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Abstract 

Data from cell viability assays, which measure cumulative division and death events in a 

population and reflect substantial cellular heterogeneity, are widely available. However, 

interpreting such data with mechanistic computational models is hindered because direct 

model/data comparison is often muddled. We developed an algorithm that tracks 

simulated division and death events in mechanistically-detailed single-cell lineages to 

enable such a model/data comparison and suggest causes of cell-cell drug response 

variability. Using our previously developed model of mammalian single-cell proliferation 

and death signaling, we simulated drug dose response experiments for four targeted anti-

cancer drugs (alpelisib, neratinib, trametinib and palbociclib) and compared them to 

experimental data. Simulations are consistent with data for strong growth inhibition by 

trametinib (MEK inhibitor) and overall lack of efficacy for alpelisib (PI-3K inhibitor), but are 

inconsistent with data for palbociclib (CDK4/6 inhibitor) and neratinib (EGFR inhibitor). 

Model/data inconsistencies suggest that (i) the importance of CDK4/6 for driving the cell 

cycle may be overestimated, and (ii) the cellular balance between basal (tonic) and 

ligand-induced signaling is a critical determinant of receptor inhibitor response. 

Simulations show subpopulations of rapidly and slowly dividing cells in both control and 

drug-treated conditions. Variations in mother cells prior to drug treatment impinging on 

ERK pathway activity are associated with the rapidly dividing phenotype and trametinib 

resistance. This work lays a foundation for the application of mechanistic modeling to 

large-scale cell viability datasets and better understanding determinants of cellular 

heterogeneity in drug response.  
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Author Summary 

There is a large amount of data in the public domain for how a variety of cancer cell types 

respond to a multitude of anti-cancer drugs. However, interpreting such data 

mechanistically is hindered because of a lack of precise computational tools for 

model/data comparison. We developed an algorithm that tracks simulated division and 

death events in mechanistically detailed single-cell lineages to enable such a model/data 

comparison and suggest causes of drug response variability. We applied this tool to 

understand four targeted anti-cancer drugs better. Simulations are consistent with data 

for strong growth inhibition by trametinib and overall lack of efficacy for alpelisib, but are 

inconsistent with data for palbociclib and neratinib. Model/data inconsistencies suggest 

where biological understanding may be incomplete. Simulations show subpopulations of 

rapidly and slowly dividing cells in both control and drug-treated conditions, and analysis 

thereof suggest mechanisms potentially involved with acute drug resistance. This work 

lays a foundation for using large-scale datasets to better understand drug response.   
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Introduction 

One of the grand challenges of systems biology is to build a comprehensive and 

quantitative understanding of the structure and functionality of living cells. Whole cell 

models that describe the function of every gene and its products is an attractive 

manifestation of such a goal. Whole-cell models for some microorganisms exist1–4, but 

have not been reported for human cells. Nevertheless, a wide range of individual 

pathway5–20 and integrative multiple pathway21–28 human cell models have been 

published, which are a stepping stone29,30. These models can contribute to better 

understanding multiscale phenotypes31–35, diagnosis of disease states and their 

progression36,37, and development of efficacious therapeutic procedures38–40. 

Data availability is a primary challenge for human whole cell modeling29,41,42. 

Large-scale databases43–45 containing cell viability assay data exploring sensitivity of 

multiple cell lines to multiple drugs are an attractive resource in this regard. Assessing 

how well computational models, based on current knowledge, explain this data can reveal 

existing knowledge gaps and inform next stages of research.  

An obvious pre-requisite to leveraging such data sets for modeling purposes is the 

existence of robust methods for comparing simulations to experimental readouts 

appropriately. Most viability assays measure cell population size or a proxy. Typical 

mechanistic models do not explicitly describe cell division and death events, whose 

balance dictates cell population size, but usually prescribe empirical relations22,46. 

Course-grained agent based modeling47–49 can account for division and death events and 

were described in, for example, process control and optimization of production of 

therapeutic proteins using mammalian cell culture50, analyzing the impact of cell 
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population heterogeneity in colony and tissue context51, and elucidating the role of 

heterogeneity in IFNβ signaling52. However, there remains a need for algorithms that can 

simultaneously track large-scale mechanistic detail of drug response with cell 

division/death events. Such algorithms would help interpret the large body of cell viability 

response data for building better human whole-cell models.  

In this work, we present an algorithm that combines detailed mechanistic 

descriptions of drug action with single cell lineage-resolved division and death events to 

construct simulation outputs that are directly comparable to cell viability assay data. As a 

test case, we use a previously-developed, large-scale model of single mammalian breast 

epithelial cell (MCF10A) proliferation and death, SPARCED53, and add to it mechanistic 

pharmacodynamic models based on known binding interactions between drugs and 

modeled targets. First, we describe the algorithm and the types of novel analytics that 

can be derived, such as cell population size dynamics, cross-generational biomarker 

tracking for cell lineages, and cell population dendrograms. Then, we simulate dose 

responses to multiple drugs for which experimental data exist, namely, alpelisib (PI-3K 

inhibitor), trametinib (MEK inhibitor), palbociclib (CDK4/6 inhibitor) and neratinib (EGFR 

inhibitor). Simulations agree with experiments for strong growth inhibition by trametinib 

and overall lack of efficacy of alpelisib; however, there is substantial model-experiment 

discrepancy for palbociclib and neratinib. Analysis of model discrepancies suggests that 

(i) the importance of CDK4/6 for driving the cell cycle is likely overestimated, and (ii) the 

cellular balance between basal (tonic) and ligand-induced ERK signaling is a critical 

determinant of EGFR inhibitor response. We also applied the model to better understand 

an interesting phenomena that simulations showed subpopulations of rapidly and slowly 
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dividing cells in both control and drug-treated conditions. We find that variations in mother 

cells prior to drug treatment impinging on ERK pathway activity are associated with the 

rapidly dividing phenotype and trametinib responsiveness. This work establishes a 

foundational framework for applying mechanistic modeling to large-scale cell viability 

datasets, which are essential for developing comprehensive human cell models. 

