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Abstract

Data from cell viability assays, which measure cumulative division and death events in a
population and reflect substantial cellular heterogeneity, are widely available. However,
interpreting such data with mechanistic computational models is hindered because direct
model/data comparison is often muddled. We developed an algorithm that tracks
simulated division and death events in mechanistically-detailed single-cell lineages to
enable such a model/data comparison and suggest causes of cell-cell drug response
variability. Using our previously developed model of mammalian single-cell proliferation
and death signaling, we simulated drug dose response experiments for four targeted anti-
cancer drugs (alpelisib, neratinib, trametinib and palbociclib) and compared them to
experimental data. Simulations are consistent with data for strong growth inhibition by
trametinib (MEK inhibitor) and overall lack of efficacy for alpelisib (PI1-3K inhibitor), but are
inconsistent with data for palbociclib (CDK4/6 inhibitor) and neratinib (EGFR inhibitor).
Model/data inconsistencies suggest that (i) the importance of CDK4/6 for driving the cell
cycle may be overestimated, and (ii) the cellular balance between basal (tonic) and
ligand-induced signaling is a critical determinant of receptor inhibitor response.
Simulations show subpopulations of rapidly and slowly dividing cells in both control and
drug-treated conditions. Variations in mother cells prior to drug treatment impinging on
ERK pathway activity are associated with the rapidly dividing phenotype and trametinib
resistance. This work lays a foundation for the application of mechanistic modeling to
large-scale cell viability datasets and better understanding determinants of cellular

heterogeneity in drug response.
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Author Summary

There is a large amount of data in the public domain for how a variety of cancer cell types
respond to a multitude of anti-cancer drugs. However, interpreting such data
mechanistically is hindered because of a lack of precise computational tools for
model/data comparison. We developed an algorithm that tracks simulated division and
death events in mechanistically detailed single-cell lineages to enable such a model/data
comparison and suggest causes of drug response variability. We applied this tool to
understand four targeted anti-cancer drugs better. Simulations are consistent with data
for strong growth inhibition by trametinib and overall lack of efficacy for alpelisib, but are
inconsistent with data for palbociclib and neratinib. Model/data inconsistencies suggest
where biological understanding may be incomplete. Simulations show subpopulations of
rapidly and slowly dividing cells in both control and drug-treated conditions, and analysis
thereof suggest mechanisms potentially involved with acute drug resistance. This work

lays a foundation for using large-scale datasets to better understand drug response.
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Introduction

One of the grand challenges of systems biology is to build a comprehensive and
quantitative understanding of the structure and functionality of living cells. Whole cell
models that describe the function of every gene and its products is an attractive
manifestation of such a goal. Whole-cell models for some microorganisms exist', but
have not been reported for human cells. Nevertheless, a wide range of individual
pathway®20 and integrative multiple pathway?'-2® human cell models have been
published, which are a stepping stone?>3. These models can contribute to better
understanding multiscale phenotypes®'-3°, diagnosis of disease states and their

progression3%37, and development of efficacious therapeutic procedures38-40.

Data availability is a primary challenge for human whole cell modeling?®4'42,
Large-scale databases*3—*> containing cell viability assay data exploring sensitivity of
multiple cell lines to multiple drugs are an attractive resource in this regard. Assessing
how well computational models, based on current knowledge, explain this data can reveal

existing knowledge gaps and inform next stages of research.

An obvious pre-requisite to leveraging such data sets for modeling purposes is the
existence of robust methods for comparing simulations to experimental readouts
appropriately. Most viability assays measure cell population size or a proxy. Typical
mechanistic models do not explicitly describe cell division and death events, whose
balance dictates cell population size, but usually prescribe empirical relations?246.
Course-grained agent based modeling*’=*° can account for division and death events and
were described in, for example, process control and optimization of production of
therapeutic proteins using mammalian cell culture®, analyzing the impact of cell

4


https://doi.org/10.1101/2024.08.23.609433
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.23.609433; this version posted April 17, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

population heterogeneity in colony and tissue context®!, and elucidating the role of
heterogeneity in IFN signaling®2. However, there remains a need for algorithms that can
simultaneously track large-scale mechanistic detail of drug response with cell
division/death events. Such algorithms would help interpret the large body of cell viability

response data for building better human whole-cell models.

In this work, we present an algorithm that combines detailed mechanistic
descriptions of drug action with single cell lineage-resolved division and death events to
construct simulation outputs that are directly comparable to cell viability assay data. As a
test case, we use a previously-developed, large-scale model of single mammalian breast
epithelial cell (MCF10A) proliferation and death, SPARCED®3, and add to it mechanistic
pharmacodynamic models based on known binding interactions between drugs and
modeled targets. First, we describe the algorithm and the types of novel analytics that
can be derived, such as cell population size dynamics, cross-generational biomarker
tracking for cell lineages, and cell population dendrograms. Then, we simulate dose
responses to multiple drugs for which experimental data exist, namely, alpelisib (PI-3K
inhibitor), trametinib (MEK inhibitor), palbociclib (CDK4/6 inhibitor) and neratinib (EGFR
inhibitor). Simulations agree with experiments for strong growth inhibition by trametinib
and overall lack of efficacy of alpelisib; however, there is substantial model-experiment
discrepancy for palbociclib and neratinib. Analysis of model discrepancies suggests that
(i) the importance of CDK4/6 for driving the cell cycle is likely overestimated, and (ii) the
cellular balance between basal (tonic) and ligand-induced ERK signaling is a critical
determinant of EGFR inhibitor response. We also applied the model to better understand

an interesting phenomena that simulations showed subpopulations of rapidly and slowly
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dividing cells in both control and drug-treated conditions. We find that variations in mother
cells prior to drug treatment impinging on ERK pathway activity are associated with the
rapidly dividing phenotype and trametinib responsiveness. This work establishes a
foundational framework for applying mechanistic modeling to large-scale cell viability
datasets, which are essential for developing comprehensive human cell models.
Additionally, it offers a unique analytical approach to generate hypotheses regarding the

molecular drivers of cellular variability across generations.
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Results

Lineage-resolved single-cell simulation framework

We first set out to construct a simulation algorithm that mirrors drug dose response
viability assays (Fig. 1). These assays typically start with a population of asynchronously
cycling cells that are treated with drug for ~3 days and then assayed for final cell number
(or a metric proportional to it). The final cell number is related to the number of division
and death events each initial single cell ultimately experienced. Thus, the simulation
algorithm starts with a population of asynchronously cycling cells and counts the
individual division and death events from each initial cell. Throughout this manuscript, we
use our previously published mechanistic model (SPARCED) of single cell proliferation
and death signaling®® representing MCF10A breast epithelial cells. In principle, however,
any model with single-cell resolution and division/death readouts is potentially compatible
with the approach. We provide one such simple example® in the Methods and GitHub

repository.

