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Abstract

The neural basis of spontaneous speech production, in which speakers efficiently and effortlessly
generate utterances on the fly to express their thoughts, is among the least understood aspects of
human cognition. This study utilizes information theory, contemporary Large Language Models (LLMs),
and approximately 100 hours of high-quality spatiotemporal ECoG recordings of speakers engaged in
spontaneous conversations to explore how the speaker’s brain conveys information during everyday
interactions. Information theory defines information as the reduction of uncertainty (Shannon entropy).
It lays the theoretical foundations for why listeners actively predict upcoming words
(information-seeking) before a word is spoken while enhancing the processing of unexpected,
information-rich words after they are perceived. But what happens when speakers generate
(information-making) these improbable, information-rich words in the first place? We analyzed
continuous electrocorticography (ECoG) recordings collected during hours of real-life, 24/7
conversations to address this question. Using LLMs (LIlama-2 and GPT-2), we estimated the
probability of each word based on its context, categorizing them as either improbable, information-rich
words or predictable, information-thin words. We then extracted word-based non-contextual
embeddings from these models and employed neural encoding techniques to examine brain activity
during speech production and comprehension. Our findings reveal a striking contrast in how the brain
handles improbable, information-rich words while speaking versus listening. During speech
comprehension, we identified two distinct neural phases: one preceding word onset, associated with
predictive (information-seeking) processing, and another following word onset, linked to enhanced
information processing of unexpected words. Conversely, in the speaker’s brain, we found, for the first
time, enhanced pre-word-onset encoding for improbable, information-rich words versus probable
words. The results remained strong and clear even when we narrowed down the analysis to a shared
set of words that were unlikely in one context and likely in another. Since information-rich words are
statistically unpredictable, this suggests the speaker's brain aims to produce linguistic output that
defies listeners’ expectations. However, we also point out that predictability alone is insufficient to
generate meaningful words, highlighting a gap in information theory and LLMs that neglects how
speakers intentionally choose information-rich words to convey novel meanings.
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Introduction

The neural basis of spontaneous speech production is one of the least studied and understood
aspects of human cognition. In everyday conversations, people quickly generate sequences of
utterances, often without being aware of how they select the words they use to express their thoughts.
In contrast, most research on speech production has focused on highly controlled and predetermined
sequences, frequently neglecting the complexities involved in spontaneous speech (1-3). This study
utilizes a unique dataset of approximately 100 hours of high-quality spatiotemporal ECoG recordings,
where speakers engage in spontaneous conversations, to investigate how they convey information to
listeners during daily interactions.

In information theory, information is formally defined in terms of reduction in uncertainty (represented
by Shannon entropy, (4-6)) in a received message. From the listener's perspective, predictable words
provide little new information, while surprising words are informative as they deviate from what was
expected based on the context and prior knowledge (7, 8). Until the recent advancements in language
modeling, estimating the amount of information each word provides during natural conversations was
nearly impossible. The ability to train a large language model to predict the next word based on prior
context, utilizing all available text from the internet, provided a new tool to evaluate the amount of
information conveyed during any natural conversation. Specifically, Large Language Models (LLMs)
give a probability score for the likelihood of saying each word in the lexicon at any given moment in a
conversation, given all prior words (context) and prior knowledge accumulated in the network.
Previous research shows that the level of certainty of LLMs regarding the next word aligns with
listeners' certainty levels as they process natural language (9, 10)

Although information theory predicts how neural responses should adapt during speech
comprehension (information-seeking), we still lack insights into how it shapes information generation
during speech production (information-making). During speech comprehension before word-onset,
information theory demonstrates that listeners actively predict the next word before it is spoken (10,
11). After word onset, information theory indicates that the brain estimates the surprise level
(prediction error) and processes the surprising (informative) words (10, 12, 13). However, how
information theory and Shannon entropy influence spontaneous speech production is unclear. On the
one hand, entropy may have a minimal impact on speech production, as speakers often have
knowledge and minimal uncertainty about the words they intend to say. On the other hand, since
information is key in any conversation, the speaker's brain may engage in more effortful and deliberate
processes when producing less probable, information-rich words compared to more predictable, less
informative ones.

