

1 **Dynamic convergence of neurodevelopmental disorder risk genes across**
2 **neurodevelopment**

3

4 **AUTHORS**

5 Meilin Fernandez Garcia^{1*}, Kayla Retallick-Townsley^{1,2*}, April Pruitt^{3*}, Elizabeth
6 Davidson^{4*}, Novin Balafkan^{1,5*}, Jonathan Warrell⁶, Tzu-Chieh Huang^{1,16}, Alfred
7 Kibowen¹, Zhiyuan Chu⁶, Yi Dai⁷, Sarah E. Fitzpatrick^{3,8}, Ran Meng⁶, Annabel Sen¹,
8 Sophie Cohen¹, Olivia Livoti¹, Suha Khan⁸, Charlotte Becker¹, Andre Luiz Teles e
9 Silva^{1,9}, Jenny Liu¹, Grace Dossou⁸, Jen Cheung¹, Susanna Liu⁶, Sadaf Ghorbani¹, P.J.
10 Michael Deans¹, Marisa DeCiucis^{10,11,16}, Prashant Emani⁶, Huanyao Gao¹, Hongying
11 Shen^{10,11,16}, Mark Gerstein^{6,12}, Zuoheng Wang^{7,12}, Laura M. Huckins^{1,2,3}, Ellen J.
12 Hoffman^{4,13#}, Kristen Brennan^{1,2,3,14,15,16#}

13

14 **AFFILIATIONS**

15 ¹ Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of
16 Medicine, New Haven, CT 06511

17 ² Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and
18 Genomics, Icahn Institute of Genomics and Multiscale Biology, Nash Family
19 Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at
20 Mount Sinai, New York, NY 10029

21 ³ Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT
22 06511

23 ⁴ Child Study Center, Yale University School of Medicine, New Haven, CT 06511

24 ⁵ Mohn Research Centre for Regenerative Medicine, Haukeland University Hospital,
25 Bergen, Norway.

26 ⁶ Department of Molecular Biophysics & Biochemistry and Program in Computational
27 Biology and Bioinformatics, Yale University, New Haven, CT 06511

28 ⁷ Department of Biostatistics, Yale University School of Public Health, New Haven, CT
29 06510

30 ⁸ Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, US

31 ⁹ Hospital Israelita Albert Einstein, São Paulo, SP, Brazil

32 ¹⁰ Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven,
33 CT, 06511

34 ¹¹ Systems Biology Institute, Yale West Campus, West Haven, CT 06516

35 ¹² Department of Biomedical Informatics and Data Science, Yale School of Medicine;
36 New Haven, CT 06511

37 ¹³ Department of Neuroscience, Yale University School of Medicine, New Haven, CT
38 06511

39 ¹⁴ Department of Genetics, Yale University School of Medicine, New Haven, CT 06511

40 ¹⁵ Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511

41 ¹⁶ BD2: Breakthrough Discoveries for thriving with Bipolar Disorder, Santa Monica, CA

42

43 * These authors contributed equally

44 # Co-corresponding author

45

46 CORRESPONDENCE

47 kristen.brennand@yale.edu and ellen.hoffman@yale.edu

48

49 KEYWORDS

50 Human induced pluripotent stem cells; CRISPR screen; neural progenitor cells;
51 glutamatergic neurons; GABAergic neurons; zebrafish; autism spectrum disorder;
52 psychiatric genomics; convergence; precision medicine

53

54 ABSTRACT

55 Over three hundred and seventy-three risk genes, broadly enriched for roles in neuronal
56 communication and gene expression regulation, underlie risk for autism spectrum
57 disorder (ASD) and developmental delay (DD). Functional genomic studies of subsets
58 of these genes consistently indicate a convergent role in neurogenesis, but how these
59 diverse risk genes converge on a smaller number of biological pathways in mature
60 neurons is unclear. To uncover shared downstream impacts between
61 neurodevelopmental disorder (NDD) risk genes, here we apply a pooled CRISPR
62 approach to contrast the transcriptomic impacts of targeting 29 NDD loss-of-function
63 genes across human induced pluripotent stem cell (hiPSC)-derived neural progenitor
64 cells, glutamatergic neurons, and GABAergic neurons. Points of convergence vary
65 between the cell types of the brain and are greatest in mature glutamatergic neurons,
66 where they broadly target not just synaptic and epigenetic, but unexpectedly,
67 mitochondrial biology. The strongest convergent networks occur between NDD genes
68 with common co-expression patterns in the post-mortem brain, biological annotations,
69 and clinical associations, suggesting that convergence may one-day inform patient
70 stratification and treatment. Towards this, ten out of eleven drugs tested that were
71 predicted to reverse convergent signatures in human cells and/or arousal and sensory
72 processing behaviors in zebrafish ameliorated at least one behavioral phenotype *in*
73 *vivo*. Altogether, robust convergence in post-mitotic neurons represents a clinically
74 actionable therapeutic window.

75 INTRODUCTION

76 Autism spectrum disorder (ASD) and related developmental delay (DD) are highly
77 heritable¹. The aggregate impact of common variants of small effect reflects most
78 genetic risk², but in as many as a quarter of cases, potentially damaging rare inherited
79 and *de novo* mutations in risk genes are detected³. There is significant overlap between
80 those genes affecting ASD⁴ and those more broadly affecting developmental^{5,6} and
81 psychiatric^{7,8} disorders. Altogether, neurodevelopmental disorder (NDD) risk genes are
82 typically expressed during cortical development⁹, particularly the excitatory and
83 inhibitory lineages⁴, and broadly split between two functional classes: neuronal
84 communication (e.g., synaptic function) and gene expression regulation (e.g., chromatin
85 regulators and transcription factors)^{4,10-15}. Over half of NDD genes have roles in gene
86 expression regulation⁴, sharing substantial overlap in genomic binding sites in the
87 brain¹⁶, and with targets enriched for NDD risk genes¹⁷⁻²⁰. Yet, evidence to support the
88 parsimonious explanation that regulatory NDD genes preferentially target synaptic NDD
89 genes, is lacking⁴. It remains unclear how disrupting NDD genes with distinct functions
90 yields similar outcomes.

91 Many NDD genes seem to have broad roles outside their annotated function; for
92 example, some chromatin regulators (e.g., *CHD8*, *CHD2*, and *POGZ*) localize to
93 microtubules in the centrosome²¹, mitotic spindle²², and cilia^{23,24}, suggesting the
94 possibility that they function directly in neurogenesis and/or synaptic biology. Indeed,
95 both regulatory and synaptic genes impact proliferation and patterning of progenitors
96 (e.g., *ARID1B*^{25,26}, *CHD8*^{27,28}, *NRXN1*^{29,30}, *SYNGAP1*³¹), excitatory transmission by
97 glutamatergic neurons (e.g., *CHD8*^{32,33}, *NRXN1*³⁴, *SHANK3*³⁵, *SYNGAP1*³⁶), and
98 inhibitory transmission by GABAergic neurons (e.g., *ARID1B*³⁷, *CHD8*³², *NRXN1*³⁸,
99 *SHANK3*³⁹). Do overlapping downstream impacts explain how heterogeneous gene
100 mutations result in similar neuronal phenotypes and clinical outcomes⁴⁰?

101 Many have proposed that diverse ASD genes are convergent⁴¹⁻⁴³. Indeed, NDD genes
102 are co-expressed in the brain⁴⁴⁻⁴⁶, suggesting that they are regulated together and
103 involved in related biological processes, and result in highly interconnected protein-
104 protein interactomes⁴⁷⁻⁵⁰, indicating functional relationships between NDD
105 proteins. Even as the number of NDD genes grows, risk genes continue to converge on
106 a finite number of biological pathways, developmental stages, brain regions and cell
107 types⁴¹. Disentangling these complex etiologies remains an outstanding challenge.

108 Excitatory-inhibitory (E:I) imbalance is widely believed to underlie NDD⁵¹⁻⁵³, whether
109 arising from altered proportions of neuronal lineage cell types in the developing brain or
110 synaptic deficits in glutamatergic or GABAergic neurons. Indeed, knockdown of subsets
111 of NDD genes in human neural progenitor cells (NPCs)^{22,54,55}, cerebral organoids^{27,56,57},
112 and developing mouse⁵⁸, tadpole⁵⁹ and zebrafish⁶⁰ brains reveal overlapping impacts on
113 neurogenesis. Despite synaptic dysfunction being a hallmark of NDD, the extent to
114 which downstream impacts of NDD genes also converge in mature neurons is largely
115 unknown.

116 Given emerging evidence that epigenetic NDD genes have diverse and interconnected
117 roles²¹⁻²⁴, we tested the hypothesis that the nature of convergence is dynamic,
118 influenced by developmental and cell-type contexts. We report a pooled CRISPR-

119 knockout (KO) strategy targeting loss-of-function (LoF) mutations to 29 NDD genes,
120 most with roles in chromatin biology (*ANK3*, *ARID1B*, *ASH1L*, *ASXL3*, *BCL11A*, *CHD2*,
121 *CHD8*, *CREBBP*, *DPYSL2*, *FOXP2*, *KMT5B* (*SUV420H1*), *KDM5B*, *KDM6B*, *KMT2C*,
122 *MBD5*, *MED13L*, *NRXN1*, *PHF12*, *PHF21A*, *POGZ*, *PPP2R5D*, *SCN2A*, *SETD5*,
123 *SHANK3*, *SIN3A*, *SKI*, *SLC6A1*, *SMARCC2*, *WAC*) in induced NPCs, glutamatergic
124 neurons, and GABAergic neurons *in vitro*. We describe convergent networks that are
125 unique between cell types, and in neurons, enriched not just for synaptic biology, but
126 also epigenetic regulation and, unexpectedly, mitochondrial function. Novel applications
127 of machine learning allowed us to extend our analyses *in silico* across all known NDD
128 genes, resolving how the degree of convergence between risk genes was influenced by
129 clinical associations, biological function, and co-expression patterns in the post-mortem
130 brain. Convergent analyses resolved the genes and cell types that underlie *in vivo*
131 behavioral stratification and successfully predicted drugs capable of suppressing
132 phenotypes in mutant zebrafish, suggesting that precision medicine-based approaches
133 can successfully target shared downstream gene targets between multiple NDD genes.
134 Novel points of convergence in post-mitotic neurons represent exciting new therapeutic
135 targets occurring within a clinically actionable therapeutic window.

136

137 RESULTS

138 A systematic comparison of NDD gene effects across neuronal cell types

139 From 102 highly penetrant loss-of-function (LoF) gene mutations associated with NDD
140 (previously described as 58 gene expression regulation, 24 neuronal communication,
141 and 20 other)⁴, we used gene ontology and primary literature to identify 21 epigenetic
142 modifiers specifically involved in chromatin organization, rearrangement, and
143 modification (*ASH1L*, *ARID1B*, *ASXL3*, *BCL11A*, *CHD2*, *CHD8*, *CREBBP*, *PPP2R5D*,
144 *KDM5B*, *KDM6B*, *KMT2C*, *KMT5B* (*SUV420H1*), *MBD5*, *MED13L*, *PHF12*, *PHF21A*,
145 *SETD5*, *SIN3A*, *SKI*, *SMARCC2*, *WAC*), as well as two transcription factors with
146 putative roles as chromatin regulators (*FOXP2*, *POGZ*). Three extensively studied
147 synaptic genes (*NRXN1*, *SCN2A*, *SHANK3*) and three under-explored neuronal
148 communication genes (*ANK3*, *DPYSL2*, *SLC6A1*) strongly associated with NDD were
149 added (**SI Fig. 1A**). Many of these 29 genes differed in relative frequency of LoF gene
150 mutations between ASD (n=16) and DD (n=4)⁶¹, schizophrenia⁶², and epilepsy^{63,64} (**Fig.**
151 **1A-B**, **SI Fig. 1B**), as well as general associations with GWAS for many
152 neuropsychiatric disorders (MAGMA⁶⁵) (**Fig. 1C**; **SI Fig. 1C**), indicating a pleiotropic
153 effect consistent with the shared genetic liability across neuropsychiatric disorders⁶⁶.
154 iNPCs, iGLUTs, and iGABAs (**SI Fig. 2A**), as well as their *in vivo* fetal counterparts (**SI**
155 **Fig. 2B**), expressed all genes prioritized herein⁶⁷.

156 Towards resolving whether regulatory genes confer continuous or distinct periods of
157 susceptibility across neurodevelopment, we knocked out (KO) regulatory NDD genes in
158 neural progenitor cells (SNaPs⁶⁸, here termed iNPCs), immature and mature
159 glutamatergic neurons (iGLUTs)⁶⁹, and mature GABAergic neurons (iGABAs)⁷⁰ (**Fig.**
160 **1D**). A pooled CRISPR approach (ECCITE-seq⁷¹) combined direct detection of sgRNAs
161 and single-cell RNA sequencing to compare loss-of-function effects across 29 NDD
162 genes. The CRISPR-KO library was generated from pre-validated gRNAs (three to four

163 gRNAs per gene; **SI Table 1**). Sequencing of the gRNA library confirmed the presence
164 of gRNAs targeting 24 genes (*ANK3*, *ARID1B*, *ASH1L*, *ASXL3*, *BCL11A*, *CHD2*, *CHD8*,
165 *DPYSL2*, *FOXP2*, *KMT5B* (*SUV420H1*), *KDM5B*, *KDM6B*, *KMT2C*, *MBD5*, *MED13L*,
166 *NRXN1*, *PHF12*, *PHF21A*, *SCN2A*, *SETD5*, *SIN3A*, *SKI*, *SMARCC2*, *WAC*), but three
167 (*DPYSL2*, *FOXP2*, *SCN2A*) were present at lower frequency (**SI Fig. 3B-C**).

168 Control hiPSCs were induced to iNPCs, iGLUTs, and iGABAs (**SI Fig. 3A**), transduced
169 first with lentiviral-Cas9v2 (Addgene #98291) and subsequently with the pooled lentiviral
170 gRNA library three days before harvest, at day 7 (iNPC and immature iGLUT), day 21
171 (iGLUT), and day 36 (iGABA) (experimental workflow **SI Fig. 4A**; computational
172 workflow **SI Fig. 4B**; experimental validation of CRISPR editing efficiency in **SI Fig. 5**).
173 After filtering and QC (**SI Fig. 4C-E**), we resolved NDD transcriptomes for 118,436
174 single cells: 25,402 iNPC, 38,097 immature (d7) iGLUT, 28,388 mature (d21) iGLUT,
175 and 26,549 mature (d36) iGABA. Because original gene-expression based clustering
176 was driven by cellular heterogeneity, cell quality, and sequencing lane effects (**SI Fig.**
177 **6A**), independent of gRNA identity, we removed cells with high expression of subtype
178 markers and adjusted for cellular heterogeneity (**SI Fig. 6B,C**; **SI Tables 2-3**).
179 ‘Weighted-nearest neighbor’ (WNN) analysis assigned clusters based on both gRNA
180 identity class and gene expression to ensure that cells assigned to a gRNA identity
181 class demonstrated successful perturbation of the targeted NDD gene⁷². For those
182 WNN clusters where most cells were assigned to a single KO target, the transcriptomic
183 signatures were compared to non-targeting scramble control clusters. Altogether,
184 35,777 cells were used for downstream analyses: 12,107 iNPC, 3,171 immature iGLUT,
185 11,802 mature iGLUT, and 8,697 mature iGABA). An average of 474 cells were
186 assigned to each individual sgRNA (757 iNPC, 227 immature iGLUT, 562 mature
187 iGLUT, 414 mature iGABA), totaling 33,150 perturbed cells and 2,627 controls (882
188 iNPC, 90 immature iGLUT, 1,258 mature iGLUT, and 397 mature iGABA). The gene
189 expression patterns of non-perturbed iNPCs and iNeurons (>30% of all pooled cells)
190 were significantly correlated with fetal brain cells and cortical adult neurons.

191 Successful perturbations (scCRISPR-KO) were identified for 23 NDD genes (**SI Fig.**
192 **6,7**): 16 in iNPCs, 14 in immature iGLUT neurons, and 21 in mature iGLUT and iGABA
193 neurons (**SI Fig. 6**). Nine NDD genes were perturbed in all four cell types (*ARID1B*,
194 *ASH1L*, *CHD2*, *MED13L*, *NRXN1*, *PHF21A*, *SETD5*, *SIN3A*, *SMARCC2*; **SI Fig. 7A,B**).
195 For most NDD genes, KO in mature iGLUTs yielded the largest number of differentially
196 expressed genes (DEGs, pFDR<0.05) (**SI Fig. 7B**), an effect that was not driven by
197 differences in the extent of perturbation of the NDD gene itself between cell types (**SI**
198 **7Ci**). The transcriptomic effects of individual NDD genes cluster by cell type: the
199 strongest NDD gene correlations are in mature iGLUTs (i.e., all nominally significant
200 (p<0.01) log2FC DEGs are most highly correlated with each other and least correlated
201 with the other cell types, whether relative to all scramble control cells (**Fig. 1Ei,ii**; **SI Fig.**
202 **7Cii**) or random subsets of scramble control cells (**SI Fig. 8A,B**). DEGs across
203 individual NDDs shared significant gene ontology enrichments (**SI Fig. 8C**), with mature
204 iGLUTs frequently enriched for SCZ GWAS genes (12 of 21 NDD genes), whereas
205 mature iGABAs for migraine GWAS genes (8 of 21) (**SI Fig. 9**).

206 Unsurprisingly, given the greater within cell-type correlations between NDD genes and
207 the unique pathway enrichments across cell-types, very few DEGs shared significance

208 and direction of effect for the same NDD gene perturbation across all four cell-types
209 (FDR adjusted $p_{meta} < 0.05$, Cochran's heterogeneity Q-test $p_{Het} > 0.05$; computational
210 workflow, **SI Fig. 10A**); in fact, the only common DEG between cell types was frequently
211 the targeted NDD gene itself. With a more relaxed statistical threshold (nominal p-value
212 < 0.05), modest shared effects of individual NDD genes could be resolved across cell
213 types. These effects rarely resulted in perturbation of the other NDD genes themselves
214 (**SI Fig. 10B**), showed very little overlap between NDD genes (**SI Fig. 10C**), and no
215 significant enrichments with psychiatric GWAS after multiple testing correction (**SI Fig.**
216 **10D**).

217 *NDD gene knockouts resulted in cell-type-specific convergent genes and networks that*
218 *were strongest in glutamatergic neurons.*

219 “Convergent genes” (**Fig. 2**) are those DEGs with significant and shared direction of
220 effect across all NDD gene perturbations (FDR adjusted $p_{meta} < 0.05$, Cochran's
221 heterogeneity Q-test $p_{Het} > 0.05$)^{73,74} (computational workflow, **Fig. 2A**). Across the nine
222 NDD genes perturbed in all four cell types (*ARID1B*, *ASH1L*, *CHD2*, *MED13L*, *NRXN1*,
223 *PHF21A*, *SETD5*, *SIN3A*, *SMARCC2*), convergence was highly cell-type specific (**Fig.**
224 **2**; **SI. Fig. 11A-C**; **SI Data 2**). Although the strength of convergence correlated across
225 cell types (**Fig. 2C,ii**), it was greatest in mature iGLUTs (quantified as the ratio of
226 convergent genes to the average number of DEGs across all 152 unique two-to-five
227 gene combinations of these nine NDD genes) (**Fig. 2C,i**). The unique “top” convergent
228 genes (**Table 1**) showed little overlap across all cell-types, with mature iGLUTs (11,473)
229 having the largest absolute number of convergent genes (**Fig. 2D**). Convergent genes
230 were enriched for schizophrenia GWAS loci (MAGMA⁶⁵, FDR < 0.05) (**Fig. 2Ei**), rare
231 ASD and FMRP target genes (FDR < 0.05) (**Fig. 2E,ii**), and pathways involved in
232 neurodevelopment, mitochondrial function, and translational regulation (**SI Fig. 12**).
233 When tested again across the 21 NDD genes perturbed in both iGLUTs and iGABAs,
234 mature iGLUTs again showed the largest absolute number of convergent genes
235 (iGLUTs, 10,557, **SI Fig. 13A**; iGABAs, 892, **SI Fig. 13B**). Intriguingly, although
236 convergent genes were highly cell-type-specific, those NDD gene combinations that
237 were highly convergent in one cell type were likely to be convergent in others; in
238 neurons, top convergent sets most frequently included *ARID1B*, *SETD5* and *NRXN1* (**SI**
239 **Fig. 11D**).

240 Given that the biological impact of convergence is likely to be impacted by the strength
241 of shared gene regulatory relationships and functions, we re-examined convergence
242 within the framework of co-expression networks (Bayesian bi-clustering). “Convergent
243 networks” (**Fig. 3**) are co-expressed genes that share similar expression patterns
244 across NDD gene perturbations^{73,74} (computational workflow, **Fig. 3A**). The network
245 connectivity score (“network convergence”) informs the strength and composition across
246 cell types (i.e., networks with more interconnectedness and containing genes with
247 greater functional similarity have increased convergence). Convergent networks
248 generated from the 9 NDD genes perturbed in all four cell types (**Fig. 3B**) or across the
249 21 NDDs genes in both iGLUTs and iGABAs (**SI Fig. 13C**) revealed the greatest
250 convergent network strength in iGLUTs. Network-level convergence was weakly
251 correlated between cell types (**Fig. 3C**); the number of convergent unique network
252 nodes was greatest in iGLUTs, distinct across cell types (**Fig. 3D**; **Tables 2-4**; **SI Data**

253 **2), and significantly enriched for rare variants linked to schizophrenia and ASD (Fig. 3E;**
254 **Tables 2-4).** Convergent networks in iNPCs highlighted pathways associated with
255 neurogenesis (e.g., cell cycle, cell division, EPO signaling) (Fig. 3F), while in mature
256 iGLUTs they were enriched for synaptic function (transmembrane transport and
257 receptor signaling, secretory vesicles, SNARE complex) (Fig. 3G).

258 Convergent networks are strongest between NDD genes with shared co-expression
259 patterns in the post-mortem brain, biological annotations (synaptic or epigenetic), and
260 clinical outcomes (ASD or DD).

261 To resolve the extent to which functional similarity and co-expression patterns between
262 NDD genes predicted convergence, we trained a prediction model (random forest linear
263 regression)⁷⁵ using 70% of our data, evaluated it using 30% of our data, and validated in
264 an external dataset⁷³ (computational workflow, Fig. 4A; model predictor variables, Fig.
265 **6B**; more information **SI Fig. 14,15**). Cell type, brain co-expression (dorsolateral
266 prefrontal cortex, DLPFC), and functional similarity (i.e., gene ontology) correlate with
267 convergence (Fig. 4C) and well-predicted gene level convergence (97% variance
268 explained; mean of squared residuals (RMSE)=0.021) (Fig. 4Di) and moderately
269 predicted network-level convergence (53% variance explained; RMSE=0.73) (Fig. 4Dii).
270 Our trained model accurately predicted gene-level (Pearson's R=0.998, P<0.001,
271 RMSE=0.15) (Fig. 4Ei; **SI Fig. 15C**) and network-level convergence in our testing set
272 (R=0.72, P<2.2e-16, RMSE=0.85) (Fig. 4Eii; **SI Fig. 15D**), and performed moderately
273 well in predicting network-level convergence (R=0.26, P<0.001, RMSE=0.68) (Fig. 4Fii;
274 **SI Fig. 15Eii**) and to a lesser extent gene-level convergence (R=0.14, P<0.001
275 RMSE=1.75) (Fig. 4Fi; **SI Fig. 15Ei**) in the external dataset.

276 To query whether convergence reflected clinical associations to ASD or DD, we again
277 quantified convergence as the ratio of convergent genes to the average number of
278 DEGs (see Fig. 2E), here across all (2-5 gene) combinations of all NDD genes
279 perturbed in each cell type (e.g., 27,824 unique combinations of 21 NDD genes in
280 iGLUTs and iGABAs; **SI Fig. 16A**). Convergence, both gene-level (**SI Fig. 16A,C**) and
281 network-level (**SI Fig. 16B,D**), was greater between genes with stronger associations to
282 ASD compared to DD⁶¹, particularly in mature neurons (**SI Fig. 16E-F**). Yet this analysis
283 was limited by the relatively small number of predominantly ASD (n=16) and DD (n=4)
284 included in our dataset (Fig. 1B).

285 To extend our comparisons of convergence across larger sets of NDD genes,
286 particularly those clinically defined as predominantly ASD or DD genes⁶¹, or those with
287 biologically annotated synaptic or epigenetic roles⁴, we asked if it was possible to train a
288 machine learning model to predict cell-type-specific impacts of CRISPR knockout of all
289 102 NDD genes⁴. An integrative Linear Network of Cell Type Phenotypes (**LNCTP**)
290 model, previously trained on >2.8 million nuclei from the prefrontal cortex across 388
291 individuals, accurately imputes single-cell expression following simulated
292 perturbations⁷⁶. By retraining the LNCTP model using our scCRISPR-KO data (Fig. 5A),
293 we resolved convergent genes within three *in silico* post-mortem brain network models
294 (bulk prefrontal cortex (PFC) tissue, excitatory neurons only, and inhibitory neurons
295 only), noting that the LNCTP model better replicates experimental iGLUT data (Fig. 5B).

296 Expanded LNCTP *in silico* comparisons across all 102 NDD genes (**Fig. 2**; **SI. Fig. 17**)
297 predicted greater convergence in excitatory neurons compared to inhibitory neurons,
298 consistent with our *in vitro* findings (**Fig. 2C, 3D**), even more so for synaptic NDD genes
299 (n=24) relative to regulatory genes (n=58) (**Fig. 5C**). Predominantly ASD genes (n=50)
300 had greater predicted convergence in excitatory neurons (**Fig. 5C**), whereas
301 predominantly DD genes (n=40) in inhibitory neurons (**Fig. 5C**). Overall, across
302 functional or clinical categories, despite limited overlap in specific convergent genes
303 (**Fig. 5D**) and terms (**Fig. 5E, F**), there was overall enrichment for synaptic, epigenetic,
304 and mitochondrial biology (**Fig. 5G**), consistent with *in vitro* scCRISPR-KO (**Fig. 2F**).

305 Convergent genes and networks in glutamatergic neurons targeted synaptic, epigenetic,
306 and mitochondrial biology.

307 Convergent genes and networks revealed cell-type-specific disease (**Fig. 2E**) and
308 functional enrichments (**Fig. 2F, 5G,6A-B**), many consistent with established NDD
309 etiology in neurogenesis^{22,27,54-60} and synaptic biology⁴⁷⁻⁵⁰. For example, iNPCs were
310 significantly enriched for pathways involved in proliferation and differentiation, whereas
311 mature iGLUTs showed unique enrichments in neuronal communication (e.g., pre-
312 synaptic function) and regulation of gene expression (e.g., mRNA processing and
313 protein translation). Unexpectedly, both mature iGLUT and iGABA neurons were
314 enriched for mitochondrial biology (e.g., oxidative phosphorylation: mature iGLUTs:
315 NES=2.8, p<2.2e-16, FDR<0.001; mature iGABAs: NES=1.67, p=0.023, FDR<0.05).

316 Functional validation of five NDD genes (*KMT5B, NRXN1, CHD8, ASH1L, ARID1B*) in
317 inducible Cas9 (iCas9)⁷⁷ NPCs (CD184⁺/CD133⁻ NPCs) in arrayed format revealed
318 effects on proliferation (Ki67; **Fig. 6C; SI Fig. 18A**), neurogenesis (NPCs:
319 CD184⁺/CD44⁻/CD24⁺, neurons: CD184⁻/CD44⁻/CD24⁺; **SI Fig. 18B**), and gliogenesis
320 (astrocytes: CD184⁺/CD44⁺; **SI Fig. 18C**) that varied between genes. Likewise, a
321 pooled CRISPR analysis in iCas9 cortical organoids confirmed effects on neurogenesis,
322 again with variable effects between NDD genes (**SI Fig. 19**).

