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Abstract

1.

Automated invertebrate classification using computer vision has shown significant
potential to improve specimen processing efficiency. However, challenges such as
invertebrate diversity and morphological similarity among taxa can make it difficult to
infer fine-scale taxonomic classifications using computer vision. As a result, many
invertebrate computer vision models are forced to make classifications at coarser levels,
such as at family or order.

Here we propose a novel modular method to combine computer vision and bulk DNA
metabarcoding specimen processing pipelines to improve the accuracy and taxonomic
granularity of individual specimen classifications. To improve specimen classification
accuracy, our methods use multimodal fusion models that combine image data with
DNA-based assemblage data. To refine the taxonomic granularity of the model’s
classifications, our methods cross-references the classifications with DNA metabarcoding
detections from bulk samples. We demonstrated these methods using a continental-scale,
invertebrate bycatch dataset collected by the National Ecological Observatory Network.
We also introduce the CV.eDNA R package, which aims to assist practitioners looking to
implement our methods.

Using our methods, we reached a classification accuracy of 79.6% across the 17 taxa
using real DNA assemblage data, and 83.6% when the assemblage data was “error-free”,
resulting in a 2.2% and 6.2% increase in accuracy when compared to a model trained
using only images. After cross-referencing with the DNA metabarcoding detections, we
improved taxonomic granularity in up to 72.2% of classifications, with up to 5.7%

reaching species-level.
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4. By providing computer vision models with coincident DNA assemblage data, and
refining individual classifications using DNA metabarcoding detections, our methods the
potential to greatly expand the capabilities of biological computer vision classifiers. Our
methods allow computer vision classifiers to infer taxonomically fine-grained
classifications when it would otherwise be difficult or impossible due to challenges of
morphologic similarity or data scarcity. These methods are not limited to terrestrial
invertebrates and could be applied in any instance where image and DNA metabarcoding

data are concurrently collected.
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1. Introduction

Computer vision has the potential to transform invertebrate ecology by automating estimations
of invertebrate abundance, biomass, and diversity (Hoye et al., 2021; Schneider ef al., 2022;
Blair et al., 2024). However, accurately classifying invertebrate species using computer vision is
challenging. This is partly due to the sheer diversity of invertebrates, as there are an estimated
7.5 million (~1.5 million named) terrestrial invertebrates species globally (Stork, 2018). This has
led most invertebrate classification models to opt for coarser taxonomic granularity (e.g. order-
level instead of species-level classifications) with relatively few unique classification groups
(usually <50; (Arje et al., 2020; Blair et al., 2022; Schneider et al., 2022). However, ecology
studies can involve hundreds or thousands of species, which poses a challenge for simpler

machine vision techniques.

One way computer vision models have overcome the challenge of handling many thousands or
millions of classification labels is by including additional data modalities such as contextual
metadata (e.g. collection location) in computer vision models. The mobile app iNaturalist uses
this spatiotemporal data in combination with user-submitted photos to classify nearly 80,000 taxa
across the tree of life (Leary et al., 2023). Other studies have also found substantial
improvements to classification accuracy with multimodal models that include both metadata and
images (Berg ef al., 2014; Terry, Roy and August, 2020; Blair et al., 2022). However, despite the
potential improvements in accuracy, there are several pitfalls to consider when including
spatiotemporal metadata in a computer vision model. For one, spatiotemporal metadata is a
lagging indicator of species habitat occupancy (i.e. the presence or absence of a species at a
given place and time), and as such it is susceptible to data drift over time (Friedland, 2024). That

is, spatiotemporal distributions of taxa change over time, but computer vision models can only
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learn from past data. Unless a computer vision model is updated frequently with more recent
data, the species range distributions it has learned may quickly become outdated. Finally, when
dealing with many machine learning classes, spatiotemporal metadata does not solve the
challenge of gathering enough training data to sufficiently train a computer vision model (Beery
et al., 2020). In short, studies that incorporate spatiotemporal metadata have shown that
supplemental, non-visual data can improve ecological computer vision models, but
spatiotemporal metadata itself has several potential drawbacks. In this study, we leverage an
alternative data stream that does not pose the same challenges associated with spatiotemporal

metadata: DNA metabarcoding.

DNA metabarcoding is an established tool in ecological research that allows for multiple species
to be identified from a single sample using high-throughput sequencing (Taberlet et al., 2012;
Liu et al., 2020). Using this method, DNA can be collected from the environment (¢eDNA) or
from preservative media (e.g. ethanol in insect bycatch samples), sequenced, and then used to
infer ecological metrics such as species richness and community composition (Marquina ef al.,
2019; Weiser et al., 2022). Due to its improved cost-effectiveness, DNA metabarcoding is
becoming more frequently used in large-scale studies where traditional morphological
identification techniques cannot keep up financially or logistically (Liu et al., 2020). However,
despite being an excellent tool for detecting occurrence at fine taxonomic granularity (even
below species-level; Stewart and Taylor, 2020), DNA metabarcoding cannot be used to reliably
estimate species abundance or biomass (Lamb et al., 2019). Instead, eDNA metabarcoding is
more suitable for binary presence/absence detections of species. Additionally, while DNA
metabarcoding is generally reliable for taxonomic identifications, it is not exempt from false

positive and false negative detections (Guillera-Arroita ef al., 2017). Some examples of how this
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78  may occur include DNA contamination and primer mis-priming (false-positives), or DNA

79  degradation and insufficient sampling effort (false-negatives) (Guillera-Arroita et al., 2017; Liu
80  etal.,2020). Therefore, while DNA metabarcoding offers considerable advantages for

81  biodiversity assessment (e.g., species inventories, species richness) its limitations often

82  necessitate the use of complementary indicators such as visual observations for other metrics

83  (e.g., abundance, biomass) (Schneider et al., 2022).

