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Abstract 1 

1. Automated invertebrate classification using computer vision has shown significant 2 

potential to improve specimen processing efficiency. However, challenges such as 3 

invertebrate diversity and morphological similarity among taxa can make it difficult to 4 

infer fine-scale taxonomic classifications using computer vision. As a result, many 5 

invertebrate computer vision models are forced to make classifications at coarser levels, 6 

such as at family or order. 7 

2. Here we propose a novel modular method to combine computer vision and bulk DNA 8 

metabarcoding specimen processing pipelines to improve the accuracy and taxonomic 9 

granularity of individual specimen classifications. To improve specimen classification 10 

accuracy, our methods use multimodal fusion models that combine image data with 11 

DNA-based assemblage data. To refine the taxonomic granularity of the model’s 12 

classifications, our methods cross-references the classifications with DNA metabarcoding 13 

detections from bulk samples. We demonstrated these methods using a continental-scale, 14 

invertebrate bycatch dataset collected by the National Ecological Observatory Network. 15 

We also introduce the CV.eDNA R package, which aims to assist practitioners looking to 16 

implement our methods. 17 

3. Using our methods, we reached a classification accuracy of 79.6% across the 17 taxa 18 

using real DNA assemblage data, and 83.6% when the assemblage data was “error-free”, 19 

resulting in a 2.2% and 6.2% increase in accuracy when compared to a model trained 20 

using only images. After cross-referencing with the DNA metabarcoding detections, we 21 

improved taxonomic granularity in up to 72.2% of classifications, with up to 5.7% 22 

reaching species-level. 23 
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4. By providing computer vision models with coincident DNA assemblage data, and 24 

refining individual classifications using DNA metabarcoding detections, our methods the 25 

potential to greatly expand the capabilities of biological computer vision classifiers. Our 26 

methods allow computer vision classifiers to infer taxonomically fine-grained 27 

classifications when it would otherwise be difficult or impossible due to challenges of 28 

morphologic similarity or data scarcity. These methods are not limited to terrestrial 29 

invertebrates and could be applied in any instance where image and DNA metabarcoding 30 

data are concurrently collected.  31 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2025. ; https://doi.org/10.1101/2024.09.02.610558doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.02.610558
http://creativecommons.org/licenses/by/4.0/


 

3 

 

1. Introduction 32 

Computer vision has the potential to transform invertebrate ecology by automating estimations  33 

of invertebrate abundance, biomass, and diversity (Høye et al., 2021; Schneider et al., 2022; 34 

Blair et al., 2024). However, accurately classifying invertebrate species using computer vision is 35 

challenging. This is partly due to the sheer diversity of invertebrates, as there are an estimated 36 

7.5 million (~1.5 million named) terrestrial invertebrates species globally (Stork, 2018). This has 37 

led most invertebrate classification models to opt for coarser taxonomic granularity (e.g. order-38 

level instead of species-level classifications) with relatively few unique classification groups 39 

(usually <50; (Ärje et al., 2020; Blair et al., 2022; Schneider et al., 2022). However, ecology 40 

studies can involve hundreds or thousands of species, which poses a challenge for simpler 41 

machine vision techniques.  42 

One way computer vision models have overcome the challenge of handling many thousands or 43 

millions of classification labels is by including additional data modalities such as contextual 44 

metadata (e.g. collection location) in computer vision models. The mobile app iNaturalist uses 45 

this spatiotemporal data in combination with user-submitted photos to classify nearly 80,000 taxa 46 

across the tree of life (Leary et al., 2023). Other studies have also found substantial 47 

improvements to classification accuracy with multimodal models that include both metadata and 48 

images (Berg et al., 2014; Terry, Roy and August, 2020; Blair et al., 2022). However, despite the 49 

potential improvements in accuracy, there are several pitfalls to consider when including 50 

spatiotemporal metadata in a computer vision model. For one, spatiotemporal metadata is a 51 

lagging indicator of species habitat occupancy (i.e. the presence or absence of a species at a 52 

given place and time), and as such it is susceptible to data drift over time (Friedland, 2024). That 53 

is, spatiotemporal distributions of taxa change over time, but computer vision models can only 54 
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learn from past data. Unless a computer vision model is updated frequently with more recent 55 

data, the species range distributions it has learned may quickly become outdated. Finally, when 56 

dealing with many machine learning classes, spatiotemporal metadata does not solve the 57 

challenge of gathering enough training data to sufficiently train a computer vision model (Beery 58 

et al., 2020). In short, studies that incorporate spatiotemporal metadata have shown that 59 

supplemental, non-visual data can improve ecological computer vision models, but 60 

spatiotemporal metadata itself has several potential drawbacks. In this study, we leverage an 61 

alternative data stream that does not pose the same challenges associated with spatiotemporal 62 

metadata: DNA metabarcoding. 63 

DNA metabarcoding is an established tool in ecological research that allows for multiple species 64 

to be identified from a single sample using high-throughput sequencing (Taberlet et al., 2012; 65 

Liu et al., 2020). Using this method, DNA can be collected from the environment (eDNA) or 66 

from preservative media (e.g. ethanol in insect bycatch samples), sequenced, and then used to 67 

infer ecological metrics such as species richness and community composition (Marquina et al., 68 

