

1 **Focused Ultrasound Augments the Delivery and Penetration of Model**

2 **Therapeutics into Cerebral Cavernous Malformations**

5 **Delaney G. Fisher^{1,2}, Matthew R. Hoch^{1,2}, Catherine M. Gorick¹, Claire Huchthausen²,**

6 **Victoria R. Breza¹, Khadijeh A. Sharifi^{3,4}, Petr Tvardik^{3,4}, G. Wilson Miller^{1,5},**

7 **and Richard J. Price^{1,5}**

10 # Authors contributed equally

11 1. Department of Biomedical Engineering, University of Virginia, Charlottesville, VA

12 2. Department of Physics, University of Virginia, Charlottesville, VA

13 3. Department of Neuroscience, University of Virginia, Charlottesville, VA

14 4. Department of Neurosurgery, University of Virginia Health System, Charlottesville, VA

15 5. Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA

16

17

18

19

20 Corresponding Author:

21 Richard J. Price, Ph.D.

22 415 Lane Road, MR-5, Room 2316

23 Charlottesville, VA 22908.

24 Phone: 434-924-0020

25 Email: rprice@virginia.edu

26

27 **Abstract**

28 **BACKGROUND:** Cerebral cavernous malformations (CCMs) are vascular neoplasms in the
29 brain that can cause debilitating symptoms. Current treatments pose significant risks to some
30 patients, motivating the development of new nonsurgical options. We recently discovered that
31 focused ultrasound-microbubble treatment (FUS) arrests CCM formation and growth. Here, we
32 build on this discovery and assess the ability of FUS to deliver model therapeutics into CCMs.

33 **METHODS:** Quantitative T1 mapping MRI sequences were used with 1 kDa (MultiHance; MH) and
34 17 kDa (GadoSpin D; GDS) contrast agents to assess the FUS-mediated delivery and penetration
35 of model small molecule drugs and biologics, respectively, into CCMs of Krit1 mutant mice.

36 **RESULTS:** FUS elevated the rate of MH delivery to both the lesion core (4.6-fold) and perilesional
37 space (6.7-fold). Total MH delivery more than doubled in the lesion core and tripled in the
38 perilesional space when FUS was applied immediately prior to MH injection. For the model
39 biologic drug (i.e. GDS), FUS was of greater relative benefit, resulting in 21.7-fold and 3.8-fold
40 delivery increases to the intralesional and perilesional spaces, respectively

41 **CONCLUSIONS:** FUS augments the delivery and penetration of therapeutics into the complex
42 and disorganized CCM microenvironment. Benefits to small molecule drug delivery are more
43 evident in the perilesional space, while benefits to biologic delivery are more evident in CCM
44 cores. These findings, when combined with ability of FUS alone to control CCMs, highlight the
45 potential of FUS to serve as a powerful non-invasive therapeutic platform for CCM.

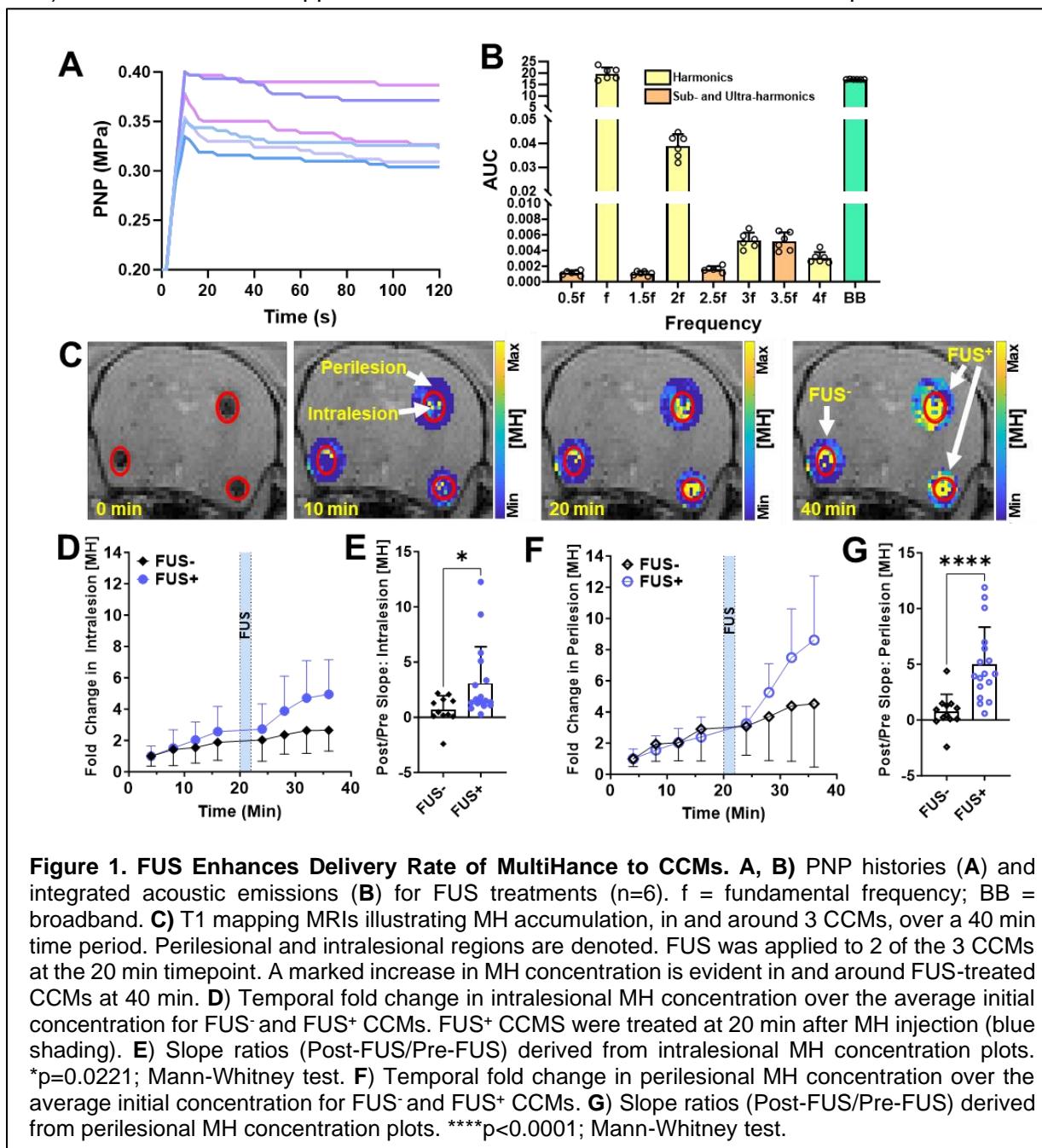
46 **Introduction**

47 Cerebral cavernous malformation (CCM) is a vascular disorder characterized by the
48 development of abnormal, dilated clusters of blood vessels in the brain¹. These malformations
49 are prone to repetitive hemorrhages, inducing debilitating symptoms, such as neurological
50 deficits, seizures, and stroke, in affected individuals²⁻⁴. Presently, the prevailing recourse for
51 treating symptomatic CCMs is surgical resection. However, surgical excision of CCMs poses an
52 elevated risk of complications and morbidity^{5,6}.