84  Given DNA metabarcoding’s ability to produce reliable fine-scale community composition data,
85 and computer vision’s ability to measure abundance and biomass at coarse taxonomic

86  granularity, several studies have called for a synergistic classification pipeline that takes

87  advantage of the strengths of each tool (Schneider et al., 2022; Sys et al., 2022; Badirli ef al.,

88  2023). In theory, such a pipeline could leverage DNA metabarcoding’s fine taxonomic

89  granularity against computer vision’s ability to infer specimen-level characteristics (identity,

90  morphology, etc.) to make ecological inferences that would not be possible using either data

91  stream on their own. DNA might also be a favourable alternative to spatiotemporal metadata, as
92  itis a more direct and coincident indicator of species habitat occupancy, likely making it more
93  resistant to data drift over time (Taberlet et al., 2018). Despite the potential benefits of

94  multimodal image-DNA classification models for ecological research, few studies have explored
95  this approach. Additionally, proposed hybrid classification pipelines either leave the DNA and
96  image data streams separate (Sys et al., 2022), or sequence specimens individually, and thus do
97  not take advantage of metabarcoding’s ability to process bulk samples (Badirli et al., 2023; Gong

98  etal.,2024).

99  Here we present a novel modular method for classifying invertebrate taxa that integrates DNA

100  metabarcoding and computer vision. The objective of this hybrid approach is to improve the
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101  accuracy and taxonomic granularity of computer vision classifications by adding concurrent
102  community assemblage data derived from DNA metabarcoding into a bulk specimen

103 classification pipeline (Figure 1). The combination of DNA and image data occurs twice

104  throughout the pipeline: first during classification inference in the computer vision model, and
105  then again as a post-processing step for the model’s classifications. While developing this

106  approach, we ask two primary questions: (1) How does error in DNA metabarcoding data affect
107  the accuracy of the computer vision classification model? (2) What are the strengths and

108 limitations of different classification granularity refinement methods? In addition to the case
109  study we present here, we have also developed a GitHub repository to allow our methods to
110  easily be adapted to other study systems (Blair, 2024). The repository introduces the CV.eDNA
111 R package, which contains functions that assist with the implementation of our methods. The
112 repository also includes demonstrative vignettes that walk through the data preparation, model

113 training, and classification granularity refinement steps.
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115  Figure 1: An overview of our methods for combining computer vision and DNA metabarcoding to

116  improve the accuracy and taxonomic granularity of classifications. (a) Images and DNA metabarcoding
117  data are collected concurrently from bulk samples. (b) Images and DNA assemblage data are used as
118  input for a multimodal classification model. The features of the image input are extracted using a

119  convolutional neural network. The DNA assemblage data provides presence/absence information for the
120 model’s known classes and is input as a binary vector into a dense neural network. The image features
121 and the DNA features are concatenated and passed through one more dense layer before final

122 classification in the softmax layer. The visual proportions of each layer have been simplified to ease
123 interpretation and are not meant to be interpreted as 1:1 representations of the exact layer sizes. (¢) By
124 interpreting the DNA metabarcoding detections hierarchically and cross-referencing them with the

125  model’s classifications, the taxonomic granularity of the classifications can be refined.

126 2. Methods

127 2.1 Data collection

128  2.1.1 Specimen collection

129  Each year, the National Ecological Observatory Network (NEON) performs standardized pitfall
130  trap array sampling across the United States, including Alaska, Hawaii, and Puerto Rico

131  (Hoekman et al. 2017). The focal taxon of the pitfall trap array project are ground beetles
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132 (Coleoptera: Carabidae), which are collected, identified, and counted by NEON staff members
133 once every two weeks during the growing season (defined as “the weeks when average minimum
134 temperatures exceed 4 °C for 10 days and ending when temperatures remain below 4 °C for the
135  same period”, Kaspari et al., 2022). The remaining pitfall trap contents are set aside as

136  ‘Invertebrate Bycatch’ and archived in 95% ethanol-filled 50 mL centrifuge tubes. Hereon, a

137  single collection period from a pitfall trap plot is referred to as a “sampling event”.

138  The invertebrate bycatch specimens used in this research were taken from 56 NEON trap plots
139  from 27 sites (usually two plots per site; Figure S.1, S.2). Generally, we used three sampling
140  events per plot, selected at the beginning, middle, and end of each site's growing season. This
141  resulted in a total of 150 sampling events. All sampling events used here were collected in 2016
142 and processed in 2019. The focus of this project was to classify the invertebrate bycatch, so

143 ground beetles and non-invertebrate specimens were not considered.

144  2.1.2 Imaging

145  The contents of each S0mL centrifuge tube were spread out across a 20.32 cm X 30.48 cm (87 X

146 12”) white ceramic tile and photographed at a resolution of 729 pixels per mm?, as described by
147  Weiser et al., 2021 (Figure S.3). Using the FIJI implementation of ImageJ (Schindelin et al.,

148  2012), each specimen was detected and cropped to its bounding box to produce a final image.