Additionally, it offers a unique analytical approach to generate hypotheses regarding the 

molecular drivers of cellular variability across generations.  
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Results   

Lineage-resolved single-cell simulation framework 

We first set out to construct a simulation algorithm that mirrors drug dose response 

viability assays (Fig. 1). These assays typically start with a population of asynchronously 

cycling cells that are treated with drug for ~3 days and then assayed for final cell number 

(or a metric proportional to it). The final cell number is related to the number of division 

and death events each initial single cell ultimately experienced. Thus, the simulation 

algorithm starts with a population of asynchronously cycling cells and counts the 

individual division and death events from each initial cell. Throughout this manuscript, we 

use our previously published mechanistic model (SPARCED) of single cell proliferation 

and death signaling53 representing MCF10A breast epithelial cells. In principle, however, 

any model with single-cell resolution and division/death readouts is potentially compatible 

with the approach. We provide one such simple example54 in the Methods and GitHub 

repository.  

The algorithm begins with the creation of a simulated population of 

asynchronously-cycling, single cells (Fig. 1A). The initial model state is an average, 

serum-starved cell (non-cycling). The first step is to generate a population of cells with 

heterogeneous gene expression profiles, enabled by descriptions of intrinsic noise in 

gene expression as previously described21. We refer to this process as 

“heterogenization”. After 48 simulated hours, when the distribution of most protein levels 

across the cell population stabilizes, the addition of growth media is simulated (in the case 

of MCF10A cells and this model—EGF and insulin). Subsequently, synchronized cell 

cycle progression is observed in simulations for an additional 48 hours, creating so-called 
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“Generation 0” (Gen 0). To convert these Gen 0 synchronized cells into Gen 1 

asynchronously cycling cells, we sample random times from the 48 hour growth media 

treatment window for each single cell. These selections become initial conditions for Gen 

1, which is then subjected to simulated drug treatment for 72 hours (Fig. 1B). 

Once these simulations are completed, the outputs are analyzed to determine cell division 

events (based on Cyclin B-CDK1 peaks for this model) and their time points (Fig. 1B). 

Based on the cell division time points, the remaining simulation time (difference between 

division time and 72 hours), and initial conditions for each daughter cell are determined 

for the next generation, and lineage information is recorded. Importantly, in SPARCED, 

daughter cells immediately begin experiencing drift from one another due to stochastic 

gene expression, which is constantly occurring in every simulated cell differently. 

Subsequently, simulations for the next generation are run and this cycle continues until 

no division events occur in a given generation. Detected cell death events (based on 

cleaved PARP dynamics for this model), halt a lineage.  

These simulations not only mirror typical drug dose response experiments but also 

enable lineage-resolved analyses (Fig. 1C). Since individual division and death events 

from a parental cell are tracked, it also allows dynamic tracking of observables (such as 

ERK or Akt activity) across multiple generations of any single cell lineage. Lineage 

dendrograms can be also constructed, as is typical in such analyses. Such capability may 

generate hypotheses linking drug sensitivity or resistance with cell fates and lineage, or 

variations in biochemistry that predispose cells to response or resistance.  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 17, 2025. ; https://doi.org/10.1101/2024.08.23.609433doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.23.609433
http://creativecommons.org/licenses/by/4.0/


9 
 

Comparing Simulated Drug Dose Responses to Experimental Measurements 

With the above algorithm, we could now compare model predictions to 

experimental data for cell viability drug responses. Specifically, we focused on four 

previously-studied, targeted anti-cancer drugs for which our model includes primary 

targets and significant off-targets:  trametinib (MEK inhibitor), alpelisib (PI-3K inhibitor), 

neratinib (EGFR/ErbB2/ErbB4 inhibitor), and palbociclib (CDK4/6 inhibitor)55. We 

extended SPARCED by including known drug interactions with target species56–59 and 

leveraging previously described capabilities to robustly and easily increase the model 

scope53 (see Methods).  

We then performed lineage-resolved simulations for various doses of the modeled 

drugs for which experimental data are available55, with no adjustment to the SPARCED 

model (besides addition of the drug pharmacodynamic modules—see Methods), using a 

starting population of 100 cells. This framework allows direct simulation of the dynamic 

cell population size in response to drug doses (Fig. 2A). The effect of drug action can be 

visualized by cell lineage dendrograms, showing in this example the clear effect of 

moderate trametinib doses to reduce the number of cell division events (Fig. 2B-C). The 

simulation outputs were used to calculate growth-rate inhibition60 metrics which is the 

same method applied to the experimental dataset, allowing direct comparison of 

experimental and simulation results (Fig. 2D-G).  

The simulation results for trametinib (Fig. 2F) demonstrate surprising agreement 

with experimental data considered no parameter fitting was done, and also expectedly 

indicate substantial cell-to-cell variability at low doses. The simulations also captured the 

overall lack of efficacy for alpelisib, albeit with some slight differences in dose response 
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slope (Fig. 2D). Simplified representations of PI-3K biology in the underlying model, which 

does not account for isoform-specific effects, could explain part of the difference. Alpelisib 

is a PI-3K isoform-specific inhibitor, but is modeled necessarily as a pan-PI-3K inhibitor. 

Comparison to data for other inhibitors such as pictilisib, a pan-PI-3K inhibitor, and 

taselisib, a beta-sparing inhibitor, could help constrain such efforts, although the model 

would need to be expanded to account for the increased and unmodeled off-targets of 

these drugs relative to alpelisib61.  

On the other hand, predicted palbociclib (Fig. 2G) and neratinib (Fig. 2E) 

responses were substantially different from experiments. Subsequent analyses explore 

the nature of these differences, as well as potential reasons for the cell-to-cell variability 

in the trametinib response. We also note that independent cell death data were 

available61,62, which largely showed these drugs do not substantially kill cells, roughly 

consistent with GR values greater than 0, and with simulations (Fig. S1). A partial 

exception is neratinib, which shows some cell death at high doses, which may be due to 

general toxicity because it is an irreversible inhibitor.  

Palbociclib Dose Response Discrepancies Suggests CDK4/6 is Partially 

Redundant for Cell Cycle Progression 

What could explain the experiment/simulation discrepancy for palbociclib, a potent 

inhibitor of CDK4/6, canonically understood to be a central mediator of cell cycle 

progression from G0 and G1 to S-phase63–65 (Fig. 2G)? Simulated palbociclib dose 

response starts to deviate from the experimental results at doses as low as 0.01 μM. 

