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ABSTRACT

Over three hundred and seventy-three risk genes, broadly enriched for roles in neuronal
communication and gene expression regulation, underlie risk for autism spectrum
disorder (ASD) and developmental delay (DD). Functional genomic studies of subsets
of these genes consistently indicate a convergent role in neurogenesis, but how these
diverse risk genes converge on a smaller number of biological pathways in mature
neurons is unclear. To uncover shared downstream impacts between
neurodevelopmental disorder (NDD) risk genes, here we apply a pooled CRISPR
approach to contrast the transcriptomic impacts of targeting 29 NDD loss-of-function
genes across human induced pluripotent stem cell (hiPSC)-derived neural progenitor
cells, glutamatergic neurons, and GABAergic neurons. Points of convergence vary
between the cell types of the brain and are greatest in mature glutamatergic neurons,
where they broadly target not just synaptic and epigenetic, but unexpectedly,
mitochondrial biology. The strongest convergent networks occur between NDD genes
with common co-expression patterns in the post-mortem brain, biological annotations,
and clinical associations, suggesting that convergence may one-day inform patient
stratification and treatment. Towards this, ten out of eleven drugs tested that were
predicted to reverse convergent signatures in human cells and/or arousal and sensory
processing behaviors in zebrafish ameliorated at least one behavioral phenotype in
vivo. Altogether, robust convergence in post-mitotic neurons represents a clinically
actionable therapeutic window.
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75 INTRODUCTION

76  Autism spectrum disorder (ASD) and related developmental delay (DD) are highly
77 heritable’. The aggregate impact of common variants of small effect reflects most
78  genetic risk?, but in as many as a quarter of cases, potentially damaging rare inherited
79 and de novo mutations in risk genes are detected®. There is significant overlap between
80 those genes affecting ASD* and those more broadly affecting developmental®® and
81 psychiatric”® disorders. Altogether, neurodevelopmental disorder (NDD) risk genes are
82 typically expressed during cortical development®, particularly the excitatory and
83 inhibitory lineages?, and broadly split between two functional classes: neuronal
84 communication (e.g., synaptic function) and gene expression regulation (e.g., chromatin
85 regulators and transcription factors)*'*®. Over half of NDD genes have roles in gene
86 expression regulation®, sharing substantial overlap in genomic binding sites in the
87  brain'®, and with targets enriched for NDD risk genes*”?°. Yet, evidence to support the
88 parsimonious explanation that regulatory NDD genes preferentially target synaptic NDD
89 genes, is lacking®. It remains unclear how disrupting NDD genes with distinct functions
90 yields similar outcomes.

91 Many NDD genes seem to have broad roles outside their annotated function; for
92 example, some chromatin regulators (e.g., CHD8, CHD2, and POGZ) localize to
93 microtubules in the centrosome®, mitotic spindle®, and cilia®®***, suggesting the
94  possibility that they function directly in neurogenesis and/or synaptic biology. Indeed,
95 both regulatory and synaptic genes impact proliferation and patterning of progenitors
96 (e.g., ARID1B®?®, CHD8%%®, NRXN1%3° SYNGAP1%), excitatory transmission by
97 glutamatergic neurons (e.g., CHD8%*** NRXN1%** SHANK3*, SYNGAP1*%), and
98 inhibitory transmission by GABAergic neurons (e.g., ARID1B%*, CHD8%, NRXN1%,
99 SHANK3%*). Do overlapping downstream impacts explain how heterogeneous gene
100  mutations result in similar neuronal phenotypes and clinical outcomes*®?

101  Many have proposed that diverse ASD genes are convergent* . Indeed, NDD genes
102 are co-expressed in the brain***°, suggesting that they are regulated together and
103 involved in related biological processes, and result in highly interconnected protein-
104 protein interactomes**°, indicating functional relationships between NDD
105 proteins. Even as the number of NDD genes grows, risk genes continue to converge on
106 a finite number of biological pathways, developmental stages, brain regions and cell
107 types*. Disentangling these complex etiologies remains an outstanding challenge.