323 To assess how loss of NDD-associated genes affects mitochondrial function, we
324 performed a pooled CRISPR knockout screen using a nearly identical library (same
325 backbone, guide density, and control set) in the H1-iCas9 line. Transduced cells were
326 differentiated into NPCs and iGLUTs by day 21, stained with the $\Delta\psi_m$ -sensitive dye JC-
327 1, and sorted by fluorescence-activated cell sorting (FACS) into high- (PE-high) and
328 low- (FITC-high) membrane-potential fractions, following amplicon sequencing to
329 quantify gRNA representation in each fraction (**Fig. 6D**). Of the fifteen KOs, ten resulted
330 in elevated mitochondrial membrane potential (MPP) in both NPCs and iGLUTs, the
331 remaining five caused cell-type-specific impacts on mitochondrial membrane potential.
332 Pathway enrichment of the ten NDD genes that increased mitochondrial membrane
333 revealed a convergence on chromatin remodeling complexes, microRNAs, and
334 transcription factors.

335 For three NDD KOs (*ASH1L, ARID1B, NRXN1*), we validated mitochondrial effects in
336 arrayed format, using a platform with the ability to resolve dose-dependent changes in
337 mitochondrial fragmentation following pharmacological insults (**SI Fig. 20**). By high
338 content imaging, we analyzed and quantified 1×10^4 mitochondria per genotype, with
339 morphological measurements taken for mitochondrial (TOMM20-positive) volume,

340 surface area, and sphericity (roundness) as well as total OXPHOS complex, within
341 neuronal dendrites (MAP2-positive) of mature (d21) iGLUTs. Among the three NDD
342 KOs, *ARID1B* resulted in increased mitochondrial networking (indicated by decreased
343 mitochondrial sphericity and increased branch length; one-way ANOVA, Šidák's
344 adjusted $p=0.0213$ and $p=0.0081$ respectively) concomitant with increased levels of
345 OXPHOS proteins (one-way ANOVA, Šidák's, adjusted $p=0.0024$) (**Fig. 6E; SI Fig.**
346 **21A**), overall consistent with increased mitochondrial efficiency. Second, we tested
347 oxygen consumption using Seahorse Cell Mito Stress test. NRXN1 KO resulted in
348 increased coupled and maximal respiration in iGLUTs (one-way ANOVA, $p<0.05$; **Fig.**
349 **6F**); increased mitochondrial reliance, in the absence of fused mitochondria with
350 elevated OXPHOS protein levels point to a possible metabolic overload due to reduced
351 mitochondrial efficiency (**Fig. 6E**). In contrast, *ARID1B* and *ASH1L* KOs did not show
352 significant changes in these Seahorse parameters (**SI Fig. 21B–C**). Taken together,
353 both *ARID1B* and *NRXN1* KO neurons show evidence of increased mitochondrial
354 activity, *ARID1B* KO through enhanced fusion and elevated expression of OXPHOS
355 complexes, whereas *NRXN1* KO by increasing OXPHOS activity to meet ATP
356 demands. As observed for neurogenesis in iNPCs, single gene knockouts iGLUTs
357 confirmed convergent effects on mitochondrial biology, finding distinct but related
358 phenotypes between NDD genes.

359 *Pharmacological targeting of convergent genes reversed behavioral phenotypes in*
360 *mutant zebrafish*

361 By design, *in vitro* models substantially limit the complexity of the observed impact of
362 NDD genes, lacking higher circuit-level effects. Towards applying molecular
363 convergence *in vitro* to explore the mechanisms of phenotypic convergence *in vivo*, the
364 convergence of sets of NDD genes were next explored on the basis of shared
365 behavioral effects in zebrafish mutants (**Fig. 7; SI Tables 4–5**). A comprehensive *in vivo*
366 high-throughput, automated behavioral analysis in larval zebrafish⁶⁰ revealed clear
367 stratification of NDD genes based on basic arousal and sensory processing behaviors in
368 the developing vertebrate brain (**Fig. 7A; SI Fig. 22**). Given that zebrafish brain gene
369 expression was significantly correlated with *in vitro* human-derived mature neurons (**Fig.**
370 **7B; SI Fig. 23**), we asked whether behavioral stratification of NDD mutants in larval
371 zebrafish can be attributed to molecular convergence. For fifteen NDD genes for which
372 we have matched behavioral and molecular analyses, zebrafish stable mutant lines and
373 CRISPR F0 mutants were clustered based on 24 sleep-wake and visual-startle
374 parameters, yielding four distinct clusters of genes: set 1 (*nrxn1a*, *mbd5*, *kdm5bab*),
375 set2 (*phf12ab*, *skiab*, *chd2*, *smarcc2*), set 3 (*kdm6bab*, *kmt5b*, *kmt2cab*), and set 4
376 (*wacab*, *arid1b*, *phf21aab*, *chd8*, *ash1l*) (**Fig. 7A; SI Data 3**). Gene-level convergence
377 between NDD genes in these sets was distinct, largely non-overlapping between cell-
378 types, and stronger in mature iGLUTs than mature iGABAs (**Fig. 7C**). Across behavioral
379 sets, rare ASD, SCZ, and ID LoF genes were enriched primarily in iGLUTs, with all sets
380 converging on FMRP targets, highly intolerant CNVs, and ASD variants (**Fig. 7D**).
381 Phenotypes related to developmental delay, behavior, and motor function showed
382 unique enrichments by set, predominately in the iGLUTs, whereas all sets were
383 enriched for seizure, hypertonia, and abnormal skeletal muscle morphology (**Fig. 7E**).
384 Candidate drugs predicted to reverse convergent genes (i.e., drugs with anticorrelating
385 transcriptomic signatures) in iGLUTs and iGABAs were prioritized from the 776 cMAP⁷⁸

386 drugs with matched clinical and experimental zebrafish data. Top enriched drugs
387 included antidepressants, antipsychotics, and statins (**SI Data 2; SI Fig. 24A**). Whereas
388 some drugs were broadly predicted to reverse convergent signatures in all four NDD
389 gene sets (e.g., the antipsychotic perphenazine), others uniquely targeted specific sets
390 (e.g., naltrexone in set 2 iGLUTs, sirolimus in set 3 iGLUTs, and valsartan in set 3
391 iGABAs). Sets 3 and 4 showed the greatest number of cMAP enrichments. By
392 considering existing pharmacological effects of the top drugs on zebrafish behavior,⁶⁰
393 some of the predicted drug reversers were shown to oppose effects on NDD related
394 phenotypes in zebrafish (**SI Fig. 24B**). Yet, the direction of effect predicted based on
395 transcriptomic convergence in human neurons did not always align with anti-correlating
396 behavioral effects in zebrafish (e.g., moxifloxacin, perphenazine).

397 The top negatively enriched drugs for iGLUT convergence from cMAP and anti-
398 correlating drugs predicted from a pharmaco-behavioral screen of 376 drugs in larval
399 zebrafish were empirically tested in representative mutants from sets 2-4, which showed
400 the strongest cMAP enrichments (**Fig. 7F**). We determined whether the phenotypic
401 impact of mutant-x-drug combinations led to partial rescue, rescue, over-correction, or
402 exacerbation of the mutant phenotype across significant arousal and startle behavioral
403 parameters (**Fig. 7G**). Ten out of eleven drugs rescued at least one dysregulated
404 behavioral parameter (**Fig. 7G, SI Fig. 24C-E**). Paclitaxel robustly rescued behavioral
405 parameters in *kdm6bab* F0 mutants and pravastatin partially and completely rescued
406 select parameters in *chd2*^{Δ7/Δ7} mutants (**Fig. 7Gi**), including nighttime sleep bouts in
407 *kdm6bab* F0 mutants and responses to lights-ON stimuli in *chd2*^{Δ7/Δ7} mutants (**SI Fig.**
408 **24Fi-ii**). Interestingly, we also observed over-correction of the *phf21aab* F0 mutant
409 phenotype by fluvoxamine (**Fig. 7Gii**), such as increased sleep bouts that were
410 significantly decreased following fluvoxamine treatment (**SI Fig. 24Fiii**). Taken together,
411 *in vivo* behavioral profiling of NDD genes in zebrafish overlaps with *in vitro*-defined
412 convergent networks and identifies pharmacological suppressors of specific behavioral
413 phenotypes.

414

415 **DISCUSSION**

416 Towards empirically resolving the common pathways converged upon by NDD risk gene
417 effects, 29 NDD genes were targeted through a pooled CRISPR-KO strategy. The
418 molecular points of convergence across NDD risk genes varied between the cell types
419 of the brain, being greatest in mature glutamatergic neurons, where they were enriched
420 not just for pathways with well-established links to ASD etiology (e.g., gene regulation,
421 synaptic biology), but also mitochondrial function⁷⁹. While downstream effects of
422 epigenetic NDD genes unexpectedly targeted mitochondrial genes, in fact, five percent
423 of NDD cases meet diagnostic criteria for classic mitochondrial disorders⁸⁰.
424 Mitochondrial DNA mutations^{81,82}, haplotypes⁸³ and heteroplasmy^{81,84} have all been
425 associated with NDD. Not only do mitochondrial mutations cause synaptic and
426 behavioral phenotypes⁸⁵, but multiple lines of human and animal evidence link NDDs to
427 mitochondrial deficits and oxidative stress^{10,86-91}, with neuronal and/or behavioral
428 phenotypes reversed by antioxidant treatment^{87,89-91}. Conversely, knockout of NDD
429 genes in NPCs primarily alter neurogenesis^{54,57,59} and developmental dynamics^{27,92}. Put
430 simply, perturbations of the same NDD genes resulted in different convergent networks

431 across cell types. This observation connects the pleiotropic nature of many NDD genes
432 and pathophysiological evidence linking multiple cell types and distinct cellular functions
433 to NDD.

434 What explains phenotypic convergence between NDD genes with distinct annotated
435 functions? The strength of convergence was most highly correlated to common clinical
436 associations, biological annotations, and co-expression patterns in the post-mortem
437 brain. Critically, these factors are inter-dependent. NDD risk genes most strongly
438 implicated in DD are enriched for expression in progenitor cells and immature neurons,
439 and those in ASD in mature neurons⁶¹. Indeed, cellular identities and biological
440 pathways are captured by patterns of gene co-expression^{93,94}. Transcriptomic and
441 epigenomic analyses of post-mortem brain from NDD cases likewise indicate
442 convergent molecular signatures⁹⁵ and subtypes of NDD⁹⁶. Thus, we posit that shared
443 clinical and phenotypic effects of distinct NDD genes in fact reflect the patterns of co-
444 expression in the developing brain.

445 Personalized medicine seeks to tailor treatments to individual patients⁹⁷; for example,
446 cancer⁹⁸ and monogenic disease⁹⁹ patients with specific genetic mutations receive
447 targeted treatments. Previous efforts to classify genes that predict NDD clinical features
448 or treatment response applied gene ontology^{4,61} or differential neurodevelopmental KO
449 effects *in vitro*⁵⁴ or *in vivo*⁵⁹. Here, we proposed to stratify risk genes based on
450 convergent molecular impacts in human neurons. Our overarching hypothesis, in doing
451 so, was that by resolving shared downstream gene targets between multiple NDD
452 genes, we might inform a precision medicine-based approach that did not necessarily
453 need to target risk genes one-at-a-time. Although convergent networks did not predict
454 behavioral stratification of zebrafish mutants, they did inform drug prediction, with ten
455 out of eleven drugs tested found to ameliorate at least one mutant behavioral phenotype
456 *in vivo*. This ability to reverse, rather than prevent, a behavioral phenotype, indicates
457 that targeting convergent networks in post-mitotic neurons may represent a clinically-
458 actionable neurodevelopmental window that persists through symptom onset. The
459 extent to which convergent downstream targets, whether associated with risk or
460 resilience, can be manipulated to prevent or ameliorate NDD signatures and
461 phenotypes warrants future investigation.

462 Although rare LoF NDD gene mutations tend to confer large effects in the individuals
463 who carry them, the small effects of common variants account for much of the genetic
464 risk for NDD at the population level^{2,100}. The differences in expressivity and incomplete
465 penetrance of high effect-size rare variants is frequently attributed to diversity across
466 polygenic backgrounds¹⁰¹; *in vitro*, NDD gene effects are indeed influenced by the
467 individual genomic context²⁷. In psychiatry, common genetic variants are more
468 associated with cross-disorder behavioral dimensions¹⁰² and rare variants with co-
469 occurring intellectual disability¹⁰³. Common risk variants interact with rare mutations to
470 determine individual-level liability in ASD¹⁰⁴⁻¹⁰⁶, schizophrenia^{107,108}, epilepsy¹⁰⁹,
471 Huntington's disease¹¹⁰ and more¹¹¹. Our results, highlighting that convergence
472 downstream of NDD gene effects are enriched for cross-disorder GWAS variants and
473 rare LoF genes, inform pleiotropy of genetic risk for psychiatric disorders. Moving
474 forward, we argue that it is critical that empirical functional genomic studies
475 systematically consider the impact of common and rare variants together, including

476 screening the impact of LoF genes in hiPSC lines derived from donors with high and low
477 polygenic risk scores¹¹². Intriguingly, even susceptibility to environmental risk factors for
478 NDD (e.g., valproic acid¹¹³) seems to be mediated by genetic background¹¹⁴. Deeper
479 phenotypic characterization of NDD effects across donors will be critical in determining
480 how complex genetic (or environmental) interactions shape cellular phenotypes, circuit
481 function, and human behavior in the clinic.

482 In the post-mortem brain, NDD gene signatures are not just associated with
483 downregulation of co-expression modules involving synaptic signalling¹¹⁵, but also
484 upregulation of microglial and astrocyte gene modules^{88,96,115-120}. The extent to which
485 increased neuroimmune activity in NDD is a response to cellular or environmental
486 sources of inflammation, or indicative of a role for glia cells in risk is unclear; evidence
487 supports both possibilities. Consistent with a model of maternal immune activation
488 during neurodevelopment¹²¹, glucocorticoids and inflammatory cytokines perturb the
489 expression of psychiatric risk genes^{122,123}, altering the regulatory activity of psychiatric
490 risk loci¹²⁴, and interfering with neuronal maturation in brain organoids¹²⁵. Yet, *in vivo*
491 analysis of NDD genes in zebrafish revealed global increases in microglia⁶⁰ and *in vitro*
492 screening in human microglia uncovered roles in endocytosis and uptake of synaptic
493 material¹²⁶. Indeed, given the reciprocal relationships between neuronal activity and glial
494 function, epigenetic state, and gene expression¹²⁷⁻¹³⁰, it seems probable that both cell-
495 autonomous and non-cell-autonomous effects underlie and/or exacerbate NDD gene
496 effects.

497 In summary, we demonstrate that convergent effects of NDD risk genes vary between
498 cell types. Our analyses suggest that clinical convergence between regulatory and
499 synaptic genes in the etiology of NDD is driven more so by co-expression patterns of
500 risk genes than direct regulation of epigenetic genes on synaptic targets. If the
501 convergence of multifold risk genes on a smaller number of shared molecular pathways
502 indeed explains how genetically heterogeneous mutations result in similar clinical
503 features, then genetic stratification of cases will inform novel therapeutic targets. We
504 predict that such individualized points of therapeutic intervention may be most effective
505 when targeting mature glutamatergic neurons, which not only harbor the strongest
506 convergent effects but also represent a therapeutic window that is actionable after
507 diagnosis.

508

509 MATERIALS AND METHODS

510 **Generation of neural cells:** Informed consent was obtained at the National Institute of
511 Mental Health, under the review of the Internal Review Board of the NIMH. hiPSC work
512 was reviewed by the Internal Review Board of the Icahn School of Medicine at Mount
513 Sinai as well as by the Embryonic Stem Cell Research Oversight Committee at the
514 Icahn School of Medicine at Mount Sinai and Yale University. Fibroblasts were
515 genotyped by IlluminaOmni 2.5 bead chip genotyping^{131,132}, PsychChip¹³³, and exome
516 sequencing¹³³. hiPSCs¹³³ were validated by G-banded karyotyping (Wicell
517 Cytogenetics) and genome stability monitored by Infinium Global Screening Array v3.0
518 (Illumina). SNP genotype was inferred from all RNAseq data using the Sequenom
519 SURESelect Clinical Research Exome (CRE) and Sure Select V5 SNP lists to confirm

520 that neuron identity matched donor. Control hiPSCs were cultured in StemFlex media
521 (Gibco, #A3349401) supplemented with Antibiotic-Antimycotic (Gibco, #15240062) on
522 Geltrex-coated plates (Gibco, #A1413302). Cells were passaged at 80-90% confluence
523 with 5mM EDTA (Life Technologies #15575-020) for 3 min at room temperature (RT).
524 EDTA was aspirated and cells dissociated in fresh StemFlex media. Media was
525 replaced every 48-72 hours for 4-7 days until the next passage.

526 Transient transcription factor overexpression from stable clonal hiPSCs was used to
527 induce control hiPSCs to iNPCs (here SNaPs)⁶⁸, iGLUTs⁶⁹, and iGABAs⁷⁰. iNPCs are
528 rapidly generated by 48-hour induction with *NGN2*^{68,134}. iGLUTs are induced via
529 transient overexpression of *NGN2*, and are >95% glutamatergic neurons, robustly
530 express excitatory genes, and show spontaneous excitatory synaptic activity by three-
531 to-four weeks *in vitro*^{29,34,35,67,69,135-141}. iGABA neurons are induced via transient
532 overexpression of *ASCL1* and *DLX2*, and are >95% GABAergic neurons, robustly
533 express inhibitory genes, and show spontaneous inhibitory synaptic activity by five-to-
534 six weeks^{38,70,137,142,143}. iNPCs, iGLUTs, and iGABAs express most NDD genes,
535 including all genes prioritized herein⁶⁷.

536 We transduced hiPSCs from two control donors (553-3, karyotypic XY; 3182-3,
537 karyotypic XX) with lentiviral *pUBIQ-rtTA* (Addgene #20342) and *tetO-NGN2-eGFP-NeoR*
538 (Addgene #99378) for iNPCs and iGLUTs, or *pUBIQ-rtTA* (Addgene #20342),
539 *tetO-ASCL1-PuroR* (Addgene #97329), and *tetO-DLX2-HygroR* (Addgene #97330) for
540 iGABAs. Following transduction by spinfection at 1000g for 1 hour at 37°C, hiPSCs
541 were subjected to 48-hour antibiotic selection (1mg/mL neomycin G418 (Thermo
542 #10131027), 0.5µg/mL puromycin (Thermo #A1113803), and/or 250µg/mL hygromycin
543 (Thermo, #10687010) and then clonalized by expansion from single colonies.
544 Ultimately, clonal and inducible iNPC/iGLUT 3182-3-clone5 (XX) and iGABA 553-3-
545 clone34 (XY) hiPSCs were validated lentiviral genome integration by PCR, doxycycline
546 induced transcription factor expression by qPCR, and robust and consistent neuronal
547 induction confirmed by RNA-seq and immunocytochemistry for relevant cell type
548 markers. Analyses throughout reflect data from iGLUT 3182-3-clone5 (iNPC, d7 iGLUT
549 and d21 iGLUT) and iGABA 553-3-clone34 (d36 iGABA).

550 *iNPCs*: At DIV0, 3182-3-clone5 hiPSCs were dissociated and plated at 1.5 x 10⁶ cells
551 per well onto Geltrex-coated 6-well plates (1:250 dilution coating) in SNaP Induction
552 Media (DIV0): DMEM/F12 with Glutamax (ThermoFisher, 11320082), Glucose (0.3%
553 v/v), N2 Supplement (1:100, ThermoFisher, 17502048), Doxycycline (2 µg/mL; Sigma-
554 Aldrich, D9891), LDN-193189 (200 nM; Stemgent, 04-0074), SB431542 (10 µM; Tocris,
555 1614), and XAV939 (2 µM; Stemgent, 04-00046) supplemented with 25 ng/mL Chroma I
556 ROCK2 Inhibitor. After 24 hours, DIV2, cells were fed with Selection Media: DMEM/F12
557 with Glutamax, Glucose (0.3% v/v), N2 Supplement (1:100), Doxycycline (2 µg/mL),
558 Geneticin (0.5 mg/mL; ThermoFisher, 10131035), LDN-193189 (100 nM), SB431542 (5
559 µM), and XAV939 (1 µM). After 48 hours post induction (DIV2), SNaPs were dissociated
560 with Accutase for 10 minutes at 37°C, quenched in DMEM, pelleted at 800g for 5
561 minutes, and replated at 1.5x10⁶ cells per well onto Geltrex-coated 6-well plates in
562 SNaP Selection Media supplemented with Geneticin (0.5 mg/mL). After 16-18 hr (DIV3),
563 medium was switched to SNaP maintenance Medium: DMEM/F12 with Glutamax,
564 Penn/Strep (1:100), MEM-NEAA (1:100; Life Technologies, 10370088), B27 minus

565 Vitamin A (1:50; Life Technologies, 12587010), N2 Supplement (1:100; Life
566 Technologies, 17502048), recombinant human EGF (10 ng/mL; R&D Systems, 236-EG-
567 200), recombinant human basic FGF (10 ng/mL; Life Technologies, 13256029),
568 Geneticin (0.5 mg/mL), and Chroman I (25 ng/mL). Cells were fed every 48 hours with
569 SNaP maintenance medium lacking Chroman I and Geneticin. Cells were dissociated
570 and seeded weekly at a density of 1.25-1.5x10⁶ cells per well onto Geltrex-coated 6-well
571 plates until NPC morphology was observed and persistent. Cells were expanded and
572 cryofrozen.

573 *DIV7 iGLUTs*: 3182-3-clone5 iNPCs were thawed and seeded at 1x 10⁶ cells per well
574 onto Geltrex-coated 12-well plates. NGN2 expression was induced with Doxycycline (2
575 µg/mL) for 24 hrs (DIV0) with antibiotic selection for 48 hrs (DIV1-3) in SNaP
576 maintenance medium. At DIV 4 SNaPs were dissociated with Accutase, switched into
577 Neuronal Medium: Brainphys (Stemcell, 05790), Glutamax (1:100), Sodium Pyruvate (1
578 mM), Anti-Anti (1:100), N2 (1:100), B27 without vitamin A (1:50), BDNF (20 ng/mL;
579 R&D, 248-BD-025), GDNF (20 ng/mL; R&D, 212), dibutyryl cAMP (500 µg/mL; Sigma,
580 D0627), L-ascorbic acid (200 µM; Sigma, A4403), Natural Mouse Laminin (1.2 µg/m;
581 ThermoFisher, 23017015) and seeded in Geltrex-coated (1:120 dilution coating) 12-well
582 plates. Medium was changed every 24 hrs until DIV7 harvest.

583 *D21 iGLUTs*: hiPSCs were harvested in Accutase (Innovative Cell Technologies, AT-
584 104) for 5 minutes 37°C, dissociated into a single-cell suspension, quenched in DMEM,
585 pelleted via centrifugation for five minutes at 1000 rcf and resuspended in StemFlex
586 containing 25 ng/mL Chroma I ROCK2 Inhibitor and 2.0 µg/mL doxycycline (DIV0),
587 seeded 1 x 10⁶ cells per well onto Geltrex-coated 6-well plates (1:250 dilution coating),
588 and incubated overnight at 37°C. The next day, DIV1, hiPSCs were subjected to 48-
589 hour antibiotic selection by medium replacement with Induction Media: DMEM/F12
590 (ThermoFisher, 10565018), Glutamax (1:100; ThermoFisher, 10565018), N-2 (1:100;
591 ThermoFisher, 17502048), B27 without vitamin A (1:50; ThermoFisher, 12587010),
592 Antibiotic-Antimycotic (1:100) with 1.0µg/mL doxycycline and 0.5mg/ml Geneticin. At
593 DIV3, cells were treated with 4.0µM cytosineβ-D-arabinofuranoside hydrochloride (Ara-
594 C) and 1.0µg/mL doxycycline to arrest proliferation and eliminate non-neuronal cells in
595 the culture. At DIV4 immature neurons were dissociated with Accutase and 5 units/mL
596 DNase I at 37°C for 7-10 min, quenched in DMEM, centrifuged for five minutes at 1,500
597 rpm and resuspended in 25 ng/mL Chroma I ROCK2 Inhibitor, 1.0 µg/mL doxycycline
598 and 4.0µM Ara-C and switched to Neuron Medium: Brainphys (Stemcell, 05790),
599 Glutamax (1:100), Sodium Pyruvate (1 mM), Anti-Anti (1:100), N2 (1:100), B27 without
600 vitamin A (1:50), BDNF (20 ng/mL; R&D, 248-BD-025), GDNF (20 ng/mL; R&D, 212),
601 dibutyryl cAMP (500 µg/mL; Sigma, D0627), L-ascorbic acid (200 µM; Sigma, A4403),
602 Natural Mouse Laminin (1.2 µg/mL; ThermoFisher, 23017015) and seeded 7 x 10⁵ cells
603 per well onto Geltrex-coated (1:60 dilution coating) 12-well plates and incubated
604 overnight at 37°C. The next day, DIV 6, Chroman I was removed from culture and Ara-C
605 lowered to 2.0 µM with a full Neuronal medium change. At DIV 7 a full Neuronal Medium
606 change was performed to remove doxycycline and Ara-C from culture, to allow for
607 antibiotic resistant genes silencing. From DIV7 onwards, half neuronal medium changes
608 were performed every 72 – 96 hrs until mature DIV 21 for harvest.

609 *DIV36 iGABAs*: hiPSCs were harvested in Accutase (Innovative Cell Technologies, AT-
610 104) for 5 minutes 37°C, dissociated into a single-cell suspension, quenched in DMEM,
611 pelleted via centrifugation for five minutes at 1000 rcf and resuspended in StemFlex
612 containing 25 ng/mL Chroma I ROCK2 Inhibitor and 2.0 µg/mL doxycycline (DIV0),
613 seeded 1.5-2x 10⁶ cells per well onto Geltrex-coated 6-well plates (1:250 dilution
614 coating), and incubated overnight at 37°C. The next day, DIV1, hiPSCs were subjected
615 to 48-hour antibiotic selection by medium replacement with Induction Media: DMEM/F12
616 (Thermofisher, 10565018), Glutamax (1:100; Thermofisher, 10565018), N-2 (1:100;
617 Thermofisher, 17502048), B27 without vitamin A (1:50; Thermofisher, 12587010),
618 Antibiotic-Antimycotic (1:100) with 1.0µg/mL doxycycline, 1.0 µg/mL puromycin (Sigma,
619 P7255) and 250 µg/mL hygromycin (Sigma, 10687010). At DIV3, cells were treated with
620 4.0µM cytosineβ-D-arabinofuranoside hydrochloride (Ara-C) and 1.0µg/mL doxycycline
621 to arrest proliferation and eliminate non-neuronal cells in the culture. At DIV5 immature
622 neurons were dissociated with Accutase and 5 units/mL DNase I at 37°C for 7-10 min,
623 quenched in DMEM, centrifuged for five minutes at 1,500 rpm and resuspended in 25
624 ng/mL Chroma I ROCK2 Inhibitor, 1.0 µg/mL doxycycline and 4.0µM Ara-C and
625 switched to Neuron Medium: Brainphys (Stemcell, 05790), Glutamax (1:100), Sodium
626 Pyruvate (1 mM), Anti-Anti (1:100), N2 (1:100), B27 without vitamin A (1:50), BDNF (20
627 ng/mL; R&D, 248-BD-025), GDNF (20 ng/mL; R&D, 212), dibutyryl cAMP (500 µg/mL;
628 Sigma, D0627), L-ascorbic acid (200 µM; Sigma, A4403), Natural Mouse Laminin (1.2
629 µg/mL; Thermofisher, 23017015) and seeded 7 x 10⁵ cells per well onto Geltrex-coated
630 (1:60 dilution coating) 12-well plates and incubated overnight at 37°C. The next day,
631 DIV 6, Chroman I was removed from culture and Ara-C lowered to 2.0 µM with a full
632 Neuronal medium change. At DIV 7 a full Neuronal Medium change was performed to
633 remove doxycycline and Ara-C from culture, to allow for antibiotic resistant genes
634 silencing. From DIV7 onwards, half neuronal medium changes were performed every
635 72-96 hrs until mature DIV 36 for harvest.