The algorithm begins with the creation of a simulated population of
asynchronously-cycling, single cells (Fig. 1A). The initial model state is an average,
serum-starved cell (non-cycling). The first step is to generate a population of cells with
heterogeneous gene expression profiles, enabled by descriptions of intrinsic noise in
gene expression as previously described?’. We refer to this process as
“heterogenization”. After 48 simulated hours, when the distribution of most protein levels
across the cell population stabilizes, the addition of growth media is simulated (in the case
of MCF10A cells and this model—EGF and insulin). Subsequently, synchronized cell

cycle progression is observed in simulations for an additional 48 hours, creating so-called
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“‘Generation 0" (Gen 0). To convert these Gen 0 synchronized cells into Gen 1
asynchronously cycling cells, we sample random times from the 48 hour growth media
treatment window for each single cell. These selections become initial conditions for Gen

1, which is then subjected to simulated drug treatment for 72 hours (Fig. 1B).

Once these simulations are completed, the outputs are analyzed to determine cell division
events (based on Cyclin B-CDK1 peaks for this model) and their time points (Fig. 1B).
Based on the cell division time points, the remaining simulation time (difference between
division time and 72 hours), and initial conditions for each daughter cell are determined
for the next generation, and lineage information is recorded. Importantly, in SPARCED,
daughter cells immediately begin experiencing drift from one another due to stochastic
gene expression, which is constantly occurring in every simulated cell differently.
Subsequently, simulations for the next generation are run and this cycle continues until
no division events occur in a given generation. Detected cell death events (based on

cleaved PARP dynamics for this model), halt a lineage.

These simulations not only mirror typical drug dose response experiments but also
enable lineage-resolved analyses (Fig. 1C). Since individual division and death events
from a parental cell are tracked, it also allows dynamic tracking of observables (such as
ERK or Akt activity) across multiple generations of any single cell lineage. Lineage
dendrograms can be also constructed, as is typical in such analyses. Such capability may
generate hypotheses linking drug sensitivity or resistance with cell fates and lineage, or

variations in biochemistry that predispose cells to response or resistance.
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Comparing Simulated Drug Dose Responses to Experimental Measurements

With the above algorithm, we could now compare model predictions to
experimental data for cell viability drug responses. Specifically, we focused on four
previously-studied, targeted anti-cancer drugs for which our model includes primary
targets and significant off-targets: trametinib (MEK inhibitor), alpelisib (PI-3Ka inhibitor),
neratinib (EGFR/ErbB2/ErbB4 inhibitor), and palbociclio (CDK4/6 inhibitor)%®. We
extended SPARCED by including known drug interactions with target species®6-%° and
leveraging previously described capabilities to robustly and easily increase the model

scope®? (see Methods).

We then performed lineage-resolved simulations for various doses of the modeled
drugs for which experimental data are available®®, with no adjustment to the SPARCED
model (besides addition of the drug pharmacodynamic modules—see Methods), using a
starting population of 100 cells. This framework allows direct simulation of the dynamic
cell population size in response to drug doses (Fig. 2A). The effect of drug action can be
visualized by cell lineage dendrograms, showing in this example the clear effect of
moderate trametinib doses to reduce the number of cell division events (Fig. 2B-C). The
simulation outputs were used to calculate growth-rate inhibition®® metrics which is the
same method applied to the experimental dataset, allowing direct comparison of

experimental and simulation results (Fig. 2D-G).

The simulation results for trametinib (Fig. 2F) demonstrate surprising agreement
with experimental data considered no parameter fitting was done, and also expectedly
indicate substantial cell-to-cell variability at low doses. The simulations also captured the

overall lack of efficacy for alpelisib, albeit with some slight differences in dose response
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slope (Fig. 2D). Simplified representations of PI-3K biology in the underlying model, which
does not account for isoform-specific effects, could explain part of the difference. Alpelisib
is a PI-3Ka isoform-specific inhibitor, but is modeled necessarily as a pan-PI-3K inhibitor.
Comparison to data for other inhibitors such as pictilisib, a pan-PI-3K inhibitor, and
taselisib, a beta-sparing inhibitor, could help constrain such efforts, although the model
would need to be expanded to account for the increased and unmodeled off-targets of

these drugs relative to alpelisib®.

On the other hand, predicted palbociclib (Fig. 2G) and neratinib (Fig. 2E)
responses were substantially different from experiments. Subsequent analyses explore
the nature of these differences, as well as potential reasons for the cell-to-cell variability
in the trametinib response. We also note that independent cell death data were
available®'-62, which largely showed these drugs do not substantially kill cells, roughly
consistent with GR values greater than 0, and with simulations (Fig. S1). A partial
exception is neratinib, which shows some cell death at high doses, which may be due to

general toxicity because it is an irreversible inhibitor.

Palbociclib Dose Response Discrepancies Suggests CDK4/6 is Partially
Redundant for Cell Cycle Progression

What could explain the experiment/simulation discrepancy for palbociclib, a potent
inhibitor of CDK4/6, canonically understood to be a central mediator of cell cycle
progression from Go and G1 to S-phase®%° (Fig. 2G)? Simulated palbociclib dose
response starts to deviate from the experimental results at doses as low as 0.01 pM.