To address this question, we asked how information modifies the neural responses during speech
production and comprehension. We gathered a unique 24/7 dataset of continuous electrocorticography
(ECoG) and spontaneous conversations throughout the patients' day-to-week-long stays at the NYU
Medical School's epilepsy unit (14). In our setup, patients are free to say whatever they want,
whenever they want; each conversation has its unique context and purpose. Thus, for the first time, we
can study the neural basis of spontaneous speech production (information-making) and speech
comprehension (information-seeking) within the same set of participants. This ambitious effort resulted
in a uniquely large ECoG dataset of natural conversations: four patients recorded during free
conversations, yielding approximately 50 hours (230,238 words) of neural recordings during speech
production and 50 hours (289,971 words) during speech comprehension. Moreover, the superior


https://paperpile.com/c/Cr52s1/2fojH+lxIRx+KkCcL
https://paperpile.com/c/Cr52s1/wDYTq+NwsAk+xtnxk
https://paperpile.com/c/Cr52s1/J3GDq+XvMck
https://paperpile.com/c/Cr52s1/ICpZ+KPm7
https://paperpile.com/c/Cr52s1/KPm7+8svJE
https://paperpile.com/c/Cr52s1/KPm7+8svJE
https://paperpile.com/c/Cr52s1/4Cvy+Qwrf+KPm7
https://paperpile.com/c/Cr52s1/jgOqQ
https://doi.org/10.1101/2024.08.27.609946
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.27.609946; this version posted May 1, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

spatiotemporal resolution and signal-to-noise ratio (SNR) of our 24/7 ECoG recordings enable us to
focus this paper on the neural processes before and after word onset in the same individuals during
speech production and comprehension. This is as opposed to prior research, which, due to the limited
SNR for high-gamma power (correlated with average fringing rate - cite) of EEG and MEG methods,
has primarily focused on assessing the post-word-onset surprise effect, such as the P300 and N400
markers (15, 16).

To quantify the amount of information conveyed by each word in hundreds of recorded conversations,
we used two language models (LLMs), specifically Llama-2 and GPT-2. These models assigned a
probability (certainty level, ranging from zero to one) to say each word based on the context of all the
preceding words in each conversation. We categorized all spoken words based on their probability
scores. We separated them into two groups: predictive words with low entropy (top 30% probable, as
predicted by LLMs) and surprising words with high entropy (the bottom 30% improbable, which the
LLMs did not predict well). We constructed electrode-wise encoding models to estimate a linear
mapping from the word embeddings in each LLM to the neural activity for each word during speech
production and comprehension. This allowed us to directly compare neural processing in the same
participants while listening to or producing probable (information-thin) and improbable
(information-rich) words in natural, real-life conversations.

Our key findings suggest opposing, perhaps complementary, functionality of the language areas
before word onset when engaged with listening compared to speaking. In listeners’ IFG, we
reproduced our previous finding of enhanced pre-word-onset encoding in speech comprehension (10,
11) for probable versus improbable words. Conversely, in speakers’ IFG, we found, for the first time,
enhanced pre-word-onset encoding for improbable versus probable words. The results remained
strong and clear even when we narrowed down the analysis to a shared set of words that were
unlikely in one context and likely in another. This confirms that the observed effect can be decoupled
from the word frequency effect that previous studies have documented. Behaviorally, all speakers
slowed down their speech rates before uttering improbable words. These findings suggest that
additional cognitive processes are involved in generating surprising words in the speaker's brain,
processes that are not required for generating probabilistic speech in LLMs. Our findings indicate that
although information-rich words are relatively rare in conversation, occurring less than 30% of the time,
they enhance the neural responses in the speaker's brain across many language areas during speech
production. Since information-rich words are statistically unpredictable, it implies that the
information-making processes in the speaker's brain strive to generate linguistic output that challenges
the listener’s expectations. This challenges the idea that probabilistic speech, as implemented in many
LLMs, is sufficient for capturing the complexities of human language generation.
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Results

Our 24/7 conversation data consists of half a million words recorded during 100 hours of spontaneous
conversations between four ECoG patients and their surroundings in the hospital room. The
conversations cover various real-life topics, including discussions between the patients and medical
staff and personal conversations about family, friendships, sports, and politics. We utilized this rare
dataset to evaluate how speakers communicate information to listeners during natural conversations.