636 *CRISPR knockout gRNA library design (Thermofisher) and validation*

637 From the 102 highly penetrant loss-of-function (LoF) gene mutations associated with
638 ASD (58 gene expression regulation, 24 neuronal communication genes, 9 cytoskeletal
639 genes, and 11 multifunction genes)⁴, gene ontology and primary literature research
640 identified 26 epigenetic modifiers specifically involved in chromatin organization,
641 rearrangement, and modification. ASD gene expression (RNA-seq RPKM in iGLUTs)
642 was plotted against significance of ASD association (TADA FDR Values), to ensure
643 selection of genes with the highest expression and highest clinical association. Gene
644 expression was confirmed across development in the brain (BrainSpan¹⁴⁴), and in bulk
645 and scRNA-seq. 21 epigenetic modifiers (*ASH1L*, *ASXL3*, *ARID1B*, *CHD2*, *CHD8*,
646 *CREBBP*, *KDM5B*, *KDM6B*, *KMT2C*, *KMT5B*, *MBD5*, *MED13L*, *PHF12*, *PHF21A*,
647 *POGZ*, *PPP2R5D*, *SETD5*, *SIN3A*, *SKI*, *SMARCC2*, *WAC*) as well as two transcription
648 factors with putative roles as chromatin regulators (*FOXP2*, *BCL11A*) were selected.
649 Gene regulatory transcription factors, general transcription factors, and DNA replication
650 genes were excluded. Three extensively studied synaptic genes (*NRXN1*, *SCN2A*,
651 *SHANK3*) with roles in ASD were included as positive controls and three under-explored
652 genes for ASD role in neuronal communication genes (*ANK3*, *DPYSL2*, *SLC6A1*) were
653 also included in the library.

654 Individual DNA from glycerol stocks of Invitrogen™ LentiArray™ Human CRISPR
655 Library gRNAs-PuroR (ThermoFisher, A31949) (3-4 individual gRNAs per gene, see **SI**
656 **Table 1**) were prepared using GeneJET Plasmid Miniprep Kit (K0503) and pooled at an
657 equimolar ratio and a 5-fold ratio of scramble control gRNA plasmid. Library quality was
658 confirmed by restriction enzyme digest (10x Cutsart NEB), agarose gel purification
659 using QIAquick Gel Extraction Kit (#28706) to check library purity, followed by Mi-seq
660 for gRNA count distribution. Based on the abundance of gRNAs from Mis-seq, 4 NDD
661 gene targets were highly unlikely to be resolved in the final experiments – *POGZ*,
662 *PP2R5D*, *SHANK3*, *SLC6A1* – and 3 with low abundance and less likely to be resolved
663 (*SCNA2*, *FOXP2*, *DYPSL2*).

664 Lentiviral Cas9v2-HygroR (Addgene, 98291) and pooled LentiArray-gRNA-PuroR
665 CRISPR-KO library were packaged as high-titer lentiviruses (Boston Children's Hospital
666 Viral Core) and experimentally titrated in each cell type. Highest viable MOI was used
667 for Cas9v2 and MOI < 0.5 for lentivirus gRNAs pool library.

668 *CRISPR and gRNA delivery:* Lentiviral Cas9v2-HygroR (Addgene #98291) transduction
669 of iNPCs, day 4 (iGLUTs), or day 5 (iGABAs) occurred via spinfection (one hour at
670 1,000 g) and followed by 72 hr hygromycin (250 µg /mL) (except for iGABAs, which
671 express inducible hygromycin resistance at this stage). Pooled Invitrogen™
672 LentiArray™ Human gRNA-PuroR CRISPR-KO Library gRNAs (ThermoFisher
673 #A31949) (MOI 0.3-0.5) were transduced via spinfection three days prior to harvest
674 (e.g., d4 for D7 iGLUTs, d18 for D21 iGLUTs, d33 for d36 iGABA), with fresh medium
675 containing puromycin (1 µg/mL) added 16-24 hours post transduction of gRNAs. For
676 mature iGLUTs and iGABAs, as doxycycline was removed from medium at DIV7, and
677 by DIV18 neurons had lost transcription factor linked antibiotic resistance, at 24 hours
678 post-transduction (DIV19 or DIV34) puromycin (1 µg/mL) and hygromycin (250 µg /mL)
679 were added to media for 48-hr antibiotic selection prior to harvest.

680 *Dissociation of different neural cell types to single cells for scRNAseq assays:* Cells
681 were dissociated 72 hrs post gRNA library delivery for single cell sequencing, as iNPCs,
682 DIV7 and DIV21 iGLUTs, or DIV36 iGABAs as follows:

683 iNPCs and DIV7 iGLUTs were dissociated in accutase for 5min @37°C, washed with
684 DMEM/10%FBS, centrifuged at 1,000xg for 5 min, gently resuspended, and counted.

685 DIV21 iGLUTs and DIV36 iGABAs were dissociated with papain. Papain was pre-
686 warmed (39°C) for 30 minutes in HBSS (ThermoFisher, 14025076), HEPES (10 mM,
687 pH 7.5) EDTA (0.5 mM), Papain (0.84 mg/mL; Worthington-Biochem, LS003127). The
688 cells were washed with PBS-EDTA (0.5 mM) and 300 uL of papain solution and 5 units
689 of DNase I was added per well of 12-well plate and incubated at 37°C for 10-15
690 minutes, 125 rpm. Dissociation was quenched with DMEM-10%FBS. Detached neurons
691 were broken by gentle manual pipetting, pelleted at 600 g for 5 minutes, resuspended in
692 DMEM-10%FBS, filtered through a cell strainer and counted and submitted for 10X
693 sequencing.

694 Cells were loaded into 10X in four lanes per cell type, targeting 20,000 cells per lane for
695 a total of ~80,000 targeted cells per cell type. scRNA-seq was performed at Yale
696 Genomics Core with the 10X single cell 5' v2 HT with CRISPR barcode kit.

697 *Bulk RNAseq and CRISPR-editing efficiency evaluation:* The H1 hESC line with iCas9
698 (NIHhESC-10-0043), generously provided by the Huangfu Lab, was used to assess the
699 editing efficiency of the gRNAs^{77,145} and conduct the mitochondrial pooled and arrayed
700 experiments. NPCs were generated using the dual SMAD inhibition approach per the
701 STEMdiff SMADi Neural Induction Kit protocol (STEMCell Technologies, #08581). To
702 validate gene KO, NPCs were transduced with LV particles carrying four gRNAs per
703 target gene. After 48 h of selection with 1 µg/mL puromycin, Cas9 expression was
704 induced by adding dox at 2 µg/mL for 72 h. Following induction, cells were collected for
705 bulk RNA-seq. Total RNA was extracted using TRIzol™ reagent (Invitrogen). PolyA
706 RNA-seq library preparation and sequencing were conducted at the Yale Center for
707 Genomic Analysis (YCGA). Raw fastq files were quality-checked by FastQC, then
708 mapped to human genome reference hg38 (STAR¹⁴⁶). gRNA targeted-loci for each
709 sample were extracted (SAMtools¹⁴⁷). Variation/small insertion/deletion at site of interest
710 and mutation efficiency at corresponding loci was called (CrispRVariants R package¹⁴⁸),
711 after excluding possible germline variants from Cas9-non-induced samples.

712 *Proliferation and neurogenesis analysis:* For proliferation analysis using Ki-67, NPCs
713 were seeded into 24-well plates and either treated with doxycycline (induced) to activate
714 Cas9 or left untreated (uninduced). The cells were cultured for 7 days, representing
715 approximately three NPC generations. On day 7, cells were collected, and ~1 × 10⁶
716 cells were stained with Ki-67-FITC (#130-117-803, Miltenyi Biotec) using the
717 Foxp3/Transcription Factor Staining Buffer Set (#00-5523, Invitrogen), following the
718 manufacturer's protocol.

719 To evaluate the effects of gene KOs on neurogenesis and gliogenesis, transduced
720 NPC-iCas9 lines were spontaneously differentiated into human cortical neurons and
721 glial cells. Briefly, 1 × 10⁶ cells were seeded in GelTrex-coated (1:5) 6-well plates and
722 cultured in complete neuronal media containing BrainPhys™ Neuronal Medium,
723 Glutamax (100X), Sodium Pyruvate (100 mM), B-27 (-RA) supplement (50X), N2
724 (100X), Anti-Anti (100X), Natural Mouse Laminin (1 mg/ml), dbcAMP (500 mg/ml), L-
725 Ascorbic Acid (200 µM), BDNF (20 µg/ml), and GDNF (20 µg/ml). Media was refreshed
726 every three days. On day 25, cells were collected and stained for FACS analysis using
727 surface markers previously described¹⁴⁹ to differentiate NPCs (CD184+/CD44-/CD24+),
728 neurons (CD184-/CD44-/CD24+), and glia (CD184+/CD44+). CD271, a marker for
729 mesenchymal stem cells, was excluded from the original panel as NPCs were pre-
730 purified via FACS using CD133+/CD184+/CD271- markers before differentiation. A
731 minimum of 50,000 cells per gate were acquired using a BD LSRIFortessa™ Cell
732 Analyzer at the Yale Flow Cytometry Core. Flow cytometry data were analyzed using
733 FlowJo™ v10.10 Software (BD Life Sciences).

734 All statistical analyses for flow cytometry assessment were conducted using GraphPad
735 Prism version 9.5.1 (528) for macOS (GraphPad Software, San Diego, CA). Each well
736 was treated as an independent replicate. Differences between knockout (induced) and
737 control (uninduced) groups were assessed by comparing the mean fluorescence
738 intensity (MFI) of the target fluorophore using an unpaired t-test with Welch correction to
739 account for individual group variance. Multiple comparisons were corrected using the
740 False Discovery Rate (FDR) method with a two-stage step-up procedure (Benjamini,
741 Krieger, and Yekutieli) at an FDR threshold of 5%.

742 FACS Analysis of Mitochondrial Membrane Potential and CRISPR Screen Read-out via
743 Amplicon Sequencing

744 For our mitochondrial assays we used a nearly identical library (same backbone, guide
745 density, and control set) screened exclusively in the H1 inducible Cas9 (H1-iCas9)
746 hPSC line. Mitochondrial inner membrane potential ($\Delta\psi_m$) was measured in H1-iCas9,
747 following differentiation to NPCs or iGlut on day 21. Cells were harvested, counted, and
748 aliquoted at 1×10^6 cells per sample. JC-1 dye (MitoProbe™ JC-1 Assay Kit;
749 Invitrogen #M34152) was dissolved in DMSO at a stock concentration of 200 μM and
750 added to each sample to achieve a final concentration of 2 μM , then incubated for 30
751 min at 37 °C in 5% CO₂. A 50 μM CCCP control was included to induce complete
752 mitochondrial depolarization. After staining, cells were washed once in their respective
753 culture medium, resuspended in FACS buffer (Invitrogen eBioscience Staining Buffer
754 #00422226), and analyzed immediately on a Thermo Fisher “Bigfoot” spectral cell sorter
755 using 488 nm excitation with 525/50 nm (FITC) and 585/40 nm (PE) emission filters.
756 Debris and doublets were excluded by forward/side scatter gating, and CCCP-treated
757 samples were used to define FITC and PE gates. Approximately 1×10^6 events per
758 sample were recorded. Cells were then pelleted (300 \times g, 5 min) and genomic DNA
759 extracted using the Qiagen DNeasy Blood & Tissue Kit (#69504).

760 UMI-tagged amplicon libraries were generated in three PCR steps. In PCR-1, genomic
761 DNA was amplified with Platinum™ II Hot-Start PCR Master Mix (Invitrogen,
762 #14000012) and UMI-containing primers (Forward: 5'-
763 ACACTTTCCCTACACGACGCTTCCGATCTACGTGACGTAGAAAGTAATAATT
764 CTTGGGT-3'; Reverse: 5'-
765 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTN(25)NNNNNNNNNACTCGGTGC
766 CACTTTTCAA-3') under the following conditions: 94 °C for 2 min; 4–6 cycles of 98 °C
767 for 5 s, 60 °C for 15 s, 60 °C for 30 s. The resulting ~180 bp products were purified and
768 concentrated using the Zymo DNA Clean & Concentrator-5 kit (#D4013) and eluted in
769 10 μL nuclease-free water (Thermo Fisher #AM9938). In PCR-2, purified product was
770 amplified with adaptor primers (Forward: 5'-
771 ACACTTTCCCTACACGACGCTTCCGATCT-3'; Reverse: 5'-
772 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3') for 22 cycles under identical
773 cycling conditions in a ~20 μL reaction. A seven-cycle indexing PCR (PCR-3) was
774 performed by the sequencing facility Yale Center for Genome Analysis (YCGA) prior to
775 sequencing. Final libraries were sequenced on an Illumina NovaSeq platform (paired-
776 end 150 bp, 5 million reads per sample).

777 Flanking sequences on both sides of each gRNA were trimmed using BBduk, and
778 reads were then mapped to gRNA reference sequences and counted using
779 MAGeCK¹⁵⁰. Raw counts for each gRNA were normalized to counts of scrambled
780 gRNA. Abundance of each target gene was then calculated by summing of all gRNAs
781 targeting that gene. Log2-transformed fold changes of gRNA-targets abundance were
782 compared between PE-high samples and FITC-high samples.

783 Immunostaining. Cells were fixed with fixative solution (4 % sucrose and 4 %
784 paraformaldehyde prepared in Dulbecco's Phosphate Buffered Saline (DPBS)) for 10
785 min at room temperature (RT). Following this, cells were washed twice with DPBS and
786 incubated in blocking solution (2% normal donkey serum prepared in DPBS)

787 supplemented with 0.1% Triton for two hours at RT. After this, cells were incubated
788 overnight at 4 °C in the primary antibody solution prepared in blocking solution. Cells
789 were washed three times with DPBS, incubated at RT in secondary antibody prepared
790 in blocking solution, then washed three times with DPBS. In the second wash, cells
791 were incubated in DBPS supplemented DAPI (Sigma D9542, 1 µg/mL) for 2 min at RT.

Antibody	Species	Vendor	Catalog #	Dilution
anti-MAP2	chicken	Invitrogen, Abcam	PA1-10005, ab5392	1:1000
anti-Nestin	rabbit	Millipore	ABD69	1:200
anti-vGLUT1	rabbit	Synaptic systems	135-303	1:200
anti-GABA	rabbit	Sigma-Aldrich	A2052	1:200
TOMM20	mouse	Santa Cruz Biotechnology	sc-17764	1:200
Total OXPHOS	n/a	Abcam	AB-317270	1:500
anti-mouse	donkey	Jackson ImmunoResearch	715-605-151	1:500
anti-rabbit	donkey	Jackson ImmunoResearch	711-545-152	1:500
anti-chicken	donkey	Jackson ImmunoResearch	715-605-150, 703-545-155	1:500

792 Fixed cultures were acquired using a DragonFly Confocal Dual Spinning Disk confocal,
793 at 60x magnification and 1.4 numerical aperture. All images were acquired with a fixed
794 laser intensity and exposure time across experimental conditions. Four images were
795 acquired per well, and 4-10 wells were acquired per experimental condition. Each well
796 represents a biological replicate and statistical datapoint. Therefore, each replicate
797 represents hundreds of µm² of neuronal area and tens of thousands of individual
798 mitochondria.

799 Mitochondria morphology features were determined using the Surface module of Imaris
800 10.2. Likewise, OXPHOS complex features were determined using the surface module
801 of Imaris 10.2. The Volume, Area and Sphericity features of the Surface modules were
802 selected for analysis. Mitochondria networking features were determined using
803 published, open-source methods¹⁷⁹. A one-way ANOVA with a Šidák's multiple
804 comparisons test was performed on data on GraphPad Prism 10.

805 To validate robustness and sensitivity of the microscopy assay, we treated D14 iGluts
806 overnight with carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone/FCCP (Sigma-
807 Aldrich, SML2959) at 5 µM, 10 µM and 50 µM doses. Following this, we conducted the
808 immunostaining, mitochondrial structural analysis and statistical analyses outlined
809 above.

810 Seahorse XF Mito Stress Test: Day 5 iGLUTs were plated at
811 1.65×10^4 cells/well in XF24 microplates (Agilent, 100777-004) and cultured to
812 day 21. One hour prior to measurement, growth medium was removed, leaving $50 \mu\text{L}$
813 per well, and replaced with 1 mL of pre-warmed Seahorse XF DMEM (Agilent,
814 103575-100) supplemented with 25 mM glucose (Agilent, 103577-100) and 0.23 mM
815 pyruvate (Agilent, 103578-100). Plates were equilibrated for 1 h at 37°C in a
816 non- CO_2 incubator. Immediately before the assay, the medium was replaced with
817 $500 \mu\text{L}$ of fresh assay buffer. Oxygen consumption rate (OCR) was recorded on a
818 Seahorse XFe24 Analyzer (Agilent) using the standard Mito Stress Test. The program
819 consisted of three sequential injections— $1.5 \mu\text{M}$ oligomycin (Sigma-Aldrich, 75351),
820 $1.5 \mu\text{M}$ carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone/FCCP (Sigma-Aldrich,
821 C2920), and a mix of $0.5 \mu\text{M}$ rotenone (Sigma-Aldrich, R8875) + $0.5 \mu\text{M}$
822 antimycin A (Sigma-Aldrich, A8674)—separated by four measurement phases
823 (baseline plus post-injection 1–3). Each phase comprised three cycles of 3 min
824 mixing, 2 min waiting, and 3 min measurement. After the assay, cells were lysed
825 using M-PER™ Mammalian Protein Extraction Reagent (ThermoFisher, 78501)
826 supplemented with cComplete™ Mini Protease Inhibitor Cocktail (Sigma-Aldrich,
827 11836153001) and PhosSTOP™ (Sigma-Aldrich, 4906845001), according to the
828 manufacturer's instructions. Total protein concentrations were determined using the
829 Pierce™ Dilution-Free™ Rapid Gold BCA Protein Assay (ThermoFisher, A55860), and
830 OCR values were normalized to total protein content.

831 CRISPR organoid assays: H1-hESC-iCas9 cells were transduced with a pooled gRNA
832 library containing four gRNAs per target gene, with 20% of the library comprising non-
833 targeting gRNAs. Following selection with $1 \mu\text{g/mL}$ puromycin, the established cell line
834 was used to generate cortical organoids following a well-established protocol¹⁵¹ with
835 slight modifications. In brief, embryoid bodies (EBs) were generated using AggreWell
836 plates (Stemcell Technologies) according to the manufacturer's instructions. Once
837 formed, EBs were transferred to ultralow-attachment 10 cm plates (Corning) for further
838 culture. Patterning was initiated using StemFlex base media (A3349401, Gibco)
839 supplemented with 100 nM LDN193189 (x) and $10 \mu\text{M}$ SB431542 (x). The media was
840 refreshed daily. Organoids were cultured on an orbital shaker at 53 rpm for the duration
841 of the protocol. On Day 6, the patterning media was replaced with growth media;
842 Neurobasal A medium (10888022, Gibco), $1 \times$ GlutaMAX (35050061, Gibco), and $1 \times$
843 B27 (12587010, Gibco), supplemented with 20 ng/mL FGF (PeproTech) and 20 ng/mL
844 EGF (PeproTech). On Day 14, Cas9 expression was induced by treating the organoids
845 with $2 \mu\text{g/mL}$ doxycycline (Sigma-Aldrich) for 72 hours. From Day 25, FGF and EGF
846 were replaced with 20 ng/mL BDNF (PeproTech) and 20 ng/mL NT-3 (PeproTech).
847 Media changes were performed every other day. Starting from Day 42, organoids were
848 maintained in growth media without additional supplements. Media was refreshed 2–3
849 times per week.

850 The organoids were maintained in culture for ~80 days, at which point five organoids
851 from three biological replicates were collected for DNA extraction using the DNeasy
852 Blood & Tissue Kit (#69504, Qiagen). Extracted DNA was subjected to PCR amplicon
853 sequencing with unique molecular identifiers (UMIs) using a three-step PCR protocol. In
854 the first step (PCR-1), UMI-containing primers (5'-

855 AACTCTTCCCTACACGACGCTCTCCGATCTACGTACGTAGAAAGTAATAATT
856 CTTGGGT-3') and (5'-
857 GTGACTGGAGTTCAGACGTGTGCTCTCCGATCTN(25252525)NNNNNNNNNACTC
858 GGTGCCACTTTCAA-3') were used for 4 cycles. PCR-2 utilized adaptor primers (5'-
859 AACTCTTCCCTACACGACGCTCTCCGATCT-3') and (5'-
860 GTGACTGGAGTTCAGACGTGTGCTCTCCGATCT-3') for 22 cycles. PCR-3,
861 performed by the sequencing facility, added sample-specific indexing in 7 additional
862 cycles. The prepared libraries were sequenced on a NovaSeq platform with paired-end
863 150 bp reads, generating 10 million reads per sample at the Yale Center for Genomic
864 Analysis (YCGA).

865 Fragments amplified by PCR were sequenced on NovaSeq 6000 sequencer pair end at
866 150bp with ~10 million reads per sample. Flanking sequence on both side of gRNAs
867 were trimmed using BBDuk, and reads were then mapped to gRNA reference
868 sequences and counted using MAGeCK package¹⁵⁰. Raw counts for each gRNA were
869 normalized to counts of scrambled gRNA. Abundance of each gRNA-target genes were
870 then calculated by sum of all gRNAs targeting that gene after excluding gRNAs with low
871 KO-efficiency (<5%). Average Log2-transformed fold change of gRNA-targets
872 abundance were compared between doxycycline-induced versus uninduced samples on
873 day 77 samples.

874 Analysis of single-cell CRISPRko screens in NPCs, DIV 7, DIV 21 iGLUTs and DIV 36
875 iGABAs. mRNA sequencing reads were mapped to the GRCh38 reference genome
876 using the Cellranger Software. To generate count matrices for GDO (gRNA) libraries,
877 the kallisto indexing and tag extraction (kite) workflow were used. Count matrices were
878 used as input into the R/Seurat package¹⁵² to perform downstream analyses, including
879 QC, normalization, cell clustering, GDO demultiplexing, and covariate regression^{71,153}.

880 Normalization and downstream analysis of RNA data were performed using the Seurat
881 R package (v.5.1.0), which enables the integrated processing of multimodal single-cell
882 datasets. CRISPR-screen experiments in each cell-type were processed independently.
883 Within each cell-type, ~100-80,000 cells were sequenced across 4 lanes. gRNA and
884 RNA UMI feature counts were filtered removing the top and bottom decile of cells based
885 on distribution of counts in each cell-type. The percentage of all the counts belonging to
886 the mitochondrial, ribosomal, and hemoglobin genes calculated using
887 Seurat::PercentageFeatureSet were filtered with cell-type specific thresholds, given the
888 relatively high proportion of mitochondrial genes expressed in neurons. Mitochondrial,
889 ribosomal, and hemoglobin genes as well as MALAT1 were removed
890 (^RP[SL][[:digit:]]|^RPLP[[:digit:]]|^RPSA|^HB[AEGQ][[:digit:]]|^HB[ABDMQ]|^MT-
891 |^MALAT1\$). Lowly expressed genes, those that had at fewer than 2 read counts in
892 90% of samples were also removed. Hashtag and guide-tag raw counts were
893 normalized using centered log ratio transformation, where counts were divided by the
894 geometric mean of the corresponding tag across cells and log-transformed. gRNA
895 demultiplexing was performed using the Seurat::MULTIseqDemux function for each
896 lane individually and then counts were merged across lanes (**SI Fig. 3B**). In NPCs,
897 94,363 cells were retained after filtering and removal of negatively assigned cells with
898 62.7% classified as doublets and 37.3% classified as singlets. In DIV7 and DIV21
899 iGLUTs, 57,685 and 31,473 cell were retained with 34% and 9.8% doublets and 66%

900 and 90.2% singlets respectively. In DIV35 iGABAs, 64,462 cells were retained with
901 48.3% doublets and 51.7% singlets. For all downstream analysis only cells with “singlet”
902 gRNA classification were used (26,549-38,097 cells per experiment) (**SI Fig. 4C-E**).
903 Number of singlet cells by gRNA per cell-type shown in **SI Fig. 6AB**.

904 Cell-type specific population heterogeneity correction. Gene-expression based
905 clustering was largely driven by cellular heterogeneity, cell quality, and sequencing lane
906 effects. gRNA identity was not correlated with these covariates (**SI. Fig. 7**), so we
907 adjusted for transcriptomic variability arising from cellular heterogeneity by applying
908 maturity and cellular subtype scores across both perturbed and non-perturbed cells.
909 First, variation related to cell-cycle phase of individual cells was accounted for by
910 assigning cell cycle scores using Seurat::CellCycleScoring which uses a list of cell cycle
911 markers¹⁵⁴ to segregate by markers of G2/M phase and markers of S phase. Second, to
912 address variance due to cellular heterogeneity within a single experiment, we adapted
913 the method applied by Seurat::CellCycleScoring to calculate a “Maturity. Score” and
914 “Subtype.Score” for each cell based on cellular subtype (more variable in mature
915 GABAergic neurons) and developmental time-point specific markers (more variable in
916 NPCs and immature iGLUTs) (**SI Table 2-3**). Cells with outlier maturity scores and
917 subtype scores were removed from downstream analyses. RNA UMI count data were
918 then normalized, log-transformed and the percent mitochondrial, hemoglobin, and
919 ribosomal genes (markers of cell quality), lane, cell cycle scores (Phase), and maturity
920 scores regressed out using Seurat::SCTtransform. The scaled residuals of this model
921 represent a ‘corrected’ expression matrix, that was used for all downstream analyses.

922 Although demultiplexing assigned the correct guide identity to each cell, to remove
923 “false positives” whereby gRNAs were assigned but gene expression was unperturbed,
924 the transcriptomes of gRNA clusters were evaluated relative to scramble gRNAs,
925 ensuring that cells assigned to a guide-tag identity class demonstrated successful
926 perturbation of the targeted NDD gene. To remove subsequent “false negatives”,
927 whereby a successful CRISPR-KO may not result in significant down-regulation of the
928 targeted gene⁷¹ yet still achieve an overall transcriptomic profile distinct from scramble
929 populations, we performed ‘weighted-nearest neighbor’ (WNN) analysis to assign
930 clusters based on both guide-tag identity class and gene expression⁷². To identify
931 successfully perturbed cells, the transcriptomes of gRNA clusters were compared to
932 Scramble-gRNA control clusters by differential gene expression analysis (Wilcoxon
933 Rank Sum) comparing each cluster to all other clusters. Non-targeting WNN clusters
934 and KO gRNA WNN clusters were filtered by setting a quantile base average
935 expression threshold of target genes based on the distribution of target gene average
936 expression across all other clusters. Clusters were then collapsed by gRNA identity;
937 gRNAs with less than 75 cells were removed from analysis. These cells were then used
938 for downstream differential gene-expression analyses¹⁵⁵. For each cell-type individually,
939 single-cell gene expression matrices were PseudoBulked using
940 scuttle::aggregateAcrossCells function across lanes (4 pseudo-bulk samples per
941 perturbation), lowly-expressed genes were removed (leaving 18-22,000 genes) followed
942 by edgeR/limma differential gene expression analysis. Concordance between Wilcox-
943 rank sum differential gene expression analysis using single-cell data and limma:voom
944 using PseudoBulked data was assessed for each gene.