Above 0.1 uM, the simulated dose response shows complete cytostasis. On the other
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hand, experimental results show minimal growth inhibition at 0.1 yM, and even high doses

indicate only partial growth inhibition.

One consideration was doubling time. We reasoned that if the experimental
doubling time was slower (greater) than the simulated doubling time, then in simulations
many more cell divisions would be inhibited by the drug. That may explain why the
simulated effects of palbociclib were much greater than that observed in experiments.
The used GR metric in principle should help to account for such doubling time-related
phenomena®, but it also relies on assumptions such as exponential growth and constant
drug effect on growth, which may not be satisfied. The model predicted a slower doubling
time (~48 hours) than was reported in experiments for these MCF10A cells (~18-25 hours)
(Fig. 3A and %), although a wide range is reported for this cell line (~48% or even ~96
hrs®7). This is opposite of the difference we expected may explain the dose response
curve discrepancy. Therefore, we conclude doubling time differences are unlikely to

explain the observed differences.

Another consideration was restriction point behavior with respect to CDK4/6
activity, where a cell continues to divide even after complete inhibition of CDK4/6 at some
point in the cell cycle®®-70. We reasoned that if the model does not capture such behavior,
simulated palbociclib treatment could immediately stop cell divisions instead of letting
already committed cells continue to divide once, leading to more predicted potency than
observed. To explore this in simulations, we analyzed the probability of cell division in
Gen 1 versus Gen 2 cells, as a function of dynamic progress in the cell cycle at the time
of simulated drug treatment (Fig. 3B). Prior studies place the restriction point early in the

cell cycle®®. Simulations with saturating palbociclib dose (0.1 uM) reflect such behavior,
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where most cells divide once if the cell cycle is at least ~10% completed, but subsequent
cell divisions are nearly non-existent. This effect is also clear from the simulated lineage
dendrogram which shows most cells divide once but not subsequently with this dose of
palbociclib (Fig. 3C). Thus, we conclude that modeled restriction point behavior is also

unlikely to explain discrepancies.

Finally, we considered that the canonically understood role of CDK4/6 as modeled
in SPARCED is simply inadequate. That is, the assertion that CDK4/6 activity is a
necessary and sufficient step to drive the early cell cycle may be inaccurate®71.72, A
clinical line of evidence is the fact that CDK4/6 inhibitors have limited efficacy outside of
hormone-positive breast cancers®. It has also been reported that proliferation can occur
in CDK4/6 knockout cells”®. More recent data have suggested that CDK4/6 activity has
more of a probabilistic effect on cell cycle progression’4, and the restriction point may be
more reversible than previously thought in response to CDK4/6 inhibition”>. CDK activities
may also be overlapping; for example CDK2 and CDK4/6 may be compensatory’®, and a
sensor integrating multiple CDK activities’” was shown to be highly predictive of restriction
point behavior’®. Therefore, we conclude that most likely, fundamental model
reformulation is needed to capture the effects of palbociclib, and that the canonical view

of CDK4/6 as necessary and sufficient for cell cycle progression may be inadequate.

The Balance of Tonic Versus Ligand-Induced Growth Factor Signaling is Critical
for Capturing Drug Effects

Neratinib is an irreversible inhibitor of the EGFR (with some off-target activity for
the closely related ErbB2/HER2 and ErbB4/HERA4), a receptor tyrosine kinase that,

upon ligand binding, activates the pro-proliferative and -survival ERK and AKT
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pathways’®-8'. Hence, drug action is expected to block ERK and AKT signaling when a
ligand, such as EGF, binds to EGFR. The experimental dose response (Fig. 2E) shows
strong growth inhibition at doses above 0.1 yM and complete cytostasis at ~3 pM.

However, simulation-predicted growth inhibition within this range is significantly weaker.

To explain this discrepancy, we considered that the current modeled balance of
ligand-induced versus basal (also called tonic) ERK signaling could be incorrect.
Specifically, that basal ERK signaling was too strong and causes non-negligible
proliferation in the absence of EGF. If cell cycling is initiated by basal signaling too
strongly, coupled with the fact that neratinib cannot inhibit basal signaling, this could

explain some of the model-experiment discrepancy.

MCF10A cells are dependent upon EGF for cell cycle progression®83, Thus, in
simulations, cells dividing without EGF would support the above explanation. In
simulations where the growth media contained only insulin, some cell division events
were observed (Fig. 4A). Since the proliferative signaling activity that caused these
divisions did not originate as a result of simulated EGF-EGFR activity, simulated neratinib
treatment cannot inhibit these. This is inconsistent with the experimentally observed cell
behavior and hence may be a major cause of mismatch between simulation and

experiment.

How could the model be changed to account for these mismatches? First, we
ensured that basal ERK signaling in the presence of insulin minimally induces cell cycle
progression. Basal Ras-GDP to Ras-GTP exchange is the main reaction controlling basal
ERK activity in the model. We reduced the value of the associated rate constant until the

probability of cell division in the absence of EGF and presence of insulin was near zero
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(Fig. 4B—last point on left, 2x10* s'), and then simulated the dose responses again (Fig.
4C-F). The new simulated neratinib dose responses show closer alignment with
experiments. However, for all other drugs, experiment-model agreement became
significantly worse, most likely now because the absolute levels of EGF-induced ERK
signaling are altered. This result reinforces the close interacting nature of signaling
mechanisms in the model for influencing broad features of drug response, and cautions
against developing models without considering comparison to a compendium of data.

Further model refinement in this regard, therefore, will be the scope of future work.
Explaining Single-Cell Heterogeneity in Division Rate and Trametinib Response

A commonly observed phenotypic variation among cells within a population is the
division rate®+8, Under both control (no drug) and trametinib (~half-maximal response
dose = 0.03 nM) treatment conditions, simulations show large variability in the number of
divisions arising from a particular Gen 1 mother cell (Figs. 5A-B). Since rapidly dividing
simulated cells (indicated by red) are present prior to drug treatment and persist after drug
treatment, in simulations they are largely responsible for the partial response to
trametinib. Could properties in the initial state of Gen 1 mother cells at the time of
trametinib treatment be a predictor of resistance, in this case marked by persistent rapid
division in the presence of drug? Do the same mechanisms that drive rapid division in

control conditions apply to this drug resistance?