53 Despite multiple studies investigating therapeutic targets and screening pharmacological
54 treatments for CCM⁷⁻¹⁸, no approved drug treatments exist for CCM. The majority of tested
55 pharmacological agents for CCM are small molecules. In comparison, larger biologic molecules,
56 such as antibodies and gene therapies, have not been as thoroughly explored. Additionally, drugs
57 showing promise in acute CCM models often demonstrate limited efficacy in more clinically-
58 representative chronic models, suggesting a potential need for greater local doses of these
59 therapies^{19,20}. Indeed, though CCMs are known to be more permeable than healthy
60 cerebrovasculature²¹⁻²⁴, delivery of systemically administered drugs to these complex lesions is
61 poorly understood.

62 Focused ultrasound-mediated blood-brain barrier opening (FUS) has emerged as a
63 promising non-invasive drug delivery technology²⁵⁻²⁷. With FUS, acoustic energy is concentrated
64 into a confined volume, facilitating the oscillation of intravenously administered gas-filled
65 microbubbles within blood vessels of the targeted region. These microbubble oscillations induce
66 a transient disruption of endothelial tight junctions²⁸ and increased active transport²⁹, enabling
67 therapeutic delivery across the blood-brain barrier (BBB). Magnetic resonance imaging (MRI)
68 guidance permits spatial targeting of FUS to specific brain regions and BBB opening confirmation
69 through the accumulation of gadolinium-based MRI contrast agents.

70 Recently, our group demonstrated that FUS, in the absence of therapeutic delivery, arrests
71 the formation and growth of CCMs³⁰. This remarkable observation prompts the exploration of the

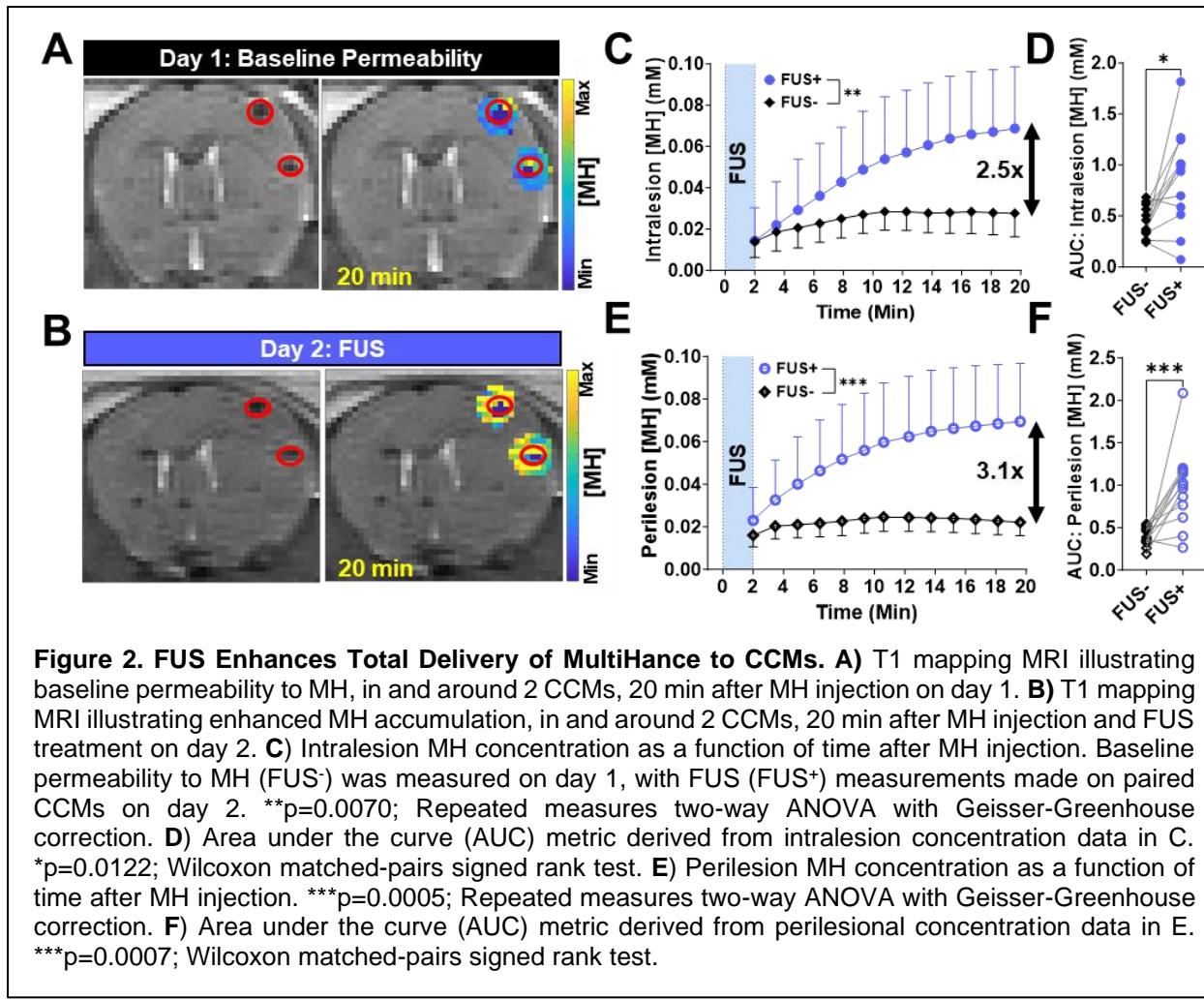

72 combined impact of FUS-mediated lesion stabilization and therapeutic delivery on CCMs. While
73 our previous study also confirmed that FUS enhanced MRI contrast agent delivery beyond the
74 natural permeability of CCMs, the MRI sequences only provided qualitative assessments. In
75 particular, this qualitative MRI approach was sub-optimal for visualizing contrast agent delivery to
76 the lesion core. Indeed, the cellular and molecular composition within the lesion core, including
77 mutated endothelium, red blood cells, and their byproducts, differs substantially from the
78 perilesional space, characterized by dense populations of astrocytes and microglia^{30,31}. This
79 difference not only affects MRI signal but may also have important implications for drug delivery
80 to these distinct regions. Consequently, to facilitate comprehensive measurements of potential
81 enhanced therapeutic delivery with FUS in the intricate CCM microenvironment, quantitative MRI
82 methods are needed.

83 Building on our recent observations³⁰, the objective of this study was to establish a
84 foundation for therapeutic delivery approaches that harness and synergize with this potent
85 bioeffect. We have previously demonstrated that T1-contrast mapping can enable longitudinal,
86 quantitative concentration measurements of gadolinium-based molecules in CCMs³¹. Thus, this
87 is an ideal method to measure FUS-induced changes for therapeutic delivery to CCMs. To this
88 end, we employed T1-contrast mapping MRI to quantitatively evaluate the delivery of 1 kDa and
89 17 kDa molecules to CCMs, comparing outcomes with and without FUS. This study lays the
90 groundwork for treatment regimens of FUS-delivered molecules capable of inducing CCM
91 regression and clearance.