149  2.1.3 DNA extraction and metabarcoding

150  The DNA metabarcoding data used in this study was collected for Weiser et al., 2022, which
151  used the same sampling events described in Section 2.1.1. In brief, DNA metabarcoding was

152  conducted on a per-tube basis (Figure S.1). Ethanol from each falcon tube was filtered
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153  individually (i.e., one filter per tube) and DNA was extracted from the filters using established
154  protocols (Weiser et al., 2022). The cytochrome c oxidase I (COI) barcode region (141-254 base
155  pairs) was then amplified using a two-step polymerase chain reaction (PCR) protocol and

156  sequenced on an Illumina MiSeq. Three COI primers were used: 157, LCO, and Lep (Rennstam
157  Rubbmark et al., 2018, 2018; Hajibabaei et al., 2019; Weiser et al., 2022). Sequences were

158  clustered into Operational Taxonomic Units (OTUs) and each OTU was assigned a taxonomic
159  classification using NCBI BLASTn (Altschul et al., 1990) and Integrated Taxonomic

160  Information System (ITIS) (U.S. Geological Survey, 2013). Only sequences with > 97%

161  similarity between the OTU consensus sequence and the BLASTn search were used. See Weiser

162  etal., 2022 for the full DNA extraction and metabarcoding methods.

163  Intotal, across all sampling events, there were 10,212 DNA metabarcoding detections. To align
164  the DNA data with the imaging data, we removed any DNA detections from sampling events not
165 included in the image dataset, as well as duplicate detections (i.e. multiple detections of the same
166  taxon in a single sampling event, for example due to amplification using multiple primers). This
167  yielded a final DNA metabarcoding dataset with 3,361 detections and 1,212 unique taxa,

168  primarily consisting of family (369 detections; 85 unique), genus (468 detections; 183 unique),

169  and species-level (2,471 detections; 922 unique) detections.

170 2.2 Data and labelling

171  2.2.1 Computer vision class labels

172 The taxonomic scope of the image and DNA metabarcoding data spanned three invertebrate
173 phyla: Annelida, Arthropoda, and Mollusca. The specimen images were labelled by a single

174 technician to the best of their ability (as described in Blair et al., 2022). The final labels used for

9
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175  our study ranged from order to phylum-level. Classes with a taxonomic granularity coarser than
176  order-level but with no subtaxa present in the dataset (e.g. Phylum: Annelida) were included.

177  Specimens labelled as nested classes at a taxonomic granularity coarser than order-level

178  (Phylum: Arthropoda, Class: Insecta, and Class: Arachnida) were excluded, as these classes were
179  primarily composed of “low quality” specimens (highly degraded, low image quality, partial

180  specimens, etc.) that could not confidently be assigned finer level labels. Classes with fewer than
181 100 specimens in the dataset were also excluded. This resulted in a final image dataset with a
182  total of 36,998 specimens across 17 machine learning classes (13 orders and one subclass, class,

183  subphylum, and phylum; Figure S.4).

184  2.2.2 Hierarchical labels

185  Hierarchical labels created by the “refhier’ and ‘longhier’ functions in the CV.eDNA package
186  contain taxonomic information at multiple levels (e.g. phylum to species) and can be assigned to
187  images and sampling events (Table S.1, Table S.2). These labels are used as input for the

188  classification granularity refinement methods (see Section 2.5).

189  In our case study, our image-based hierarchical labels contained taxonomic information at six
190  levels from phylum to order-level for individual specimens (Table S.1). Our DNA-based

191  hierarchical labels contained information at 13 levels from phylum to species for all DNA
192  metabarcoding detections in each sampling event (Table S.2). The levels in the DNA-based
193 hierarchical labels were phylum, subphylum, class, subclass, superorder, order, suborder,

194  infraorder, superfamily, family, subfamily, genus, and species.

195  2.2.3 Binary assemblage data

10


https://doi.org/10.1101/2024.09.02.610558
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.02.610558; this version posted August 21, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

196  The "get assemblage’ function in the CV.eDNA package generates binary assemblage data for
197  sampling events. This assemblage data can then be used as class priors or input features for

198  classification models (see Section 2.4). To generate this assemblage data, the function receives
199  DNA metabarcoding data or ground truth image metadata as input and outputs an n-element long
200  binary vector for each sampling event, where # is the number of classes known by the computer
201  vision model. If a given class is detected in a sampling event, its corresponding element is

202  assigned a score of 1, whereas it is assigned a score of 0 if it was not detected.

203  For our case study we generated two sets of binary assemblage data containing our 17 known
204  classes: one using detections from the image labels and one using detections from the DNA class

205 labels.

206 2.3 Training and testing data split

207  Quasi-replication occurs in machine learning datasets when the same or very similar data occur
208  in both the training and testing datasets. This violates the assumption of independence between
209 training and testing data and should be avoided to make valid inferences on the test data. The
210  DNA-based assemblage data presented a quasi-replication risk, as specimens from the same
211  sampling event would have the same assemblage data. To avoid quasi-replication, we split the
212 training and testing such that all specimens from a given sampling event were only included in
213 either the training or testing data. We set our target training:testing ratio to 85:15, and we

214  randomly added sampling events to the test dataset until the test dataset contained >15% of the
215  total number of specimens. The final train:test split was 31,381: 5,617 specimens and 122:28

216  sampling events.

