

1

2 **High-throughput synthesis and specificity characterization of**
3 **natively paired antibodies using oPool⁺ display**

4

5 Wenhao O. Ouyang¹, Huibin Lv^{1,2}, Wenkan Liu¹, Ruipeng Lei¹, Zongjun Mou³, Tossapol
6 Pholcharee¹, Logan Talmage¹, Meixuan Tong¹, Yiquan Wang¹, Katrine E. Dailey¹, Akshita B.
7 Gopal¹, Danbi Choi¹, Madison R. Ardagh¹, Lucia A. Rodriguez¹, Xinghong Dai³, Nicholas C.

8 Wu^{1,2,4,5,*}

9

10 **Affiliations:**

11 ¹ Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801,
12 USA

13 ² Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign,
14 Urbana, IL 61801, USA

15 ³ Department of Physiology and Biophysics, Case Western Reserve University, School of
16 Medicine, Cleveland, OH 44106, USA

17 ⁴ Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign,
18 Urbana, IL 61801, USA

19 ⁵ Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
20 61801, USA

21 *To whom correspondence should be addressed. Email: nicwu@illinois.edu (N.C.W.)

22 **ABSTRACT**

23 Antibody discovery is crucial for developing therapeutics and vaccines as well as
24 understanding adaptive immunity. However, the lack of approaches to synthesize antibodies
25 with defined sequences in a high-throughput manner represents a major bottleneck in
26 antibody discovery. Here, we presented oPool⁺ display, a high-throughput cell-free platform
27 that combined oligo pool synthesis and mRNA display to rapidly construct and characterize
28 many natively paired antibodies in parallel. As a proof-of-concept, we applied oPool⁺ display
29 to probe the binding specificity of >300 uncommon influenza hemagglutinin (HA) antibodies
30 against 9 HA variants through 16 different screens. Over 5,000 binding tests were performed
31 in 3-5 days with further scaling potential. Follow-up structural analysis of two HA stem
32 antibodies revealed the previously unknown versatility of IGHD3-3 gene segment in
33 recognizing the HA stem. Overall, this study established an experimental platform that not
34 only accelerate antibody characterization, but also enable unbiased discovery of antibody
35 molecular signatures.

36

37 **Keywords:** High-throughput screening, influenza, hemagglutinin, B-cell receptors, antibody,
38 broadly neutralizing, oligo pools, mRNA display, cryo-EM

39 **INTRODUCTION**

40 Antibodies are central to the immune system for protection against pathogen infection.
41 Therefore, identification of antibodies that target pathogens of interest is key to the
42 understanding of adaptive immunity as well as the development of effective therapeutics and
43 vaccines. In recent years, advances in single-cell B-cell receptor sequencing (scBCR-seq)
44 have greatly improved the capacity to discover novel antibodies¹. Thousands of natively
45 paired antibody sequences can be obtained from a single scBCR-seq experiment. By
46 contrast, downstream characterization of these antibody sequences remains costly, labor
47 intensive, and time consuming, involving cloning, expression, purification, and testing the
48 binding activities of different antibodies individually. At the same time, protein display
49 technologies offer a high-throughput solution for characterizing antibody binding activity²,
50 with antibody library construction being an essential first step. Methods for constructing
51 antibody libraries with random heavy-light chain pairing from B cell repertoires are well-
52 established^{3,4}. However, there is a lack of approaches to synthesize custom-made antibody
53 libraries with precise heavy-light chain pairing from a defined list of antibody sequences.
54 This technical barrier has restricted the application of protein display technologies in
55 antibody research, including large-scale characterization of previously discovered antibodies.

56

57 Hemagglutinin (HA) is the major antigen of influenza A and B viruses. Influenza A HA is
58 further divided into two groups with a total of 19 antigenic subtypes (H1-H19). Group 1 HA
59 includes H1, H2, H5, H6, H8, H9, H11, H12, H13, H16, H17, H18, and H19, whereas group
60 2 HA includes H3, H4, H7, H10, H14, and H15. HA is a homotrimeric glycoprotein consisting
61 of a hypervariable globular head domain atop a conserved stem domain^{5,6}. The functions of
62 HA are critical for viral entry. The globular head domain engages the sialylated receptor,
63 whereas the stem domain possesses the membrane fusion machinery. In the past two
64 decades, many human antibodies to the HA stem have been discovered and characterized<sup>7-
65 11</sup>. In contrast to HA head antibodies, which are usually strain-specific, HA stem antibodies
66 often cross-neutralize multiple influenza subtypes. Several recurring sequence features have

67 been observed among HA antibodies isolated from different individuals, such as IGHV1-69,
68 IGHV1-18, IGHD6-1, IGHD3-9 for stem antibodies, and IGHV2-70 and IGHD4-17 for head
69 antibodies^{7,11-15}. However, many HA antibodies do not contain any known recurring
70 sequence features, suggesting there are additional features yet to be discovered.
71 Discovering the recurring sequence features of HA antibodies is critical for the molecular
72 understanding of antibody responses at the population level, which will in turn benefit the
73 development of universal influenza vaccines.

74

75 In this study, we developed oPool⁺ display, a rapid and cost-effective cell-free platform that
76 combined oligo pool synthesis with mRNA display to assemble and screen natively paired
77 antibodies in a highly parallel manner. As a proof-of-concept, we first synthesized a library of
78 325 natively paired HA antibodies with uncommon germline gene usages, then
79 characterized their binding activity to seven different HAs from influenza A and B viruses as
80 well as an H1 stem construct and an H3 stem construct. We also carried out competition
81 screens against a known HA stem antibody for binding to the same set of HAs, allowing
82 epitope inference. Our screening showed that 114 of the 325 antibodies bound to at least
83 one of the nine HA screened, 45 of which were further identified as HA stem antibody
84 candidates. Extensive experimental validations confirmed the robust performance oPool⁺
85 display. We then demonstrated oPool⁺ display's potential in discovering antibody sequence
86 features through structural and functional characterizations of 16.ND.92 and AG11-2F01,
87 two group 1 stem antibody enriched in the screen. 16.ND.92 and AG11-2F01 exhibited
88 distinct binding modes of IGHD3-3 to HA stem, yet both antibodies were broadly reactive
89 and protected against lethal influenza challenge *in vivo*. This observation substantiated that
90 IGHD3-3 is a recurring sequence feature of HA stem antibodies and demonstrated its
91 versatility in binding to HA stem.

92

93 **RESULTS**

94 **High throughput assembly of natively paired antibody library via oligo pools**

95 We previously curated a dataset containing 5,561 human monoclonal HA antibodies, 1,082
96 (19.5%) of which are known to bind to either the head domain or the stem domain¹⁶. Of the
97 remaining 4,479 (80.5%) HA antibodies which lack epitope information, 292 have complete
98 heavy chain variable (V_H) and light chain variable (V_L) sequences available and are not
99 encoded by well-characterized sequence features of HA stem antibodies, namely IGHV1-69,
100 IGHV1-18, IGHV6-1, and IGHD3-9^{7,12-14} (**Figure S1A and Table S1**). These 292 HA
101 antibodies were included in the synthesis of our natively paired antibody library. In addition,
102 three known stem antibodies, namely 31.a.55, AG11-2F01, and 042-100809-2F04^{7,17}, as
103 well as 30 known HA head antibodies^{6,15,18-25} were included as controls, bringing the total
104 library size to 325 antibodies (**Figure 1A**).

105

106 To synthesize the natively paired antibody library in a high-throughput manner, we aimed to
107 leverage recent advances in oligo pool synthesis. The maximum length of each oligo in
108 commercial oligo pool synthesis is around 300 to 350 nucleotides. By contrast, the length of
109 a single-chain variable fragment (scFv), which is the smallest format of a human antibody, is
110 around 800 to 900 nucleotides. As a result, each given scFv sequence was split into 4 oligos
111 with overlaps at the diverse complementary-determining regions (CDRs), namely the CDRs
112 H1, H3, and L3 (**Figure 1B-C and Table S2**). We then performed codon randomization to
113 ensure that the overlaps among oligos for the same scFv are unique at the nucleic acid level.
114 This would help prevent mis-annealing between oligos from different scFvs, especially if they
115 shared similar amino acid sequences (**Figure 1B, Material and Methods**). Through an one-
116 pot overlap PCR, full-length scFv sequences could then be generated with the intended
117 native V_H and V_L pairing. Subsequently, this strategy was applied to design the oligo pools
118 for our library of 325 antibodies (**Figure 1C-F, Figure S1B-C, and Table S2**).

119

120 The length of the assembled product was consistent with that of full-length scFvs (**Figure**
121 **1D**). To thoroughly evaluate the effectiveness of our synthesis strategy, we then performed
122 several assembly PCRs with the starting oligos of 25, 75, 100, 125, 150, and 200 scFvs

123 each in a single tube (**Figure 1E-F and Figure S2**). PacBio sequencing revealed the high
124 reproducibility of the one-pot PCR assembly across the board, with a Pearson correlation
125 coefficient of 0.95 even at 200 scFvs per PCR (**Figure 1E**). The one-pot PCR assembly
126 strategy also achieved high coverage of the targeted antibodies, with only a subtle drop from
127 100% to 90% as the complexity of the PCR increased from 25 to 200 scFvs (**Figure 1F**). For
128 our final library of all 325 scFvs, a Pearson correlation coefficient of 0.83 was observed
129 between replicates, with a coverage of 322 of 325 (99.1%) natively paired antibodies
130 (**Figure S3**). While we opted to assemble this antibody library through 13 PCRs with 25
131 scFvs each tube, our results demonstrated the potential to further increase the throughput of
132 our antibody library synthesis strategy by at least one orders of magnitude.

133

134 **Rapid specificity characterization of the natively paired antibodies by mRNA display**
135 To characterize antibody specificity from our natively paired scFv library, we utilized mRNA
136 display^{26–28}, a well-established cell-free screening approach that allows rapid screening for
137 protein binders. Briefly, each scFv was covalently linked to the RNA molecule that encoded it,
138 thus providing a phenotype-genotype linkage (**Figure S4A, Material and Methods**). The
139 mRNA-displayed antibody library was then selected against seven HAs from different
140 influenza A subtypes and influenza B strains, namely H1N1 A/Solomon Island/3/06 (H1/SI06),
141 H1N1 A/Michigan/45/2015 (H1/MI15), H3N2 A/Singapore/INFIMH-16-0019/2016 (H3/SP16),
142 H5N1 A/ Qinghai/1A/2005 (H5/QH05), H7N9 A/Shanghai/2/2013 (H7/SH13),
143 B/Phuket/3073/2013 (B/Phu13), and B/Lee/1940 (B/Lee40). Selections were also performed
144 against two HA stem domain constructs that were designed based on H1N1
145 A/Brisbane/59/2007 HA and H3N2 A/Finland/486/2004 HA, respectively^{29,30} (**Figure 2 and**
146 **Figure S4**). After one round of selection, the pre- and post-selection libraries were then
147 analyzed by PacBio sequencing to quantify the enrichment of each scFv (**Table S3**).
148 Pearson correlation coefficients ranging from 0.58 to 0.86 were observed between biological
149 replicates (**Figure S5**), demonstrating the reproducibility of the selections. In total, 114 of the
150 325 scFvs were identified to target one of the HAs screened, with 52 targeting more than

151 one HA and 11 targeting more than two HAs (**Table S4**). All stem antibody controls were
152 enriched in at least one screens, while only 17 of the 30 head antibody controls were
153 enriched, likely due to the considerably limited binding breadth of head antibodies. Moreover,
154 the stem antibody controls were highly enriched in the selections against the HA stem
155 domain constructs, whereas the head antibody controls were not, further validating that
156 selection took place.

157

158 We also performed seven competition screens against CR9114¹⁰, a broadly neutralizing HA
159 stem antibody, for binding to H1/SI06, H1/MI15, H3/SP16, H5/QH05, H7/SH13, and B/Phu13,
160 and B/Lee40 (**Figure 2 and Figure S6**). Competition screens were performed using the
161 same protocol as the mRNA display selections described above, except that CR9114 was
162 pre-bound to the HAs. While the CR9114 competition screen for H3/SP16 did not yield
163 consistent PCR bands post-selection, all six other screens resulted in reproducible bands
164 and were analyzed by PacBio sequencing. Of these six screens, five had Pearson
165 correlation coefficients of >0.7 between replicates (**Figure S7**), demonstrating their
166 reproducibility. The results of our competition screening were in agreement with previous
167 studies. For example, two of our stem antibody controls, AG11-2F01 and 31.a.55, competed
168 with CR9114 in our screens, which is consistent with previous studies of these two
169 antibodies^{7,17}. Additionally, 15 of the 17 (88%) HA head antibody controls targeting at least
170 one HA in our screens did not compete with CR9114, further supporting the effectiveness of
171 the competition screen (**Table S4**). Together, we identified five antibody candidate targeting
172 group 1 HA stem, 12 targeting group 2 HA stem, as well as 28 targeting influenza B HA stem
173 (**Figure S5 and Table S4**). Of note, one of the H3 stem antibody candidates, AG2-G02, was
174 concurrently identified by a machine learning approach and experimentally confirmed in
175 another study of ours¹⁶.

176

177 **oPool⁺ display demonstrates robust performance in specificity characterization**

178 To systematically evaluate the performance of oPool⁺ display, we used both biolayer
179 interferometry (BLI) and ELISA to validate the binding activities of selected antibodies
180 (**Figure 3**). In brief, 25 antibodies were selected, recombinantly expressed and purified in
181 fragment antigen-binding (Fab) and IgG formats. Their binding activities were then tested
182 against all nine HAs used in our screens (**Figure 3A-B, Figure S8**). This validation
183 experiment substantiated the robust performance of oPool⁺ display. A true positive rate of
184 80.4% (41/51) and a true negative rate of 95.4% (166/174) was observed in BLI validation
185 with Fabs, while a true positive rate of 71.7% (43/60) and a true negative rate of 96.4%
186 (159/165) was observed in ELISA validation with IgG (**Figure 3C**). Of note, both
187 experimental validations indicated that the majority of the false positive and false negative
188 results (11/18 for BLI, 14/23 for ELISA) were from three screens (H3 stem, H1/SI06, and
189 H1/MI15). To examine the influences of different antibody formats on binding, we determined
190 the dissociation constant (K_D) of three H1 stem antibodies and six H3 stem antibodies that
191 were enriched in our screen in both Fab and scFv formats (**Figure 3D, Figure S9 and S10**).
192 All nine antibodies retained binding in both formats, with no apparent correlation between
193 the K_D values. However, some of the false negatives could still be due to weakened binding
194 of the antibody in scFv format during the screens.

195
196 We then further assessed the performance of our CR9114 competition screens using 16 of
197 the 25 antibodies validated above (**Figure 4A-B**). To quantify the competition, we first
198 defined the CR9114 competition index as the log fold change of enrichments with versus
199 without the presence of CR9114 during screen (**Table S4, Figure S11, Materials and**
200 **Methods**). A higher CR9114 competition index would indicate overlapping epitopes between
201 the scFv and CR9114, while a lower CR9114 competition index would indicate opposite
202 (**Figure 4A**). Experimental validation of these competition indices was then performed using
203 BLI, where the ratio of binding responses to HA with and without CR9114 pre-bound was
204 quantified (**Materials and Methods**). Pearson correlation of 0.66 was observed between the
205 competition indices and the validation results (**Figure 4B, Figure S12, and Table S5**),

206 confirming the reliability of our CR9114 competition screens. Together, our results showed
207 that oPool⁺ display enabled rapid and accurate specificity characterization of natively paired
208 antibodies.

209

210 **AG11-2F01 and 16.ND.92 have similar sequence features but distinct binding modes**

211 One of the H1 stem antibodies identified from our screen was 16.ND.92, which was
212 originally isolated from a young individual in an H5N1 influenza vaccine trial⁷. 16.ND.92 was
213 encoded by IGHV3-74/IGHD3-3/IGKV1-5 (**Table S4**). Coincidentally, both IGHD3-3 and
214 IGKV1-5 were utilized by AG11-2F01, which was one of the two positive controls against H1
215 stem in our screen (**Figure 2** and **Figure S5**). Moreover, 16.ND.92 and AG11-2F01 shared a
216 similar FG[V/L] motif encoded by the reading frame +3 of IGHD3-3 (**Figure S13**). This
217 observation led us to hypothesize that 16.ND.92 and AG11-2F01 engaged the HA stem via
218 similar binding modes. Consequently, we determined the cryo-EM structures of H1N1
219 A/Solomon Islands/03/2006 (H1/SI06) HA in complex with AG11-2F01 and 16.ND.92 to
220 resolutions of 2.89 Å and 2.82 Å, respectively (**Figure 5A-E** and **Table S6**). Contrary to our
221 hypothesis, the cryo-EM structures revealed very different binding modes between the two
222 antibodies. While AG11-2F01 bound to HA stem horizontally, 16.ND.92 had a downward
223 approaching angle towards HA (**Figure 5A**). Relatedly, the epitope of 16.ND.92 shifted slight
224 upward compared to that of AG11-2F01 (**Figure 5B**).

225

226 Although both 16.ND.92 and AG11-2F01 were encoded by IGKV1-5, their light chains
227 interacted with the HA stem differently. For example, V_L S30 of AG11-2F01 H-bonded with
228 HA2 Q38, whereas that of 16.ND.92 H-bonded with HA1 K32 (**Figure 5C**). Similarly, despite
229 sharing an FG[V/L] motif in their IGHD3-3-encoded regions, 16.ND.92 and AG11-2F01 used
230 this motif to interact with different parts of the HA stem (**Figure 5D**). For the FGL motif in
231 AG11-2F01, V_H F100 inserted into a hydrophobic pocket in the HA stem centering at HA2
232 I48, whereas V_H L100b inserted into a lower pocket centering at HA2 W21. By contrast, this
233 lower pocket was occupied by the V_H F100a of the FGV motif in 16.ND.92. The paratope of

234 16.ND.92 also involved IGHD3-3-encoded V_H V100, I100e, and I100f, allowing its CDR H3
235 to bind to upper pockets in the HA stem that were not engaged by AG11-2F01 (**Figure 5D**).
236 Together, our structural analyses showed that AG11-2F01 and 16.ND.92 formed distinct
237 molecular interactions with HA stem.

238

239 **16.ND.92 utilizes IGHD3-3 in a unique manner for binding to HA stem**

240 Previous studies have determined the structures of several HA stem antibodies with an
241 FG[V/L/I] motif in the CDR H3 that was encoded by reading frame +3 of IGHD3-3, including
242 MEDI8852, 56.a.09, 54-1G05, 39.29, PN-SIA28, and 429 B01^{7,9,31-34}. These six HA stem
243 antibodies used either IGHV6-1 or IGHV3-30, unlike AG11-2F01 and 16.ND.92, which used
244 IGHV4-38-2 and IGHV3-74, respectively. Nevertheless, the CDR H3 conformation of AG11-
245 2F01 resembled that of MEDI8852, 56.a.09, 54-1G05, 39.29, PN-SIA28, and 429 B01
246 (**Figure 5E**). Moreover, the IGHD3-3-encoded FG[V/L/I] motifs of these seven antibodies
247 bound to the HA stem in a similar fashion (**Figure 5E**). In comparison, the CDR H3
248 conformation of 16.ND.92 was different due to more extensive involvement of IGHD3-3 in
249 binding (**Figure 5D-E**).

250

251 The unique usage of IGHD3-3 for binding enables 16.ND.92 V_H to interact with the HA stem
252 exclusively through CDR H3, whereas the V_H paratopes of other IGHD3-3 HA stem
253 antibodies involved non-CDR H3 regions (**Figure 5F and Table S7**). Similarly, IGHD3-3
254 accounted for 98.6% of the buried surface area of the 16.ND.92 V_H paratope, but 38% to 63%
255 of the V_H paratopes of other IGHD3-3 HA stem antibodies (**Figure 5G and Table S7**). These
256 observations not only substantiated that reading frame +3 of IGHD3-3 was a recurring
257 sequence feature of HA stem antibodies, but also demonstrated that it could pair with
258 diverse IGHV genes and interact with HA stem via different binding modes.

259

260 **AG11-2F01 and 16.ND.92 are neutralizing antibodies with *in vivo* protection activity**

261 Given the different binding modes of AG11-2F01 and 16.ND.92, we further aimed to
262 compare their binding breath, *in vitro* neutralization, and *in vivo* protection activity. ELISA
263 showed that both AG11-2F01 and 16.ND.92 bound to all H1 and H5 HAs tested (**Figure 6A**
264 **and Figure S14**), Microneutralization assay against six H1N1 strains further revealed their
265 neutralizing activity (**Figure 6B**). Both AG11-2F01 and 16.ND.92 also protected mice against
266 a lethal challenge of H1N1 A/Puerto Rico/8/1934 (PR8), based on the weight loss profiles
267 (**Figure 6C-D**), survival analyses (**Figure 6E-F**), and lung viral titers at day 3 post-infection
268 (**Figure 6G-H**). Nonetheless, our results indicated that the *in vivo* therapeutic protection
269 activity of 16.ND.92 was stronger than AG11-2F01. While only 20% (1/5) of the mice
270 therapeutically treated with AG11-2F01 survived (**Figure 6E**), 80% (4/5) of the mice
271 therapeutically treated with 16.ND.92 survived (**Figure 6F**). Additionally, at day 3 post-
272 infection, lung viral titers of mice therapeutically treated with 16.ND.92 were ~15-fold lower
273 than those treated with AG11-2F01 (**Figure 6G-H**). Notably, 16.ND.92 had comparable, if not
274 weaker, *in vitro* neutralizing activity than AG11-2F01 against PR8 (**Figure 6B**). Consequently,
275 the stronger *in vivo* protection activity of 16.ND.92 against PR8 may at least be partly
276 attributed to its more downward approaching angle to the HA stem (**Figure 5A**), which could
277 help position the Fc region closer to effector cells.

278

279 **DISCUSSION**

280 Antibody discovery has led to significant advancements on many fronts, including antibody-
281 based therapeutics as well as vaccine designs^{11,35-38}. Discovery of natively paired antibody
282 sequences has been hugely accelerated by scBCR-seq in the past few years¹. However,
283 going from sequence information to specificity characterization remains a major bottleneck in
284 antibody discovery. In this study, we presented oPool⁺ display, an experimental platform that
285 allows specificity characterization of antibodies with defined sequences in a highly parallel
286 fashion. Importantly, oPool⁺ display was more cost-efficient (~\$30 per antibody) and faster
287 (~3-5 days) than the conventional methods that require cloning and recombinant expression
288 of individual antibodies (~\$200-350 per antibody, weeks to months) (**Table S8**). As a proof-

289 of-concept, we applied oPool⁺ display to delineate the binding specificity of hundreds of HA
290 antibodies that were left uncharacterized in the literature. Follow-up analysis of AG11-2F01
291 and 16.ND.92 further revealed the versatility of IGHD3-3 in targeting the HA stem.

292

293 A key feature of oPool⁺ display is its relatively simple protocol. A previous study has shown
294 that the throughput for screening antibodies with defined sequences can be increased by
295 using liquid handlers to express individual antibodies one by one³⁹. In comparison, oPool⁺
296 display uses a near one-pot strategy for antibody library synthesis and screening. As
297 suggested by our results, one 96-well plate PCR can allow rapid assembly of library up to
298 ~20,000 natively paired antibodies. With current display technologies, such as mRNA display,
299 screening of the library against 10 to 20 antigens can be done by one person in hours.
300 Moreover, it only requires standard benchtop equipment commonly found in a regular
301 molecular biology lab. In addition, the constructed library can be stored long-term as DNA for
302 future use when new antigens of interest emerge, such as novel HA variants or subtypes.
303 The library can also be expanded by merging with additional oligo pools when new panels of
304 antibodies are discovered. Therefore, oPool⁺ display not only bridges the gap between
305 scBCR-seq and protein display technologies through massively parallel reconstruction of
306 sequenced antibodies, but also provide more flexibility of the current antibody discovery
307 pipelines. After the natively paired antibody sequences are obtained from scBCR-seq,
308 oPool⁺ display can be applied to validate and characterize the specificity of a large panel of
309 antibody candidates at any time. The synergy between oPool⁺ display and scBCR-seq can
310 streamline the transition from antibody discovery to antibody characterization.

311

312 Previous studies have shown that IGHV6-1 and IGHV3-30 HA stem antibodies often utilize
313 IGHD3-3-encoded FG[V/L/I] motif for binding to HA stem^{7,9,31–34}. As demonstrated by our
314 work here, IGHD3-3-encoded FG[V/L/I] motif can also pair with other IGHV genes to target
315 HA stem, substantiating that it is an IGHV-independent recurring sequence feature of HA
316 stem antibodies. Our results further revealed that IGHD3-3 can engage the HA stem via

317 different binding modes. These observations are comparable to those of IGHD3-9, which is
318 utilized by HA stem antibodies with various IGHV genes and can bind to HA stem in two
319 different reading frames¹⁴. Similarly, recent studies have identified IGHD3-22 as an IGHV-
320 independent recurring sequence feature of antibodies that target a conserved site on SARS-
321 CoV-2 spike^{40,41}. Although antibody sequence analysis typically focuses on IGHV genes, the
322 contribution of IGHD genes to antibody responses should not be overlooked since emerging
323 evidence suggests that it might be more important than previously thought.

324

325 Although this study focused on influenza HA stem as a proof-of-concept, oPool⁺ display can
326 be generalized to any antigens of interest as long as they can be recombinantly purified.
327 Importantly, oPool⁺ display can be leveraged for epitope mapping, given that it enables
328 competition screening. Such application will be particularly valuable for antigens that have
329 largely unknown antigenicity but have several antibodies with known epitopes, such as those
330 from emerging pathogens^{42,43}. Furthermore, the capability of constructing custom-made
331 antibody libraries means that oPool⁺ display has the potential to benefit the development of
332 machine learning models for antibody engineering, specificity prediction, and *de novo* design,
333 as a major throughput bottleneck still exists in experimental validation^{16,44–46}. We envision
334 that prediction results from these models can be rapidly validated by oPool⁺ display, which
335 will in turn facilitate iterative refinement of the models for more advanced applications.

336

337 We acknowledge that oPool⁺ display has some limitations. First, oPool⁺ display requires
338 antibodies to be presented as scFvs, which may lose functionality compared to its Fab
339 counterpart^{47–49}. Second, antibodies with a fast off-rate may result in false negatives in
340 oPool⁺ display, since it depends on monovalent binding. Inadequate wash during selection
341 could also partially explain the false positive hits in our results. Nonetheless, a few solutions
342 can be adopted in future studies. Performing multiple rounds of mRNA display selection, or
343 replacing it with other protein display technologies that support multivalent binding, such as
344 yeast display and phage display, can further reduce false negative rate^{50,51}. In addition, a

345 more stringent wash protocol can potentially reduce false positive rate. As the length of oligo
346 pool synthesis continues to improve, the cost and complexity of oPool⁺ display will further
347 decrease. Overall, we believe that oPool⁺ display represents a starting point for the future
348 advancement of high-throughput approaches to characterize antibodies.

349

350 **MATERIALS AND METHODS**

351 **Selection of HA antibodies for paired antibody library synthesis**

352 Members of the natively paired antibody library were selected from a previously curated
353 dataset containing 5,561 human monoclonal antibodies to influenza HA from 60 research
354 publications and three patents¹⁶. Filters were applied to exclude antibodies that 1) had
355 incomplete sequence information, 2) utilized germline genes that were regarded as recurring
356 sequence features of HA stem antibodies, namely IGHV1-69, IGHV6-1, IGHV1-18 and
357 IGHD3-9^{7,12-14}, and 3) were members of known HA stem antibody clonotypes. This resulted
358 in 292 antibody sequences from 7 publications^{7,17-19,23,52,53}. Three HA stem antibodies,
359 namely 31.a.55, AG11-2F01, and 042-100809-2F04, as well as 30 HA head antibodies were
360 randomly selected as positive and negative controls^{6,7,15,17-25}. Of note, both AG11-2F01 and
361 042-100809-2F04 were not previously labeled as an HA stem antibody in the curated
362 dataset¹⁶. Through literature search, AG11-2F01 was found to compete with CR9114¹⁰,
363 which is an HA stem antibody, for binding to H1¹⁷, while 042-100809-2F04 was found to bind
364 to group 2 HA stem domain⁵⁴.

