containing protease inhibitors (5 pg/ml
aprotinin, 1 pg/ml pepstatin, 5 pg/ml leupeptin; Amresco) and 2% (w/v) DDM (Anatrace) at 4°C for 2 hours,
followed by centrifugation at 20,000 g at 4°C for 1 hour. The resulting supernatant was applied to anti-FLAG M2
resin (Sigma), which was washed with 15 column volumes (CV) of buffer (20 mM Tris-HCI pH 8.0, 150 mM NacCl,
0.02% (w/v) DDM). The protein was eluted with 6 CV of the wash buffer containing 0.4 mg/ml FLAG peptide at
4°C. The eluted protein was concentrated and further purified by size-exclusion chromatography using a Superose
6 Increase 10/300 GL column (GE Healthcare) in buffer (20 mM Tris-HCI pH 8.0, 150 mM NaCl, 0.02% (w/v)
DDM). The peak fractions were collected and concentrated for subsequent experiments.

Then, purified NET protein was reconstructed into liposomes to form proteoliposomes. The E. coli polar lipid
extract (Avanti), with 20% (wt %) cholesterol added, was resuspended to 20 mg/ml in buffer A (25 mM HEPES pH
7.4, 150 mM KCI). This mixture underwent ten freeze-thaw cycles using liquid nitrogen and was then extruded 21
times through 0.4 pm polycarbonate membranes (GE Healthcare). The resulting liposomes were pre-treated with
1% n-octyl-p-D-glucoside (f-OG; Anatrace) for 30 minutes at 4°C. They were then incubated with 200 pg/ml of
purified NET protein (wild-type or mutants) for 1 hour at 4°C. To remove the detergents, the mixture was treated
overnight with 250 mg/ml Bio-Beads SM2 (Bio-Rad) at 4°C, followed by an additional 1-hour incubation with 100
mg/ml Bio-Beads SM2. After five more freeze-thaw cycles and 21 additional extrusion passes, the proteoliposomes
were collected by ultracentrifugation at 100,000 g for 1 hour at 4°C, washed twice, and resuspended to 100 mg/ml in
buffer A for the subsequent uptake assay.

Each uptake assay was conducted by adding 2 pl of proteoliposomes to 96.5 pl of buffer B (25 mM HEPES pH
7.4, 150 mM NaCl) along with 0.5 pl (0.5 pCi, 12.3 Ci/mmol) of Levo-[7-3H]-Norepinephrine and 1 pl of 50
pM valinomycin. To assess the single-point inhibitory activity of the screened small molecules, proteoliposomes
were incubated with these compounds, while Desipramine and Bupropion were used as positive controls for NET
inhibition. All inhibitors were added at a concentration of 1 pM in a volume of 1 pl. The uptake of the radiolabeled
substrates was halted after 60 seconds by rapidly filtering the solution through 0.22 pm GSTF filters (Millipore)
and washing with 2.5 ml of ice-cold buffer B. Filters were then incubated with 0.5 ml of Optiphase HISAFE 3
(PerkinElmer) overnight, and radioactivity was measured using a MicroBeta2® Microplate Counter (PerkinElmer).
For ICs( determination of antidepressants, proteoliposomes were pre-incubated with varying concentrations of the
drugs for 30 minutes before the addition of isotope-labeled substrates. ICs( values were calculated using GraphPad

Prism 8, applying non-linear regression to fit the data to the equation:

_ 100
" 1 + 10UogICso~X)-HillSlope ’

@)
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with option: ‘log(inhibitor) vs. normalized response—Variable slope’. X represents the log of the inhibitor
concentration, Y represents the normalized response (ranging from 100% to 0%), and HillSlope starts with an initial
value of -1.

All experiments were conducted in triplicate using biologically independent samples. Data were normalized to
the wild-type protein to express values relative to 100%. Non-specific binding was accounted for by using control

liposomes without protein insertion, ensuring that only specific interactions were measured.

Synthesis of 0086-0043 and Y510-9709

Both molecules were synthesized by Bellen Chemistry Company.

For Y510-9709 (5-(4-chlorophenyl)-2,3-dihydrothiazolo[2,3-b]thiazol-4-ium bromide), first synthesize compound
2 (1-(4-chlorophenyl)-2-((4,5-dihydrothiazol-2-yl)thio)ethan-1-one). To a solution of compound 1 (2-bromo-1-
(4-chlorophenyl)ethan-1-one) (10.0 g, 42.8 mol, 1.0 eq) and thiazolidine-2-thione (5.1 g, 42.8 mmol, 1.0 eq) in
EtOH (150 mL) and DMF (50 mL) was added TEA (4.3 g, 42.8 mol, 1.0 eq). The reaction mixture was stirred at
room temperature for 2 h. HPLC showed no compound 1 remained. The reaction mixture was poured into crushed
ice and filtered to give compound 2 (9.6 g, 82.5%) as a yellow solid. 1H NMR (300 MHz, CDCI3): & ppm 8.00 —
7.90 (m, 2H), 7.50 — 7.40 (m, 2H), 4.62 (s, 2H), 4.17 (t, J = 8.1 Hz, 2H), 3.43 (t, ] = 7.8 Hz, 2H). LCMS: 272.0
(IM+H]+).

Then, The solution of compound 2 (2.5 g, 9.2 mmol, 1.0 eq) in 30% HBr in AcOH (25 mL) was stirred at 120
°C for 3 h. TLC and HPLC showed no compound2 remained. The reaction was allowed to be cooled to room
temperature and concentrated in vacuo to give the residue, which was triturated with MeOH (7.5 mL) and filtered to
give Y510-9709 (1.1 g, 35.7%) as an off-white solid. 1H NMR (400 MHz, DMSO-d6): & ppm 7.90 (s, 1H), 7.68 (s,
4H), 4.70 (t, J = 8.0 Hz, 2H), 4.10 (t, J = 8.4 Hz, 2H). LCMS: 254.0 ([M-Br]+).

For 0086-0043( 2-(2-oxo-2-phenylethyl)isoquinolin-2-ium chloride), The solution of 2-chloro-1-phenylethan-1-
one (2.0 g, 12.9 mol, 1.0 eq) and isoquinoline (1.7 g, 12.9 mmol, 1.0 eq) in ACN (12 mL) was stirred at room
temperature for 16 h. HPLC showed no 2-chloro-1-phenylethan-1-one remained. The reaction mixture was filtered
to give 0086-0043 (1.3 g, 35.4%) as an off-white solid. 1H NMR (400 MHz, DMSO-d6): & ppm 10.06 (s, 1H), 8.76
(d,J=6.8 Hz, 1H), 8.69 (d, ] = 6.8 Hz, 1H), 8.56 (d, J = 8.4 Hz, 1H), 8.43 (d, J = 8.4 Hz, 1H), 8.39 — 8.28 (m, 1H),
8.20 — 8.04 (m, 3H), 7.81 (t,J = 7.6 Hz, 1H), 7.69 (t, J = 7.6 Hz, 2H), 6.66 (s, 2H). LCMS: 248.1 ([M-Cl1]+).

The structure determination of NET and its inhibitors

For cryo-EM samples, 4pl purified NET protein was applied to glow-discharged Quantifoil holey carbon grids
(Quantifoil Au R1.2/1.3, 300 mesh). Protein was concentrated to approximately 10 mg/ml and separately incubated
with 2 mM Y510-9709 or 0086-0043 for 30 min before freezing. After applying the protein, the grids were blotted
for 3 s with 100% humidity at 4 °C and plunge frozen in liquid ethane cooled by liquid nitrogen with Vitrobot (Mark
1V, Thermo Fisher Scientific).

Cryo-EM data were collected on a 300 kV Titan Krios G3i equipped with a Gatan K3 detector and a GIF Quantum
energy filter (slit width 20 eV). The defocus values ranged from -1.5 to -2.0 pm. Each stack of 32 frames was
exposed for 2.56 s, and the exposure time of each frame was 0.08 s. The micrographs were automatically collected
with AutoEMation program [47] in super-resolution counting mode with a binned pixel size of 1.083 A. The total
dose of each stack was about 50 e"/A2. All 32 frames in each stack were aligned and summed using the whole-image
motion correction program MotionCor2 [48].