Above 0.1 μM, the simulated dose response shows complete cytostasis. On the other 
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hand, experimental results show minimal growth inhibition at 0.1 μM, and even high doses 

indicate only partial growth inhibition.  

One consideration was doubling time. We reasoned that if the experimental 

doubling time was slower (greater) than the simulated doubling time, then in simulations 

many more cell divisions would be inhibited by the drug. That may explain why the 

simulated effects of palbociclib were much greater than that observed in experiments. 

The used GR metric in principle should help to account for such doubling time-related 

phenomena60, but it also relies on assumptions such as exponential growth and constant 

drug effect on growth, which may not be satisfied. The model predicted a slower doubling 

time (~48 hours) than was reported in experiments for these MCF10A cells (~18-25 hours) 

(Fig. 3A and 55), although a wide range is reported for this cell line (~4866 or even ~96 

hrs67). This is opposite of the difference we expected may explain the dose response 

curve discrepancy. Therefore, we conclude doubling time differences are unlikely to 

explain the observed differences.  

Another consideration was restriction point behavior with respect to CDK4/6 

activity, where a cell continues to divide even after complete inhibition of CDK4/6 at some 

point in the cell cycle68–70. We reasoned that if the model does not capture such behavior, 

simulated palbociclib treatment could immediately stop cell divisions instead of letting 

already committed cells continue to divide once, leading to more predicted potency than 

observed. To explore this in simulations, we analyzed the probability of cell division in 

Gen 1 versus Gen 2 cells, as a function of dynamic progress in the cell cycle at the time 

of simulated drug treatment (Fig. 3B). Prior studies place the restriction point early in the 

cell cycle68. Simulations with saturating palbociclib dose (0.1 M) reflect such behavior, 
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where most cells divide once if the cell cycle is at least ~10% completed, but subsequent 

cell divisions are nearly non-existent. This effect is also clear from the simulated lineage 

dendrogram which shows most cells divide once but not subsequently with this dose of 

palbociclib (Fig. 3C). Thus, we conclude that modeled restriction point behavior is also 

unlikely to explain discrepancies.  

Finally, we considered that the canonically understood role of CDK4/6 as modeled 

in SPARCED is simply inadequate. That is, the assertion that CDK4/6 activity is a 

necessary and sufficient step to drive the early cell cycle may be inaccurate68,71,72. A 

clinical line of evidence is the fact that CDK4/6 inhibitors have limited efficacy outside of 

hormone-positive breast cancers63. It has also been reported that proliferation can occur 

in CDK4/6 knockout cells73. More recent data have suggested that CDK4/6 activity has 

more of a probabilistic effect on cell cycle progression74, and the restriction point may be 

more reversible than previously thought in response to CDK4/6 inhibition75. CDK activities 

may also be overlapping; for example CDK2 and CDK4/6 may be compensatory76, and a 

sensor integrating multiple CDK activities77 was shown to be highly predictive of restriction 

point behavior78. Therefore, we conclude that most likely, fundamental model 

reformulation is needed to capture the effects of palbociclib, and that the canonical view 

of CDK4/6 as necessary and sufficient for cell cycle progression may be inadequate. 

The Balance of Tonic Versus Ligand-Induced Growth Factor Signaling is Critical 

for Capturing Drug Effects 

Neratinib is an irreversible inhibitor of the EGFR (with some off-target activity for 

the closely related ErbB2/HER2 and ErbB4/HER4), a receptor tyrosine kinase that, 

upon ligand binding, activates the pro-proliferative and -survival ERK and AKT 
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pathways79–81. Hence, drug action is expected to block ERK and AKT signaling when a 

ligand, such as EGF, binds to EGFR. The experimental dose response (Fig. 2E) shows 

strong growth inhibition at doses above 0.1 μM and complete cytostasis at ~3 μM. 

However, simulation-predicted growth inhibition within this range is significantly weaker. 

To explain this discrepancy, we considered that the current modeled balance of 

ligand-induced versus basal (also called tonic) ERK signaling could be incorrect. 

Specifically, that basal ERK signaling was too strong and causes non-negligible 

proliferation in the absence of EGF. If cell cycling is initiated by basal signaling too 

strongly, coupled with the fact that neratinib cannot inhibit basal signaling, this could 

explain some of the model-experiment discrepancy.  

MCF10A cells are dependent upon EGF for cell cycle progression82,83. Thus, in 

simulations, cells dividing without EGF would support the above explanation. In 

simulations where the growth media contained only insulin, some cell division events 

were observed (Fig. 4A). Since the proliferative signaling activity that caused these 

divisions did not originate as a result of simulated EGF-EGFR activity, simulated neratinib 

treatment cannot inhibit these. This is inconsistent with the experimentally observed cell 

behavior and hence may be a major cause of mismatch between simulation and 

experiment. 

How could the model be changed to account for these mismatches? First, we 

ensured that basal ERK signaling in the presence of insulin minimally induces cell cycle 

progression. Basal Ras-GDP to Ras-GTP exchange is the main reaction controlling basal 

ERK activity in the model. We reduced the value of the associated rate constant until the 

probability of cell division in the absence of EGF and presence of insulin was near zero 
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(Fig. 4B—last point on left, 2x10-4 s-1), and then simulated the dose responses again (Fig. 

4C-F). The new simulated neratinib dose responses show closer alignment with 

experiments. However, for all other drugs, experiment-model agreement became 

significantly worse, most likely now because the absolute levels of EGF-induced ERK 

signaling are altered. This result reinforces the close interacting nature of signaling 

mechanisms in the model for influencing broad features of drug response, and cautions 

against developing models without considering comparison to a compendium of data. 

Further model refinement in this regard, therefore, will be the scope of future work.  

Explaining Single-Cell Heterogeneity in Division Rate and Trametinib Response 

A commonly observed phenotypic variation among cells within a population is the 

division rate84,85. Under both control (no drug) and trametinib (~half-maximal response 

dose = 0.03 nM) treatment conditions, simulations show large variability in the number of 

divisions arising from a particular Gen 1 mother cell (Figs. 5A-B). Since rapidly dividing 

simulated cells (indicated by red) are present prior to drug treatment and persist after drug 

treatment, in simulations they are largely responsible for the partial response to 

trametinib. Could properties in the initial state of Gen 1 mother cells at the time of 

trametinib treatment be a predictor of resistance, in this case marked by persistent rapid 

division in the presence of drug? Do the same mechanisms that drive rapid division in 

control conditions apply to this drug resistance?  