365

366 **Computational design of the oligo pool sequences for assembly**

367 A summary of the computational design pipeline is described below and summarized in

368 **Figure S1.**

369

370 *Sequence preparation*

371 Selected antibody sequences were first annotated using abYsis⁵⁵. Any missing nucleotides
372 at the 5' and/or 3' ends were then filled in using the sequences from the IGHV andIGHJ
373 genes that had the highest identity with the given antibody.

374

375 *Codon randomization and pool assignment of the antibodies*

376 To decrease undesired assembly during antibody library synthesis, codon randomization of
377 each selected antibody sequence was first performed to reduce nucleotide sequence
378 similarity among different antibodies. For a given amino acid, codon usages <15% in
379 *Escherichia coli* were removed from consideration to prevent low translation efficiency during
380 RNA display. For 325 antibodies, total of 2 million randomized sequences were generated to
381 maximize downstream sequence differentiation. All antibody sequences were then split into
382 8 segments, followed by clustering using CD-HIT⁵⁶. The clusters were generated using the
383 criterion of 70% sequence identity (at least 30% differences between each cluster). The
384 antibody sequences were then reconstructed by selecting necessary segments from
385 different clusters, followed by removing the used clusters. Such reconstruction was repeated
386 until a complete pool (total of 25 antibody sequences) had been reassembled. The deleted
387 clusters were then added back with the reassembled antibody sequences removed. The
388 process was then iterated to generate the remaining pools.

389

390 *Selection of overlap regions and generation of the final oligo pools*

391 Upon the pool assignment of antibodies, the ideal overlap regions were searched over CDR
392 L3, H1, and H3 of each antibody sequence. Six 30-nucleotide long sequences were
393 extracted from each region through frame shifting, then aligned to the complete antibody
394 sequences in the corresponding pool using BLAST+⁵⁷. For each antibody, the overlap
395 sequences that are least similar to other antibodies in the pool were selected. The antibody
396 sequences were then split at the overlap region, followed by the addition of universal
397 adaptor regions at fragments encoding the N-terminal and C-terminal of the antibodies,
398 leading to the generation of the final oligo pools.

399

400 **Overlap PCR assembly of the natively paired antibody library**

401 A total of 13 oligo pools were synthesized (Integrated DNA Technologies). The lengths of
402 oligos ranged from around 180 to 330 nucleotides. Each oligo pool contained 100 oligos
403 resuspended in 200 μ L water. An assembly PCR was set up for each oligo pool using 1,600
404 ng of oligos as input. The assembly was performed using KAPA HiFi HotStart ReadyMix
405 (Roche) and a Mastercycler nexus GX2 (Eppendorf). PCR was set up in the absence of
406 primers. From cycles 1-40, PCR was performed with minimal ramp rate (0.1°C/s) in between
407 the denaturing (98°C, 20 s) and annealing steps (62°C, 15 s) to reduce erroneous annealing
408 events. After cycle 40, a universal forward primer 5'-TTC TAA TAC GAC TCA CTA TAG GGA
409 CAA TTA CTA AAG GAG TAT CC-3' and a universal reverse primer 5'-GGA GCC GCT ACC
410 CTT ATC GTC GTC ATC CTT GTA ATC GGA TCC T-3' were added to the PCR. The
411 underlined region in the forward primer sequence is the T7 promoter, whereas the
412 underlined region in the reverse primer sequence encodes a FLAG tag. Subsequently,
413 another 15 cycles of PCR were performed to amplify the assembled product. The final PCR
414 product was purified using a Monarch Gel Extraction Kit (New England Biolabs). Two
415 replicates of the assembly were performed.

416

417 **Preparation of the biotinylated H1 stem and H3 stem constructs**

418 The H1 stem (mini-HA #4900)²⁹, H3 stem (H3ssF)³⁰, as well as the seven HA ectodomain
419 constructs were cloned into a customized baculovirus transfer vector. Both constructs
420 contained a N-terminal gp67 signal peptide at the N-terminus as well as a BirA biotinylation
421 site, a thrombin cleavage site, a trimerization domain and a 6 \times His-tag at the C-terminus.
422 Recombinant bacmid DNA that carried the H1 stem construct or H3 stem construct was
423 generated using the Bac-to-Bac system (Thermo Fisher Scientific) per manufacturer's
424 instructions. Baculovirus was generated by transfecting the purified bacmid DNA into
425 adherent Sf9 cells using Cellfectin reagent (Thermo Fisher Scientific) per manufacturer's

426 instructions. The baculovirus was further amplified by passaging in adherent Sf9 cells at a
427 multiplicity of infection (MOI) of 1.

428

429 Recombinant HA constructs were then expressed using 1L of suspension Sf9 cells at an
430 MOI of 1. At day 3 post-infection, Sf9 cells were pelleted by centrifugation at 4,000 ×g for 25
431 min. Soluble recombinant HA constructs were purified from the supernatant by affinity
432 chromatography using Ni Sepharose excel resin (Cytiva) and then size exclusion
433 chromatography using a HiLoad 16/100 Superdex 200 prep grade column (Cytiva) in 20 mM
434 Tris-HCl at pH 8.0, and 100 mM NaCl. The purified protein was concentrated by an Amicon
435 spin filter (Millipore Sigma) and filtered by a 0.22 mm centrifuge Tube Filter (Costar). The
436 purified HA constructs were then biotinylated using a Biotin-Protein Ligase-BIRA kit (Avidity)
437 according to the manufacturer's instructions. The biotinylated proteins were then purified
438 again through size exclusion chromatography as described above. The A280 absorbance
439 values were measured using a Nanodrop One (Thermo Fisher Scientific) to quantify the
440 protein concentration.

441

442 **Antibody screening using mRNA display**

443 The mRNA display was performed based on the protocols provided by previous studies^{27,28,58}
444 with slight modifications.

445

446 *Generation of the puromycin-conjugated mRNA templates*

447 The DNA library was first transcribed by a MEGAscript T7 Transcription Kit (Thermo Fisher
448 Scientific) and purified by a MEGAclear Transcription Clean-Up Kit (Thermo Fisher Scientific)
449 according to manufacturer's instructions. Ligation was performed using 1 nmol of the mRNA
450 product, 1.1 nmol of the splint oligo (5'-TTT TTT TTT TTT GGA GCC GCT ACC-3'), and 1.2
451 nmol of the puromycin linker (5'-5Phos/-d(A)21-(C₉)3-d(ACC)-puromycin-3') by the T4 DNA
452 ligase (New England Biolabs) in a 100 µL reaction for 1 hour at room temperature, followed
453 by Lambda exonuclease (New England Biolabs) digestion for 30 mins at 37°C. The

454 puromycin-conjugated mRNA product was purified using a Dynabeads mRNA DIRECT
455 Purification Kit (Thermo Fisher Scientific), aliquoted, and stored at -20°C until used.

456

457 *Preparation of the mRNA-scFv fusion library*

458 The puromycin-conjugated mRNA templates were translated using a PURExpress In Vitro
459 Protein Synthesis Kit (New England Biolabs) with the addition of PURExpress Disulfide
460 Bond Enhancer (New England Biolabs) for 1 hour at 37°C. The reaction was then incubated
461 with 500 mM KCl and 60 mM MgCl₂ for at least 30 mins at room temperature to promote
462 fusion between the translated scFv and puromycin. EDTA was then added to dissociate
463 ribosomes. The full-length mRNA-scFv product was then purified using Anti-FLAG M2
464 Magnetic Beads (Millipore Sigma) followed by elution using 3× FLAG peptides (GlpBio).
465 Subsequently, the purified mRNA-scFv product was reverse transcribed using SuperScript
466 IV reverse transcriptase (Thermo Fisher Scientific). The cDNA/mRNA-scFv product was
467 referred as the “pre-selection library”.

468

469 *Preparation of the magnetic beads coated with biotinylated HAs*

470 Biotinylated HA constructs were coated onto the Dynabeads M280-streptavidin (Thermo
471 Fisher Scientific) according to the manufacturer’s instruction. Briefly, 150 pmol of biotinylated
472 proteins were incubated with 50 µL of the beads for 30 mins to 1 hour at room temperature
473 with gentle rotation. The beads were then washed with TBST (20 mM Tris-HCl at pH 7.5,
474 100mM NaCl, and 0.025% Tween-20) five times using the DynaMag-2 magnetic holder
475 (Thermo Fisher Scientific) and then resuspended to the original volume.

476

477 *Antibody selection against HAs*

478 Selection of antibodies against HA constructs were carried out in parallel. Briefly, the pre-
479 selection library was mixed with 25 µL of beads coated with each HAs and incubated for 1
480 hour at room temperature with gentle rotation. After incubation, the beads were washed

481 thrice with 400 μ L TBST. The beads were then resuspended in water. These samples were
482 referred as the “post-selection libraries”.

483

484 ***Antibody selection against HAs with CR9114 competition***

485 The CR9114 competition screen was performed as describe above with the addition of a
486 CR9114 blocking step prior to the selection. In brief, 25 μ L beads coated with HAs were
487 blocked with 2uM CR9114 IgG¹⁰, followed by the addition of 7.5uL of input library and
488 incubation for 1 hour at room temperature with gentle rotation. After incubation, the beads
489 were washed thrice with 400 μ L TBST. The beads were then resuspended in water. These
490 samples were referred as the “post-selection libraries”.

491

492 **Next-generation sequencing of the scFv library**

493 The pre-selection libraries, post-selection libraries, and the small pool assemblies selected
494 for quality control were amplified using PrimeSTAR Max DNA Polymerase (Takara Bio) per
495 manufacturer’s instruction with the following primers (5'-GTA AAA CGA CGG CCA GTT TCA
496 GGG GAC AAT TAC TAA AGG AGT ATC C-3' and 5'- CAG GAA ACA GCT ATG ACC CAC
497 TCG TCA TCC TTG TAA TCG GAT CCT CCG GA-3'. The PCR product was purified using a
498 Monarch Gel Extraction Kit (New England Biolabs). A second round of PCR was carried out
499 to add the adapter sequence and index to the amplicons (**Table S9**). The final PCR products
500 were sequenced on one SMRTcell 8M on a PacBio Revio system using the CCS sequencing
501 mode and a 30-hour movie time.

502

503 **Analysis of next-generation sequencing data**

504 Circular consensus sequences (CCSs) were generated from the raw subreads using
505 SMRTLink v13.0, setting the parameters to require 99.9% accuracy and a minimum of 3
506 passes. CCSs in FASTQ format were parsed using the SeqIO module in BioPython⁵⁹ and
507 filtered based on the base calling quality score, where any read with more than five
508 nucleotides of phred quality score <40 were removed. The adapter sequences were then

509 identified on each read and trimmed from the scFv sequences. Reads that did not have the
510 complete adapter sequences were also removed. The filtered reads were then aligned to the
511 reference scFv sequences and classified into three categories: 1) natively paired scFvs with
512 no mutation, 2) natively paired scFvs with mutation, 3) others (non-natively paired scFvs and
513 incomplete assemblies). Only the reads encoding natively paired scFvs with no mutation
514 were used for downstream analysis. Frequency (F) of a scFv i a given replicate k of a given
515 antigen s was computed for each replicate as follows:

$$F_{i,k,s} = \frac{\text{readcount}_{i,k,s} + 1}{\sum_s(\text{readcount}_{i,k,s} + 1)} \quad (1)$$

517 A pseudocount of 1 was added to each mutant to avoid division by zero in subsequent steps.
518 We then calculated the enrichment (E) of a scFv i of a given replicate k of a given antigen s
519 after the mRNA display selection as follows:

$$E_{i,k,s} = \frac{F_{\text{post-selection},i,k,s}}{F_{\text{pre-selection},i,k}} \quad (2)$$

521 We calculated the mean enrichment of a scFv i of a given antigen s over two replicates, then
522 inferred the binding score (BS) of a scFv i of a given antigen s using robust scaling:

$$BS_{i,s} = \frac{E_{i,s} - \text{median}(E)}{IQR(E)} \quad (3)$$

524 Where $\text{median}(E)$ represents the median of a given dataset, $IQR(E)$ representing the
525 interquartile range of a given dataset. Custom cutoffs were set for each screen to determine
526 hits (**Table S10**). For a given antigen s , the CR9114 competition index (CI) of a scFv i was
527 computed as below:

$$CI_{i,s} = \log_{10} \frac{E_{\text{HA screen without CR9114},i,s}}{E_{\text{HA screen with CR9114},i,s}} \quad (4)$$

529

530 **Expression and purification of Fabs and IgGs**

531 Heavy and light chains of the antibodies were cloned into a phCMV3 vector with a mouse
532 immunoglobulin kappa signal peptide in human IgG1 Fc or Fab format. Plasmids encoding
533 the heavy and light chains of antibodies were transfected into Expi293F cells using an
534 ExpiFectamine 293 transfection kit (Gibco) in a 2:1 mass ratio for IgG or a 1:1 mass ratio for

535 Fab following the manufacturer's protocol. Supernatant was harvested at 6 days post-
536 transfection and centrifuged at 4,000 ×g for 30 mins at 4°C to remove cells and debris. The
537 supernatant was subsequently clarified using a polyethersulfone membrane filter with a 0.22
538 mm pore size (Millipore). Antibodies were first purified by CaptureSelect CH1-XL beads
539 (Thermo Fisher Scientific). Then, the antibodies were further purified by size exclusion
540 chromatography using a HiLoad 16/100 Superdex 200 prep grade column (Cytiva) in 1×
541 PBS. The A280 were measured using the Nanodrop One (Thermo Fisher Scientific) to
542 calculate the sample concentration. Antibodies were stored at 4°C until used.

543

544 **Expression and purification of FLAG-tagged CR9114 scFv**

545 CR9114 scFv nucleotide sequence with a pelB secretion peptide at the N-terminal and a
546 FLAG-tag (DYKDDDK) followed by a stop codon at the C-terminal were synthesized
547 (Integrated DNA Technologies) and ligated into a pET-28a plasmid vector backbone using
548 NEBuilder HiFi DNA Assembly Master Mix (New England Biolabs). The ligated product was
549 then transformed into DH5α competent cells (Thermo Fisher Scientific), and the plasmids
550 were extracted using a QIAprep Spin Miniprep Kit (Qiagen). The plasmids were then
551 transformed into BL21(DE3) competent cells (Thermo Fisher Scientific), followed by
552 overnight growth at 37°C, 225 rpm shaking. 100 mL LB culture (Fisher Scientific) were
553 inoculated at 1:500 ratio using the overnight culture and shaken at 37°C, 225 rpm. Once the
554 OD₆₀₀ reached approximately 0.6, IPTG (1 mM final concentration) was added to induce
555 protein expression for 16 hours at 30°C, 200 rpm.

556

557 The overnight culture was centrifuged at 4,500 ×g, 4°C for 1 hour to remove the supernatant.
558 The pellet was resuspended using 2 mL of ice-cold 1× TES buffer (200 mM Tris-HCl at pH
559 8.0, 0.65 mM EDTA, and 0.5 M sucrose). The resuspended mixture was incubated at 4°C for
560 2 hours with gentle shaking. 5 mL of ice-cold 0.25× TES buffer was then added, followed by
561 incubation at 4°C overnight. The mixture was centrifuged at 4,500 ×g, 4°C for 1 hour to
562 remove the pellet. The supernatant was subsequently clarified using a polyethersulfone
563 membrane filter with a 0.22 mm pore size (Millipore) and purified using ANTI-FLAG M2

564 Affinity Gel (Millipore-Sigma) per manufacturer's instructions. The A280 was measured using
565 the Nanodrop One (Thermo Fisher) to calculate the sample concentration.

566

567 **Expression, purification, and quantitation of selected scFvs for validation**

568 Nucleotide sequences of selected scFvs with a T7 promoter at the N-terminal and a FLAG-
569 tag (DYKDDDK) followed by a stop codon at the C-terminal were synthesized (Integrated
570 DNA Technologies) and amplified by PCR using Prime STAR Max DNA polymerase (Takara
571 Bio). The PCR product was purified using a PureLink PCR purification kit (Thermo Fisher
572 Scientific) and used as the template for *in vitro* translation using a PURExpress In Vitro
573 Protein Synthesis Kit (New England Biolabs) with the addition of PURExpress Disulfide
574 Bond Enhancer (New England Biolabs). The translated scFvs were then reverse purified
575 using Pierce High-Capacity Ni-IMAC magnetic beads (Thermo Fisher Scientific) per
576 manufacturer's instructions to remove all His-tagged translation kit components.

577

578 To measure the concentration of the purified scFv, quantitation assays were performed by
579 biolayer interferometry (BLI) using an Octet Red instrument (Sartorius). Briefly, rat anti-FLAG
580 tag monoclonal antibody (L5) (Thermo Fisher Scientific) at 5 µg/mL in 1× kinetics buffer (1×
581 PBS at pH 7.4, and 0.002% v/v Tween 20) were loaded onto ProG biosensors (Sartorius),
582 then incubated with the 40× diluted scFv sample (5 µL of sample added to 195 µL of 1×
583 kinetics buffer). The standard curve was generated via 2-fold serial dilutions using FLAG-
584 tagged CR9114 scFv. The assay consisted of five steps: (1) baseline: 60 s with 1× kinetics
585 buffer; (2) antibody capture: 180 s with rat anti-FLAG antibody; (3) baseline: 60 s with 1×
586 kinetics buffer; (4) binding rate measurement: 120 s with standard and scFv samples; and (5)
587 regeneration: 5s in regeneration buffer (0.1 M Glycine at pH 3.0) followed by 5 s in
588 neutralization buffer (1 M Tris-HCl at pH 7.5), repeated 3 times. The data were analyzed
589 using Octet analysis software 9.0, where the first 30 s of the binding rate measurement were
590 used for final quantitation.

591

592 **Validation of oPool⁺ display via biolayer interferometry**

593 The binding assay was performed by biolayer interferometry (BLI) using an Octet Red
594 instrument (Sartorius). 1× kinetics buffer (1× PBS at pH 7.4, and 0.002% v/v Tween 20)
595 were used for all experiments. Details of each experiment were described below:

596

597 *Systematic binding validation*

598 SA biosensors and Fab2G biosensors (Sartorius) were used for to validate binding of
599 selected antibodies against the nine HA constructs. HA or Fab constructs at 20 μ g/mL in 1×
600 kinetics buffer were loaded onto the biosensors and incubated with 10 μ g/mL Fabs/HAs.
601 Measurements with NA and each Fab were also taken to serve as the baseline. The assay
602 consisted of five steps: (1) baseline: 60 s with 1× kinetics buffer; (2) loading: 60 s with
603 biotinylated HA or Fab; (3) baseline: 60 s with 1× kinetics buffer; (4) association: 60 s with
604 Fab or HA samples; and (5) dissociation: 60 s with 1× kinetics buffer. The binding response
605 during the association step were recorded.

606

607 *Fab K_D measurement*

608 Biotinylated H1 or H3 stem construct at 0.5 μ M in 1× kinetics buffer was loaded onto SA
609 biosensors (Sartorius) and incubated with 33 nM, 100 nM, and 300 nM of purified Fabs. The
610 assay consisted of five steps: (1) baseline: 60 s with 1× kinetics buffer; (2) loading: 120 s
611 with biotinylated HA stem domains; (3) baseline: 60 s with 1× kinetics buffer; (4) association:
612 120 s with Fab samples; and (5) dissociation: 120 s with 1× kinetics buffer. For estimating
613 the exact K_D , a 1:1 binding model was used.

614

615 *scFv K_D measurement*

616 Biotinylated H1 or H3 stem construct at 0.5 μ M in 1× kinetics buffer was loaded onto SA
617 biosensors (Sartorius) and incubated with 9× dilution (20 μ L of sample added to 160 μ L of 1×
618 kinetics buffer) and 18× dilution (10 μ L of sample added to 170 μ L of 1× kinetics buffer) of
619 the purified scFv sample. The assay consisted of five steps: (1) baseline: 60 s with 1×
620 kinetics buffer; (2) loading: 180 s with biotinylated HA stem domains; (3) baseline: 60 s with

621 1× kinetics buffer; (4) association: 120 s with Fab samples; and (5) dissociation: 120 s with
622 1× kinetics buffer. For estimating the exact K_D , a 1:1 binding model was used.

623

624 *CR9114 competition assay*

625 SA biosensors and NTA biosensors (Sartorius) were used for to validate CR9114 competition
626 of selected antibodies. HA constructs at 20 μ g/mL in 1× kinetics buffer were first loaded onto
627 the biosensors, then incubated with 20 μ g/mL CR9114 Fab until saturation in binding,
628 immediately followed by incubation with the selected Fabs. A no-CR9114 control experiment
629 was performed concurrently for each Fab-antigen pair. The assay consisted of five steps: (1)
630 baseline: 60 s with 1× kinetics buffer; (2) loading: 480 s with HAs; (3) baseline: 60 s with 1×
631 kinetics buffer; (4) first association: 180 s with CR9114 Fab or 1× kinetics buffer; and (5)
632 second association: 120 s with 10 μ g/mL selected Fabs. Of note, competition assays of SI06
633 with 009-10-1G06, 045-09-1G05, 009-10-2F01, and 051-10-2B05 were done in the reverse
634 order, where the first association consist of 900 s incubation with the selected Fabs, followed
635 by 120 s second association with 10 μ g/mL CR9114 Fab. The binding response of the first
636 60 s in step (5) were recorded, and the CR9114 competition % of a given antibody i against
637 antigen s were calculated as below:

638
$$CR9114 \text{ competition \%}_{i,s} = (1 - \frac{Response_{w/CR9114 \text{ Fab},s}}{Response_{w/oCR9114 \text{ Fab},s}}) \times 100\% \quad (5)$$

639

640 **Expression and purification of HA ectodomains**

641 The HA ectodomains of H1N1 A/Puerto Rico/8/1934, H1N1 A/Beijing/262/1995, H1N1
642 A/Brisbane/02/2018 were cloned, expressed, and purified as mentioned above for the HA
643 constructs used for screening. The HA ectodomains of H1N1 A/California/04/2009 (NR-
644 15749), H5N1 A/bald eagle/Florida/W22-134-OP/2022 (NR-59476), H5N2 A/snow
645 goose/Missouri/CC15-84A/2015 (NR-50651), and H5N8 A/northern pintail/WA/40964/2014
646 (NR-50174) were obtained from BEI Resources (<https://www.beiresources.org/>). The HA
647 ectodomains of H1N1 A/USSR/90/1977 and H1N1 A/Taiwan/01/1986 were purchased from
648 SinoBiological.

649

650 **Cryo-EM sample preparation, data collection, and data processing**

651 *AG11-2F01 Fab in complex with H1/SI06 HA*

652 The AG11-2F01 Fab was incubated with H1/SI06 HA on ice overnight followed by size
653 exclusion chromatography. The peak fraction of the Fab-HA complex was concentrated to
654 around 1 mg/mL for cryo-EM sample preparation. Cryo-EM grids were prepared using a
655 Vitrobot Mark IV (Thermo Fisher Scientific). 3.5 μ L of the sample was applied to a 300-mesh
656 Quantifoil R1.2/1.3 Cu grid pretreated with glow-discharge. Excess liquid was blotted away
657 using filter paper with blotting force -5 and blotting time 3 s. The grid was then flash frozen in
658 liquid ethane. Movies were then collected on a Titan Krios microscope equipped with Gatan
659 BioQuantum K3 imaging filter and camera (Thermo Fisher Scientific). Images were recorded
660 at 130,000 \times magnification, corresponding to a pixel size of 0.33 $\text{\AA}/\text{pixel}$ at super-resolution
661 mode of the camera. A defocus range of -0.8 μ m to -1.5 μ m was set. A total dose of 50 $\text{e}^-/\text{\AA}^2$
662 of each exposure was fractionated into 50 frames. Both untilted and 30-degree-tilted data
663 were collected and combined to alleviate the preferred orientation problem of the sample.

664

665 CryoSPARC⁶⁰ was used to process the cryo-EM data. For model building, ABodyBuilder⁶¹
666 was used to generate an initial model for AG11-2F01 Fab. This model, together with the
667 model of H1/SI06 HA (PDB 6FYT)⁶², was fitted into the cryo-EM density map using UCSF
668 Chimera⁶³. The model was manually adjusted in Coot⁶⁴ and refined with Phenix real-space
669 refinement program⁶⁵. This process was iterated for several cycles until no significant
670 improvement of the model was observed.

671

672 *16.ND.92 Fab in complex with H1/SI06 HA*

673 The 16.ND.92 Fab was incubated with H1/SI06 HA and FISW84 Fab, a known HA anchor
674 antibody⁶⁶, on ice overnight followed by size exclusion chromatography. The peak fraction of
675 the Fab-HA complex was concentrated to around 3 mg/mL for cryo-EM sample preparation.
676 0.1% (w/v) of n-octyl- β -D-glucoside was added to reduce orientation bias. Cryo-EM grids

677 were prepared using a Vitrobot Mark IV (Thermo Fisher Scientific). 3 μ L of the sample was
678 applied to a 400-mesh Quantifoil R1.2/1.3 Cu grid pretreated with glow-discharge. Excess
679 liquid was blotted away using filter paper with blotting force 0 and blotting time 3 s. The grid
680 was then flash frozen in liquid ethane. Movies were then collected on a Titan Krios
681 microscope equipped with Gatan BioQuantum K3 imaging filter and camera (Thermo Fisher
682 Scientific). Images were recorded at 81,000 \times magnification, corresponding to a pixel size of
683 0.53 \AA /pixel at super-resolution mode of the camera. A defocus range of -0.5 μ m to -5 μ m
684 was set. A total dose of 57.35 e $^-$ / \AA^2 of each exposure was fractionated into 40 frames.

685

686 CryoSPARC⁶⁰ was used to process the cryo-EM data. DeepEMhancer⁶⁷ was used to
687 generate the sharpened density map for downstream model building. For model building,
688 IgFold⁶⁸ was used to generate an initial model for 16.ND.92 Fab. This model, together with
689 the model of H1/SI06 HA (PDB 6FYT)⁶², was fitted into the cryo-EM density map using
690 Phenix DockinMap module⁶⁹. The models were manually adjusted in Coot⁶⁴ and refined with
691 Phenix real-space refinement program⁶⁵. This process was iterated for several cycles until
692 no significant improvement of the model was observed.

693

694 **Structural analysis of HA-antibody complexes**

695 Buried surface areas upon binding and paratope residues of AG11-2F01, 16.ND.92,
696 MEDI8852 (PDB 5JW4), 56.a.09 (PDB 5K9J), 54-1G05 (PDB 6WIZ), PN-SIA28 (PDB 8GV5),
697 39.29 (PDB 4KVN), and 429 B01 (PDB 6NZ7)^{7,9,31-34} were analyzed using PDBePISA⁷⁰. The
698 CDRH3 region and IGHD 3-3 usage of each antibody was annotated using IgBLAST⁷¹. The
699 molecular interactions of AG11-2F01 and 16.ND.92 in complex with H1/SI06 HA were
700 analyzed and visualized using PyMOL (Schrödinger).

701

702 **Enzyme-linked immunosorbent assay (ELISA)**

703 Nunc MaxiSorp ELISA plates (Thermo Fisher Scientific) were coated overnight at 4°C with
704 100 μ L of recombinant proteins at 1 μ g/mL in 1x PBS. The next day, plates were washed

705 thrice with 1× PBS containing 0.05% Tween 20 and blocked with 200 μ l of 5% non-fat milk in
706 1× PBS for 2 hours at room temperature. For systematic validation of oPool⁺ display, 10
707 μ g/mL of monoclonal antibodies were added to the plates, and incubated for 2 hours at 37°C;
708 for functional characterization of AG11-2F01 and 16.ND.92, monoclonal antibodies were
709 serially diluted 10-fold starting from 100 μ g/mL, added to the plates, and incubated for 2
710 hours at 37°C. Plates were then washed thrice and incubated with horseradish peroxidase
711 (HRP)-conjugated goat anti-human IgG antibody (Thermo Fisher Scientific) at 1:5,000
712 dilution for 1 hour at 37°C. After six washes with 1× PBS containing 0.05% Tween 20, 100
713 μ L of 1-Step TMB ELISA Substrate Solution (Thermo Fisher Scientific) was added to each
714 well. After incubation for 10 mins, the reaction was stopped with 50 μ L of 2 M H₂SO₄ solution,
715 and absorbance values were measured at 450 nm (OD₄₅₀) using a BioTek Synergy HTX
716 Multimode Reader (Agilent).