108  Excitatory-inhibitory (E:l) imbalance is widely believed to underlie NDD>'**, whether
109 arising from altered proportions of neuronal lineage cell types in the developing brain or
110 synaptic deficits in glutamatergic or GABAergic neurons. Indeed, knockdown of subsets
111  of NDD genes in human neural progenitor cells (NPCs)?*°**°  cerebral organoids®’°®>’,
112  and developing mouse®®, tadpole®® and zebrafish®® brains reveal overlapping impacts on
113 neurogenesis. Despite synaptic dysfunction being a hallmark of NDD, the extent to
114  which downstream impacts of NDD genes also converge in mature neurons is largely
115  unknown.

116  Given emerging evidence that epigenetic NDD genes have diverse and interconnected
117  roles?®®*, we tested the hypothesis that the nature of convergence is dynamic,
118 influenced by developmental and cell-type contexts. We report a pooled CRISPR-
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119 knockout (KO) strategy targeting loss-of-function (LoF) mutations to 29 NDD genes,
120 most with roles in chromatin biology (ANK3, ARID1B, ASH1L, ASXL3, BCL11A, CHD2,
121 CHDS8, CREBBP, DPYSL2, FOXP2, KMT5B (SUV420H1), KDM5B, KDM6B, KMT2C,
122 MBD5, MED13L, NRXN1, PHF12, PHF21A, POGZ, PPP2R5D, SCNZ2A, SETDS5,
123  SHANKS3, SIN3A, SKI, SLC6A1, SMARCC2, WAC) in induced NPCs, glutamatergic
124 neurons, and GABAergic neurons in vitro. We describe convergent networks that are
125 unique between cell types, and in neurons, enriched not just for synaptic biology, but
126 also epigenetic regulation and, unexpectedly, mitochondrial function. Novel applications
127  of machine learning allowed us to extend our analyses in silico across all known NDD
128 genes, resolving how the degree of convergence between risk genes was influenced by
129 clinical associations, biological function, and co-expression patterns in the post-mortem
130 brain. Convergent analyses resolved the genes and cell types that underlie in vivo
131 behavioral stratification and successfully predicted drugs capable of suppressing
132 phenotypes in mutant zebrafish, suggesting that precision medicine-based approaches
133 can successfully target shared downstream gene targets between multiple NDD genes.
134  Novel points of convergence in post-mitotic neurons represent exciting new therapeutic
135 targets occurring within a clinically actionable therapeutic window.

136
137 RESULTS
138 A systematic comparison of NDD gene effects across neuronal cell types

139 From 102 highly penetrant loss-of-function (LoF) gene mutations associated with NDD
140 (previously described as 58 gene expression regulation, 24 neuronal communication,
141  and 20 other)*, we used gene ontology and primary literature to identify 21 epigenetic
142 modifiers specifically involved in chromatin organization, rearrangement, and
143 modification (ASH1L, ARID1B, ASXL3, BCL11A, CHD2, CHD8, CREBBP, PPP2R5D,
144 KDM5B, KDM6B, KMT2C, KMT5B (SUV420H1), MBD5, MED13L, PHF12, PHF21A,
145 SETDS5, SIN3A, SKI, SMARCC2, WAC), as well as two transcription factors with
146  putative roles as chromatin regulators (FOXP2, POGZ). Three extensively studied
147 synaptic genes (NRXN1, SCN2A, SHANK3) and three under-explored neuronal
148 communication genes (ANK3, DPYSL2, SLC6A1) strongly associated with NDD were
149 added (SI Fig. 1A). Many of these 29 genes differed in relative frequency of LoF gene
150 mutations between ASD (n=16) and DD (n=4)%*, schizophrenia®®, and epilepsy®*** (Fig.
151 1A-B, SI Fig. 1B), as well as general associations with GWAS for many
152  neuropsychiatric disorders (MAGMA®) (Fig. 1C; SI Fig. 1C), indicating a pleotropic
153  effect consistent with the shared genetic liability across neuropsychiatric disorders®.
154 INPCs, iGLUTSs, and iGABAs (Sl Fig. 2A), as well as their in vivo fetal counterparts (Sl
155  Fig. 2B), expressed all genes prioritized herein®’.