To measure the amount of information communicated through words in our conversations, we utilized
LLMs (Llama-2 and GPT-2) to assess the predictability of each word based on each conversational
context. Our analysis of our recorded natural conversations found that approximately 25% of the
half-million words spoken were entirely predictable using a Llama-2 top-1 prediction (and 23% for
GPT-2; Supp. Fig. 1). The top 2 predictions accounted for 34% of the total words (and 31% for GPT-2).
Moreover, Llama-2 accurately predicted around 70% of all words by focusing on a small set of roughly
the top 22 most probable words in a given context (and 34 for GPT-2). Given the low chance of
accurately predicting a word from a lexicon containing tens of thousands of words, this highlights the
highly structured nature of natural conversations. However, certain aspects of natural conversations
are harder to predict. It would take over 50 predictions (Llama-2: 54; GPT-2: 83) to accurately predict
80% of the words, hundreds (Llama-2: 167; GPT-2: 300) to predict 90% of the words, and thousands
of predictions to account for all words (Supp. Fig. 1).

Using two metrics derived from LLMs, we categorized word instances into information-rich improbable
words (bottom 30%) and information-thin probable words (top 30%). The first metric was based on the
prediction accuracy of the LLMs, and the second was based on the LLMs’ confidence levels (see
Supp. Table 1). We trained encoding models to predict the neural responses to improbable
(information-rich) and probable (information-thin) words in each conversation. Each word was
represented by a non-contextual word embedding extracted from the LLMs’ non-contextual embedding
layer. We trained independent encoding models for each electrode during speech comprehension and
speech production at time lags ranging from -2 s to +2 s relative to the onset of words (lag 0).

During speech comprehension (listening), we identified two neural phases. The first phase occurred
before word onset, during which listeners actively sought information by predicting the next word in the
conversation. During this phase, we observed enhanced encoding for upcoming probable words
compared to improbable words 100 to 500 milliseconds before word onset (see Fig. 1A). Interestingly,
the predictive signals were primarily localized to the inferior frontal gyrus (IFG, also known as Broca’s
area; see the red electrodes in the brain map in Figure 1A). This finding replicates our recent discovery
of enhanced encoding for probable words before word onset during continuous listening to a podcast
(10), now using new data from spontaneous conversations. This result supports the claim that during
speech comprehension (information-seeking), the brain makes predictions based on language
statistics (as coded in LLMs).

The second phase occurred after word onset, during which listeners actively engaged in additional
processing for improbable (information-rich) words. After word onset, we observed a shift in the
response patterns in the listener’s brain, where we detected enhanced encoding around 100 to 500
milliseconds after word onset for the improbable (surprising) words (see Fig. 1B). In contrast to the
localized predictive response before word onset, the enhanced processing for improbable (surprising)
words after word onset was widespread (Out of 119 electrodes identified as significant for speech
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processing (see Materials and Methods), 52 exhibited a significant preference for improbable words,
while 13 showed a preference for probable words. The proportions were found to be significantly
different (p < .001). see blue electrodes in the brain map in Figure 1B). Together, these results provide
direct evidence that the listener’s brain is tuned to detect (before word onset) and process (after word
onset) information-rich words during comprehension.

We observed a complementary neural pattern associated with information generation during speech
production in the speaker's brain before word onset. In contrast to the pre-onset enhanced encoding
for probable words in the listener’s brain, we observed enhanced encoding for improbable (surprising)
words over probable words in language areas (Fig. 1C). The enhanced encoding for improbable words
in the speaker's brain was significant and widespread across multiple language regions. Out of 123
significant electrodes for speech processing, 110 exhibited a marked preference for unlikely words, while
only 4 showed a preference for likely words. The proportions were found to be significantly different (p <
.001, see blue electrodes in the brain map in Figure 1C, see also additional ROIs in Supp. Fig. 2). The
enhanced encoding for improbable, information-dense words was still apparent in the speaker’s brain
for 100 to 500 ms (green bar) after the words are spoken (Figure 1D). The results indicate that before
word onset, there are stronger, more easily decoded neural signals for information-rich improbable
words during speech production, suggesting that increased processing is involved in their formation.