92 Results

93 FUS Enhances Delivery Rate of MultiHance in CCMs

94 We first tested if FUS would increase the delivery rate of a model small molecule drug to
95 the CCM microenvironment. To this end, we employed T1 mapping MRI to measure the
96 concentration of the MRI contrast agent MultiHance (MH; gadobenate dimeglumine; ~1 nm; ~1
97 kDa) before and after the application of FUS in CCM mice. One frontal hemisphere received FUS

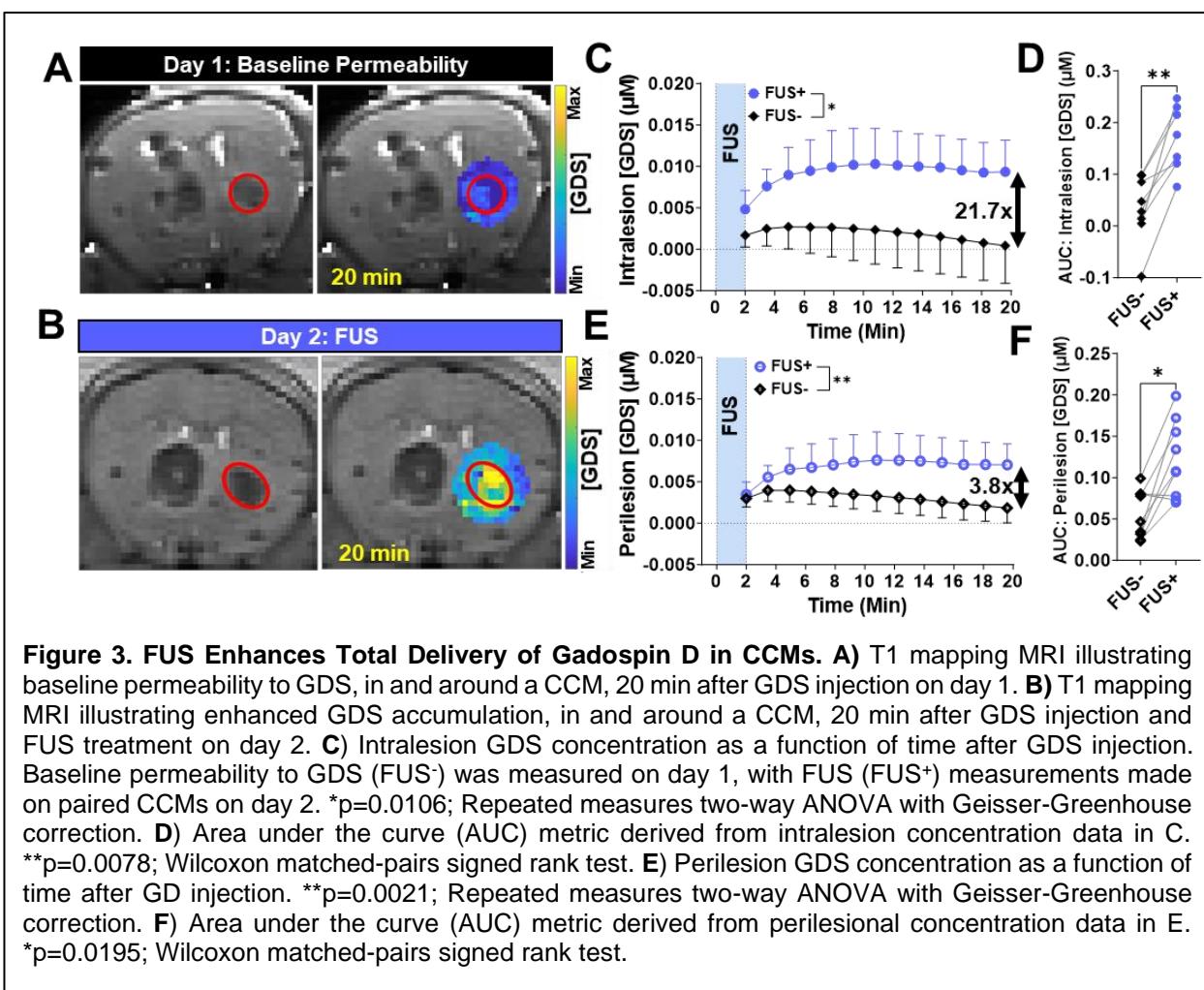

Figure 1. FUS Enhances Delivery Rate of MultiHance to CCMs. **A, B** PNP histories (A) and integrated acoustic emissions (B) for FUS treatments (n=6). f = fundamental frequency; BB = broadband. **C** T1 mapping MRIs illustrating MH accumulation, in and around 3 CCMs, over a 40 min time period. Perilesional and intralesional regions are denoted. FUS was applied to 2 of the 3 CCMs at the 20 min timepoint. A marked increase in MH concentration is evident in and around FUS-treated CCMs at 40 min. **D** Temporal fold change in intralesional MH concentration over the average initial concentration for FUS- and FUS+ CCMs. FUS+ CCMs were treated at 20 min after MH injection (blue shading). **E** Slope ratios (Post-FUS/Pre-FUS) derived from intralesional MH concentration plots. *p=0.0221; Mann-Whitney test. **F** Temporal fold change in perilesional MH concentration over the average initial concentration for FUS- and FUS+ CCMs. **G** Slope ratios (Post-FUS/Pre-FUS) derived from perilesional MH concentration plots. ***p<0.0001; Mann-Whitney test.

98 (n=6 sonication targets) with passive cavitation detection (PCD) feedback control 20 minutes after
99 intravenous (i.v.) MH injection. During FUS, peak-negative pressures (PNPs) settled into a range
100 of 0.3 to 0.4 MPa (**Figure 1A**), yielding integrated acoustic emissions shown in **Figure 1B**. The
101 contralateral hemisphere was not sonicated (i.e., FUS⁻ control) to illustrate baseline CCM
102 permeability. As expected, prior to FUS, CCMs in the non-sonicated and sonicated hemispheres
103 displayed similar rates of MH accumulation (**Figure 1C, D, F**). After FUS, the rate of MH
104 accumulation in the lesion core was enhanced (**Figure 1D**), increasing to well-above (4.6-fold)
105 the rate of MH accumulation in FUS⁻ CCMs (p=0.0221; **Figure 1E**). Predictably, the perilesional
106 space of these CCMs also displayed the same permeability rate prior to FUS in both groups
107 (**Figure 1F**). FUS then increased perilesional MH delivery rate by 6.7-fold over the rate of MH
108 accumulation in FUS⁻ CCMs (p<0.0001; **Figure 1G**). These results indicate that FUS enhances
109 the delivery rate of a model small molecule drug to both the lesion core and the surrounding CCM
110 microenvironment.

111

112 **FUS Enhances Total Delivery of MultiHance in CCMs**

113 We then tested the ability of FUS to augment model small molecule drug delivery to CCMs
114 when applied concurrently with model drug injection, reflecting the clinical staging to maximize
115 overall delivery. On day 1, T1 mapping MRI was conducted on CCM mice following i.v. MH
116 injection to measure baseline permeability (**Figure 2A**). On day 2, FUS was applied to one frontal
117 hemisphere of the same CCM mice immediately before i.v. MH injection. T1 mapping MRI was
118 conducted for 20 mins thereafter (**Figure 2B**). FUS markedly boosted the intralesional MH
119 delivery rate, as well as mean intralesional MH concentration (p=0.0070; **Figure 2C**), with a 2.5-
120 fold enhancement evident at 20 minutes. Area under the curve (AUC) analysis, representing the
121 integrated exposure of CCM tissue to the model drug through time, indicates that FUS enhances
122 intralesional model drug exposure by 1.9-fold (p=0.0122; **Figure 2D**). Regarding the perilesional