156 Towards resolving whether regulatory genes confer continuous or distinct periods of
157  susceptibility across neurodevelopment, we knocked out (KO) regulatory NDD genes in
158 neural progenitor cells (SNaPs®, here termed iNPCs), immature and mature
159  glutamatergic neurons (iGLUTs)®, and mature GABAergic neurons (iGABAs)” (Fig.
160 1D). A pooled CRISPR approach (ECCITE-seq’") combined direct detection of sgRNAs
161 and single-cell RNA sequencing to compare loss-of-function effects across 29 NDD
162 genes. The CRISPR-KO library was generated from pre-validated gRNAs (three to four
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163 gRNAs per gene; Sl Table 1). Sequencing of the gRNA library confirmed the presence
164  of gRNAs targeting 24 genes (ANK3, ARID1B, ASH1L, ASXL3, BCL11A, CHD2, CHDS,
165 DPYSL2, FOXP2, KMT5B (SUV420H1), KDM5B, KDM6B, KMT2C, MBD5, MED13L,
166 NRXN1, PHF12, PHF21A, SCN2A, SETD5, SIN3A, SKI, SMARCC2, WAC), but three
167 (DPYSL2, FOXP2, SCN2A) were present at lower frequency (Sl Fig. 3B-C).

168 Control hiPSCs were induced to INPCs, iGLUTs, and iGABAs (Sl Fig. 3A), transduced
169 first with lentiviral-Cas9v2 (Addgene #98291) and subsequently with the pooled lentiviral
170 gRNA library three days before harvest, at day 7 (INPC and immature iGLUT), day 21
171  (IGLUT), and day 36 (iIGABA) (experimental workflow Sl Fig. 4A; computational
172  workflow Sl Fig. 4B; experimental validation of CRISPR editing efficiency in SlI Fig. 5).
173  After filtering and QC (Sl Fig. 4C-E), we resolved NDD transcriptomes for 118,436
174  single cells: 25,402 iNPC, 38,097 immature (d7) iGLUT, 28,388 mature (d21) iGLUT,
175 and 26,549 mature (d36) IGABA. Because original gene-expression based clustering
176  was driven by cellular heterogeneity, cell quality, and sequencing lane effects (S| Fig.
177 6A), independent of gRNA identity, we removed cells with high expression of subtype
178 markers and adjusted for cellular heterogeneity (SI Fig. 6B,C; Sl Tables 2-3).
179 ‘Weighted-nearest neighbor’ (WNN) analysis assigned clusters based on both gRNA
180 identity class and gene expression to ensure that cells assigned to a g7RNA identity
181 class demonstrated successful perturbation of the targeted NDD gene’®. For those
182 WNN clusters where most cells were assigned to a single KO target, the transcriptomic
183 signatures were compared to non-targeting scramble control clusters. Altogether,
184 35,777 cells were used for downstream analyses: 12,107 iNPC, 3,171 immature iGLUT,
185 11,802 mature IGLUT, and 8,697 mature iGABA). An average of 474 cells were
186 assigned to each individual sgRNA (757 INPC, 227 immature iGLUT, 562 mature
187 iGLUT, 414 mature iGABA), totaling 33,150 perturbed cells and 2,627 controls (882
188 INPC, 90 immature iGLUT, 1,258 mature iGLUT, and 397 mature iGABA). The gene
189 expression patterns of non-perturbed iINPCs and iNeurons (>30% of all pooled cells)
190 were significantly correlated with fetal brain cells and cortical adult neurons.

191 Successful perturbations (scCRISPR-KO) were identified for 23 NDD genes (Sl Fig.
192 6,7): 16 in INPCs, 14 in immature iGLUT neurons, and 21 in mature iGLUT and iGABA
193 neurons (Sl Fig. 6). Nine NDD genes were perturbed in all four cell types (ARID1B,
194 ASHI1L, CHD2, MED13L, NRXN1, PHF21A, SETD5, SIN3A, SMARCCZ2; Sl Fig. 7A,B).
195 For most NDD genes, KO in mature iGLUTSs yielded the largest number of differentially
196 expressed genes (DEGs, pFDR<0.05) (Sl Fig. 7B), an effect that was not driven by
197 differences in the extent of perturbation of the NDD gene itself between cell types (Sl
198 Fig. 7Ci). The transcriptomic effects of individual NDD genes cluster by cell type: the
199 strongest NDD gene correlations are in mature iGLUTs (i.e., all nominally significant
200 (p<0.01) log2FC DEGs are most highly correlated with each other and least correlated
201  with the other cell types, whether relative to all scramble control cells (Fig. 1Ei,ii; Sl Fig.
202  7Cii) or random subsets of scramble control cells (SI Fig. 8A,B). DEGs across
203 individual NDDs shared significant gene ontology enrichments (Sl Fig. 8C), with mature
204 iGLUTs frequently enriched for SCZ GWAS genes (12 of 21 NDD genes), whereas
205 mature iIGABAs for migraine GWAS genes (8 of 21) (Sl Fig. 9).