The contrast between enhanced encoding for improbable words in the speaker’s brain
(information-making) and enhanced encoding for probable words (information-seeking) in the listener’s
brain appears robust. First, it was replicated when we limited the analysis to content words such as
nouns, verbs, adjectives, and adverbs while excluding all function words (Supp. Fig. 3). Secondly, it
was replicated using only a shared list of words with instances present in both probable and
improbable groups (Supp. Fig. 4). This suggests that the effect can be independent of the words'
frequency base in natural language. Thirdly, it was replicated when we relied on the models’ induced
probability rather than its accuracy level, controlling for the number of probable and improbable words
(Supp. Fig. 5). Finally, the results are robust across different language models, as we replicated the
effect using GPT-2 predictions and embeddings (Supp. Fig. 6).
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Figure 1. Electrodwise and IFG-localized encoding for Probable and Improbable Words. A. Before-word
onset information-seeking processed during speech comprehension (listening). Using LLM (Llama-2)
embeddings, we observed enhanced encoding in the listeners’ brains for probable (predictable) words (red)
compared to improbable (surprising) words (blue) around 100 to 500 ms (brown bar) before the words were
spoken. The enhanced encoding for probable words was predominantly localized to the inferior frontal gyrus
(IFG, also known as Broca’s area). The enhanced encoding for probable (predictable) words suggests that the
listener’s brain anticipates the subsequent utterances before they are articulated. B. After-word onset
information-processing during speech comprehension (listening). We observed a widespread enhanced
encoding in the listeners’ brains for improbable (surprising) words (blue) compared to probable (predictable)
words (red) around 100 to 500 ms (green bar) after the words were spoken. The enhanced encoding for
improbable (information) words suggests that the listener’s brain is engaging in additional processing of the
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improbable, information-rich utterances after they are perceived. C. Before-word onset information-making
processes during speech production (speaking). We observed enhanced encoding in the speaker’s brain for
improbable (surprising) words (blue) compared to probable (predictable) words (red) around 100 to 500 ms
(brown bar) before the words were spoken. The enhanced encoding for probable words was predominantly
localized to the inferior frontal gyrus (IFG, also known as Broca’s area). The enhanced encoding for improbable
words suggests that the speaker’s brain engages in additional processing while producing information-rich
utterances. D. The enhanced encoding for improbable, information-rich words remained high and significant in
the speaker’s brain even 100 to 500 ms (green bar) after the words were spoken. The color scales indicate
encoding differences between probable and improbable words averaged across lags (-500 to -100 ms). Red
(blue) electrodes showed significantly increased encoding for probable (improbable) words (g < 0.001, FDR
corrected).

Behaviourally, speakers slow their speech rate and pause for an additional 100 - 150 ms (p < 0.001,
for full statistical details see Supp. Table 2) before articulating improbable, information-rich words (Fig.
2A). This pattern was observed in all four participants (S1-S4), as well as in the analysis of all other
speakers who participated in our conversations, for whom brain responses were not recorded (Fig. 2).
The pattern was independent of the words' frequency as the results hold when introducing words’
frequency (17) as a covariate (p < 0.001) and when the analysis was restricted to a shared set of
words across the probable and improbable word lists (p < 0.001, Fig. 2B, Supp. Table 2).
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Figure 2. Behavior Temporal Gap between the Offset of the Previous Word and Onset of the Current
Word. A. It takes about 100 - 150 ms longer for each speaker (S1- S4) to start articulating improbable words.
This was also evident when examining the data of other speakers in the room, for whom brain responses were
not recorded. B. The pause before word onset for improbable words was consistent, even when the analysis was
limited to a shared set of words across both improbable and probable word lists. This suggests that the pause
was independent of the word's frequency in the natural language.
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Discussion

In everyday conversations, listeners often aim to acquire new information they do not possess and,
thus, can not easily predict. After all, if listeners could fully predict the speaker’s utterances, there was
little point in engaging in the conversation. In line with the information theory perspective, our analysis
of 100 hours of recordings shows that a subset of approximately 20-30% of all spoken words in our
recorded conversations were improbable and information-rich. However, Little is known about the
underlying neural processes in the speaker’s brain that generate these information-rich words. By
measuring the neural activity in the speaker’s brain during hundreds of real-life conversations, we have
discovered evidence for a novel information-making process in the speaker's brain before articulating
words, complementing the information-seeking processes in listeners' brains.