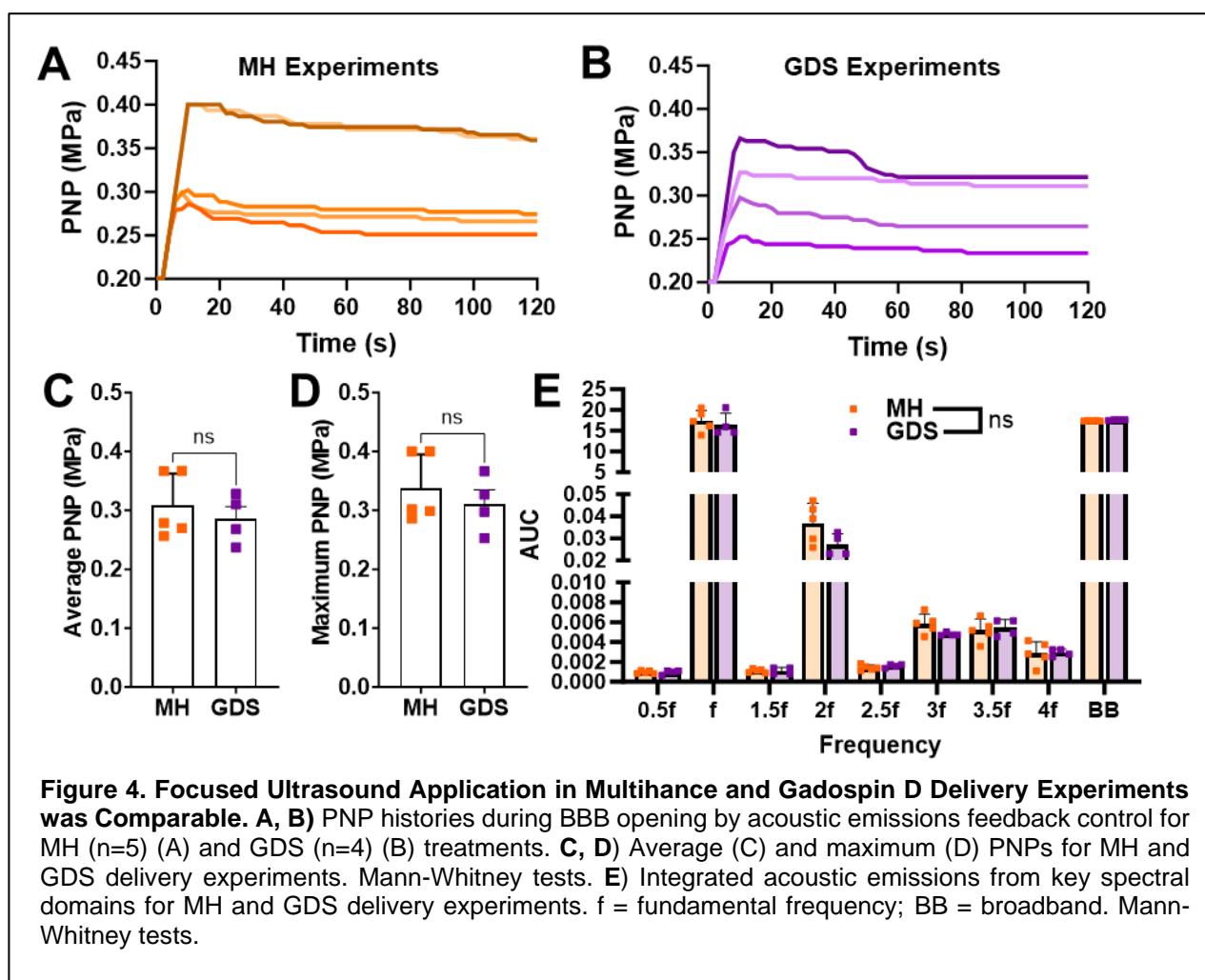

123 space, MH concentration was also markedly elevated with FUS (p=0.0005; **Figure 2E**), with a
124 3.1-fold enhancement evident at 20 minutes. AUC yielded a 2.9-fold increase in model drug
125 exposure over FUS- CCMs (p=0.0007; **Figure 2F**). Notably, MH delivery after FUS becomes
126 evident in the perilesional space (**Figure 2E**) before the intralesional space (**Figure 2C**) (0.040
127 mM versus 0.029 mM, respectively, after 5 minutes), yet both locations plateau to the same mean
128 concentration by 20 mins post-injection (0.069 mM each). These results reveal that FUS can more
129 than double the amount of a small molecule delivered to the lesion core and triple the amount in
130 the surrounding CCM microenvironment.