2019; Weiser et al., 2022). Due to its improved cost-effectiveness, DNA metabarcoding is 69 

becoming more frequently used in large-scale studies where traditional morphological 70 

identification techniques cannot keep up financially or logistically (Liu et al., 2020). However, 71 

despite being an excellent tool for detecting occurrence at fine taxonomic granularity (even 72 

below species-level; Stewart and Taylor, 2020), DNA metabarcoding cannot be used to reliably 73 

estimate species abundance or biomass (Lamb et al., 2019). Instead, eDNA metabarcoding is 74 

more suitable for binary presence/absence detections of species. Additionally, while DNA 75 

metabarcoding is generally reliable for taxonomic identifications, it is not exempt from false 76 

positive and false negative detections (Guillera‐Arroita et al., 2017). Some examples of how this 77 
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may occur include DNA contamination and primer mis-priming (false-positives), or DNA 78 

degradation and insufficient sampling effort (false-negatives) (Guillera‐Arroita et al., 2017; Liu 79 

et al., 2020). Therefore, while DNA metabarcoding offers considerable advantages for 80 

biodiversity assessment (e.g., species inventories, species richness) its limitations often 81 

necessitate the use of complementary indicators such as visual observations for other metrics 82 

(e.g., abundance, biomass) (Schneider et al., 2022). 83 

Given DNA metabarcoding’s ability to produce reliable fine-scale community composition data, 84 

and computer vision’s ability to measure abundance and biomass at coarse taxonomic 85 

granularity, several studies have called for a synergistic classification pipeline that takes 86 

advantage of the strengths of each tool (Schneider et al., 2022; Sys et al., 2022; Badirli et al., 87 

2023). In theory, such a pipeline could leverage DNA metabarcoding’s fine taxonomic 88 

granularity against computer vision’s ability to infer specimen-level characteristics (identity, 89 

morphology, etc.) to make ecological inferences that would not be possible using either data 90 

stream on their own. DNA might also be a favourable alternative to spatiotemporal metadata, as 91 

it is a more direct and coincident indicator of species habitat occupancy, likely making it more 92 

resistant to data drift over time (Taberlet et al., 2018). Despite the potential benefits of 93 

multimodal image-DNA classification models for ecological research, few studies have explored 94 

this approach. Additionally, proposed hybrid classification pipelines either leave the DNA and 95 

image data streams separate (Sys et al., 2022), or sequence specimens individually, and thus do 96 

not take advantage of metabarcoding’s ability to process bulk samples (Badirli et al., 2023; Gong 97 

et al., 2024).  98 

Here we present a novel modular method for classifying invertebrate taxa that integrates DNA 99 

metabarcoding and computer vision. The objective of this hybrid approach is to improve the 100 
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accuracy and taxonomic granularity of computer vision classifications by adding concurrent 101 

community assemblage data derived from DNA metabarcoding into a bulk specimen 102 

classification pipeline (Figure 1). The combination of DNA and image data occurs twice 103 

throughout the pipeline: first during classification inference in the computer vision model, and 104 

then again as a post-processing step for the model’s classifications. While developing this 105 

approach, we ask two primary questions: (1) How does error in DNA metabarcoding data affect 106 

the accuracy of the computer vision classification model? (2) What are the strengths and 107 

limitations of different classification granularity refinement methods? In addition to the case 108 

study we present here, we have also developed a GitHub repository to allow our methods to 109 

easily be adapted to other study systems (Blair, 2024). The repository introduces the CV.eDNA 110 

R package, which contains functions that assist with the implementation of our methods. The 111 

repository also includes demonstrative vignettes that walk through the data preparation, model 112 

training, and classification granularity refinement steps. 113 
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 114 
Figure 1: An overview of our methods for combining computer vision and DNA metabarcoding to 115 

improve the accuracy and taxonomic granularity of classifications. (a) Images and DNA metabarcoding 116 

data are collected concurrently from bulk samples. (b) Images and DNA assemblage data are used as 117 

input for a multimodal classification model. The features of the image input are extracted using a 118 

convolutional neural network. The DNA assemblage data provides presence/absence information for the 119 

model’s known classes and is input as a binary vector into a dense neural network. The image features 120 

and the DNA features are concatenated and passed through one more dense layer before final 121 

classification in the softmax layer. The visual proportions of each layer have been simplified to ease 122 

interpretation and are not meant to be interpreted as 1:1 representations of the exact layer sizes. (c) By 123 

interpreting the DNA metabarcoding detections hierarchically and cross-referencing them with the 124 

model’s classifications, the taxonomic granularity of the classifications can be refined.  125 

2. Methods 126 

2.1 Data collection 127 

2.1.1 Specimen collection 128 

Each year, the National Ecological Observatory Network (NEON) performs standardized pitfall 129 

trap array sampling across the United States, including Alaska, Hawaii, and Puerto Rico 130 

(Hoekman et al. 2017). The focal taxon of the pitfall trap array project are ground beetles 131 
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(Coleoptera: Carabidae), which are collected, identified, and counted by NEON staff members 132 

once every two weeks during the growing season (defined as “the weeks when average minimum 133 

temperatures exceed 4 ℃ for 10 days and ending when temperatures remain below 4 ℃ for the 134 

same period”, Kaspari et al., 2022). The remaining pitfall trap contents are set aside as 135 

‘Invertebrate Bycatch’ and archived in 95% ethanol-filled 50 mL centrifuge tubes. Hereon, a 136 

single collection period from a pitfall trap plot is referred to as a “sampling event”. 137 

The invertebrate bycatch specimens used in this research were taken from 56 NEON trap plots 138 

from 27 sites (usually two plots per site; Figure S.1, S.2). Generally, we used three sampling 139 

events per plot, selected at the beginning, middle, and end of each site's growing season. This 140 

resulted in a total of 150 sampling events. All sampling events used here were collected in 2016 141 

and processed in 2019. The focus of this project was to classify the invertebrate bycatch, so 142 

ground beetles and non-invertebrate specimens were not considered. 143 

2.1.2 Imaging 144 

The contents of each 50mL centrifuge tube were spread out across a 20.32 cm ✖ 30.48 cm (8” ✖ 145 