To answer these questions, we first focused on simulated control cells. The initial 

conditions of Gen 1 cells under control conditions were extracted into a cell-by-species 

matrix (4,000 simulated cells by 934 initial conditions, 4 control conditions, 100 cells for 

each, 10 replicates) (Fig. 5C). To identify species that may be associated with rapid 
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division, we performed principal components analysis (PCA) of this matrix, and colored 

cells by their division phenotype (Fig. 5D). The second principal component (PC2) 

stratified Gen 1 mother cells based on the number of divisions. To identify the most 

important model species contributing to PC2, we analyzed the PCA loadings (Fig. 5E). 

Species with large loadings were associated with ERK signaling pathway components or 

downstream early cell cycle components. This suggests a simple hypothesis—that any 

fluctuation giving rise to higher ERK signaling capacity is associated with the rapid 

division phenotype under control conditions. Interestingly, PC1 did not correlate much 

with the rapidly dividing phenotype and was associated mainly with receptor-level species 

(Fig. S2A). A similar analysis approach, PLSR86, suggested the same as the PCA, 

although the first (not second) principal component was related to the rapidly dividing 

phenotype, and was also linked mainly to the ERK pathway signaling capacity (Fig. S2B-

C). 

Does this finding hold true under trametinib treatment conditions? That is, are cells 

with higher ERK signaling capacity more likely to retain rapid division phenotypes in the 

presence of sub-saturating doses of trametinib? Trametinib is a MEK inhibitor, and since 

MEK is a key component of the ERK signaling pathway, there is a clear connection. 

Trametinib treatment shifts the number of divisions distribution to the left, reducing the 

number of rapidly dividing cells (Fig. 5B). To answer the question, we generated a new 

initial Gen 1 mother cell state matrix from trametinib-treated simulated cells, and then 

applied the projection learned from PCA of the control data onto this matrix. The results 

of this projection indicate again that rapidly-dividing cells cluster towards higher values 

on PC2 (Fig. 5F). We conclude that in simulations, the rapidly dividing phenotype is driven 
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by a multitude of factors impinging on higher ERK signaling pathway capacity, and these 

cells are likely to remain rapidly dividing in the presence of trametinib, contributing to 

acute resistance.  
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Discussion 

Data availability is a major bottleneck for systems biology model development. 

While there is a wide range of drug dose response viability assay data available, they are 

difficult to use for large-scale model development because simulation outputs often do 

not recapitulate the experiment outputs—cell number from cumulative division and death 

events in single cells. To address this gap, we developed a lineage-resolved simulation 

framework that tracks individual cell division and death events along with mechanistic 

detail that enables inference for why single cells have different outcomes. We 

demonstrate application of this framework using our previously developed model of 

proliferation and death signaling in single mammalian cells53, but in principle any model 

that simulates division and/or death events should be compatible, such as the one we 

present in addition54. We compare model simulations to experimental data for viability 

response to four different targeted anti-cancer drugs55. Discrepancies between model and 

data for palbociclib and neratinib, elaborated on further below, suggest where current 

understanding as captured by model assumptions is limited. Deeper analysis of trametinib 

cases suggest mechanisms of resistance and what drives rapidly cycling cells in general. 

Importantly, although we focus on four drugs here, previous work61,62 has reported similar 

data for 107 additional drugs studied in MCF10A, of which we believe approximately 65 

that share targets with SPARCED model components are good candidates for similar 

modeling as here, which would be a logical next step.  

For palbociclib, the simulations overpredicted its efficacy, showing very high 

growth inhibition at moderate doses to complete cytostasis at high doses. This reflects 

the indispensability of the drug target, CDK4/6, as per the model of the cell cycle pathway. 
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However, in experiments, even the highest doses resulted in only partial growth inhibition. 

CDK4/6 is associated with traversing the cell cycle restriction point87. In pre-S-phase cells, 

one of the regulators of restriction point, Rb, is bound to a key transcription factor of the 

cell cycle process, E2F. In the presence of a growth stimulus, CDK4/6 is activated when 

bound to Cyclin D. This activated Cyclin D-CDK4/6 complex can phosphorylate and 

inactivate Rb, which then releases E2F. Subsequently, there is an upregulation of E2F 

which then mediates S-phase entry and progression by activating Cyclin E and Cyclin A. 

The mechanism of CDK4/6 inhibitors such as palbociclib attempt to induce cytostasis by 

preventing the inactivation of Rb by CDK4/688. This canonical understanding places 

CDK4/6 as indispensable, similar to how it is modeled, but experiments did not agree with 

this assumption. One of the known resistance mechanisms of CDK4/6 inhibition is the 

loss of Rb function89,90. However, since MCF10A cells do not harbor such mutations, it is 

an unlikely explanation in this case. MCF10A are hormone receptor (HR) negative, 

whereas palbociclib is mainly understood to be more effective in HR positive contexts91, 

so perhaps differences caused by estrogen and progesterone receptor could be helpful 

in understanding the discrepancies. Another reported resistance mechanism in cancer 

cells is the overexpression of Cyclin E92,93, which is a regulator of the later stages of cell 

cycle, but is also not the case in MCF10A cells. In the results section, we investigated 

mismatch between model and experimental doubling time and restriction point behavior, 

finding neither likely to explain the discrepancies. Therefore, we think the most likely 

explanation is that CDK4/6 is simply not as indispensable for the cell cycle as 

contemporary views may portray. It has been increasingly reported that CDKs can 

compensate for one another76, so the activity of other CDKs could compensate for 
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CDK4/6 activity in actively cycling cells. Such mechanisms were not included in the 

original cell cycle submodel94, so these additions are likely important for capturing effects 

of cell cycle-targeted therapies. Sensitivity analysis is a generally useful computational 

tool for understanding which mechanisms are related to particular data features, and may 

help such model refinement. However, currently, the proposed algorithm is 

computationally-intensive just for generating a single dose response data point (multiple 

replicates of 100s of initial stochastic cells). Increasing computational efficiency of the 

algorithm is an immediate next goal. Sensitivity analysis on stochastic models is 

notoriously difficult95–97 and an open area of research, but one that could synergize with 

approaches such as the one presented here.  