131

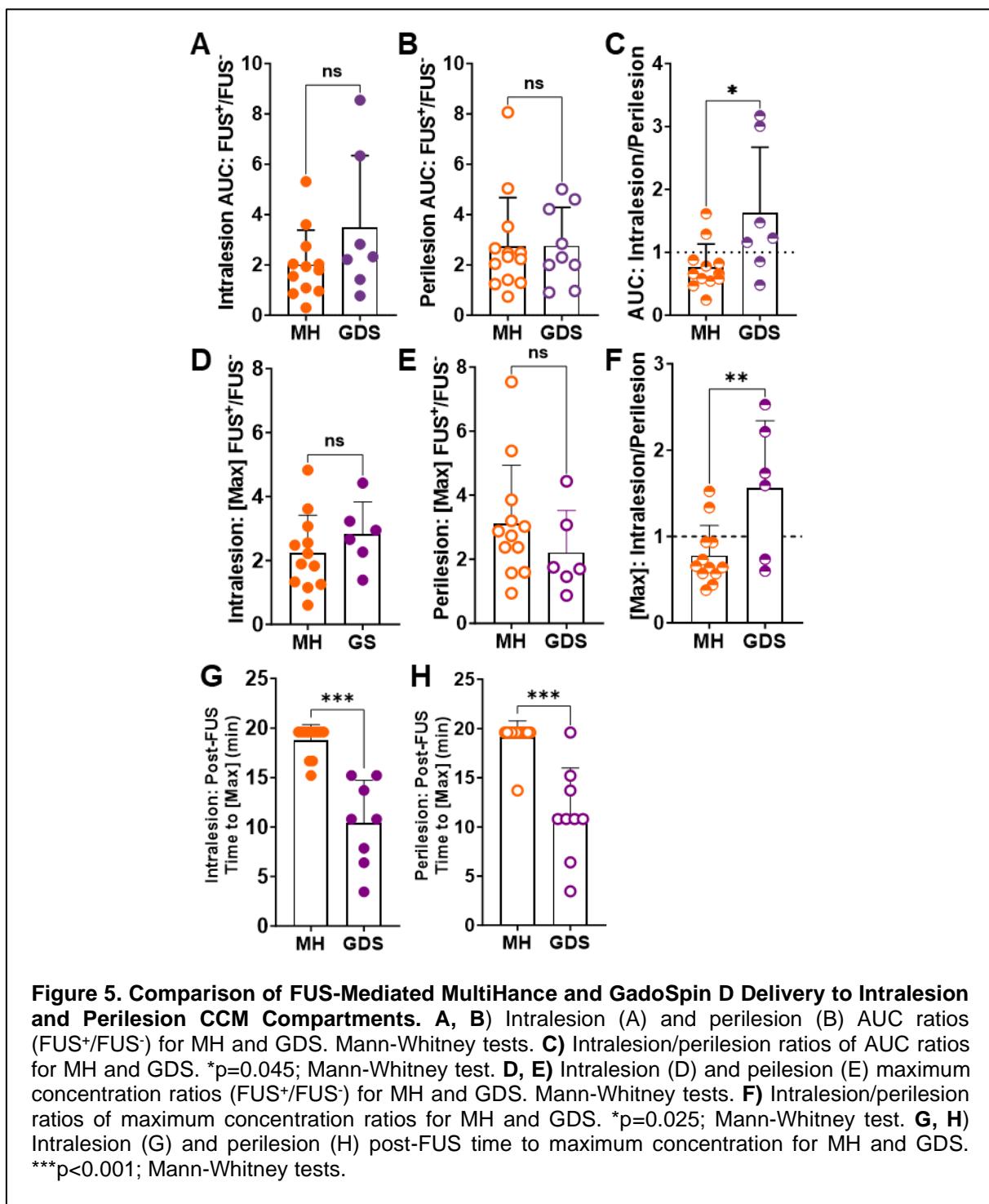
132

133 **FUS Enhances Total Delivery of GadoSpin D in CCMs**

134 Next, we tested the potential for FUS to enhance the total delivery and penetration of a
135 biologic, which are typically >1 kDa, to CCMs. To this end, we employed the MRI contrast agent
136 GadoSpin D (GDS; dendritic Gd-chelate; ~ 5 nm; ~ 17 kDa) as a model biologic. As in the MH
137 experiments (Figure 2), baseline permeability of CCMs to GDS was measured on day 1 (Figure
138 3A). On day 2, FUS was applied to paired CCMs from day 1. FUS improved total GDS delivery in
139 both the intralesional and perilesional spaces compared to baseline CCM permeability (Figure
140 3B). FUS elicited a striking increase in GDS delivery to the lesion core ($p=0.0106$; Figure 3C),
141 reaching 21.7-fold at 20 minutes. AUC was increased 4.8-fold in CCM cores with FUS ($p=0.0078$;
142 Figure 3D). Meanwhile, perilesional delivery of GDS was also enhanced with FUS ($p=0.0021$;



143 **Figure 3E**), reaching a 3.8-fold increase at 20 minutes. For GDS in the perilesional space,
144 integrated tissue-drug exposure increased 2.2-fold ($p=0.0195$; **Figure 3F**). The lesion core and
145 perilesional space followed a similar temporal pattern of GDS enhancement following FUS, but
146 the intralesional space peaked at a higher concentration than the perilesional space (0.010 mM
147 versus 0.0076 mM, respectively).


148

149 **Comparison of FUS-Mediated MultiHance and GadoSpin D Delivery to Intralesion and
150 Perilesion CCM Compartments**

151 We also investigated whether FUS differentially affects the delivery of MH and GDS to
152 intralesional and perilesional regions of CCMs. To this end, we first needed to verify that the

153 applied FUS PNP, as well as the resultant MB activity, were equivalent in the MH and GDS
154 experiments. The PNP histories for the MH (Figure 4A) and GDS (Figure 4B) experiments
155 followed similar trajectories, and there were no differences in average (Figure 4C) and maximum

156 (Figure 4D) applied PNP. Moreover, MB activity, as assessed by acoustic emissions across
157 several key spectral domains (i.e. sub-harmonic, harmonic, ultra-harmonic, and broadband), was
158 equivalent for the MH and GDS experiments. Thus, any differences between MH and GDS
159 delivery were not due to differences in FUS application and/or MB response.

160 When comparing GDS to MH delivery using the AUC metric, similar levels of FUS-
161 mediated delivery enhancement (i.e. FUS⁺/FUS⁻) to both the intralesional (Figure 5A) and
162 perilesional spaces (Figure 5B) were observed, with GDS exhibiting a slight trend ($p=0.23$) over
163 MH in intralesional AUC augmentation (Figure 5A). To then examine whether intralesional or
164 perilesional AUC augmentation might be favored for one or both of the contrast agents, we
165 calculated the ratio of intralesional FUS-mediated AUC enhancement over perilesional FUS-
166 mediated AUC enhancement. Resultant values >1 suggest greater relative intralesional
167 amplification (Figure 5C). By this metric, GDS exhibited greater relative FUS-mediated
168 augmentation of delivery to the intralesional space when compared to MH (Figure 5C). We then
169 repeated this analysis using maximum concentration as the key metric. As with the AUC
170 comparisons, there was no difference between the 2 contrast agents with respect to FUS-
171 mediated intralesional (Figure 5D) and perilesional (Figure 5E) delivery augmentation, but there
172 was greater relative amplification of delivery to the intralesional space for GDS (Figure 5F).
173 Finally, we compared post-FUS times to maximum concentration in the intralesional and
174 perilesional spaces for MH and GDS (Figure 5G and 5H). For both regions, GDS reached its
175 maximum concentration in about 10 min after FUS, while MH concentration was typically still
176 increasing at the final (20 min) timepoint.

177

178 **Discussion**

179 We previously elucidated that FUS can arrest CCM growth and formation, even in the
180 absence of therapeutic delivery³⁰. Here, we aimed to advance the synergistic potential for
181 concurrent therapeutic delivery with this approach. Utilizing longitudinal T1 mapping MRI, we

182 quantified the impact of FUS on therapeutic delivery of model small molecule drugs and biologics
183 to CCMs. Our findings revealed a significant enhancement in the delivery rate of a 1 kDa small
184 molecule, exhibiting a 4.6-fold increase in the lesion core and a 6.7-fold increase in the
185 perilesional space. Moreover, FUS augmented overall delivery of both the 1 kDa small molecule
186 and a 17 kDa model biologic to CCMs, with a 2.5-fold increase for the model small molecule drug
187 and an impressive 22-fold increase for the model biologic in the lesion core. In the perilesional
188 space, there was a 3.1-fold increase for the model small molecule drug and a 3.8-fold increase
189 for the model biologic. GDS reached its post-FUS maximum concentration sooner than MH,
190 suggesting there may be a more transient delivery window for biologics. Finally, our analysis
191 uncovered a nuanced aspect of FUS enhancement, wherein the relative FUS-mediated effect is
192 more pronounced for the small molecule in the perilesional space and for the model biologic in
193 the lesion core. These results collectively establish a robust foundation for employing FUS in
194 targeted therapeutic delivery regimens to effectively mitigate CCMs.

195

196 **T1 Mapping MRI Enables Spatiotemporal, Intra-CCM, Delivery Comparisons**

197 Given the notable heterogeneity in baseline CCM permeability^{23,31,32}, methods allowing for
198 comparative measurements in the same CCMs over time are important for generating statistical
199 power and robust conclusions. We have previously shown that T1 mapping MRI enables
200 longitudinal and quantitative assessments of contrast agent deposition in individual CCMs³¹.
201 Thus, it was reasonable to leverage this MRI approach to measure model drug delivery to CCMs
202 with FUS. Yet another advantage of T1 mapping MRI is that it has sufficient spatial resolution to
203 discern differences in discrete CCM tissue compartments. Indeed, the lesion core harbors
204 mutated, cavernous vessels filled with clotted blood components, while the perilesional space
205 surrounds the core with dense populations of astrocytes, microglia, and macrophages^{30,31,33}.
206 These regional differences in the CCM microenvironment pose varying biotransport challenges
207 that can influence the efficacy of different delivery approaches and molecule sizes. T1 mapping

208 MRI enabled us to measure the exact concentration of MH and GDS in both the intralesional and
209 perilesional spaces of the CCM microenvironment, both with and without FUS.