717

718 **Recombinant virus construction and purification**

719 Recombinant viruses with HA and NA segments from the indicated H1N1 strains and six
720 internal segments from H1N1 A/Puerto Rico/8/1934 (PR8) were obtained from BEI
721 Resources (<https://www.beiresources.org/>). Recombinant viruses were rescued using the
722 eight-plasmid reverse genetics system⁷². Briefly, plasmids encoding the HA segments from
723 H1N1 A/California/07/2009 and H1N1 A/Michigan/45/2015 along with seven plasmids
724 encoding the other seven segments from PR8 were transfected into a co-culture of
725 HEK293T (human embryonic kidney) cells and MDCK-SIAT1 (Madin-Darby Canine Kidney)
726 cells at a 6:1 ratio. Supernatants were injected into 8-10 days old embryonated chicken eggs
727 and incubated at 37°C for 48 hours. Viruses in the allantoic fluid were plaque-purified on
728 MDCK-SIAT1 cells grown in Dulbecco's Modified Eagles Medium (Gibco) containing 10%
729 fetal bovine serum (Gibco) and a penicillin-streptomycin mix (100 U/mL penicillin and 100
730 μ g/mL streptomycin, Gibco). The HA sequence of each virus was confirmed by Sanger
731 sequencing.

732

733 **Microneutralization assay**

734 For the microneutralization assay, MDCK-SIAT1 cells were seeded in 96-well plates. After
735 reaching 100% confluence, MDCK-SIAT1 cells were washed once with 1x PBS. Minimal
736 essential media (Gibco) containing 25 mM HEPES (Gibco) was then added to the cells.
737 Monoclonal antibodies were serially diluted 10-fold starting from 100 µg/ml and mixed with
738 100 TCID₅₀ (median tissue culture infectious dose) of viruses at equal volume and incubated
739 at 37°C for 1 hour. Subsequently, the mixture was inoculated into cells and incubated at
740 37°C for another hour. Cell supernatants were discarded and replaced with minimal
741 essential media containing 25 mM HEPES, and 1 µg/mL TPCK-trypsin (Sigma). Plates were
742 incubated at 37°C for 72 hours, and virus presence was detected by hemagglutination assay
743 to determine the MN₅₀ titers.

744

745 **Mice**

746 The animal experiments were performed in accordance with protocols approved by UIUC
747 Institutional Animal Care and Use Committee (IACUC). Six-week-old female BALB/c mice
748 (Jackson Laboratory) were used for all animal experiments.

749

750 **Prophylactic and therapeutic protection experiments**

751 Female BALB/c mice at 6 weeks old (n = 5 per group) were anesthetized with isoflurane and
752 intranasally infected with 5x lethal dose (LD₅₀) of recombinant PR8 virus. Mice were given
753 the indicated antibody at a dose of 5 mg/kg intraperitoneally at 4 hours before infection
754 (prophylaxis) or 4 hours after infection (therapeutics). Weight loss was monitored daily for 14
755 days. The humane endpoint was defined as a weight loss of 25% from initial weight at day 0.
756 Of note, while our BALB/c mice were not modified to facilitate interaction with human IgG1,
757 human IgG1 could interact with mouse Fc gamma receptors⁷³⁻⁷⁵. To determine the lung viral
758 titers at day 3 post-infection, lungs of infected mice were harvested and homogenized in 1
759 mL of minimal essential media with 10% bovine serum albumin using a gentleMACS C Tube
760 (Miltenyi Biotec). Subsequently, virus titers were measured by TCID₅₀ assay.

761

762 **ACKNOWLEDGEMENTS**

763 We thank Anders Olson, Chris Brooke, David Kranz, and Steve Sligar for helpful discussion
764 and the Roy J. Carver Biotechnology Center at the University of Illinois at Urbana-
765 Champaign for assistance with PacBio sequencing. We thank Kristen Flatt and the Materials
766 Research Laboratory Central Research Facilities at the University of Illinois at Urbana-
767 Champaign for access to cryo-EM instrumentation during the screening of the Fab-HA
768 complexes. We are grateful to the Cryo-EM Core and the Core Facility for Advanced
769 Research Computing at Case Western Reserve University for the access of cryo-EM
770 instrumentation and data processing. We also thank Frank Vago and the Cryo-EM Facility at
771 Purdue University for the access of cryo-EM instrumentation and data collection. This work
772 is supported by National Institutes of Health R01 AI167910 (N.C.W.), DP2 AT011966
773 (N.C.W.), the Searle Scholars Program (N.C.W.), Howard Hughes Medical Institute
774 Emerging Pathogens Initiative (N.C.W.), UIUC William T. and Lynn Jackson Graduate
775 Student Fellowship (W.O.O.), UIUC Gregorio Weber Graduate Student Fellowship (W.O.O.),
776 and Carl R. Woese Institute for Genomic Biology Postdoctoral Fellowship (H.L.).

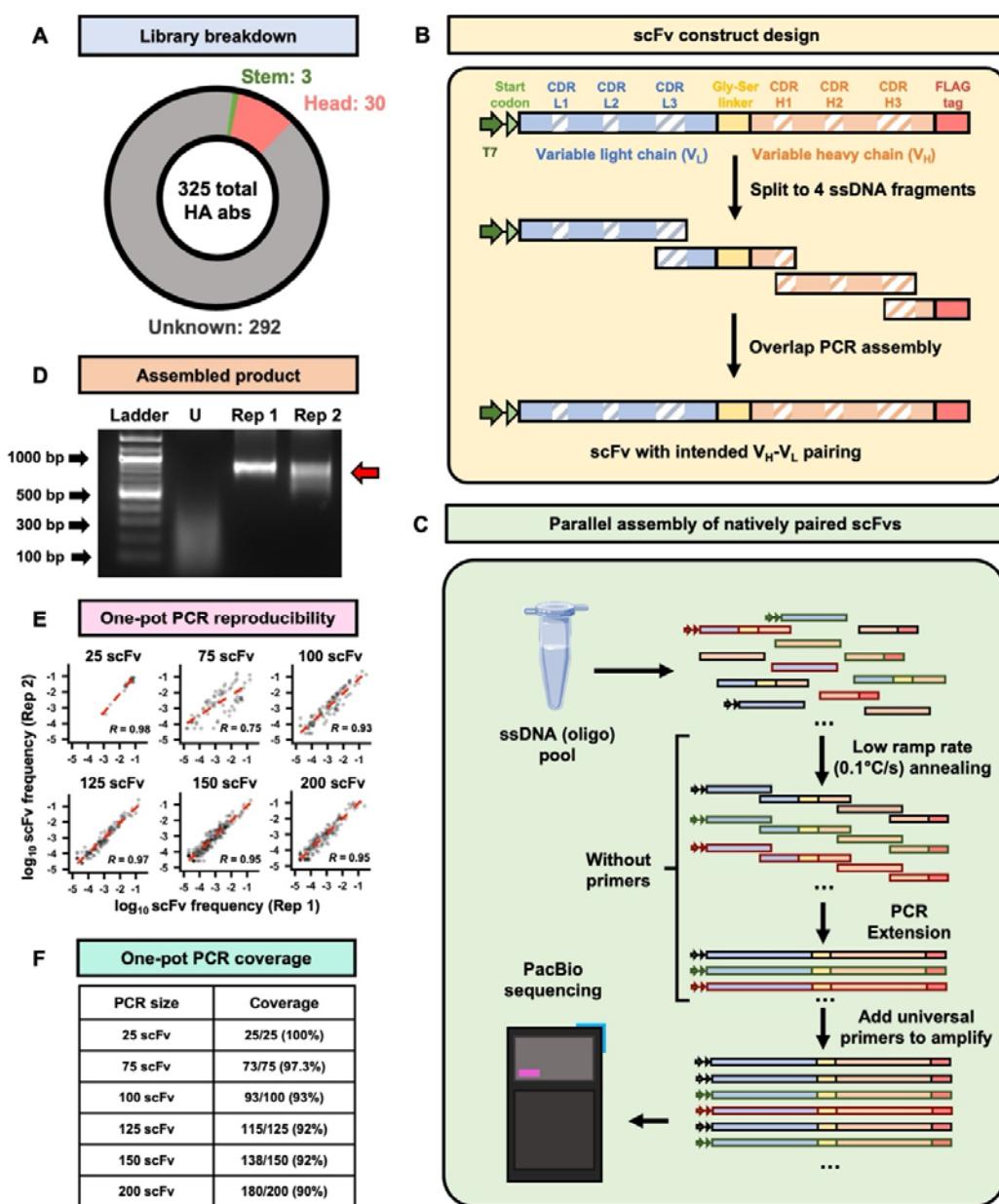
777

778 **AUTHOR CONTRIBUTIONS**

779 W.O.O. and N.C.W. conceived and designed the study. W.O.O., H.L., W.L., Y.W., K.E.D. and
780 N.C.W. developed the methodology. W.O.O. and L.T. assembled the library and performed
781 mRNA display experiment. W.O.O., W.L. and N.C.W. analyzed the PacBio sequencing data.
782 W.O.O., H.L., R.L., M.T., A.B.G. and L.A.R. expressed and purified recombinant proteins.
783 W.O.O., Z.M., R.L., T.P., X.D., and N.C.W. performed structural analysis of the antibodies.
784 W.O.O., H.L., D.C., and M.R.A performed functional characterization of the antibodies. X.D.
785 and N.C.W. provided resources and support. W.O.O. H.L., W.L. and N.C.W. wrote the paper,
786 and all authors reviewed and edited the paper.

787

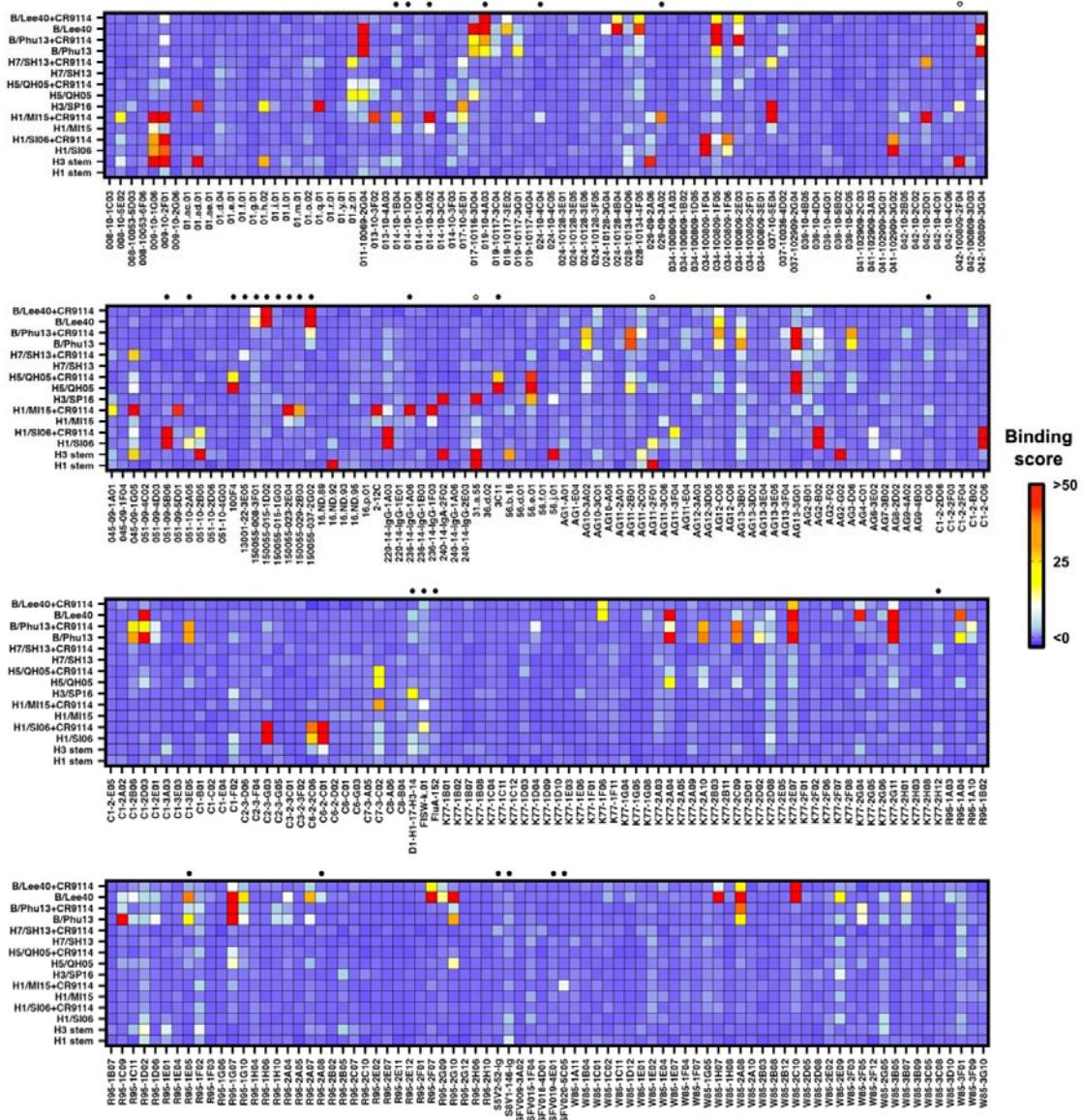
788 **DECLARATION OF INTERESTS**


789 N.C.W. consults for HeliXon. The authors declare no other competing interests.

790

791 **DATA & CODE AVAILABILITY**

792 Raw sequencing data have been submitted to the NIH Short Read Archive under accession
793 number: BioProject PRJNA1150188. Cryo-EM density maps and coordinates have been
794 deposited to EMDB and PDB with accession numbers: EMD-46727 and EMD-45930; PDB
795 9DBX and 9CU7. Custom scripts as well as raw data for experimental validations have been
796 deposited to: https://github.com/nicwulab/oPool_display.

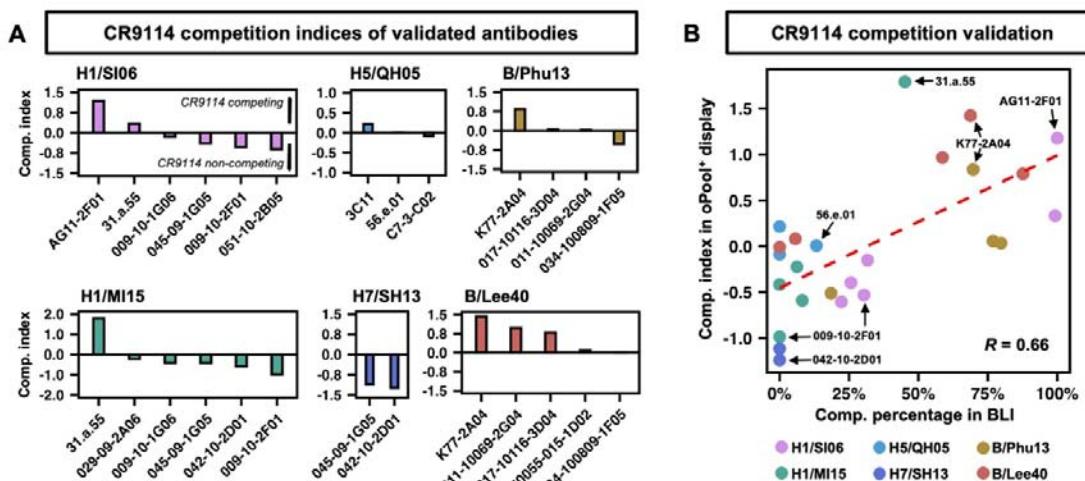

797 **MAIN FIGURES**

798

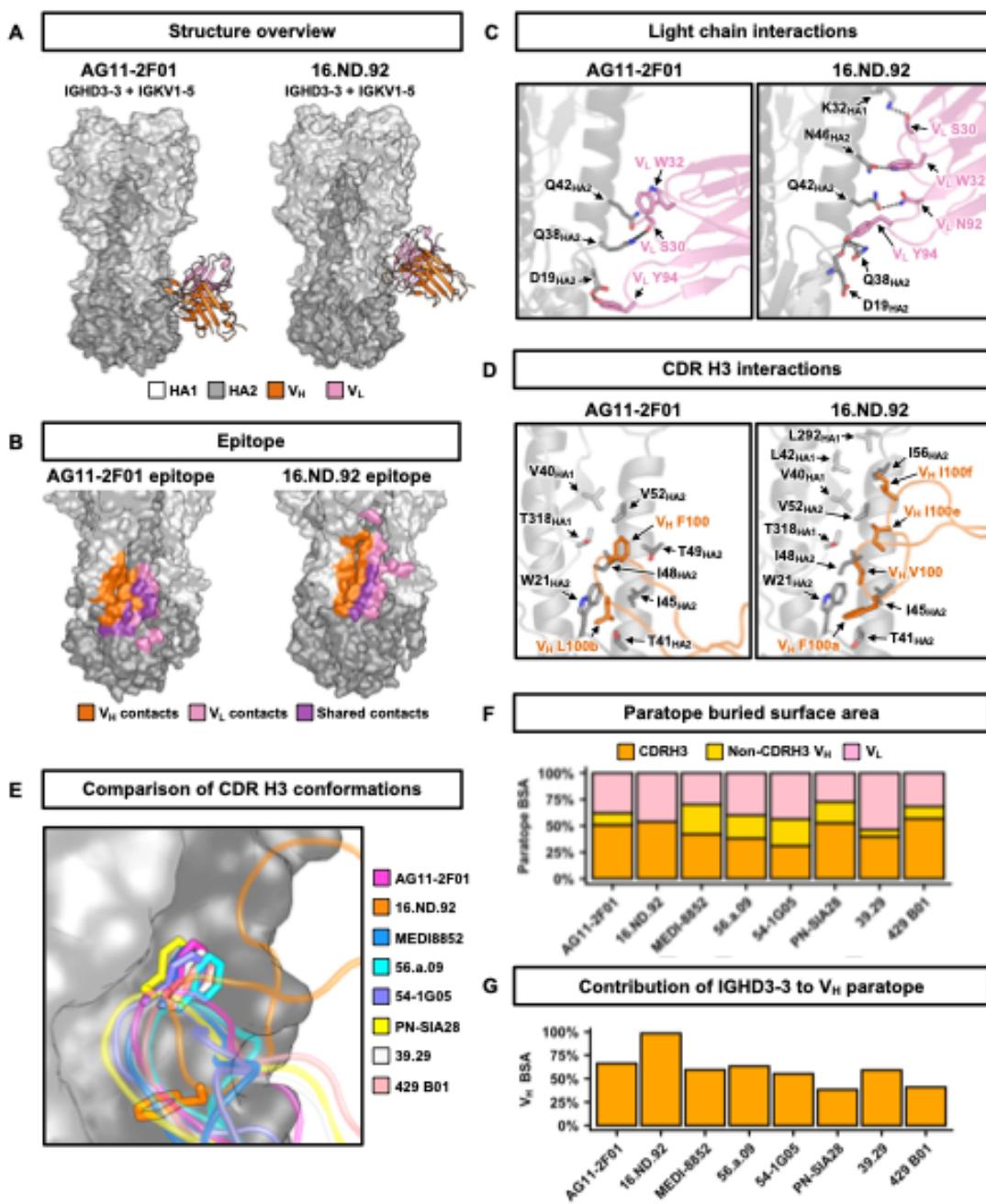
799 **Figure 1. Curation and synthesis of the natively paired HA antibody library. (A)** The
800 overall breakdown of the HA antibody library. **(B)** Design of oligos for scFv assembly. Each
801 given scFv construct contains a T7 promoter and a start codon at the N-terminal as well as a
802 FLAG tag at the C-terminal. The scFv sequences were then split into 4 fragments at the
803 selected CDR regions, with overlap between adjacent fragments. Through an overlap PCR,
804 oligos of the same construct would preferably anneal to each other, ensuring the assembly
805 of natively paired scFvs. **(C)** Synthesis of the natively paired HA antibody library.

806 Synthesized oligo pools containing scFv fragments were assembled via a two-stage PCR
807 (**see Materials and Methods**). **(D)** The unassembled and assembled oligo pools were
808 compared by agarose gel electrophoresis. “U”: unassembled oligo pool. “Rep1”: replicate 1.
809 “Rep2”: replicate 2. The red arrow indicates the target size (800-900 bp) for full length scFvs.
810 **(E-F)** The reproducibility **(E)** and coverage **(F)** of the scFv assembly using varying numbers
811 of scFv per PCR, ranging from 25 to 200. The Pearson correlation coefficient **(R)** of the
812 occurrence frequencies of individual scFvs between the two replicates were indicated.
813 Micro-tube icon by Servier <https://smart.servier.com/> is licensed under CC-BY 3.0 Unported,
814 available via Bio Icons.

815

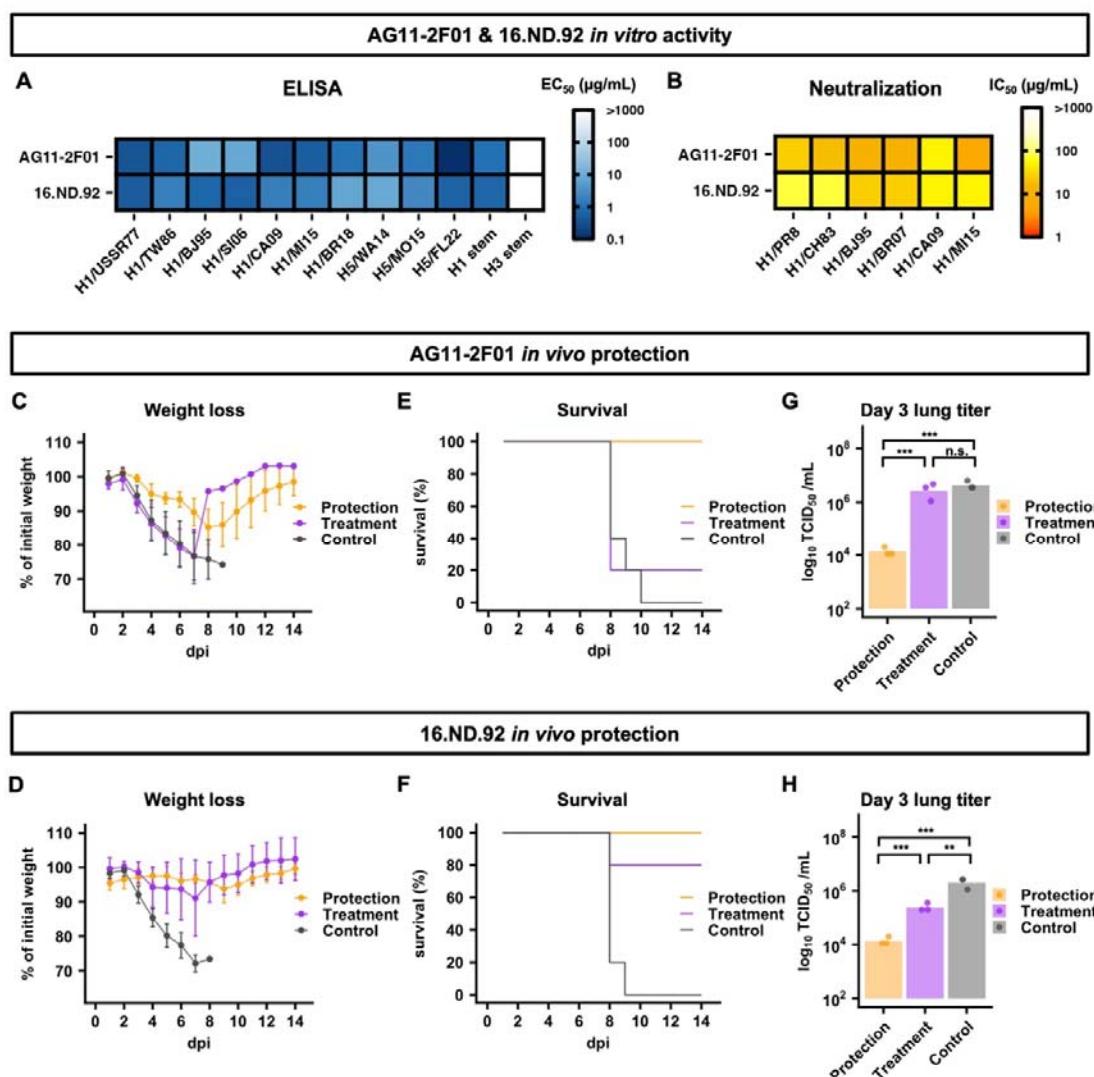

816 **Figure 2. Rapid specificity characterization of the natively paired antibodies by mRNA**
817 **display.** The screening results of each scFv are shown as a heatmap. X-axis represents the
818 scFv names. Y-axis represents each individual screens. Screens against CR9114 IgG pre-
819 bound HAs are indicated by “+CR9114”. Binding scores shown were adjusted with robust
820 scaling. Individual cutoffs were set for each screen to determine positive hits (**Table S4**,
821 **Materials and Methods**). Black circles at the top of the heatmap indicate head antibody
822 controls, whereas empty circles indicate stem antibody controls.

824


825 **Figure 3. Systematic validation of oPool⁺ display. (A-B)** Binding activity of 25 antibodies
 826 against different HAs was measured by **(A)** biolayer interferometry (BLI) with antibodies in
 827 Fab format and **(B)** ELISA with antibodies in IgG format. **(A)** The response signals during the
 828 association phase and **(B)** the OD₄₅₀ values were shown as heatmaps. The dots represent
 829 the hits in oPool⁺ display. X-axis represents antibody names. Y-axis represents antigen
 830 names. **(C)** Binary confusion matrices based on BLI and ELISA validations are shown. **(D)**

831 Binding affinity of selected HA stem antibody candidates in both scFv and Fab format. Their
832 dissociation constants (K_D) against H1 stem and H3 stem are shown as heatmaps. Of note,
833 31.a.55 was a positive control for binding to both H1 stem and H3 stem⁷, AG11-2F01 was a
834 positive control for binding to H1 stem¹⁷, and 042-100809-2F04 was a positive control for
835 binding to H3 stem⁵⁴.

836


837 **Figure 4. CR9114 competition profile of validated antibodies. (A)** CR9114 competition
838 indices of validated antibodies. The competition indices calculated from oPool⁺ display are
839 shown. High positive values indicate CR9114 competition, low positive and high negative
840 values indicate no CR9114 competition. **(B)** CR9114 competition of validated antibodies
841 based on BLI results, shown as scatter plot against the competition indices. The response of
842 each antibody binding to the antigen were measured during the association step with or
843 without prior saturation binding of CR9114. The percentage of competition is shown with the
844 range of 0% (no competition) to 100% (complete competition). Pearson correlation
845 coefficient (R) between replicates is indicated. The linear fit lines are shown as red dash
846 lines. Representative antibodies are labelled.

847

848 **Figure 5. Structural analysis of AG11-2F01 and 16.ND.92. (A)** Cryo-EM structures of
 849 AG11-2F01 and 16.ND.92 in complex with H1/SI06 HA. HA1 is in light grey. HA2 is in dark
 850 grey. Heavy chain variable domain (V_H) is in orange. Light chain variable domain (V_L) is in
 851 pink. **(B)** Epitopes of AG11-2F01 and 16.ND.92. V_H contacts are in orange. V_L contacts are
 852 in pink. Contacts shared by both V_H and V_L are in purple. **(C)** Interactions between light
 853 chain and HA are shown. H-bonds are represented by black dashed lines. **(D)** Interactions

854 between CDR H3 and HA are shown. **(E)** Overlay of the CDR H3 loops from IGHD3-3 HA-
855 stem antibodies. HA is in surface representation. **(F)** Contributions of CDR H3 (orange), non-
856 CDR H3 V_H (yellow), and V_L (pink) to the paratope buried surface areas (BSA) of the
857 indicated antibodies. **(G)** Contributions of IGHD3-3-encoded residues to V_H paratope BSA of
858 the indicated antibodies.