206  Unsurprisingly, given the greater within cell-type correlations between NDD genes and
207  the unique pathway enrichments across cell-types, very few DEGs shared significance


https://doi.org/10.1101/2024.08.23.609190
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.23.609190; this version posted July 16, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

208 and direction of effect for the same NDD gene perturbation across all four cell-types
209 (FDR adjusted pmeta<0.05, Cochran’s heterogeneity Q-test puer > 0.05; computational
210 workflow, Sl Fig. 10A); in fact, the only common DEG between cell types was frequently
211 the targeted NDD gene itself. With a more relaxed statistical threshold (nominal p-value
212  <0.05), modest shared effects of individual NDD genes could be resolved across cell
213 types. These effects rarely resulted in perturbation of the other NDD genes themselves
214 (Sl Fig. 10B), showed very little overlap between NDD genes (S| Fig. 10C), and no
215 significant enrichments with psychiatric GWAS after multiple testing correction (Sl Fig.
216 10D).

217 NDD gene knockouts resulted in cell-type-specific convergent genes and networks that
218 were strongest in glutamatergic neurons.

219 “Convergent genes” (Fig. 2) are those DEGs with significant and shared direction of
220 effect across all NDD gene Joerturbations (FDR adjusted pmeta<0.05, Cochran’s
221  heterogeneity Q-test puer > 0.05)"*"* (computational workflow, Fig. 2A). Across the nine
222 NDD genes perturbed in all four cell types (ARID1B, ASH1L, CHD2, MED13L, NRXNL1,
223 PHF21A, SETD5, SIN3A, SMARCC2), convergence was highly cell-type specific (Fig.
224 2; Sl. Fig. 11A-C; Sl Data 2). Although the strength of convergence correlated across
225 cell types (Fig. 2C,ii), it was greatest in mature iGLUTs (quantified as the ratio of
226  convergent genes to the average number of DEGs across all 152 unique two-to-five
227 gene combinations of these nine NDD genes) (Fig. 2C,i).The unique “top” convergent
228 genes (Table 1) showed little overlap across all cell-types, with mature iGLUTSs (11,473)
229 having the largest absolute number of convergent genes (Fig. 2D). Convergent genes
230 were enriched for schizophrenia GWAS loci (MAGMA®, FDR <0.05) (Fig. 2Ei), rare
231 ASD and FMRP target genes (FDR <0.05) (Fig. 2E,ii), and pathways involved in
232  neurodevelopment, mitochondrial function, and translational regulation (SI Fig. 12).
233 When tested again across the 21 NDD genes perturbed in both iGLUTs and iGABAs,
234 mature IGLUTs again showed the largest absolute number of convergent genes
235 (iGLUTs, 10,557, SI Fig. 13A; iGABAs, 892, SlI Fig. 13B). Intriguingly, although
236 convergent genes were highly cell-type-specific, those NDD gene combinations that
237 were highly convergent in one cell type were likely to be convergent in others; in
238 neurons, top convergent sets most frequently included ARID1B, SETD5 and NRXN1 (SI
239  Fig. 11D).