217 2.4 Classification models

11
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218  The objective of all the classification models was to accurately classify the class labels of

219  individual specimen photos. Classification masks (Section 2.4.2) and multimodal fusion

220  approaches (Section 2.4.3) were used to assess how classification accuracy changes when DNA -
221  based assemblage data was added to the specimen classification pipeline. Both the classification
222 masks and multimodal fusion models included “oracle” experiments, which used image-based
223  assemblage data to simulate the performance of these methods under optimal conditions. We
224 trained each classification model until the test dataset loss had not improved for 10 epochs (this
225  does not include the classification masks, which did not go through the training process).

226  Performance of each classification model was assessed using the original image labels as a

227  ground truth. All code required for running these models can be found in the “Model Scripts”
228  subdirectory of our GitHub repository (Blair, 2024). All models were trained using an AMD

229  Ryzen 7 5800X CPU, an NVIDIA GeForce RTX 4070 Ti GPU and 32 GB of RAM.

230 2.4.1 Baseline model

231  To evaluate model performance in the absence of DNA-based assemblage data, we trained a

232 ResNet-50 (He et al., 2016) as a baseline model using only image data. The model was pre-

233 trained using the ImageNet weights from He et al. (2016), and then fine-tuned using the NEON
234 invertebrate bycatch image data. The ImageNet classification layer was removed and replaced
235  with a new classification layer for our 17 classes. A batch normalization and dropout step were
236  also implemented before the final classification layer. The model was trained using the Adam
237  optimizer. The baseline model took 45 seconds per epoch to train, and 7 seconds to run inference

238  on the test dataset.

239  2.4.2 Classification masks

12
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240  If a priori probabilities for classes in a classification model are known, the outputs of the model
241  can be adjusted according to those probabilities to improve classification accuracy (Saerens,

242 Latinne and Decaestecker, 2002). We implement two variations of this technique which we call
243 “Naive masks” (Section 2.4.2.1) and “Weighted Masks” (Section 2.4.2.2), whereby the class
244 priors are derived from a sample’s DNA metabarcoding assemblage data. To apply classification
245  masks to our case study, each test dataset specimen’s classification probabilities (i.e. softmax
246 layer values) from the baseline model were multiplied by their sampling event’s classification
247  mask values. The class with the highest classification probability after applying the mask was

248  used as the final classification.

249  2.4.2.1 Naive mask

250  When using a naive mask, the softmax layer values for a given specimen are multiplied by the
251  specimen’s sampling event’s binary DNA metabarcoding assemblage data (generated using the
252 ‘get assemblage” function). Thus, any classes not detected by the DNA metabarcoding in a
253 given sampling event have their respective softmax values set to 0, whereas the remaining

254  classes are unaffected. Naive masks essentially operate as a “hard filter”, where only classes

255  detected by the DNA metabarcoding can be classified by the model.

256  2.4.2.2 Weighted mask

257  “Hard” masks like the naive mask, which set the softmax values of undetected classes to 0,

258  assume the DNA metabarcoding data is error-free. However, in reality, DNA metabarcoding can
259  have false positive and/or false negative detections (Taberlet et al., 2018). A weighted mask is a
260  “softer” version of a naive mask that allows classes not detected by the DNA metabarcoding to

261  still be classified. The weights for a weighted mask can be generated using the ‘get weights’

13
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262  function of the CV.eDNA package, and are calculated using the metabarcoding’s true positive
263  rate (precision) and false negative rate (1 - recall) for each class. The DNA metabarcoding

264  precision and recall are calculated by comparing the DNA-based assemblage data to ground-truth
265  assemblage data (e.g. manually assigned image-based assemblage data). The weight that is

266  assigned to any given class in a sample is determined by whether or not the class was detected by
267  the DNA metabarcoding. Classes which have their DNA detected are assigned their

268  metabarcoding precision value, while classes which do not have their DNA detected are assigned

269  their 1 —recall value.

270  2.4.2.3 Oracle mask

271  As an oracle experiment to simulate a scenario where the DNA detections were in perfect

272  alignment with the image-based detections, we created a naive classification mask using the

273  image-based assemblage data. This mask was then applied to the classification output of the
274  baseline model. We did this to provide an upper-bound for the classification mask accuracy, and
275  to understand how DNA detection accuracy impacts specimen classification accuracy when

276  using classification masks.

277  2.4.3 Multimodal fusion

278  In deep learning, multimodal models can receive data from multiple modalities as input to

279  inform their classifications (Ramachandram and Taylor, 2017). For example, previous studies
280  have described multimodal classification models that receive images and raw DNA barcode

281  sequence data for individual specimens (Badirli ef al., 2023; Gong et al., 2024). However, no
282  previous studies have described a multimodal model that combines specimen images with DNA
283  metabarcoding data from bulk samples. We achieve this by inputting DNA metabarcoding data

14


https://doi.org/10.1101/2024.09.02.610558
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.02.610558; this version posted August 21, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

284  as tabular binary assemblage data, which is then combined with specimen image features using
285  intermediate fusion (Figure 1b). Intermediate fusion is an approach to building multimodal

286  models where data from each modality is input separately. The features from each input are then
287  extracted and concatenated prior to classification (Boulahia ef al., 2021). This allows the model
288  to contextualize a specimen’s image features with class presence-absence data from the

289  specimen’s sample. However, similar to the weighted mask approach (Section 2.4.2.2), the DNA
290  metabarcoding data does not act as a “hard filter”, and the model can still make classifications
291  not detected by DNA metabarcoding. Additionally, because the assemblage data contains all

292  class detections for a given sample, the model can learn patterns of class co-occurrence to inform

293 its classifications.