859

860 **Figure 6. *in vitro* and *in vivo* protection of AG11-2F01 and 16.ND.92. (A)** The binding
 861 activities of AG11-2F01 and 16.ND.92 against recombinant HA proteins from the indicated
 862 H1 and H5 strains were measured by ELISA. The EC₅₀ values are shown as a heatmap. **(B)**
 863 The neutralization activity of AG11-2F01 and 16.ND.92 against different recombinant H1N1
 864 viruses was measured by a microneutralization assay. The IC₅₀ values are shown as a
 865 heatmap. **(A-B)** Strain names are abbreviated as follows: H1N1 A/Puerto Rico/8/1934
 866 (H1/PR8), H1N1 A/USSR/90/1977 (H1/USSR77), H1N1 A/Chile/1/1983 (H1/CH83), H1N1
 867 A/Taiwan/01/1986 (H1/TW86), H1N1 A/Beijing/262/1995 (H1/BJ95), H1N1 A/Solomon
 868 Island/3/2006 (H1/SI06), H1N1 A/Brisbane/59/2007 (H1/BR07), H1N1 A/California/04/2009
 869 (H1/CA09), H1N1 A/Michigan/45/2015 (H1/MI15), H1N1 A/Brisbane/02/2018 (H1/BR18),

870 H5N8 A/northern pintail/WA/40964/2014 (H5/WA14), H5N2 A/snow goose/Missouri/CC15-
871 84A/2015 (H5/MO15), and H5N1 A/bald eagle/Florida/W22-134-OP/2022 (H5/FL22). H1
872 stem and H3 stem represents the HA stem constructs designed based on H1N1
873 A/Brisbane/59/2007 HA and H3N2 A/Finland/486/2004 HA, respectively^{29,30}. **(C-H)** The *in*
874 *vivo* protection activity of AG11-2F01 and 16.ND.92 against lethal challenge of PR8 virus
875 was assessed by **(C-D)** weight loss profiles, **(E-F)** Kaplan-Meier survival curves, and **(G-H)**
876 lung viral titers at day 3 post-infection. *P* values were computed by two-tailed student's t-test.
877 ***: *P* < 0.001; **: *P* < 0.01; n.s.: not significant.

878

879 **SUPPLEMENTAL FIGURES**

880 Figure S1. Curation and design of the natively paired HA antibody library.

881 Figure S2. One-pot PCR assembly from 25 scFvs to 200 scFvs per tube.

882 Figure S3. Final library assembly and quality assessment.

883 Figure S4. HA stem domain and ectodomain HA screens.

884 Figure S5. Quality assessment of the HA stem and ectodomain HA screens.

885 Figure S6. CR9114 competition screens.

886 Figure S7. Quality assessment of CR9114 competition screens.

887 Figure S8. BLI sensorgrams for systematic validation of oPool⁺ display.

888 Figure S9. BLI sensorgrams for stem antibody binding affinity measurements in Fab format.

889 Figure S10. BLI sensorgrams for stem antibody binding affinity measurements in scFv

890 format.

891 Figure S11. Competition indexes of all antibody hits.

892 Figure S12. BLI sensorgrams for CR9114 competition assays.

893 Figure S13. CDR H3 sequence analysis of AG11-2F01 and 16.ND.92.

894 Figure S14. ELISA titration curves.

895

896 **SUPPLEMENTAL TABLES**

897 Table S1. Selected HA antibodies.

898 Table S2. Oligo pool sequences.

899 Table S3. Enrichment results of oPool⁺ display.

900 Table S4. List of antibody hits and their binding profiles.

901 Table S5. CR9114 competition data of validated antibodies

902 Table S6. Cryo-EM data collection, refinement and validation statistics.

903 Table S7. Buried surface areas upon binding of IGHD3-3 antibodies.

904 Table S8. Cost and time comparison between traditional approaches for antibody specificity

905 characterization and oPool⁺ display.

906 Table S9. Sequences of primers used in this study.

907 Table S10. Custom cutoff for each screen.

908 **REFERENCES**

909 1. Pedrioli, A., and Oxenius, A. (2021). Single B cell technologies for monoclonal antibody
910 discovery. *Trends Immunol.* **42**, 1143–1158. <https://doi.org/10.1016/j.it.2021.10.008>.

911 2. Valldorf, B., Hinz, S.C., Russo, G., Pekar, L., Mohr, L., Klemm, J., Doerner, A., Krah, S.,
912 Hust, M., and Zielonka, S. (2022). Antibody display technologies: selecting the cream of
913 the crop. *Biol. Chem.* **403**, 455–477. <https://doi.org/10.1515/hsz-2020-0377>.

914 3. Persson, M.A., Caothien, R.H., and Burton, D.R. (1991). Generation of diverse high-
915 affinity human monoclonal antibodies by repertoire cloning. *Proc. Natl. Acad. Sci. U. S. A.*
916 **88**, 2432–2436. <https://doi.org/10.1073/pnas.88.6.2432>.

917 4. Sheets, M.D., Amersdorfer, P., Finnern, R., Sargent, P., Lindquist, E., Schier, R.,
918 Hemingsen, G., Wong, C., Gerhart, J.C., and Marks, J.D. (1998). Efficient construction
919 of a large nonimmune phage antibody library: the production of high-affinity human
920 single-chain antibodies to protein antigens. *Proc. Natl. Acad. Sci. U. S. A.* **95**, 6157–6162.
921 <https://doi.org/10.1073/pnas.95.11.6157>.

922 5. Kirkpatrick, E., Qiu, X., Wilson, P.C., Bahl, J., and Krammer, F. (2018). The influenza
923 virus hemagglutinin head evolves faster than the stalk domain. *Sci. Rep.* **8**, 10432.
924 <https://doi.org/10.1038/s41598-018-28706-1>.

925 6. Zost, S.J., Wu, N.C., Hensley, S.E., and Wilson, I.A. (2019). Immunodominance and
926 antigenic variation of Influenza virus hemagglutinin: implications for design of universal
927 vaccine immunogens. *J. Infect. Dis.* **219**, S38–S45. <https://doi.org/10.1093/infdis/jiy696>.

928 7. Joyce, M.G., Wheatley, A.K., Thomas, P.V., Chuang, G.-Y., Soto, C., Bailer, R.T., Druz, A.,
929 Georgiev, I.S., Gillespie, R.A., Kanekiyo, M., et al. (2016). Vaccine-induced antibodies
930 that neutralize group 1 and group 2 influenza A viruses. *Cell* **166**, 609–623.
931 <https://doi.org/10.1016/j.cell.2016.06.043>.

932 8. Corti, D., Voss, J., Gamblin, S.J., Codoni, G., Macagno, A., Jarrossay, D., Vachieri, S.G.,
933 Pinna, D., Minola, A., Vanzetta, F., et al. (2011). A neutralizing antibody selected from
934 plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. *Science* **333**,
935 850–856. <https://doi.org/10.1126/science.1205669>.

936 9. Kallewaard, N.L., Corti, D., Collins, P.J., Neu, U., McAuliffe, J.M., Benjamin, E., Wachter-
937 Rosati, L., Palmer-Hill, F.J., Yuan, A.Q., Walker, P.A., et al. (2016). Structure and function
938 analysis of an antibody recognizing all influenza A subtypes. *Cell* 166, 596–608.
939 <https://doi.org/10.1016/j.cell.2016.05.073>.

940 10. Dreyfus, C., Laursen, N.S., Kwaks, T., Zuidgeest, D., Khayat, R., Ekiert, D.C., Lee, J.H.,
941 Metlagel, Z., Bujny, M.V., Jongeneelen, M., et al. (2012). Highly conserved protective
942 epitopes on influenza B viruses. *Science* 337, 1343–1348.
943 <https://doi.org/10.1126/science.1222908>.

944 11. Wu, N.C., and Wilson, I.A. (2020). Influenza hemagglutinin structures and antibody
945 recognition. *Cold Spring Harb. Perspect. Med.* 10, a038778.
946 <https://doi.org/10.1101/cshperspect.a038778>.

947 12. Andrews, S.F., Graham, B.S., Mascola, J.R., and McDermott, A.B. (2018). Is it possible
948 to develop a “universal” influenza virus vaccine? Immunogenetic considerations
949 underlying B-cell biology in the development of a pan-subtype influenza A vaccine
950 targeting the hemagglutinin stem. *Cold Spring Harb. Perspect. Biol.* 10, a029413.
951 <https://doi.org/10.1101/cshperspect.a029413>.

952 13. Pappas, L., Foglierini, M., Piccoli, L., Kallewaard, N.L., Turrini, F., Silacci, C., Fernandez-
953 Rodriguez, B., Agatic, G., Giacchetto-Sasselli, I., Pellicciotta, G., et al. (2014). Rapid
954 development of broadly influenza neutralizing antibodies through redundant mutations.
955 *Nature* 516, 418–422. <https://doi.org/10.1038/nature13764>.

956 14. Wu, N.C., Yamayoshi, S., Ito, M., Uraki, R., Kawaoka, Y., and Wilson, I.A. (2018).
957 Recurring and adaptable binding motifs in broadly neutralizing antibodies to influenza
958 virus are encoded on the D3-9 segment of the Ig gene. *Cell Host Microbe* 24, 569-
959 578.e4. <https://doi.org/10.1016/j.chom.2018.09.010>.

960 15. Cheung, C.S.-F., Fruehwirth, A., Paparoditis, P.C.G., Shen, C.-H., Foglierini, M., Joyce,
961 M.G., Leung, K., Piccoli, L., Rawi, R., Silacci-Fregni, C., et al. (2020). Identification and
962 structure of a multidonor class of head-directed influenza-neutralizing antibodies reveal
963 the mechanism for its recurrent elicitation. *Cell Rep.* 32, 108088.
964 <https://doi.org/10.1016/j.celrep.2020.108088>.

965 16. Wang, Y., Lv, H., Teo, Q.W., Lei, R., Gopal, A.B., Ouyang, W.O., Yeung, Y.-H., Tan, T.J.C.,
966 Choi, D., Shen, I.R., et al. (2024). An explainable language model for antibody specificity
967 prediction using curated influenza hemagglutinin antibodies. *Immunity*.
968 <https://doi.org/10.1016/j.jimmuni.2024.07.022>.

969 17. Henry, C., Zheng, N.-Y., Huang, M., Cabanov, A., Rojas, K.T., Kaur, K., Andrews, S.F.,
970 Palm, A.-K.E., Chen, Y.-Q., Li, Y., et al. (2019). Influenza virus vaccination elicits poorly
971 adapted B cell responses in elderly individuals. *Cell Host Microbe* 25, 357-366.e6.
972 <https://doi.org/10.1016/j.chom.2019.01.002>.

973 18. Andrews, S.F., Huang, Y., Kaur, K., Popova, L.I., Ho, I.Y., Pauli, N.T., Henry Dunand, C.J.,
974 Taylor, W.M., Lim, S., Huang, M., et al. (2015). Immune history profoundly affects
975 broadly protective B cell responses to influenza. *Sci. Transl. Med.* 7, 316ra192.
976 <https://doi.org/10.1126/scitranslmed.aad0522>.

977 19. Dugan, H.L., Guthmiller, J.J., Arevalo, P., Huang, M., Chen, Y.-Q., Neu, K.E., Henry, C.,
978 Zheng, N.-Y., Lan, L.Y.-L., Tepora, M.E., et al. (2020). Preexisting immunity shapes
979 distinct antibody landscapes after influenza virus infection and vaccination in humans.
980 *Sci. Transl. Med.* 12, eabd3601. <https://doi.org/10.1126/scitranslmed.abd3601>.

981 20. Ekiert, D.C., Kashyap, A.K., Steel, J., Rubrum, A., Bhabha, G., Khayat, R., Lee, J.H.,
982 Dillon, M.A., O'Neil, R.E., Faynboym, A.M., et al. (2012). Cross-neutralization of
983 influenza A viruses mediated by a single antibody loop. *Nature* 489, 526–532.
984 <https://doi.org/10.1038/nature11414>.

985 21. Henry, C., Palm, A.-K.E., Utset, H.A., Huang, M., Ho, I.Y., Zheng, N.-Y., Fitzgerald, T.,
986 Neu, K.E., Chen, Y.-Q., Krammer, F., et al. (2019). Monoclonal antibody responses after
987 recombinant hemagglutinin vaccine versus subunit inactivated influenza virus vaccine: a
988 comparative study. *J. Virol.* 93, e01150-19. <https://doi.org/10.1128/JVI.01150-19>.

989 22. Hu, H., Voss, J., Zhang, G., Buchy, P., Zuo, T., Wang, L., Wang, F., Zhou, F., Wang, G.,
990 Tsai, C., et al. (2012). A human antibody recognizing a conserved epitope of H5
991 hemagglutinin broadly neutralizes highly pathogenic avian influenza H5N1 viruses. *J.*
992 *Virol.* 86, 2978–2989. <https://doi.org/10.1128/JVI.06665-11>.

993 23. Liu, Y., Tan, H.-X., Koutsakos, M., Jegaskanda, S., Esterbauer, R., Tilmanis, D., Aban, M.,

994 Kedzierska, K., Hurt, A.C., Kent, S.J., et al. (2019). Cross-lineage protection by human
995 antibodies binding the influenza B hemagglutinin. *Nat. Commun.* 10, 324.
996 <https://doi.org/10.1038/s41467-018-08165-y>.

997 24. Watanabe, A., McCarthy, K.R., Kuraoka, M., Schmidt, A.G., Adachi, Y., Onodera, T.,
998 Tonouchi, K., Caradonna, T.M., Bajic, G., Song, S., et al. (2019). Antibodies to a
999 conserved Influenza head interface epitope protect by an IgG subtype-dependent
1000 mechanism. *Cell* 177, 1124-1135.e16. <https://doi.org/10.1016/j.cell.2019.03.048>.

1001 25. Lee, J., Boutz, D.R., Chromikova, V., Joyce, M.G., Vollmers, C., Leung, K., Horton, A.P.,
1002 DeKosky, B.J., Lee, C.-H., Lavinder, J.J., et al. (2016). Molecular-level analysis of the
1003 serum antibody repertoire in young adults before and after seasonal influenza
1004 vaccination. *Nat. Med.* 22, 1456–1464. <https://doi.org/10.1038/nm.4224>.

1005 26. Roberts, R.W., and Szostak, J.W. (1997). RNA-peptide fusions for the in vitro selection
1006 of peptides and proteins. *Proc. Natl. Acad. Sci. U. S. A.* 94, 12297–12302.
1007 <https://doi.org/10.1073/pnas.94.23.12297>.

1008 27. Wu, N.C., Dai, L., Olson, C.A., Lloyd-Smith, J.O., and Sun, R. (2016). Adaptation in
1009 protein fitness landscapes is facilitated by indirect paths. *eLife* 5, e16965.
1010 <https://doi.org/10.7554/eLife.16965>.

1011 28. Tanaka, S., Olson, C.A., Barnes, C.O., Higashide, W., Gonzalez, M., Taft, J., Richardson,
1012 A., Martin-Fernandez, M., Bogunovic, D., Gnanapragasam, P.N.P., et al. (2022). Rapid
1013 identification of neutralizing antibodies against SARS-CoV-2 variants by mRNA display.
1014 *Cell Rep.* 38, 110348. <https://doi.org/10.1016/j.celrep.2022.110348>.

1015 29. Impagliazzo, A., Milder, F., Kuipers, H., Wagner, M.V., Zhu, X., Hoffman, R.M.B., van
1016 Meersbergen, R., Huiizingh, J., Wanningen, P., Verspuij, J., et al. (2015). A stable trimeric
1017 influenza hemagglutinin stem as a broadly protective immunogen. *Science* 349, 1301–
1018 1306. <https://doi.org/10.1126/science.aac7263>.

1019 30. Corbett, K.S., Moin, S.M., Yassine, H.M., Cagigi, A., Kanekiyo, M., Boyoglu-Barnum, S.,
1020 Myers, S.I., Tsybovsky, Y., Wheatley, A.K., Schramm, C.A., et al. (2019). Design of
1021 nanoparticulate group 2 influenza virus hemagglutinin stem antigens that activate
1022 unmutated ancestor B cell receptors of broadly neutralizing antibody lineages. *mBio* 10,

1023 1023 e02810-18. <https://doi.org/10.1128/mBio.02810-18>.

1024 1024 31. Wu, N.C., Andrews, S.F., Raab, J.E., O'Connell, S., Schramm, C.A., Ding, X., Chambers, M.J., Leung, K., Wang, L., Zhang, Y., et al. (2020). Convergent evolution in breadth of two VH6-1-encoded Influenza antibody clonotypes from a single donor. *Cell Host Microbe* 28, 434-444.e4. <https://doi.org/10.1016/j.chom.2020.06.003>.

1025 1025 32. Matsuda, K., Huang, J., Zhou, T., Sheng, Z., Kang, B.H., Ishida, E., Griesman, T., Stuccio, S., Bolkhovitinov, L., Wohlbold, T.J., et al. (2019). Prolonged evolution of the memory B cell response induced by a replicating adenovirus-influenza H5 vaccine. *Sci. Immunol.* 4, eaau2710. <https://doi.org/10.1126/sciimmunol.aau2710>.

1026 1026 33. Chen, Y., Wang, F., Yin, L., Jiang, H., Lu, X., Bi, Y., Zhang, W., Shi, Y., Burioni, R., Tong, Z., et al. (2022). Structural basis for a human broadly neutralizing influenza A hemagglutinin stem-specific antibody including H17/18 subtypes. *Nat. Commun.* 13, 7603. <https://doi.org/10.1038/s41467-022-35236-y>.

1027 1027 34. Nakamura, G., Chai, N., Park, S., Chiang, N., Lin, Z., Chiu, H., Fong, R., Yan, D., Kim, J., Zhang, J., et al. (2013). An in vivo human-plasmablast enrichment technique allows rapid identification of therapeutic influenza A antibodies. *Cell Host Microbe* 14, 93–103. <https://doi.org/10.1016/j.chom.2013.06.004>.

1028 1028 35. Lanzavecchia, A., Frühwirth, A., Perez, L., and Corti, D. (2016). Antibody-guided vaccine design: identification of protective epitopes. *Curr. Opin. Immunol.* 41, 62–67. <https://doi.org/10.1016/j.coи.2016.06.001>.

1029 1029 36. Haynes, B.F., Wiehe, K., Borrow, P., Saunders, K.O., Korber, B., Wagh, K., McMichael, A.J., Kelsoe, G., Hahn, B.H., Alt, F., et al. (2023). Strategies for HIV-1 vaccines that induce broadly neutralizing antibodies. *Nat. Rev. Immunol.* 23, 142–158. <https://doi.org/10.1038/s41577-022-00753-w>.

1030 1030 37. Toussi, S.S., Hammond, J.L., Gerstenberger, B.S., and Anderson, A.S. (2023). Therapeutics for COVID-19. *Nat. Microbiol.* 8, 771–786. <https://doi.org/10.1038/s41564-023-01356-4>.

1031 1031 38. Schoeder, C.T., Gilchuk, P., Sangha, A.K., Ledwitch, K.V., Malherbe, D.C., Zhang, X.,

1051 Binshtein, E., Williamson, L.E., Martina, C.E., Dong, J., et al. (2022). Epitope-focused
1052 immunogen design based on the ebolavirus glycoprotein HR2-MPER region. PLOS
1053 Pathog. 18, e1010518. <https://doi.org/10.1371/journal.ppat.1010518>.

1054 39. Hunt, A.C., Vögeli, B., Hassan, A.O., Guerrero, L., Kightlinger, W., Yoesep, D.J., Krüger,
1055 A., DeWinter, M., Diamond, M.S., Karim, A.S., et al. (2023). A rapid cell-free expression
1056 and screening platform for antibody discovery. Nat. Commun. 14, 3897.
1057 <https://doi.org/10.1038/s41467-023-38965-w>.

1058 40. Liu, L., Iketani, S., Guo, Y., Reddem, E.R., Casner, R.G., Nair, M.S., Yu, J., Chan, J.F.-W.,
1059 Wang, M., Cerutti, G., et al. (2022). An antibody class with a common CDRH3 motif
1060 broadly neutralizes sarbecoviruses. Sci. Transl. Med. 14, eabn6859.
1061 <https://doi.org/10.1126/scitranslmed.abn6859>.

1062 41. Liu, H., Kaku, C.I., Song, G., Yuan, M., Andrabi, R., Burton, D.R., Walker, L.M., and
1063 Wilson, I.A. (2022). Human antibodies to SARS-CoV-2 with a recurring YYDRxG motif
1064 retain binding and neutralization to variants of concern including Omicron. Commun. Biol.
1065 5, 766. <https://doi.org/10.1038/s42003-022-03700-6>.

1066 42. Robinson, J.E., Hastie, K.M., Cross, R.W., Yenni, R.E., Elliott, D.H., Rouelle, J.A.,
1067 Kannadka, C.B., Smira, A.A., Garry, C.E., Bradley, B.T., et al. (2016). Most neutralizing
1068 human monoclonal antibodies target novel epitopes requiring both Lassa virus
1069 glycoprotein subunits. Nat. Commun. 7, 11544. <https://doi.org/10.1038/ncomms11544>.

1070 43. Chen, L., Sun, M., Zhang, H., Zhang, X., Yao, Y., Li, M., Li, K., Fan, P., Zhang, H., Qin, Y.,
1071 et al. (2024). Potent human neutralizing antibodies against Nipah virus derived from two
1072 ancestral antibody heavy chains. Nat. Commun. 15, 2987.
1073 <https://doi.org/10.1038/s41467-024-47213-8>.

1074 44. Joubbi, S., Micheli, A., Milazzo, P., Maccari, G., Ciano, G., Cardamone, D., and Medini,
1075 D. (2024). Antibody design using deep learning: from sequence and structure design to
1076 affinity maturation. Brief. Bioinform. 25, bbae307. <https://doi.org/10.1093/bib/bbae307>.

1077 45. Bennett, N.R., Watson, J.L., Ragotte, R.J., Borst, A.J., See, D.L., Weidle, C., Biswas, R.,
1078 Shrock, E.L., Leung, P.J.Y., Huang, B., et al. (2024). Atomically accurate de novo design
1079 of single-domain antibodies. BioRxiv Prepr. Serv. Biol., 2024.03.14.585103.

1080 https://doi.org/10.1101/2024.03.14.585103.

1081 46. Frey, N.C., Hotzel, I., Stanton, S.D., Kelly, R.L., Alberstein, R.G., Makowski, E.K.,
1082 Martinkus, K., Berenberg, D., Bevers, J., Bryson, T., et al. (2025). Lab-in-the-loop
1083 therapeutic antibody design with deep learning. Preprint at bioRxiv,
1084 <https://doi.org/10.1101/2025.02.19.639050> <https://doi.org/10.1101/2025.02.19.639050>.

1085 47. Wu, N.C., Grande, G., Turner, H.L., Ward, A.B., Xie, J., Lerner, R.A., and Wilson, I.A.
1086 (2017). In vitro evolution of an influenza broadly neutralizing antibody is modulated by
1087 hemagglutinin receptor specificity. *Nat. Commun.* 8, 15371.
1088 <https://doi.org/10.1038/ncomms15371>.

1089 48. Quintero-Hernández, V., Juárez-González, V.R., Ortíz-León, M., Sánchez, R., Possani,
1090 L.D., and Becerril, B. (2007). The change of the scFv into the Fab format improves the
1091 stability and in vivo toxin neutralization capacity of recombinant antibodies. *Mol. Immunol.*
1092 44, 1307–1315. <https://doi.org/10.1016/j.molimm.2006.05.009>.

1093 49. Kang, T.H., and Seong, B.L. (2020). Solubility, stability, and avidity of recombinant
1094 antibody fragments expressed in microorganisms. *Front. Microbiol.* 11.
1095 <https://doi.org/10.3389/fmicb.2020.01927>.

1096 50. Rondot, S., Koch, J., Breitling, F., and Dübel, S. (2001). A helper phage to improve
1097 single-chain antibody presentation in phage display. *Nat. Biotechnol.* 19, 75–78.
1098 <https://doi.org/10.1038/83567>.

1099 51. Chao, G., Lau, W.L., Hackel, B.J., Sazinsky, S.L., Lippow, S.M., and Wittrup, K.D. (2006).
1100 Isolating and engineering human antibodies using yeast surface display. *Nat. Protoc.* 1,
1101 755–768. <https://doi.org/10.1038/nprot.2006.94>.

1102 52. Huang, K.-Y.A., Rijal, P., Schimanski, L., Powell, T.J., Lin, T.-Y., McCauley, J.W., Daniels,
1103 R.S., and Townsend, A.R. (2015). Focused antibody response to influenza linked to
1104 antigenic drift. *J. Clin. Invest.* 125, 2631–2645. <https://doi.org/10.1172/JCI81104>.

1105 53. Li, G.-M., Chiu, C., Wrammert, J., McCausland, M., Andrews, S.F., Zheng, N.-Y., Lee, J.-
1106 H., Huang, M., Qu, X., Edupuganti, S., et al. (2012). Pandemic H1N1 influenza vaccine
1107 induces a recall response in humans that favors broadly cross-reactive memory B cells.

1108 Proc. Natl. Acad. Sci. U. S. A. 109, 9047–9052. <https://doi.org/10.1073/pnas.1118979109>.

1109 54. Henry Dunand, C.J., Leon, P.E., Kaur, K., Tan, G.S., Zheng, N.-Y., Andrews, S., Huang,
1110 M., Qu, X., Huang, Y., Salgado-Ferrer, M., et al. (2015). Preexisting human antibodies
1111 neutralize recently emerged H7N9 influenza strains. J. Clin. Invest. 125, 1255–1268.
1112 <https://doi.org/10.1172/JCI74374>.

1113 55. Swindells, M.B., Porter, C.T., Couch, M., Hurst, J., Abhinandan, K.R., Nielsen, J.H.,
1114 Macindoe, G., Hetherington, J., and Martin, A.C.R. (2017). abYsis: Integrated antibody
1115 sequence and structure-management, analysis, and prediction. J. Mol. Biol. 429, 356–
1116 364. <https://doi.org/10.1016/j.jmb.2016.08.019>.

1117 56. Fu, L., Niu, B., Zhu, Z., Wu, S., and Li, W. (2012). CD-HIT: accelerated for clustering the
1118 next-generation sequencing data. Bioinformatics 28, 3150–3152.
1119 <https://doi.org/10.1093/bioinformatics/bts565>.

1120 57. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and
1121 Madden, T.L. (2009). BLAST+: architecture and applications. BMC Bioinformatics 10,
1122 421. <https://doi.org/10.1186/1471-2105-10-421>.

1123 58. Olson, C.A., Wu, N.C., and Sun, R. (2014). A comprehensive biophysical description of
1124 pairwise epistasis throughout an entire protein domain. Curr. Biol. 24, 2643–2651.
1125 <https://doi.org/10.1016/j.cub.2014.09.072>.

1126 59. Cock, P.J.A., Antao, T., Chang, J.T., Chapman, B.A., Cox, C.J., Dalke, A., Friedberg, I.,
1127 Hamelryck, T., Kauff, F., Wilczynski, B., et al. (2009). Biopython: freely available Python
1128 tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–
1129 1423. <https://doi.org/10.1093/bioinformatics/btp163>.

1130 60. Punjani, A., Rubinstein, J.L., Fleet, D.J., and Brubaker, M.A. (2017). cryoSPARC:
1131 algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14,
1132 290–296. <https://doi.org/10.1038/nmeth.4169>.

1133 61. Leem, J., Dunbar, J., Georges, G., Shi, J., and Deane, C.M. (2016). ABodyBuilder:
1134 automated antibody structure prediction with data–driven accuracy estimation. mAbs 8,
1135 1259–1268. <https://doi.org/10.1080/19420862.2016.1205773>.

1136 62. Laursen, N.S., Friesen, R.H.E., Zhu, X., Jongeneelen, M., Blokland, S., Vermond, J., van
1137 Eijgen, A., Tang, C., van Diepen, H., Obmolova, G., et al. (2018). Universal protection
1138 against influenza infection by a multidomain antibody to influenza hemagglutinin.
1139 *Science* 362, 598–602. <https://doi.org/10.1126/science.aaq0620>.

1140 63. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C.,
1141 and Ferrin, T.E. (2004). UCSF Chimera--a visualization system for exploratory research
1142 and analysis. *J. Comput. Chem.* 25, 1605–1612. <https://doi.org/10.1002/jcc.20084>.

1143 64. Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics.
1144 *Acta Crystallogr. D Biol. Crystallogr.* 60, 2126–2132.
1145 <https://doi.org/10.1107/S0907444904019158>.

1146 65. Afonine, P.V., Poon, B.K., Read, R.J., Sobolev, O.V., Terwilliger, T.C., Urzhumtsev, A.,
1147 and Adams, P.D. (2018). Real-space refinement in PHENIX for cryo-EM and
1148 crystallography. *Acta Crystallogr. Sect. Struct. Biol.* 74, 531–544.
1149 <https://doi.org/10.1107/S2059798318006551>.