945 Altogether, Wilcoxon Rank Sum was applied to measure NDD gene knockdown from
946 single-cell DEG analysis. Given the concordance between the DEG results using single-
947 cell Wilcox and pseudo-bulk limma:voom (**SI Fig. 6C**), all main figure and all SI figures
948 thereafter applied pseudobulked data analyzed with limma.

949 To validate whether the high correlation within cell type was due to exactly the same
950 scramble control cells, we re-performed DEGs using random selection of subset of
951 scramble cells for each cell type (**SI Fig. 8**). Briefly, for each gene, 50% (if number of
952 pseudobulked sample cells > 50) or 80% (if number of pseudobulked sample cells < 50)
953 of scramble cells were randomly selected using sample function from R. DEGs were
954 then performed as described above using limma/dreamlet package between KOs and
955 subset of scrambles different among genes. The process was repeated three times to
956 avoid random selection bias and median of each gene logFC was used as the final
957 logFC. Average overlap of random scramble cells across different genes is
958 approximately 50%.

959 Meta-analysis of gene expression across perturbations⁷³. Across NDD KOs, DEGs were
960 meta-analyzed (METAL¹⁵⁶), and “convergent” genes were defined as those with
961 significant and shared direction of effect across all NDD gene perturbations and with
962 non-significant heterogeneity (FDR adjusted $p_{meta} < 0.05$, Cochran’s heterogeneity Q-test
963 $p_{het} > 0.05$). To test convergence between NDD-KOs, meta-analyses were performed
964 across all possible combinations of 2-5 KO perturbations with and without sub-setting
965 for those shared across cell types (>40,000 combinations across cell-types) (**SI Data 1**).

966 Bayesian Bi-clustering to identify Convergent Networks⁷³. Across NDD KOs, convergent
967 networks were generated by Bayesian bi-clustering¹⁵⁷ and undirected gene co-
968 expression network reconstruction from the NDD KOs. Not constrained by statistical
969 cut-offs, and able to capture the effect of more lowly expressed genes, convergent
970 networks may be a more sensitive measure of convergence. Networks were built based
971 on bi-clustering (BicMix)¹⁵⁸ using log2CPM expression data from all the replicates
972 across each of the NDD gene sets and Scramble gRNA jointly. We performed 40 runs
973 of BicMix on these data and the output from iteration 400 of the variational Expectation-
974 Maximization algorithm was used. Target Specific Network reconstruction¹⁵⁹ was
975 performed to identify convergent networks across all possible combinations of the 9
976 NDD gene KO perturbations shared across cell-types (n=502 combinations/cell-type)
977 and randomly sampled combinations of 2-21 KO perturbations without sub-setting for
978 those shared across cell types (n=1400-2300 combinations).

979 Influence of Functional Similarity on Convergence Degree. To test the influence of
980 functional similarity and brain co-expression between KOs on convergence and
981 compare the degree of convergence between the same KOs in different cell-types we
982 established two methods for defining and measuring convergence. First, gene-level
983 convergence using meta-analysis as described above, with the strength of convergence
984 for each set defined as ratio of convergent genes to the average number of DEGs.

$$\text{gene level convergence} = \frac{n \text{Convergent Genes}}{\text{mean}(\sum_1^N n \text{DEGs})}$$

985 Second, network-level convergence based on undirected network reconstruction from
986 Bayesian bi-clustering as described above. Bi-clustering identifies co-expressed genes

987 shared across the downstream transcriptomic impacts of any given set of KO
988 perturbations, thus, the resolved networks are the transcriptomic similarities between
989 distinct perturbations (convergence). We calculated the “degree of convergence” for
990 each network based on previously described metric⁷³. Briefly, convergence scores are
991 based on (1) network connectivity as defined by the sum of the clustering coefficient
992 (Cp) and the difference in average length path (Lp) from the maximum average length
993 path resolved across all possible sets [(max)Lp-Lp] and (2) similarity of network genes
994 based on biological pathway membership scored by taking the sum of the mean
995 semantic similarity scores¹⁶⁰ between all genes in the network and (3) minimum
996 percent duplication rate across 40 runs. Duplication thresholds are network-dependent
997 and a metric of confidence in the connections.

network level convergence

$$= Cp + [(Lp) - Lp] + \text{mean} \left(\sum_1^N MFsem sim + BPsem sim + CCsem sim \right) + n \text{Duplication runs} / n \text{Total Runs}$$

998 Functionally similarity scores across the NDD KO genes represented in each set was
999 calculated using (1) Gene Ontology Semantic Similarity Scores: the average semantic
1000 similarity score based on Gene Ontology pathway membership within Biological
1001 Pathway (BP), Cellular Component (CC), and Molecular Function (MF) between NDD
1002 genes in a set¹⁶⁰ and (2) brain expression correlation (BEC) score: based on the
1003 strength of the correlation in NDD gene expression in the CMC (n=991 after QC) post-
1004 mortem dura-lateral pre-frontal cortex (DLPFC) gene expression data,.

1005 We performed Pearson’s correlation analysis (Holm’s adjusted P) on similarity scores
1006 and the degree of network convergence to determine the influence of the similarity of
1007 the initial KO genes on downstream convergence. We compared the average strength
1008 of convergence across cell-types using a parametric Welch’s F-test and pairwise
1009 Games-Howell test.

1010 Enrichment analysis of convergence for risk loci using MAGMA. We intersected cross
1011 cell-type perturbation specific and cross perturbation cell-type-specific gene-level
1012 convergence with genetic risk of psychiatric and neurological disorders/traits [attention-
1013 deficit/hyperactivity disorder (ADHD)¹⁶¹, anorexia nervosa (AN)¹⁶², autism spectrum
1014 disorder (ASD)², alcohol dependence (AUD)¹⁶³, bipolar disorder (BIP)¹⁶⁴, cannabis use
1015 disorder (CUD)¹⁶⁵, major depressive disorder (MDD)¹⁶⁶, obsessive-compulsive disorder
1016 (OCD)¹⁶⁷, post-traumatic stress disorder (PTSD)¹⁶⁸, and schizophrenia (SCZ)¹⁶⁹, Cross
1017 Disorder (CxD)¹⁷⁰, Alzheimer disease (AD)¹⁷¹, Parkinson disease (PD)¹⁷², amyotrophic
1018 lateral sclerosis (ALS)¹⁷³, Tourette’s¹⁷⁴, migraine¹⁷⁵, chronic pain¹⁷⁶, and neurotic
1019 personality traits¹⁷⁷ GWAS summary statistics] using multi-marker analysis of genomic
1020 annotation (MAGMA)⁶⁵. SNPs were mapped to genes based on the corresponding build
1021 files for each GWAS summary dataset using the default method, snp-wise $\square = \square$ mean (a
1022 test of the mean SNP association). A competitive gene set analysis was then used to
1023 test enrichment in genetic risk for a disorder across gene sets with an FDR<0.05.

1024 To test if observed effects were due to the differential size of the gene sets for each
1025 GWAS or owing to the fact that DEGs are more likely to include neural genes, which are

1026 more likely to be associated with brain disorder, GWAS sets were filtered for genes
1027 expressed in each cell-type prior to enrichment testing and enrichment tests were
1028 performed after randomly down-sampling GWAS Gene Sets to 100, 250, 500, 750, and
1029 1000 genes (**SI Fig. 9**), performed ten times within each set size (i.e., 50 tests for each
1030 GWAS)."

1031 Over-representation analysis, functional enrichment annotation, and biological theme
1032 comparison of convergence. To identify pathway enrichments unique to individual KOs,
1033 convergent genes, and convergent networks based on zebrafish behavioral subgroups
1034 (see zebrafish methods below), we performed biological theme comparison and GSEA
1035 using ClusterProfiler¹⁷⁸. Using FUMAGWAS: GENE2FUNC, the 102 ASD genes were
1036 functionally annotated and overrepresentation gene-set analysis for each convergent
1037 gene set was performed¹⁷⁹. Using WebGestalt (WEB-based Gene SeT AnaLysis
1038 Toolkit)¹⁸⁰, over-representation analysis (ORA) was performed on all convergent gene
1039 sets against publicly available gensex lists GeneOntology, KEGG, DisGenNet, Human
1040 Phenotype Ontology, and a curated gene list of rare-variant targets associated with
1041 ASD, SCZ, and ID⁶⁷.

1042 Random forest prediction model of convergence strength. To determine how well
1043 functional similarity between KOs can predict gene-level and network-level convergence
1044 we trained a random forest model⁷⁵ (randomForest package in R) for each type of
1045 convergence, evaluated the model in an independent internal dataset, and validated the
1046 model in an external CRISPRa activation screen⁷³. Data from randomly tested gene
1047 combinations (2-5 KO sets at the gene level and 2-10 KO sets at the network level)
1048 tested across cell-types were randomly down-sampled into a training set (70%) and
1049 testing set (30%) – all with comparable proportions of data by cell-type. The random
1050 forest model was trained with bootstrap aggregation using C.C, M.F, B.P semantic
1051 similarity scores, brain expression correlation, number of genes, and cell-type as
1052 predictors. The Random Forest linear regression model was evaluated in the testing
1053 data by comparing actual values to predicted values, estimating the root mean squared
1054 error and performing Pearson's correlations. Predictor models were validated using an
1055 external dataset of 10 CRISPR-activation perturbations of SCZ common variant target
1056 genes with multifunctional annotations broadly grouped as signaling/cell communication
1057 (CALN1, NAGA, FES, CLCN3, PLCL1) and epigenetic/regulatory (SF3B1, TMEM219,
1058 UBE2Q2L, ZNF804A, ZNF823)⁷³, and assessed based the root mean squared error and
1059 Pearson's correlation between actual and predicted convergence strength.

1060 LNCTP in silico model

1061 To investigate the perturbation of ASD genes in silico, we adapt the Linear Network of
1062 Cell-Type Phenotypes (LNCTP) model⁷⁶ to predict the effects of changes in gene
1063 expression in the prefrontal cortex, across neuronal and non-neuronal cell-types. The
1064 LNCTP is defined as an energy model representing the joint distribution of a collection
1065 of phenotypes of interest conditioned on the genotype. Since we are interested
1066 primarily in the effects of gene expression perturbations on the expression of other
1067 genes, we use only the imputation segment of the LNCTP model (excluding the
1068 prediction of higher-order phenotypes and cell-cell interactions).

1069 The probabilistic model for the imputation-based LNCTP may be expressed as:

$$p_{LNCTP}(x_i|z_i) = \exp(-E(x_i|z_i))$$

1070

$$\begin{aligned} E(x_i|z_i) = & x_{i0}^T J x_{i0.} + \sum_g x_{i0g}^T b(z_i, \beta_g) + \sum_c (x_{ic}^T J_c x_{ic.} + x_{ic.}^T b_c) \\ & + \lambda \sum_g (x_{i0g} - f(z_i)^T x_{i,1\dots c,g})^2. \end{aligned} \tag{1}$$

1071

1072 Here, z_i represents the genotype of individual i , and x_i represents bulk and cell-type
1073 specific gene expression from individual i . We further index the gene expression by C
1074 cell-types (which are here: Excitatory Neurons, Inhibitory Neurons, Oligodendrocytes,
1075 Astrocytes, Oligodendrocyte Precursor Cells, Endothelial Cells and Microglia), which will
1076 be denoted $x_1, x_2, \dots x_C$, and we will use x_0 to denote the bulk expression. The variables
1077 $f_{1\dots C}$ represent the estimated cell-fractions in the bulk observations (predicted from the
1078 genotype, z). The parameters of the model are $\theta = \{\beta_{1\dots G}, J_{0\dots C}\}$ and λ acts as a
1079 hyperparameter. The parameters $\beta_{1\dots G}$ and $J_{0\dots C}$ reflect the gene specific expression
1080 biases and pairwise interactions respectively, whose non-zero elements are determined
1081 by the sparsity structure arising from eQTLs and Gene Regulatory Network (GRN)
1082 linkages respectively; the non-zero elements of J_c occur only between genes connected
1083 in the GRN of cell-type c .

1084 Further details on the training of the model in Eq. (1) can be found in⁷⁶; here, we outline
1085 the specific differences in the training for the purposes of our analysis. As in⁷⁶, we use
1086 genetics and expression data from post-mortem PFC samples from the PsychENCODE
1087 consortium. However, we group together samples from all higher-order phenotypes
1088 during training (control (CTR), schizophrenia (SCZ), bipolar disorder (BPD) and autism
1089 spectrum disorder (ASD)), and split the data into three partitions of size 760, 100 and
1090 100 for training, validation and testing respectively (each including samples from all
1091 higher-order phenotypes). Further, we include all 29 CRISPR targeted genes, 102 NDD
1092 genes⁶¹, Transcription Factors⁷⁶ and neuropsychiatric TWAS-selected genes⁷⁶, and the
1093 top 100 up and down regulated CRISPR convergent genes in iGLUT and iGABA cells
1094 (400 genes in total), in the model, generating 1325 genes in total. The eQTL and GRN
1095 linkages from PsychENCODE are then restricted to this subset of genes.

1096 LNCTP Simulating Perturbations

1097 To perform perturbations in this model corresponding to the 29 CRISPR targeted genes,
1098 we use the following perturbation-conditioned version of the LNCTP model:

$$p_{LNCTP}(x_{i,-(c^*,g^*)}|z_i, x_{i,c^*,g^*} = \{k, -k\}) = \exp(x_{i,-(c^*,g^*)}|z_i, x_{i,c^*,g^*} = \{k, -k\})$$

1099

$$\begin{aligned}
 E(x_{i,-(c^*,g^*)} | z_i, x_{i,c^*,g^*} = \{k, -k\}) \\
 &= x_{i0}^T J x_{i0} + \sum_g x_{i0g}^T b(z_i, \beta_g) + \sum_c (x_{ic}^T J_c x_{ic} + x_{ic}^T b_c) \\
 &+ \lambda \sum_g (x_{i0g} - f(z_i)^T x_{i,1\dots c,g})^2 + K \delta(x_{i,c^*,g^*} = \{k, -k\}).
 \end{aligned} \tag{2}$$

1100 where (c^*, g^*) denotes the perturbed gene and cell type, whose expression is set to k or $-k$, $\delta(a)$ is a delta function whose value is 0 if expression a is true, and 1 otherwise, and K is an arbitrarily large value. We perturb each of the CRISPR targeted genes in turn in the bulk network, using $k = 2$, and applying a negative perturbation to mimic the effect of the CRISPR perturbation. We note that, since the model is trained on Z-scored log-normalized expression counts, this corresponds to introducing a large negative fold-change to the selected gene. The *in silico* predicted log fold-changes per individual across all genes (per cell-type) are then calculated by comparing the expected values before and after perturbation:

$$\Delta_{i,c,g} = \mathbb{E}_{p_{LNCTP}(\cdot | z_i)}[x_{i,c,g}] - \mathbb{E}_{p_{LNCTP}(\cdot | z_i, x_{i,c^*,g^*} = \{k, -k\})}[x_{i,c,g}] \tag{3}$$

1110 and the final predicted log fold-changes are calculated by taking the expectation across 1111 individuals. We use the sampling approach in⁷⁶ to evaluate the expectations in Eq. (3).

1112 To perform perturbations across all 102 NDD genes, for efficiency we learn a reduced 1113 model by remove the dependency on z_i in Eq. (1). We sample cell-type specific 1114 expression values for each individual from the full model, and then fit the reduced model 1115 by refitting the model parameters to maximize the likelihood of the full data vectors 1116 (consisting of the original bulk and sampled cell-specific expression vectors for each 1117 individual). Perturbations are performed in the reduced model as in Eq. (2) and fold- 1118 changes are calculated as in Eq. (3), while removing the dependency on z_i and the i 1119 subscripts respectively.

1120 *LNCTP in silico convergent genes*

1121 To identify *in silico* convergent genes for a set of perturbations, $S = \{(c_1^*, g_1^*), \dots, (c_N^*, g_N^*)\}$, we calculate $\Delta_{c,g}$ using Eq. (3) for each perturbation, writing $\Delta_{c,g}^{c^*,g^*}$ 1122 for the log fold-change to (c, g) generated by applying perturbation (c^*, g^*) , and $\Delta_{c,g}^S$ for 1123 the set of log fold-changes by applying all perturbations in S . Then, the set of *in silico* 1124 convergent genes for S is found by selecting those for which $p_{\text{sign}}(\Delta_{c,g}^S \cdot [\Delta_{c,g}^S \geq \tau]) < 1125 0.1$, where $p_{\text{sign}}(\cdot)$ is the p-value from a 2-tailed one-sample sign-test. The threshold τ 1126 is introduced to reduce noise from perturbations which are estimated to generate small 1127 log fold-changes, and throughout we set $\tau = 0.3$.

1128 For the comparison of *in silico* convergent genes derived from different perturbation sets 1129 S , we apply two-sided hypergeometric tests to the gene sets defined as above (using all 1325 genes in our model as the background set). For Gene Set Enrichment Analysis of

1133 convergent genes derived from S , we apply clusterprofiler¹⁷⁸ to the full set of genes in
1134 our model, ranked by $p_{\text{sign}}(\Delta_{c,g}^S \cdot [\Delta_{c,g}^S \geq \tau])$ as defined above.

1135 *LNCTP semantic distance test*

1136 To test the semantic distance between enriched terms for two sets of perturbations S_1
1137 and S_2 , we generate the set of enriched terms T_1 and T_2 by applying GSEA to each set
1138 as described above (using Benjamini Höchberg correction and an FDR threshold of 0.2
1139 to select enriched terms T_1 and T_2). We then calculate the similarity between terms t_1
1140 and t_2 by evaluating $s(t_1, t_2) = |G(t_1) \cap G(t_2)| / |G(t_1) \cup G(t_2)|$, where $G(t)$ denotes the
1141 set of genes occurring in the leading edge of term t . We test for a significant semantic
1142 distance between S_1 and S_2 by evaluating $s(t_1, t_2)$ between all pairs $t_1 \in S_1$, $t_2 \in S_2$,
1143 versus all pairs $t_1 \in S_1$, $t_2 \in S_1$ and $t_1 \in S_2$, $t_2 \in S_2$, and applying a one-sided rank-sum
1144 test for the for a smaller similarity in the former pairs versus the latter.

1145 *Transcriptional correlations between hiPSC-derived neural cells, fetal and adult brain*
1146 *cell types, and the zebrafish brain.*

1147 We compared wild-type (WT) zebrafish brain expression to gene expression in our
1148 hiPSC-derived models and to sign-cell expression data for the fetal and adult PFC
1149 (PsychENCODE^{181,182}:

1150 http://resource.psychencode.org/Datasets/Derived/SC_DecomP/DER-20_Single_cell_expression_processed TPM.tsv). We first filtered zebrafish gene names
1151 and converted them to the appropriate *Homo sapiens* orthologs using the R package
1152 *orthogene* (v3.2.1¹⁸³); genes without matched orthologs were dropped from both
1153 species. Pseudo-bulk expression data from scramble control cells were used as the
1154 baseline expression across NPCs, D7 iGLUTs, D21 iGLUTs, and D36 iGABAs.
1155 Pearson's correlation coefficients between *in vitro* cells, fetal and adult postmortem
1156 brain cells, and zebrafish brain were calculated and a Bonferroni correction applied.

1158 *Zebrafish*

1159 All procedures involving zebrafish were conducted in accordance with Institutional
1160 Animal Care and Use Committee (IACUC; Protocol #2024-20054) regulatory standards
1161 at Yale University. Zebrafish larvae were raised at 28°C on a 14:10 hour light:dark
1162 cycle. Larvae were grown in 150 mm Petri dishes in blue water (0.3g/L Instant Ocean, 1
1163 mg/L methylene blue, pH 7.0) at a density of 60-80 larvae per dish. Behavioral assays
1164 were conducted in zebrafish larvae at 5-7 dpf. At these developmental stages, sex is not
1165 yet determined.

1166 *Zebrafish mutant generation*

1167 We performed automated, high-throughput, quantitative behavioral profiling of larval
1168 zebrafish to measure arousal and sensorimotor processing as a readout of circuit-level
1169 deficits resulting from gene perturbation.⁶⁰ We quantified 24 parameters across sleep-
1170 wake activity and visual-startle responses in 18 stable homozygous mutant or F0
1171 mosaic crispant lines for 15 NDD genes (**SI Tables 4-5**). Stable zebrafish lines were
1172 generated by our lab (*arid1b*^{Δ7/Δ7}, *chd2*^{Δ7/Δ7}, *chd8*^{Δ7/Δ7}, *chd8*^{Δ5/Δ5}, *kdm5ba*^{Δ17/Δ17}*b*^{Δ14/Δ14},
1173 *kdm5ba*^{Δ4/Δ4}*b*^{Δ4/Δ4}⁶⁰) or provided as a generous gift from the Thyme lab
1174 (*ash1l*^{Δ1i,Δ60,19i/1i,Δ60,19i}, *kmt5b*^{Δ208,1i,Δ5/Δ208,1i,Δ5}, *kmt2ca*^{Δ82,17i/Δ82,17i}*b*^{Δ6,Δ29/Δ6,Δ29},

1175 *nrxn1a*^{1218/1218}^{184,185}. F0 crispants for the following genes were generated according to
1176 ref. ¹⁸⁶: *chd2*, *kdm6bab*, *mbd5*, *phf12ab*, *phf21aab*, *skiab*, *smarcc2*, *wacab*. Briefly, we
1177 designed two CRISPR crRNAs per allele, prioritizing early exons for targeting. CRISPR
1178 RNPs were assembled individually and then combined prior to injection at the one-cell
1179 stage. The number of scrambled guides injected into the control group was matched to
1180 the number of CRISPR guides used for the experimental group. Injected embryos were
1181 raised to 5 dpf at which point the behavioral assays (described below) were conducted.
1182 We identified unique behavioral fingerprints for each NDD gene mutant, revealing
1183 convergent and divergent phenotypes across mutants (**SI Fig. 22B**). To classify
1184 convergent behavioral subgroups that may share circuit-level functions, we performed
1185 correlation analyses with hierarchical clustering across mutants. We identified four
1186 distinct subgroups of NDD genes with highly correlated behavioral features (**Fig. 7A**).

1187 **Behavioral assays**

1188 Larvae were placed into individual wells of a 96 well plate (7701-1651; Whatman,
1189 Clifton, NJ) containing 650 µL of standard embryo water (0.3 g/L Instant Ocean, 1 mg/L
1190 methylene blue, pH 7.0) per well within a Zebrabox (Viewpoint LifeSciences; Viewpoint
1191 Life Sciences, Montreal, Quebec, Canada). Locomotion was quantified with automated
1192 video-tracking system (Zebrabox and ZebraLab software). The visual-startle assay was
1193 conducted at 5 days post fertilization (dpf) as described⁶⁰. To assess larval responses to
1194 lights-off stimuli (VSR-OFF), larvae were acclimated to white light for 1 hour, and
1195 baseline activity was tracked for 30 minutes followed by five 1-second dark flashes with
1196 intermittent white light for 29 seconds. To evaluate larval responsiveness to lights-on stimuli
1197 (VSR-ON), the assay was reversed, where larvae were acclimated to darkness for 1
1198 hour, and baseline activity was tracked for 30 minutes followed by five 1-second white
1199 light flashes with intermittent darkness for 29 seconds. For VSR-OFF and VSR-ON, six
1200 behavioral parameters were quantified using custom MATLAB code⁶⁰ (available on
1201 github at <https://github.com/ehoffmanlab/Weinschutz-Mendes-et-al-2023-behavior>;
1202 DOI:10.5281/zenodo.7644898): (i) average intensity of all startle responses; (ii) average
1203 post-stimulus activity; (iii) average activity after first stimulus; (iv) stimulus versus post-
1204 stimulus activity; (v) intensity of responses to the first stimulus; (vi) intensity of
1205 responses to the final stimulus. The sleep-wake paradigm was conducted between 5-7
1206 dpf, following the VSR-OFF and VSR-ON assays. During a 14h:10h white light:darkness
1207 cycle, larvae activity and sleep patterns were tracked within the Zebrabox and analyzed
1208 with custom MATLAB code⁶⁰ (available on github at (<https://github.com/JRihel/Sleep-Analysis/tree/Sleep-Analysis-Code>); DOI: 10.5281/zenodo.7644073). Six behavioral
1209 parameters were quantified for daytime and nighttime: (i) total activity; (ii) total sleep; (iii)
1210 waking activity; (iv) rest bouts; (v) sleep length; (vi) sleep latency. Across VSR-OFF,
1211 VSR-ON, and sleep-wake assays, we analyzed 24 parameters.

1213 **Behavioral analysis**

1214 Linear mixed models (LMM) were used to compare phenotypes of each behavioral
1215 parameter between homozygous mutant versus wild-type or crispant versus scramble-
1216 injected fish for each gene of interest. Variations of behavioral phenotypes across
1217 experiments were accounted for by including the date of the experiment as a random
1218 effect in LMM. Hierarchical clustering analysis was performed to cluster mutants and
1219 behavioral parameters based on signed -log10-transformed p-values from LMM, where

1220 sign indicates direction of the difference in behavioral phenotype when comparing
1221 stable mutant to wild-type or crispant to scrambled-injected. Pearson correlation
1222 analysis was used to assess correlations between mutants based on the difference in
1223 the 24 parameters. Difference was evaluated using signed -log10-transformed p-values.

1224 Drug prioritization based on zebrafish pharmaco-behavioral profiles

1225 NDD gene-associated mutant and crispant behavioral phenotypes were compared to a
1226 dataset of 376 U.S. FDA-approved drugs that were screened for their behavioral effects
1227 in larval zebrafish using the visual-startle and sleep-wake assays described above.
1228 These drugs have a significant effect on at least two behavioral parameters (LMM,
1229 $p<0.05/3$, corrected for three behavioral assays). Pearson's correlation analysis was
1230 used to identify drugs that significantly correlate (correlation >0.5 , $p<0.05$, t-statistic) or
1231 anti-correlate (correlation <-0.5 , $p<0.05$, t-statistic) with mutant behavioral signatures (**SI**
1232 **Data 2-3**).

1233 Drug prioritization based on perturbation signature reversal in LiNCs Neuronal Cell
1234 Lines. To identify drugs that could reverse cell-type specific convergence across
1235 different KOs, we used the Query tool from The Broad Institute's Connectivity Map
1236 (Cmap) Server⁷⁸. Briefly, the tool computes weighted enrichment scores (WTCS)
1237 between the query set and each signature in the Cmap LiNCs gene expression data
1238 (dose, time, drug, cell-line), normalizes the WTCS by dividing by the signed mean within
1239 each perturbation (NCS), and computes FDR as fraction of "null signatures" (DMSO)
1240 where the absolute NCS exceeds reference signature. We prioritized drugs that were
1241 negatively enriched for convergent signatures specifically in neuronal cells (either
1242 neurons (NEU) or neural progenitor cells (NPCs) with NCS ≤ -1.00 , FDR ≤ 0.05) and
1243 filtered for drugs that had clinical data in humans and paired behavioral phenotyping in
1244 zebrafish (**SI Data 2**).