294  In our case study, we paired our DNA metabarcoding assemblage data with individual specimens
295  based on their sampling event (the same approach as the classification masks described in

296  Section 2.4.2). After being input, features of the assemblage data were extracted using a single
297  fully-connected layer with batch normalization and dropout. Specimen images were fed through
298  the ResNet-50 architecture, which ultimately producing a flat feature layer. The image and

299  assemblage feature layers were then concatenated and passed through another fully-connected
300 layer with batch normalization and dropout before reaching the final classification layer. During
301 training, both sides of the multimodal model were trained simultaneously using the Adam

302  optimizer.

303  To understand the effect that DNA detection accuracy has on classification performance, we ran
304  three versions of the multimodal model using different types of assemblage data as input: (1)
305  using the DNA-based assemblage data, (2) using the image-based assemblage data, and (3) using

306  ‘zero-filled’ assemblage data (all values in the assemblage data are set to zero). In all three
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307  experiments the training and testing datasets used the same assemblage data type (i.e. DNA-
308  based, image-based, or zero-filled). All three experiments used the same overall model

309 architecture as described in Figure 1b. The purpose of the image-based assemblage experiment
310  was to simulate the results of a model where the DNA detections perfectly aligned with the

311  ground truth labels (i.e. an oracle experiment). The purpose of the zero-filled assemblage

312 experiment was to control for differences in model architecture when comparing the multimodal
313  models to models trained without DNA-based assemblage data, as the zero-filled data would
314 provide no informative value to the model. The zero-filled assemblage data had the same

315  dimensions as the other assemblage data (17 values for each sampling event). The multimodal

316  models took 105 seconds per epoch to train, and 16 seconds to run inference on the test dataset.

317 2.5 Refining taxonomic granularity using DNA-based assemblage data

318 A strength of DNA metabarcoding is its ability to produce species-level detections. The

319  "modelbias’ and ‘dnabias’ functions in our CV.eDNA package take advantage of this strength to
320  refine the taxonomic granularity computer vision model classifications by cross-referencing them
321  with the DNA metabarcoding detections (Figure 2). When using either function in cases where
322 the model classifications and DNA metabarcoding detections agree on the presence of a class,
323  the granularity of the classification improves until the number of subtaxa detected by the DNA
324  metabarcoding was greater than 1 or the granularity reached species-level (Figure 2a,b). The
325  functions differ in cases where the model classifications and DNA detections disagree on the
326  presence of a class classified by the model. The model-biased method of the ‘'modelbias’

327  function is simple. In cases where the model and DNA metabarcoding disagree, the model

328  classification remains unchanged (Figure 2¢). When using the DNA-biased method of the

329  ‘“dnabias’ function, the hierarchical label of the classified specimen is cross referenced with the

16


https://doi.org/10.1101/2024.09.02.610558
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.02.610558; this version posted August 21, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

330 DNA metabarcoding hierarchical labels of the sampling event (Figure 2d, Table S.1, Table S.2).
331  Starting from the original classification level, the granularity of the label is coarsened until an
332  agreement between the model and DNA metabarcoding is reached. The taxonomic name at this
333  level becomes an intermediate label, which is refined until the number of subtaxa detected by the

334  DNA metabarcoding is greater than 1 or the granularity reached species-level.

335  To test the effectiveness of each method, we applied the model-biased and DNA-biased methods
336  to the classifications of our DNA multimodal fusion model. A vignette for these methods can be

337  found on our GitHub repository (Blair, 2024).

\:| Original label I:] Intermediate label |:| Final label |:| Detected by DNA Not detected by DNA
(a) Agreement (b) Agreement
Superorder Superorder
order order
Famity Family
Genus Genus
Species Species [P_pensyivanica] [ __P_bolfiana__| [ G rubens ]
(c) Model-biased (c) DNA-biased
Superorder Superorder
- C ! PR [ — , L
Order Order i _ Blattodea !
Family e Family _ Ectobiidae
Genus [ Genus L .B&Fciognfa}riai B
Species | L !

338
339  Figure 2: Four methods of changing a label’s granularity using DNA detections. (a,b) When the

340  classification label and DNA detections are in agreement about the presence of a class, granularity will be
341  refined until the number of subtaxa detected by the DNA metabarcoding is > 1 or the classification

342 reaches species level. (c) Under the model-biased approach, when the classification label and DNA

343 metabarcoding do not agree on the presence of a class, the classification label remains unchanged. (d)
344  Under the DNA-biased approach, when the classification label and DNA metabarcoding do not agree on
345  the presence of a class, the granularity of the classification label is coarsened until a DNA detection for
346  the class is found (“intermediate label”). The granularity of the intermediate label is then refined using the
347  same rules as (a,b).
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348 3. Results

349 3.1 DNA metabarcoding precision and recall

350 To generate the weights for the weighted mask, we calculated the DNA-based assemblage data’s
351  precision and recall for each class using the image-based assemblage data as the ground truth.
352 This calculation only included sampling events from the training dataset. Across the 17 predicted
353  classes, recall ranged from 0.905 to 0.000, with an average recall of 0.570. The weight for a

354  negative detection was 1 - recall, so negative detection weights ranged from 1.000 to 0.095, with
355  anaverage of 0.430. Two classes (Opilioacarida and Zygentoma) were never detected by the

356 DNA. Across the 15 classes detected by the DNA, the average precision was 0.761. The

357  precision and recall values per class are reported in Table S.3.