For neratinib, the simulations underpredicted its efficacy, showing weak inhibition 

for moderate to high doses whereas the experiments showed significant growth inhibition 

to complete cytostasis within this range. To investigate this discrepancy, we considered 

the progression of ERK signaling within the single cell model and how the neratinib drug 

action might affect it. Neratinib is an irreversible inhibitor of EGFR, which attempts to block 

both ERK and Akt signaling by inhibiting ligand-receptor interactions. The model 

incorporates both ligand-induced and basal signaling along the ERK pathway. In 

simulations, if cells enter the cell cycle in the absence of ligand, it would result in 

proliferation that the drug action would be unable to inhibit. To test this, we performed 

subsequent simulations where EGF was absent from the growth media, but several 

simulated cells were still cycling. This is contrary to the experimental observations that 

MCF10A cells do not proliferate without EGF82,83, and explains the discrepancy observed 

between simulation and experimental results of neratinib dose response. Furthermore, 
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we sought to account for this mismatch by altering a key model reaction modulating basal 

ERK activity, basal Ras-GDP to Ras-GTP exchange rate. We reduced this rate constant 

to minimize the probability of cell division in absence of EGF and ran all dose response 

simulations again. This time, the neratinib dose response showed closer alignment with 

the experimental result, but we observed overprediction of growth inhibition for all other 

drugs, presumably due to the altered balance between basal and ligand induced ERK 

signaling. Hence, ideally, the model should incorporate a more improved balance 

between basal and ligand induced signaling for describing cell proliferation events. In our 

previous work, stochastic single cell simulations initiated from a representation of a 

serum-starved MCF10A cell minimally entered S-phase without EGF21. However, for cell 

population simulations done here, single cells are subject to randomized sampling for 

induction of an asynchronously cycling population which more closely resembles the 

experimental conditions whereby drug treatment is applied after growth media is 

introduced to the cells. Also, cells were followed for much longer, which amplifies small 

percentages of cells still cycling with insulin treatment alone. Thus, the model’s limitations 

become more apparent here at the population level.  

The neratinib case study highlighted an important future direction focused on 

parameter estimation for such models with stochastic components. This is a challenging 

area due to the computational cost of model evaluation, and the wide range of datasets 

that are needed to constrain large stochastic models. One part of our previous work was 

to do this for a subset of rate constants by “initialization”21,98. In initialization, certain model 

parameters and initial conditions are determined for a specific cell-line context using a set 

of focused parameter estimation operations which aim to tune parameters based on 
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constraints placed on model observables. It is a computationally intensive process 

whereby each parameter estimation step performs iterative execution of deterministic 

model simulations. The SPARCED model is composed of a stochastic gene expression 

and a protein biochemistry module which are executed simultaneously. However, 

communication bottlenecks between the modules caused the computation time to be 

impractical for the purpose of initialization98. Recently, we solved the communication 

bottleneck problem which sped up the deterministic execution by over 200-fold98.  

Fast deterministic parameter estimation solvers have been reported for large-scale 

models as well22. This drastic increase in computation speed for deterministic simulations 

will allow a more exhaustive exploration of the model parameters essential for defining a 

more robust initialization protocol, but extending this to stochastic evaluation remains an 

important unsolved problem.  

For trametinib, model predictions closely resemble experimental observations. 

Trametinib has high specificity for MEK1/2; once MEK1/2 is inhibited, it is no longer able 

to phosphorylate ERK1/299. ERK signaling controls the G1/S-phase transition of the cell 

cycle99 through activation of RSK, which in turn upregulates the production of Cyclin D 

and CDK4/6. Cyclin D expression can drive the cell through the G1/S-phase checkpoint, 

as described above. When these events are inhibited by trametinib, the cell is unable to 

progress through the checkpoint. However, results indicate that low-to-medium doses of 

trametinib are unable to reduce cycling in every cell in the population. It was hypothesized 

that the signaling response patterns of a mother cell pass on to daughter cells, enabling 

an expression pattern to continue through multiple generations100. Therefore, we 

hypothesized that the initial values of the Generation 1 mother cells could predict the 
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number of divisions that occur from said mother cell. The number of division events was 

explainable by principal components analysis, with higher ERK signaling capacity being 

associated with an increased number of division events. Thus, in this case, acute 

resistance to trametinib is simply related to a multitude of biochemical factors all impinging 

on increased activity of the target ERK pathway.  

 In conclusion, we have developed an algorithm that takes a mechanistically-

detailed model of stochastic proliferation and death, and generates lineage-resolved 

simulations that can be used to interpret dose response viability data and better 

understand cellular response heterogeneity. Specific demonstrations suggested new 

insights into drug response, cell cycle biology, rapidly dividing phenotypes, and acute drug 

resistance. Given the extensive availability of drug dose response viability data, we 

anticipate that this work will help address the data availability bottleneck in modeling, 

facilitating the development of mechanistic models of single-cell behavior..  
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Methods 

Code Availability 

The final model scripts, files, and information are available on the SPARCED 

GitHub page at github.com/SPARCED/LinResSims. For detailed usage information, and 

for more details on how models and simulations are implemented, we recommend this 

page to the reader. 

Stochastic Model Components 

The treatment of stochasticity was inherited from the SPARCED model and is 

described in detail there21,53. Briefly, stochasticity arises from gene expression, and it is 

described by what is sometimes called a telegraph model101,102. Genes in the model can 

be active or inactive, with first-order switching. Transcripts are produced from active 

genes and undergo degradation, also both first order. These reactions are simulated with 

a time step of 30 seconds, that was selected based on experimental data for gene 

switching rates in mammalian cells, to yield a low probability a gene becomes active and 

inactive in a single interval (in prior work faster time steps were confirmed not to impact 

simulation results). The reactions fire with a Gillespie/tau-leap-like mechanism. In a time 

step, random uniform numbers are compared to the gene activation and inactivation rate 

constants to determine gene switching events. The number of transcript births and deaths 

are determined by sampling from a Poisson distribution.  