210

211 **Differential Spatial Delivery Augmentation for Varying-Sized Molecules with FUS**

212 One unexpected and potentially important finding that arose from our spatiotemporally
213 detailed T1 mapping results was that FUS differentially augments the delivery of small and large
214 molecules to the two pre-defined CCM tissue compartments (i.e. lesion core vs. perilesional
215 space). Specifically, FUS provided a greater relative benefit for (i) model small molecule drug
216 delivery to the perilesional space and (ii) model biologic delivery to the lesion core. This effect is
217 evident when using either AUC (**Figure 5C**) or maximum concentration (**Figure 5F**) as the metric
218 of interest. To explore the potential causes behind the observed differential spatial delivery of
219 varying-sized molecules with FUS, we first emphasize that FUS is known to offer varying degrees
220 of benefit based on the transport properties of a given molecule³⁴. Noting that the increase in
221 permeability induced by FUS had a greater effect for MH in the perilesional space, we postulate
222 that the benefit of FUS for small molecule drug delivery in regions with an already disrupted BBB
223 (e.g. the lesion core) is less than in areas that have a more intact BBB (e.g. the perilesional
224 space). Conversely, for a larger molecule like GDS (17 kDa; 5 nm), crossing the disrupted BBB
225 in the lesion core may be less feasible due to biophysical constraints limiting the transport of a
226 larger molecule. FUS partially alleviates these constraints, ultimately providing more relative
227 benefit for larger molecules than for small molecules in the already leaky CCM core. In perilesional
228 regions harboring a more intact BBB, even small molecules cannot effectively cross into the brain
229 parenchyma. Thus, FUS yields a larger benefit for small molecule delivery in this region.
230 Moreover, for larger molecules, the advantage of FUS may be less pronounced in regions with a
231 previously intact BBB than in regions with a previously disrupted BBB, once again due to
232 increased biophysical transport constraints.

233 We also note that differences in BBB closure time, as well as clearance mechanisms within
234 the CCM microenvironment, for small molecules and biologics could impact the integrated
235 exposure of tissue to drug. Here, GDS reached its maximum concentration at ~10 minutes after
236 FUS (**Figure 5G and 5H**), while MH concentration was often still increasing at 20 min after FUS.
237 This is consistent with the hypothesis that the BBB in and around CCMs closes fairly rapidly to
238 larger therapeutics, which could factor into how injections are timed with respect to FUS
239 application. Regarding clearance, while there is evidence that FUS alters clearance mechanisms
240 through modification of the glymphatic system³⁵⁻³⁷ and BBB efflux pumps^{38,39}, its specific influence
241 on the clearance of varying-sized molecules remains unclear. Our data indicate that GDS
242 concentrations rapidly decrease without FUS when compared to MH without FUS or GDS with
243 FUS, highlighting that differential clearance is also likely a significant determinant of tissue-drug
244 exposure.

245

246 **Potential for Clinical Impact on Therapeutic Delivery in CCM**

247 Here, we demonstrate that FUS enhances therapeutic delivery for molecules of different
248 sizes in both the CCM core and surrounding perilesional space. In the clinic, this will translate to
249 increased local delivery for any given standard systemic dose, thereby increasing therapeutic
250 index. Furthermore, enhanced on-target drug delivery reduces the risk of side effects associated
251 with off-target delivery. The greater benefit observed for larger molecules with FUS opens the
252 door for biologic delivery exploration for CCM. Indeed, our study highlights that, in the absence of
253 FUS, the delivery of a 5 nm model biologic drug (GDS) is minimal. There also may be rapid
254 clearance from both the intralesional and perilesional spaces. However, with FUS, biologic-sized
255 molecules are more effectively retained in both CCM compartments. These findings pave the way
256 for future investigation into even larger agents with promising therapeutic potential for CCM, such
257 as antibodies and gene therapy vectors.

258 Notably, FUS also offers a level of precision that can be customized for either familial or
259 sporadic cases of CCM. In these studies, we induce BBB opening in a substantial volume—almost
260 one-quarter—of the CCM brain. In contrast, our previous study showcased targeting FUS to a
261 smaller volume of the CCM brain³⁰. For patients, FUS can be tailored to target a large volume,
262 which may be necessary for familial patients with multiple CCMs, or it can be focused on a singular
263 CCM, as would be needed for sporadic cases. Moreover, the region of delivery can also be
264 adapted for the mechanism of action of the delivered therapeutic. Drugs with a preventative effect
265 could be more widely delivered than those with specific corrective functions in the CCM
266 microenvironment. Ultimately, given its ability to stabilize lesions and seamlessly integrate with
267 therapeutic delivery, FUS may offer a powerful platform for the treatment of CCM via image-
268 guided drug and gene delivery.

269

270 **Materials and Methods**

271 **Animals**

272 All animal experiments adhered to ethical guidelines and were approved by the University
273 of Virginia Animal Care and Use Committee. The animals were housed in accordance with
274 standard laboratory conditions, maintaining a temperature of 22°C and a 12-hour light/12-hour
275 dark cycle. The generation of the CCM murine model was established as previously detailed³¹.
276 Briefly, *Krit1*^{fl>null} or *Krit1*^{fl/fl} male or females were generated under the endothelial promoter
277 *Pdgfb*^{CreER}. On postnatal day 5, induction of *Krit1* was initiated with a subcutaneous injection of
278 tamoxifen (50 µL at 2mg/mL in corn oil). Genotypes were subsequently verified using Transnetyx
279 (Cordova, TN). Mice were studied between 2 and 3 months old.

280

281 **MRI Acquisition**

282 Data for T1 maps were acquired with a set of multi-slice 2D spin echo (SE) images at
283 varied repetition times (TR) to generate a saturation recovery curve. 2 sets of 7 images, for a total

284 of 14 scans, were acquired prior to FUS and contrast agent administration to obtain saturation
285 recovery curves with a satisfactory dynamic range. The two sets of image series were offset by
286 the slice thickness in the slice select plane to ensure 3D coverage of the brain. The parameters
287 for these scans were: TR=790, 1040, 1350, 1750, 2300, 3215, and 7000 ms, TE=6.71 ms, slice
288 thickness=0.6 mm, slice gap=0.6 mm, FOV=35 x 35 mm, matrix size=180 x 180, rare factor=10,
289 and R= 0.194 x 0.194 x 0.6 mm³. After FUS and contrast agent administration, 14 SE images
290 were acquired with identical parameters except at a fixed TR=1040 ms. The acquisitions
291 alternated between slice package orientations resulting in 7 images at each slice profile geometry.
292 Time per acquisition was 1 minute and 28 seconds.

293

294 **Data Processing**

295 A saturation recovery approach was utilized to calculate M₀ and all T1 values (pre and
296 post contrast) on a voxel-by-voxel basis by fitting the data to the signal equation:

297

298
$$|S| = M_0 \left(1 - e^{\frac{-TR}{T_1}}\right) e^{\frac{-TE}{T_2}} \quad \text{Eqn [1]}$$

299

300 In equation 1, |S| is the magnitude of the signal within the voxel, M₀ is the product of the thermal
301 equilibrium magnetization and coil sensitivity, TR is the repetition time (ms), T1 is the spin-lattice
302 relaxation (ms), TE is the echo time (ms), and T2 is the spin-spin relaxation (ms). The echo time
303 exponential is assumed to be 1 due to TE<<T2, resulting in the final form seen in equation 2.

304

305
$$|S| = M_0 \left(1 - e^{\frac{-TR}{T_1}}\right) \quad \text{Eqn [2]}$$

306

307 A custom MATLAB script fit the signal magnitude data on a voxel-by-voxel basis to equation 2.
308 Each fitting procedure simultaneously fit the data to 8 functions: function 1 incorporated the 7 pre-

309 contrast variable TR scans, while functions 2-8 incorporated the singular scan at a fixed TR but
310 different time points. The fits were constrained to having the same M_0 value but allowed different
311 T1 values. Pre-contrast and post-contrast T1 values were then used to calculate the contrast
312 agent concentration on a voxel-by-voxel basis at each time point using equation 3.