All dose-weighted micrographs were manually inspected and imported into cryoSPARC [49]. Micrographs with an
estimated CTF resolution worse than 4 A were excluded during exposure curation. CTF parameters were estimated
using patch-CTF. They were used for initial good templates generation via 2D classification. Initial good templates
were generated via 2D classification, using the previously reported NET structure [50] (NET-DSP, PDB code:
8FHI) as a reference. The Template Picker tool was used for all particle picking tasks. For the NET_Y510-9709 and
NET_0086-0043 datasets, 3,204,486 and 9,008,886 particles were extracted from 2,918 and 4,687 micrographs,
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respectively. Particles were initially extracted with a box size of 192 and then cropped to 128 to speed up calculations.
The initial good reference for 3D classification was derived from the NET-DSP dataset, while bad references were
generated using the graphical user interface (GUI) of UCSF ChimeraX [51]. Global pose estimation was performed
using Non-uniform refinement, followed by local refinement for the first round of local pose assignment. A second
round of local pose estimation was conducted using 3D classification (without image alignment), followed by another
round of local refinement (Fig.S8). This process yielded 507,444 and 506,286 particles representing the inward-open
conformation, resulting in resolutions of 2.87 A for NET_Y510-9709 and 2.98 A for NET_0086-0043, respectively.
The atomic coordinates of NET in the presence of Y510-9709 or 0086-0043 have been deposited in the Protein Data
Bank (http://www.rcsb.org) under accession codes 9JEL and 9JF3. The corresponding electron microscopy maps
are available in the Electron Microscopy Data Bank (https://www.ebi.ac.uk/pdbe/emdb/) under accession codes
EMD-61420 and EMD-61426.

The training and inference of the GenPack generative model

We have developed a GenPack model that operates within a continuous parameter space, incorporating a noise-
reduced sampling strategy inspired by MOLCRAFT [52]. Unlike full-atom approaches, our method focuses solely
on the given backbone atoms to minimize the impact of potential structural variations between apo and holo states of
the proteins. We meticulously curate a dataset comprising 14,616 protein-ligand pairs from the PDBbind database,
which we divide into a training set of 13,137 pairs and a validation set of 1,479 pairs (Supplementary Materials 3).
Additionally, we use 101 protein-ligand pairs from the DUD-E database as our test set. To prevent data leakage, we
excluded all proteins from the training and validation sets that share a FLAPP similarity score greater than 0.9 with
any target in the test set. FLAPP [53] is a tool used to estimate the structural similarity (alignment rate) between
two pockets. Pockets are defined by extracting backbone atoms within a 10 A radius of the ligands. The training
is conducted on a single NVIDIA A100 GPU with a learning rate of 5e-4 for 60 epochs, resulting in our pocket
location optimization model.

During inference, Fpocket [54] is initially employed to detect pockets approximately 10 A in size, after which our
SBDD model generates potential ligand molecules conditioned on backbone atoms only. Subsequently, side-chain
atoms are introduced to the complex structure, and the complex structures are relaxed with Prime software in the
Schrodinger Suite. The protein residues with at least one heavy atom within a 6 A radius of the generated ligands
are selected as the final pocket region. This approach ensures a focus on critical interactions within the binding site

while reducing noise and irrelevant structures, thereby facilitating accurate pocket detection.

Evaluating the effectiveness of GenPack model

To evaluate the effectiveness of the GenPack model, we conducted experiment on the targets of DUD-E.

We conducted two types of experiments to evaluate the effectiveness of the GenPack algorithm in refining protein
structures.

In the first experiment, we utilized AlphaFold-predicted structures of protein targets, optimized using GenPack, to
perform virtual screening against the DUD-E dataset. The screening performance was assessed using the Enrichment
Factor (EF) metric. We identified AlphaFold2 (AF2) structures corresponding to the UniProt entries of DUD-E
targets in the AlphaFold database, yielding a total of 96 targets. For the GenPack results, five conformations were
sampled for each target, and the best-performing conformation was selected for evaluation. The detailed results are
provided in Table S11.

Additionally, we evaluated the performance of GenPack on apo structures. The corresponding results are also
presented in Table S10. The apo structures were obtained from a previous research [22] and encompass 27 protein
targets included in the DUD-E dataset.

In the second experiment, we assessed the structural accuracy of GenPack-refined proteins through redocking.
Specifically, we docked the original ligand back into the GenPack-generated protein structure and measured the

Root-Mean-Square Deviation (RMSD) between the redocked and the original ligand conformations. Results
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presented in Table S12 and S13. For pockets without GenPack optimization, five docking poses were generated, and
the best one was selected. For GenPack-optimized pockets, five pocket conformations were generated; for each
conformation, only a single docking pose was used. The best result among these five pocket conformations was then
selected.

We also measure the correlation of the pockets localization, sidechain accuracy and docking or virtual screening
effects, shown in Fig. S10. We show in Fig. S10A the impact of the GenPack method on pocket localization
performance, measured by Intersection over Union (IoU), and on virtual screening effectiveness compared to holo
structure. Pocket localization ability is assessed by the IoU between the predicted pocket and the corresponding holo
pocket. Here, the virtual screening metric EF1% represents the reduction in enrichment factor when using Fpocket
prediction of AlphaFold structures relative to holo structures. As the IoU with the holo structure increases, the
reduction in EF1% correspondingly decreases. The GenPack method enables Fpocket results more spatially aligned
with the holo pockets, thereby narrowing the performance gap in EF1%.

Fig. S10B illustrates the relationship between side-chain RMSD of the predicted pocket and the reduction in EF1%.
The observed p-value is relatively large, suggesting that the correlation is not statistically significant within the
DUD-E dataset. Moreover, the GenPack method does not substantially alter the distribution of side-chain RMSD
between Fpocket-predicted pockets and their corresponding holo pockets.

Fig. S10C and D examine the relationship between structural pocket accuracy and Glide-SP docking performance,
as measured by ligand RMSD. In Fig. S10C, the correlation between pocket IoU (with respect to holo pockets) and
docking accuracy is evaluated, with both docking grid centers and pocket definitions obtained through structural
alignment. The results suggest no significant difference in ligand docking pose RMSD as a function of pocket
localization accuracy. Similarly, Fig. S10D investigates the impact of side-chain RMSD of the predicted pocket
(relative to the holo structure) on docking accuracy. The analysis reveals no evident correlation between ligand
RMSD and variations in side-chain conformations, indicating that deviations in side-chain positioning have minimal
effect on docking pose accuracy.

Protein expression and purification of TRIP12

The plasmid encoding human TRIP12 (442-1992) gene was cloned into the pGEX-4T-1 vector, which was fused
with an N-terminal GST tag followed by an HRV 3C protease cleavage site. This construct was synthesized and
optimized for Escherichia coli overexpression by GenScript (Nanjing, China).

The recombinant plasmid was transformed into BL21 (DE3) cells and then cultured in Luria Broth media containing
50 png/mL ampicillin at 37°C. When the optical density of the culture reached 0.6-0.8, protein expression was
induced by adding 0.4 mM IPTG at 16°C. After overnight incubation, cells were harvested by centrifugation at
5000 x g for 30 min at 4°C and resuspended in the lysis buffer (50 mM HEPES, 150 mM NaCl, pH 7.5). Cells were
then lysed by ultrasonication and the lysate was centrifuged at 12500 x g for 30 min at 4°C to remove precipitates.
The supernatant was applied to Glutathione beads for 2 h at 4°C, and target proteins fused with GST tag were eluted
with elution buffer (50 mM HEPES, 150 mM NaCl, 30 mM Glutathione, pH 7.5). After removing the GST tag with
HRYV 3C protease, proteins were further purified with ion exchange chromatography (HiTrap Heparin column, GE

Healthcare) followed by size exclusion chromatography (Superdex 6 Increase column, GE Healthcare).