1150 66. Benton, D.J., Nans, A., Calder, L.J., Turner, J., Neu, U., Lin, Y.P., Ketelaars, E.,
1151 Kallewaard, N.L., Corti, D., Lanzavecchia, A., et al. (2018). Influenza hemagglutinin
1152 membrane anchor. *Proc. Natl. Acad. Sci. U. S. A.* 115, 10112–10117.
1153 <https://doi.org/10.1073/pnas.1810927115>.

1154 67. Sanchez-Garcia, R., Gomez-Blanco, J., Cuervo, A., Carazo, J.M., Sorzano, C.O.S., and
1155 Vargas, J. (2021). DeepEMhancer: a deep learning solution for cryo-EM volume post-
1156 processing. *Commun. Biol.* 4, 874. <https://doi.org/10.1038/s42003-021-02399-1>.

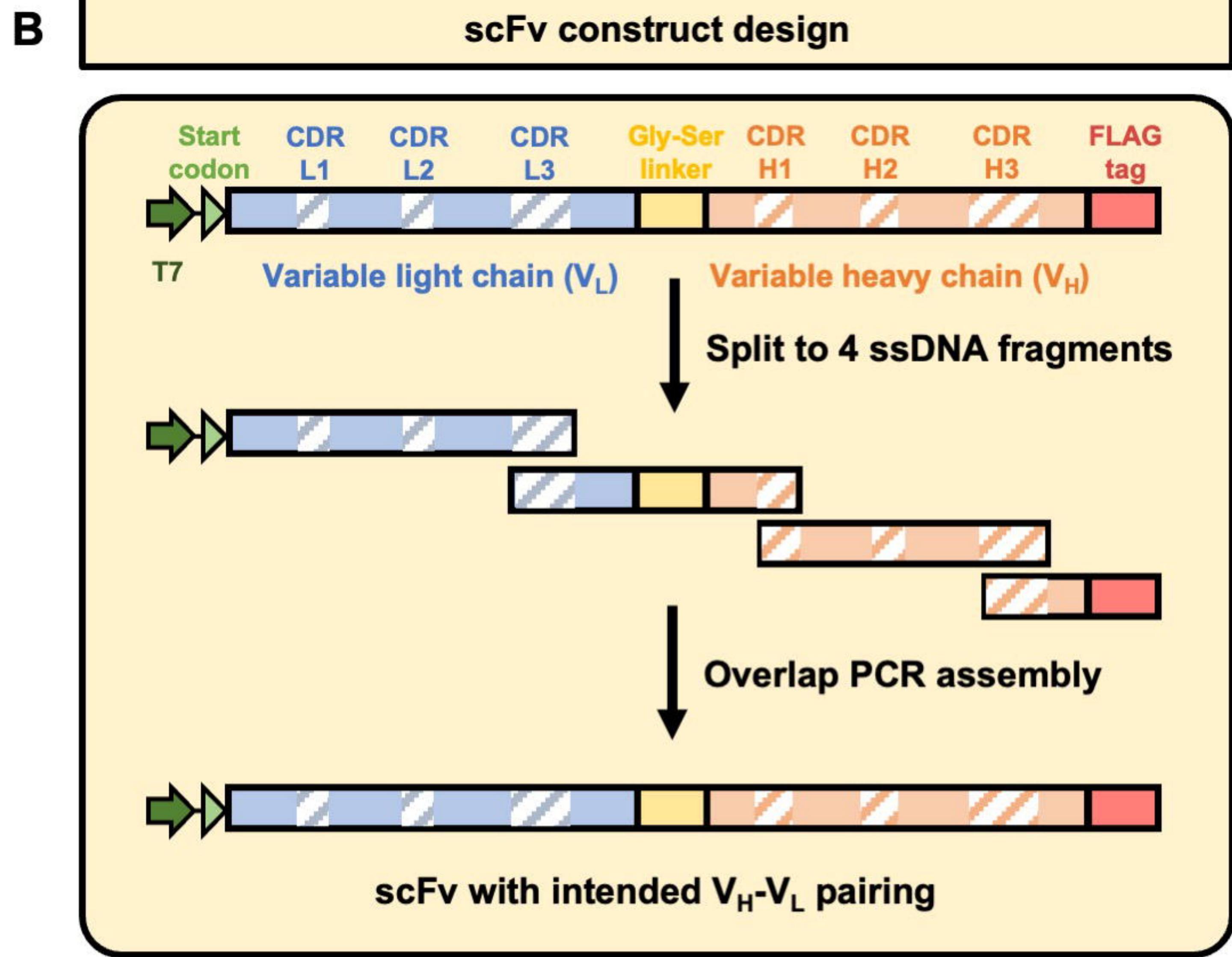
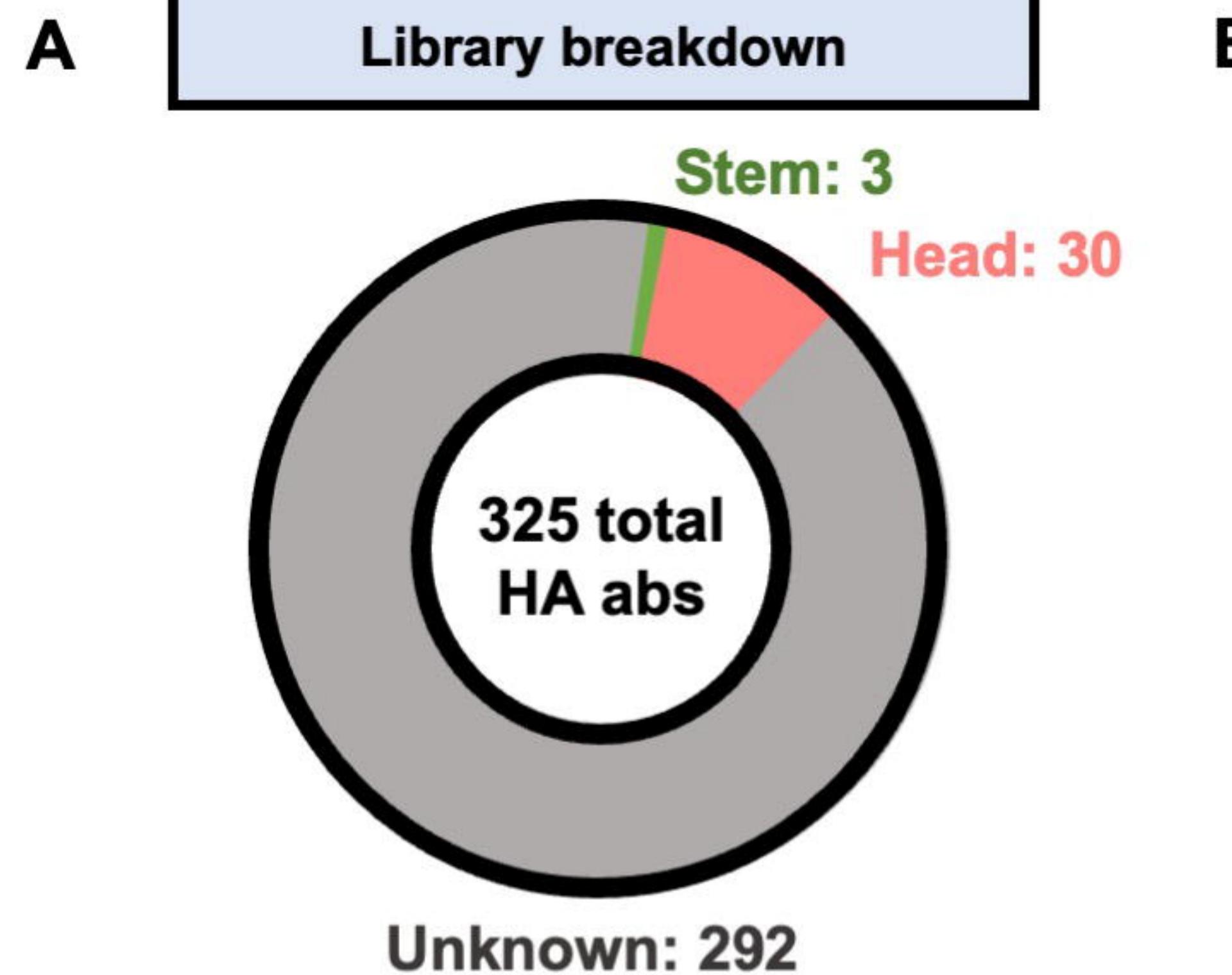
1157 68. Ruffolo, J.A., Chu, L.-S., Mahajan, S.P., and Gray, J.J. (2023). Fast, accurate antibody
1158 structure prediction from deep learning on massive set of natural antibodies. *Nat.*
1159 *Commun.* 14, 2389. <https://doi.org/10.1038/s41467-023-38063-x>.

1160 69. Millán, C., McCoy, A.J., Terwilliger, T.C., and Read, R.J. (2023). Likelihood-based
1161 docking of models into cryo-EM maps. *Acta Crystallogr. Sect. Struct. Biol.* 79, 281–289.
1162 <https://doi.org/10.1107/S2059798323001602>.

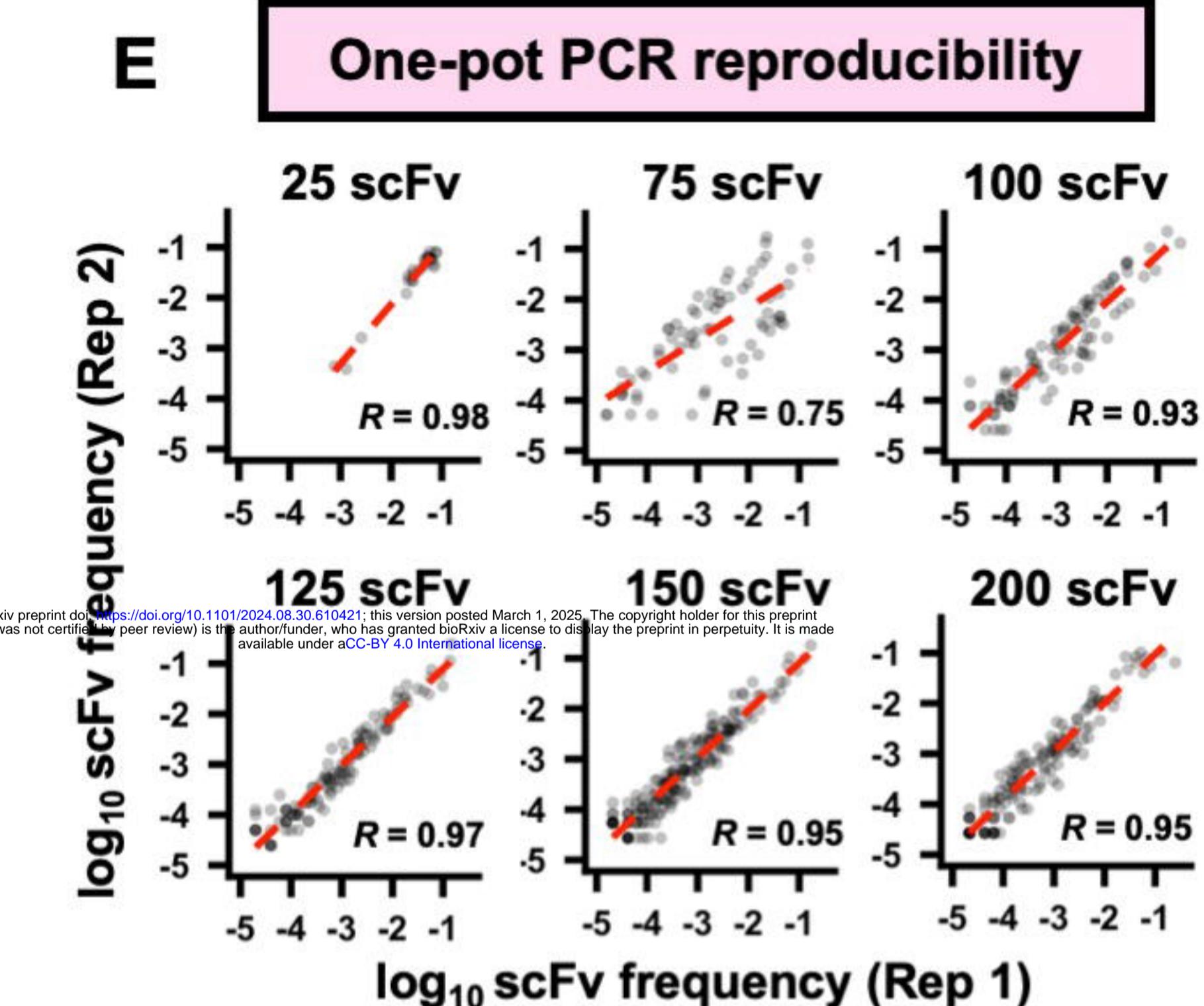
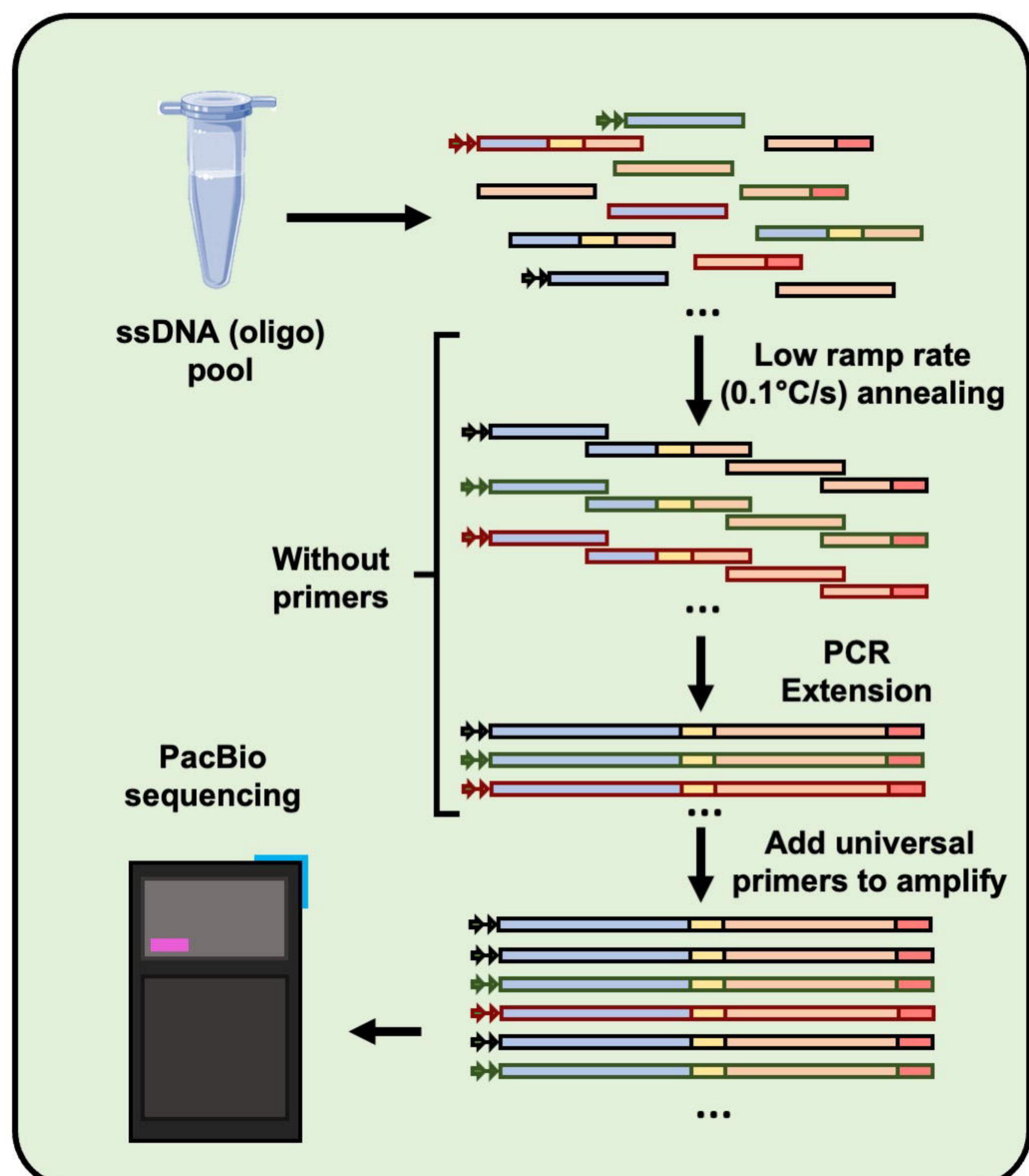
1163 70. Krissinel, E., and Henrick, K. (2007). Inference of macromolecular assemblies from

1164 crystalline state. *J. Mol. Biol.* **372**, 774–797. <https://doi.org/10.1016/j.jmb.2007.05.022>.

1165 71. Ye, J., Ma, N., Madden, T.L., and Ostell, J.M. (2013). IgBLAST: an immunoglobulin
1166 variable domain sequence analysis tool. *Nucleic Acids Res.* **41**, W34-40.
1167 <https://doi.org/10.1093/nar/gkt382>.

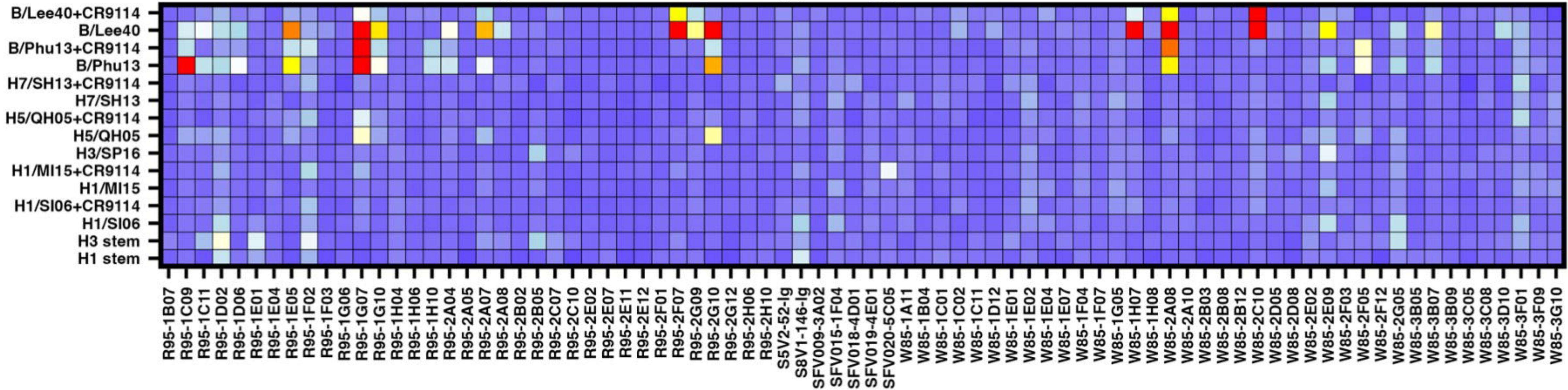
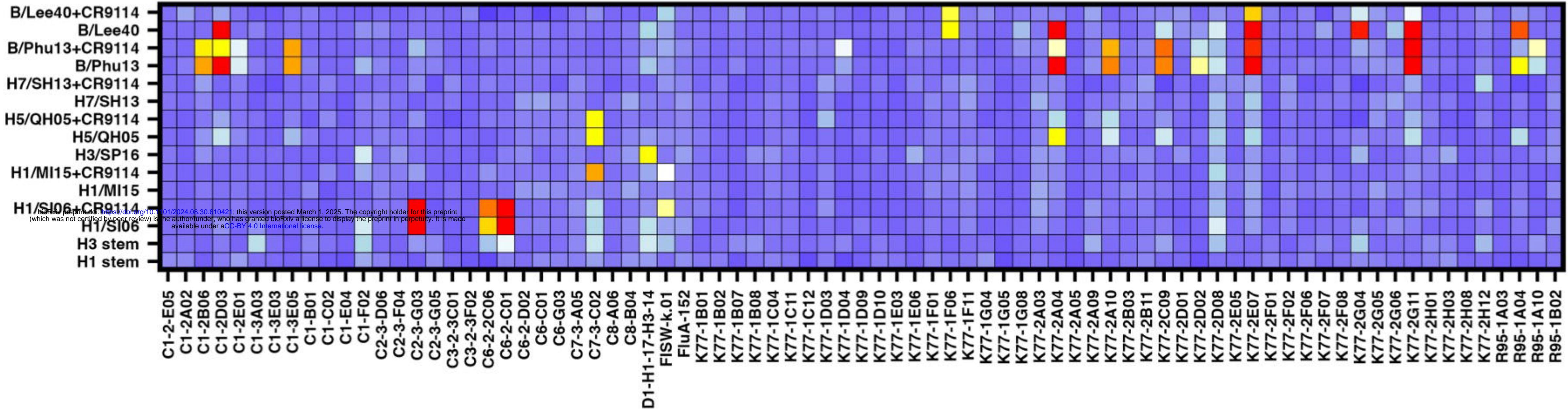
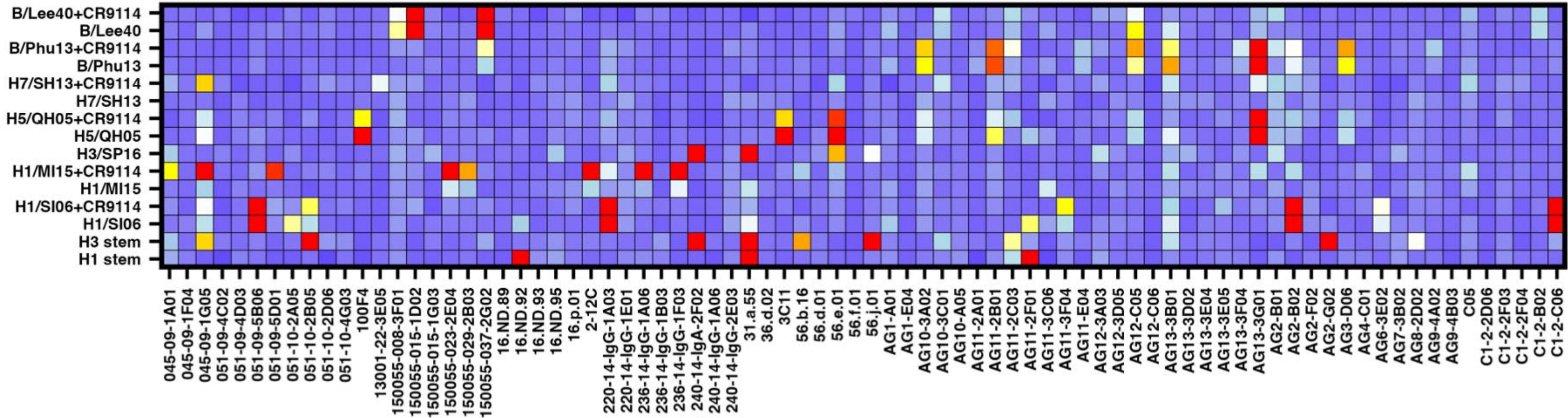
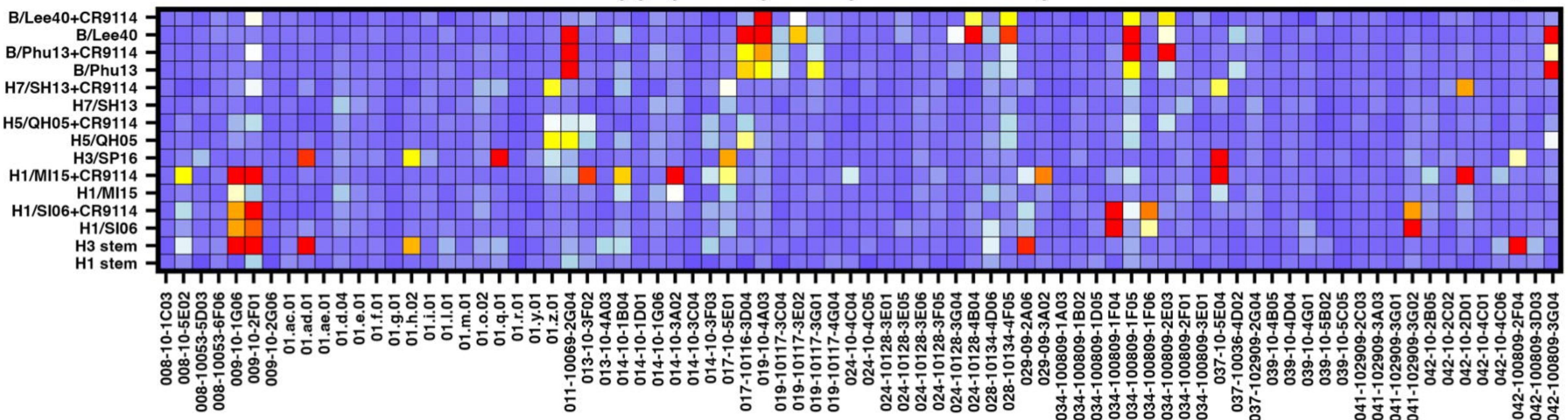


1168 72. Neumann, G., Fujii, K., Kino, Y., and Kawaoka, Y. (2005). An improved reverse genetics
1169 system for influenza A virus generation and its implications for vaccine production. *Proc.*
1170 *Natl. Acad. Sci. U. S. A.* **102**, 16825–16829. <https://doi.org/10.1073/pnas.0505587102>.