12”) white ceramic tile and photographed at a resolution of 729 pixels per mm2, as described by 146 

Weiser et al., 2021 (Figure S.3). Using the FIJI implementation of ImageJ (Schindelin et al., 147 

2012), each specimen was detected and cropped to its bounding box to produce a final image. 148 

2.1.3 DNA extraction and metabarcoding 149 

The DNA metabarcoding data used in this study was collected for Weiser et al., 2022, which 150 

used the same sampling events described in Section 2.1.1. In brief, DNA metabarcoding was 151 

conducted on a per-tube basis (Figure S.1). Ethanol from each falcon tube was filtered 152 
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individually (i.e., one filter per tube) and DNA was extracted from the filters using established 153 

protocols (Weiser et al., 2022). The cytochrome c oxidase I (COI) barcode region (141-254 base 154 

pairs) was then amplified using a two-step polymerase chain reaction (PCR) protocol and 155 

sequenced on an Illumina MiSeq. Three COI primers were used: 157, LCO, and Lep (Rennstam 156 

Rubbmark et al., 2018, 2018; Hajibabaei et al., 2019; Weiser et al., 2022). Sequences were 157 

clustered into Operational Taxonomic Units (OTUs) and each OTU was assigned a taxonomic 158 

classification using NCBI BLASTn (Altschul et al., 1990) and Integrated Taxonomic 159 

Information System (ITIS) (U.S. Geological Survey, 2013). Only sequences with ≥ 97% 160 

similarity between the OTU consensus sequence and the BLASTn search were used. See Weiser 161 

et al., 2022 for the full DNA extraction and metabarcoding methods. 162 

In total, across all sampling events, there were 10,212 DNA metabarcoding detections. To align 163 

the DNA data with the imaging data, we removed any DNA detections from sampling events not 164 

included in the image dataset, as well as duplicate detections (i.e. multiple detections of the same 165 

taxon in a single sampling event, for example due to amplification using multiple primers). This 166 

yielded a final DNA metabarcoding dataset with 3,361 detections and 1,212 unique taxa, 167 

primarily consisting of family (369 detections; 85 unique), genus (468 detections; 183 unique), 168 

and species-level (2,471 detections; 922 unique) detections. 169 

2.2 Data and labelling 170 

2.2.1 Computer vision class labels 171 

The taxonomic scope of the image and DNA metabarcoding data spanned three invertebrate 172 

phyla: Annelida, Arthropoda, and Mollusca. The specimen images were labelled by a single 173 

technician to the best of their ability (as described in Blair et al., 2022). The final labels used for 174 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2025. ; https://doi.org/10.1101/2024.09.02.610558doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.02.610558
http://creativecommons.org/licenses/by/4.0/


 

10 

 

our study ranged from order to phylum-level. Classes with a taxonomic granularity coarser than 175 

order-level but with no subtaxa present in the dataset (e.g. Phylum: Annelida) were included. 176 

Specimens labelled as nested classes at a taxonomic granularity coarser than order-level 177 

(Phylum: Arthropoda, Class: Insecta, and Class: Arachnida) were excluded, as these classes were 178 

primarily composed of “low quality” specimens (highly degraded, low image quality, partial 179 

specimens, etc.) that could not confidently be assigned finer level labels. Classes with fewer than 180 

100 specimens in the dataset were also excluded. This resulted in a final image dataset with a 181 

total of 36,998 specimens across 17 machine learning classes (13 orders and one subclass, class, 182 

subphylum, and phylum; Figure S.4).  183 

2.2.2 Hierarchical labels 184 

Hierarchical labels created by the `refhier` and `longhier` functions in the CV.eDNA package 185 

contain taxonomic information at multiple levels (e.g. phylum to species) and can be assigned to 186 

images and sampling events (Table S.1, Table S.2). These labels are used as input for the 187 

classification granularity refinement methods (see Section 2.5).  188 

In our case study, our image-based hierarchical labels contained taxonomic information at six 189 

levels from phylum to order-level for individual specimens (Table S.1). Our DNA-based 190 

hierarchical labels contained information at 13 levels from phylum to species for all DNA 191 

metabarcoding detections in each sampling event (Table S.2). The levels in the DNA-based 192 

hierarchical labels were phylum, subphylum, class, subclass, superorder, order, suborder, 193 

infraorder, superfamily, family, subfamily, genus, and species.  194 

2.2.3 Binary assemblage data 195 
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The `get_assemblage` function in the CV.eDNA package generates binary assemblage data for 196 

sampling events. This assemblage data can then be used as class priors or input features for 197 

classification models (see Section 2.4). To generate this assemblage data, the function receives 198 

DNA metabarcoding data or ground truth image metadata as input and outputs an n-element long 199 

binary vector for each sampling event, where n is the number of classes known by the computer 200 

vision model. If a given class is detected in a sampling event, its corresponding element is 201 

assigned a score of 1, whereas it is assigned a score of 0 if it was not detected. 202 

For our case study we generated two sets of binary assemblage data containing our 17 known 203 

classes: one using detections from the image labels and one using detections from the DNA class 204 

labels. 205 

2.3 Training and testing data split 206 

Quasi-replication occurs in machine learning datasets when the same or very similar data occur 207 

in both the training and testing datasets. This violates the assumption of independence between 208 

training and testing data and should be avoided to make valid inferences on the test data. The 209 