Surface Plasmon Resonance (SPR) analysis

Surface plasmon resonance experiments were performed using a Biacore 8k (Cytiva) at 25°C. TRIP12 was
immobilized on a CM7 sensor chip (Cytiva) using standard amine coupling chemistry. Briefly, the carboxymethylated
dextran surface was activated with a 1:1 mixture of 0.4 M EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide)
and 0.1 M NHS (N-hydroxysuccinimide) for 420 s. The protein (50 pg/mL in 10 mM sodium acetate, pH 4.0) was
then injected over the activated surface until reaching approximately 12000 response units (RU). Remaining activated
groups were blocked with 1 M ethanolamine-HCI (pH 8.5). A reference flow cell was prepared by activating and

blocking the surface without protein immobilization.
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Compounds were dissolved in DMSO and diluted in running buffer (PBS pH 7.4, containing 0.05% Tween-20 and
2% DMSO) to maintain a constant DMSO concentration. To account for bulk refractive index changes caused by
DMSO, solvent correction was performed using a series of running buffer containing four DMSO concentrations
ranging from 0.5% to 4%. Concentration ranges were adjusted for each compound to enable accurate determination
of K4 values. Different compounds required different concentration series depending on their binding characteristics.
A serial dilution series of each compound was injected over the immobilized protein and reference surfaces at a flow
rate of 30 pL/min.

In the screening experiments, single-cycle kinetics was employed with a series of increasing compound concentrations
injected sequentially with a contact time of 120 s followed by a 240 s dissociation phase after the final injection.
For affinity validation experiments, multi-cycle kinetics was performed where each compound concentration was
injected individually with a contact time of 120 s and a dissociation time of 200 s before regeneration of the sensor
surface. After solvent correction was performed, sensorgrams were referenced by subtracting both reference flow
cell and blank buffer injection responses. For both single-cycle and multi-cycle kinetic experiments, steady-state
binding responses were fitted to a 1:1 binding model using Biacore Evaluation Software to determine the equilibrium

dissociation constant (Ky).

Determine the enzyme activity of TRIP12 with the in vitro ubiquitination assay

In vitro ubiquitination assays were performed with a specific K48diUbP™*¥2% substrate, as previously described

[55]. In brief, 0.5 pM Ubal, 4 nM Ubch7, 0.25 pM TRIP12, 2 nM fluorescent K48-linked diUb with lysine to
arginine mutation at the distal LYS29 site and keeping the proximal LYS29 unchanged (named K48diUbProx-K29),
80 utM WT Ub, and either varying concentrations of E599-0223 or G935-3912 (dissolved in DMSO) or DMSO
alone (as control) were mixed at 37°C for 2 minutes in the reaction buffer (50 mM HEPES, pH 7.5, 150 mM NaCl,
10 mM MgCl,, and 5 mM ATP). The reaction was terminated with 4x SDS sample buffer with DTT, and analyzed
by SDS-PAGE followed by fluorescence imaging and Coomassie Brilliant Blue dye (Bio-Rad).

E1~Ub and E2~Ub thioester formation assay with fluorescent Ub

The conditions for the E1~Ub thioester formation assay are as follows: 0.5 pM Ubal, 10 nM fluorescent Ub, and
either 400 pM E599-0223 or G935-3912 dissolved in DMSO (or DMSO alone as control) were mixed at 37°C for
5 minutes in the reaction buffer (50 mM HEPES, pH 7.5, 150 mM NaCl, 10 mM MgCl,, and 5 mM ATP). The
reaction was terminated with 4x SDS sample buffer, with or without DTT, and analyzed by SDS-PAGE followed
by fluorescence imaging and Coomassie Brilliant Blue dye (Bio-Rad). The E2~Ub thioester formation assay was

performed under the same conditions, except that 5 pM Ubch7 was additionally included in the reaction.

Pocket Detection for all AlphaFold2 predicted human proteins

The AlphaFold DB [56, 57] contains predicted structures for 20,504 human proteins identified by UniProt accessions.
Among these, 208 proteins are larger than 2500 amino acids (AAs), and their Pairwise Alignment Error (PAE)
cannot be accessed through the official website. Consequently, only 20,296 proteins are used for pocket detection.
Not all AlphaFold2 predictions are accurate. Two types of inaccuracies can be avoided by examining the pPLDDT
and PAE scores. First, we remove all residues with a pLDDT score below 50. The remaining structures exhibit high
local accuracy, but the interactions between protein domains may still be incorrect. To address this, the PAE is
symmetrized and used as precomputed metrics for agglomerative clustering. The average linkage method is applied,
and the PAE threshold for clustering is set at 15 A. Each cluster is then regarded as a confidently predicted protein
super-domain, and protein fragments shorter than 10 AAs are removed to ensure stability during refinement. From
the 20,296 proteins, we have identified 24,692 super-domains, covering 17,188 proteins (69.6%).

For each super-domain, we utilize two methods to detect potential pockets. First, we implement a template-based
structural alignment approach. Each super-domain is aligned with proteins from the PDBbind database [26, 27].

When a local structure of the super-domain exhibited high structural similarity to a known pocket from PDBbind, it
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is considered a likely pocket. Specifically, TM-align [58] is used for structural alignment, with a TM-score threshold
of 0.6 to ensure significant overall similarity. The corresponding ligands from PDBbind are mapped to the identified
pocket location in the super-domain using a rotation matrix, thereby confirming the pocket. We then calculate the
local alignment IoU (intersection over union) for the pocket, defined as the ratio of the number of aligned amino
acids in the pocket to the number of the union of amino acids in both the super-domain and the PDBbind protein
pockets. Alignments with an IoU exceeding 0.6 are retained. Since all super-domains are single-chain proteins, only
proteins from PDBbind with single-chain pockets are used for template matching. We also exclude ligand-receptor
pairs from the PDBbind database where the ligand contains more than 800 atoms. In addition to the approach above,
for each super-domain, Fpocket software [54] is used for pocket detection. However, the accuracy of pocket detection
using Fpocket alone is limited, and the side-chain conformation of the apo pocket is not suitable for molecular
docking. To address this, we adopt the proposed GenPack method to refine the pocket.

The chemical library for the genome-wide virtual screening

ZINC database is pre-filtered by anodyne reactivity and lead-like properties (molecular weight is no less than 200
and up to 500, logP is up to 5). The resulting subset contains 2,782 tranches, and over 609 million protomers are
downloaded from ZINC20 [59]. Enamine REAL database is downloaded from VirtualFlow [60] in the format of
PDBQT. The whole database contains 46570 tranches, over 1337 million protomers. Both databases are filtered by
cutoff rules for molecular properties calculated from SMILES and structural alert patterns using RDKit. Molecules
of properties meeting the rules in Table S15 are kept for subsequential research. For ZINC, SMILES strings are
matched to 3D structures in PDBQT by ZINC id. For REAL, SMILES strings are first extracted from remarks in
PDBQT files; if errors like syntax errors due to the letter ’q” in SMILES occurred, they are then converted from
PDBQT structures via Open Babel. A regular expression filter is applied to REAL to exclude PDBQT files with
overflowed atom coordinate digits.

The genome-wide virtual screening

All pockets and molecules are pre-encoded with DrugCLIP models. Then cosine similarities of their embeddings
are calculated with Pytorch [61] with 8 A100 GPUs. Then, scores from 6 models and multiple pocket replicas are
ensembled as discussed previously. The top 100,000 molecules for each pocket are obtained, and clustered into
around 100 clusters with an ECFP4 cut-off of 0.15. Finally, the remaining molecules are docked to the pocket replica
with the highest fitness with Glide-SP software from the Schrodinger Suite. Only molecules with a DrugCLIP