358 3.2 Classification accuracy

359  Compared to the baseline model, the DNA multimodal fusion model improved accuracy by 2.2%
360  (79.6% vs 77.4%; Table 1). However, the DNA multimodal fusion model’s accuracy was 1.0%
361  lower than the zero-filled model’s accuracy (80.6%). This suggests that some of the performance
362  improvements seen in the multimodal fusion models could come from changes to the model

363  architecture. The naive classification mask recorded the lowest classification metrics, with an

364  accuracy 22.6% below the baseline model (54.8%), and a top-3 accuracy of only 64.0%.

365  Our oracle experiments with image-based assemblage data performed better, with the
366  multimodal fusion model reaching an average accuracy of 83.6% and a balanced accuracy (i.e.
367 macro-averaged recall) of 0.713 (Table 2). The image-based naive mask accuracy was 25.8%

368  better than the DNA-based naive mask, and 3.2% better than the baseline model. It also had the
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369  highest top-3 accuracy across all experiments at 93.2%. Training dataset accuracy results for all
370  non-mask experiments are reported in Table S.4.
371  Table 1: Performance metrics for experiments trained using DNA-based assemblage data, other than the
372  baseline model, which was trained only using images, and the ‘zero-filled” experiment, which replaced all
373  assemblage data values with zero to control for the impact of model architecture. Underlined scores
374  indicate they are the highest for a given metric.
Experiment Accuracy Balanced Accuracy Top-3 Accuracy
Baseline 0.774 0.674 0.952
Naive mask 0.548 0.509 0.640
Weighted mask 0.764 0.666 0.950
Multimodal fusion 0.796 0.680 0.957
Multimodal fusion 0.806 0.670 0.952
(zero-filled)
375  Table 2: Performance metrics for the oracle experiments using image-based assemblage data. These
376  experiments used binary assemblage data taken from the ground truth specimen labels. Underlined scores
377  indicate they are the highest for a given metric.
Experiment Accuracy Balanced Accuracy Top-3 Accuracy
Mask 0.806 0.690 0.959
Multimodal fusion 0.836 0.713 0.963

378 3.3 Taxonomic granularity

379  Of the DNA multimodal fusion model classifications, 68.2% (3833/5617) were present in their
380  corresponding sampling event’s DNA assemblage data. Nonetheless, both approaches for

381  handling disagreements between the DNA and classification model (model-biased or DNA-

382  biased) improved the average taxonomic granularity of the classifications (Figure 3). Despite
383  starting with no classifications finer than order-level, the DNA-biased approach resulted in 5.7%

384  of classifications improving to species-level and the model-biased approach resulted in 5.1% of
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the classifications improving to species-level. The DNA-biased approach was more effective
overall at refining the granularity of classifications, with 72.2% of classifications becoming finer
than their original classification, and 43.1% reaching at least family-level. In the model-biased
approach, 51.7% of classifications improved their granularity, and 31.0% reached family-level or
lower. When looking exclusively at classifications where the DNA assemblage data and
multimodal fusion model classifications agreed on the presence of a class, 7.5% reached species
level, 45.4% reached family-level or lower, and 75.7% became finer than their original
classifications. Both the DNA-biased and model-biased approaches produced 89 unique final

labels (Table S.5).
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395  Figure 3: Sankey diagrams showing the change in taxonomic granularity before (left) and after (right)
396  cross-referencing labels with the DNA detections. (a) DNA-biased approach. (b) Model-biased approach.
397  (c) Results when the model classification and DNA detections agree on the presence of the labelled class.
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398 4 Discussion

399  Here we show that combining concurrent DNA metabarcoding assemblage data with computer
400  vision can improve the accuracy and taxonomic granularity of computer vision classifications.
401  Unlike most classification pipeline enhancements which only focus on improving the ability to
402  classify classes on which it was trained (“known classes”), this approach adds the ability for the
403  pipeline to infer classifications beyond the model’s usual taxonomic scope (“unknown classes”).
404  Our methods could be applied to any study system where images and DNA metabarcoding data
405  are collected concurrently, provided that the practitioners have labelled data to train their own
406  classification model. To thoroughly explore the benefits and implications of our hybrid approach,

407  we focused on the following two research questions.

408 4.1 How does DNA metabarcoding accuracy affect specimen classification accuracy?

409  The effect of metabarcoding accuracy on classification accuracy differed between the

410  classification masks and the multimodal fusion models, illuminating a key difference between
411  them: classification masks (as used in this study) do not take class co-occurrence into

412 consideration, whereas the multimodal models do. Put another way, in a classification mask the
413 only factor that directly influences the weight given to a class is the presence or absence of the
414  class itself. Conversely, the neural networks of multimodal fusion models—with their fully-
415  connected structure—allow the presence or absence of all classes to holistically influence each
416  class’s classification probability. This allows the model to use patterns of class co-occurrence to

417  inform its classification decisions.

418  The different mechanisms used by classification masks and multimodal models are best

419  demonstrated in Table 2, where the assemblage data was derived from the ground-truth image
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420  labels. In the classification mask, the model’s original classifications were exclusively based on
421  image data, and any classifications that did not match their respective assemblage data were

422  reclassified as the class with the highest softmax score that was present in the specimen’s

423  assemblage. Given that the assemblage data was derived from the ground truth labels, this mask
424  acted as a sieve that filtered out any classes that could not possibly be the correct classification
425  based on the assemblage data. As a result, it could only have a positive impact on accuracy.