DNA-based assemblage data presented a quasi-replication risk, as specimens from the same 210 

sampling event would have the same assemblage data. To avoid quasi-replication, we split the 211 

training and testing such that all specimens from a given sampling event were only included in 212 

either the training or testing data. We set our target training:testing ratio to 85:15, and we 213 

randomly added sampling events to the test dataset until the test dataset contained >15% of the 214 

total number of specimens. The final train:test split was 31,381: 5,617 specimens and 122:28 215 

sampling events. 216 

2.4 Classification models 217 
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The objective of all the classification models was to accurately classify the class labels of 218 

individual specimen photos. Classification masks (Section 2.4.2) and multimodal fusion 219 

approaches (Section 2.4.3) were used to assess how classification accuracy changes when DNA-220 

based assemblage data was added to the specimen classification pipeline. Both the classification 221 

masks and multimodal fusion models included “oracle” experiments, which used image-based 222 

assemblage data to simulate the performance of these methods under optimal conditions. We 223 

trained each classification model until the test dataset loss had not improved for 10 epochs (this 224 

does not include the classification masks, which did not go through the training process). 225 

Performance of each classification model was assessed using the original image labels as a 226 

ground truth. All code required for running these models can be found in the “Model_Scripts” 227 

subdirectory of our GitHub repository (Blair, 2024). All models were trained using an AMD 228 

Ryzen 7 5800X CPU, an NVIDIA GeForce RTX 4070 Ti GPU and 32 GB of RAM. 229 

2.4.1 Baseline model 230 

To evaluate model performance in the absence of DNA-based assemblage data, we trained a 231 

ResNet-50 (He et al., 2016) as a baseline model using only image data. The model was pre-232 

trained using the ImageNet weights from He et al. (2016), and then fine-tuned using the NEON 233 

invertebrate bycatch image data. The ImageNet classification layer was removed and replaced 234 

with a new classification layer for our 17 classes. A batch normalization and dropout step were 235 

also implemented before the final classification layer. The model was trained using the Adam 236 

optimizer. The baseline model took 45 seconds per epoch to train, and 7 seconds to run inference 237 

on the test dataset. 238 

2.4.2 Classification masks 239 
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If a priori probabilities for classes in a classification model are known, the outputs of the model 240 

can be adjusted according to those probabilities to improve classification accuracy (Saerens, 241 

Latinne and Decaestecker, 2002). We implement two variations of this technique which we call 242 

“Naïve masks” (Section 2.4.2.1) and “Weighted Masks” (Section 2.4.2.2), whereby the class 243 

priors are derived from a sample’s DNA metabarcoding assemblage data. To apply classification 244 

masks to our case study, each test dataset specimen’s classification probabilities (i.e. softmax 245 

layer values) from the baseline model were multiplied by their sampling event’s classification 246 

mask values. The class with the highest classification probability after applying the mask was 247 

used as the final classification. 248 

2.4.2.1 Naïve mask 249 

When using a naïve mask, the softmax layer values for a given specimen are multiplied by the 250 

specimen’s sampling event’s binary DNA metabarcoding assemblage data (generated using the 251 

`get_assemblage` function). Thus, any classes not detected by the DNA metabarcoding in a 252 

given sampling event have their respective softmax values set to 0, whereas the remaining 253 

classes are unaffected. Naïve masks essentially operate as a “hard filter”, where only classes 254 

detected by the DNA metabarcoding can be classified by the model. 255 

2.4.2.2 Weighted mask 256 

“Hard” masks like the naïve mask, which set the softmax values of undetected classes to 0, 257 

assume the DNA metabarcoding data is error-free. However, in reality, DNA metabarcoding can 258 

have false positive and/or false negative detections (Taberlet et al., 2018). A weighted mask is a 259 

“softer” version of a naïve mask that allows classes not detected by the DNA metabarcoding to 260 

still be classified. The weights for a weighted mask can be generated using the `get_weights` 261 
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function of the CV.eDNA package, and are calculated using the metabarcoding’s true positive 262 

rate (precision) and false negative rate (1 - recall) for each class. The DNA metabarcoding 263 

precision and recall are calculated by comparing the DNA-based assemblage data to ground-truth 264 

assemblage data (e.g. manually assigned image-based assemblage data). The weight that is 265 

assigned to any given class in a sample is determined by whether or not the class was detected by 266 

the DNA metabarcoding. Classes which have their DNA detected are assigned their 267 

metabarcoding precision value, while classes which do not have their DNA detected are assigned 268 

their 1 – recall value.  269 

2.4.2.3 Oracle mask 270 

As an oracle experiment to simulate a scenario where the DNA detections were in perfect 271 

alignment with the image-based detections, we created a naive classification mask using the 272 

image-based assemblage data. This mask was then applied to the classification output of the 273 

baseline model. We did this to provide an upper-bound for the classification mask accuracy, and 274 

to understand how DNA detection accuracy impacts specimen classification accuracy when 275 

using classification masks. 276 

2.4.3 Multimodal fusion 277 

In deep learning, multimodal models can receive data from multiple modalities as input to 278 

inform their classifications (Ramachandram and Taylor, 2017). For example, previous studies 279 

have described multimodal classification models that receive images and raw DNA barcode 280 

sequence data for individual specimens (Badirli et al., 2023; Gong et al., 2024). However, no 281 

previous studies have described a multimodal model that combines specimen images with DNA 282 

metabarcoding data from bulk samples. We achieve this by inputting DNA metabarcoding data 283 
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as tabular binary assemblage data, which is then combined with specimen image features using 284 