To answer these questions, we first focused on simulated control cells. The initial
conditions of Gen 1 cells under control conditions were extracted into a cell-by-species
matrix (4,000 simulated cells by 934 initial conditions, 4 control conditions, 100 cells for

each, 10 replicates) (Fig. 5C). To identify species that may be associated with rapid
14
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division, we performed principal components analysis (PCA) of this matrix, and colored
cells by their division phenotype (Fig. 5D). The second principal component (PC2)
stratified Gen 1 mother cells based on the number of divisions. To identify the most
important model species contributing to PC2, we analyzed the PCA loadings (Fig. 5E).
Species with large loadings were associated with ERK signaling pathway components or
downstream early cell cycle components. This suggests a simple hypothesis—that any
fluctuation giving rise to higher ERK signaling capacity is associated with the rapid
division phenotype under control conditions. Interestingly, PC1 did not correlate much
with the rapidly dividing phenotype and was associated mainly with receptor-level species
(Fig. S2A). A similar analysis approach, PLSR®, suggested the same as the PCA,
although the first (not second) principal component was related to the rapidly dividing
phenotype, and was also linked mainly to the ERK pathway signaling capacity (Fig. S2B-

C).

Does this finding hold true under trametinib treatment conditions? That is, are cells
with higher ERK signaling capacity more likely to retain rapid division phenotypes in the
presence of sub-saturating doses of trametinib? Trametinib is a MEK inhibitor, and since
MEK is a key component of the ERK signaling pathway, there is a clear connection.
Trametinib treatment shifts the number of divisions distribution to the left, reducing the
number of rapidly dividing cells (Fig. 5B). To answer the question, we generated a new
initial Gen 1 mother cell state matrix from trametinib-treated simulated cells, and then
applied the projection learned from PCA of the control data onto this matrix. The results
of this projection indicate again that rapidly-dividing cells cluster towards higher values

on PC2 (Fig. 5F). We conclude that in simulations, the rapidly dividing phenotype is driven
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by a multitude of factors impinging on higher ERK signaling pathway capacity, and these

cells are likely to remain rapidly dividing in the presence of trametinib, contributing to

acute resistance.
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Discussion

Data availability is a major bottleneck for systems biology model development.
While there is a wide range of drug dose response viability assay data available, they are
difficult to use for large-scale model development because simulation outputs often do
not recapitulate the experiment outputs—cell number from cumulative division and death
events in single cells. To address this gap, we developed a lineage-resolved simulation
framework that tracks individual cell division and death events along with mechanistic
detail that enables inference for why single cells have different outcomes. We
demonstrate application of this framework using our previously developed model of
proliferation and death signaling in single mammalian cells®3, but in principle any model
that simulates division and/or death events should be compatible, such as the one we
present in addition®. We compare model simulations to experimental data for viability
response to four different targeted anti-cancer drugs®®. Discrepancies between model and
data for palbociclib and neratinib, elaborated on further below, suggest where current
understanding as captured by model assumptions is limited. Deeper analysis of trametinib
cases suggest mechanisms of resistance and what drives rapidly cycling cells in general.
Importantly, although we focus on four drugs here, previous work®'.62 has reported similar
data for 107 additional drugs studied in MCF10A, of which we believe approximately 65
that share targets with SPARCED model components are good candidates for similar

modeling as here, which would be a logical next step.

For palbociclib, the simulations overpredicted its efficacy, showing very high
growth inhibition at moderate doses to complete cytostasis at high doses. This reflects

the indispensability of the drug target, CDK4/6, as per the model of the cell cycle pathway.
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However, in experiments, even the highest doses resulted in only partial growth inhibition.
CDKa4/6 is associated with traversing the cell cycle restriction point®”. In pre-S-phase cells,
one of the regulators of restriction point, Rb, is bound to a key transcription factor of the
cell cycle process, E2F. In the presence of a growth stimulus, CDK4/6 is activated when
bound to Cyclin D. This activated Cyclin D-CDK4/6 complex can phosphorylate and
inactivate Rb, which then releases E2F. Subsequently, there is an upregulation of E2F
which then mediates S-phase entry and progression by activating Cyclin E and Cyclin A.
The mechanism of CDK4/6 inhibitors such as palbociclib attempt to induce cytostasis by
preventing the inactivation of Rb by CDK4/688. This canonical understanding places
CDK4/6 as indispensable, similar to how it is modeled, but experiments did not agree with
this assumption. One of the known resistance mechanisms of CDK4/6 inhibition is the
loss of Rb function8%%, However, since MCF10A cells do not harbor such mutations, it is
an unlikely explanation in this case. MCF10A are hormone receptor (HR) negative,
whereas palbociclib is mainly understood to be more effective in HR positive contexts®?,
so perhaps differences caused by estrogen and progesterone receptor could be helpful
in understanding the discrepancies. Another reported resistance mechanism in cancer
cells is the overexpression of Cyclin E®%%, which is a regulator of the later stages of cell
cycle, but is also not the case in MCF10A cells. In the results section, we investigated
mismatch between model and experimental doubling time and restriction point behavior,
finding neither likely to explain the discrepancies. Therefore, we think the most likely
explanation is that CDK4/6 is simply not as indispensable for the cell cycle as
contemporary views may portray. It has been increasingly reported that CDKs can

compensate for one another’®, so the activity of other CDKs could compensate for
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CDK4/6 activity in actively cycling cells. Such mechanisms were not included in the
original cell cycle submodel®, so these additions are likely important for capturing effects
of cell cycle-targeted therapies. Sensitivity analysis is a generally useful computational
tool for understanding which mechanisms are related to particular data features, and may
help such model refinement. However, currently, the proposed algorithm is
computationally-intensive just for generating a single dose response data point (multiple
replicates of 100s of initial stochastic cells). Increasing computational efficiency of the
algorithm is an immediate next goal. Sensitivity analysis on stochastic models is
notoriously difficult®®-°7 and an open area of research, but one that could synergize with

approaches such as the one presented here.