426  However, despite this, the multimodal fusion model still scored higher on all three metrics

427  measured (top-1 accuracy, balanced accuracy, and top-3 accuracy). This implies that the

428  multimodal fusion model was not just using the assemblage data as a filter, but that it provided
429  additional contextual information (such as class co-occurrence or class exclusion) that further
430  improved accuracy. Thus, due to the multimodal fusion model’s ability to holistically evaluate
431  occurrence data, and as illustrated through its superior performance compared to classification
432 masks even under ideal conditions, multimodal fusion models are likely to be preferable in most
433 use cases. This conclusion is reinforced by the results of Table 1, where both naive and weighted
434 masks showed negative effects on all classification performance metrics when the DNA-based

435  assemblage data contained substantial amounts of error.

436 4.2 What are the strengths and limitations of each granularity refinement method?

437  Here we proposed two approaches for cross-referencing DNA metabarcoding data to achieve the
438  novel ability of refining the taxonomic granularity of computer vision classifications. The two
439  approaches differ in how they resolve disagreements between the detections of the DNA

440  metabarcoding and computer vision classifications, with the model-biased approach favouring
441  the computer vision classifications, and the DNA-biased approach favouring the DNA

442  detections. As such, each approach has its own set of advantages and limitations.
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443  Through the ability to coarsen granularity before refining it, the DNA-biased method can make
444  classifications outside of the taxonomy of the original classification model (Figure S.5).

445  Explained another way, the model-biased approach and traditional hierarchical classifiers (e.g.
446  Badirli et al., 2023) can only adjust classifications “vertically” (i.e. to supertaxa or subtaxa of the
447  original classifications), but the DNA-biased approach can also adjust classifications “laterally”
448  to out-of-distribution taxa through a combination of classification coarsening and refining.

449  Classification of out-of-distribution taxa is usually only possible using feature embedding

450  learning methods such as zero-shot learning (Badirli ef al., 2021). An illustrative example of this
451  comes from the DNA-biased approach’s detection of taxa within the insect order Psocodea (e.g.
452  Valenzuela flavidus; Table S.5). As Psocodea was not included as a class in our model, and our
453  model’s finest taxonomic granularity was order-level, Psocodea’s branch of the taxonomy was
454  only accessible through a “lateral” taxonomic adjustment (Figure S.5). As such, it was only

455  detected by the DNA-biased approach, and not the model-biased approach (Table S.5). In theory,
456  this extends the range of possible classifications to the full taxonomic scope of the genetic

457  reference database being used (e.g. GenBank, Barcode of Life, etc.) (Ratnasingham and Hebert,
458  2007; Sayers et al., 2024). In practice, it is likely best to self-impose limits on how much the

459  DNA-biased method can coarsen granularity. In our case we limited ourselves to phylum, as we

460  were only interested in classifications within our three focal phyla.

461  While it does not have the same potential taxonomic scope of the DNA-biased approach, an
462  advantage of the model-biased approach is that the taxonomic granularity of the final

463  classification cannot be coarser than the original classification. Applied to the DNA multimodal
464  fusion model classifications, 9.9% of all classifications became coarser when the DNA-biased

465  method was used (Figure 3). While the DNA-biased method classified more specimens at
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466  family-level or finer (43.1% vs 31.0%), the ability to coarsen granularity resulted in more

467  classifications above order-level (11.7% vs 6.4%).

468  Even when granularity does not reach species, classifications that match with the DNA-based
469  assemblage data still provide more information than what is typically output from a classification
470  model. This is because we can also see the number and identity of subtaxa that the specimen

471  could be according to the DNA metabarcoding detections. For example, if the DNA

472  metabarcoding detected three species of the cricket genus Gryllus in a sample, we could say the
473  label of a specimen that would otherwise be classified simply as “Gryllus indet.” is actually one
474  of three possible species of Gryllus, as detected by the DNA metabarcoding (e.g. G.

475  pennsylvanicus, G. rubens, or G. veletis). This might also be useful for future developments to
476  these methods, as the number of subtaxa detected by the DNA metabarcoding could be used to

477  inform clustering algorithms that separate the specimens into morphotaxa.

478  Of course, the granularity of classifications matters little if they are not accurate. A caveat of our
479  study is that we cannot verify the accuracy of granularity-refined classifications, as they are at
480  lower taxonomic levels than our ground truth (human-classified) labels. However, we know that
481  our classification models were more accurate than the DNA assemblage data when compared to
482  our ground-truth labels. Thus, the DNA-biased method of refining granularity will likely add
483  more error to the classifications than the model-biased approach. When deciding between the
484  two methods, this is likely to be a determining factor: does the computer vision model or DNA

485  metabarcoding contain more error?