313

314
$$\frac{1}{T_{1_Post}} = \frac{1}{T_{1_Pre}} + r_1 C_1 \text{ Eqn [3]}$$

315

316 In equation 3, T_{1_Post} is the post-contrast value at a particular time point (ms), T_{1_Pre} is the pre-
317 contrast T1 value (ms), r_1 is the contrast agent relaxivity (L/mmol/ms), and C_1 is the contrast
318 agent concentration (mM). At the conclusion of this process, concentration values for slice
319 package 1 existed for time points (minutes): 1.47, 4.40, 7.33, 10.27, 13.2, 16.13, and 19.07, while
320 concentration values for slice package 2 existed for time points (minutes): 2.93, 5.87, 8.80, 11.73,
321 14.67, 17.60, and 20.53. To obtain 3D coverage at each time point, concentration data was
322 calculated at the missing time points by linearly interpolating between the acquired points. This
323 required an assumption of 0 concentration at minute 0 for slice package 2. The 20.53-minute time
324 point was not used because it required data be extrapolated past minute 19.07 for slice package
325 1.

326 A second custom MATLAB script was used to calculate average concentrations with
327 manually drawn regions of interest (ROIs) on the concentration maps. To ensure the iron rich
328 intralesional data was not skewed by susceptibility artifacts, a data exclusion method was
329 developed. Briefly, a ROI of healthy brain tissue on the contralateral hemisphere was used to
330 calculate an average residuals value for the fit. If any residuals value for the voxels within the
331 lesion core were 3 times greater than this average, they were excluded from the analysis. The
332 value of 3 was empirically determined. To maintain consistency within data processing, this was
333 also applied to all perilesional data.

334

335 **FUS Blood-Brain Barrier Opening**

336 The FUS procedure was conducted using the RK-300 small bore FUS device (FUS
337 Instruments, Toronto, CA). Mice were prepared by shaving and depilating their heads before
338 being placed in a supine position and coupled to the transducer using degassed ultrasound gel.
339 Blood-brain barrier opening was achieved using a 1.1 MHz single-element transducer with a 10
340 ms burst length over a 2000 ms period. A total of 60 sonifications were administered during a 2-
341 minute sonication duration. The FUS Instruments software, operating in the "Blood-brain Barrier"
342 mode, facilitated PCD-modulated PNP. The feedback control system parameters were set as
343 follows: a starting pressure of 0.2 MPa, pressure increment of 0.05 MPa, maximum pressure of
344 0.4 MPa, 20 sonication baselines without microbubbles, area under the curve (AUC) bandwidth
345 of 500 Hz, AUC threshold of 10 standard deviations, pressure drop of 0.95, and frequency
346 selection of the subharmonic, first ultraharmonic, and second ultraharmonic. Optison™ (GE
347 HealthCare) microbubbles were intravenously injected as a bolus dose of 10⁵ microbubbles per
348 gram of body weight. Prior to sonication, the distribution of microbubble diameter and
349 concentration was assessed using a Coulter counter (Multisizer 3; Beckman Coulter, Fullerton,
350 California). T1 mapping MRI sequences were used to guided sonication targeting. Six non-
351 overlapping sonication targets were placed over one frontal hemisphere with placement optimized
352 to target CCMs.

353

354 **Contrast Agent Injections**

355 MultiHance® (gadobenate dimeglumine; Bracco) and GadoSpin D™ (dendritic Gd-
356 chelate; Viscover) were injected as a bolus intravenously at a dose of 0.01 and 0.0002 mmol,
357 respectively, diluted in saline. Injection of contrast agent was given immediately prior to MRI
358 acquisition for FUS⁻ control studies and immediately following the initiation of FUS for FUS⁺
359 studies.

360 **Passive Cavitation Detection**

361 Acoustic emissions during FUS were detected with a fiber-optic hydrophone (Precision
362 Acoustics, Dorset, UK) of 10 μm diameter and 15 mm aperture center-mounted within the
363 ultrasound transducer. Emissions data was processed with a custom MATLAB script. The area
364 under the curve of the acoustic emissions at the subharmonic (0.5f) and ultra-harmonics (1.5f,
365 2.5f) after applying a 300 Hz bandwidth filter. Broadband emissions were evaluated by summing
366 acoustic emissions following the removal of all emissions at the fundamental frequency,
367 harmonics (2f, 3f, 4f), subharmonic (0.5f), and ultra-harmonics (1.5f, 2.5f, 3.5f).

368

369 **Statistical Analysis**

370 All results reported with error bars are means with standard deviation. The “n” values per
371 group are made evident either by individual data points shown or statement of “n” value in figure
372 or figure legend. Statistical significance was assessed at $p < 0.05$ for all experiments and were
373 calculated using GraphPad Prism 9 (San Diego, USA). Statistical tests are provided in the figure
374 legends.

375

376 **Author Contributions**

377 DGF, MH, and RJP conceptualized the study. DGF and MH conducted the FUS experiments with
378 the aid of CMG in animal preparation. MRI sequences and analysis were optimized by MH and
379 GWM. MRI data was acquired and processed by MH and analyzed by DGF and MH. KAS
380 generated experimental animals. DGF and MH designed the figures and wrote the manuscript.
381 GWM, PT, and RJP edited the manuscript. All authors approved the manuscript.

382

383 **Acknowledgements**

384 This work was supported by funding from NIH R01CA279134, R01EB030409, R01EB030744,
385 and R21NS118278 to RJP; NIH R21NS116431 and grants from Focused Ultrasound Foundation,

386 Be Brave for Life Foundation, and Alliance to Cure Cavernous Malformation to PT; NIH
387 R01CA226899 to GWM; and American Heart Association 830909 to DGF. MRI was performed in
388 the University of Virginia Molecular Imaging Core Laboratory, with support for the 9.4T Bruker
389 scanner from NIH S10OD025024. We thank Dr. Kevin Whitehead for kindly providing the mouse
390 strains used in this study. We are also grateful to Jeremy Gatesman of the University of Virginia
391 Center for Comparative Medicine for assistance with catheterization procedures.

392

393 **References**

- 394 1. Snellings, D. A. *et al.* Cerebral Cavernous Malformation: From Mechanism to Therapy.
395 *Circ. Res.* **129**, 195–215 (2021).
- 396 2. Denier, C. *et al.* Clinical features of cerebral cavernous malformations patients with
397 KRIT1 mutations. *Ann. Neurol.* **55**, 213–220 (2004).
- 398 3. Gault, J., Sain, S., Hu, L. J. & Awad, I. A. Spectrum of genotype and clinical
399 manifestations in cerebral cavernous malformations. *Neurosurgery* **59**, 1278–1284
400 (2006).
- 401 4. Gianfrancesco, F. *et al.* Highly variable penetrance in subjects affected with cavernous
402 cerebral angiomas (CCM) carrying novel CCM1 and CCM2 mutations. *Am. J. Med.*
403 *Genet. B. Neuropsychiatr. Genet.* **144B**, 691–695 (2007).
- 404 5. Awad, I. A. & Polster, S. P. Cavernous angiomas: deconstructing a neurosurgical
405 disease: JNSPG 75th Anniversary Invited Review Article. *J. Neurosurg.* **131**, 1–13
406 (2019).
- 407 6. Amin-Hanjani, S., Ogilvy, C. S., Ojemann, R. G. & Crowell, R. M. Risks of surgical
408 management for cavernous malformations of the nervous system. *Neurosurgery* **42**,
409 1220–1228 (1998).
- 410 7. Hong, T. *et al.* Somatic MAP3K3 and PIK3CA mutations in sporadic cerebral and spinal
411 cord cavernous malformations. *Brain* **144**, 2648–2658 (2021).
- 412 8. Zhou, Z. *et al.* Cerebral cavernous malformations arise from endothelial gain of MEKK3-
413 KLF2/4 signalling. *Nature* **532**, 122–126 (2016).
- 414 9. Polster, S. P. *et al.* Atorvastatin Treatment of Cavernous Angiomas with Symptomatic
415 Hemorrhage Exploratory Proof of Concept (AT CASH EPOC) Trial. *Clin. Neurosurg.* **85**,
416 843–853 (2019).
- 417 10. Hong, C. C. *et al.* Cerebral cavernous malformations are driven by ADAMTS5 proteolysis
418 of versican. *J. Exp. Med.* **217**, (2020).