Behaviorally, our analysis found that speech production slows by about 100 to 150 ms before
articulating improbable words (Fig. 2). This is consistent with previous research that has indicated that
speakers take longer to begin articulating rare (infrequent) words (18, 19). This process is often
attributed to difficulty retrieving infrequent words from memory or planning an articulatory motor
sequence (20). Our findings suggest that the effect is context-specific rather than word
frequency-specific, as the pause in articulation can be longer for the exact words spoken in
unpredictable versus predictable contexts. Besides the increased gap before articulating improbable
words, it was established that the duration of articulating each word also slows down (21). The results
may seem counterintuitive, given that the speaker’s brain already knows the words they are about to
produce, irrespective of how surprising they are from the listener's perspective. Thus, the slowdown in
speech rate may provide a behavioral marker for additional cognitive processes in the speaker's brain
while producing information-rich (improbable) words.

Our analysis of encoding in the speaker's brain shows additional neural processes involved in
producing information-rich, improbable words compared to probable ones (Fig. 1C). The enhanced
encoding for improbable words before word onset in the speaker’s brain contrasts with the enhanced
encoding for probable words that occur before word onset in the listener's brain (Fig. 1A). Furthermore,
while predictive information-seeking processes in the listener's brain were localized to the IFG (Fig.
1A), the information-making processes in the speaker’s brain were widespread across various
language areas, including the IFG, STG, angular gyrus, and precentral motor cortex (Fig. 1C and
Supp. Fig. 2).

The enhanced encoding for improbable, information-rich words before word-onset in the speaker's
brain (Fig. 1C) is mirrored by the enhanced encoding for improbable words after speech articulation in
the listener's brain (Fig. 1B). This suggests that both the speaker (before word-onset) and the listener
(after word-onset) home-in on the informative and improbable, information-rich words in each
conversation.

Speech comprehension and speech production offer complementary perspectives on the relationship
between information theory and LLMs to natural language processing. In speech comprehension, the
primary focus is on how listeners process linguistic information from real-world linguistic input. Recent
evidence suggests that, like LLMs, humans rely on a next-word predictive coding framework to
compress linguistic information into an embedding space (10, 11, 14, 22). Thus, in alignment with
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information theory, listeners constantly seek to detect information-rich words to adjust their linguistic
model based on their prediction errors.

Speech production offers a complementary viewpoint that explores how speakers choose the right
words to express their thoughts and ideas. This process can be formalized as the policy for selecting
the next word (or sequence of words) from the statistically learned language model given each
conversational context. It was shown that forcing LLMs to choose the most predictable (top-1) word in
any conversational context leads to repetitive, incoherent, and uninformative speech (23). Thus, like
humans, LLMs must generate some information-rich and surprising words during speech production.
However, they should not solely aim to maximize surprise, as this approach may lead to the selection
of highly improbable (essentially random) words. Many language models use temperature-controlled
sampling methods and other strategies to sound more human-like. These techniques allow them to select
words based on probabilities from a distribution without further analysis to distinguish between
information-rich and information-thin words (24).

Our discovery of additional neural processes in the speaker’s brain for generating information-rich
(surprising) words exposed a gap in information theory. While information theory focuses on the
transfer of information between a sender and receiver over a noisy channel, it does not adequately
address how humans generate new (surprising) ideas. While entropy can indicate how much new
information a listener is receiving, it doesn't offer much insight into how a speaker thoughtfully chooses
words to convey new meanings. The lack of dedicated information-making processes during speech
production may explain why LLMs deteriorate when trained with text generated by other LLMs rather
than humans (23). In such cases, the generated probabilistic text becomes more predictable and less
informative over time, leading to a rapid deterioration of the language model. In other words, the
probabilistic policy for speech production used by LLMs struggles to capture the communicative intent
that guides speakers in selecting the key informative words that reflect their thoughts and ideas. After
all, listeners are not likely to randomly choose the key information-rich words they wish to convey to
their audience. In agreement with this intuition, our findings suggest an additional information-making
mechanism in the human brain that requires extra neural resources and time to select and produce
key information-rich words during natural conversations.

This study has several limitations. First, the nature of the neural policy in the speaker’s brain
associated with choosing improbable yet informative words is not yet defined. While we observe the
improved encoding of improbable words in the speaker's brain, we know very little about the
underlying policies that guide the selection of informative words. The extensive focus of previous
research on information-seeking in listeners leaves a theoretical gap in our understanding of the neural
processes of information-making in the speaker’s brain, which is likely linked to the human capacity to
think and innovate. Furthermore, while information-seeking and entropy are fundamental for
understanding speech comprehension, entropy gives us only a narrow window into speech production.