Zscore > 4 and Glide Score < -6 are included in the final database.
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Fig. S2. The joint distributions of pocket size and ligand size are examined for the PDBBind dataset, our ProFSA
dataset before applying stratified sampling, and the ProFSA dataset after stratified sampling.
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Fig. S3. Comparisons between the ProFSA dataset and the PDBBind dataset are made based on the distributions of
relative Binding Surface Area (rBSA) for ligand-pocket pairs
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Fig. S4. Wet-lab validations of DrugCLIP with SHT,sR. The screening results of 78 DrugCLIP identified
molecules using calcium flux assays for SHT,4R agonist at a concentration of 10 pM. Eight molecules showed
signals larger than 10%. Orange color indicates positive controls, and green color indicates hit molecules.
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Fig. S5. Primary hit molecules of SHT,4R and the known actives with the largest similarity scores. All similarity
scores were calculated with Canvas software from the Schrodinger Suite with the ECFP4 fingerprint.
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Fig. S6. Dosage response curves of primary hits of SHT2aR in radio-ligand competitive binding assays and NanoBit
assays.
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Fig. S7. Primary hit molecules of NET and the known actives with the largest similarity scores. All similarity
scores were calculated with Canvas software from the Schrodinger Suite with the ECFP4 fingerprint.
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Fig. S8. Data processing of NET datasets. (A-B) Representative micrograph and 2D class averages of NET. (C) The
flowchart for the data processing of NET bound to Y510-9709 or 0086-0043.
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Fig. S9. Cryo-EM analysis of NET datasets. Left panel: NET bound to Y510-9709; Right panel: NET bound to
0086-0043. Various assessments of the cryo-EM reconstruction are presented. These include (A) local resolution
maps; (B) gold-standard Fourier shell correlation (FSC) curves; (C) angular distribution of the particles used for the
final reconstruction.
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Fig. S10. Analysis of the impact of sidechain accuracy and pocket definition on virtual screening and molecular
docking performance. (A) Correlation between pocket IoU compared with holo pockets to EF1% performance
decreases. Green dots indicate samples of Fpocket predictions, while orange dots indicate refined pockets by
GenPack. The curves at the top of the plot represent the marginal distribution of pocket IoU. (B) Correlation
between pocket sidechain RMSD compared with holo pockets to EF1% performance decreases. Green dots indicate
samples of Fpocket predictions, while orange dots indicate refined pockets by GenPack. The curves at the top of the
plot represent the marginal distribution of sidechain RMSD. (C) Correlation between pocket loU compared with
holo pockets to Glide-SP docking accuracy measured by ligand RMSD. Green dots indicate samples using
AlphaFold2 predictions as receptors, while orange dots indicate docking with AlphaFold?2 structures refined by
GenPack. Both docking grid centers and pocket definitions are acquired via structural alignments. The curves at the
top of the plot represent the marginal distribution of pocket IoU. (D) Correlation between pocket sidechain RMSD
compared with holo pockets to Glide-SP docking accuracy measured by ligand RMSD. Green dots indicate samples
using AlphaFold2 predictions as receptors, while orange dots indicate docking with AlphaFold2 structures refined
by GenPack. Both docking grid centers and pocket definitions are acquired via structural alignments. The curves at
the top of the plot represent the marginal distribution of sidechain RMSD.
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Fig. S11. Sensorgrams and steady-state binding curves of the multi-cycle SPR assay for all hit compounds.
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Fig. S12. Measuring inhibitory effects of hit compounds to TRIP12 via fluorescent ubiquitination assay. Gel images
are representative of independent biological replicates (n = 4 for all panels).(A) TRIP12-dependent in vitro
ubiquitination on fluorescent K48-linked diUb with lysine to arginine mutation at the distal LYS29 site and keeping
the proximal LYS29 unchanged (named K48diUbPr*K2%) with E599-0223. (B) TRIP12-dependent in vitro

ubiquitination on K48diUbP™* K29 with G935-3912.
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Fig. S13. E599-0223 and G935-3912 do not inhibit E1 and E2 enzymes. White circles indicate reactions terminated
by SDS, while dark circles indicate reactions terminated by SDS and DTT, which will break thioester bonds. (A) In
vitro E1~UDb thioester assay on fluorescent Ub with E599-0223. (B) In vitro E2~Ub thioester assay on fluorescent
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thioester assay on fluorescent Ub with G935-3912. Gel images are representative of independent biological
replicates (n = 2 for all panels).
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Table S1. Druggability prediction results for pocket pretrining, using the RMSE metric.

Fpocket | Druggability | Total SASA | Hydrophobicity |

. . Uni-Mol  0.1140 0.1001 20.73 1.285
Finetuning
ProFSA 0.1077 0.0934 20.01 1.275
Uni-Mol  0.1419 0.1246 49.00 17.03
Zero-shot
ProFSA 0.1228 0.1106 30.50 13.07
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Table S2. Pocket matching results for pocket pretraining, using the AUC metric.

Methods Kahraman(w/o PO4) T TOUGH-M1 T

. SiteEngine 0.64 0.73
Traditional
IsoMIF 0.75 -
Uni-Mol 0.66 0.76
Zero-shot
ProFSA 0.80 0.82
) i DeeplyTough 0.67 0.91
Finetuning
ProFSA 0.85 0.94
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Table S3. Results on LBA prediction task for pocket pertaining, using pearson and spearman correlation

Method Sequence Identity 30% Sequence Identity 60%
RMSE | PearsonT SpearmanT RMSE | Pearson{ Spearman T

DeepDTA 1.866 0.472 0.471 1.762 0.666 0.663
Sequence B&B 1.985 0.165 0.152 1.891 0.249 0.275
Based TAPE 1.890 0.338 0.286 1.633 0.568 0.571
ProtTrans 1.544 0.438 0.434 1.641 0.595 0.588
HoloProt 1.464 0.509 0.500 1.365 0.749 0.742
Structure ATOM3D-3DCNN  1.416 0.550 0.553 1.621 0.608 0.615
Based ATOM3D-GNN 1.601 0.545 0.533 1.408 0.743 0.743
ProNet 1.463 0.551 0.551 1.343 0.765 0.761

GeoSSL 1.451 0.577 0.572 - - -
Pretraining EGNN-PLM 1.403 0.565 0.544 1.559 0.644 0.646
Based Uni-Mol 1.520 0.558 0.540 1.619 0.645 0.653
ProFSA 1.377 0.628 0.620 1.334 0.764 0.762
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Table S4. Benchmark the performance of DrugCLIP on the DUD-E dataset.

Method

AUCT BEDROCT EF1% ]

Vina [62]
Glide-SP [62]
NNScore [63]
RF-Score [63]
Pafnucy [63]
OnionNet [63]
PLANET [62]
GNINA [64]
DrugCLIP

71.60
76.70
68.30
65.21
63.11
59.71
71.60
76.70
77.42

40.70
12.20
12.41
16.50
8.62

39.86

7.32
16.18
4.02
4.52
3.86
2.84
8.83
20.90
24.61
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Table S5. Benchmark the performance of DrugCLIP on the LIT-PCBA dataset.

Method AUCT BEDROCT EF1% 7
Surflex [65] 51.47 - 2.50
Vina [66] 56.93 3.70 1.71
Glide-SP [62] | 53.57 4.00 3.41
NNScore [66] | 55.70 2.50 1.70
RF-Score [64] | 57.10 - 1.67
Pafnucy [67] - - 5.32
PLANET [62] | 55.58 - 3.28
GNINA [64] 61.00 5.40 4.61
BigBind [68] 59.07 - 3.55
DrugCLIP 59.54 7.29 5.36
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Table S6. DUD-E benchmark results with removal of similar molecules from the training set based on ECFP4
similarities and scaffolds.

Method AUCT BEDROCT EF1% 17
ECFP4 Sim 0.9 | 77.60 39.48 24.08
ECFP4 Sim 0.6 | 79.02 40.82 25.27
ECFP4 Sim 0.3 | 77.61 31.92 19.10
Scaffold 78.10 33.25 19.97
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Table S7. DUD-E benchmark results with removal of homologous targets from the training set based on protein
sequence similarities and protein families.

Method AUCT BEDROCT EF1% 17
90% Identity | 77.31 39.86 24.61
60% Identity | 75.50 32.75 19.57
30% Identity | 73.93 29.71 17.91
0% Identity 69.79 16.37 9.18
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Table S8. The biochemical and cellular parameters of initially screened positive compounds.

B-arr2 NanoBiT
ECs (oM)  Epax (070)

Compound number  K; (nM)

L589-1477 3201.5 961.5 24.9
F344-0441 68.4 65.0 234
8525-0266 - - -

E958-2025 138.5 163.8 14.6
F343-0414 - - -

F670-0198 1224.2 771.2 23.0
V006-3328 3510.6 599.3 234
V008-4481 21.0 60.3 35.8
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Table S9. Cryo-EM data collection, refinement and validation statistics.