For neratinib, the simulations underpredicted its efficacy, showing weak inhibition
for moderate to high doses whereas the experiments showed significant growth inhibition
to complete cytostasis within this range. To investigate this discrepancy, we considered
the progression of ERK signaling within the single cell model and how the neratinib drug
action might affect it. Neratinib is an irreversible inhibitor of EGFR, which attempts to block
both ERK and Akt signaling by inhibiting ligand-receptor interactions. The model
incorporates both ligand-induced and basal signaling along the ERK pathway. In
simulations, if cells enter the cell cycle in the absence of ligand, it would result in
proliferation that the drug action would be unable to inhibit. To test this, we performed
subsequent simulations where EGF was absent from the growth media, but several
simulated cells were still cycling. This is contrary to the experimental observations that
MCF10A cells do not proliferate without EGF8%83, and explains the discrepancy observed

between simulation and experimental results of neratinib dose response. Furthermore,
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we sought to account for this mismatch by altering a key model reaction modulating basal
ERK activity, basal Ras-GDP to Ras-GTP exchange rate. We reduced this rate constant
to minimize the probability of cell division in absence of EGF and ran all dose response
simulations again. This time, the neratinib dose response showed closer alignment with
the experimental result, but we observed overprediction of growth inhibition for all other
drugs, presumably due to the altered balance between basal and ligand induced ERK
signaling. Hence, ideally, the model should incorporate a more improved balance
between basal and ligand induced signaling for describing cell proliferation events. In our
previous work, stochastic single cell simulations initiated from a representation of a
serum-starved MCF10A cell minimally entered S-phase without EGF?'. However, for cell
population simulations done here, single cells are subject to randomized sampling for
induction of an asynchronously cycling population which more closely resembles the
experimental conditions whereby drug treatment is applied after growth media is
introduced to the cells. Also, cells were followed for much longer, which amplifies small
percentages of cells still cycling with insulin treatment alone. Thus, the model’s limitations

become more apparent here at the population level.

The neratinib case study highlighted an important future direction focused on
parameter estimation for such models with stochastic components. This is a challenging
area due to the computational cost of model evaluation, and the wide range of datasets
that are needed to constrain large stochastic models. One part of our previous work was
to do this for a subset of rate constants by “initialization”?".98. In initialization, certain model
parameters and initial conditions are determined for a specific cell-line context using a set

of focused parameter estimation operations which aim to tune parameters based on
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constraints placed on model observables. It is a computationally intensive process
whereby each parameter estimation step performs iterative execution of deterministic
model simulations. The SPARCED model is composed of a stochastic gene expression
and a protein biochemistry module which are executed simultaneously. However,
communication bottlenecks between the modules caused the computation time to be
impractical for the purpose of initialization®. Recently, we solved the communication
bottleneck problem which sped up the deterministic execution by over 200-fold%.
Fast deterministic parameter estimation solvers have been reported for large-scale
models as well?2. This drastic increase in computation speed for deterministic simulations
will allow a more exhaustive exploration of the model parameters essential for defining a
more robust initialization protocol, but extending this to stochastic evaluation remains an

important unsolved problem.

For trametinib, model predictions closely resemble experimental observations.
Trametinib has high specificity for MEK1/2; once MEK1/2 is inhibited, it is no longer able
to phosphorylate ERK1/2%. ERK signaling controls the G1/S-phase transition of the cell
cycle® through activation of RSK, which in turn upregulates the production of Cyclin D
and CDK4/6. Cyclin D expression can drive the cell through the G1/S-phase checkpoint,
as described above. When these events are inhibited by trametinib, the cell is unable to
progress through the checkpoint. However, results indicate that low-to-medium doses of
trametinib are unable to reduce cycling in every cell in the population. It was hypothesized
that the signaling response patterns of a mother cell pass on to daughter cells, enabling
an expression pattern to continue through multiple generations'®. Therefore, we

hypothesized that the initial values of the Generation 1 mother cells could predict the
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number of divisions that occur from said mother cell. The number of division events was
explainable by principal components analysis, with higher ERK signaling capacity being
associated with an increased number of division events. Thus, in this case, acute
resistance to trametinib is simply related to a multitude of biochemical factors all impinging

on increased activity of the target ERK pathway.

In conclusion, we have developed an algorithm that takes a mechanistically-
detailed model of stochastic proliferation and death, and generates lineage-resolved
simulations that can be used to interpret dose response viability data and better
understand cellular response heterogeneity. Specific demonstrations suggested new
insights into drug response, cell cycle biology, rapidly dividing phenotypes, and acute drug
resistance. Given the extensive availability of drug dose response viability data, we
anticipate that this work will help address the data availability bottleneck in modeling,

facilitating the development of mechanistic models of single-cell behavior..
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Methods

Code Availability

The final model scripts, files, and information are available on the SPARCED

GitHub page at github.com/SPARCED/LinResSims. For detailed usage information, and

for more details on how models and simulations are implemented, we recommend this
page to the reader.

Stochastic Model Components

The treatment of stochasticity was inherited from the SPARCED model and is
described in detail there?'%3, Briefly, stochasticity arises from gene expression, and it is
described by what is sometimes called a telegraph model’°"192, Genes in the model can
be active or inactive, with first-order switching. Transcripts are produced from active
genes and undergo degradation, also both first order. These reactions are simulated with
a time step of 30 seconds, that was selected based on experimental data for gene
switching rates in mammalian cells, to yield a low probability a gene becomes active and
inactive in a single interval (in prior work faster time steps were confirmed not to impact
simulation results). The reactions fire with a Gillespie/tau-leap-like mechanism. In a time
step, random uniform numbers are compared to the gene activation and inactivation rate
constants to determine gene switching events. The number of transcript births and deaths

are determined by sampling from a Poisson distribution.