Heterogenization happens due to stochastic gene expression. At the time of cell 

division, the two daughter cells have identical molecule numbers and species 

concentrations. Thus, we default to a symmetric division. After cell division, stochastic 

gene expression happens in each cell independently, creating natural drift. It is in principle 
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possible for a user to specify asymmetric division, which could be done by implementing 

a “divider” function103 which will be executed every time a division point is detected after 

any single cell simulation. Such a function may account for the individual protein molecule 

counts of the mother cell and determine their fate in the daughter cells as a result of an 

appropriate probabilistic operation. 

In the example applied to the simple cell cycle model54 (see below), stochasticity 

was generated by creating an asynchronously cycling initial population as illustrated in 

Figure 1. That is, based on a time course simulation across a cell cycle, random time 

points were chosen, and the model state from these time points were used as initial 

conditions for different cells in the simulated population. The underlying model is 

deterministic and we found that its desired “cycling” behavior is very sensitive to 

parameter variation when we tried to generate stochasticity by adding random noise to 

the individual parameters and/or introducing Langevin equations to the model structure. 

SPARCED Pharmacodynamic Models 

Reactions representing drugs binding to their reported targets with mass action 

rate laws were added to the SPARCED model (see model input text files). The 

assumptions and mechanism of action for each drug are described below. We tested each 

drug action model by observing simulated deterministic response of an average serum-

starved cell to EGF and Insulin (growth media doses) with and without drug at high dose 

(10 M). We required (i) intracellular and extracellular free drug concentration equilibrated 

rapidly (within a few minutes); (ii) drug-target engagement (complex formation) was 

observed similarly rapidly; (iii) that the drug had a substantial effect on a downstream 
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biomarker (ppAKT-alpelisib, ppERK-trametinib, pEGFR-neratinib, or CDK4/6 activity-

palbociclib).  

Alpelisib. Alpelisib enters and leaves the cell with first-order kinetics and the same rate 

constant (0.01 s-1). Cytoplasmic alpelisib binds reversibly to its intracellular targets, p110 

(representing all p110 isoforms) and free PI3K (p85/p110 heterodimers), with a 

dissociation constant (Kd) of 2.4 nM56 and mass action kinetics (kon = 0.001 nM-1s-1 ; koff 

= 0.0024 s-1). Although alpelisib is a p110 isoform-specific inhibitor, the SPARCED model 

does not yet incorporate PI-3K isoform-specific biology, so this simplification is necessary 

at the current stage. The binding of alpelisib to p110 prevents its dimerization with the 

regulatory subunit (p85). Any drug-bound species loses its kinase activity. Any drug-

bound species undergoes first-order degradation with a rate constant equal to that of the 

non-drug-bound species.  

Palbociclib. Palbociclib enters and leaves the cell and the nucleus with first-order kinetics 

and the same rate constant (0.01 s-1). Nuclear palbociclib reversibly binds to its target, 

nuclear CDK4/6, with a dissociation constant (Kd) of 1.9 nM and mass action kinetics (kon 

= 0.001 nM-1s-1; koff = 0.0019 s-1). Any drug-bound species loses its kinase activity. Any 

drug-bound species undergoes first-order degradation with a rate constant equal to that 

of the non-drug-bound species. 

Trametinib. Trametinib enters and leaves the cell with first-order kinetics and the same 

rate constant (0.01 s-1). Cytoplasmic trametinib reversibly binds to its target, 

unphosphorylated free MEK, with a dissociation constant (Kd) of 0.35 nM and mass action 

kinetics (kon = 0.001 nM-1s-1 ; koff = 0.00035 s-1). Any drug-bound species loses its kinase 

activity and ability to bind substrates. This is a simplification of trametinib action but is 
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effective for capturing the broad effects of downregulating the ERK pathway. Any drug-

bound species undergoes first-order degradation with a rate constant equal to that of the 

non-drug-bound species. 

Neratinib. Neratinib enters and leaves the cell with first-order kinetics and the same rate 

constant (0.01 s-1). Cytoplasmic neratinib binds irreversibly to free EGFR, ErbB2, and 

ErbB4 with first-order kinetics (kon = 10-4 nM-1s-1). While this is a kinase inhibitor, and drug 

bound complex loses kinase activity, for simplicity we disallow subsequent interaction with 

other receptors and ligands. Any drug-bound species undergoes first-order degradation 

with a rate constant equal to that of the non-drug-bound species.  

Lineage-Resolved Simulations 

Asynchronous population. Cell population simulations are initiated by creating a 

representation of an asynchronously cycling cell population. The starting size of the cell 

population is specified by the user. For each starting cell, initial conditions representing 

an average serum-starved MCF10A cell are used to create a heterogenized cell 

population21. For heterogenization, we run stochastic single cell simulations for 48 

simulated hours under serum-starved conditions, using the initial conditions of the 

average serum-starved MCF10A cell. Thus, the intrinsic gene expression noise 

incorporated within the single cell model leads to heterogeneity in protein levels across 

the starting cell population over the duration of simulation time. Then, simulated growth 

media with EGF (3.3 nM) and insulin (1721 nM) is introduced and another series of 

stochastic simulations are run for each individual cell for 48 hours. From the generated 

trajectories, for each cell a timepoint is randomly selected from a uniform distribution 

using the NumPy randint function. The conditions at this time point for each cell are 
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used as the initial conditions for the first generation. Single-cell simulations are executed 

for all first generation cells for the user-specified duration (typically 72 hours).  

Identifying cell division events. Once the single-cell simulations are completed, the 

generated outputs are analyzed to determine cell division events. The cell division events 

are detected by analyzing Cyclin B-CDK1 trajectories. For this, we defined a python 

function combining the find_peaks methods in the SciPy signal processing library and 

the n-th discrete difference calculation method (along any given axis) in the NumPy 

library. For any individual cell, if a division event is detected, timepoints after the 

occurrence of cell division events are discarded and the state vector at the time of cell 

division is selected as the initial condition for two new second generation cells. Thus, we 

assume symmetric division, where the daughter cells have identical initial conditions. 

Importantly, daughter cells immediately begin experiencing drift from one another due to 

stochastic gene expression, which is constantly occurring in every simulated cell 

differently. 

Identifying cell death events. Cleaved PARP is the readout for cell death21. For any single 

cell, if more than half of PARP has been cleaved at any time point, the cell is labeled dead 

at that time point. To compare simulated cell death events to experimental data, we 

assumed that any death event within the last 1 hour of the simulation would be observable 

by the viability staining used.  