Category Y510-9709 0086-0043
Data collection and processing

Magnification 64,000 64,000
Voltage (kV) 300 300
Electron exposure (e /A?) 50 50
Defocus range (um) -1.5t0-2.0 -1.5t0-2.0
Pixel size (A) 1.0825 1.0825
Symmetry imposed C2 C2
Raw movies 2,918 2,687
Particle number 507 k 506 k
Map resolution (A) 2.98 2.87
FSC threshold 0.143 0.143
Map resolution range (A) 40-2.8 40-2.7
Refinement

Protein residues 548 548

Ligand

B factors (A2)
Protein

Ligand

Water

R.m.s. deviations
Bond lengths (A)
Bond angles (°)
Validation
MolProbity score
Clashscore
Ramachandran plot
Favored (%)
Allowed (%)
Disallowed (%)
PDB code
EMDB code

Y510-9709:1 CI-

25.76
32.09
30.28

0.004
0.666

1.64
6.27

96.32
3.68
0.00
9JEL

EMD-61420

0086-0043:1 CI-

50.53
38.45
48.95

0.003
0.631

1.41
5.37

97.24
2.76
0.00
9JF3

EMD-61426
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Table S10. The virtual screening performance of DrugCLIP on the DUD-E subset using different pockets on 27
DUD-E targets.

Method AUCT BEDROCT EF1% 17
holo - Exp pocket 81.64 46.73 29.31
holo - fpocket 78.29 39.56 23.89
holo - fpocket + GenPack | 80.58 46.57 28.48
AF?2 - Exp pocket 78.56 42.27 25.88
AF2 - fpocket 74.47 32.11 18.96
AF?2 - fpocket + GenPack | 79.66 39.97 24.14
apo - Exp pocket 79.44 41.92 26.09
apo - fpocket 69.12 20.59 11.56
apo - fpocket + GenPack | 75.59 34.16 20.43
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Table S11. The virtual screening performance of DrugCLIP on all DUD-E targets with AF2 predictions using

different pockets on 96 DUD-E targets.

Method

AUCT BEDROCT EF1% 17

holo - Exp pocket

holo - fpocket

holo - fpocket + GenPack
AF2 - Exp pocket

AF2 - fpocket

AF2 - fpocket + GenPack

77.31 38.88 23.97
53.72 5.87 3.19
75.38 34.49 20.52
79.24 39.75 24.14
69.85 22.93 13.21
76.28 29.43 17.02
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Table S12. Comparison of mean RMSD and success ratios at different RMSD cutoffs for holo, AF2, and
AF2-GenPack structures on 96 DUD-E targets.

Structure Mean RMSD | | RMSD<2 Ratio T | RMSD<3 Ratio T | RMSD<4 Ratio T
holo 1.93 69.07% 80.41% 87.62%
AF2 5.02 19.10% 31.46% 40.45%
AF2-GenPack 3.72 38.71% 48.39% 58.06%
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Table S13. Comparison of mean RMSD and success ratios at different RMSD cutoffs for holo, AF2, AF2-GenPack,
apo, and apo-GenPack structures on 27 DUD-E targets.

Structure Mean RMSD | | RMSD<2 Ratio T | RMSD<3 Ratio T | RMSD<4 Ratio T
holo 2.57 66.67% 70.37% 70.37%
AF2 5.90 7.69% 23.08% 34.62%
AF2-GenPack 4.41 14.81% 40.74% 54.15%
apo 5.54 22.22% 29.63% 29.63%
apo-GenPack 4.48 25.93% 37.04% 51.85%
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Table S14. The SPR results of TRIP12 for all wet-lab tested molecules

D QualityAffinity_Chi2(RU) ~ SteadyStateAffinity_pKd ~ Rmax(RU)  offset(RU) Type ~QualityAffinity_Chi2(RU)  SteadyStateAffinity pKd ~Rmax(RU) offset(RU) Type ~Smiles
8017-6463 9.060000¢+00 6326979 3400 2960 Single 30,2000 4787812 776 67 Muli CCO)C)lee(ee(cl0)CCNCIC)IC(=0)Cnlc2ceece2n2ne(CCC(0)=0)e(=0el2
V010-7557 1.780000¢+00 5617983 1120 761 Single 3.4700 4545155 359 S0 Multi - COclece(ceINICON(CCDS(=0)(=0)clcee(ce NC(CIO)S(=0)(=0)NCCICCCOT
G428-0140 3.880000¢-01 4856085 209 <103 Single 00527 4616185 23 S0 Multi - CCelece(NC(=0)CS(=0)(=0)c2cee3NC(C)=NS(=0)(=0)c3e2)ec]
€519-1339 1.370000¢+01 4812479 533 5.5 Single 5.6800 4714443 14.1 44 Muli CCOcleee(CONC(=0)2en(CC)e3ece(ce3e2=0)S(=0)(=0)N2CCCC2)ee10CC
G935-3912 8.320000¢400 4679854 290 62 Single 12700 4924453 469 35 Muli Celnn(CC(=0IN2CCe3eceee23)e(C)elS(=0)=0INICCCC(CHC=0)Nelee(Chece1C
E599-0223 1.510000¢+00 4623423 624 68 Single 03680 4966576 383 07 Muli CCCNICCN(CClelee2n(CCC)ee(c(=0)c2ec F)S(=0)(=O)cleee(CC)eel
Y600-3111 4.370000¢+00 4580044 917 227 Single 82600 4493495 733 SIL1 Mulli - COC(=0)elee(NC(=0)CN2CCC(CC)C0)(2eceee2)e2ececc)ee(eNO(=0)0C
F946-0535 4.360000¢401 4441291 1160 2152 Single 21.2000 4304518 1063 5.6 Muli COclece(celS(=0)(=0)Nelece(ceHC(CIC)-¢lece(=0)n(n] )< le(Cnocl C

P772-0064 2200000401 4391474 519 14 Single 86100 4321482 726 41 Mulli - CC(C)OC(=0)eTe(Chne(ne I C(=0)N1CCN(C(C)CTC(=0)NCICCCCCT )¢ leceee
V0202228 2.920000e+00 4289037 168.0 -134  Single 53100 4463442 95.4 36 Multi CCCelne(N2CCON(CC2)C(=0)COe2ece(Cle

KO061-0077 2200000400 4168130 299 41 Single NaN NaN NaN NaN  Muli  COC(=0)C(NC(=O)elec2ne(ce(n2nl)C(F)(F)F)-

C142:0073 7.460000e-01 4138466 26.1 68 Single NaN NaN NaN NaN  Muli  CON(CC)elece(ce)CIC(C(=0)0C2C ¢

K786-5190 2.060000e-01 4.122053 5.1 97 Single NaN NaN NaN NaN  Muli  CCOC(=0)NICCN(CCDS(=0)(=0)NICCCC(C1C(=0)NCCeleee(OCC)e(OCC)e]
P207-9156 7.330000e-01 4042872 167 23 Single NaN NaN NaN NaN  Muli 0)c2eeo(cc2)N2CCCC2=0)eeI0CCNC(C)=0

Y600-2033 1.810000+00 3.995679 17.0 02 Single NaN NaN NaN NaN  Muli  COC(=O)clen(ce(C(=0)0C)e1=0)-clece(ce])S(=0)(=0)Ne Incee(Cnl

ES87-0629 1410000401 3.943095 106.0 28 Single NaN NaN NaN NaN Ml CCOC(=0 =0)CSclen(CC(=0N2CC(C)OC(C)C2) 12

E958-0998 2.650000e-01 3.879426 215 34 Single NaN NaN NaN NaN  Muli  COcleee(OC)e(NCe2ecen2-c2nne(s2)N2CCN(CC2)C2CCCCC2)el

F711-0682 1.260000e-01 3.795880 338 32 Single NaN NaN NaN NaN  Muli  CC(=0)Neleee(NC(=0)CSe2nec(CO2CC(=0)NCe2ece(Flee2)ec]

G345-0122 1.420000e-03 3.749580 306 62 Single NaN NaN NaN NaN  Muli  CCC(CNC(=0)Cnle2ee(OC)e(OC)ee2e(=0)n(Ce2eee(cc2)C(=0)NCCC(C)C)el=0
25780155 1.810000e+01 3744727 595 15 Single NaN NaN NaN NaN  Muli  CC(NS(=0)(=0)clcce2-c3cce(ce3C(=0)e2e)S(=0)(=0)NC(C)C(0)=0)C(0)=0
V006-3720 5.040000e400 3737549 2450 22 Single NaN NaN NaN NaN  Muli  CC(O)[C@@H]ICCIC@@H](C)CIC@H]10CC(=0)N1CON(Ce2ee(=0)e(0Ce3ee(Chec(C)e3)e02)CC
G310-0054 1.190000e-03 3.684030 102 0 Single NaN NaN NaN NaN  Muli  CCOC(=O)clcc(onl)-cleee(s)S(=0)(=0)Nelccee(e1)C(=0)0CC