486 4.3 Caveats and areas for future exploration
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487  In an applied context, we cannot definitively conclude that image-DNA multimodal fusion

488  models as we present here improve specimen classification accuracy. This is primarily due to the
489  high rates of disagreement (or “error’’) between our DNA metabarcoding detections and image-
490  based detections. When comparing our three multimodal fusion experiments, the zero-filled

491  experiment had a top-1 accuracy 1.0% higher than the DNA-based assemblage data experiment,
492 but 3.0% less than the oracle experiment. This suggests that in an ideal situation where the DNA-
493  based assemblage data has low amounts of error (i.e. it is more similar to the image-based

494  assemblage data), image-DNA multimodal fusion models will positively impact classification
495  accuracy. However, when the DNA-based assemblage data contains substantial error, differences
496  in performance between the baseline and multimodal fusion models likely arise from changes in

497  the model’s architecture.

498  Reconciling genetic-based and morphology-based data—the two chief methods for invertebrate
499  biodiversity monitoring—is a pressing need as previous studies have shown that assemblages
500  determined by visual classification usually differ from assemblages determined using DNA

501  metabarcoding. For example, Emmons et al. (2023) found that NEON benthic macroinvertebrate
502  samples classified by taxonomists only shared 59% of order-level detections with DNA

503  metabarcoding data derived from homogenized blends of the same samples. Similar results have
504  also been produced in other studies comparing metabarcoding methods to morphologic

505  identification (Remmel et al., 2024; Salis et al., 2024). Marquina et al., (2019) also found that
506  different DNA sampling protocols can produce inconsistent assemblage data, as DNA

507  metabarcoded from ethanol vs homogenized blends of the same samples yielded significantly
508  different assemblage data, with both methods detecting taxa not detected by the other. Despite

509 these challenges, solutions to improve invertebrate detections using DNA metabarcoding are
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510  being investigated. Proposed solutions range from changes in sampling methodology (e.g.

511  strategically subsetting bulk samples; (Remmel et al., 2024) to improvements in the

512 completeness of publicly available DNA reference databases (Salis ef al., 2024). For the image-
513  DNA multimodal fusion methods we propose here to be maximally effective, advances will need
514  to be made in DNA metabarcoding methodology to limit false positive and false negative

515 detections.

516  Beyond DNA metabarcoding accuracy, there are likely other factors that can impact the efficacy
517  of our methods, such as the alpha and beta diversity of the sample assemblages. Lower alpha
518  diversity and higher beta diversity should yield models with greater classification performance.
519  Higher beta diversity would improve classification performance because the composition of the
520  assemblages would be more heterogeneous, which is required for learnable patterns to emerge in
521  the data. For example, our zero-filled assemblage experiment used data that was completely

522 homogenous, as every sampling event had the same assemblage data, thus allowing no learnable
523  patterns to emerge from the assemblage data. Conversely, lower alpha diversity would improve
524  classification performance because more classes to be filtered out by the model. This is partially
525  demonstrated by comparing the results of Blair ef al. (2020) to the results we present here. In
526  their study, which built classification models for NEON’s carabid beetles, the authors applied
527  classification masks to their models based on the detected ground beetle assemblages at each
528  sampling site. On average, 2.93 out of 25 potential species (11.7%) were detected per site,

529  resulting in an accuracy improvement of 10.9% (84.7% —> 95.6%) after applying the

530 classification masks. Comparatively, our image-based assemblages detected an average of 9.09
531  out of 17 potential classes (53.5%) per sampling event. When compared to the baseline model,

532  this resulted in an accuracy improvement of 3.2% when using the classification mask and 6.2%
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533  in the multimodal fusion model (Table 1, Table 2). Sample alpha diversity also has an impact on
534  the efficacy of the classification granularity refinement step. Higher alpha diversity increases the
535  odds that related taxa could present in the same sample, which can force our granularity

536  refinement methods to stop at a coarser taxonomic rank (Figure 2). Thus, sampling methods that
537  increase sample beta diversity (e.g. finer-grain class labels; Terlizzi et al., 2009) and reduce

538  sample alpha diversity (e.g. smaller sample size; Chiu, 2023) will likely increase the efficacy of

539  image-DNA metabarcoding multimodal fusion classification pipelines.

540 4.4 Broader applications and implications

541  In this study, we used assemblage data derived from DNA metabarcoding to improve computer
542  wvision classifications of terrestrial invertebrates. Previous studies (Badirli ef al., 2023; Gong et
543  al., 2024) have paired images of specimens with their DNA barcode sequence as input for

544  multimodal classification models. However, this technique cannot be applied to DNA

545  metabarcoding data because samples are metabarcoded in bulk, so the metabarcoded sequences
546  cannot be paired with individual specimens. Our methods overcome this challenge by converting
547  DNA metabarcoding data to binary assemblage data, which can then be input to a multimodal
548  classification model. This advancement has several practical implications, as DNA

549  metabarcoding’s ability to process bulk samples means that it is more time efficient, less

550  expensive, and produces less waste than individual specimen barcoding (Gueuning et al., 2019).

551  Our method’s ability to refine classification granularity, which is typically not possible in
552 computer vision, could improve the feasibility of building broad-scope, fine-grain classification
553  models (e.g. models spanning entire classes or phyla and capable of producing species-level

554  classifications). This typically requires vast amounts of training data, as training examples need
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555  to be provided for every species. Using the approach that we present here, classifiers could be
556  trained at coarser taxonomic levels such as order or family and still have the potential to produce
557  species-level classifications. This would decrease the number of classes in the model, and thus
558  data needed to train it, by orders of magnitude. Hence, the synergy between DNA metabarcoding
559  and computer vision outlined in this study paves the way for new possibilities in computer vision
560 classification of taxa, with the potential for improved accuracy and granularity with far less data

561  dependency.
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