Subsequent generations. For each generation, state matrices for individual cells are 

obtained and saved as part of output dataset. In the event of a cell division, we retain the 

state matrix of the mother cell until the time point of division and the remaining portion is 

truncated and discarded. For every cell, we scan the output for the duration of its lifetime 
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to find division events. To determine the required simulation time for next generation of 

daughter cells, the division time point is subtracted from the total simulation time. The 

single cell outputs at the time point of division of each mother cell is recorded as initial 

conditions for the next generation of daughter cells. Thus, we define the required 

simulation time, population, and initial conditions for the next generation of cells. This 

process is repeated for the subsequent generations of cell populations. In a given 

generation, if there is no cell division event observed within the simulation time, the 

population simulation is terminated. We assume symmetric division, where the daughter 

cells have identical initial conditions.  

Implementation. Computation is performed using HPC-compatible parallel processing in 

Python whereby single cell simulations are run in individual CPU threads. To run the cell 

population simulation, a computational environment with an implementation of MPI 

(Message Passing Interface), such as OpenMPI104 on Linux and MSMPI on Windows 

systems needs to be set up in addition to the dependencies of the SPARCED model 

pipeline. Before the simulation can be performed, the SPARCED model is built using the 

python script under scripts/createModel.py, which creates an executable single cell model 

based on the specifications in the input files. Once the model build process is complete, 

MPI is be used to run cell population simulations (see git repository). Upon completion of 

simulations, the results are saved to disk as Python pickle objects for analysis and 

visualization. For detailed reproduction of results in the paper and for specific use of the 

codebase, we would refer the reader to the GitHub documentation.  
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A main function is the cellpop.py script. The command line arguments passed to the 

this script are used to specify inputs to the simulation representing the experimental 

conditions as well as several workflow parameters that dictate the computation. A more 

detailed specification of these variables can be made by using a json config file, which 

the user may define for each simulation run. This allows the alteration of several key 

workflow parameters without modification of the simulation script itself. By default, 

simulation config files are located in the folder sim_configs and each file is passed to the 

cellpop python script using the argument –sim_config. The contents of the sim_config file 

are read as a python dict object by the cellpop.py script. We refer the reader to the 

GitHub repository for detailed usage of the config file.  

Running Cell Population Simulations with a New Single Cell Model 

By default, the cell population simulation workflow uses the SPARCED single cell model. 

It is capable of running simulations with a different single cell model given that the model 

has a compatible structure. We have provided an example applied to a simple, classical 

cell cycle model54 (see the GitHub repository), but others could be compatible. A 

compatible model must (i) have a state matrix representing a single cell, (ii) have a 

variable representing the dynamic molecular signature of cell cycle markers, i.e., periodic 

activation and inactivation of cyclins, and (iii) be executable within a python module. 

To replace the SPARCED model in cell population simulations with another single cell 

model: 

1. Place all single cell simulation operations within a python function. This 

function must be given a unique name and saved in a module of the same 

name under bin/modules. The name of the module must be specified under 
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“model_module/run_model” option in the config file. This function may accept 

any number of arguments required to execute the single cell model (e.g. initial 

conditions, parameters, duration etc.) and the arguments must be correctly 

mapped within the “kwargs_default” dictionary in the next step. 

2. Write another python function to generate an input dict for the single cell 

model function, mirroring the input/output structure of the LoadSPARCED 

function. This function should be given a unique name and saved in a module 

of the same name as the function under bin/modules. The name of the 

module must be specified under “model_module/load_model” option in the 

config file. The function must return two dictionaries, namely: 

• model_specs: dictionary containing “species_all” (list of model species 

names according to their order in the state matrix) and “cc_marker” 

(name of the cell cycle marker species) 

• kwargs_default: dictionary containing keyword arguments for the 

“run_model” function. 

3. Save both python functions as modules with the same name as the functions 

under bin/modules. 

4. Write a json config file with key-specific values appropriate for the new model 

structure. Be sure to make "load_model" and "run_model" options consistent 

with the new module names. For more details on the structure of the sim 

config, see sim_configs/README.md 
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As an example for this procedure, we used a classic simple ODE model of the cell cycle 

54. The model represents the interactions of cdc2 and cyclin during major events of the 

cell cycle in Xenopus oocytes. This particular implementation of the model has been 

defined entirely within a python module (bin/modules/TysonModule.py) and simulated 

using the LSODA solver in the scipy library. The periodic oscillation of cyclin-P/Cdc2 

complex has been selected as the cell cycle marker in this implementation. The 

"load_model" and "run_model" modules have been provided as 

bin/modules/LoadTyson.py and bin/modules/RunTyson.py. The sim_config json file 

corresponding to this workflow is sim_config/default.json.  

GR Score Calculation and Experimental Data Source 

Experimental data55 were obtained from synapse 

(www.synapse.org/Synapse:syn18456348/wiki/590585), and the data pull script is 

provided in the GitHub.  Dose responses were calculated using the growth rate inhibition 

metric (GR)60. Dose response simulations were run for 10 dose-levels matching 

experimental data for each drug and 10 replicates of each dose. Outputs from the cell 

population simulations were read and analyzed to determine the total number of living 

cells over time for the duration of the experiment time. The GR scores were computed for 

each replicate from the number of living cells at 72 hours using the Python script provided 

as part of GR-metrics git repository.  

Calculation of Fractional Cell Cycle Progression 

Cell cycle progress estimation. For the palbociclib dose response, the extent of cell cycle 

progress at the time of drug addition was estimated using a function of average cyclin 

concentration levels. CyclinE-CDK2, CyclinA-CDK2 and CyclinB-CDK1 species 
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concentrations were converted to a relative measure based on their observed peaks. An 

average of these three variables over time generated an oscillating function, with trough-

to-trough distance representing total cell cycle time. We determined an average trajectory 

of this function using a deterministic simulation. Then, we calculated the function 

trajectory for individual Gen 1 cells. We calculated the relative cell cycle progression as 

cell cycle progression time as aligned to the average, divided by the time between two 

neighboring troughs in that cell’s trajectory. 