E859-1181 2.140000e400 3.642065 170.0 118 Single NaN NaN NaN NaN  Muli  COclece(cel)-nine2e(nne(C)e2e ICNICCCC(CHC(=0)NCCCI=CCCCCT

VO008-2057 2.080000e-01 3.632644 239.0 65 Single NaN NaN NaN NaN  Muli  COclece(ecl OC)C(CC(=0)NICCN(C\C=Cle2ecece2)CCl e len(C)edeceee]2

P207-9139 2.970000e+02 3431798 345.0 171 Single NaN NaN NaN NaN  Mulii  COC(=0)[C@@H]IC[C@@H](CNIC(=0)0CC 1 c2eceec2-c2eccee] 2)0clcee(en] )C(0)=0
Y502-0934 12400008400 3414539 785.0 J1L7 Single NaN NaN NaN NaN  Muli  CC(=0)0CCI=C(N2C(SC1)C(NC(=0)clenn3e(ee(ne13)C1CCC(FF)C2=0)C(0)=0
Y505-3218 7.630000e-01 3.403403 17.0 <14 Single NaN NaN NaN NaN  Muli  Q\C(NNC(=O)clee(nnIC)C(F)(F)F)=C1/C(=0)0C(C)=CC1=0

V023-1376 1.290000+00 3354578 953.0 6.1 Single NaN NaN NaN NaN  Multi  COclececel-nlne(CN(C(C)C)C(=0)CC2CCCC2)e2CN(Cedeceee3F)CCel2

Y041-7510 1.710000¢-02 3353596 137.0 84 Single NaN NaN NaN NaN  Muli  CC[C@@H](O)[C@H](Neleee2-c3e(CCIC@H]NC(C)=0)e2ee1=0)ee(OC)(OC)e30C)C(0)=0
5C76-0628 2.010000¢+00 3341035 3340 29 Single NaN NaN NaN NaN  Muli [H][C@@]12CIC@]1(COelece(Flee)C(=0)N(CC(=0)N(CC)Celenn(CC)el Cheleceee2 ]
P218-3113 5.720000¢+00 3337242 00 63 Single NaN NaN NaN NaN  Muli  CN(CC(=0)N1CCCn2ne(ec2Cl)-clece(C)e(Clel)S(=0)(=0)elcce2n(C)e(=0)oc2c
41190071 1.370000¢+00 3271646 2840 39 Single NaN NaN NaN NaN  Muli  CC(C)OC(=0)Neleee2CCe3eecee3N(C(=0)CCN3CCN(CCO)CCI)e2e

F830-0228 2.250000e-01 3191114 678 40 Single NaN NaN NaN NaN  Multi  COclec(ce(OC)e10C)-c1noe(Cn2enc3n(Cedece(Cleed)nne3c2=0nl

V0260672 2.210000e-01 07349 286.0 <10 Single NaN NaN NaN NaN  Muli  COclece(eel OC)-clece(nnNICCON(CCC(=0)CN(CC(C)C)C(=0)eTeces |
G953-0096 1.020000e-01 3.015923 321 23 Single NaN NaN NaN NaN  Muli - CCOC(=0)ele(NC(=0)Cn2e(ne(C)e(CC)e2=0)-n2ne(C)ec2C)sc2CCCCCe 12

ES51-0174 4.330000¢-01 2886057 389.0 29 Single NaN NaN NaN NaN  Muli  COC(=O)clece(NC(=0)CSc2ece3nne(CCNS(=0)(=O)edece(Checdn3n2)ee!

F449-3472 3.290000¢-01 2856985 699.0 25 Single NaN NaN NaN NaN  Muli  CCOC(=0)CICON(CCIC(=0)CN(C)eInn2e(NC(C)(C)Ce(ne2s])-clece(Checl
Y041-4192 2.400000¢-02 2617983 4340 80 Single NaN NaN NaN NaN  Muli  OC(=0)[C@H]ICC[C@H](CNC(=0)Ce2esc(n2)-c2eee(OC(F)F)Fee2)CCl

8018-9104 9.240000¢-01 2570248 907.0 72 Single NaN NaN NaN NaN  Muli  COclece(ee])C(CNC(=0)elee(e(Clee IN(CIC)S(=0)=0IN(C)CINICCOCCT

T501-1408 1.040000¢+00 2267606 6290.0 57 Single NaN NaN NaN NaN Ml Celeceeel Cele(C) )C(=0)NI1CCCC(Ce2nnen2Ce2ececc2)Cl

V027-6124 7.610000e-01 2204120 5250.0 30 Single NaN NaN NaN NaN  Muli - Cele(nn(el Oclece(NC(=0)C2CC2)eel S(=0)(=0INC(C)(C)C

E456-0650 2.260000¢+00 1.863279 7050.0 44 Single NaN NaN NaN NaN  Muli  CCNICCN(Ce2eee(NC(=0)C3CIN(CCOC)C(=0)edeccce:

K786-4151 1.280000¢+01 0224754 1520000.0 126 Single NaN NaN NaN NaN  Muli  CCOcleceeelCNICCC(CNC(=0)e2ece(Se3eee(Chee3)e(NC(C)=0)e2)CC

1933-0359 1.070000+00 0.130768 370000 09 Single NaN NaN NaN NaN  Muli  CC(=0)elece(NC(=0INC2CON(CC2)e2ne3ccene3n(Cedeccee3)e2=O)eel

H025-3300C 1.690000e+01 0.099633 1390000.0 70 Single NaN NaN NaN NaN  Muli  CCnle2ne(CCe3cee(O CNCC4)ee3)n(C)e2e(=0)n(CC)e1=0

K091-0599 1.420000e+02 0057992 1460000.0 25 Single NaN NaN NaN NaN  Muli  CC(=0)NS(=0)(=0)clece(N\C=C2N=C(0C2=0)c2ccce3ecece23)ec]

K788-9310 1.520000e+06 0053078 424000000 10600 Single NaN NaN NaN NaN  Muli  CCNICCN(CONC(=0)e2cee(\C=C3\Sedeccee4N(CedeeeecdC)C3=0)ec2)CC1
V0234733 3.720000e400 0.100371 8220000 41 Single NaN NaN NaN NaN  Multi  COclee(ceclOCCICCC)-¢Ine(=0)e(CCC(=0)N2CCSCC2)n[nH] 1

8013-0459 1.020000e+00 0227887 9680000 <16 Single NaN NaN NaN NaN  Multi  Celece(eel$(=0)(=0)NICCOCCI - Inn(CC(=0)NCe2eceen2)e(=0)e2ceeee] 2
K216-8310 5700000401 0283301 4150000 06 Single NaN NaN NaN NaN  Muli  CCOclec(CNC(=0)e2eee3ne(CC)(CONe3e2)ee(OCC)10CC

D305-0221 2130000401 0311754 33000000 03 Single NaN NaN NaN NaN  Multi  CCNICCN(Ce2ne3ec(NC(=0)COedee(C)ece4C(C)C)ece3n2C)CCT

D475-0124 1.600000e-01 0442480 9200000 70 Single NaN NaN NaN NaN  Muli  CCCNC(=0)Cele(Cnn(clO)-clnc(cs])-cleee(C)ecl

KO089-0136 1.940000¢+01 0506505 87600000 <18 Single NaN NaN NaN NaN  Muli  COclece(\C=N\WC(=0)c2ce(n[nH]2)C(C)(C)C)eeICN1CCe2ee(OC)(OC)ec2C1C
F288-0030 1.840000e+02 0514548 70900000 -137  Single NaN NaN NaN NaN  Multi  COclee(NC(=0)CSC2=NC3(CON(C)CCIIN=C2c2cee(ce2)C(CHCIC)ee(OC)e
K617-0161 5.850000e-01 0623249 2480000 44 Single NaN NaN NaN NaN  Muli  COclee(ceel OC(C)=0NC=C(NC(=0)CICCCCCIC(=0)NICC2CC(Celecee(=0)n1C2
1057-0910 5.260000e401 0736397 5100000.0 36 Single NaN NaN NaN NaN  Muli  Celecc(cel)-cInne(ol)-clecee(c])S(=0)(=0)Neleee(ce)C(0)=0

F470-0947 8.810000e400 -1.041393 1050000.0 06 Single NaN NaN NaN NaN  Muli  CC(C)CNC(=O)elece2e(clnle(nn(CC(=0)Ne3eee(ce3)C(C)C)e1=0n(C(C)C)e2=0
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Table S15. Molecular database filter rules. These rules were concluded based on druglike-ness rules, public
structural alerts, and the world (drug) subset of ZINC quantile numbers. Additional constraints on flexibility-related
properties were imposed to prevent a sharp increase in the computational cost of molecular docking.