419 11. Tang, A. T. *et al.* Endothelial TLR4 and the microbiome drive cerebral cavernous
420 malformations. *Nature* **545**, 305–310 (2017).

421 12. Li, W. *et al.* Propranolol inhibits cavernous vascular malformations by β 1 adrenergic
422 receptor antagonism in animal models. *J. Clin. Invest.* **131**, (2021).

423 13. Shi, C. *et al.* B-Cell Depletion Reduces the Maturation of Cerebral Cavernous
424 Malformations in Murine Models. *J. Neuroimmune Pharmacol.* **11**, 369–377 (2016).

425 14. Gibson, C. C. *et al.* Strategy for identifying repurposed drugs for the treatment of cerebral
426 cavernous malformation. *Circulation* **131**, 289–299 (2015).

427 15. Shenkar, R. *et al.* Rho kinase inhibition blunts lesion development and hemorrhage in
428 murine models of aggressive Pcd10/Ccm3 disease. *Stroke* **50**, 738–744 (2019).

429 16. McKerracher, L. *et al.* A Brain-Targeted Orally Available ROCK2 Inhibitor Benefits Mild
430 and Aggressive Cavernous Angioma Disease. *Transl. Stroke Res.* **11**, 365–376 (2020).

431 17. Shenkar, R. *et al.* RhoA kinase inhibition with fasudil versus simvastatin in murine models
432 of cerebral cavernous malformations. *Stroke* **48**, 187–194 (2017).

433 18. Lopez-Ramirez, M. A. *et al.* Cerebral cavernous malformations form an anticoagulant
434 vascular domain in humans and mice. *Blood* **133**, 193–204 (2019).

435 19. Detter, M. R. *et al.* Novel Murine Models of Cerebral Cavernous Malformations.
436 *Angiogenesis* **23**, 651–666 (2020).

437 20. Cardoso, C. *et al.* Novel Chronic Mouse Model of Cerebral Cavernous Malformations.
438 *Stroke* **51**, 1272–1278 (2020).

439 21. Mikati, A. G. *et al.* Dynamic Permeability and Quantitative Susceptibility. *Stroke* **45**, 598–
440 601 (2014).

441 22. Girard, R. *et al.* Vascular permeability and iron deposition biomarkers in longitudinal
442 follow-up of cerebral cavernous malformations. *J. Neurosurg.* **127**, 102–110 (2016).

443 23. Mikati, A. G. *et al.* Vascular permeability in cerebral cavernous malformations. *J. Cereb.
444 Blood Flow Metab.* **35**, 1632–1639 (2015).

445 24. Yadla, S. *et al.* Cerebral cavernous malformations as a disease of vascular permeability:
446 from bench to bedside with caution. *Neurosurg. Focus* **29**, 1–7 (2010).

447 25. Gorick, C. M. *et al.* Applications of focused ultrasound-mediated blood-brain barrier
448 opening. *Adv. Drug Deliv. Rev.* **191**, 114583 (2022).

449 26. Fisher, D. G. & Price, R. J. Recent advances in the use of focused ultrasound for
450 magnetic resonance image-guided therapeutic nanoparticle delivery to the central
451 nervous system. *Front. Pharmacol.* **10**, 1348 (2019).

452 27. Timbie, K. F., Mead, B. P. & Price, R. J. Drug and gene delivery across the blood-brain
453 barrier with focused ultrasound. *J. Control. Release* **219**, 61–75 (2015).

454 28. Shang, X., Wang, P., Liu, Y., Zhang, Z. & Xue, Y. Mechanism of low-frequency
455 ultrasound in opening blood-tumor barrier by tight junction. *J. Mol. Neurosci.* **43**, 364–369
456 (2011).

457 29. Sheikov, N. *et al.* Brain arterioles show more active vesicular transport of blood-borne
458 tracer molecules than capillaries and venules after focused ultrasound-evoked opening of
459 the blood-brain barrier. *Ultrasound Med. Biol.* **32**, 1399–1409 (2006).

460 30. Fisher, D. G. *et al.* Focused Ultrasound Blood-Brain Barrier Opening Arrests the Growth
461 and Formation of Cerebral Cavernous Malformations. *bioRxiv* 2024.01.31.577810 (2024)
462 doi:10.1101/2024.08.27.609060.

463 31. Fisher, D. G. *et al.* Magnetic Resonance Imaging of Mouse Cerebral Cavernomas Reveal
464 Differential Lesion Progression and Variable Permeability to Gadolinium. *Arterioscler.*
465 *Thromb. Vasc. Biol.* **43**, 958–970 (2023).

466 32. Hart, B. L., Taheri, S., Rosenberg, G. A. & Morrison, L. A. Dynamic Contrast-Enhanced
467 MRI Evaluation of Cerebral Cavernous Malformations. *Transl. Stroke Res.* **4**, 500–506
468 (2013).

469 33. Plummer, N. W. *et al.* Loss of p53 Sensitizes Mice with a Mutation in Ccm1 (KRIT1) to
470 Development of Cerebral Vascular Malformations. *Am. J. Pathol.* **165**, 1509–1518 (2004).

471 34. Marty, B. *et al.* Dynamic study of blood-brain barrier closure after its disruption using
472 ultrasound: A quantitative analysis. *J. Cereb. Blood Flow Metab.* **32**, 1948–1958 (2012).

473 35. Lee, Y. *et al.* Improvement of glymphatic–lymphatic drainage of beta-amyloid by focused
474 ultrasound in Alzheimer’s disease model. *Sci. Rep.* **10**, 16144 (2020).

475 36. Meng, Y. *et al.* Glymphatics Visualization after Focused Ultrasound-Induced Blood–Brain
476 Barrier Opening in Humans. *Ann. Neurol.* **86**, 975–980 (2019).

477 37. Han, M., Seo, H., Choi, H., Lee, E. H. & Park, J. Localized Modification of Water Molecule
478 Transport After Focused Ultrasound-Induced Blood–Brain Barrier Disruption in Rat Brain.
479 *Front. Neurosci.* **15**, (2021).

480 38. Aryal, M. *et al.* Effects on P-Glycoprotein Expression after Blood-Brain Barrier Disruption
481 Using Focused Ultrasound and Microbubbles. *PLoS One* **12**, e0166061 (2017).

482 39. Cho, H. S. *et al.* Localized Down-regulation of P-glycoprotein by Focused Ultrasound and
483 Microbubbles induced Blood-Brain Barrier Disruption in Rat Brain. *Sci. Rep.* **6**, 1–10
484 (2016).

485