Second, to determine the level of surprise for each word in the conversation, we depend on the
exceptional capacity of LLMs to assign a probability to each word in any given conversation. Previous
research has shown good agreement between people and LLMs' capacity to predict the next work in
context (10). However, the ability to assess the level of surprise using LLMs is likely conservative
because it lacks access to the specific history and shared knowledge among our speakers. For
example, a family member may know that the patient loves frozen bananas, even though it may be a
rare and improbable utterance for LLMs. The lack of access to the unique shared knowledge among
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speakers works against us, leading to an overestimation of the level of surprise for the bottom 30% of
the words. Given that some of these words may be less surprising for our listeners, this should reduce
(not enhance) the gap between surprising and unsurprising words observed in our study (Fig. 1).

To conclude, the novel 24/7 ECoG recordings of natural conversation provide a new window to novel
information-making processes in the speakers' brains, complementing the proposed
information-seeking processes in the listeners’ brains. These generative, information-making
processes have been overlooked in information theory, neuroscience, and psychology due to
excessive focus on speech comprehension processes. They also seem underutilized in most LLMs,
which rely solely on probabilistic speech to generate conversations. Indeed, recent research in deep
learning seeks to develop better policies for sampling words during speech production by relying on
the internal chain of thought processes to generate a more thoughtful response in context. Such
information-making processes may be the key to understanding how we use natural language to think,
innovate, and reinvent ourselves and our culture.
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Methods
Preprocessing the speech recordings

We developed a semi-automated pipeline for preprocessing datasets consisting of four main steps.
First, we de-identified speech recordings by manually censoring sensitive information to comply with
HIPAA regulations. Second, we used a human-in-the-loop process with Mechanical Turk transcribers
to accurately transcribe the noisy, multi-speaker audio. Third, we aligned text transcripts with audio
recordings using the Penn Forced Aligner and manual adjustments for precise word-level timestamps.
Finally, we synchronized speech with neural activity by recording audio through ECoG channels,
achieving 20-millisecond accuracy for aligning neural signals with conversational transcripts. For a full
description of the procedure, see (14).

Preprocessing the ECoG recordings

We developed a semi-automated analysis pipeline to identify and remove corrupted data segments
(e.g., due to seizures or loose wires) and mitigate other noise sources using FFT, ICA, and de-spiking
methods (25). Neural signals were bandpassed (75-200 Hz), and power envelopes were computed as
proxies for local neural firing rates (26). The signals were z-scored, smoothed with a 50 ms Hamming
kernel, and trimmed to avoid edge effects. Custom preprocessing scripts in MATLAB 2019a
(MathWorks) were used for these steps. For a full description of the procedure, see (14).

Prediction and embedding extraction

We extracted contextualized predictions and static word embeddings from GPT-2 (gpt2-xl, 48 layers)
and Llama-2 (Llama-2-7b, 32 layers). We used the pre-trained version of the model implemented in
the Hugging Face environment (27). We first converted the words from the raw transcript (including
punctuation and capitalization) to whole or sub-word tokens. We used a sliding window of 32 tokens
(results were also replicated for 1024 tokens), moving one token at a time to extract the embedding for
the final token in the sequence. Encoding these tokens into integer labels, we fed them into the model,
and in return, we received the activations at each layer in the network (also known as a hidden state).
For the predictions, we extracted the logits from the model for the second-to-last token, which was
utilized by the model to predict the last token. For the embeddings, we extracted the activations for the
final token in the sequence from the 0-th layer of the model before any attention modules. For
tokenized words to be divided into several tokens, we take the prediction values of the first token and
average the embeddings across several tokens. With embeddings for each word in the raw transcript,
we aligned this list with our spoken-word transcript that did not include punctuation, thus retaining only
full words.