Property Limitation
Molecular weight (0, 500]
Number of rings [1, 7]
Number of H-bond donors [0, 5]
Number of H-bond acceptors [0, 10]
ClogP [-3, 5]
Topological polar surface area (TPSA) [0, 140]
Number of rotatable bonds [0, 10]
Number of aromatic rings [1,7]

Max size of ring [3, 8]
Number of isomers [1, 4]
Fraction of N or O [0.001, 0.4]
Fraction of heteroatoms [0.001, 0.5]
Number of contiguous rotatable bonds [0, 4]
Number of contiguous non-ring bonds [0, 6]

Allowed atom types {H,C,N,O,FClLBr1S, P}

No matching structural alert catalogs PAINS, ZINC, CHEMBL _Glaxo, CHEMBL_BMS,
CHEMBL_SureChEMBL, CHEMBL_Inpharmatica, NIH

No matching patterns Multi-ether-ester (#[6]-#[8,#16;!a]-#[6].#[6]-#[8,#16;!a]-#[6])
Di-guanidine #[7]~#[6](~#[7])~#[T]1~#[6](~#[T])~#[7])

40


https://doi.org/10.1101/2024.09.02.610777
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.02.610777; this version posted April 29, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

+2 References

a3 [1] G.Zhou, Z. Gao, Q. Ding, et al., “Uni-Mol: A universal 3d molecular representation learning framework,” in

494 International Conference on Learning Representations, (2023).

495 [2] A. Kahraman, R. J. Morris, R. A. Laskowski, ef al., “On the diversity of physicochemical environments

496 experienced by identical ligands in binding pockets of unrelated proteins,” Proteins: Struct. 78 (2010).

a7 [3] R. G. Govindaraj and M. Brylinski, “Comparative assessment of strategies to identify similar ligand-binding
498 pockets in proteins,” BMC Bioinform. 19 (2018).

a9 [4] K. Yeturu and N. Chandra, “PocketMatch: a new algorithm to compare binding sites in protein structures,”
500 BMC bioinformatics 9, 1-17 (2008).

so0  [S5] M. Simonovsky and J. Meyers, “DeeplyTough: learning structural comparison of protein binding sites,” J.
502 chemical information modeling 60, 23562366 (2020).

s3  [6] M. Chartier and R. Najmanovich, “Detection of binding site molecular interaction field similarities,” J. chemical
504 information modeling 55, 1600-1615 (2015).

s5  [7] A. Shulman-Peleg, R. Nussinov, and H. J. Wolfson, “SiteEngines: recognition and comparison of binding sites
506 and protein—protein interfaces,” Nucleic acids research 33, W337-W341 (2005).

s7 [8] Y.Zhang and J. Skolnick, “TM-align: a protein structure alignment algorithm based on the tm-score,” Nucleic
508 acids research 33, 23022309 (2005).

s9  [9] Z. Gao, C. Tan, L. Wu, and S. Z. Li, “CoSP: Co-supervised pretraining of pocket and ligand,” arXiv preprint
510 arXiv:2206.12241 (2022).

st [10] H. Oztiirk, A. Ozgiir, and E. Ozkirimli, “DeepDTA: deep drug—target binding affinity prediction,” Bioinformatics
512 34,1821-i829 (2018).

si3 [11] T. Bepler and B. Berger, “Learning protein sequence embeddings using information from structure,” in

514 International Conference on Learning Representations, (2019).

555 [12] R. Rao, N. Bhattacharya, N. Thomas, et al., “Evaluating protein transfer learning with TAPE,” in Advances in

516 Neural Information Processing Systems, (2019).

sz [13] A. Elnaggar, M. Heinzinger, C. Dallago, et al., “ProtTrans: Towards cracking the language of lifes code through
518 self-supervised deep learning and high performance computing,” IEEE Trans. on Pattern Anal. Mach. Intell.
519 pp. 1-1 (2021).

s20 [14] V.R. Somnath, C. Bunne, and A. Krause, “Multi-scale representation learning on proteins,” Adv. Neural Inf.
521 Process. Syst. 34, 25244-25255 (2021).

s22 [15] P. Hermosilla, M. Schifer, M. Lang, et al., “Intrinsic-extrinsic convolution and pooling for learning on 3D

523 protein structures,” Int. Conf. on Learn. Represent. (2021).

s [16] P. Gainza, F. Sverrisson, F. Monti, et al., “Deciphering interaction fingerprints from protein molecular surfaces
525 using geometric deep learning,” Nat. Methods 17, 184-192 (2020).

s26 [17] R.J. L. Townshend, M. Vogele, P. Suriana, et al., “ATOM3D: Tasks on molecules in three dimensions,” (2022).

s27 [18] L. Wang, H. Liu, Y. Liu, et al., “Learning hierarchical protein representations via complete 3D graph networks,”

528 in The Eleventh International Conference on Learning Representations, (2022).

41


https://doi.org/10.1101/2024.09.02.610777
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.02.610777; this version posted April 29, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

made available under aCC-BY 4.0 International license.

[19] S. Liu, H. Guo, and J. Tang, “Molecular geometry pretraining with SE(3)-invariant denoising distance

matching,” in The Eleventh International Conference on Learning Representations, (2023).

[20] F. Wu, S.Li, L. Wu, et al., “Discovering the representation bottleneck of graph neural networks from multi-order
interactions,” arXiv preprint arXiv:2205.07266 (2022).

[21] M. Karimi, D. Wu, Z. Wang, and Y. Shen, “DeepAflinity: interpretable deep learning of compound—protein

affinity through unified recurrent and convolutional neural networks,” Bioinformatics 35, 3329-3338 (2019).

[22] Y. Zhang, M. Vass, D. Shi, et al., “Benchmarking refined and unrefined AlphaFold2 structures for hit discovery,”
J. Chem. Inf. Model. 63, 1656-1667 (2023).

[23] Y. Tian, D. Krishnan, and P. Isola, “Contrastive representation distillation,” ArXiv abs/1910.10699 (2019).

[24] H. M. Berman, J. D. Westbrook, Z. Feng, et al., “The protein data bank,” Nucleic acids research 28 1, 23542
(2000).

[25] N. F. Polizzi and W. F. DeGrado, “A defined structural unit enables de novo design of small-molecule-binding
proteins,” Science 369, 1227 — 1233 (2020).

[26] Z.Liu, Y. Li, L. Han, et al., “PDB-wide collection of binding data: current status of the pdbbind database,”
Bioinformatics 31 3, 405-12 (2015).

[27] R. Wang, X. Fang, Y. Lu, and S. Wang, “The PDBbind database: collection of binding affinities for
protein-ligand complexes with known three-dimensional structures.” J. medicinal chemistry 47 12, 2977-80
(2004).

[28] S. Mitternacht, “FreeSASA: An open source c library for solvent accessible surface area calculations,”
F1000Research 5 (2016).

[29] C. Zhang, X. Zhang, P. L. Freddolino, and Y. Zhang, “BioLiP2: an updated structure database for biologically
relevant ligand—protein interactions,” Nucleic Acids Res. 52, D404 — D412 (2023).

[30] A. Gaulton, L. J. Bellis, A. P. Bento, et al., “ChEMBL.: a large-scale bioactivity database for drug discovery,”
Nucleic acids research 40, D1100-D1107 (2012).