intermediate fusion (Figure 1b). Intermediate fusion is an approach to building multimodal 285 

models where data from each modality is input separately. The features from each input are then 286 

extracted and concatenated prior to classification (Boulahia et al., 2021). This allows the model 287 

to contextualize a specimen’s image features with class presence-absence data from the 288 

specimen’s sample. However, similar to the weighted mask approach (Section 2.4.2.2), the DNA 289 

metabarcoding data does not act as a “hard filter”, and the model can still make classifications 290 

not detected by DNA metabarcoding. Additionally, because the assemblage data contains all 291 

class detections for a given sample, the model can learn patterns of class co-occurrence to inform 292 

its classifications.  293 

In our case study, we paired our DNA metabarcoding assemblage data with individual specimens 294 

based on their sampling event (the same approach as the classification masks described in 295 

Section 2.4.2). After being input, features of the assemblage data were extracted using a single 296 

fully-connected layer with batch normalization and dropout. Specimen images were fed through 297 

the ResNet-50 architecture, which ultimately producing a flat feature layer. The image and 298 

assemblage feature layers were then concatenated and passed through another fully-connected 299 

layer with batch normalization and dropout before reaching the final classification layer. During 300 

training, both sides of the multimodal model were trained simultaneously using the Adam 301 

optimizer. 302 

To understand the effect that DNA detection accuracy has on classification performance, we ran 303 

three versions of the multimodal model using different types of assemblage data as input: (1) 304 

using the DNA-based assemblage data, (2) using the image-based assemblage data, and (3) using 305 

‘zero-filled’ assemblage data (all values in the assemblage data are set to zero). In all three 306 
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experiments the training and testing datasets used the same assemblage data type (i.e. DNA-307 

based, image-based, or zero-filled). All three experiments used the same overall model 308 

architecture as described in Figure 1b. The purpose of the image-based assemblage experiment 309 

was to simulate the results of a model where the DNA detections perfectly aligned with the 310 

ground truth labels (i.e. an oracle experiment). The purpose of the zero-filled assemblage 311 

experiment was to control for differences in model architecture when comparing the multimodal 312 

models to models trained without DNA-based assemblage data, as the zero-filled data would 313 

provide no informative value to the model. The zero-filled assemblage data had the same 314 

dimensions as the other assemblage data (17 values for each sampling event). The multimodal 315 

models took 105 seconds per epoch to train, and 16 seconds to run inference on the test dataset. 316 

2.5 Refining taxonomic granularity using DNA-based assemblage data 317 

A strength of DNA metabarcoding is its ability to produce species-level detections. The 318 

`modelbias` and `dnabias` functions in our CV.eDNA package take advantage of this strength to 319 

refine the taxonomic granularity computer vision model classifications by cross-referencing them 320 

with the DNA metabarcoding detections (Figure 2). When using either function in cases where 321 

the model classifications and DNA metabarcoding detections agree on the presence of a class, 322 

the granularity of the classification improves until the number of subtaxa detected by the DNA 323 

metabarcoding was greater than 1 or the granularity reached species-level (Figure 2a,b). The 324 

functions differ in cases where the model classifications and DNA detections disagree on the 325 

presence of a class classified by the model. The model-biased method of the `modelbias` 326 

function is simple. In cases where the model and DNA metabarcoding disagree, the model 327 

classification remains unchanged (Figure 2c). When using the DNA-biased method of the 328 

`dnabias` function, the hierarchical label of the classified specimen is cross referenced with the 329 
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DNA metabarcoding hierarchical labels of the sampling event (Figure 2d, Table S.1, Table S.2). 330 

Starting from the original classification level, the granularity of the label is coarsened until an 331 

agreement between the model and DNA metabarcoding is reached. The taxonomic name at this 332 

level becomes an intermediate label, which is refined until the number of subtaxa detected by the 333 

DNA metabarcoding is greater than 1 or the granularity reached species-level. 334 

To test the effectiveness of each method, we applied the model-biased and DNA-biased methods 335 

to the classifications of our DNA multimodal fusion model. A vignette for these methods can be 336 

found on our GitHub repository (Blair, 2024). 337 

 338 
Figure 2: Four methods of changing a label’s granularity using DNA detections. (a,b) When the 339 

classification label and DNA detections are in agreement about the presence of a class, granularity will be 340 

refined until the number of subtaxa detected by the DNA metabarcoding is > 1 or the classification 341 

reaches species level. (c) Under the model-biased approach, when the classification label and DNA 342 

metabarcoding do not agree on the presence of a class, the classification label remains unchanged. (d) 343 

Under the DNA-biased approach, when the classification label and DNA metabarcoding do not agree on 344 

the presence of a class, the granularity of the classification label is coarsened until a DNA detection for 345 

the class is found (“intermediate label”). The granularity of the intermediate label is then refined using the 346 

same rules as (a,b). 347 
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3. Results 348 

3.1 DNA metabarcoding precision and recall 349 

To generate the weights for the weighted mask, we calculated the DNA-based assemblage data’s 350 

precision and recall for each class using the image-based assemblage data as the ground truth. 351 

This calculation only included sampling events from the training dataset. Across the 17 predicted 352 

classes, recall ranged from 0.905 to 0.000, with an average recall of 0.570. The weight for a 353 

negative detection was 1 - recall, so negative detection weights ranged from 1.000 to 0.095, with 354 

an average of 0.430. Two classes (Opilioacarida and Zygentoma) were never detected by the 355 