Electrode-wise encoding

We used linear regression to estimate encoding models for each electrode and lag relative to word
onset, mapping our static embeddings onto neural activity. The neural signal was averaged across a
200 ms window at each lag (25 ms increments). Using ten-fold cross-validation, we trained models to
predict neural signal magnitudes based on GPT-2 or Llama-2 embeddings. Embeddings were
standardized and reduced to 200 dimensions via PCA (we replicated results using PCA to 50
dimensions and ridge regression). Regression weights were estimated using ordinary least-squares
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regression and applied to the test set. Pearson correlation assessed model performance across 161
lags from -2,000 to 2,000 ms in 25-ms increments. For a full description of the procedure, see (10).

Electrode selection

A randomization method was employed to determine significant electrodes that were selective for
semantic information. Each iteration involved randomly shifting embeddings (GloVe) assigned to
predicted signals, breaking their connection with brain signals while maintaining their order without
rolling over within the context window. The encoding procedure was then conducted for each electrode
using the misaligned words, repeated 1,000 times. The score for each electrode was calculated by the
range between the maximum and minimum values across 161 lags. From these, the highest value for
each patient across all electrodes was recorded, forming a distribution of 1,000 maximum values per
patient. The significance of electrodes was assessed by comparing the original encoding model's
range to this distribution, calculating a p-value for each electrode. This tested the hypothesis of no
systematic relationship between brain signals and word embeddings, resulting in family-wise error rate
corrected p-values. Electrodes with p-values under 0.01 were deemed significant. For a full description
of the procedure, see (10).

Significance test for encoding difference at the ROl level

To test for significant differences in encoding performance between probable and improbable word
conditions in 17 given lags (-500 ms to -100 ms) for a specific ROIl, we used a paired-sample
permutation procedure: in each permutation, we randomly shuffled the labels (probable/improbable) of
all observations (correlation encoding) for both conditions, and we computed that difference of the
averages. A p-value was computed as the percentile of the non-permuted difference between the
averaged correlation values for the probable and improbable words over the electrodes and lags
relative to the null distribution. P-values less than 0.0005 (significance of 0.001 for the two-sided test)
were considered significant. We used a similar paired-sample permutation procedure to test for
significance for specific electrodes with samples from the 17 given lags. FDR correction was applied to
correct for multiple electrodes.
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Supplementary Figures
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Supplementary Figure 1. Accumulated ranked-order predictions for upcoming words as predicted by
Llama-2 and GPT-2. We extracted each next word's ranked probability according to Llama-2 (up) and GPT-2
(bottom) context-based predictions. The rank order is represented on a logarithmic scale. LLMs successfully
predicted more than 25% of the words (top-1). Around 23/34 predictions were necessary to accurately forecast
70% of the words, while tens to hundreds of predictions were needed to predict the bottom 30%.
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Supplementary Figure 2. Encoding Results for Probable and Improbable Words in Different ROIs. The
listener's brain showed enhanced pre-word-onset encoding of probable words in the IFG, while the speaker's
brain exhibited widespread enhanced pre-word-onset encoding of improbable words across several language

areas.
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Supplementary Figure 3. Using content words to encode probable and improbable words. Similar results
to those in Fig. 1 were achieved while restricting the encoding analyses to content words (i.e., nouns, verbs,
adjectives, and adverbs, N = 306,681). This demonstrates that highly predictable function words do not drive the

observed effect.
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Supplementary Figure 4: Utilizing a shared set of words to encode probable and improbable words.
Similar results to those in Figure 1 and Supplementary Figure 3 were achieved using a shared set of words,
which were predictable in one context and unpredictable in another. This demonstrates that the observed effect
can be decoupled from the word frequency effect that previous studies have documented.
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Supplementary Figure 5. Using the model’s confidence level to encode probable and improbable words.
Similar results to those in Figure 1 and Supplementary Figures 3,4 were achieved using Llama-2’s internal

confidence level. This demonstrates that the observed effect can be replicated when we rely on the model’s
internal confidence rather than the model’s success in predicting the next word (accuracy level).
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Supplementary Figure 6. GPT-2’s predictions and embeddings are used to encode probable and
improbable words. Similar results to those in Figure 1 and Supplementary Figures 3,4,5 were achieved
using predictions and embeddings from GPT-2 instead of Llama-2. This demonstrates that our results can be

reproduced using other LLMs.
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Supplementary Figure 7. Behavior Temporal Duration between the Onset and Offset of the Current Word.
In addition to the delay (silence) before speaking unlikely words (shown as the word gap effect in Fig. 2), it also
took longer to pronounce unlikely words (A), even when we restricted the analysis to the

the same set of words that were probable in one context and improbable in another (B).