Estimation of cell division probability given cell cycle progression. For any given drug 

dose, the cell cycle progression of all cells at the time of dose administration was 

calculated. Then all living cells were grouped into those that divided and did not divide in 

both Gen 1 and Gen 2. Gaussian kernel density estimation was used to estimate the 

probability density function for each group. Using the probability density function, the 

number of cells for dividing and non-dividing groups within cell cycle progress time 

intervals with increments of 0.01 were estimated. For each interval, the probability of 

division at Gen 1 and 2 were calculated using the ratio of number of dividing cells and 

total number of cells. 

Principal Components and Partial Least Squares Analysis 

The number of progeny arising from each Gen 1 cell (‘mother cell’) was determined from 

control condition simulations as above. Z-score normalization was applied to the initial 

condition matrix (cells-by-species) using standardScaler.transform in scikit-learn. 

Principal component analysis was completed using decompostion.PCA in scikit-learn. 

To apply this projection to the drug-treated simulated cells, we generated a new initial 

state matrix from simulated mother cells treated with 0.032 nM trametinib and normalized 
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as above. Partial Least Squares Regression was completed using the 

cross_decomposition.PLSRegression package in scikit-learn. This was applied to 

the initial values matrix of control condition simulations and weights extracted from the 

model object using the .x_loadings attribute. The code underlying this analysis is in the 

above-mentioned GitHub repository as well.  
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Supporting Information Legends 

 

Figure S1. Cell Death Analysis. A-D. Fraction of dead cells among cells simulated 
between the timepoints 71h and 72h (the last hour) for the four drugs as indicated. 
Experimental data were obtained as indicated in the main text references.   
 

Figure S2. Rapidly Dividing Phenotype Analysis. Initial conditions from 4,000 
simulated cells under control conditions were arranged into a matrix as in Figure 5 and 
analyzed by principal components analysis (PCA) or partial least squares regression 
(PLSR). A. Top 20 loadings of the first principal component under control conditions. B. 
PLSR analysis. Points are sized by number of division events, with colors equivalent to 
Figure 5A. C. Top 20 loadings of the first PLSR component under control conditions. 
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Figure 1. Workflow of the developed simulation algorithm. A. An asynchronously cycling cell population 

(Gen 1) is initiated by sampling the initial conditions at random time points from a pool of single cell simulations 

run with growth factor stimulation (Gen 0). B. Upon the execution of each generation, detection of new cell 

division events (or lack thereof) within simulation time determines the creation or not of a next generation. C. (left 

and center) Cross-generational trajectory of observed ERK and AKT activity from a randomly-chosen single-cell 

lineage. Varying colors represent subsequent generations, starting from Gen 1. (right) In silico lineage tracing 

capability is demonstrated with a lineage dendrogram. Lines representing individual cells are labeled with 

generation and index.
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Assays. A-C. Dose response simulations for an example drug (trametinib). Median (across simulation 

replicates) cell population dynamics for several doses (A) and cell population lineage dendrograms for specific 

doses: 0 µM (B) and 0.1 µM (C) are shown. D-G. Simulated dose responses measured in GR-value for four 

drugs compared experimental data. Error bars are standard error taken from original experimental data, or as 

calculated across simulation replicates (n=10). 
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Figure 3. Simulation Analysis to Investigate Palbociclib Dose Response 

Discrepancy. A. Simulated cell growth curves under control conditions for multiple 

replicates. The dark black line is the median which was used to estimate doubling time, 

when the initial cell number (100) doubled (200). B. The fractional progression through 

the cell cycle (see Methods) was estimated for the beginning 100 generation 1 cells. 

This was the point at which 0.1 M palbociclib was administered. The division outcome 

for each cell was then determined for this current generation, and if it exists for the next 

generation. The probability of division occurring was empirically estimated from this 

collection of binary outcomes and then plotted. C. Cell lineage dendrogram for 

response to 0.1 M palbociclib. Most cells divide once early, and then the response is 

cytostatic.  

C
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A

Figure 4. Simulation Analysis to Investigate Neratinib Dose Response Discrepancy. A. 

Lineage dendrograms under control (no drug) conditions without EGF but with insulin. There are 

multiple rapidly dividing cells. B. Dependence of the probability of cell division as a function of the 

rate constant controlling basal Ras activation. Simulations were done as in A, without EGF and 

with insulin. The baseline value for the rate constant in the current published version of the model 

is designated by the red diamond. C-F. Dose response curves as in Figure 2, except with the 

altered basal RasGTP activation rate constant from panel B (2x10-4 s-1).  

no EGF, INS only
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A

Figure 5. Rapidly Dividing Phenotype in Control and Trametinib-Treated Conditions. A. Histogram 

displaying low (0-6) moderate (6-16) and high (16+) number of division events for simulated cells under control 

conditions. Cells (4,000) were compiled across 4 drugs (0 dose), 100 cells per replicate, 10 replicates. B. 

Histogram displaying low (0-6) moderate (6-16) and high (16+) number of division events for simulated cells 

under trametinib treatment conditions (0.03 nM). Cells (1,000) were compiled across one dose, 100 cells per 

replicate, 10 replicates. C. Setup of the hypothesis, relating initial conditions of Generation 1 mother cells to the 

eventual number of divisions arising from them. D. Principal component plot of the initial states matrix under 

control conditions. Points are sized by number of division events, with colors equivalent to panel A. E. Top 20 

loadings of the second principal component under control conditions, and a cartoon schematic of where they fall 

along the pathway driving the cell cycle. F. Projection of the trametinib data set onto the principal components 

learned from the control dataset. Points are sized by number of division events, with colors equivalent to panel A.
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Figure S1. Cell Death Analysis. A-D. Fraction of dead cells among cells simulated 

between the timepoints 71h and 72h (the last hour) for the four drugs as indicated. 
Experimental data were obtained as indicated in the main text references.  
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Mutsuddy et al., Supplementary Figure 2

B C

Figure S2. Rapidly Dividing Phenotype Analysis. Initial conditions from 4,000 

simulated cells under control conditions were arranged into a matrix as in Figure 5 and 

analyzed by principal components analysis (PCA) or partial least squares regression 

(PLSR). A. Top 20 loadings of the first principal component under control conditions. B. 

PLSR analysis. Points are sized by number of division events, with colors equivalent to 

Figure 5A. C. Top 20 loadings of the first PLSR component under control conditions.
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