Heterogenization happens due to stochastic gene expression. At the time of cell
division, the two daughter cells have identical molecule numbers and species
concentrations. Thus, we default to a symmetric division. After cell division, stochastic

gene expression happens in each cell independently, creating natural drift. It is in principle
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possible for a user to specify asymmetric division, which could be done by implementing
a “divider” function'%® which will be executed every time a division point is detected after
any single cell simulation. Such a function may account for the individual protein molecule
counts of the mother cell and determine their fate in the daughter cells as a result of an

appropriate probabilistic operation.

In the example applied to the simple cell cycle model®* (see below), stochasticity
was generated by creating an asynchronously cycling initial population as illustrated in
Figure 1. That is, based on a time course simulation across a cell cycle, random time
points were chosen, and the model state from these time points were used as initial
conditions for different cells in the simulated population. The underlying model is
deterministic and we found that its desired “cycling” behavior is very sensitive to
parameter variation when we tried to generate stochasticity by adding random noise to

the individual parameters and/or introducing Langevin equations to the model structure.

SPARCED Pharmacodynamic Models

Reactions representing drugs binding to their reported targets with mass action
rate laws were added to the SPARCED model (see model input text files). The
assumptions and mechanism of action for each drug are described below. We tested each
drug action model by observing simulated deterministic response of an average serum-
starved cell to EGF and Insulin (growth media doses) with and without drug at high dose
(10 uM). We required (i) intracellular and extracellular free drug concentration equilibrated
rapidly (within a few minutes); (ii) drug-target engagement (complex formation) was

observed similarly rapidly; (iii) that the drug had a substantial effect on a downstream
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biomarker (ppAKT-alpelisib, ppERK-trametinib, pEGFR-neratinib, or CDK4/6 activity-

palbociclib).

Alpelisib. Alpelisib enters and leaves the cell with first-order kinetics and the same rate
constant (0.01 s™'). Cytoplasmic alpelisib binds reversibly to its intracellular targets, p110
(representing all p110 isoforms) and free PI3K (p85/p110 heterodimers), with a
dissociation constant (Kd) of 2.4 nM%¢ and mass action kinetics (kon = 0.001 nM-'s™"; Koff
=0.0024 s™"). Although alpelisib is a p110a. isoform-specific inhibitor, the SPARCED model
does not yet incorporate PI-3K isoform-specific biology, so this simplification is necessary
at the current stage. The binding of alpelisib to p110 prevents its dimerization with the
regulatory subunit (p85). Any drug-bound species loses its kinase activity. Any drug-
bound species undergoes first-order degradation with a rate constant equal to that of the

non-drug-bound species.

Palbociclib. Palbociclib enters and leaves the cell and the nucleus with first-order kinetics
and the same rate constant (0.01 s'). Nuclear palbociclib reversibly binds to its target,
nuclear CDK4/6, with a dissociation constant (Kq) of 1.9 nM and mass action kinetics (kon
= 0.001 nM-'s”"; kot = 0.0019 s™'). Any drug-bound species loses its kinase activity. Any
drug-bound species undergoes first-order degradation with a rate constant equal to that

of the non-drug-bound species.

Trametinib. Trametinib enters and leaves the cell with first-order kinetics and the same
rate constant (0.01 s'). Cytoplasmic trametinib reversibly binds to its target,
unphosphorylated free MEK, with a dissociation constant (Kd4) of 0.35 nM and mass action
kinetics (kon = 0.001 nM-'s™"; kot = 0.00035 s'). Any drug-bound species loses its kinase

activity and ability to bind substrates. This is a simplification of trametinib action but is
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effective for capturing the broad effects of downregulating the ERK pathway. Any drug-
bound species undergoes first-order degradation with a rate constant equal to that of the

non-drug-bound species.

Neratinib. Neratinib enters and leaves the cell with first-order kinetics and the same rate
constant (0.01 s™). Cytoplasmic neratinib binds irreversibly to free EGFR, ErbB2, and
ErbB4 with first-order kinetics (kon = 10 nM-'s"). While this is a kinase inhibitor, and drug
bound complex loses kinase activity, for simplicity we disallow subsequent interaction with
other receptors and ligands. Any drug-bound species undergoes first-order degradation

with a rate constant equal to that of the non-drug-bound species.

Lineage-Resolved Simulations

Asynchronous population. Cell population simulations are initiated by creating a
representation of an asynchronously cycling cell population. The starting size of the cell
population is specified by the user. For each starting cell, initial conditions representing
an average serum-starved MCF10A cell are used to create a heterogenized cell
population?!. For heterogenization, we run stochastic single cell simulations for 48
simulated hours under serum-starved conditions, using the initial conditions of the
average serum-starved MCF10A cell. Thus, the intrinsic gene expression noise
incorporated within the single cell model leads to heterogeneity in protein levels across
the starting cell population over the duration of simulation time. Then, simulated growth
media with EGF (3.3 nM) and insulin (1721 nM) is introduced and another series of
stochastic simulations are run for each individual cell for 48 hours. From the generated
trajectories, for each cell a timepoint is randomly selected from a uniform distribution

using the NumPy randint function. The conditions at this time point for each cell are
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used as the initial conditions for the first generation. Single-cell simulations are executed

for all first generation cells for the user-specified duration (typically 72 hours).

Identifying cell division events. Once the single-cell simulations are completed, the
generated outputs are analyzed to determine cell division events. The cell division events
are detected by analyzing Cyclin B-CDK1 trajectories. For this, we defined a python
function combining the find peaks methods in the SciPy signal processing library and
the n-th discrete difference calculation method (along any given axis) in the NumPy
library. For any individual cell, if a division event is detected, timepoints after the
occurrence of cell division events are discarded and the state vector at the time of cell
division is selected as the initial condition for two new second generation cells. Thus, we
assume symmetric division, where the daughter cells have identical initial conditions.
Importantly, daughter cells immediately begin experiencing drift from one another due to
stochastic gene expression, which is constantly occurring in every simulated cell

differently.