1245 Targeted drug rescue of behavioral phenotypes in zebrafish

1246 For mutant-x-drug experiments, larval activity was monitored from 5-7 dpf using the
1247 behavioral assays described above. Individual wild-type zebrafish larvae were added to
1248 each well of a 96-well plate containing 650 μ l of standard embryo water. A 5 mM stock
1249 solution of each compound dissolved in DMSO or DMSO alone (control) was pipetted
1250 directly into each well after which the visual-startle and sleep-wake assays were
1251 performed. Drugs were tested at a final concentration of 10 μ M (0.1% DMSO final
1252 concentration) in 12-24 background-matched homozygous or wild-type larvae or 24
1253 crispant or scrambled control-injected larvae with genotyping conducted after each
1254 experiment to confirm genotypes for stable mutant lines and confirm on-target mutations
1255 in crispants.

1256 For behaviors that were nominally significantly different between mutant+DMSO and
1257 WT+DMSO ($p<0.06$), we characterized the effect of the mutant-x-Drug on behavior as:
1258 i) "exacerbated" [significant effect mutant+Drug-v-WT $>$ significant effect mutant-v-WT] if
1259 mutant behavior $p\leq 0.06$ and mutant-x-drug behavior $p.value \leq$ mutant behavior
1260 $p.value$ with increased absolute beta values (i.e., stronger $p.value$ with appreciable
1261 difference in the magnitude of effect but not direction); ii) "unchanged" [significant effect
1262 mutant+drug-v-WT = significant effect mutant-v-WT]; iii) "partial rescue" [significant
1263 effect mutant+Drug-v-WT $<$ significant effect mutant-v-WT], if mutant behavior $p\leq 0.06$

1264 and mutant-x-drug behavior $p>0.06$ or if mutant behavior $p.value \leq$ mutant-x-drug
1265 behavior $p.value$ with reduced effects on the absolute beta value; iv) “rescued” [sig.
1266 effect mutant-v-WT, no sig. effect mutant+Drug-v-WT], mutant behavior $p\leq0.06$ and
1267 mutant-x-drug behavior $p>0.06$; v) “over-corrected” [mutant+Drug-v-WT opposite
1268 direction of sig. effect mutant-v-WT]. mutant behavior $p\leq0.06$ and mutant-x-drug
1269 behavior $p\leq0.06$, with opposing directions of effect. Note “drug specific/side-
1270 effects” indicate significant mutant-by-drug effects.

1271

1272 **STATEMENT OF ETHICS**

1273 Yale University Institutional Review Board waived ethical approval for this work. Ethical
1274 approval was not required because the hiPSC lines, lacking association with any
1275 identifying information and widely accessible from a public repository, are thus not
1276 considered to be human subject research. Post-mortem brain data are similarly lacking
1277 identifiable information and are not considered human subject research.

1278 All procedures involving zebrafish were conducted in accordance with Institutional
1279 Animal Care and Use Committee (IACUC; Protocol #2024-20054) regulatory standards
1280 at Yale University.

1281

1282 **CONFLICT OF INTEREST STATEMENT**

1283 The authors declare no conflict of interest.

1284

1285 **FUNDING SOURCES**

1286 This work was supported by F31MH130122 (K.R.T), HHMI Gilliams Fellowship (A.P.),
1287 Autism Science Foundation (A.P.), T32MH014276 (M.F.G.), T32GM136651 (E.D., S.F.)
1288 R01MH123155 (K.J.B.), RM1MH132648 (K.J.B. and E.J.H.), R01MH121074 (K.J.B.),
1289 R01MH116002 (E.J.H.) R21MH133245 (E.J.H.), and R01ES033630 (L.H., K.J.B.),
1290 R01MH124839 (LMH), R01MH118278 (L.MH.), Simons Foundation (#1012863KB,
1291 #573508EH and #345993EH), Spector Fund, (E.J.H. and Swebilius Foundation (E.J.H.);
1292 Kavli Foundation (E.J.H.); BD2: Breakthrough Discoveries for thriving with Bipolar
1293 Disorder (#DG230102 H.S., M.D., T.C.H., K.J.B.), the European Union's Horizon 2020
1294 research and innovation programme under the Marie Skłodowska-Curie grant
1295 (#101065629 N.B.); and Interdepartmental Neuroscience Program at Yale (A.P.).

1296

1297 **AUTHOR CONTRIBUTIONS**

1298 MFG designed and executed the NDD gene ECCITEseq in iNPCs, iGLUTs, and
1299 iGABAs, with technical assistance from SC, OL, and JC and support from PJMD. KRT
1300 conducted all bioinformatic analyses and generated all figures, with technical assistance
1301 from AS. Arrayed KO lines and neuronal cultures were generated, validated,
1302 phenotyped, and analyzed by NB. NB, T-CH, CB, ALTS, and JL conducted
1303 mitochondrial phenotypic analyses. SBT, AP, ED, YD, SEF, and SK, generated,
1304 phenotyped, and analyzed zebrafish mutants with technical assistance from GD and

1305 bioinformatic supervision from ZW. JW, RM, ZC, and MG conducted LNCTP analyses.
1306 Funding and mentorship provided by LH, EJH, and KJB. Manuscript was written by KJB
1307 with extensive feedback from LH, EJH, and KRT as well as contributions for all authors.
1308 Special thanks to Michael Talkowski and Douglas Ruderfer for countless discussions on
1309 convergence and to Summer Thyme and the Thyme lab for sharing zebrafish mutant
1310 lines.

1311

1312 **INCLUSION AND DIVERSITY**

1313 One or more of the authors of this paper self-identifies as an under-represented ethnic
1314 minority in their field of research or within their geographical location. One or more of
1315 the authors of this paper self-identifies as living with a disability. One or more of the
1316 authors of this paper self-identifies as a gender minority in their field of research. One or
1317 more of the authors of this paper self-identifies as a member of the LGBTQIA+
1318 community. One or more of the authors of this paper received support from a program
1319 designed to increase minority representation in their field of research.

1320

1321 **DATA AVAILABILITY**

1322 All source donor hiPSCs have been deposited at the Rutgers University Cell and DNA
1323 Repository (study 160; <http://www.nimhstemcells.org/>).

1324 sc-RNA sequencing data reported in this paper will be uploaded to Gene expression
1325 omnibus (GEO) prior to publication. Previously published SCZ-CRISPRa screen
1326 datasets that were used for external validation of random forest models are available on
1327 the GEO (GSE200774) and on Synapse (syn27819129).

1328

1329 **CODE AVAILABILITY**

1330 The full analysis pipeline (including code and processed data objects) used for analysis
1331 of single-cell CRISPR-KO data, evaluation and characterization of gene-level and
1332 network level convergence, and predictive modeling using random forest will be publicly
1333 available through Synapse prior to publication.

1334 Custom MATLAB software developed by the Hoffman Lab to analyze visual-startle
1335 response parameters is available on github
1336 at <https://github.com/ehoffmanlab/Weinschutz-Mendes-et-al-2023-behavior>; <https://doi.org/10.5281/zenodo.7644898>. Custom MATLAB software
1337 developed by Jason Rihel to analyze sleep-wake assays is available on github
1338 at <https://github.com/JRihel/Sleep-Analysis/tree/Sleep-Analysis-Code>; <https://doi.org/10.5281/zenodo.7644073>.

1341

1342 **REFERENCES**

1343 1 Sandin, S. *et al.* The Heritability of Autism Spectrum Disorder. *JAMA* **318**, 1182-
1344 1184 (2017). <https://doi.org/10.1001/jama.2017.12141>

1345 2 Grove, J. *et al.* Identification of common genetic risk variants for autism spectrum
1346 disorder. *Nat Genet* **51**, 431-444 (2019). <https://doi.org/10.1038/s41588-019-0344-8>

1348 3 Mahjani, B. *et al.* Prevalence and phenotypic impact of rare potentially damaging
1349 variants in autism spectrum disorder. *Mol Autism* **12**, 65 (2021).
1350 <https://doi.org/10.1186/s13229-021-00465-3>

1351 4 Satterstrom, F. K. *et al.* Large-Scale Exome Sequencing Study Implicates Both
1352 Developmental and Functional Changes in the Neurobiology of Autism. *Cell* **180**,
1353 568-584 e523 (2020). <https://doi.org/10.1016/j.cell.2019.12.036>

1354 5 Kaplanis, J. *et al.* Evidence for 28 genetic disorders discovered by combining
1355 healthcare and research data. *Nature* **586**, 757-762 (2020).
1356 <https://doi.org/10.1038/s41586-020-2832-5>

1357 6 Coe, B. P. *et al.* Neurodevelopmental disease genes implicated by de novo
1358 mutation and copy number variation morbidity. *Nat Genet* **51**, 106-116 (2019).
1359 <https://doi.org/10.1038/s41588-018-0288-4>

1360 7 Singh, T. *et al.* Rare coding variants in ten genes confer substantial risk for
1361 schizophrenia. *Nature* **604**, 509-516 (2022). <https://doi.org/10.1038/s41586-022-04556-w>

1363 8 Palmer, D. S. *et al.* Exome sequencing in bipolar disorder identifies AKAP11 as a
1364 risk gene shared with schizophrenia. *Nat Genet* **54**, 541-547 (2022).
1365 <https://doi.org/10.1038/s41588-022-01034-x>

1366 9 Willsey, A. J. *et al.* Coexpression networks implicate human midfetal deep
1367 cortical projection neurons in the pathogenesis of autism. *Cell* **155**, 997-1007
1368 (2013). <https://doi.org/10.1016/j.cell.2013.10.020>

1369 10 De Rubeis, S. *et al.* Synaptic, transcriptional and chromatin genes disrupted in
1370 autism. *Nature* **515**, 209-215 (2014). <https://doi.org/10.1038/nature13772>

1371 11 O'Roak, B. J. *et al.* Recurrent de novo mutations implicate novel genes
1372 underlying simplex autism risk. *Nat Commun* **5**, 5595 (2014).
1373 <https://doi.org/10.1038/ncomms6595>

1374 12 Talkowski, M. E. *et al.* Sequencing chromosomal abnormalities reveals
1375 neurodevelopmental loci that confer risk across diagnostic boundaries. *Cell* **149**,
1376 525-537 (2012). <https://doi.org/10.1016/j.cell.2012.03.028>

1377 13 Neale, B. M. *et al.* Patterns and rates of exonic de novo mutations in autism
1378 spectrum disorders. *Nature* **485**, 242-245 (2012). <https://doi.org/nature11011> [pii]
1379 10.1038/nature11011

1380 14 O'Roak, B. J. *et al.* Multiplex targeted sequencing identifies recurrently mutated
1381 genes in autism spectrum disorders. *Science* **338**, 1619-1622 (2012).
1382 <https://doi.org/10.1126/science.1227764>

1383 15 Sanders, S. J. *et al.* De novo mutations revealed by whole-exome sequencing
1384 are strongly associated with autism. *Nature* **485**, 237-241 (2012).
1385 <https://doi.org/nature10945> [pii] 10.1038/nature10945

1386 16 Fazel Darbandi, S. *et al.* Five autism-associated transcriptional regulators target
1387 shared loci proximal to brain-expressed genes. *Cell reports* **43**, 114329 (2024).
1388 <https://doi.org/10.1016/j.celrep.2024.114329>

1389 17 Markenscoff-Papadimitriou, E. *et al.* Autism risk gene POGZ promotes chromatin
1390 accessibility and expression of clustered synaptic genes. *Cell reports* **37**, 110089
1391 (2021). <https://doi.org/10.1016/j.celrep.2021.110089>

1392 18 Notwell, J. H. *et al.* TBR1 regulates autism risk genes in the developing
1393 neocortex. *Genome Res* **26**, 1013-1022 (2016).
1394 <https://doi.org/10.1101/gr.203612.115>

1395 19 Sugathan, A. *et al.* CHD8 regulates neurodevelopmental pathways associated
1396 with autism spectrum disorder in neural progenitors. *Proc Natl Acad Sci U S A*
1397 **111**, E4468-4477 (2014). <https://doi.org/10.1073/pnas.1405266111>

1398 20 Cotney, J. *et al.* The autism-associated chromatin modifier CHD8 regulates other
1399 autism risk genes during human neurodevelopment. *Nat Commun* **6**, 6404
1400 (2015). <https://doi.org/10.1038/ncomms7404>

1401 21 O'Neill, A. C. *et al.* Spatial centrosome proteome of human neural cells uncovers
1402 disease-relevant heterogeneity. *Science* **376**, eabf9088 (2022).
1403 <https://doi.org/10.1126/science.abf9088>

1404 22 Sun, N. *et al.* Autism genes converge on microtubule biology and RNA-binding
1405 proteins during excitatory neurogenesis. *bioRxiv*, 2023.2012.2022.573108
1406 (2024). <https://doi.org/10.1101/2023.12.22.573108>

1407 23 Kostyanovskaya, E. *et al.* Convergence of autism proteins at the cilium. *bioRxiv*
1408 (2025). <https://doi.org/10.1101/2024.12.05.626924>

1409 24 Teerikorpi, N. *et al.* Ciliary biology intersects autism and congenital heart
1410 disease. *bioRxiv* (2024). <https://doi.org/10.1101/2024.07.30.602578>

1411 25 Li, C. *et al.* Single-cell brain organoid screening identifies developmental defects
1412 in autism. *bioRxiv*, 2022.2009.2015.508118 (2022).
1413 <https://doi.org/10.1101/2022.09.15.508118>

1414 26 Martins-Costa, C. *et al.* ARID1B controls transcriptional programs of axon
1415 projection in an organoid model of the human corpus callosum. *Cell stem cell* **31**,
1416 866-885 e814 (2024). <https://doi.org/10.1016/j.stem.2024.04.014>

1417 27 Paulsen, B. *et al.* Autism genes converge on asynchronous development of
1418 shared neuron classes. *Nature* **602**, 268-273 (2022).
1419 <https://doi.org/10.1038/s41586-021-04358-6>

1420 28 Villa, C. E. *et al.* CHD8 haploinsufficiency links autism to transient alterations in
1421 excitatory and inhibitory trajectories. *Cell reports* **39**, 110615 (2022).
1422 <https://doi.org/10.1016/j.celrep.2022.110615>

1423 29 Flaherty, E. *et al.* Neuronal impact of patient-specific aberrant NRXN1alpha
1424 splicing. *Nat Genet* **51**, 1679-1690 (2019). <https://doi.org/10.1038/s41588-019-0539-z>

1425 30 Sebastian, R. *et al.* Schizophrenia-associated NRXN1 deletions induce
1426 developmental-timing- and cell-type-specific vulnerabilities in human brain
1427 organoids. *Nature Communications* **14**, 3770 (2023).
1428 <https://doi.org/10.1038/s41467-023-39420-6>

1429 31 Birtele, M. *et al.* Non-synaptic function of the autism spectrum disorder-
1430 associated gene SYNGAP1 in cortical neurogenesis. *Nat Neurosci* **26**, 2090-
1431 2103 (2023). <https://doi.org/10.1038/s41593-023-01477-3>

1432 32 Ellingford, R. A. *et al.* Cell-type-specific synaptic imbalance and disrupted
1433 homeostatic plasticity in cortical circuits of ASD-associated Chd8

1434

1435 haploinsufficient mice. *Mol Psychiatry* **26**, 3614-3624 (2021).
1436 <https://doi.org/10.1038/s41380-021-01070-9>

1437 33 Shi, X. et al. Heterozygous deletion of the autism-associated gene CHD8 impairs
1438 synaptic function through widespread changes in gene expression and chromatin
1439 compaction. *Am J Hum Genet* **110**, 1750-1768 (2023).
1440 <https://doi.org/10.1016/j.ajhg.2023.09.004>

1441 34 Pak, C. et al. Cross-platform validation of neurotransmitter release impairments
1442 in schizophrenia patient-derived NRXN1-mutant neurons. *Proc Natl Acad Sci U S*
1443 **A** **118** (2021). <https://doi.org/10.1073/pnas.2025598118>

1444 35 Yi, F. et al. Autism-associated SHANK3 haploinsufficiency causes Ih
1445 channelopathy in human neurons. *Science* **352**, aaf2669 (2016).
1446 <https://doi.org/10.1126/science.aaf2669>

1447 36 Vermaercke, B. et al. SYNGAP1 deficiency disrupts synaptic neoteny in
1448 xenotransplanted human cortical neurons in vivo. *Neuron* (2024).
1449 <https://doi.org/10.1016/j.neuron.2024.07.007>

1450 37 Jung, E. M. et al. Arid1b haploinsufficiency disrupts cortical interneuron
1451 development and mouse behavior. *Nat Neurosci* **20**, 1694-1707 (2017).
1452 <https://doi.org/10.1038/s41593-017-0013-0>

1453 38 Fernando, M. B. et al. Phenotypic complexities of rare heterozygous neurexin-1
1454 deletions. *bioRxiv* (2024). <https://doi.org/10.1101/2023.10.28.564543>

1455 39 Chen, Q. et al. Dysfunction of cortical GABAergic neurons leads to sensory
1456 hyper-reactivity in a Shank3 mouse model of ASD. *Nat Neurosci* **23**, 520-532
1457 (2020). <https://doi.org/10.1038/s41593-020-0598-6>

1458 40 Geschwind, D. H. Autism: many genes, common pathways? *Cell* **135**, 391-395
1459 (2008). <https://doi.org/10.1016/j.cell.2008.10.016>

1460 41 Willsey, H. R., Willsey, A. J., Wang, B. & State, M. W. Genomics, convergent
1461 neuroscience and progress in understanding autism spectrum disorder. *Nat Rev*
1462 *Neurosci* **23**, 323-341 (2022). <https://doi.org/10.1038/s41583-022-00576-7>

1463 42 Bicks, L. K. & Geschwind, D. H. Functional neurogenomics in autism spectrum
1464 disorders: A decade of progress. *Curr Opin Neurobiol* **86**, 102858 (2024).
1465 <https://doi.org/10.1016/j.conb.2024.102858>

1466 43 Quesnel-Vallieres, M., Weatheritt, R. J., Cordes, S. P. & Blencowe, B. J. Autism
1467 spectrum disorder: insights into convergent mechanisms from transcriptomics.
1468 *Nat Rev Genet* **20**, 51-63 (2019). <https://doi.org/10.1038/s41576-018-0066-2>

1469 44 Parikshak, N. N. et al. Integrative functional genomic analyses implicate specific
1470 molecular pathways and circuits in autism. *Cell* **155**, 1008-1021 (2013).
1471 <https://doi.org/10.1016/j.cell.2013.10.031>

1472 45 Voineagu, I. et al. Transcriptomic analysis of autistic brain reveals convergent
1473 molecular pathology. *Nature* **474**, 380-384 (2011). <https://doi.org/nature10110>
1474 [pii]

1475 10.1038/nature10110

1476 46 Liao, C. et al. Convergent coexpression of autism-associated genes suggests
1477 some novel risk genes may not be detectable in large-scale genetic studies. *Cell*
1478 *Genom* **3**, 100277 (2023). <https://doi.org/10.1016/j.xgen.2023.100277>

1479 47 Pintacuda, G. *et al.* Protein interaction studies in human induced neurons
1480 indicate convergent biology underlying autism spectrum disorders. *Cell Genom* **3**,
1481 100250 (2023). <https://doi.org/10.1016/j.xgen.2022.100250>

1482 48 Wang, B. *et al.* A foundational atlas of autism protein interactions reveals
1483 molecular convergence. *bioRxiv* (2023).
<https://doi.org/10.1101/2023.12.03.569805>

1485 49 Murtaza, N. *et al.* Neuron-specific protein network mapping of autism risk genes
1486 identifies shared biological mechanisms and disease-relevant pathologies. *Cell*
1487 *reports* **41**, 111678 (2022). <https://doi.org/10.1016/j.celrep.2022.111678>

1488 50 Gao, Y. *et al.* Proximity analysis of native proteomes reveals phenotypic
1489 modifiers in a mouse model of autism and related neurodevelopmental
1490 conditions. *Nat Commun* **15**, 6801 (2024). <https://doi.org/10.1038/s41467-024-51037-x>

1492 51 Rubenstein, J. L. & Merzenich, M. M. Model of autism: increased ratio of
1493 excitation/inhibition in key neural systems. *Genes, brain, and behavior* **2**, 255-
1494 267 (2003). <https://doi.org/10.1034/j.1601-183x.2003.00037.x>

1495 52 Antoine, M. W., Langberg, T., Schnepel, P. & Feldman, D. E. Increased
1496 Excitation-Inhibition Ratio Stabilizes Synapse and Circuit Excitability in Four
1497 Autism Mouse Models. *Neuron* **101**, 648-661 e644 (2019).
<https://doi.org/10.1016/j.neuron.2018.12.026>

1499 53 Nelson, S. B. & Valakh, V. Excitatory/Inhibitory Balance and Circuit Homeostasis
1500 in Autism Spectrum Disorders. *Neuron* **87**, 684-698 (2015).
<https://doi.org/10.1016/j.neuron.2015.07.033>

1502 54 Cederquist, G. Y. *et al.* A Multiplex Human Pluripotent Stem Cell Platform
1503 Defines Molecular and Functional Subclasses of Autism-Related Genes. *Cell*
1504 *stem cell* **27**, 35-49 e36 (2020). <https://doi.org/10.1016/j.stem.2020.06.004>

1505 55 Lalli, M. A., Avey, D., Dougherty, J. D., Milbrandt, J. & Mitra, R. D. High-
1506 throughput single-cell functional elucidation of neurodevelopmental disease-
1507 associated genes reveals convergent mechanisms altering neuronal
1508 differentiation. *Genome Res* **30**, 1317-1331 (2020).
<https://doi.org/10.1101/gr.262295.120>

1510 56 Meng, X. *et al.* Assembloid CRISPR screens reveal impact of disease genes in
1511 human neurodevelopment. *Nature* **622**, 359-366 (2023).
<https://doi.org/10.1038/s41586-023-06564-w>

1513 57 Li, C. *et al.* Single-cell brain organoid screening identifies developmental defects
1514 in autism. *Nature* **621**, 373-380 (2023). <https://doi.org/10.1038/s41586-023-06473-y>

1516 58 Jin, X. *et al.* In vivo Perturb-Seq reveals neuronal and glial abnormalities
1517 associated with autism risk genes. *Science* **370** (2020).
<https://doi.org/10.1126/science.aaz6063>

1519 59 Willsey, H. R. *et al.* Parallel in vivo analysis of large-effect autism genes
1520 implicates cortical neurogenesis and estrogen in risk and resilience. *Neuron* **109**,
1521 1409 (2021). <https://doi.org/10.1016/j.neuron.2021.03.030>

1522 60 Weinschutz Mendes, H. *et al.* High-throughput functional analysis of autism
1523 genes in zebrafish identifies convergence in dopaminergic and neuroimmune

1524 pathways. *Cell reports* **42**, 112243 (2023).
1525 <https://doi.org/10.1016/j.celrep.2023.112243>

1526 61 Fu, J. M. *et al.* Rare coding variation provides insight into the genetic architecture
1527 and phenotypic context of autism. *Nat Genet* **54**, 1320-1331 (2022).
1528 <https://doi.org/10.1038/s41588-022-01104-0>

1529 62 Marshall, C. R. *et al.* Contribution of copy number variants to schizophrenia from
1530 a genome-wide study of 41,321 subjects. *Nat Genet* **49**, 27-35 (2017).
1531 <https://doi.org/10.1038/ng.3725>

1532 63 Johannessen, K. M. *et al.* Defining the phenotypic spectrum of SLC6A1 mutations.
1533 *Epilepsia* **59**, 389-402 (2018). <https://doi.org/10.1111/epi.13986>

1534 64 Heyne, H. O. *et al.* De novo variants in neurodevelopmental disorders with
1535 epilepsy. *Nat Genet* **50**, 1048-1053 (2018). <https://doi.org/10.1038/s41588-018-0143-7>

1537 65 de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized
1538 gene-set analysis of GWAS data. *PLoS Comput Biol* **11**, e1004219 (2015).
1539 <https://doi.org/10.1371/journal.pcbi.1004219>

1540 66 Sullivan, P. F. & Geschwind, D. H. Defining the Genetic, Genomic, Cellular, and
1541 Diagnostic Architectures of Psychiatric Disorders. *Cell* **177**, 162-183 (2019).
1542 <https://doi.org/10.1016/j.cell.2019.01.015>

1543 67 Schrode, N. *et al.* Synergistic effects of common schizophrenia risk variants. *Nat Genet* **51**, 1475-1485 (2019). <https://doi.org/10.1038/s41588-019-0497-5>

1545 68 Wells, M. F. *et al.* Natural variation in gene expression and viral susceptibility
1546 revealed by neural progenitor cell villages. *Cell stem cell* **30**, 312-332 e313
1547 (2023). <https://doi.org/10.1016/j.stem.2023.01.010>

1548 69 Zhang, Y. *et al.* Rapid single-step induction of functional neurons from human
1549 pluripotent stem cells. *Neuron* **78**, 785-798 (2013).
1550 <https://doi.org/10.1016/j.neuron.2013.05.029>

1551 70 Yang, N. *et al.* Generation of pure GABAergic neurons by transcription factor
1552 programming. *Nat Methods* (2017). <https://doi.org/10.1038/nmeth.4291>

1553 71 Mimitou, E. P. *et al.* Multiplexed detection of proteins, transcriptomes, clonotypes
1554 and CRISPR perturbations in single cells. *Nat Methods* **16**, 409-412 (2019).
1555 <https://doi.org/10.1038/s41592-019-0392-0>

1556 72 Hao, Y. *et al.* Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573-
1557 3587 e3529 (2021). <https://doi.org/10.1016/j.cell.2021.04.048>

1558 73 Deans, P. J. M. *et al.* Convergent impact of schizophrenia risk genes. *bioRxiv*,
1559 2022.2003.2029.486286 (2025). <https://doi.org/10.1101/2022.03.29.486286>

1560 74 Deans, P. M. *et al.* Non-additive effects of schizophrenia risk genes reflect
1561 convergent downstream function. *medRxiv*, 2023.2003.2020.23287497 (2023).
1562 <https://doi.org/10.1101/2023.03.20.23287497>

1563 75 Breiman, L. Random Forests. *Machine Learning* **45**, 5-32 (2001).
1564 <https://doi.org/10.1023/A:1010933404324>

1565 76 Emani, P. S. *et al.* Single-cell genomics and regulatory networks for 388 human
1566 brains. *Science* **384**, eadi5199 (2024). <https://doi.org/10.1126/science.adl5199>

1567 77 Gonzalez, F. *et al.* An iCRISPR platform for rapid, multiplexable, and inducible
1568 genome editing in human pluripotent stem cells. *Cell stem cell* **15**, 215-226
1569 (2014). <https://doi.org/10.1016/j.stem.2014.05.018>

1570 78 Subramanian, A. *et al.* A Next Generation Connectivity Map: L1000 Platform and
1571 the First 1,000,000 Profiles. *Cell* **171**, 1437-1452 e1417 (2017).
1572 <https://doi.org/10.1016/j.cell.2017.10.049>

1573 79 Manji, H. *et al.* Impaired mitochondrial function in psychiatric disorders. *Nat Rev
1574 Neurosci* **13**, 293-307 (2012). <https://doi.org/10.1038/nrn3229>

1575 80 Rossignol, D. A. & Frye, R. E. Mitochondrial dysfunction in autism spectrum
1576 disorders: a systematic review and meta-analysis. *Mol Psychiatry* **17**, 290-314
1577 (2012). <https://doi.org/10.1038/mp.2010.136>

1578 81 Wang, Y., Picard, M. & Gu, Z. Genetic Evidence for Elevated Pathogenicity of
1579 Mitochondrial DNA Heteroplasmy in Autism Spectrum Disorder. *PLoS genetics*
1580 **12**, e1006391 (2016). <https://doi.org/10.1371/journal.pgen.1006391>

1581 82 Varga, N. A. *et al.* Mitochondrial dysfunction and autism: comprehensive genetic
1582 analyses of children with autism and mtDNA deletion. *Behav Brain Funct* **14**, 4
1583 (2018). <https://doi.org/10.1186/s12993-018-0135-x>