Supplementary Tables

Llama-2’s Prediction Accuracy

Type Word Num | Rank Mean | Rank Std | Rank Min | Rank Max
Probable 173358 1.271 0.444 1 2
Middle 175626 8.708 5.393 3 22
Improbable 153661 318.785 782.165 23 19010
Llama-2’s Confidence Level
Type Word Num | Pred Mean | Pred Std | Pred Min | Pred Max
Probable 150795 0.420 0.271 0.084 0.999
Middle 201055 0.038 0.029 0.005 0.141
Improbable 150795 1.624e~3 1.691e—3 9.140e° 7.410e~3

Supplementary Table 1. Statistics of Words Divided into Probable (top 30%), Improbable (bottom 30%),
and Middle (middle 40%) using Llama-2’s prediction accuracy (top table) and confidence levels (bottom
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table). Rank is the ranked prediction order of the next word, ranging from 1 to 32,000 (vocab size for Llama-2)
Pred is the prediction probability of the next word, ranging from 0 to 1.

Word Gap (ms) for Probable/Improbable Words

Statistics Speaker 1 Speaker 2 Speaker 3 Speaker 4 Other Speakers
Probable Mean 46.934 68.067 67.981 69.937 60.039
Probable Std 126.885 135.462 149.617 169.161 133.546
Improbable Mean 183.928 174.839 155.278 133.684 154.871
Improbable Std 250.426 228.850 231.330 228.029 227.956
t(16940) = 45.483 | ¢(57756) = 70.212 | ¢(26082) = 36.522 | t(28302) = 26.968 | #(157602) = 102.735
Independent t-test
p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001
F 5 =851.521 | F; = 3336.353 | F} = 538.538 | F; = 218.568 | F} = 4306.434
ANCOVA 1,1155 1,47734 1,21655 1,22312 1,128483
p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001
Word Gap (ms) for Shared Probable/Improbable Words
Statistics Speaker 1 Speaker 2 Speaker 3 Speaker 4 Other Speakers
Probable Mean 44.865 67.728 67.575 67.481 59.973
Probable Std 124.782 134.938 149.192 166.274 133.824
Improbable Mean 170.646 170.640 155.722 132.408 148.079
Improbable Std 240.626 226.462 231.683 227.087 222.123
t(14133) =40.432 | ¢(52571) = 65.276 | ¢(23098) = 35.123 | t(24308) = 25.224 | ¢(136314) = 91.368
Independent t-test
p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Supplementary Table 2. Statistics and Significance Tests for Word Gap (Duration between the offset of
the previous word and onset of the current word) for probable and improbable Words.
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	Preprocessing the speech recordings 
	Preprocessing the ECoG recordings 
	We developed a semi-automated analysis pipeline to identify and remove corrupted data segments (e.g., due to seizures or loose wires) and mitigate other noise sources using FFT, ICA, and de-spiking methods (25). Neural signals were bandpassed (75–200 Hz), and power envelopes were computed as proxies for local neural firing rates (26). The signals were z-scored, smoothed with a 50 ms Hamming kernel, and trimmed to avoid edge effects. Custom preprocessing scripts in MATLAB 2019a (MathWorks) were used for these steps. For a full description of the procedure, see (14). 
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	We extracted contextualized predictions and static word embeddings from GPT-2 (gpt2-xl, 48 layers) and Llama-2 (Llama-2-7b, 32 layers). We used the pre-trained version of the model implemented in the Hugging Face environment (27).  We first converted the words from the raw transcript (including punctuation and capitalization) to whole or sub-word tokens. We used a sliding window of 32 tokens (results were also replicated for 1024 tokens), moving one token at a time to extract the embedding for the final token in the sequence. Encoding these tokens into integer labels, we fed them into the model, and in return, we received the activations at each layer in the network (also known as a hidden state). For the predictions, we extracted the logits from the model for the second-to-last token, which was utilized by the model to predict the last token. For the embeddings, we extracted the activations for the final token in the sequence from the 0-th layer of the model before any attention modules. For tokenized words to be divided into several tokens, we take the prediction values of the first token and average the embeddings across several tokens. With embeddings for each word in the raw transcript, we aligned this list with our spoken-word transcript that did not include punctuation, thus retaining only full
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