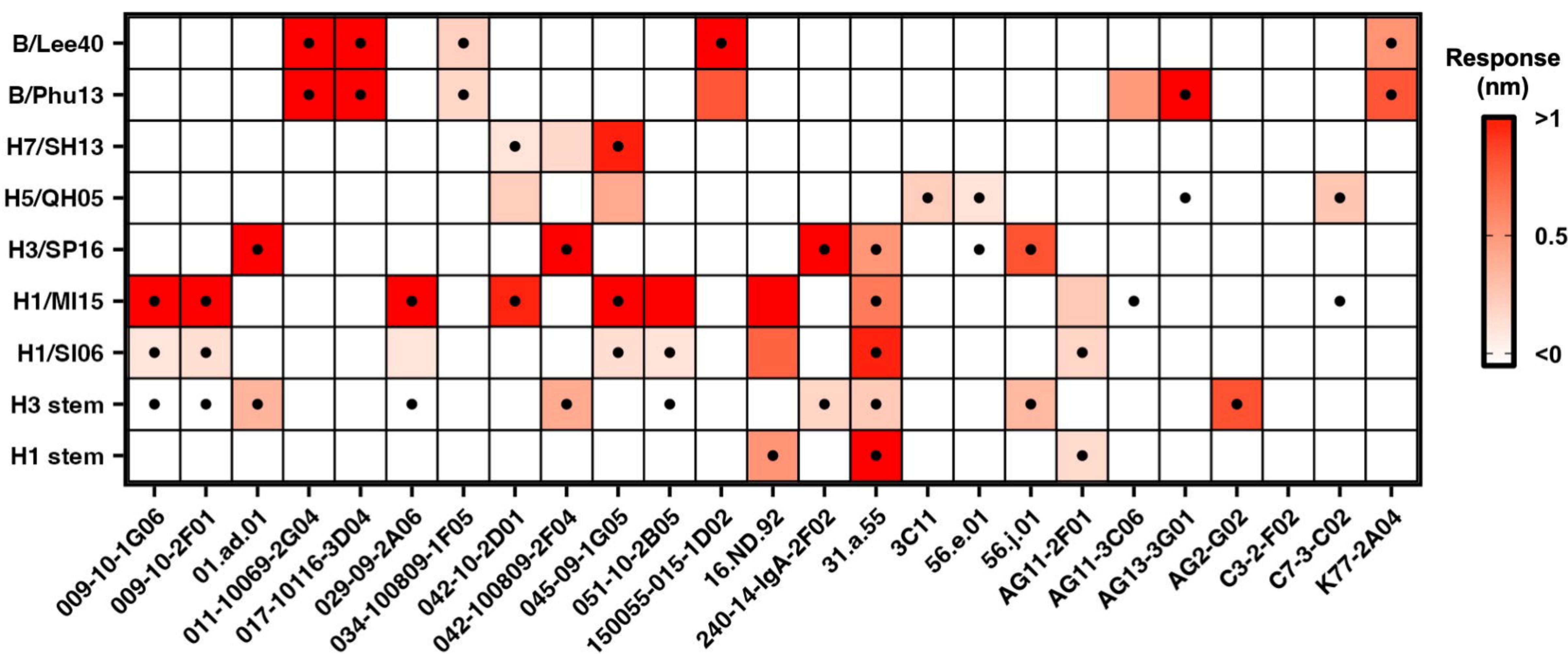
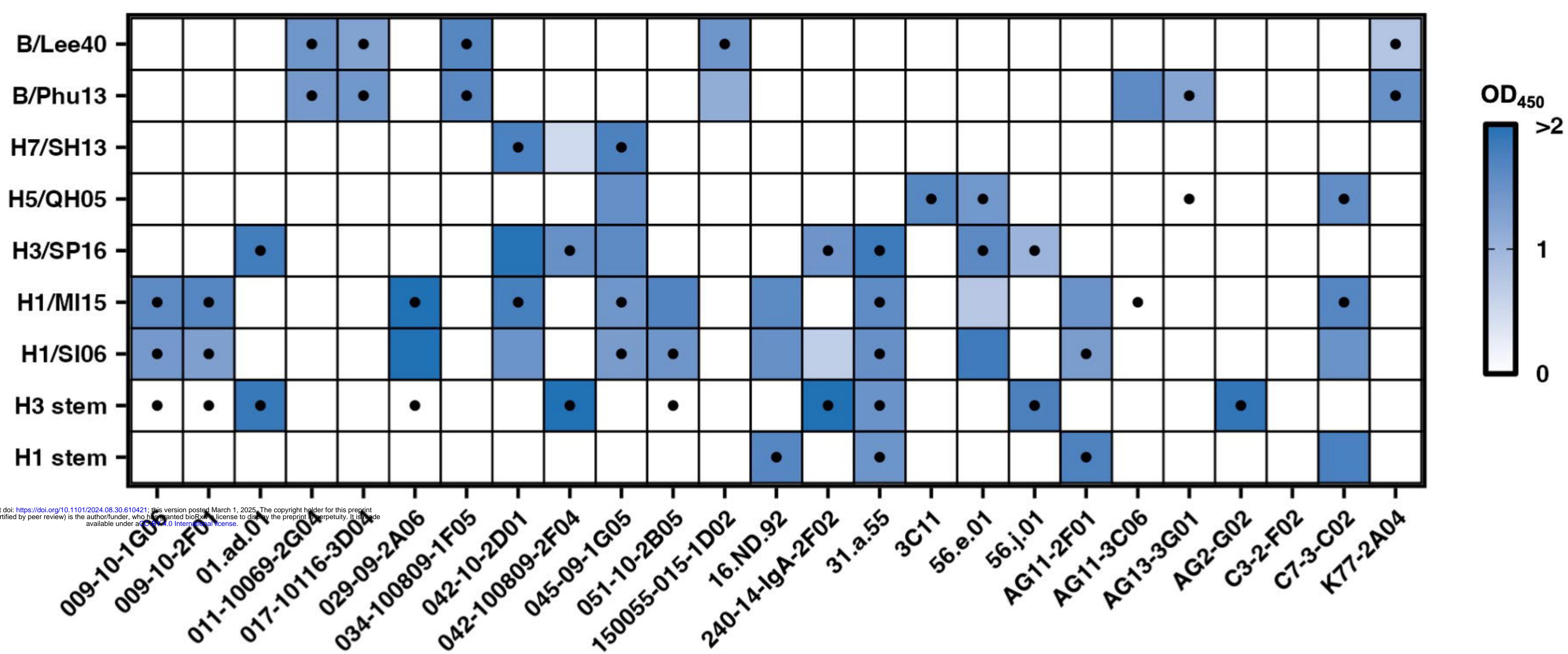
1171 73. Lei, R., Kim, W., Lv, H., Mou, Z., Scherm, M.J., Schmitz, A.J., Turner, J.S., Tan, T.J.C.,
1172 Wang, Y., Ouyang, W.O., et al. (2023). Leveraging vaccination-induced protective
1173 antibodies to define conserved epitopes on influenza N2 neuraminidase. *Immunity* **56**,
1174 2621-2634.e6. <https://doi.org/10.1016/j.jimmuni.2023.10.005>.

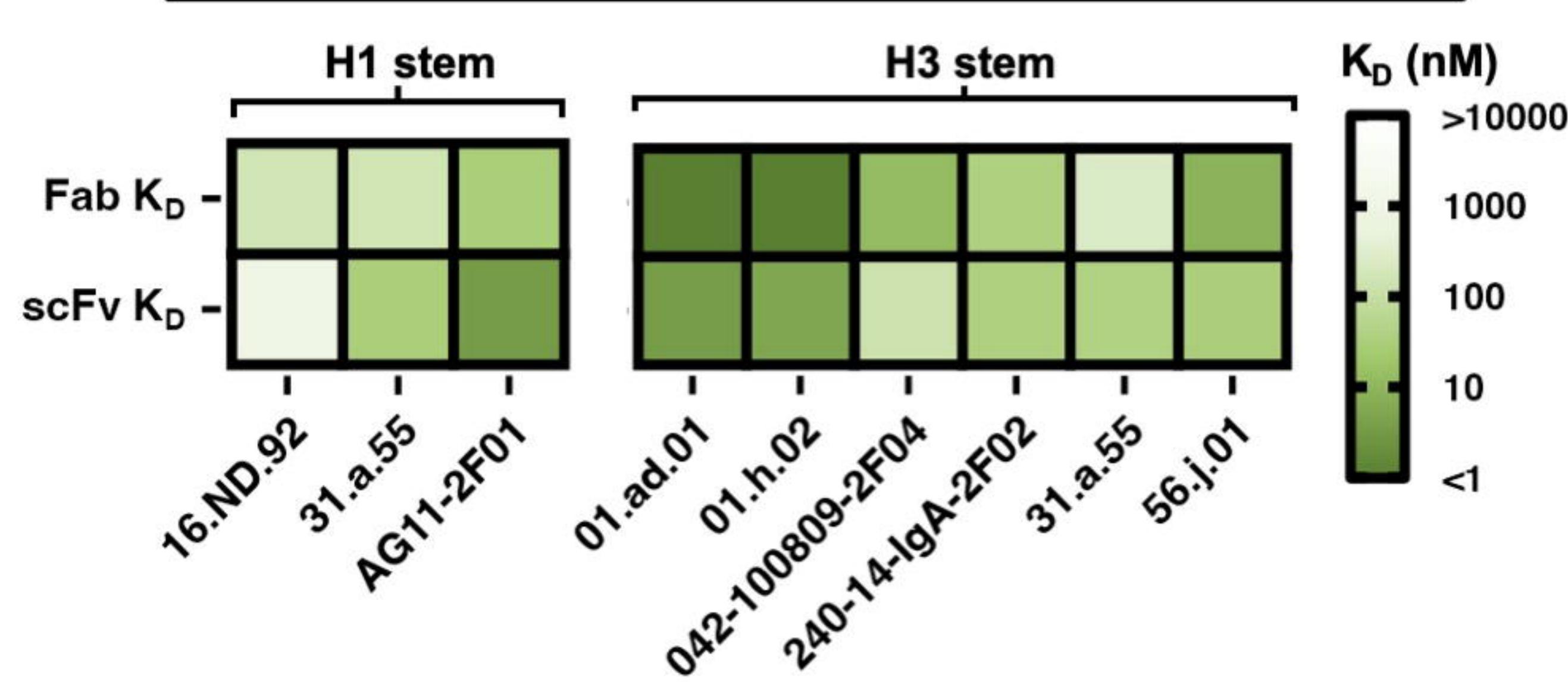


1175 74. Overdijk, M.B., Verploegen, S., Ortiz Buijsse, A., Vink, T., Leusen, J.H.W., Bleeker, W.K.,
1176 and Parren, P.W.H.I. (2012). Crosstalk between human IgG isotypes and murine effector
1177 cells. *J. Immunol. Baltim. Md* **1950** **189**, 3430–3438.
1178 <https://doi.org/10.4049/jimmunol.1200356>.

1179 75. Dekkers, G., Bentlage, A.E.H., Stegmann, T.C., Howie, H.L., Lissenberg-Thunnissen, S.,
1180 Zimring, J., Rispens, T., and Vidarsson, G. (2017). Affinity of human IgG subclasses to
1181 mouse Fc gamma receptors. *mAbs* **9**, 767–773.
1182 <https://doi.org/10.1080/19420862.2017.1323159>.

1183

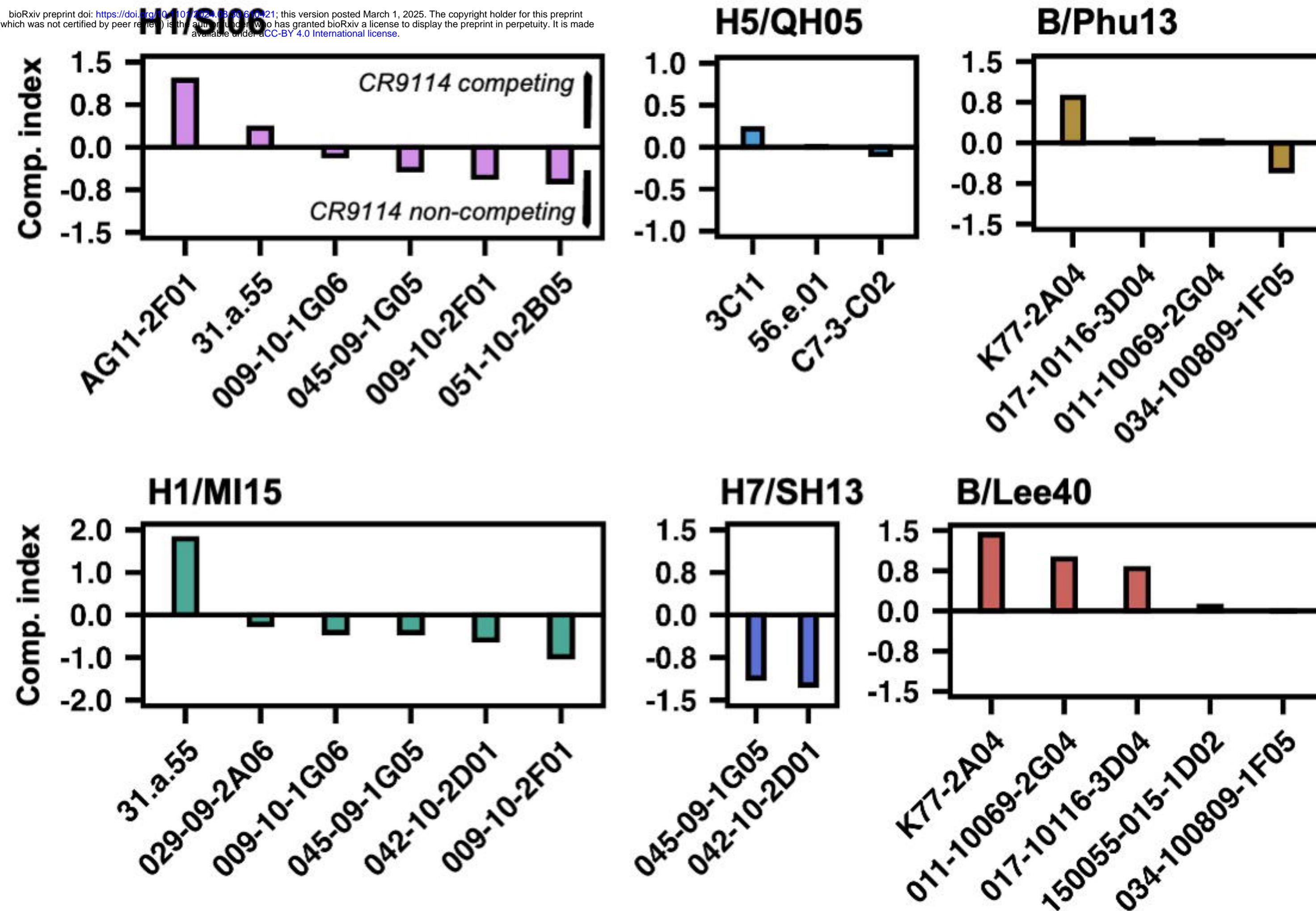







C Parallel assembly of natively paired scFvs


F One-pot PCR coverage

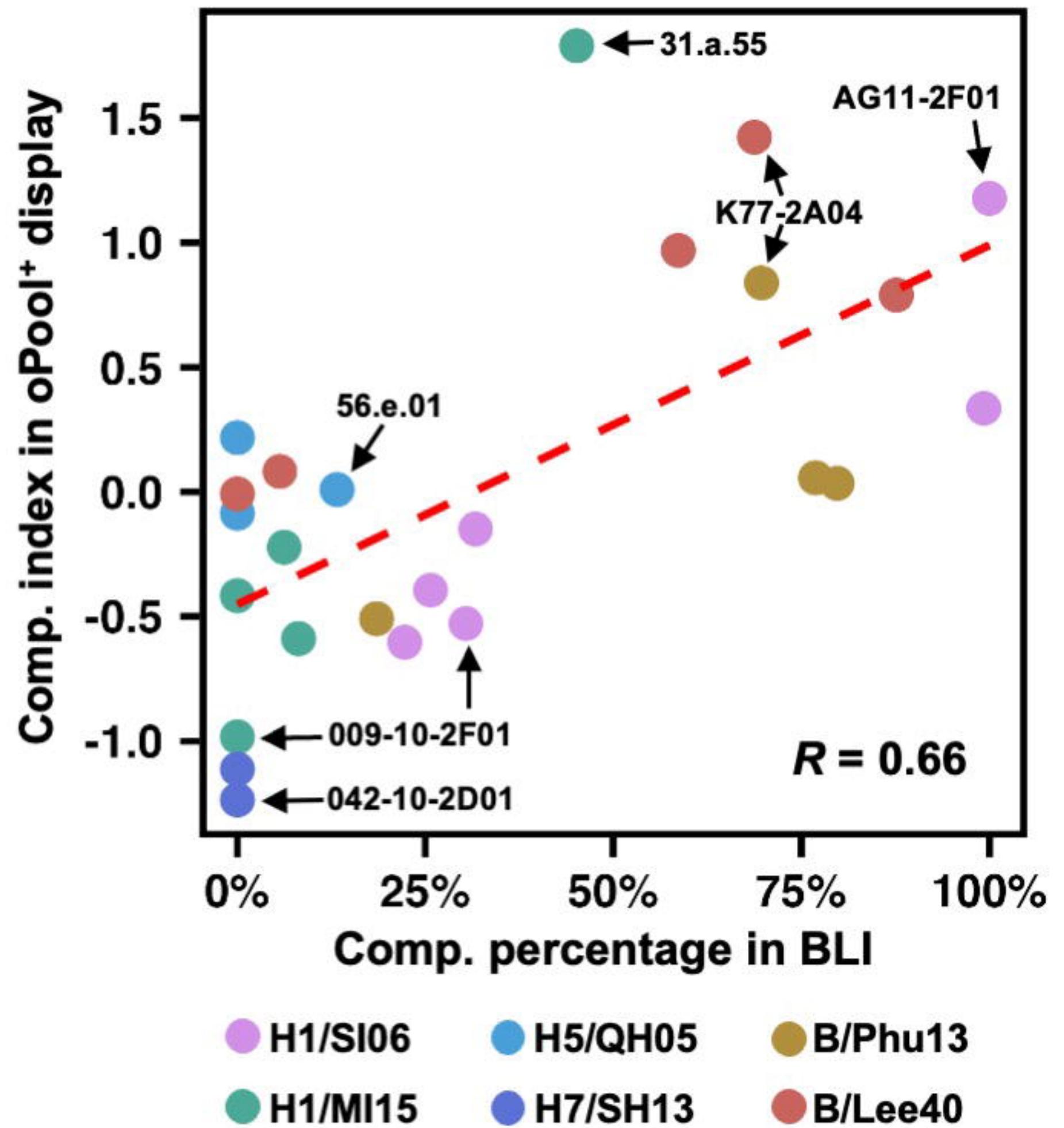
PCR size	Coverage
25 scFv	25/25 (100%)
75 scFv	73/75 (97.3%)
100 scFv	93/100 (93%)
125 scFv	115/125 (92%)
150 scFv	138/150 (92%)
200 scFv	180/200 (90%)

A**oPool⁺ display validation via Bio-layer Interferometry (BLI)****B****oPool⁺ display validation via ELISA****C****oPool⁺ display performance**

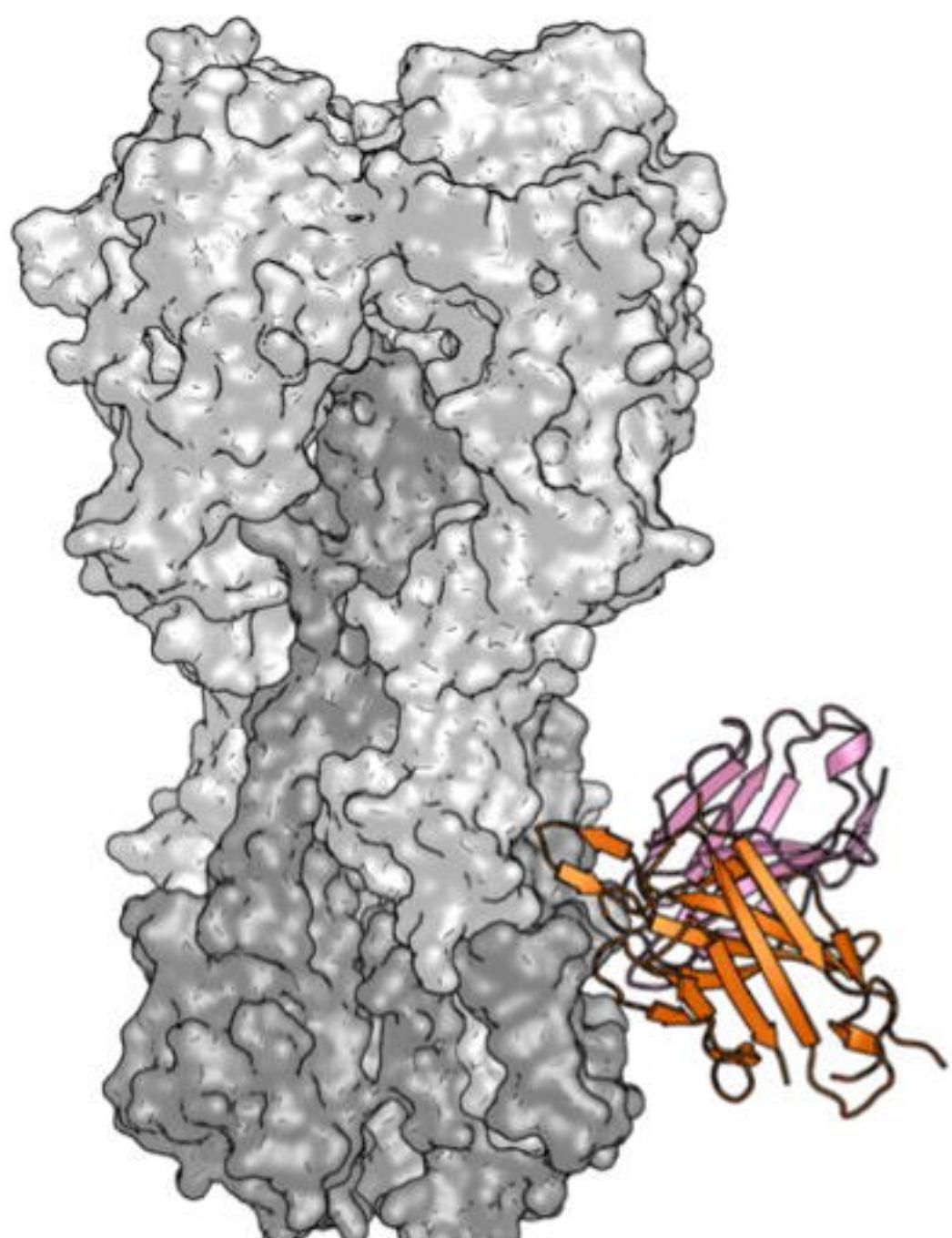

Ab format: Fab	Pos. by screen	Neg. by screen
Pos. by BLI	41 (80.4%)	10 (19.6%)
Neg. by BLI	8 (4.6%)	166 (95.4%)
Ab format: IgG	Pos. by screen	Neg. by screen
Pos. by ELISA	43 (71.7%)	17 (28.3%)
Neg. by ELISA	6 (3.6%)	159 (96.4%)