1584 83 Chalkia, D. *et al.* Association Between Mitochondrial DNA Haplogroup Variation
1585 and Autism Spectrum Disorders. *JAMA Psychiatry* **74**, 1161-1168 (2017).
1586 <https://doi.org/10.1001/jamapsychiatry.2017.2604>

1587 84 Wang, Y. *et al.* Association of mitochondrial DNA content, heteroplasmies and
1588 inter-generational transmission with autism. *Nat Commun* **13**, 3790 (2022).
1589 <https://doi.org/10.1038/s41467-022-30805-7>

1590 85 Yardeni, T. *et al.* An mtDNA mutant mouse demonstrates that mitochondrial
1591 deficiency can result in autism endophenotypes. *Proc Natl Acad Sci U S A* **118**
1592 (2021). <https://doi.org/10.1073/pnas.2021429118>

1593 86 Shen, M. *et al.* Reduced mitochondrial fusion and Huntingtin levels contribute to
1594 impaired dendritic maturation and behavioral deficits in Fmr1-mutant mice. *Nat
1595 Neurosci* **22**, 386-400 (2019). <https://doi.org/10.1038/s41593-019-0338-y>

1596 87 Fernandez, A. *et al.* Mitochondrial Dysfunction Leads to Cortical Under-
1597 Connectivity and Cognitive Impairment. *Neuron* **102**, 1127-1142 e1123 (2019).
1598 <https://doi.org/10.1016/j.neuron.2019.04.013>

1599 88 Gandal, M. J. *et al.* Shared molecular neuropathology across major psychiatric
1600 disorders parallels polygenic overlap. *Science* **359**, 693-697 (2018).
1601 <https://doi.org/10.1126/science.aad6469>

1602 89 Kanellopoulos, A. K. *et al.* Aralar Sequesters GABA into Hyperactive
1603 Mitochondria, Causing Social Behavior Deficits. *Cell* **180**, 1178-1197 e1120
1604 (2020). <https://doi.org/10.1016/j.cell.2020.02.044>

1605 90 Li, J. *et al.* Mitochondrial deficits in human iPSC-derived neurons from patients
1606 with 22q11.2 deletion syndrome and schizophrenia. *Translational psychiatry* **9**,
1607 302 (2019). <https://doi.org/10.1038/s41398-019-0643-y>

1608 91 Li, J. *et al.* Association of Mitochondrial Biogenesis With Variable Penetrance of
1609 Schizophrenia. *JAMA Psychiatry* **78**, 911-921 (2021).
1610 <https://doi.org/10.1001/jamapsychiatry.2021.0762>

1611 92 Schafer, S. T. *et al.* Pathological priming causes developmental gene network
1612 heterochronicity in autistic subject-derived neurons. *Nat Neurosci* **22**, 243-255
1613 (2019). <https://doi.org/10.1038/s41593-018-0295-x>

1614 93 Rajarajan, P. *et al.* Neuron-specific signatures in the chromosomal connectome
1615 associated with schizophrenia risk. *Science* **362** (2018).
1616 <https://doi.org/10.1126/science.aat4311>

1617 94 Wen, C. *et al.* Cross-ancestry atlas of gene, isoform, and splicing regulation in
1618 the developing human brain. *Science* **384**, eadh0829 (2024).
1619 <https://doi.org/10.1126/science.adh0829>

1620 95 Wong, C. C. Y. *et al.* Genome-wide DNA methylation profiling identifies
1621 convergent molecular signatures associated with idiopathic and syndromic
1622 autism in post-mortem human brain tissue. *Hum Mol Genet* **28**, 2201-2211
1623 (2019). <https://doi.org/10.1093/hmg/ddz052>

1624 96 Ramaswami, G. *et al.* Integrative genomics identifies a convergent molecular
1625 subtype that links epigenomic with transcriptomic differences in autism. *Nat
1626 Commun* **11**, 4873 (2020). <https://doi.org/10.1038/s41467-020-18526-1>

1627 97 Bell, J. Stratified medicines: towards better treatment for disease. *Lancet* **383**
1628 **Suppl 1**, S3-5 (2014). [https://doi.org/10.1016/S0140-6736\(14\)60115-X](https://doi.org/10.1016/S0140-6736(14)60115-X)

1629 98 Tsimberidou, A. M. *et al.* Molecular tumour boards - current and future
1630 considerations for precision oncology. *Nature reviews. Clinical oncology* **20**, 843-
1631 863 (2023). <https://doi.org/10.1038/s41571-023-00824-4>

1632 99 Zhang, H., Colclough, K., Gloyn, A. L. & Pollin, T. I. Monogenic diabetes: a
1633 gateway to precision medicine in diabetes. *J Clin Invest* **131** (2021).
1634 <https://doi.org/10.1172/JCI142244>

1635 100 Gaugler, T. *et al.* Most genetic risk for autism resides with common variation. *Nat
1636 Genet* **46**, 881-885 (2014). <https://doi.org/10.1038/ng.3039>

1637 101 Schaaf, C. P. *et al.* A framework for an evidence-based gene list relevant to
1638 autism spectrum disorder. *Nat Rev Genet* **21**, 367-376 (2020).
1639 <https://doi.org/10.1038/s41576-020-0231-2>

1640 102 Shi, Y. *et al.* Multi-polygenic scores in psychiatry: From disorder specific to
1641 transdiagnostic perspectives. *Am J Med Genet B Neuropsychiatr Genet* **195**,
1642 e32951 (2024). <https://doi.org/10.1002/ajmg.b.32951>

1643 103 Andreassen, O. A., Hindley, G. F. L., Frei, O. & Smeland, O. B. New insights
1644 from the last decade of research in psychiatric genetics: discoveries, challenges
1645 and clinical implications. *World Psychiatry* **22**, 4-24 (2023).
1646 <https://doi.org/10.1002/wps.21034>

1647 104 Weiner, D. J. *et al.* Statistical and functional convergence of common and rare
1648 genetic influences on autism at chromosome 16p. *Nat Genet* **54**, 1630-1639
1649 (2022). <https://doi.org/10.1038/s41588-022-01203-y>

1650 105 Weiner, D. J. *et al.* Polygenic transmission disequilibrium confirms that common
1651 and rare variation act additively to create risk for autism spectrum disorders. *Nat
1652 Genet* **49**, 978-985 (2017). <https://doi.org/10.1038/ng.3863>

1653 106 Klei, L. *et al.* How rare and common risk variation jointly affect liability for autism
1654 spectrum disorder. *Mol Autism* **12**, 66 (2021). [https://doi.org/10.1186/s13229-021-00466-2](https://doi.org/10.1186/s13229-
1655 021-00466-2)

1656 107 Bergen, S. E. *et al.* Joint Contributions of Rare Copy Number Variants and
1657 Common SNPs to Risk for Schizophrenia. *Am J Psychiatry* **176**, 29-35 (2019).
1658 <https://doi.org/10.1176/appi.ajp.2018.17040467>

1659 108 Akingbuwa, W. A., Hammerschlag, A. R., Bartels, M., Nivard, M. G. &
1660 Middeldorp, C. M. Ultra-rare and common genetic variant analysis converge to
1661 implicate negative selection and neuronal processes in the aetiology of
1662 schizophrenia. *Mol Psychiatry* **27**, 3699-3707 (2022).
<https://doi.org/10.1038/s41380-022-01621-8>

1664 109 Oliver, K. L. *et al.* Common risk variants for epilepsy are enriched in families
1665 previously targeted for rare monogenic variant discovery. *EBioMedicine* **81**,
1666 104079 (2022). <https://doi.org/10.1016/j.ebiom.2022.104079>

1667 110 Genetic Modifiers of Huntington's Disease, C. Identification of Genetic Factors
1668 that Modify Clinical Onset of Huntington's Disease. *Cell* **162**, 516-526 (2015).
<https://doi.org/10.1016/j.cell.2015.07.003>

1670 111 Kingdom, R., Beaumont, R. N., Wood, A. R., Weedon, M. N. & Wright, C. F.
1671 Genetic modifiers of rare variants in monogenic developmental disorder loci. *Nat
1672 Genet* **56**, 861-868 (2024). <https://doi.org/10.1038/s41588-024-01710-0>

1673 112 Dobbrindt, K. *et al.* Publicly Available hiPSC Lines with Extreme Polygenic Risk
1674 Scores for Modeling Schizophrenia. *Complex Psychiatry* **6**, 68-82 (2021).
<https://doi.org/10.1159/000512716>

1676 113 Bjork, M. H. *et al.* Association of Prenatal Exposure to Antiseizure Medication
1677 With Risk of Autism and Intellectual Disability. *JAMA Neurol* **79**, 672-681 (2022).
<https://doi.org/10.1001/jamaneurol.2022.1269>

1679 114 Anton-Bolanos, N. *et al.* Brain Chimeroids reveal individual susceptibility to
1680 neurotoxic triggers. *Nature* (2024). <https://doi.org/10.1038/s41586-024-07578-8>

1681 115 Gandal, M. J. *et al.* Broad transcriptomic dysregulation occurs across the
1682 cerebral cortex in ASD. *Nature* **611**, 532-539 (2022).
<https://doi.org/10.1038/s41586-022-05377-7>

1684 116 Wamsley, B. *et al.* Molecular cascades and cell type-specific signatures in ASD
1685 revealed by single-cell genomics. *Science* **384**, eadh2602 (2024).
<https://doi.org/10.1126/science.adh2602>

1687 117 Yap, C. X. *et al.* Brain cell-type shifts in Alzheimer's disease, autism, and
1688 schizophrenia interrogated using methylomics and genetics. *Sci Adv* **10**,
1689 eadn7655 (2024). <https://doi.org/10.1126/sciadv.adn7655>

1690 118 Zhang, P. *et al.* Neuron-specific transcriptomic signatures indicate
1691 neuroinflammation and altered neuronal activity in ASD temporal cortex. *Proc
1692 Natl Acad Sci U S A* **120**, e2206758120 (2023).
<https://doi.org/10.1073/pnas.2206758120>

1694 119 Bhattacharya, A. *et al.* Isoform-level transcriptome-wide association uncovers
1695 genetic risk mechanisms for neuropsychiatric disorders in the human brain.
1696 *Nature genetics* **55**, 2117-2128 (2023). <https://doi.org/10.1038/s41588-023-01560-2>

1698 120 Gandal, M. J. *et al.* Transcriptome-wide isoform-level dysregulation in ASD,
1700 schizophrenia, and bipolar disorder. *Science* **362** (2018).
<https://doi.org/10.1126/science.aat8127>

1701 121 Han, V. X., Patel, S., Jones, H. F. & Dale, R. C. Maternal immune activation and
1702 neuroinflammation in human neurodevelopmental disorders. *Nat Rev Neuro* **17**,
1703 564-579 (2021). <https://doi.org/10.1038/s41582-021-00530-8>

1704 122 Seah, C. et al. Modeling gene x environment interactions in PTSD using human
1705 neurons reveals diagnosis-specific glucocorticoid-induced gene expression. *Nat*
1706 *Neurosci* **25**, 1434-1445 (2022). <https://doi.org/10.1038/s41593-022-01161-y>
1707 123 Seah, C. et al. Common genetic variation impacts stress response in the brain.
1708 *bioRxiv*, 2023.2012.2027.573459 (2023).
1709 <https://doi.org/10.1101/2023.12.27.573459>
1710 124 Retallick-Townsley, K. G. et al. Dynamic stress- and inflammatory-based
1711 regulation of psychiatric risk loci in human neurons. *bioRxiv*,
1712 2024.2007.2009.602755 (2024). <https://doi.org/10.1101/2024.07.09.602755>
1713 125 Cruceanu, C. et al. Cell-Type-Specific Impact of Glucocorticoid Receptor
1714 Activation on the Developing Brain: A Cerebral Organoid Study. *Am J Psychiatry*,
1715 <https://doi.org/10.1176/appi.ajp.2021.21010095>
1716 126 Teter, O. M. et al. CRISPRi-based screen of Autism Spectrum Disorder risk
1717 genes in microglia uncovers roles of ADNP in microglia endocytosis
1718 and uptake of synaptic material. *bioRxiv*, 2024.2006.2001.596962 (2024).
1719 <https://doi.org/10.1101/2024.06.01.596962>
1720 127 Ma, Y. et al. Activity-Dependent Transcriptional Program in NGN2+ Neurons
1721 Enriched for Genetic Risk for Brain-Related Disorders. *Biol Psychiatry* **95**, 187-
1722 198 (2024). <https://doi.org/10.1016/j.biopsych.2023.07.003>
1723 128 Roussos, P., Guennewig, B., Kaczorowski, D. C., Barry, G. & Brennand, K. J.
1724 Activity-Dependent Changes in Gene Expression in Schizophrenia Human-
1725 Induced Pluripotent Stem Cell Neurons. *JAMA Psychiatry* **73**, 1180-1188 (2016).
1726 <https://doi.org/10.1001/jamapsychiatry.2016.2575>
1727 129 Sanchez-Priego, C. et al. Mapping cis-regulatory elements in human neurons
1728 links psychiatric disease heritability and activity-regulated transcriptional
1729 programs. *Cell reports* **39**, 110877 (2022).
1730 <https://doi.org/10.1016/j.celrep.2022.110877>
1731 130 Boulting, G. L. et al. Activity-dependent regulome of human GABAergic neurons
1732 reveals new patterns of gene regulation and neurological disease heritability. *Nat*
1733 *Neurosci* **24**, 437-448 (2021). <https://doi.org/10.1038/s41593-020-00786-1>
1734 131 Ahn, K. et al. High rate of disease-related copy number variations in childhood
1735 onset schizophrenia. *Mol Psychiatry* **19**, 568-572 (2014).
1736 <https://doi.org/10.1038/mp.2013.59>
1737 132 Ahn, K., An, S. S., Shugart, Y. Y. & Rapoport, J. L. Common polygenic variation
1738 and risk for childhood-onset schizophrenia. *Mol Psychiatry* (2014).
1739 <https://doi.org/10.1038/mp.2014.158>
1740 133 Hoffman, G. E. et al. Transcriptional signatures of schizophrenia in hiPSC-
1741 derived NPCs and neurons are concordant with post-mortem adult brains. *Nat*
1742 *Commun* **8**, 2225 (2017). <https://doi.org/10.1038/s41467-017-02330-5>
1743 134 Guss, E. J. et al. Protocol for neurogenin-2-mediated induction of human stem
1744 cell-derived neural progenitor cells. *Star Protoc* **5**, 102878 (2024).
1745 <https://doi.org/10.1016/j.xpro.2024.102878>
1746 135 Wang, M. et al. Transformative Network Modeling of Multi-omics Data Reveals
1747 Detailed Circuits, Key Regulators, and Potential Therapeutics for Alzheimer's
1748 Disease. *Neuron* **109**, 257-272 e214 (2021).
1749 <https://doi.org/10.1016/j.neuron.2020.11.002>

1750 136 Ho, S. M. *et al.* Rapid Ngn2-induction of excitatory neurons from hiPSC-derived
1751 neural progenitor cells. *Methods* **101**, 113-124 (2016).
1752 <https://doi.org/10.1016/j.ymeth.2015.11.019>

1753 137 Marro, S. G. *et al.* Neuroligin-4 Regulates Excitatory Synaptic Transmission in
1754 Human Neurons. *Neuron* **103**, 617-626 e616 (2019).
1755 <https://doi.org/10.1016/j.neuron.2019.05.043>

1756 138 Zhang, Z. *et al.* The fragile X mutation impairs homeostatic plasticity in human
1757 neurons by blocking synaptic retinoic acid signaling. *Science translational
1758 medicine* **10** (2018). <https://doi.org/10.1126/scitranslmed.aar4338>

1759 139 Meijer, M. *et al.* A Single-Cell Model for Synaptic Transmission and Plasticity in
1760 Human iPSC-Derived Neurons. *Cell reports* **27**, 2199-2211 e2196 (2019).
1761 <https://doi.org/10.1016/j.celrep.2019.04.058>

1762 140 Zhang, S. *et al.* Allele-specific open chromatin in human iPSC neurons elucidates
1763 functional disease variants. *Science* **369**, 561-565 (2020).
1764 <https://doi.org/10.1126/science.aay3983>

1765 141 Sun, Y. *et al.* A deleterious Nav1.1 mutation selectively impairs telencephalic
1766 inhibitory neurons derived from Dravet Syndrome patients. *Elife* **5** (2016).
1767 <https://doi.org/10.7554/elife.13073>

1768 142 Barreto, N. *et al.* ASCL1- and DLX2-induced GABAergic neurons from hiPSC-
1769 derived NPCs. *J Neurosci Methods* **334**, 108548 (2020).
1770 <https://doi.org/10.1016/j.jneumeth.2019.108548>

1771 143 Powell, S. K. *et al.* Induction of dopaminergic neurons for neuronal subtype-
1772 specific modeling of psychiatric disease risk. *Mol Psychiatry* **28**, 1970-1982
1773 (2023). <https://doi.org/10.1038/s41380-021-01273-0>

1774 144 Miller, J. A. *et al.* Transcriptional landscape of the prenatal human brain. *Nature*
1775 **508**, 199-206 (2014). <https://doi.org/10.1038/nature13185>

1776 145 Shi, Z. D. *et al.* Genome Editing in hPSCs Reveals GATA6 Haploinsufficiency
1777 and a Genetic Interaction with GATA4 in Human Pancreatic Development. *Cell
1778 stem cell* **20**, 675-688 e676 (2017). <https://doi.org/10.1016/j.stem.2017.01.001>

1779 146 Dobin, A. *et al.* STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15-
1780 21 (2013). <https://doi.org/10.1093/bioinformatics/bts635>

1781 147 Danecek, P. *et al.* Twelve years of SAMtools and BCFtools. *GigaScience* **10**
1782 (2021). <https://doi.org/10.1093/gigascience/giab008>

1783 148 Lindsay, H. *et al.* CrispRVariants charts the mutation spectrum of genome
1784 engineering experiments. *Nat Biotechnol* **34**, 701-702 (2016).
1785 <https://doi.org/10.1038/nbt.3628>

1786 149 Yuan, S. H. *et al.* Cell-surface marker signatures for the isolation of neural stem
1787 cells, glia and neurons derived from human pluripotent stem cells. *PLoS One* **6**,
1788 e17540 (2011). <https://doi.org/10.1371/journal.pone.0017540>

1789 150 Li, W. *et al.* MAGeCK enables robust identification of essential genes from
1790 genome-scale CRISPR/Cas9 knockout screens. *Genome biology* **15**, 554 (2014).
1791 <https://doi.org/10.1186/s13059-014-0554-4>

1792 151 Birey, F. *et al.* Assembly of functionally integrated human forebrain spheroids.
1793 *Nature* **545**, 54-59 (2017). <https://doi.org/10.1038/nature22330>

1794 152 Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. *Nat Biotechnol* **36**, 411-420 (2018). <https://doi.org/10.1038/nbt.4096>

1795 153 Papalexi, E. *et al.* Characterizing the molecular regulation of inhibitory immune checkpoints with multimodal single-cell screens. *Nat Genet* **53**, 322-331 (2021). <https://doi.org/10.1038/s41588-021-00778-2>

1796 154 Tirosh, I. *et al.* Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. *Science* **352**, 189-196 (2016). <https://doi.org/10.1126/science.aad0501>

1797 155 Tian, R. *et al.* CRISPR Interference-Based Platform for Multimodal Genetic Screens in Human iPSC-Derived Neurons. *Neuron* (2019). <https://doi.org/10.1016/j.neuron.2019.07.014>

1798 156 Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. *Bioinformatics* **26**, 2190-2191 (2010). <https://doi.org/10.1093/bioinformatics/btq340>

1799 157 Saha, A. *et al.* Co-expression networks reveal the tissue-specific regulation of transcription and splicing. *Genome Res* **27**, 1843-1858 (2017). <https://doi.org/10.1101/gr.216721.116>

1800 158 Gao, C., McDowell, I. C., Zhao, S., Brown, C. D. & Engelhardt, B. E. Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering. *PLoS Comput Biol* **12**, e1004791 (2016). <https://doi.org/10.1371/journal.pcbi.1004791>

1801 159 Gao C, B. C., Engelhardt BE. A latent factor model with a mixture of sparse and dense factors to model gene expression data with confounding effects. *arXiv* (2013).

1802 160 Yu, G. Gene Ontology Semantic Similarity Analysis Using GOSemSim. *Methods in molecular biology* **2117**, 207-215 (2020). https://doi.org/10.1007/978-1-0716-0301-7_11

1803 161 Demontis, D. *et al.* Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. *Nat Genet* **51**, 63-75 (2019). <https://doi.org/10.1038/s41588-018-0269-7>

1804 162 Duncan, L. *et al.* Significant Locus and Metabolic Genetic Correlations Revealed in Genome-Wide Association Study of Anorexia Nervosa. *Am J Psychiatry* **174**, 850-858 (2017). <https://doi.org/10.1176/appi.ajp.2017.16121402>

1805 163 Walters, R. K. *et al.* Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. *Nat Neurosci* **21**, 1656-1669 (2018). <https://doi.org/10.1038/s41593-018-0275-1>

1806 164 Mullins, N. *et al.* Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. *Nat Genet* **53**, 817-829 (2021). <https://doi.org/10.1038/s41588-021-00857-4>

1807 165 Johnson, E. C. *et al.* A large-scale genome-wide association study meta-analysis of cannabis use disorder. *Lancet Psychiatry* **7**, 1032-1045 (2020). [https://doi.org/10.1016/S2215-0366\(20\)30339-4](https://doi.org/10.1016/S2215-0366(20)30339-4)

1808 166 Howard, D. M. *et al.* Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain

1809 167 1810 168 1811 169 1812 170 1813 171 1814 172 1815 173 1816 174 1817 175 1818 176 1819 177 1820 178 1821 179 1822 180 1823 181 1824 182 1825 183 1826 184 1827 185 1828 186 1829 187 1830 188 1831 189 1832 190 1833 191 1834 192 1835 193 1836 194 1837 195 1838 196

1839 regions. *Nat Neurosci* **22**, 343-352 (2019). <https://doi.org/10.1038/s41593-018-0326-7>

1840 167 International Obsessive Compulsive Disorder Foundation Genetics, C. & Studies, O. C. D. C. G. A. Revealing the complex genetic architecture of obsessive-compulsive disorder using meta-analysis. *Mol Psychiatry* **23**, 1181-1188 (2018). <https://doi.org/10.1038/mp.2017.154>

1841 168 Nievergelt, C. M. *et al.* International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. *Nat Commun* **10**, 4558 (2019). <https://doi.org/10.1038/s41467-019-12576-w>

1842 169 Trubetskoy, V. *et al.* Mapping genomic loci implicates genes and synaptic biology in schizophrenia. *Nature* **604**, 502-508 (2022). <https://doi.org/10.1038/s41586-022-04434-5>

1843 170 Cross-Disorder Group of the Psychiatric Genomics Consortium. Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders. *Cell* **179**, 1469-1482 e1411 (2019). <https://doi.org/10.1016/j.cell.2019.11.020>

1844 171 Marioni, R. E. *et al.* GWAS on family history of Alzheimer's disease. *Translational psychiatry* **8**, 99 (2018). <https://doi.org/10.1038/s41398-018-0150-6>

1845 172 Nalls, M. A. *et al.* Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. *The Lancet. Neurology* **18**, 1091-1102 (2019). [https://doi.org/10.1016/S1474-4422\(19\)30320-5](https://doi.org/10.1016/S1474-4422(19)30320-5)

1846 173 Nicolas, A. *et al.* Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. *Neuron* **97**, 1268-1283 e1266 (2018). <https://doi.org/10.1016/j.neuron.2018.02.027>

1847 174 Yu, D. *et al.* Interrogating the Genetic Determinants of Tourette's Syndrome and Other Tic Disorders Through Genome-Wide Association Studies. *Am J Psychiatry* **176**, 217-227 (2019). <https://doi.org/10.1176/appi.ajp.2018.18070857>

1848 175 Hautakangas, H. *et al.* Genome-wide analysis of 102,084 migraine cases identifies 123 risk loci and subtype-specific risk alleles. *Nat Genet* **54**, 152-160 (2022). <https://doi.org/10.1038/s41588-021-00990-0>

1849 176 Johnston, K. J. A. *et al.* Genome-wide association study of multisite chronic pain in UK Biobank. *PLoS genetics* **15**, e1008164 (2019). <https://doi.org/10.1371/journal.pgen.1008164>

1850 177 Lo, M. T. *et al.* Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders. *Nat Genet* **49**, 152-156 (2017). <https://doi.org/10.1038/ng.3736>

1851 178 Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. *OMICS* **16**, 284-287 (2012). <https://doi.org/10.1089/omi.2011.0118>

1852 179 Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. *Nat Commun* **8**, 1826 (2017). <https://doi.org/10.1038/s41467-017-01261-5>

1853 180 Wang, J. & Liao, Y. *WebGestaltR: Gene Set Analysis Toolkit WebGestaltR. R package version 0.4.3.*, <<https://CRAN.R-project.org/package=WebGestaltR>> (2020).

1854

1885 181 Darmanis, S. *et al.* A survey of human brain transcriptome diversity at the single
1886 cell level. *Proc Natl Acad Sci U S A* **112**, 7285-7290 (2015).
1887 <https://doi.org/10.1073/pnas.1507125112>

1888 182 Lake, B. B. *et al.* Neuronal subtypes and diversity revealed by single-nucleus
1889 RNA sequencing of the human brain. *Science* **352**, 1586-1590 (2016).
1890 <https://doi.org/10.1126/science.aaf1204>

1891 183 Schilder, B. M. & Skene, N. G. orthogene: an R package for easy mapping of
1892 orthologous genes across hundreds of species. *Bioconductor* (2022).
1893 <https://doi.org/https://doi.org/doi:10.18129/B9.bioc.orthogene>.

1894 184 Capps, M. E. S. *et al.* Disrupted diencephalon development and neuropeptidergic
1895 pathways in zebrafish with autism-risk mutations. *Proc Natl Acad Sci U S A* **122**,
1896 e2402557122 (2025). <https://doi.org/10.1073/pnas.2402557122>

1897 185 Calhoun, C. C. S. *et al.* Removal of developmentally regulated microexons has a
1898 minimal impact on larval zebrafish brain morphology and function. *bioRxiv*,
1899 2024.2008.2019.608697 (2024). <https://doi.org/10.1101/2024.08.19.608697>

1900 186 Kroll, F. *et al.* A simple and effective F0 knockout method for rapid screening of
1901 behaviour and other complex phenotypes. *eLife* **10** (2021).
1902 <https://doi.org/10.7554/eLife.59683>

1903 179 Chaudhry, A., Shi, R. & Luciani, D. S. A pipeline for multidimensional confocal
1904 analysis of mitochondrial morphology, function, and dynamics in pancreatic β -
1905 cells. *Am J Physiol Endocrinol Metab* **318**, E87-E101 (2020).

1906 **TABLES**

1907 **Table 1.** Disorder and behavioral associations of top convergent up and down-regulated
 1908 genes by cell-type from MalaCards, OMIM, and GWAS catalogue.