DNA. Across the 15 classes detected by the DNA, the average precision was 0.761. The 356 

precision and recall values per class are reported in Table S.3. 357 

3.2 Classification accuracy 358 

Compared to the baseline model, the DNA multimodal fusion model improved accuracy by 2.2% 359 

(79.6% vs 77.4%; Table 1). However, the DNA multimodal fusion model’s accuracy was 1.0% 360 

lower than the zero-filled model’s accuracy (80.6%). This suggests that some of the performance 361 

improvements seen in the multimodal fusion models could come from changes to the model 362 

architecture. The naïve classification mask recorded the lowest classification metrics, with an 363 

accuracy 22.6% below the baseline model (54.8%), and a top-3 accuracy of only 64.0%.  364 

Our oracle experiments with image-based assemblage data performed better, with the 365 

multimodal fusion model reaching an average accuracy of 83.6% and a balanced accuracy (i.e. 366 

macro-averaged recall) of 0.713 (Table 2). The image-based naive mask accuracy was 25.8% 367 

better than the DNA-based naive mask, and 3.2% better than the baseline model. It also had the 368 
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highest top-3 accuracy across all experiments at 93.2%. Training dataset accuracy results for all 369 

non-mask experiments are reported in Table S.4. 370 

Table 1: Performance metrics for experiments trained using DNA-based assemblage data, other than the 371 

baseline model, which was trained only using images, and the ‘zero-filled’ experiment, which replaced all 372 

assemblage data values with zero to control for the impact of model architecture. Underlined scores 373 

indicate they are the highest for a given metric.  374 

Experiment Accuracy Balanced Accuracy Top-3 Accuracy 

Baseline 0.774 0.674 0.952 

Naive mask 0.548 0.509 0.640 

Weighted mask 0.764 0.666 0.950 

Multimodal fusion 0.796 0.680 0.957 

Multimodal fusion 

(zero-filled) 

0.806 0.670 0.952 

Table 2: Performance metrics for the oracle experiments using image-based assemblage data. These 375 

experiments used binary assemblage data taken from the ground truth specimen labels. Underlined scores 376 

indicate they are the highest for a given metric. 377 

Experiment Accuracy Balanced Accuracy Top-3 Accuracy 

Mask 0.806 0.690 0.959 

Multimodal fusion 0.836 0.713 0.963 

3.3 Taxonomic granularity 378 

Of the DNA multimodal fusion model classifications, 68.2% (3833/5617) were present in their 379 

corresponding sampling event’s DNA assemblage data. Nonetheless, both approaches for 380 

handling disagreements between the DNA and classification model (model-biased or DNA-381 

biased) improved the average taxonomic granularity of the classifications (Figure 3). Despite 382 

starting with no classifications finer than order-level, the DNA-biased approach resulted in 5.7% 383 

of classifications improving to species-level and the model-biased approach resulted in 5.1% of 384 
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the classifications improving to species-level. The DNA-biased approach was more effective 385 

overall at refining the granularity of classifications, with 72.2% of classifications becoming finer 386 

than their original classification, and 43.1% reaching at least family-level. In the model-biased 387 

approach, 51.7% of classifications improved their granularity, and 31.0% reached family-level or 388 

lower. When looking exclusively at classifications where the DNA assemblage data and 389 

multimodal fusion model classifications agreed on the presence of a class, 7.5% reached species 390 

level, 45.4% reached family-level or lower, and 75.7% became finer than their original 391 

classifications. Both the DNA-biased and model-biased approaches produced 89 unique final 392 

labels (Table S.5). 393 
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 394 

Figure 3: Sankey diagrams showing the change in taxonomic granularity before (left) and after (right) 395 

cross-referencing labels with the DNA detections. (a) DNA-biased approach. (b) Model-biased approach. 396 

(c) Results when the model classification and DNA detections agree on the presence of the labelled class.  397 
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4 Discussion 398 

Here we show that combining concurrent DNA metabarcoding assemblage data with computer 399 

vision can improve the accuracy and taxonomic granularity of computer vision classifications. 400 

Unlike most classification pipeline enhancements which only focus on improving the ability to 401 

classify classes on which it was trained (“known classes”), this approach adds the ability for the 402 

pipeline to infer classifications beyond the model’s usual taxonomic scope (“unknown classes”). 403 

Our methods could be applied to any study system where images and DNA metabarcoding data 404 

are collected concurrently, provided that the practitioners have labelled data to train their own 405 

classification model. To thoroughly explore the benefits and implications of our hybrid approach, 406 

we focused on the following two research questions.  407 

4.1 How does DNA metabarcoding accuracy affect specimen classification accuracy? 408 

The effect of metabarcoding accuracy on classification accuracy differed between the 409 

classification masks and the multimodal fusion models, illuminating a key difference between 410 

them: classification masks (as used in this study) do not take class co-occurrence into 411 

consideration, whereas the multimodal models do. Put another way, in a classification mask the 412 

only factor that directly influences the weight given to a class is the presence or absence of the 413 

class itself. Conversely, the neural networks of multimodal fusion models—with their fully-414 

connected structure—allow the presence or absence of all classes to holistically influence each 415 

class’s classification probability. This allows the model to use patterns of class co-occurrence to 416 

inform its classification decisions.  417 

The different mechanisms used by classification masks and multimodal models are best 418 

demonstrated in Table 2, where the assemblage data was derived from the ground-truth image 419 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2025. ; https://doi.org/10.1101/2024.09.02.610558doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.02.610558
http://creativecommons.org/licenses/by/4.0/


 