D**Binding affinity of selected stem antibodies**

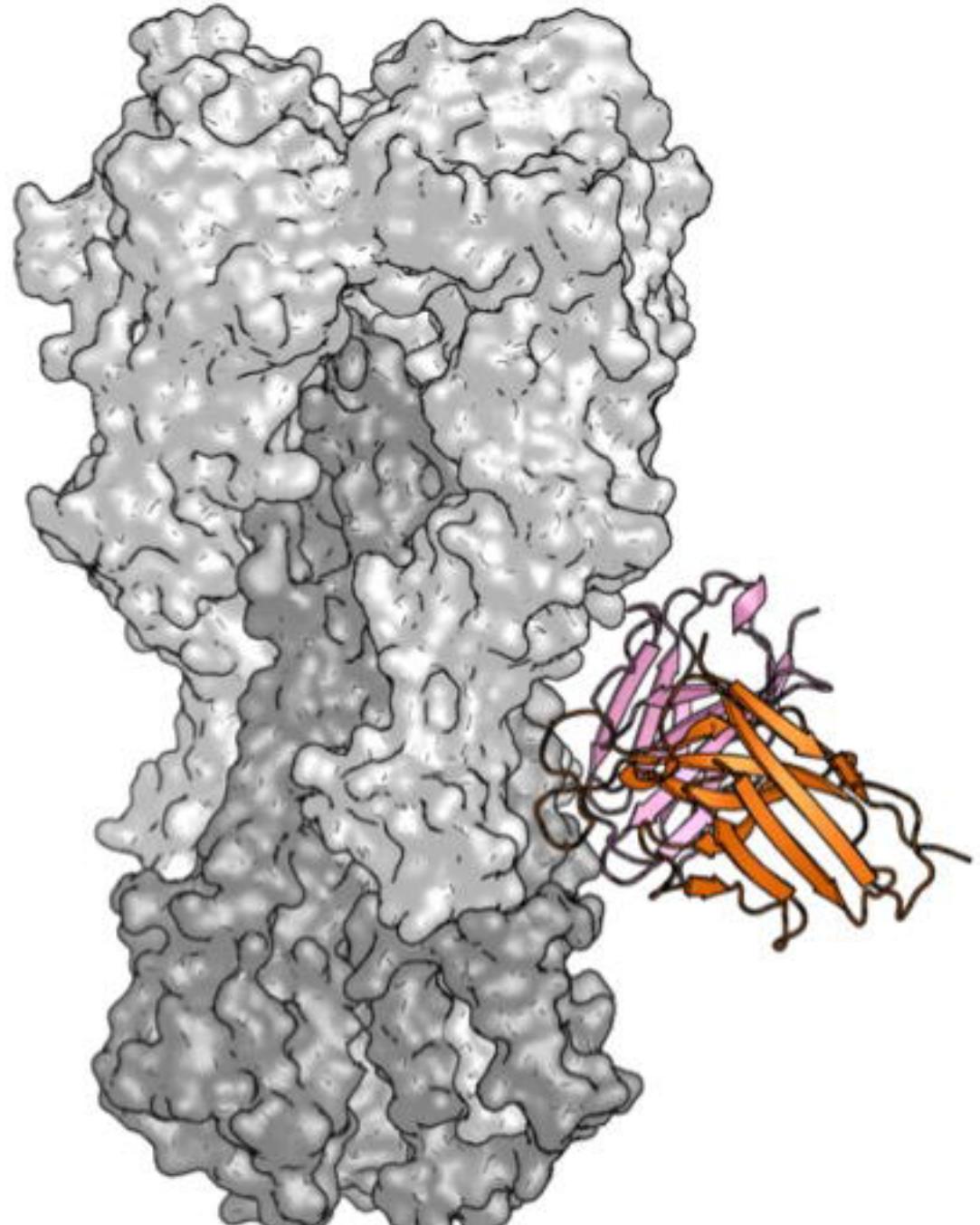
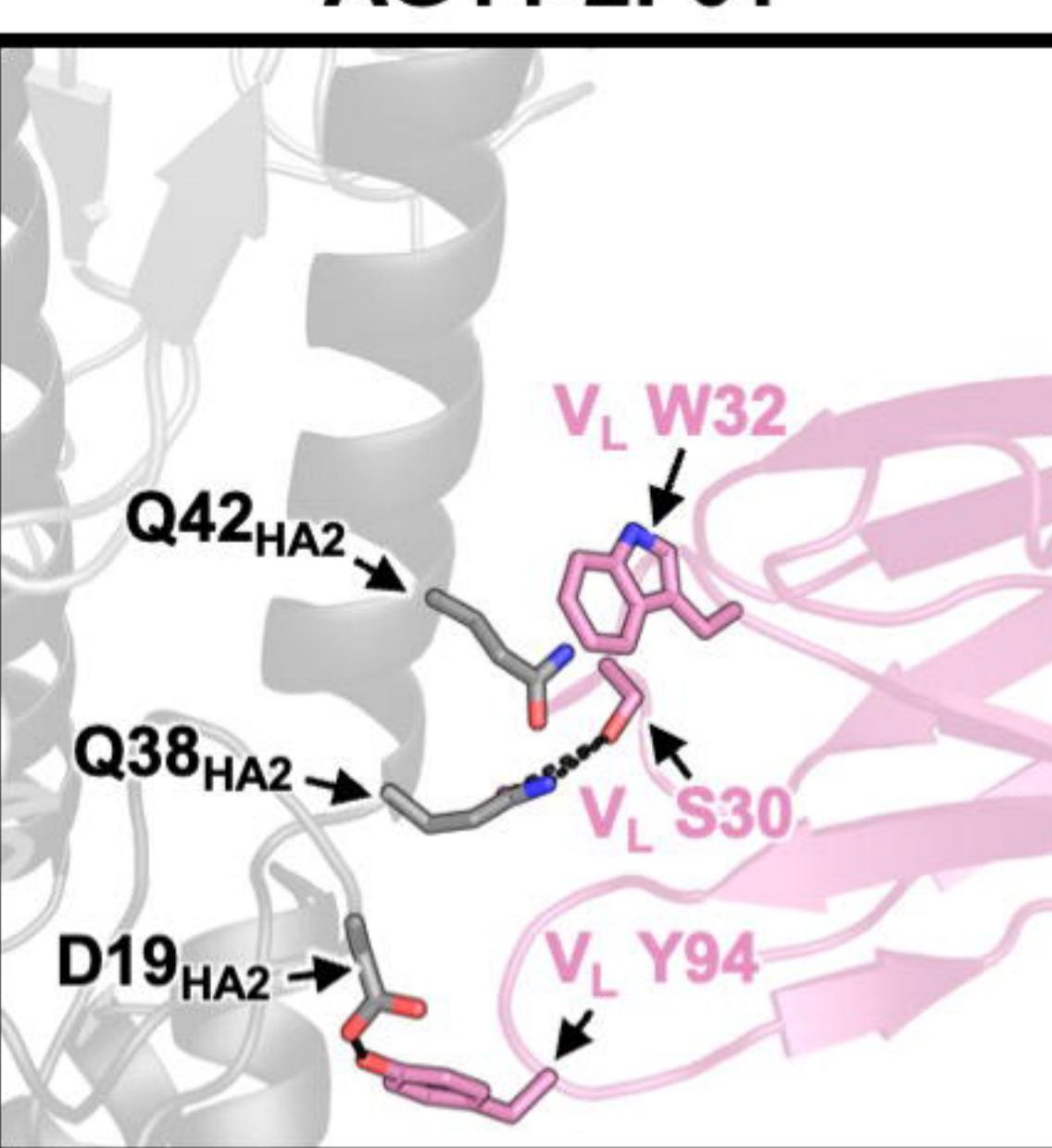
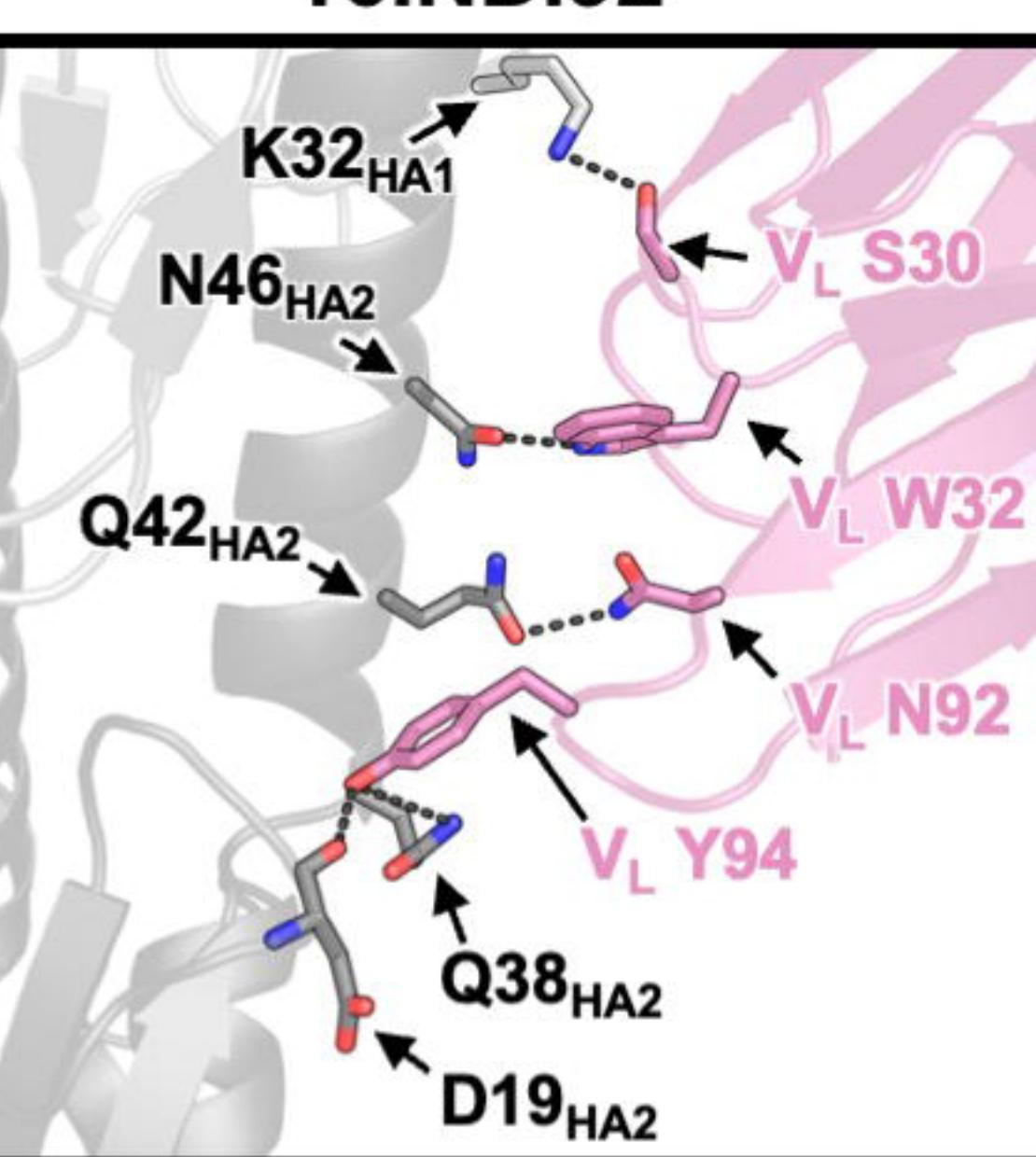
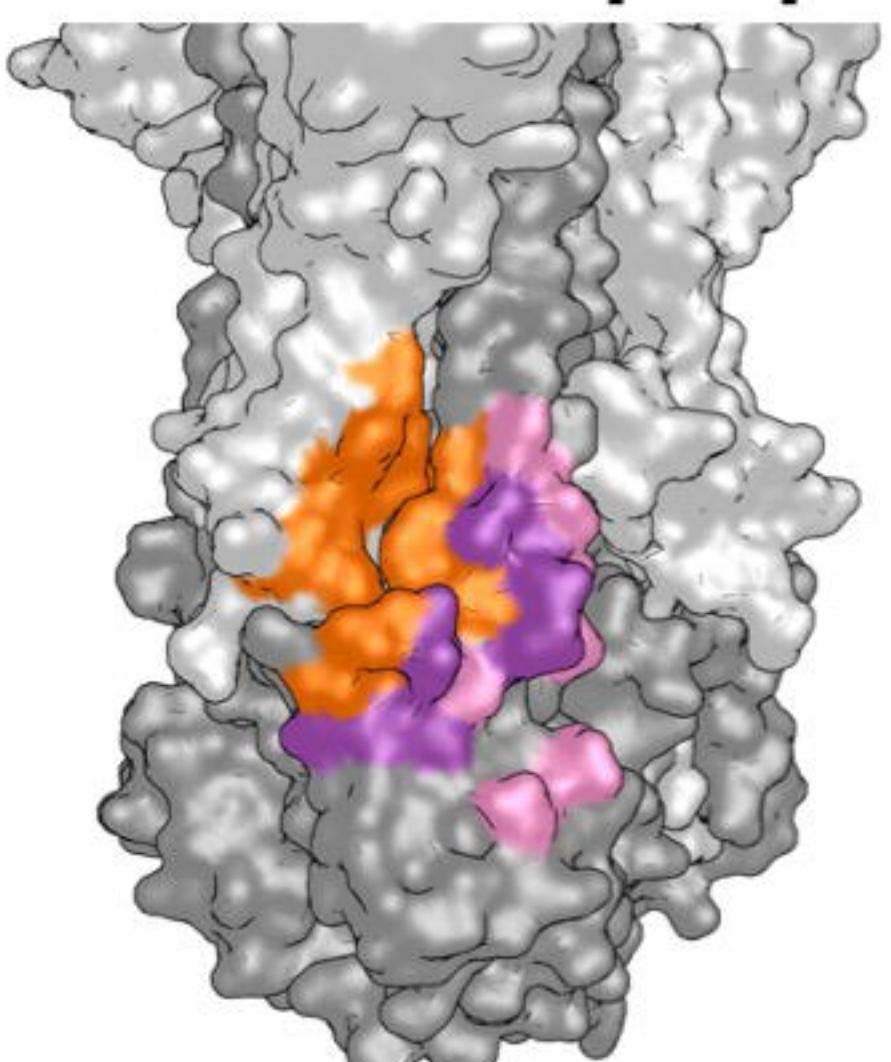
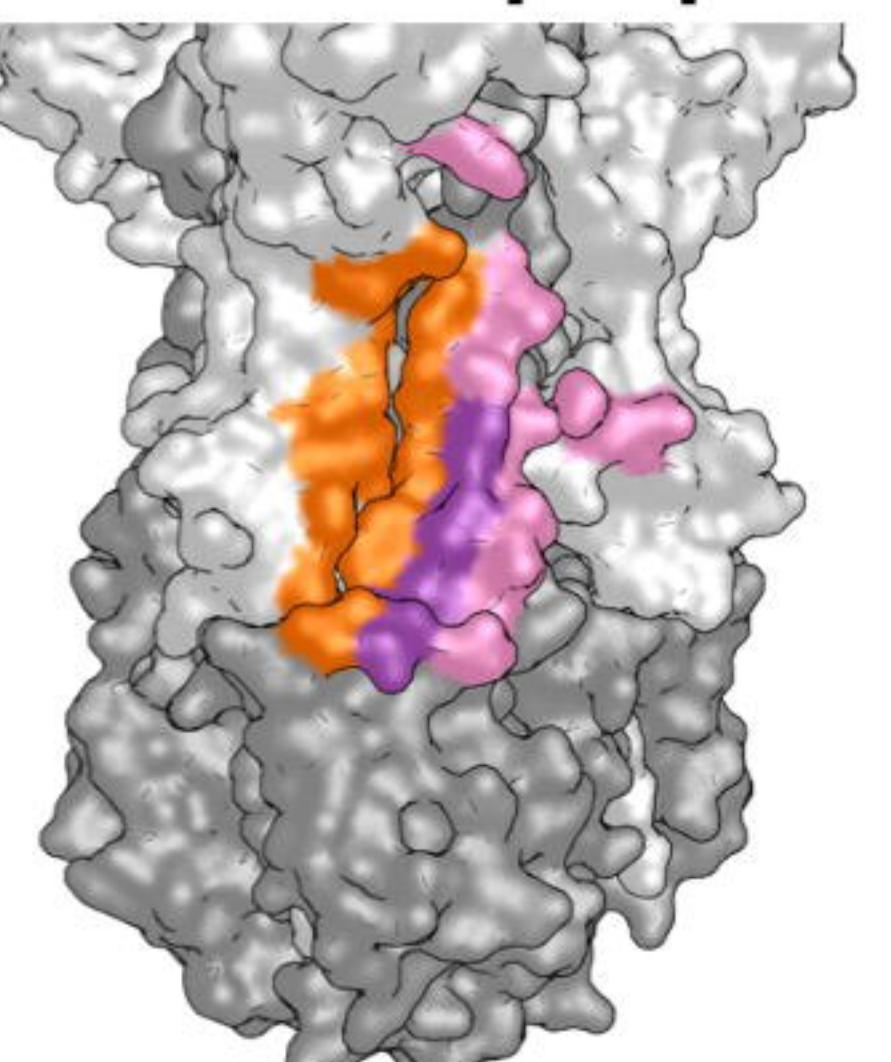
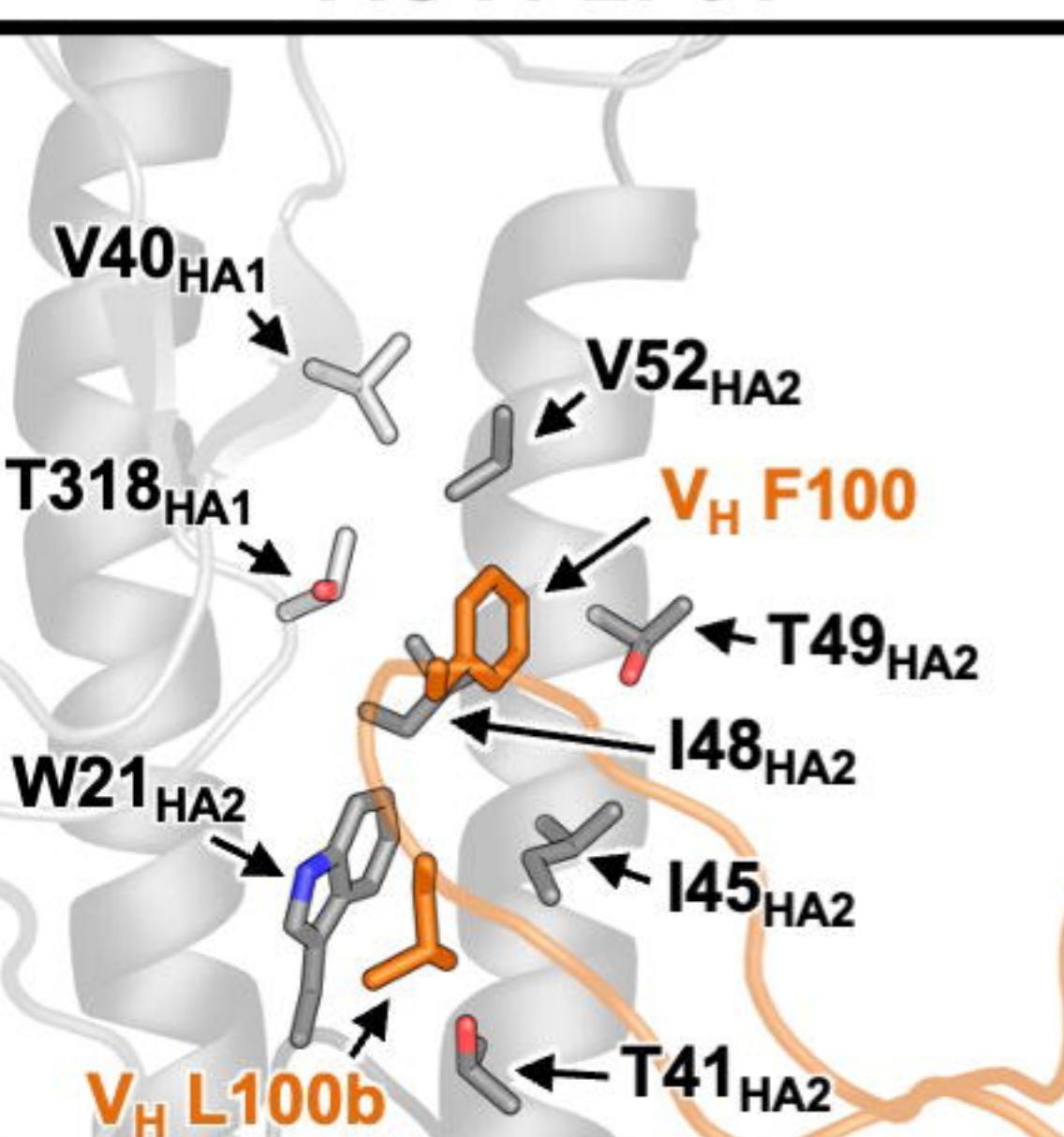
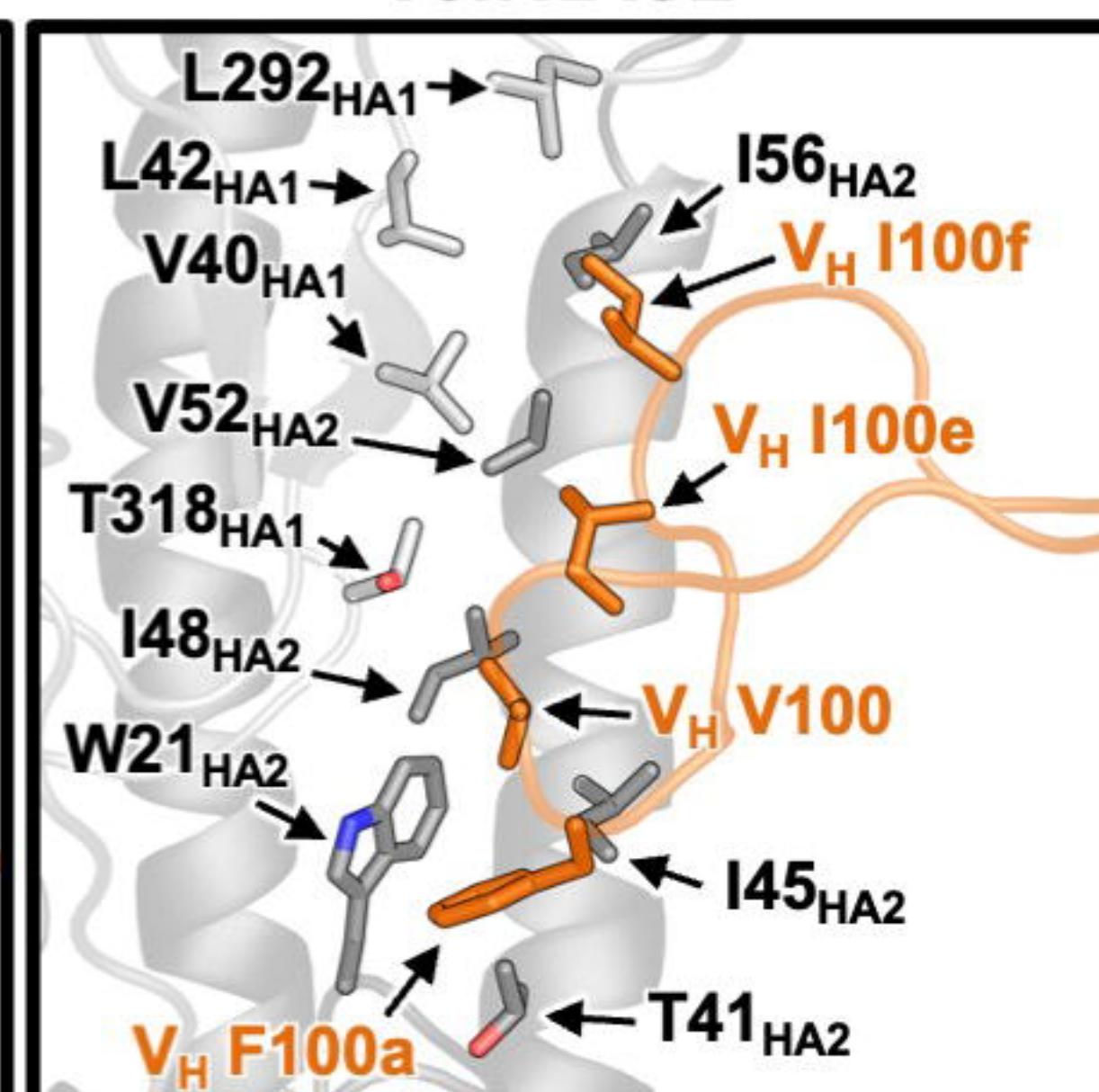
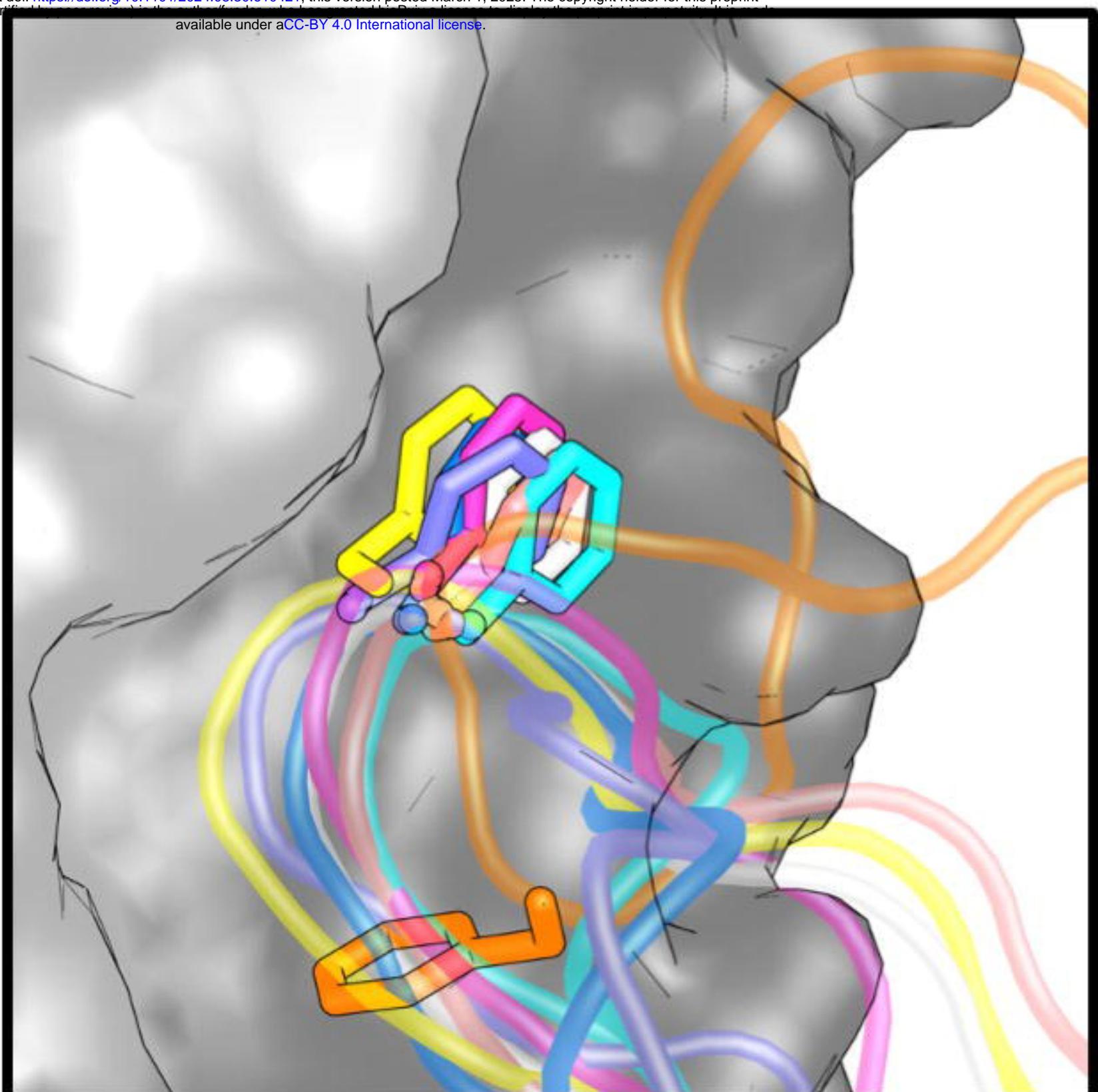
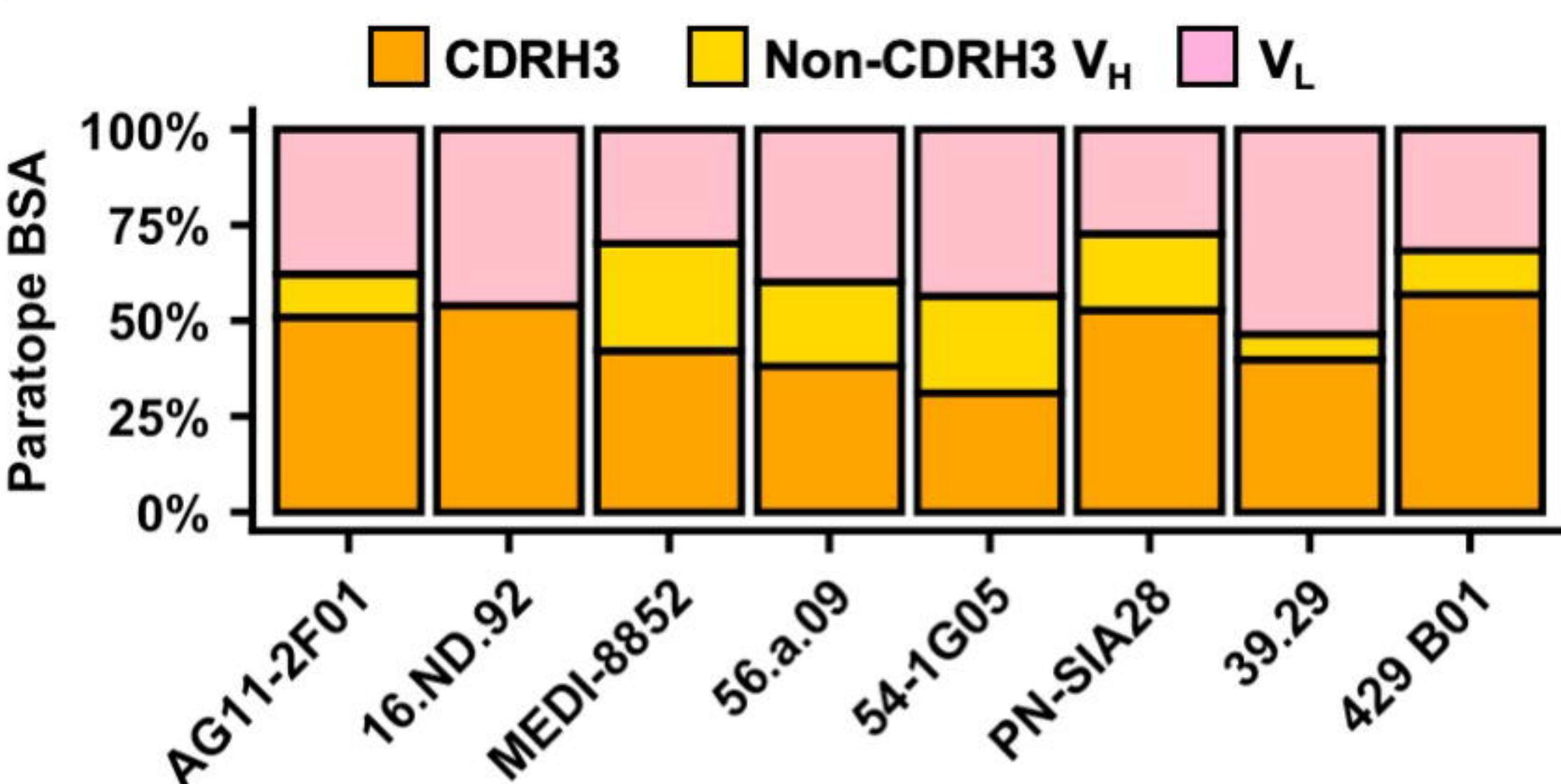
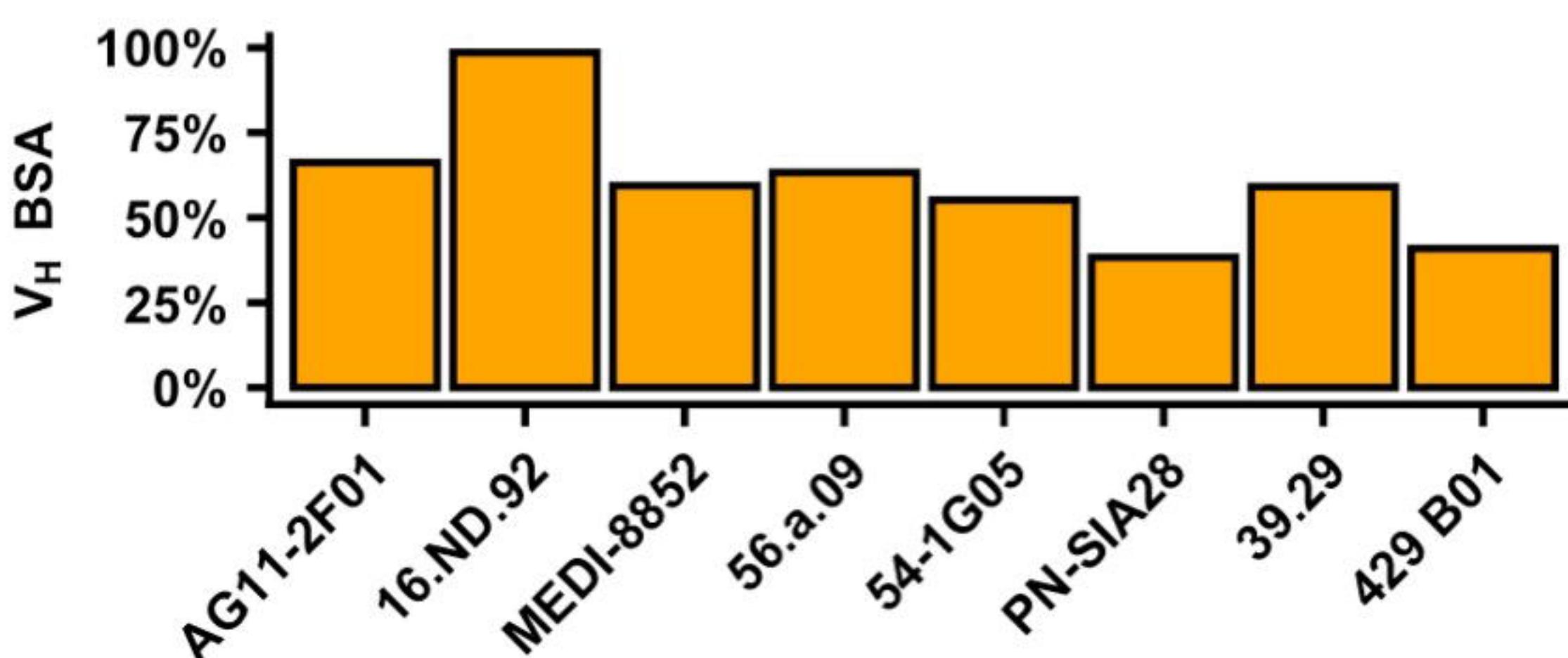
A


CR9114 competition indices of validated antibodies

bioRxiv preprint doi: <https://doi.org/10.1101/2024.08.30.610421>; this version posted March 1, 2025. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