[31] B. Gao, B. Qiang, H. Tan, et al., “DrugCLIP: Contrasive protein-molecule representation learning for virtual
screening,” in NeurlPS 2023, (2023).

[32] M. M. Mysinger, M. Carchia, J. J. Irwin, and B. K. Shoichet, “Directory of useful decoys, enhanced (DUD-E):
Better ligands and decoys for better benchmarking,” J. Med. Chem. 55, 6582 — 6594 (2012).

[33] V.-K. Tran-Nguyen, C. Jacquemard, and D. Rognan, “LIT-PCBA: An unbiased data set for machine learning
and virtual screening,” J. chemical information modeling (2020).

[34] M. Steinegger and J. Soding, “MMseqs2: sensitive protein sequence searching for the analysis of massive data
sets,” bioRxiv (2017).

[35] S.R.Eddy, “A probabilistic model of local sequence alignment that simplifies statistical significance estimation,”
PLoS Comput. Biol. 4 (2008).

[36] S.R.Eddy, “Accelerated profile HMM searches,” PLoS Comput. Biol. 7 (2011).

[37] R. D. Finn, J. Mistry, J. G. Tate, et al., “The Pfam protein families database,” Nucleic Acids Res. 38, D211 -
D222 (2007).

42


https://doi.org/10.1101/2024.09.02.610777
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.02.610777; this version posted April 29, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

s [38] K. T. Kimura, H. Asada, A. Inoue, et al., “Structures of the 5-HT2A receptor in complex with the antipsychotics
567 risperidone and zotepine,” Nat. Struct. & Mol. Biol. 26, 121 — 128 (2019).

ses [39] K. Kim, T. Che, O. Panova, et al., “Structure of a hallucinogen-activated Gqg-coupled 5S-HT2A serotonin
569 receptor,” Cell 182, 1574-1588.e19 (2020).

s [40] A. L. Kaplan, D. N. Confair, K. Kim, et al., “Bespoke library docking for 5S-HT2A receptor agonists with
571 antidepressant activity,” Nature 610, 582-591 (2022).

sz [41] Z. Chen, L. Fan, H. Wang, et al., “Structure-based design of a novel third-generation antipsychotic drug lead
573 with potential antidepressant properties,” Nat. Neurosci. 25, 39 — 49 (2021).

s [42] D. Cao, J. Yu, H. Wang, et al., “Structure-based discovery of nonhallucinogenic psychedelic analogs,” Science
575 375,403 — 411 (2022).

s [43] J. Tan, Y. Xiao, F. Kong, et al., “Molecular basis of human noradrenaline transporter reuptake and inhibition.”
577 Nature (2024).

s [44] J. A. Coleman, E. Green, and E. Gouaux, “X-ray structures and mechanism of the human serotonin transporter,”
579 Nature 532, 334 — 339 (2016).

soo  [45] J. A. Coleman, D. Yang, Z. Zhao, et al., “Serotonin transporter—ibogaine complexes illuminate mechanisms of
581 inhibition and transport,” Nature 569, 141 — 145 (2019).

se2 [46] G.R.J. Bickerton, G. V. Paolini, J. Besnard, et al., “Quantifying the chemical beauty of drugs.” Nat. chemistry
563 42,90-8 (2012).

ss¢  [47] J. Lei and J. Frank, “Automated acquisition of cryo-electron micrographs for single particle reconstruction on

585 an FEI Tecnai electron microscope,” J. structural biology 150, 69-80 (2005).

ss6  [48] S. Q. Zheng, E. Palovcak, J.-P. Armache, er al., “MotionCor2: anisotropic correction of beam-induced motion

567 for improved cryo-electron microscopy,” Nat. methods 14, 331-332 (2017).

ss [49] A. Punjani, J. L. Rubinstein, D. J. Fleet, and M. A. Brubaker, “cryoSPARC: algorithms for rapid unsupervised
589 cryo-em structure determination,” Nat. methods 14, 290-296 (2017).

s [50] J. Tan, Y. Xiao, F. Kong, et al., “Molecular basis of human noradrenaline transporter reuptake and inhibition,”
591 Nature pp. 1-9 (2024).

s2  [51] E. F. Pettersen, T. D. Goddard, C. C. Huang, ef al., “UCSF ChimeraX: Structure visualization for researchers,
593 educators, and developers,” Protein science 30, 70-82 (2021).

s [52] Y. Qu, K. Qiu, Y. Song, et al., “MolCRAFT: Structure-based drug design in continuous parameter space,”
595 arXiv preprint arXiv:2404.12141 (2024).

ss6  [53] S. Sankar, N. Chandran Sakthivel, and N. Chandra, “Fast local alignment of protein pockets (FLAPP): a
597 system-compiled program for large-scale binding site alignment,” J. Chem. Inf. Model. 62, 4810—4819 (2022).

s [54] V. L. Guilloux, P. Schmidtke, and P. Tufféry, “Fpocket: An open source platform for ligand pocket detection,”
509 BMC Bioinform. 10, 168 — 168 (2009).

so [55] J. Mao, H. Ai, X. Wu, et al., “Structural visualization of HECT-E3 Ufd4 accepting and transferring ubiquitin
601 to form K29/K48-branched polyubiquitination on N-degron,” BioRxiv pp. 2023-05 (2023).

ez [56] M. Vdradi, D. Bertoni, P. Magaia, et al., “Alphafold protein structure database in 2024: providing structure
603 coverage for over 214 million protein sequences,” Nucleic Acids Res. 52, D368 — D375 (2023).

43


https://doi.org/10.1101/2024.09.02.610777
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.02.610777; this version posted April 29, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

64 [57] J. M. Jumper, R. Evans, A. Pritzel, et al., “Highly accurate protein structure prediction with AlphaFold,” Nature
605 596, 583 — 589 (2021).

es [58] Y. Zhang and J. Skolnick, “TM-align: a protein structure alignment algorithm based on the tm-score,” Nucleic
607 Acids Res. 33, 2302 — 2309 (2005).

eos [59] J. J. Irwin, K. G. Tang, J. Young, et al., “ZINC20 - a free ultralarge-scale chemical database for ligand

609 discovery,” J. chemical information modeling (2020).

st0 [60] C.Gorgulla, A. Boeszoermenyi, Z.-F. Wang, et al., “An open-source drug discovery platform enables ultra-large
611 virtual screens,” Nature 580, 663 — 668 (2020).

sz [61] A.Paszke, S. Gross, F. Massa, ef al., “Pytorch: An imperative style, high-performance deep learning library,”
613 ArXiv abs/1912.01703 (2019).

s14 [62] X.Zhang, H. Gao, H. Wang, et al., “PLANET: a multi-objective graph neural network model for protein-ligand
615 binding affinity prediction,” J. Chem. Inf. Model. 64, 2205-2220 (2023).

st6  [63] C. Shen, Y. Hu, Z. Wang, et al., “Beware of the generic machine learning-based scoring functions in

617 structure-based virtual screening,” Briefings Bioinform. 22, bbaa070 (2021).
e18  [64] J. Sunseri and D. R. Koes, “Virtual screening with Gnina 1.0,” Molecules 26, 7369 (2021).

st9  [65] V.-K. Tran-Nguyen, C. Jacquemard, and D. Rognan, “LIT-PCBA: an unbiased data set for machine learning
620 and virtual screening,” J. chemical information modeling 60, 42634273 (2020).

et [66] H.Y. I Lam,J. S. Guan, X. E. Ong, et al., “Protein language models are performant in structure-free virtual
622 screening,” Briefings Bioinform. 25, bbae480 (2024).

e2s  [67] V.-K. Tran-Nguyen, G. Bret, and D. Rognan, “True accuracy of fast scoring functions to predict high-throughput
624 screening data from docking poses: the simpler the better,” J. Chem. Inf. Model. 61, 2788-2797 (2021).

65 [68] M. Brocidiacono, P. Francoeur, R. Aggarwal, et al., “BigBind: learning from nonstructural data for structure-
626 based virtual screening,” J. Chem. Inf. Model. 64, 2488-2495 (2023).

44


https://doi.org/10.1101/2024.09.02.610777
http://creativecommons.org/licenses/by/4.0/

	Deep contrastive learning enables genome-wide virtual screening_v3
	Deep contrastive learning enables genome-wide virtual screening_Supplementary_Information