Identifying cell death events. Cleaved PARP is the readout for cell death?'. For any single
cell, if more than half of PARP has been cleaved at any time point, the cell is labeled dead
at that time point. To compare simulated cell death events to experimental data, we
assumed that any death event within the last 1 hour of the simulation would be observable

by the viability staining used.

Subsequent generations. For each generation, state matrices for individual cells are
obtained and saved as part of output dataset. In the event of a cell division, we retain the
state matrix of the mother cell until the time point of division and the remaining portion is

truncated and discarded. For every cell, we scan the output for the duration of its lifetime
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to find division events. To determine the required simulation time for next generation of
daughter cells, the division time point is subtracted from the total simulation time. The
single cell outputs at the time point of division of each mother cell is recorded as initial
conditions for the next generation of daughter cells. Thus, we define the required
simulation time, population, and initial conditions for the next generation of cells. This
process is repeated for the subsequent generations of cell populations. In a given
generation, if there is no cell division event observed within the simulation time, the
population simulation is terminated. We assume symmetric division, where the daughter

cells have identical initial conditions.

Implementation. Computation is performed using HPC-compatible parallel processing in
Python whereby single cell simulations are run in individual CPU threads. To run the cell
population simulation, a computational environment with an implementation of MPI
(Message Passing Interface), such as OpenMPI'% on Linux and MSMPI on Windows
systems needs to be set up in addition to the dependencies of the SPARCED model
pipeline. Before the simulation can be performed, the SPARCED model is built using the
python script under scripts/createModel.py, which creates an executable single cell model
based on the specifications in the input files. Once the model build process is complete,
MP1I is be used to run cell population simulations (see git repository). Upon completion of
simulations, the results are saved to disk as Python pickle objects for analysis and
visualization. For detailed reproduction of results in the paper and for specific use of the

codebase, we would refer the reader to the GitHub documentation.
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A main function is the cellpop.py script. The command line arguments passed to the
this script are used to specify inputs to the simulation representing the experimental
conditions as well as several workflow parameters that dictate the computation. A more
detailed specification of these variables can be made by using a json config file, which
the user may define for each simulation run. This allows the alteration of several key
workflow parameters without modification of the simulation script itself. By default,
simulation config files are located in the folder sim_configs and each file is passed to the
cellpop python script using the argument —sim_config. The contents of the sim_config file
are read as a python dict object by the cellpop.py script. We refer the reader to the
GitHub repository for detailed usage of the config file.

Running Cell Population Simulations with a New Single Cell Model

By default, the cell population simulation workflow uses the SPARCED single cell model.
It is capable of running simulations with a different single cell model given that the model
has a compatible structure. We have provided an example applied to a simple, classical
cell cycle model® (see the GitHub repository), but others could be compatible. A
compatible model must (i) have a state matrix representing a single cell, (ii) have a
variable representing the dynamic molecular signature of cell cycle markers, i.e., periodic

activation and inactivation of cyclins, and (iii) be executable within a python module.

To replace the SPARCED model in cell population simulations with another single cell

model:

1. Place all single cell simulation operations within a python function. This
function must be given a unique name and saved in a module of the same

name under bin/modules. The name of the module must be specified under
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“‘model_module/run_model” option in the config file. This function may accept
any number of arguments required to execute the single cell model (e.g. initial
conditions, parameters, duration etc.) and the arguments must be correctly
mapped within the “kwargs_default” dictionary in the next step.

2. Write another python function to generate an input dict for the single cell
model function, mirroring the input/output structure of the LoadSPARCED
function. This function should be given a unique name and saved in a module
of the same name as the function under bin/modules. The name of the
module must be specified under “model_module/load_model” option in the
config file. The function must return two dictionaries, namely:

e model_specs: dictionary containing “species_all” (list of model species
names according to their order in the state matrix) and “cc_marker”
(name of the cell cycle marker species)

e kwargs_default: dictionary containing keyword arguments for the
“run_model” function.

3. Save both python functions as modules with the same name as the functions
under bin/modules.

4. Write a json config file with key-specific values appropriate for the new model
structure. Be sure to make "load_model" and "run_model" options consistent
with the new module names. For more details on the structure of the sim

config, see sim_configs/README.md
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As an example for this procedure, we used a classic simple ODE model of the cell cycle
4. The model represents the interactions of cdc2 and cyclin during major events of the
cell cycle in Xenopus oocytes. This particular implementation of the model has been
defined entirely within a python module (bin/modules/TysonModule.py) and simulated
using the LSODA solver in the scipy library. The periodic oscillation of cyclin-P/Cdc2
complex has been selected as the cell cycle marker in this implementation. The
"load_model" and "run_model" modules have been provided as
bin/modules/LoadTyson.py and bin/modules/RunTyson.py. The sim_config json file

corresponding to this workflow is sim_config/default.json.

GR Score Calculation and Experimental Data Source

Experimental data®® were obtained from synapse

(www.synapse.org/Synapse:syn18456348/wiki/590585), and the data pull script is

provided in the GitHub. Dose responses were calculated using the growth rate inhibition
metric (GR)®°. Dose response simulations were run for 10 dose-levels matching
experimental data for each drug and 10 replicates of each dose. Outputs from the cell
population simulations were read and analyzed to determine the total number of living
cells over time for the duration of the experiment time. The GR scores were computed for
each replicate from the number of living cells at 72 hours using the Python script provided

as part of GR-metrics git repository.

Calculation of Fractional Cell Cycle Progression

Cell cycle progress estimation. For the palbociclib dose response, the extent of cell cycle
progress at the time of drug addition was estimated using a function of average cyclin

concentration levels. CyclinE-CDK2, CyclinA-CDK2 and CyclinB-CDK1 species
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concentrations were converted to a relative measure based on their observed peaks. An
average of these three variables over time generated an oscillating function, with trough-
to-trough distance representing total cell cycle time. We determined an average trajectory
of this function using a deterministic simulation. Then, we calculated the function
trajectory for individual Gen 1 cells. We calculated the relative cell cycle progression as
cell cycle progression time as aligned to the average, divided by the time between two

neighboring troughs in that cell’s trajectory.