23 

 

labels. In the classification mask, the model’s original classifications were exclusively based on 420 

image data, and any classifications that did not match their respective assemblage data were 421 

reclassified as the class with the highest softmax score that was present in the specimen’s 422 

assemblage. Given that the assemblage data was derived from the ground truth labels, this mask 423 

acted as a sieve that filtered out any classes that could not possibly be the correct classification 424 

based on the assemblage data. As a result, it could only have a positive impact on accuracy. 425 

However, despite this, the multimodal fusion model still scored higher on all three metrics 426 

measured (top-1 accuracy, balanced accuracy, and top-3 accuracy). This implies that the 427 

multimodal fusion model was not just using the assemblage data as a filter, but that it provided 428 

additional contextual information (such as class co-occurrence or class exclusion) that further 429 

improved accuracy. Thus, due to the multimodal fusion model’s ability to holistically evaluate 430 

occurrence data, and as illustrated through its superior performance compared to classification 431 

masks even under ideal conditions, multimodal fusion models are likely to be preferable in most 432 

use cases. This conclusion is reinforced by the results of Table 1, where both naïve and weighted 433 

masks showed negative effects on all classification performance metrics when the DNA-based 434 

assemblage data contained substantial amounts of error. 435 

4.2 What are the strengths and limitations of each granularity refinement method? 436 

Here we proposed two approaches for cross-referencing DNA metabarcoding data to achieve the 437 

novel ability of refining the taxonomic granularity of computer vision classifications. The two 438 

approaches differ in how they resolve disagreements between the detections of the DNA 439 

metabarcoding and computer vision classifications, with the model-biased approach favouring 440 

the computer vision classifications, and the DNA-biased approach favouring the DNA 441 

detections. As such, each approach has its own set of advantages and limitations.  442 
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Through the ability to coarsen granularity before refining it, the DNA-biased method can make 443 

classifications outside of the taxonomy of the original classification model (Figure S.5). 444 

Explained another way, the model-biased approach and traditional hierarchical classifiers (e.g. 445 

Badirli et al., 2023) can only adjust classifications “vertically” (i.e. to supertaxa or subtaxa of the 446 

original classifications), but the DNA-biased approach can also adjust classifications “laterally” 447 

to out-of-distribution taxa through a combination of classification coarsening and refining. 448 

Classification of out-of-distribution taxa is usually only possible using feature embedding 449 

learning methods such as zero-shot learning (Badirli et al., 2021). An illustrative example of this 450 

comes from the DNA-biased approach’s detection of taxa within the insect order Psocodea (e.g. 451 

Valenzuela flavidus; Table S.5). As Psocodea was not included as a class in our model, and our 452 

model’s finest taxonomic granularity was order-level, Psocodea’s branch of the taxonomy was 453 

only accessible through a “lateral” taxonomic adjustment (Figure S.5). As such, it was only 454 

detected by the DNA-biased approach, and not the model-biased approach (Table S.5). In theory, 455 

this extends the range of possible classifications to the full taxonomic scope of the genetic 456 

reference database being used (e.g. GenBank, Barcode of Life, etc.) (Ratnasingham and Hebert, 457 

2007; Sayers et al., 2024). In practice, it is likely best to self-impose limits on how much the 458 

DNA-biased method can coarsen granularity. In our case we limited ourselves to phylum, as we 459 

were only interested in classifications within our three focal phyla. 460 

While it does not have the same potential taxonomic scope of the DNA-biased approach, an 461 

advantage of the model-biased approach is that the taxonomic granularity of the final 462 

classification cannot be coarser than the original classification. Applied to the DNA multimodal 463 

fusion model classifications, 9.9% of all classifications became coarser when the DNA-biased 464 

method was used (Figure 3). While the DNA-biased method classified more specimens at 465 
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family-level or finer (43.1% vs 31.0%), the ability to coarsen granularity resulted in more 466 

classifications above order-level (11.7% vs 6.4%). 467 

Even when granularity does not reach species, classifications that match with the DNA-based 468 

assemblage data still provide more information than what is typically output from a classification 469 

model. This is because we can also see the number and identity of subtaxa that the specimen 470 

could be according to the DNA metabarcoding detections. For example, if the DNA 471 

metabarcoding detected three species of the cricket genus Gryllus in a sample, we could say the 472 

label of a specimen that would otherwise be classified simply as “Gryllus indet.” is actually one 473 

of three possible species of Gryllus, as detected by the DNA metabarcoding (e.g. G. 474 

pennsylvanicus, G. rubens, or G. veletis). This might also be useful for future developments to 475 

these methods, as the number of subtaxa detected by the DNA metabarcoding could be used to 476 

inform clustering algorithms that separate the specimens into morphotaxa.  477 

Of course, the granularity of classifications matters little if they are not accurate. A caveat of our 478 

study is that we cannot verify the accuracy of granularity-refined classifications, as they are at 479 

lower taxonomic levels than our ground truth (human-classified) labels. However, we know that 480 

our classification models were more accurate than the DNA assemblage data when compared to 481 

our ground-truth labels. Thus, the DNA-biased method of refining granularity will likely add 482 

more error to the classifications than the model-biased approach. When deciding between the 483 

two methods, this is likely to be a determining factor: does the computer vision model or DNA 484 

metabarcoding contain more error? 485 

4.3 Caveats and areas for future exploration 486 
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In an applied context, we cannot definitively conclude that image-DNA multimodal fusion 487 

models as we present here improve specimen classification accuracy. This is primarily due to the 488 

high rates of disagreement (or “error”) between our DNA metabarcoding detections and image-489 

based detections. When comparing our three multimodal fusion experiments, the zero-filled 490 