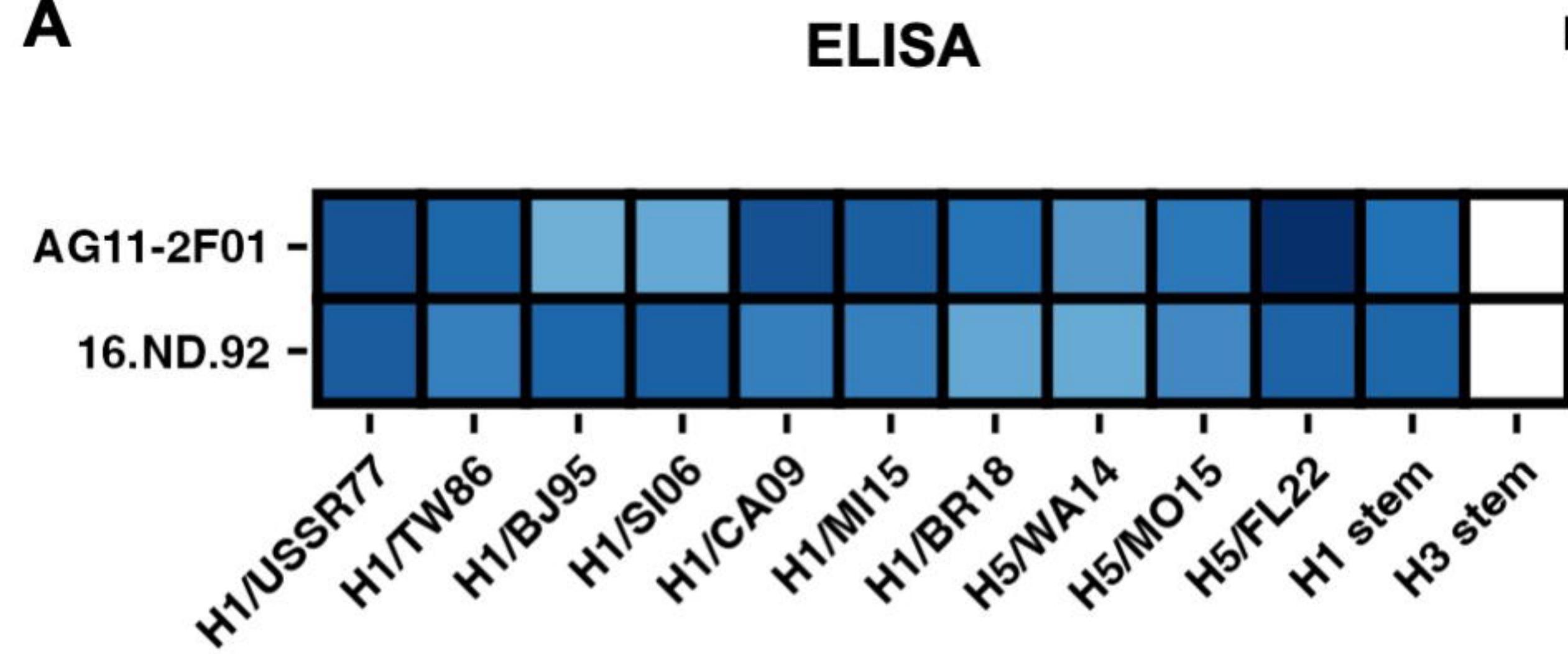

B

CR9114 competition validation

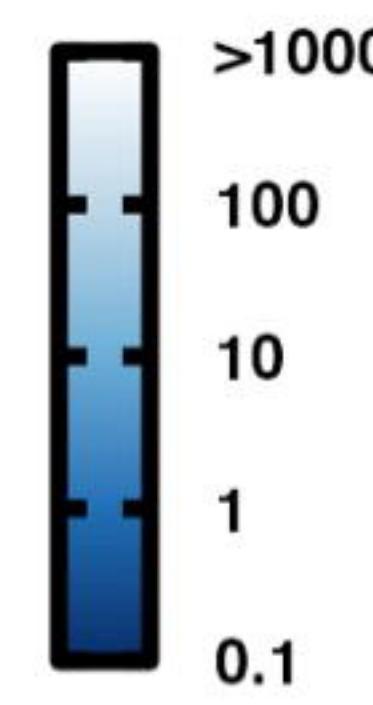











A**Structure overview****AG11-2F01**

IGHD3-3 + IGKV1-5

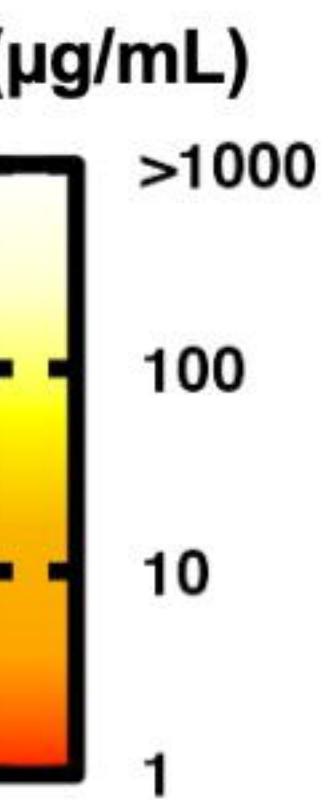
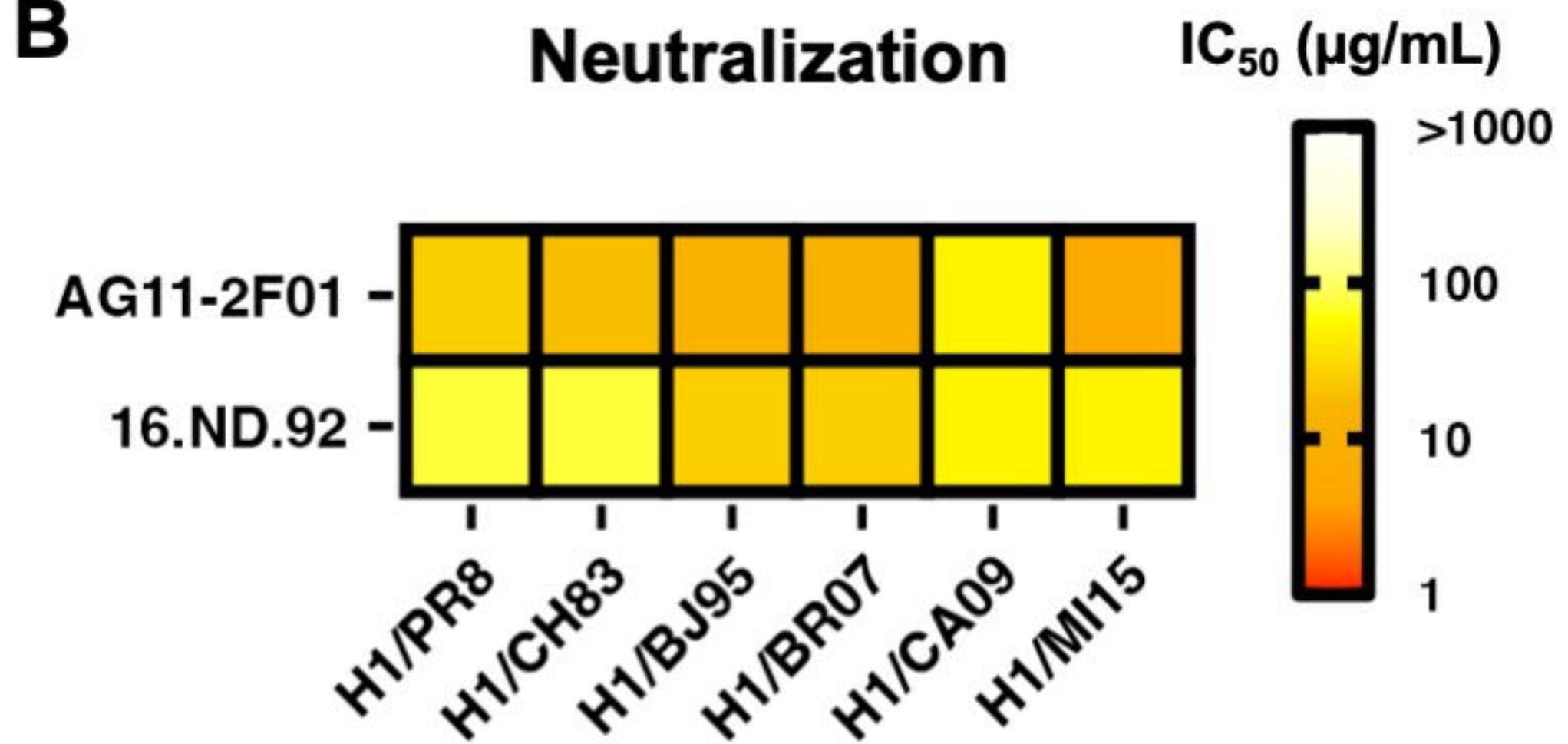

16.ND.92

IGHD3-3 + IGKV1-5


C**Light chain interactions****AG11-2F01****16.ND.92****B****Epitope****AG11-2F01 epitope****16.ND.92 epitope**
█ VH contacts █ VL contacts █ Shared contacts
D**CDR H3 interactions****AG11-2F01****16.ND.92****E****Comparison of CDR H3 conformations**
bioRxiv preprint doi: <https://doi.org/10.1101/2024.08.30.610421>; this version posted March 1, 2025. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

█ AG11-2F01
█ 16.ND.92
█ MEDI8852
█ 56.a.09
█ 54-1G05
█ PN-SIA28
█ 39.29
█ 429 B01
F**Paratope buried surface area****G****Contribution of IGHD3-3 to V_H paratope**

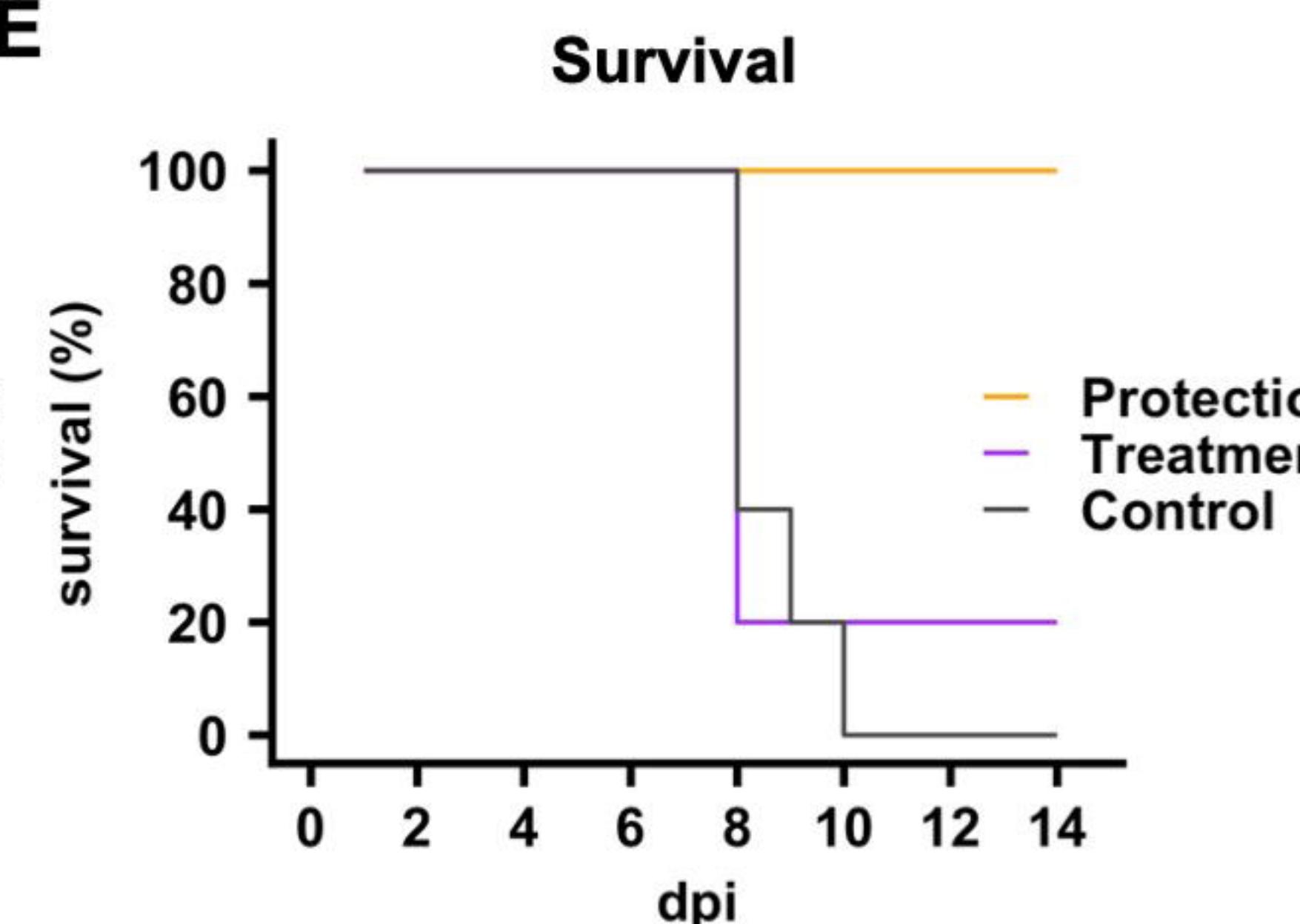
AG11-2F01 & 16.ND.92 *in vitro* activity



A

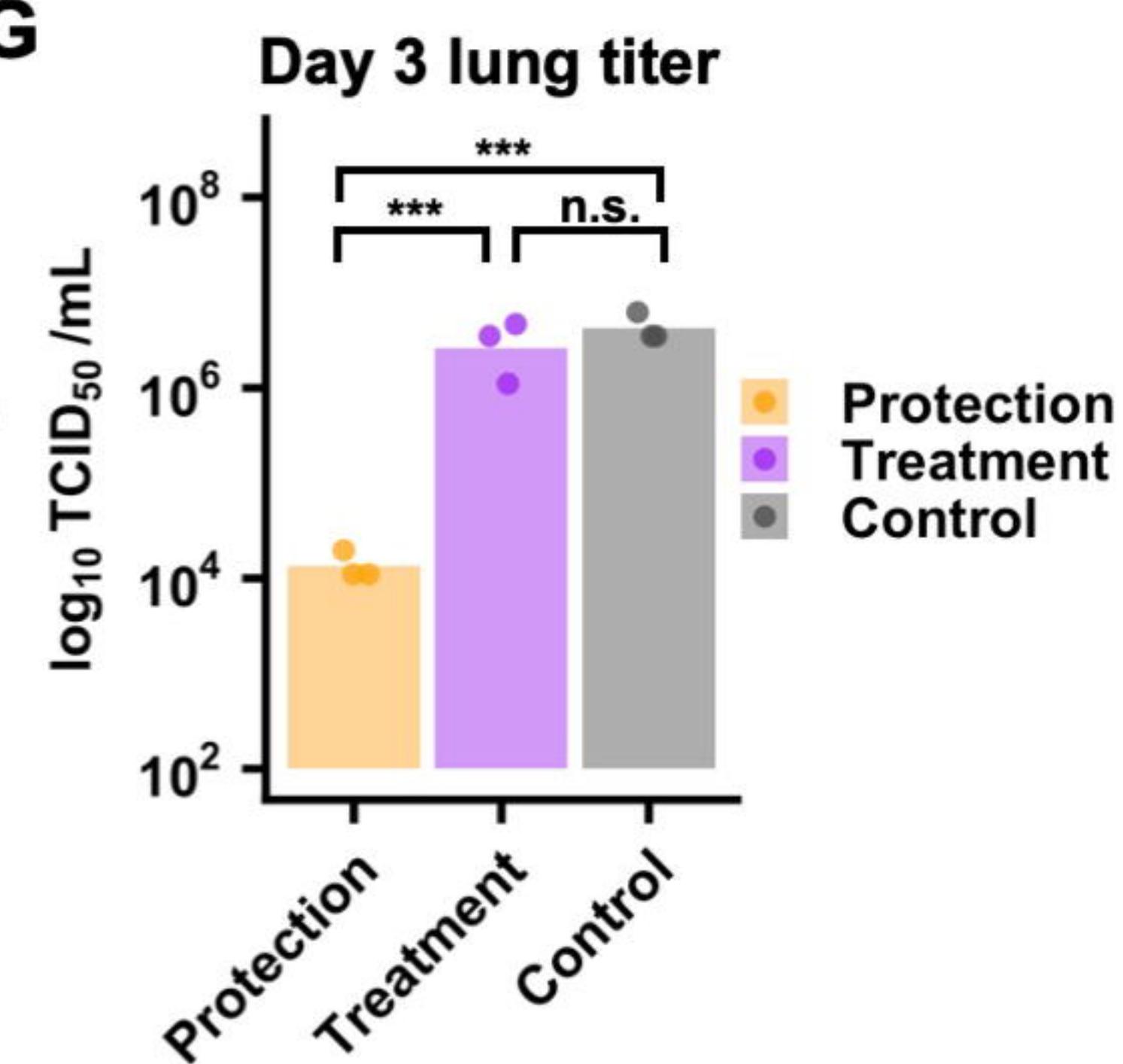
EC₅₀ (µg/mL)

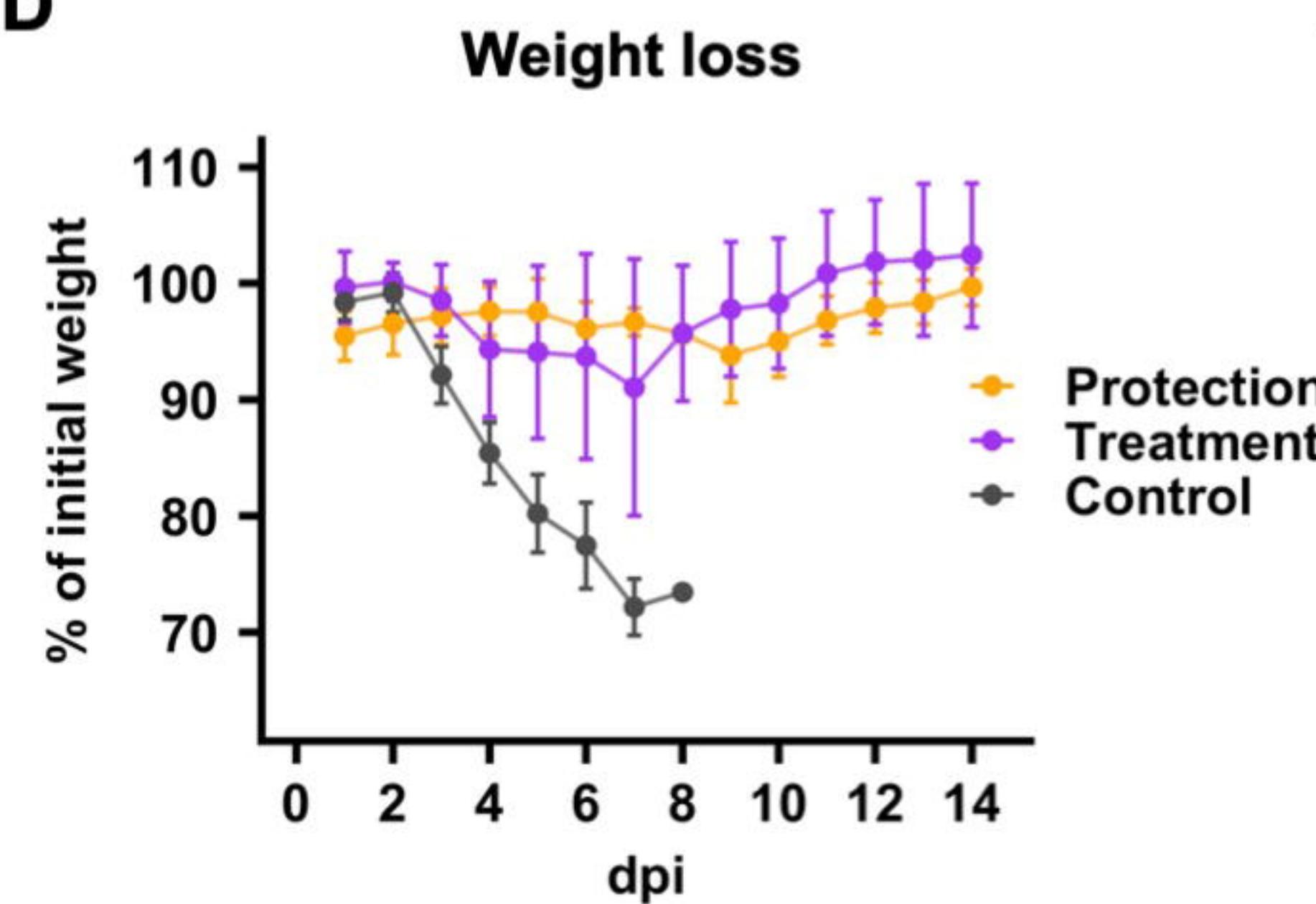


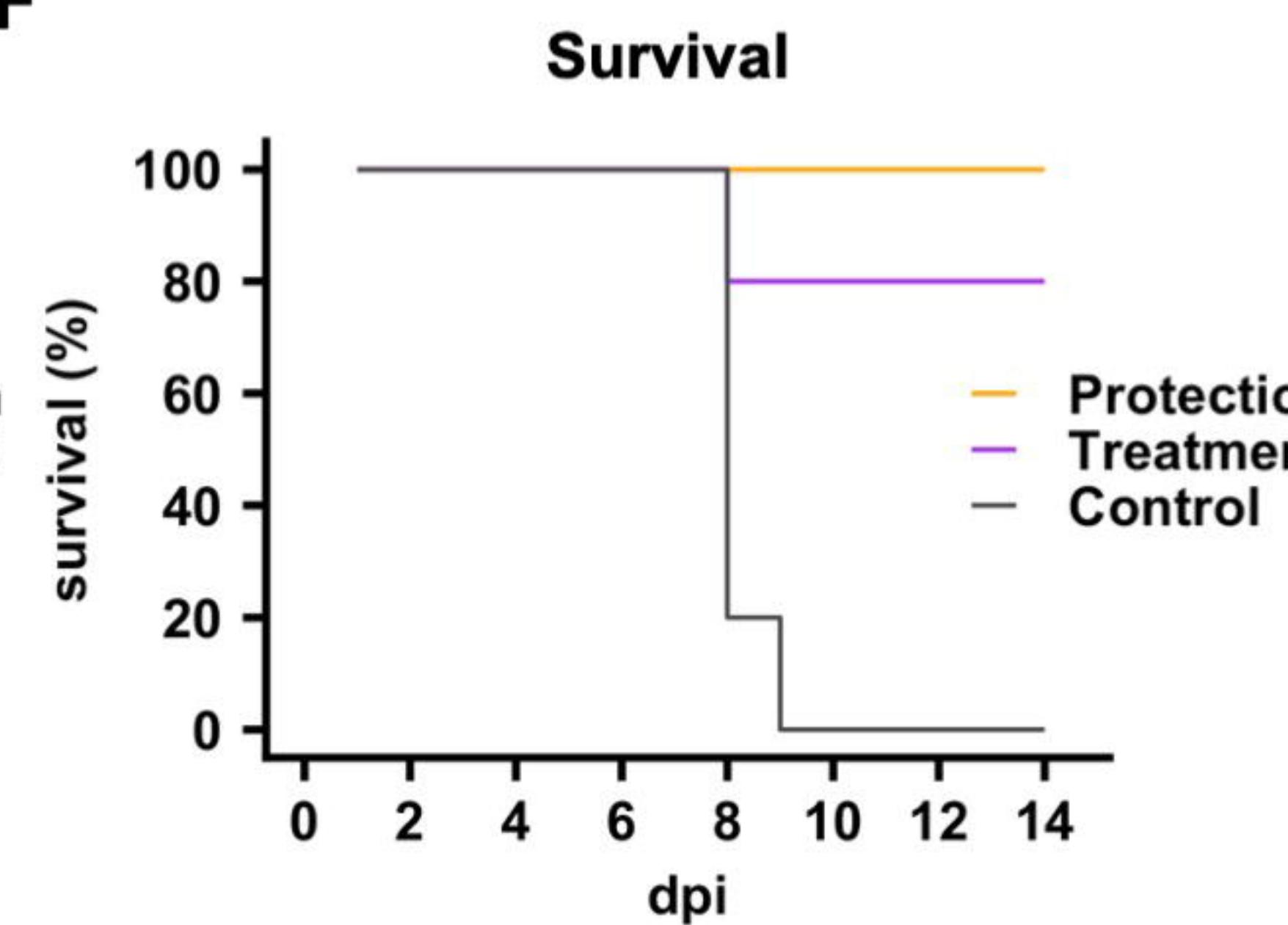
B

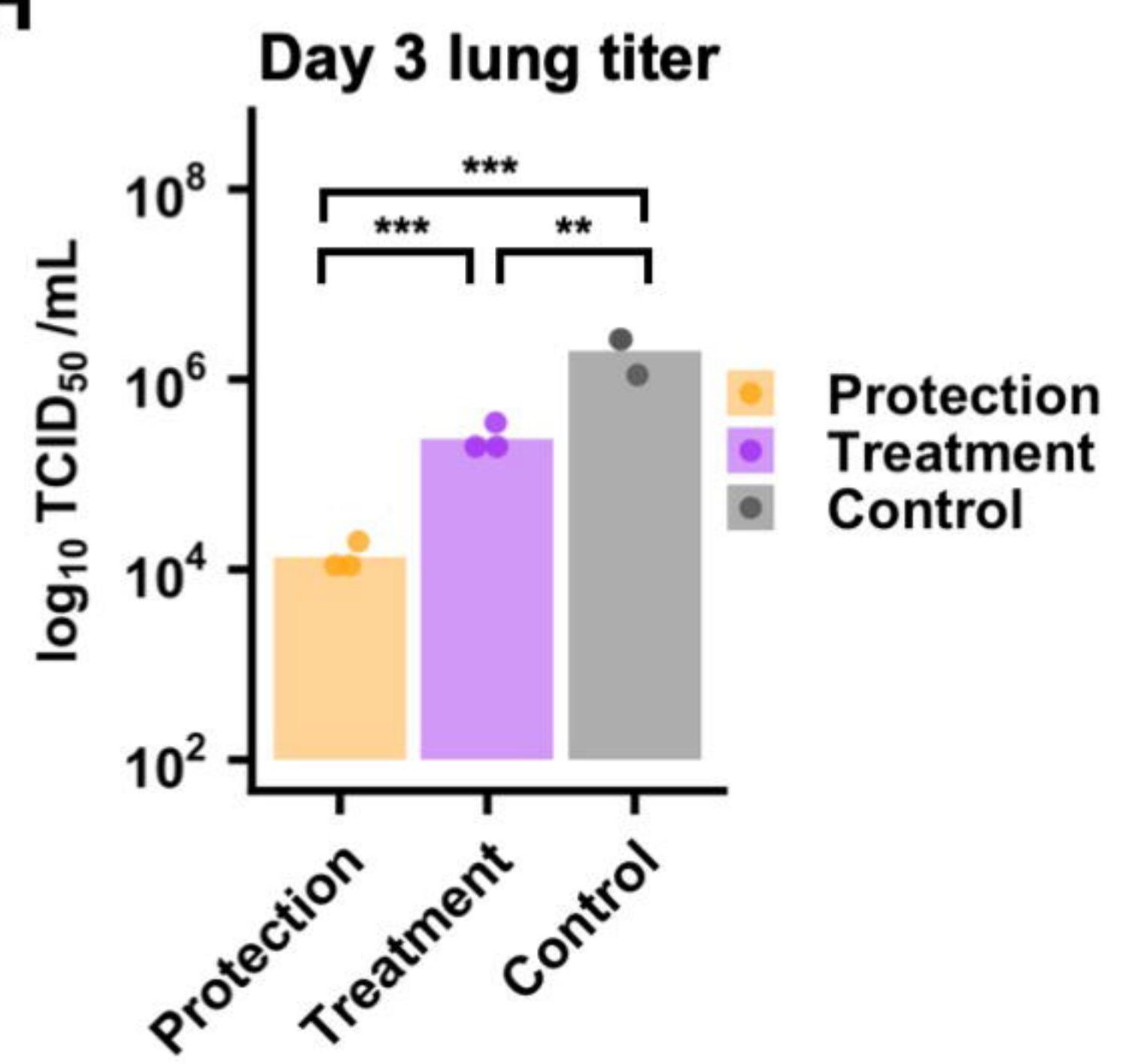


AG11-2F01 *in vivo* protection


C


E


G


D

F

H

E

bioRxiv preprint doi: <https://doi.org/10.1101/2024.08.30.610421>; this version posted August 30, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.