Estimation of cell division probability given cell cycle progression. For any given drug
dose, the cell cycle progression of all cells at the time of dose administration was
calculated. Then all living cells were grouped into those that divided and did not divide in
both Gen 1 and Gen 2. Gaussian kernel density estimation was used to estimate the
probability density function for each group. Using the probability density function, the
number of cells for dividing and non-dividing groups within cell cycle progress time
intervals with increments of 0.01 were estimated. For each interval, the probability of
division at Gen 1 and 2 were calculated using the ratio of number of dividing cells and

total number of cells.

Principal Components and Partial Least Squares Analysis

The number of progeny arising from each Gen 1 cell (‘mother cell’) was determined from
control condition simulations as above. Z-score normalization was applied to the initial
condition matrix (cells-by-species) using standardScaler.transform in scikit-learn.
Principal component analysis was completed using decompostion.PCA in scikit-learn.
To apply this projection to the drug-treated simulated cells, we generated a new initial

state matrix from simulated mother cells treated with 0.032 nM trametinib and normalized
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as above. Partial Least Squares Regression was completed using the
cross_decomposition.PLSRegression package in scikit-learn. This was applied to
the initial values matrix of control condition simulations and weights extracted from the
model object using the .x_loadings attribute. The code underlying this analysis is in the

above-mentioned GitHub repository as well.
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Supporting Information Legends

Figure S1. Cell Death Analysis. A-D. Fraction of dead cells among cells simulated
between the timepoints 71h and 72h (the last hour) for the four drugs as indicated.
Experimental data were obtained as indicated in the main text references.

Figure S2. Rapidly Dividing Phenotype Analysis. Initial conditions from 4,000
simulated cells under control conditions were arranged into a matrix as in Figure 5 and
analyzed by principal components analysis (PCA) or partial least squares regression
(PLSR). A. Top 20 loadings of the first principal component under control conditions. B.
PLSR analysis. Points are sized by number of division events, with colors equivalent to
Figure 5A. C. Top 20 loadings of the first PLSR component under control conditions.
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Figure 1. Workflow of the developed simulation algorithm. A. An asynchronously cycling cell population
(Gen 1) is initiated by sampling the initial conditions at random time points from a pool of single cell simulations
run with growth factor stimulation (Gen 0). B. Upon the execution of each generation, detection of new cell
division events (or lack thereof) within simulation time determines the creation or not of a next generation. C. (left
and center) Cross-generational trajectory of observed ERK and AKT activity from a randomly-chosen single-cell
lineage. Varying colors represent subsequent generations, starting from Gen 1. (right) In silico lineage tracing
capability is demonstrated with a lineage dendrogram. Lines representing individual cells are labeled with

generation and index.
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Figure 3. Simulation Analysis to Investigate Palbociclib Dose Response
Discrepancy. A. Simulated cell growth curves under control conditions for multiple
replicates. The dark black line is the median which was used to estimate doubling time,
when the initial cell number (100) doubled (200). B. The fractional progression through
the cell cycle (see Methods) was estimated for the beginning 100 generation 1 cells.
This was the point at which 0.1 uM palbociclib was administered. The division outcome
for each cell was then determined for this current generation, and if it exists for the next
generation. The probability of division occurring was empirically estimated from this
collection of binary outcomes and then plotted. C. Cell lineage dendrogram for
response to 0.1 uM palbociclib. Most cells divide once early, and then the response is
cytostatic.
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Figure 4. Simulation Analysis to Investigate Neratinib Dose Response Discrepancy. A.
Lineage dendrograms under control (no drug) conditions without EGF but with insulin. There are
multiple rapidly dividing cells. B. Dependence of the probability of cell division as a function of the
rate constant controlling basal Ras activation. Simulations were done as in A, without EGF and
with insulin. The baseline value for the rate constant in the current published version of the model
is designated by the red diamond. C-F. Dose response curves as in Figure 2, except with the
altered basal RasGTP activation rate constant from panel B (2x104 s1).
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Figure 5. Rapidly Dividing Phenotype in Control and Trametinib-Treated Conditions. A. Histogram
displaying low (0-6) moderate (6-16) and high (16+) number of division events for simulated cells under control
conditions. Cells (4,000) were compiled across 4 drugs (0 dose), 100 cells per replicate, 10 replicates. B.
Histogram displaying low (0-6) moderate (6-16) and high (16+) number of division events for simulated cells
under trametinib treatment conditions (0.03 nM). Cells (1,000) were compiled across one dose, 100 cells per
replicate, 10 replicates. C. Setup of the hypothesis, relating initial conditions of Generation 1 mother cells to the
eventual number of divisions arising from them. D. Principal component plot of the initial states matrix under
control conditions. Points are sized by number of division events, with colors equivalent to panel A. E. Top 20
loadings of the second principal component under control conditions, and a cartoon schematic of where they fall
along the pathway driving the cell cycle. F. Projection of the trametinib data set onto the principal components
learned from the control dataset. Points are sized by number of division events, with colors equivalent to panel A.
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Figure S1. Cell Death Analysis. A-D. Fraction of dead cells among cells simulated
between the timepoints 71h and 72h (the last hour) for the four drugs as indicated.
Experimental data were obtained as indicated in the main text references.
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Figure S2. Rapidly Dividing Phenotype Analysis. Initial conditions from 4,000
simulated cells under control conditions were arranged into a matrix as in Figure 5 and
analyzed by principal components analysis (PCA) or partial least squares regression
(PLSR). A. Top 20 loadings of the first principal component under control conditions. B.
PLSR analysis. Points are sized by number of division events, with colors equivalent to
Figure 5A. C. Top 20 loadings of the first PLSR component under control conditions.
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