Cell-type	Top Meta Gene	Meta P	Z-score	Rare Disorders <i>MalaCards</i>	GWAS and behavioral associations <i>GWAS Catalog</i>
iNPCs	AGAP4	1.2e-14	7.71		
	CYTL1	7.8e-9	-5.77	Muscular Trophy (AD)	T1D, UC, CD, T2D, psoriasis, celiac, autoimmune disease, thyroid disease, ankylosing spondylitis
immature iGLUTs	MBD2	1.2e-15	8.01	Cerebellar Ataxia, Deafness, Narcolepsy (AD), Breast Cancer	Allergic disease, psoriasis, neuroticism, hoarding disorder, executive function measurement, memory function
	SHOX	2.9e-13	-7.30	Turner Syndrome, Dysplasia	
mature iGLUTs	MAP3K14	6.2e-36	12.52	Immunodeficiency (AR; X-linked), Ectodermal Dysplasia, Noonan Syndrome	PD, neuroticism, neuroimaging, unipolar depression, mood disorder, anxiety, cognitive function, MS, asthma, allergic disease,
	JMY	2.4e-44	-13.97	Galloway Mowat Syndrome (AR; X-linked)	T2D
mature iGABAs	GPR83	1.3e-17	-8.54		testosterone measurement, free androgen index, age at menarche, anxiety like-behaviors
	UBE2D4	3.9e-21	9.44	Brachydactyly (AD)	

1909 Autosomal dominant (AD), Autosomal recessive (AR), Parkinson's disease (PD), multiple sclerosis (MS), ulcerative colitis (UC), type-I diabetes (T1D), type-2 diabetes (T2D), Crohn's disease (CD)

1910

1911 **Table 2.** Disorder and behavioral associations of top nodes by cell-type from MalaCards, OMIM, and GWAS catalogue.

Cell-type	Top protein-coding nodes across all networks	Rare disorders <i>MalaCards</i>	GWAS and behavioral associations <i>GWAS Catalog</i>
iNPCs	KIAA2012		ADHD/conduct disorder (rs1521882), educational attainment (rs12623702, rs4675248, rs2160317, rs2177083, rs34189321, rs58100125), migraine/T2D (rs6748072), amygdala volume (rs72936662)
immature iGLUTs	MYH15	Deafness (AR); de novo SCZ CNV	Social interaction measurement (rs13082569), cognitive function (rs3860537), unipolar depression (rs1531188), MDD (rs113689582), insomnia (rs62266174, rs6768511, rs6786515, rs6795280), BIP (rs1531188), ANX (rs4855559), educational attainment (rs115910830, rs2290601, rs3860537, rs60785803)
mature iGLUTs	GALNTL5	ASD, Spastic paraplegia 48 (AR)	
mature iGABAs	EREG	Epilepsy, Immune Deficiency Disease	ADHD (rs1350666), wellbeing measurement (rs112444088), learning & memory (pathway)

1912 Autosomal recessive (AR), Anxiety disorder (ANX), Bipolar Disorder (BIP), Type-2 diabetes (T2D)

1913

1914

1915 **Table 3.** Convergent nodes that overlap with CNV and rare variant target genes for
1916 each cell-type.

Celltype	Rare variant gene targets for ASD, SCZ, BIP, ID, and Epilepsy
iNPCs	<i>AATK, DLC1, PAK6</i>
immature iGLUTs	<i>ACMSD, HCST, MYH15, PAH, RSPO1, SFTPC, SH3RF2, SLC28A2, SNAI2, ACOT6, CSPG4, PYCARD, SLC5A7, SULT1B1, TBXA2R, TEKT5, TEX15, ARG1, ASB14, CACNA1D, OPLAH, GRM4, KCNT1, FKBP6, NPAP1, OCA2, ATP10A</i>
mature iGLUTs	<i>S100G, TRIM50, FOLR1, COX7B2, KIF23</i>
mature iGABAs	<i>CHRND, RETN, PAX6, RIMBP3, SPDYE5, TSKS</i>

1917
1918 **Table 4.** Disorder and behavioral associations of top nodes by cell-type and behavioral
1919 set from MalaCards, OMIM, and GWAS catalogue.

Cell type	Top Node	Gene name	Meta P	Z-score	Rare Disorders	GWAS
Mature iGLUT	CNBP	Sterol-mediated transcriptional repression	2.9e-16	8.18	Myotonic Dystrophy, Neuromyotonia & axonal neuropathy (AR), Creutzfeldt-Jakob Disease, Deafness (AR), Fragile-X tremor/ataxia, ALS	
	1 ANKRD36		1.95e-18	8.8		
	FOXJ3		1.7e-17	8.5		
	2 ATP6V0C		5.3e-44	-13.9	ASD, Epilepsy, NDD	
	3 FOXJ3	Gene expression regulation/chromatin	1.9e-19	9.02		EA (rs35011283)
	4 SOX12	Implicated in cell fate decisions during development	1.6e-17	-8.52	Microphthalmia Syndromic 12 (neurological)	Memory performance (rs78532272)
Mature iGABA	4 FOXJ3		7.9e-22	9.6		
	ANKRD36	Ankyrin Repeat Domain 36	6.6e-26	-10.5	Neuropathy, Giant Axonal Nonsyndromic Deafness (AR)	SCZ (rs9631085), neuroimaging (rs11692435, rs167684, +6)
	1 UBE2D4	Ubiquitin-Conjugating Enzyme E2 D4	1.2e-09	6.1		
	2 PRKAG2	Protein Kinase AMP-Activated Non-Catalytic Subunit	6.7e-7	-4.97	Wolff-Parkinson-White Syndrome, Neuromuscular Disease, Specific Language Impairment, Microencephaly, Epilepsy	EA (rs1860735, rs2538046, rs4726070), ASD/SCZ (rs115136442), impulse control (rs2302532), BIP (rs7795096), memory (rs2536058)
	3 MYL3	BBB & immune cell transmigration	4e-12	6.9	Wolff-Parkinson-White Syndrome, Microencephaly, Epilepsy	
	4 TNFSF11		3.6e-10	-6.3	ID, NDD, developmental & epileptic encephalopathy, IBS,	
	3 KIF1A	Axonal Transporter Of Synaptic Vesicles	8.8e-12	6.8	ID, ASD, neuropathy, Epilepsy, Spastic Ataxia, Cortical Dysplasia, Alacrima, Achalasia, and Impaired ID Syndrome	Insomnia (rs10196604, rs4455151)
	4 UNC5C	Netrin Receptor	3.98e-8	-5.5	Alzheimer Disease, Familial 1	Insomnia (rs371745379), wellbeing (rs116984513), OCD (rs17384439), cognition (rs3846455), unipolar depression (rs6822806)
	4 UBE2D4		8.5e-13	7.2		Sleep duration (rs10773112), AD (rs78184510),
	4 UBC		1.7e-10	-6.4	Parkinson's disease, epilepsy, muscular dystrophy	

1920 **FIGURES**

1921 **Figure 1: Knock-out (KO) effects of 21 NDD risk genes are most strongly**
1922 **correlated in mature neurons.**

1923 **Figure 2: Gene-level convergence is greatest in mature glutamatergic neurons**

1924 **Figure 3. Network-level convergence resolves cell-type-specific and**
1925 **developmental-specific node genes.**

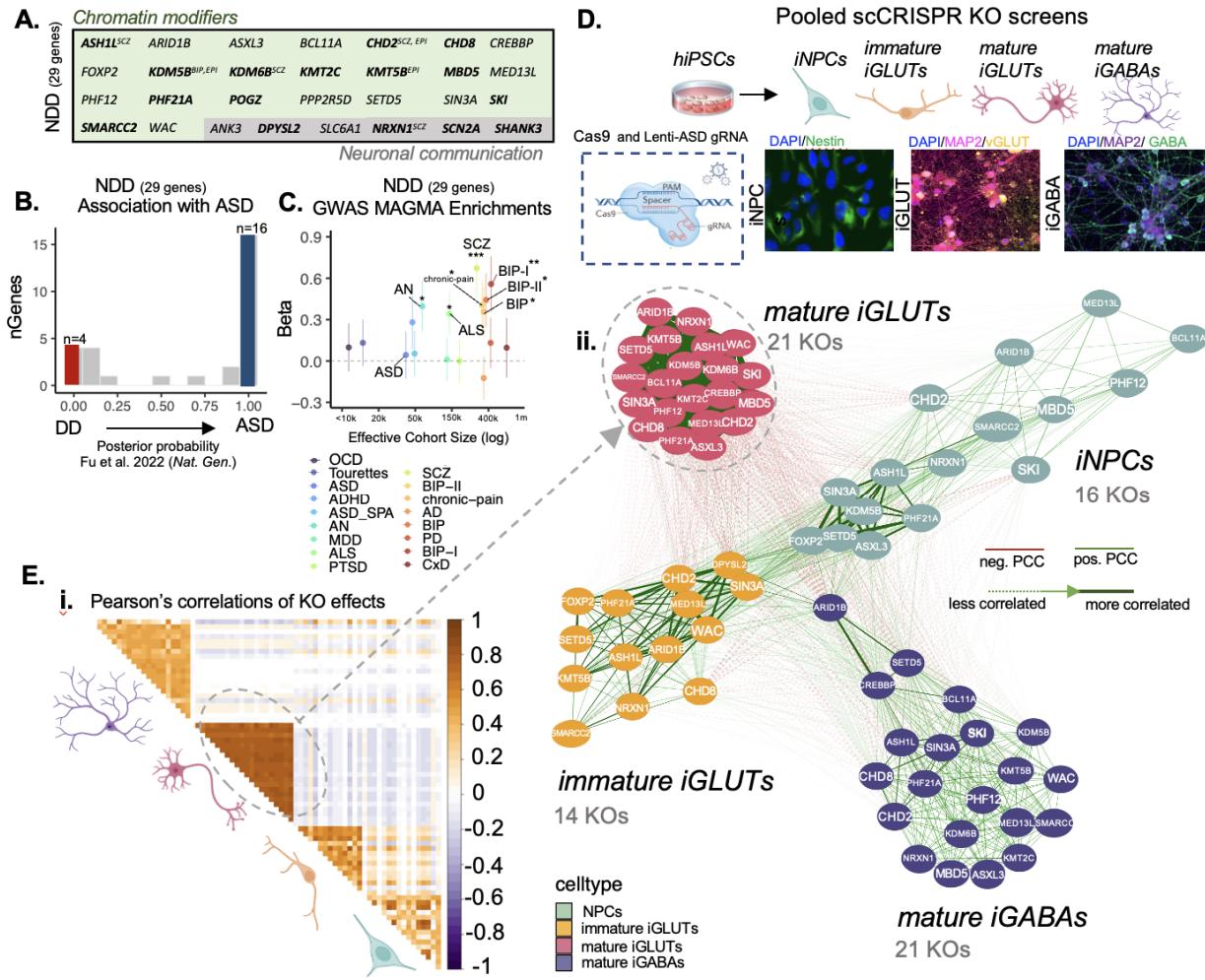
1926 **Figure 4. Functional similarity and brain co-expression between NDD genes**
1927 **predict gene-level and network-level convergence, with unique influences by cell-**
1928 **type.**

1929 **Figure 5. LNCTP predicts effects of convergent genes *in silico*.**

1930 **Figure 6. NDD convergence predicts shared effects on mitochondrial function.**

1931 **Figure 7. NDD gene mutants with shared behavioral phenotypes in zebrafish**
1932 **resolve unique and cell-type-specific gene-level convergent signatures and are**
1933 **rescued by predicted medications.**

1934



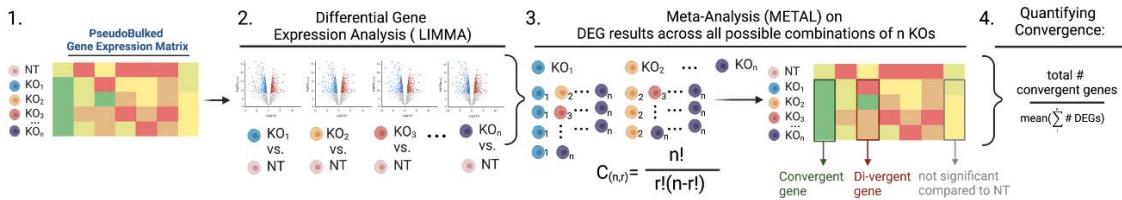
1935

1936 **Figure 1. Knock-out (KO) effects of 21 NDD risk genes are most strongly**
1937 **correlated in mature neurons. (A)** List of rare-variant target risk genes associated
1938 neurodevelopmental disorders (NDD) separated by chromatin modifiers and neuronal
1939 communication genes. Bold gene names indicate strong associations with ASD based
1940 on Fu et al. 2022. Gene targets of rare variants associated with schizophrenia (SCZ),
1941 epilepsy (EPI) and bipolar disorder (BIP) are annotated. **(B)** Strength of association with
1942 ASD, as estimated by distribution of posterior probability (p.p.) scores from Fu et al.
1943 2022; 4 out of 29 NDD genes were more strongly associated with developmental delay
1944 (DD) (blue; p.p.<=0.1) while 16 out of 29 were more strongly associated with ASD (red;
1945 p.p.>=0.9). Further annotation of individual risk genes are shown in **SI Figures 1-2**. **(C)**
1946 MAGMA enrichments of targeted genes across GWAS for anorexia nervosa (AN),
1947 chronic pain, amyotrophic lateral sclerosis (ALS), SCZ, and BIP, BIP-I (bipolar subtype
1948 1), and BIP-II (bipolar subtype 2). [#]nominal p-value<0.05, ^{*}FDR<0.05, ^{**}FDR<0.01,
1949 ^{*}FDR<0.001 **(D)** Schematic of hiPSC-derived cell-type specific scCRISPR-KO screen.
1950 Representative immunofluorescence for markers of NPCs (DAPI/Nestin), mature
1951 iGLUTs (DAPI/MAP2/vGLUT), and mature iGABAs (DAPI/MAP2/GABA). **(E)**
1952 Transcriptomic impact of NDD gene KO represented as the number of nominally
1953 significant (p<0.01) differentially expressed genes (DEGs). **(i)** Pearson's correlation

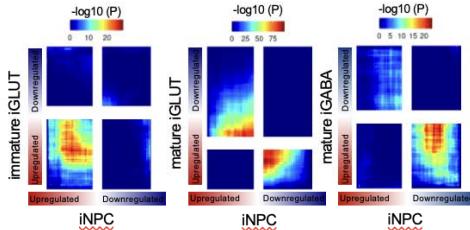
1954 matrix of log2FC DEGs across all NDDs and cell-types. **(ii)** Cross cell-type correlation
1955 network diagram across NDD perturbations (number of NDD gene knockout (KO)
1956 perturbations resolved indicated in parentheses); the mature iGLUT cluster was most
1957 dense, and the iNPC most sparse.

1958

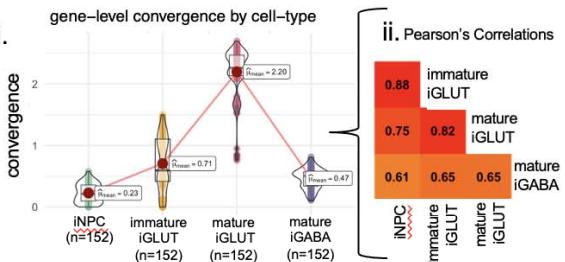
A. Gene-level convergence



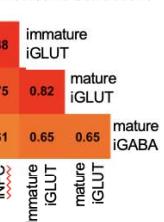
B. Concordance of convergence of 9 NDDs between cell-types



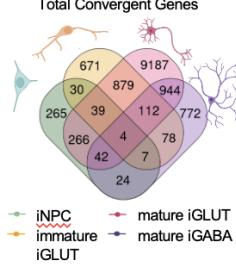
C. i. gene-level convergence by cell-type



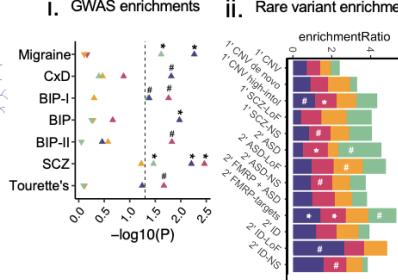
ii. Pearson's Correlations



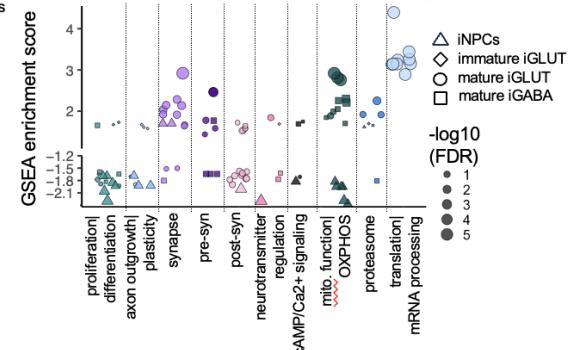
D. Total Convergent Genes



E. i. GWAS enrichments



F.

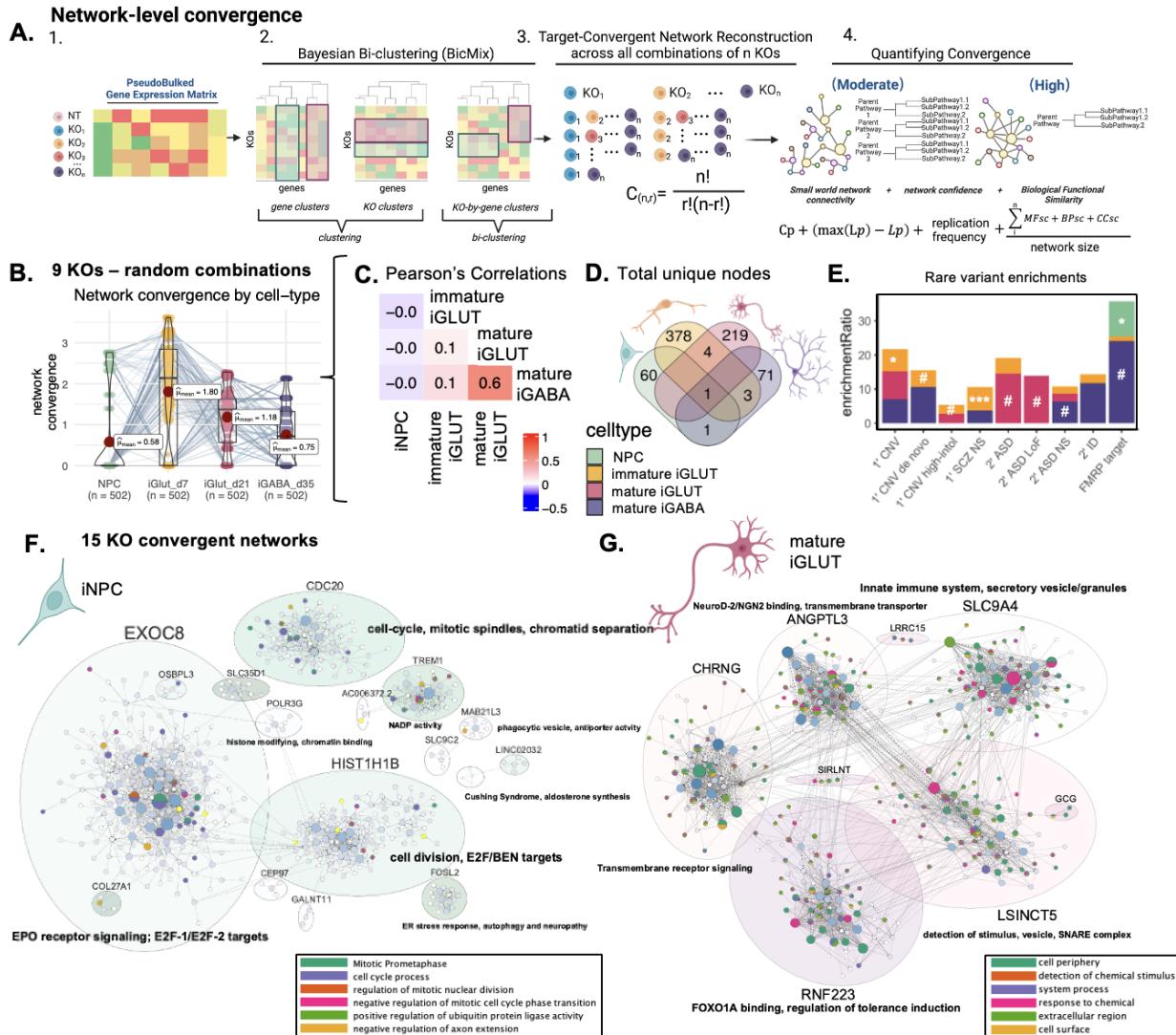


1959

1960 **Figure 2. Gene-level convergence is greatest in mature glutamatergic neurons.** In
1961 total, nine NDD genes showed evidence of knockout across all four cell types: *ARID1B*,
1962 *ASH1L*, *CHD2*, *MED13L*, *NRXN1*, *PHF21A*, *SETD5*, *SIN3A*, *SMARCC2*. For these
1963 nine, “convergent genes” are defined as those differentially expressed genes (DEGs)
1964 with significant and shared direction of effect across all NDD gene perturbations. **(A)**
1965 Schematic explaining cell-type specific convergence at the individual gene level via
1966 differential gene expression meta-analysis (FDR adjusted $p_{meta} < 0.05$, Cochran's
1967 heterogeneity Q-test $p_{het} > 0.05$). **(B)** Convergence across 9 NDD genes is unique to
1968 each cell type, using rank-rank hypergeometric (RRHO) test to explore correlation of
1969 convergent genes shared across 9 NDD perturbations (RRHO score = $-\log_{10} \text{direction}$
1970 of effect) between cell-types. The top right quadrant represents down-regulated genes
1971 (meta-analysis z-score > 0) for the y-axis and x-axis cell-type. The bottom left quadrant
1972 represents up-regulated convergent genes (meta-analysis z-score < 0) for the y-axis and
1973 x-axis cell-type. Significance is represented by color, with red regions representing
1974 significantly convergent gene expression. **(C) (i)** The average strength of convergence,
1975 measured as the ratio of convergent genes to the average number of DEGs across all
1976 152 unique combinations of 2-5 genes from the nine NDD genes, was highest in
1977 iGLUTs. **(ii)** The magnitude of convergence between the same NDDs tested in different
1978 cell types was highly correlated (Pearson's correlation, $P_{holm} < 2.2e-16$); with the
1979 strongest relationship between immature and mature iGLUTs. **(D)** Venn diagram
1980 representing the absolute overlap (regardless of direction of dysregulation) of cell-type

1981 specific convergent genes shared across 9 NDDs. **(E)** **(i)** MAGMA enrichment $-\log_{10}(p\text{-value})$ of cell-type-specific (color of points) convergence and GWAS-risk associated genes with significance after multiple testing correction indicated as follows: $^{\#}$ unadjusted p-value=<0.05, $^{*}FDR\leq 0.05$, $^{**}FDR<0.01$, $^{***}FDR<0.001$. The direction of the triangles indicates a positive (upwards triangle) or negative (downwards triangle) enrichment beta. **(ii)** Over-representation analysis (ORA) enrichment ratios of cell-type-specific (color of bars) convergence and rare variant target genes. Significance after multiple testing correction indicated as follows: $^{\#}$ unadjusted p-value=<0.05, $^{*}FDR\leq 0.05$, $^{**}FDR<0.01$, $^{***}FDR<0.001$. **(F)** Gene set enrichment analysis (GSEA) identified downstream pathways involved in neural proliferation, neurite outgrowth, synaptic vesicle transport, and mitochondrial function as cell-type specific targets of convergent genes across 9 NDDs. Results were filtered for pathways with nominal p-values <0.05. Normalized GSEA enrichment scores represent the direction of enrichment based on the meta-analyzed Z-score for each convergent gene. Cell-type is represented by shape and the size of each point represents the $-\log_{10}(FDR)$.

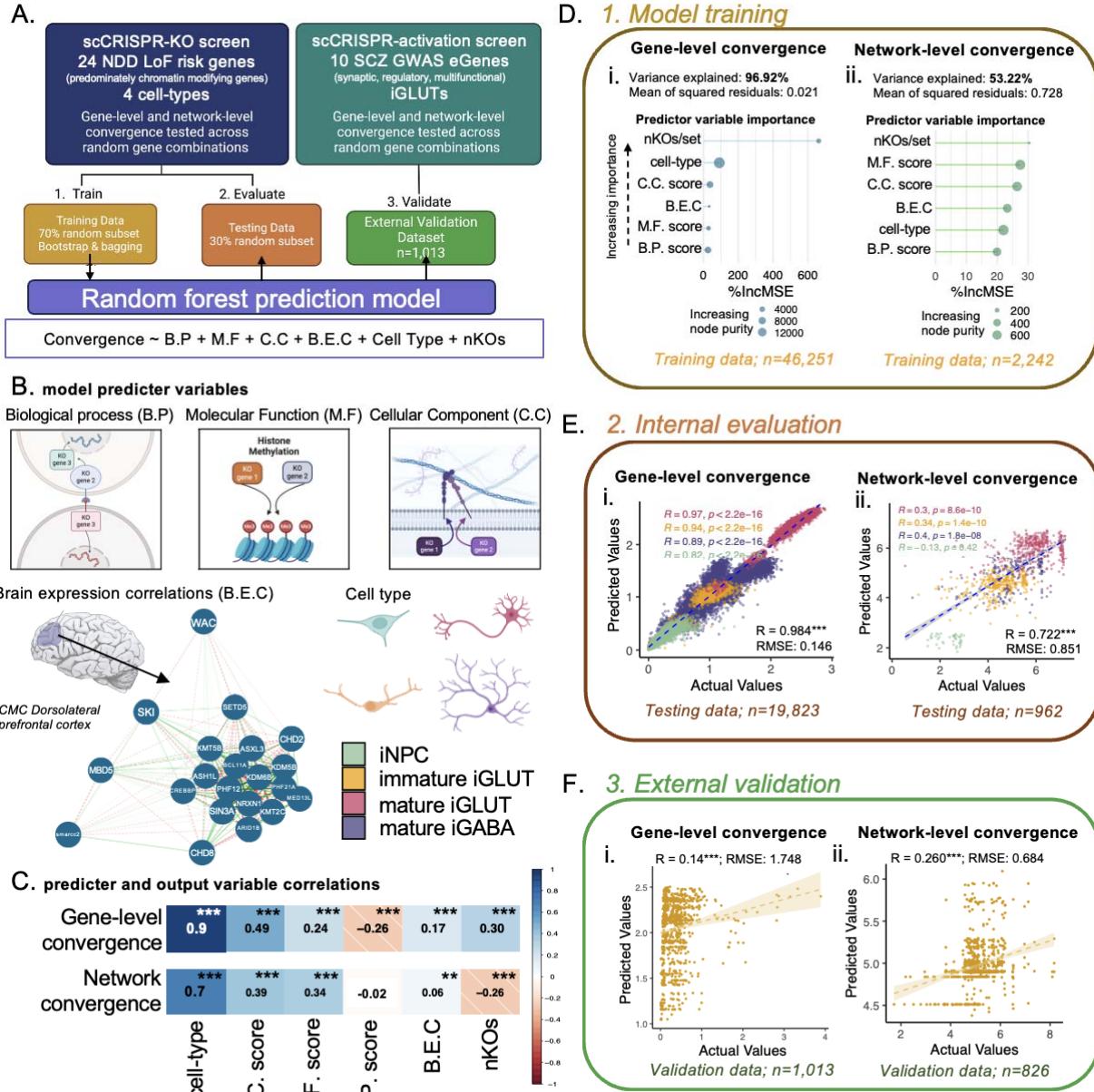
1996



1997

Figure 3. Network-level convergence resolves cell-type-specific and developmental-specific node genes. “Convergent networks” are co-expressed genes that share similar expression patterns across NDD gene perturbations, here resolved for the nine NDD knockouts resolved across all four cell types: *ARID1B*, *ASH1L*, *CHD2*, *MED13L*, *NRXN1*, *PHF21A*, *SETD5*, *SIN3A*, *SMARCC2*. **(A)** Schematic explaining cell-type specific convergence at the network level using Bayesian bi-clustering and unsupervised network reconstruction. **(B)** Strength of network convergence across all random combinations of 9 NDD KO perturbations by cell-type. **(i)** The mean strength of network convergence is significantly different by cell-type, with the highest convergence present in immature iGLUTs. The same KO combinations tested in one cell type may not resolve convergence in another cell type. Each point represents a resolved network, and its calculated convergence strength. Dots that represent the same combinations of KO perturbations, but tested in each cell type, are connected by a line. **(C)** Convergent network strength was most correlated between mature iGLUTs and iGABAs (Pearson's Correlation Coefficient (PCC) = 0.6, $P_{\text{Holm}} < 2.2 \times 10^{-16}$). Convergent network strength in iNPCs was not correlated with network strength in neurons. **(D)** Venn diagrams of the

2014 total number of unique node genes within convergent networks for each cell-type. The
2015 lack of overlapping node genes between cell types (**D**), as well as the weak correlations
2016 of convergence strength between immature and mature cell-types (**C**), suggest greater
2017 cell-type specificity in the magnitude of network-level convergence compared to gene-
2018 level convergence. (**E**) Enrichment ratios from over-representation analysis (ORA) of
2019 cell-type specific (color of bars) convergent node genes for rare variant targets.
2020 (#unadjusted p-value=<0.05, *FDR<=0.05, **FDR<0.01, ***FDR<0.001). (**F**, **G**)
2021 Representative cell-type specific network plots for convergence across 15 genes
2022 (*ARID1B, ASH1L, ASXL3, BCL11A, KDM5B, CHD2, MBD5, MED13L, NRXN1, PHF12,*
2023 *PHF21A, SETD5, SIN3A, SKI, SMARRC2*) from (**F**) iNPCs and (**G**) mature iGLUTs.
2024 Network genes were filtered for protein-coding genes, clustered, and annotated based
2025 on the primary node gene for each cluster. Gene set enrichment analysis of the
2026 networks identified unique functions by cell type. Convergent networks in iNPCs were
2027 enriched for pathways associated with neurogenesis (e.g., cell cycle, cell division, EPO
2028 signaling), while in mature iGLUTs for pathways associated with synaptic function
2029 (transmembrane transport and receptor signaling, secretory vesicles, SNARE complex).