experiment had a top-1 accuracy 1.0% higher than the DNA-based assemblage data experiment, 491 

but 3.0% less than the oracle experiment. This suggests that in an ideal situation where the DNA-492 

based assemblage data has low amounts of error (i.e. it is more similar to the image-based 493 

assemblage data), image-DNA multimodal fusion models will positively impact classification 494 

accuracy. However, when the DNA-based assemblage data contains substantial error, differences 495 

in performance between the baseline and multimodal fusion models likely arise from changes in 496 

the model’s architecture. 497 

Reconciling genetic-based and morphology-based data—the two chief methods for invertebrate 498 

biodiversity monitoring—is a pressing need as previous studies have shown that assemblages 499 

determined by visual classification usually differ from assemblages determined using DNA 500 

metabarcoding. For example, Emmons et al. (2023) found that NEON benthic macroinvertebrate 501 

samples classified by taxonomists only shared 59% of order-level detections with DNA 502 

metabarcoding data derived from homogenized blends of the same samples. Similar results have 503 

also been produced in other studies comparing metabarcoding methods to morphologic 504 

identification (Remmel et al., 2024; Salis et al., 2024). Marquina et al., (2019) also found that 505 

different DNA sampling protocols can produce inconsistent assemblage data, as DNA 506 

metabarcoded from ethanol vs homogenized blends of the same samples yielded significantly 507 

different assemblage data, with both methods detecting taxa not detected by the other. Despite 508 

these challenges, solutions to improve invertebrate detections using DNA metabarcoding are 509 
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being investigated. Proposed solutions range from changes in sampling methodology (e.g. 510 

strategically subsetting bulk samples; (Remmel et al., 2024) to improvements in the 511 

completeness of publicly available DNA reference databases (Salis et al., 2024). For the image-512 

DNA multimodal fusion methods we propose here to be maximally effective, advances will need 513 

to be made in DNA metabarcoding methodology to limit false positive and false negative 514 

detections. 515 

Beyond DNA metabarcoding accuracy, there are likely other factors that can impact the efficacy 516 

of our methods, such as the alpha and beta diversity of the sample assemblages. Lower alpha 517 

diversity and higher beta diversity should yield models with greater classification performance. 518 

Higher beta diversity would improve classification performance because the composition of the 519 

assemblages would be more heterogeneous, which is required for learnable patterns to emerge in 520 

the data. For example, our zero-filled assemblage experiment used data that was completely 521 

homogenous, as every sampling event had the same assemblage data, thus allowing no learnable 522 

patterns to emerge from the assemblage data. Conversely, lower alpha diversity would improve 523 

classification performance because more classes to be filtered out by the model. This is partially 524 

demonstrated by comparing the results of Blair et al. (2020) to the results we present here. In 525 

their study, which built classification models for NEON’s carabid beetles, the authors applied 526 

classification masks to their models based on the detected ground beetle assemblages at each 527 

sampling site. On average, 2.93 out of 25 potential species (11.7%) were detected per site, 528 

resulting in an accuracy improvement of 10.9% (84.7% → 95.6%) after applying the 529 

classification masks. Comparatively, our image-based assemblages detected an average of 9.09 530 

out of 17 potential classes (53.5%) per sampling event. When compared to the baseline model, 531 

this resulted in an accuracy improvement of 3.2% when using the classification mask and 6.2% 532 
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in the multimodal fusion model (Table 1, Table 2). Sample alpha diversity also has an impact on 533 

the efficacy of the classification granularity refinement step. Higher alpha diversity increases the 534 

odds that related taxa could present in the same sample, which can force our granularity 535 

refinement methods to stop at a coarser taxonomic rank (Figure 2). Thus, sampling methods that 536 

increase sample beta diversity (e.g. finer-grain class labels; Terlizzi et al., 2009) and reduce 537 

sample alpha diversity (e.g. smaller sample size; Chiu, 2023) will likely increase the efficacy of 538 

image-DNA metabarcoding multimodal fusion classification pipelines. 539 

4.4 Broader applications and implications 540 

In this study, we used assemblage data derived from DNA metabarcoding to improve computer 541 

vision classifications of terrestrial invertebrates. Previous studies (Badirli et al., 2023; Gong et 542 

al., 2024) have paired images of specimens with their DNA barcode sequence as input for 543 

multimodal classification models. However, this technique cannot be applied to DNA 544 

metabarcoding data because samples are metabarcoded in bulk, so the metabarcoded sequences 545 

cannot be paired with individual specimens. Our methods overcome this challenge by converting 546 

DNA metabarcoding data to binary assemblage data, which can then be input to a multimodal 547 

classification model. This advancement has several practical implications, as DNA 548 

metabarcoding’s ability to process bulk samples means that it is more time efficient, less 549 

expensive, and produces less waste than individual specimen barcoding (Gueuning et al., 2019).  550 

Our method’s ability to refine classification granularity, which is typically not possible in 551 

computer vision, could improve the feasibility of building broad-scope, fine-grain classification 552 

models (e.g. models spanning entire classes or phyla and capable of producing species-level 553 

classifications). This typically requires vast amounts of training data, as training examples need 554 
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to be provided for every species. Using the approach that we present here, classifiers could be 555 

trained at coarser taxonomic levels such as order or family and still have the potential to produce 556 

species-level classifications. This would decrease the number of classes in the model, and thus 557 

data needed to train it, by orders of magnitude. Hence, the synergy between DNA metabarcoding 558 

and computer vision outlined in this study paves the way for new possibilities in computer vision 559 

classification of taxa, with the potential for improved accuracy and granularity with far less data 560 

dependency. 561 
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