2030
2031 **Figure 4. Functional similarity and brain co-expression between NDD genes**
2032 **predict gene-level and network-level convergence, with unique influences by cell-**
2033 **type.** (A) Schematic for training random forest models for gene and network-level
2034 convergence with external validation in a SCZ CRISPRa screen. (B) Predictor variables
2035 included in the model include scores of functional similarity, dorsolateral prefrontal
2036 cortex (DLPFC) brain co-expression, cell-type, and the number of KOs. (B.P. score =
2037 semantic similarity of GO: Biological Process membership between KO genes; C.C.
2038 score = semantic similarity of GO: Cellular Component membership between KO
2039 genes; M.F. score = semantic similarity of GO: Molecular functions membership
2040 between KO genes; B.E.C = dorsolateral prefrontal cortex expression correlations
2041 between KO genes; nKOs = number of KO genes tested for convergence). (C)
2042 Pearson's correlations of predictor variables and gene-level and network-level

2043 convergence (PBonferroni<=0.01**, PBonferroni<=0.01***). **(D)** Functional similarity, 2044 brain co-expression, cell-type, and the number of KOs assayed strongly predicted gene- 2045 level convergence (97% variance explained by the model; mean of squared 2046 residuals=0.02) and moderately predicted network-level convergence (53% variance 2047 explained; mean of squared residuals=0.73). **(i-ii)** Importance of each of the predictor 2048 variables was assessed by two metrics: the percent mean increase in squared residuals 2049 (%IncMSE) and the increase in node purity. In the model – number of KO genes in a set 2050 is the most important predictor of convergence based on %Inc MSE, but not node 2051 purity. However, the impact of nKOs on gene-level convergence is much stronger – 2052 likely an artifact of the method used for measuring convergence. For network level 2053 convergence, each variable has a IncMSE between 20-30%. **(E)** Internal evaluation of 2054 the model using 30% of the original data resulted in high concordance between 2055 convergence predicted by the model and the measured convergence. Predicted gene- 2056 level **(i)** [gene-level convergence: n=19,823; Pearson's R=0.984; p<2.2e-16; root mean 2057 squared error (RMSE) =0.15] and network-level **(ii)** convergence [network-level 2058 convergence: n=962; rho=0.722; p<2.2e-16; RMSE=0.85)] by the model strongly 2059 correlated with the measured convergence in the testing sets. Correlation of predicted 2060 vs. accrual convergence values are color-coded by cell-type with corresponding color- 2061 coded correlations and p-values listed in the upper right corners of the scatterplots. **(F)** 2062 External validation in an independent scCRISPRa screen of SCZ target genes predicted 2063 showed moderate, but significant, correlation between convergence predicted by the 2064 model and the measured convergence. **(i)** gene-level (n=1013, R=0.14, p=1.1e-05, 2065 RMSE=1.748) and **(ii)** network-level convergence (n=826, R=0.26, p=2.9e-14, 2066 RMSE=0.68).

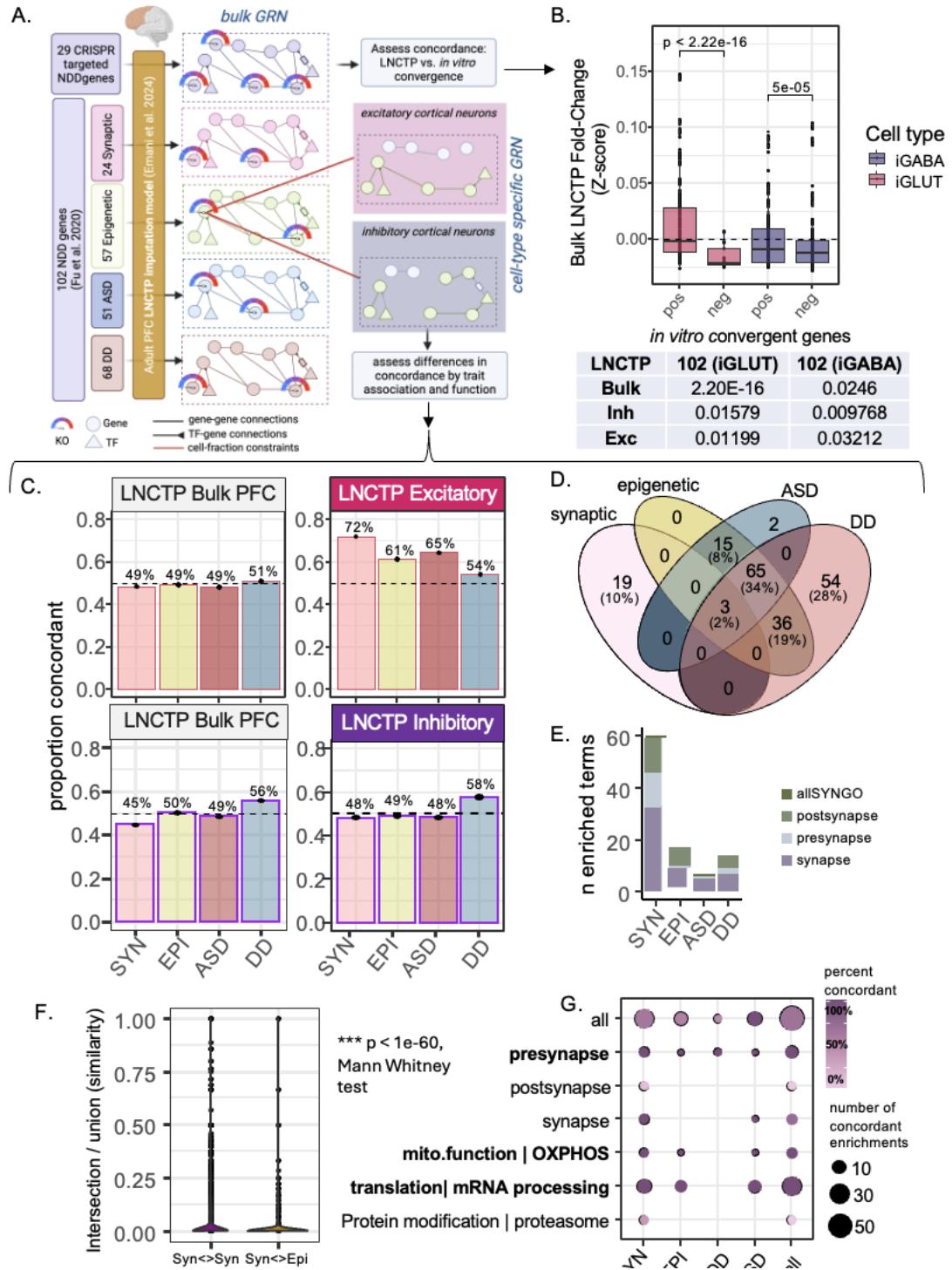


Figure 5. LNCTP predicts effects of convergent genes *in silico*. (A) LNCTP imputation and perturbation model: an energy-based network model is trained to impute bulk and cell-type specific expression data in the prefrontal cortex over a population of post-mortem individuals from PsychENCODE using a panel of 1325 genes and embedded cell-type specific Gene Regulatory Networks (GRNs) (*LNCTP in silico model*); a chosen gene is then perturbed by fixing its expression, and the effects on other genes are predicted by the model; *in silico* category-specific convergent genes are

2075 then identified by analyzing the fold-changes across subjects (*LNCTP Simulating*
2076 *Perturbations*). **(B)** Predicted *in silico* log fold-changes for the *in vitro* positive and
2077 negative convergent genes across the 29 CRISPR perturbations, in Bulk, Excitatory and
2078 Inhibitory neuron networks (*LNCTP Simulating Perturbations*, 2-tailed t-test p-values
2079 shown). **(C)** Proportion of genes showing same direction fold-changes in *in silico* and *in*
2080 *vitro* perturbations across classes of perturbation and cell-type (left), and the
2081 intersection of convergent *in silico* genes across classes of perturbation (*LNCTP in*
2082 *silico convergent genes*, synaptic-epigenetic genes reduced and ASD-DD genes
2083 enriched, $p < 1e-3$, 2-tailed hypergeometric test). **(D)** Venn diagram of *in silico*
2084 convergent genes across all categories by clinical (ASD vs DD) or functional (synaptic
2085 vs epigenetic) annotation. **(E)** Number of terms enriched for convergent genes across
2086 all categories for 102 *in silico* perturbations. **(F)** Semantic distance of pairs of enriched
2087 terms within or between sets determined by synaptic and epigenetic convergent gene
2088 rankings (*LNCTP semantic distance test*, 2-tailed Mann Whitney test) **(G)** Percent of
2089 concordant genes in each perturbation and ontology category within the leading-edge
2090 enriched genes (*LNCTP in silico convergent genes*).
2091

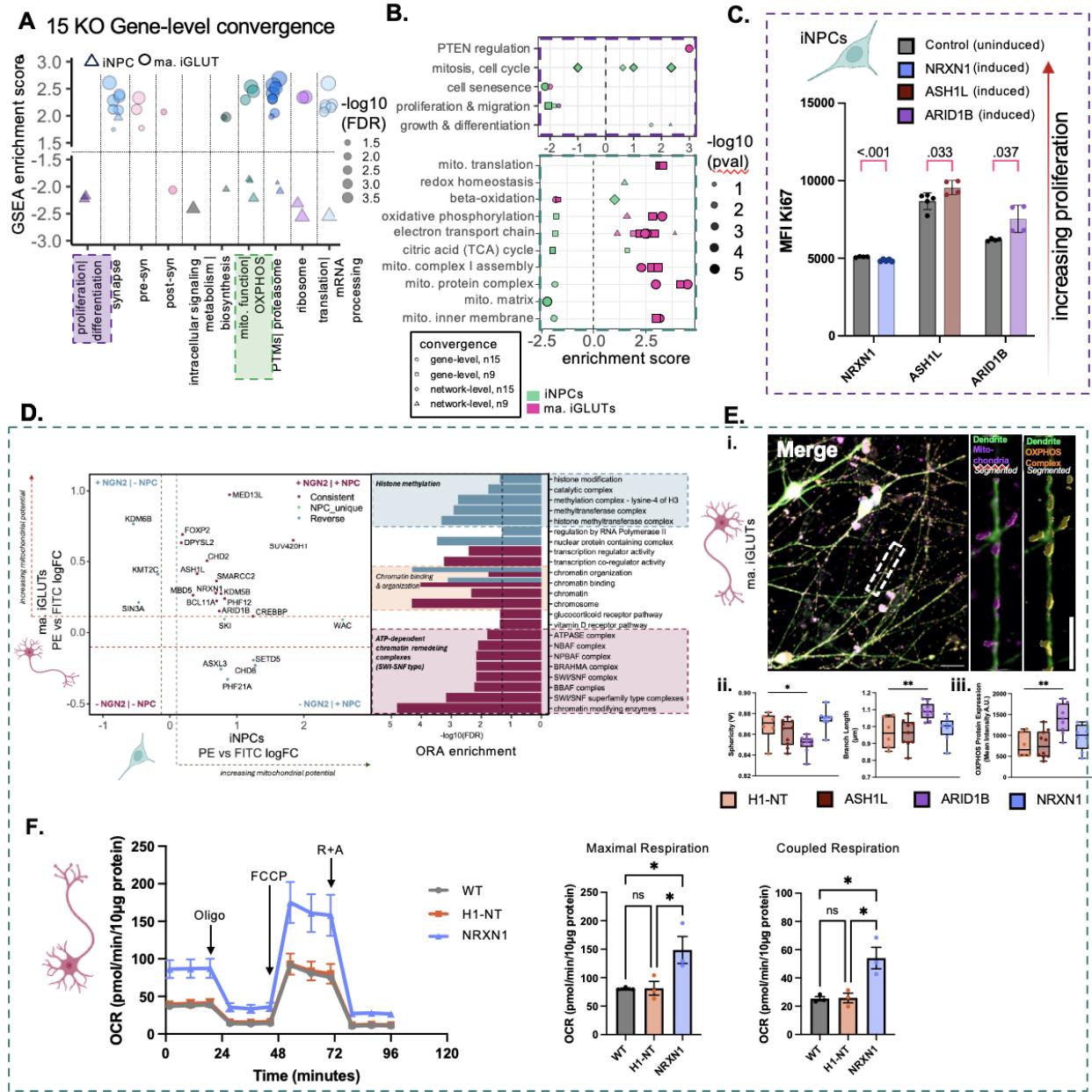
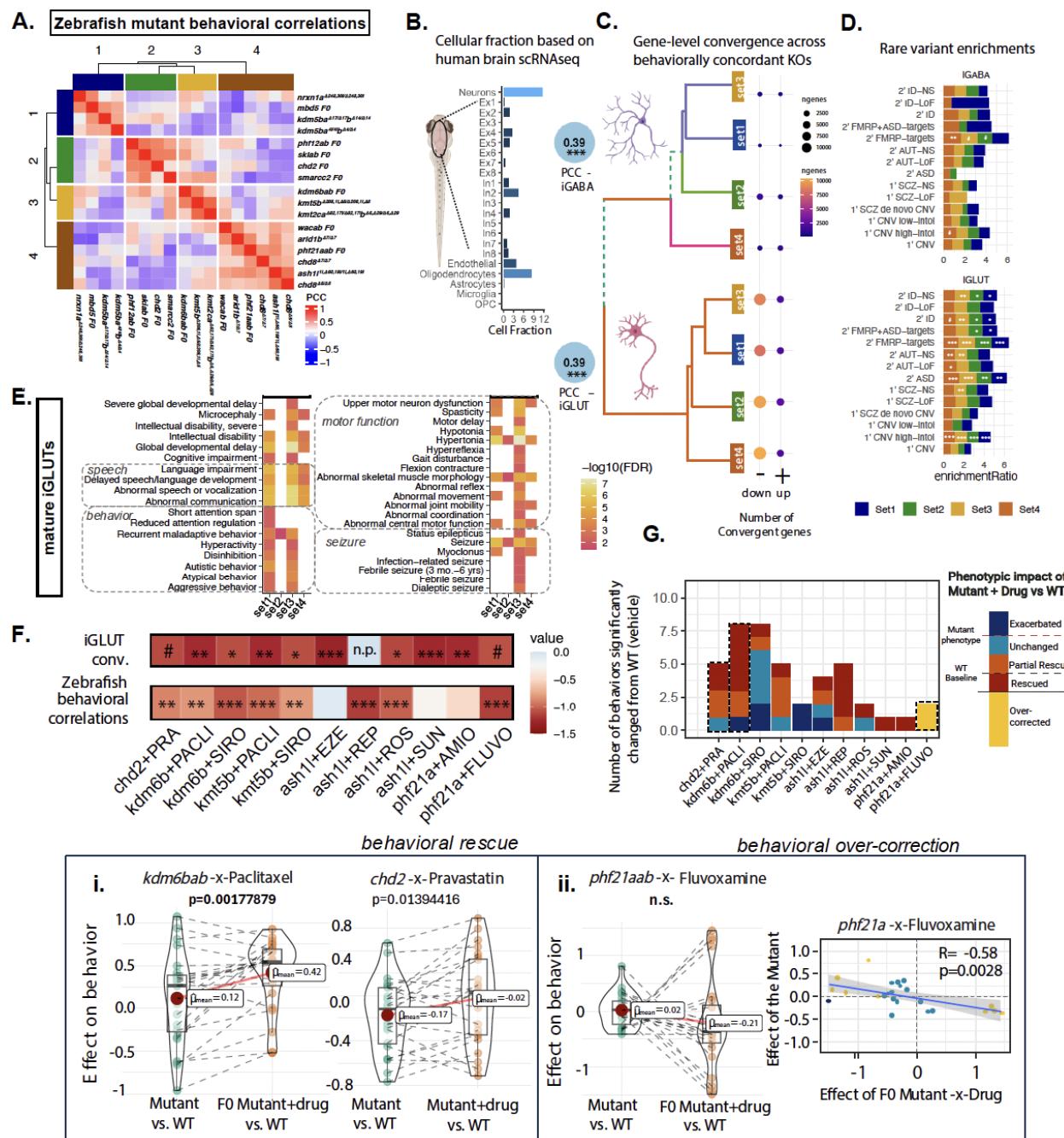


Figure 6. NDD knock-outs converge on mitochondrial function. (A) Gene set enrichment analysis (GSEA) identified downstream pathways involved in neurogenesis, neurite outgrowth, synaptic biology, and mitochondrial function as cell-type specific targets of convergent genes across 15 NDD KOs (**ARID1B**, **ASH1L**, **ASXL3**, **BCL11A**, **KDM5B**, **CHD2**, **MBD5**, **MED13L**, **NRXN1**, **PHF12**, **PHF21A**, **SETD5**, **SIN3A**, **SKI**, **SMARRC2**) in iNPCs and mature iGLUTs. Results were filtered for pathways with nominal p-values <0.05 . Normalized GSEA enrichment scores represent the direction of enrichment based on the meta-analyzed Z-score for each convergent gene. Cell-type is represented by shape and the size of each point represents the $-\log_{10}(\text{FDR})$. (B) Summary of network and gene-level pathway enrichments (from Fig. 2-3) for shared effects of nine and fifteen NDD KOs in iNPCs and mature iGLUTs. (C) Proliferation assessment of NPCs using Ki-67 median fluorescence intensity (MFI) measured with flow cytometry, wildtype (purple: no iCas9 induction) versus knockout (green: **ASH1L**, **ARID1B**, **NRXN1**). (D) Scatter plot showing PE vs FITC logFC for iGLUTs and iNPCs. The y-axis is increasing mitochondrial potential. A legend indicates: + NGN2 + NPC (green), - NGN2 + NPC (red), + NGN2 + iGLUTs (green), - NGN2 + iGLUTs (red). A bar chart shows ORA enrichment for various biological processes. (E) Fluorescence microscopy and quantification. i. Merge, Dendrite, Mitochondria, OXPHOS Complex, Segmented. ii. Box plot of SpineLength (μm) for H1-NT, ASH1L, ARID1B, and NRXN1. iii. Box plot of OXPHOS Protein Expression (pmol/min/10 μg protein) for the same groups. (F) Oxygen Consumption Rate (OCR) over time (0, 24, 48, 72, 96, 120 minutes). Oligo (mitochondrial inhibitor) and FCCP (uncoupler) are added at 24 and 48 minutes. R+A (respiration and adenosine) is measured at 72 minutes. A legend indicates: WT (grey), H1-NT (orange), NRXN1 (blue). Asterisks indicate significant differences between genotypes. ns: not significant.

2106 doxycycline to induce iCas9). 4-6 replicates per condition, unpaired t-test with Welch
2107 correction; p-values corrected for multiple comparisons using FDR. **(D)** Scatter plot of
2108 gRNA \log_2 fold-change (high- (PE-high) and low- (FITC-high) $\Delta\psi_m$ -sensitive dye JC-1
2109 membrane-potential fractions) in NPCs (x-axis) and mature iGLUT neurons (y-axis),
2110 with points colored by enrichment category (shared NPC and iGLUT in red; distinct
2111 between NPC and iGLUT in blue). Right: Bar chart of $-\log_{10}(\text{FDR})$ for over-represented
2112 gene sets in the tene gene KOs enriched in both lineages. **(E)** (i) High resolution, high-
2113 throughput microscopy of mitochondrial morphology (scale bar 10 μm): an isolated
2114 dendrite labelled with a dendritic marker (MAP2), mitochondrial marker (TOMM20) and
2115 marker of the OXPHOS complex (Total OXPHOS) (scale bar 5 μm). (ii) Effect of
2116 ARID1B-KO on mitochondrial sphericity and branch length independent of changes in
2117 mitochondrial volume and surface area (**SI Fig. 20-21**). (iii) Effect of ARID1B-KO on
2118 average fluorescence intensity of OXPHOS proteins. Each datapoint indicates one well
2119 of a 96-well, representing hundreds of μm^2 of neuronal area and tens of thousands of
2120 individual mitochondria (*adjusted $p<0.05$, ** adjusted $p<0.01$). **(F)** Effect of NRXN1-KO
2121 on maximal respiration and coupled respiration in iGLUTs. Oligo: oligomycin; FCCP:
2122 carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone; R+A: rotenone and antimycin
2123 A. Data are presented as mean \pm SEM. Statistical analysis was performed using one-
2124 way ANOVA. * $p<0.05$. Each datapoint represents one well of a 24-well Seahorse assay
2125 plate. The experiment was independently replicated twice.

2126



2127

2128 **Figure 7. NDD gene mutants with shared behavioral phenotypes in zebrafish**
2129 **resolve unique and cell-type-specific gene-level convergent signatures and are**
2130 **rescued by predicted medications. (A)** NDD risk genes uniquely cluster based on
2131 **sleep-wake/visual-startle behavioral responses in zebrafish mutants. set 1:** *nrxn1a*,
2132 ***mbd5*, *kdm5bab*; set 2:** *phf12ab*, *skiab*, *chd2*, *smarcc2*; set 3: *kdm6bab*, *kmt5b*,
2133 ***kmt2cab*; set 4:** *wacab*, *arid1b*, *phf21aab*, *chd8*, *ash1l*. (B) Gene expression in human
2134 **mature iGLUTs and iGABAs correlate with expression in the zebrafish brain. Cellular**
2135 **deconvolution of wild-type larval zebrafish brain expression based on adult human**
2136 **single-cell brain reference identifying neurons as the largest proportion of cells in the**

2137 fish brain. Gene expression in wild-type zebrafish brain significantly positively correlates
2138 with gene expression of mature iGLUTs ($\rho=0.39$, Holm's adj. $P<0.001$) and iGABAs
2139 ($\rho=0.39$, Holm's adj. $P <0.001$). **(C)** For each of the four behaviorally defined sets,
2140 gene-level convergence (DEGs with significant and shared direction of effect across all
2141 NDD genes within each of the four sets (FDR adjusted $p_{meta}<0.05$, Cochran's
2142 heterogeneity Q-test $p_{het} > 0.05$)) is largely non-overlapping between mature iGLUTs
2143 and iGABAs, with unique enrichments for common psychiatric risk gene targets.
2144 Number of convergent genes that are up (+) or down (-) regulated for each NDD set are
2145 indicated. **(D)** In both iGABAs and iGLUTs, all four behavioral sets were enriched for
2146 FMRP targets. Gene targets of neurodevelopmental rare variants were only significantly
2147 enriched for convergent signatures in mature iGLUTs; behavioral set 4 uniquely
2148 significantly enriched for secondary targets of ASD loss-of-function variant and set 3
2149 uniquely enriched for primary targets of SCZ non-synonymous variants. **(E)** In iGLUTs,
2150 NDD related behaviors were only enriched in sets 1 and 3, with enrichments for
2151 language, speech, and intellectual delays in sets 1,3 and 4. All sets were enriched for
2152 seizure and hypertonia. **(F)** Potential "rescue" drugs for these 4 phenotypic groups were
2153 selected from enrichment scores using cMAP and filtered for drugs included in a screen
2154 of 376 compounds for behavioral effects in zebrafish. Top candidates that were
2155 significantly negatively enriched for iGLUT convergence from cMAP and negatively
2156 correlated with mutant behavioral features were tested in mutant lines representative of
2157 sets 2-4. n.p. indicates that the drug repaglinide was not present in the cMAP dataset.
2158 Mutant-x-Drug combinations were as follows: *chd2*^{Δ7/Δ7}-x-pravastatin; *kdm6bab* F0-x-
2159 paclitaxel; *kdm6bab* F0-x-sirolimus; *kmt5b*^{Δ208,1i, Δ5/Δ208,1i, Δ5}-x-paclitaxel; *kmt5b*<sup>Δ208,1i,
2160 Δ5/Δ208,1i, Δ5</sup>-x-sirolimus; ; *ash1*^{1i, Δ60,19i/ 1i, Δ60,19i}-x-ezetimibe; *ash1*^{1i, Δ60,19i/ 1i, Δ60,19i}-x-
2161 repaglinide; *ash1*^{1i, Δ60,19i/ 1i, Δ60,19i}-x-rosuvastatin; *ash1*^{1i, Δ60,19i/ 1i, Δ60,19i}-x-sunitinib;
2162 *phf21aab* F0-x-amiodarone; *phf21aab* F0-x-fluvoxamine. **(G)** For behaviors that were
2163 significantly different between mutant+DMSO and WT+DMSO ($p<0.05$), we
2164 characterized the effect of the mutant-x-Drug on behavior as either (a) *exacerbated* [sig.
2165 effect mutant+Drug-v-WT > sig. effect mutant-v-WT], (b) *unchanged* [sig. effect
2166 mutant+drug-v-WT = sig. effect mutant-v-WT], (c) *partial rescue* [effect mutant+Drug-v-
2167 WT < effect mutant-v-WT], (d) *rescued* [sig. effect mutant-v-WT, no sig. effect
2168 mutant+Drug-v-WT], (e) *over-corrected* [mutant+Drug-v-WT opposite direction of sig.
2169 effect mutant-v-WT]. All drugs reversed at least one dysregulated behavior except for
2170 sirolimus in *kmt5b*. **(i)** Comparison of the magnitude of effect (beta) on behavior
2171 between the mutant+DMSO compared to mutant+Drug groups shows rescue of select
2172 behavioral features in *kdm6b* and *chd2* mutants by paclitaxel (Shapiro Wilk's Normality
2173 $p=$, Student T statistic=-3.533, $p=0.0017788$, $df=23$) and pravastatin (Student T
2174 statistic=-3.533, $p=0.0017788$, $df=23$), respectively. **(ii)** the *phf21a* mutant phenotype
2175 was strongly opposed by fluvoxamine (Pearson's correlation=-0.58, $p=0.0028$).