240  Given that the biological impact of convergence is likely to be impacted by the strength
241 of shared gene regulatory relationships and functions, we re-examined convergence
242 within the framework of co-expression networks (Bayesian bi-clustering). “Convergent
243  networks” (Fig. 3) are co-expressed genes that share similar expression patterns
244  across NDD gene perturbations’®’* (computational workflow, Fig. 3A). The network
245  connectivity score (“network convergence”) informs the strength and composition across
246  cell types (i.e., networks with more interconnectedness and containing genes with
247 greater functional similarity have increased convergence). Convergent networks
248 generated from the 9 NDD genes perturbed in all four cell types (Fig. 3B) or across the
249 21 NDDs genes in both iGLUTs and iGABAs (Sl Fig. 13C) revealed the greatest
250 convergent network strength in iGLUTs. Network-level convergence was weakly
251 correlated between cell types (Fig. 3C); the number of convergent unique network
252 nodes was greatest in iGLUTS, distinct across cell types (Fig. 3D; Tables 2-4; Sl Data
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253  2), and significantly enriched for rare variants linked to schizophrenia and ASD (Fig. 3E;
254 Tables 2-4). Convergent networks in iINPCs highlighted pathways associated with
255 neurogenesis (e.g., cell cycle, cell division, EPO signaling) (Fig. 3F), while in mature
256 IGLUTs they were enriched for synaptic function (transmembrane transport and
257  receptor signaling, secretory vesicles, SNARE complex) (Fig. 3G).

258 Convergent networks are strongest between NDD genes with shared co-expression
259 patterns in the post-mortem brain, biological annotations (synaptic or epigenetic), and
260 clinical outcomes (ASD or DD).

261 To resolve the extent to which functional similarity and co-expression patterns between
262 NDD genes Eredicted convergence, we trained a prediction model (random forest linear
263 regression)’ using 70% of our data, evaluated it using 30% of our data, and validated in
264 an external dataset’® (computational workflow, Fig. 4A; model predictor variables, Fig.
265 6B; more information Sl Fig. 14,15). Cell type, brain co-expression (dorsolateral
266 prefrontal cortex, DLPFC), and functional similarity (i.e., gene ontology) correlate with
267 convergence (Fig. 4C) and well-predicted gene level convergence (97% variance
268 explained; mean of squared residuals (RMSE)=0.021) (Fig. 4Di) and moderately
269 predicted network-level convergence (53% variance explained; RMSE=0.73) (Fig. 4Dii).
270 Our trained model accurately predicted gene-level (Pearson’s R=0.998, P<0.001,
271 RMSE=0.15) (Fig. 4Ei; Sl Fig. 15C) and network-level convergence in our testing set
272 (R=0.72, P<2.2e-16, RMSE=0.85) (Fig. 4Eii; Sl Fig. 15D), and performed moderately
273  well in predicting network-level convergence (R=0.26, P<0.001, RMSE=0.68) (Fig. 4Fii;
274 Sl Fig. 15Eii) and to a lesser extent gene-level convergence (R=0.14, P<0.001
275 RMSE=1.75) (Fig. 4Fi; Sl Fig. 15Ei) in the external dataset.

276  To query whether convergence reflected clinical associations to ASD or DD, we again
277 quantified convergence as the ratio of convergent genes to the average number of
278 DEGs (see Fig. 2E), here across all (2-5 gene) combinations of all NDD genes
279 perturbed in each cell type (e.g., 27,824 unique combinations of 21 NDD genes in
280 iIGLUTs and iGABAs; Sl Fig. 16A). Convergence, both gene-level (SI Fig. 16A,C) and
281 network-level (Sl Fig. 16B,D), was greater between genes with stronger associations to
282  ASD compared to DD®, particularly in mature neurons (S| Fig. 16E-F). Yet this analysis
283 was limited by the relatively small number of predominantly ASD (n=16) and DD (n=4)
284  included in our dataset (Fig. 1B).

285 To extend our comparisons of convergence across larger sets of NDD genes,
286 particularly those clinically defined as predominantly ASD or DD genes®, or those with
287  biologically annotated synaptic or epigenetic roles®, we asked if it was possible to train a
288 machine learning model to predict cell-type-specific impacts of CRISPR knockout of all
289 102 NDD genes®. An integrative Linear Network of Cell Type Phenotypes (LNCTP)
290 model, previously trained on >2.8 million nuclei from the prefrontal cortex across 388
291 individuals, accurately imputes single-cell expression following simulated
292  perturbations’®. By retraining the LNCTP model using our scCRISPR-KO data (Fig. 5A),
293 we resolved convergent genes within three in silico post-mortem brain network models
294  (bulk prefrontal cortex (PFC) tissue, excitatory neurons only, and inhibitory neurons
295 only), noting that the LNCTP model better replicates experimental iGLUT data (Fig. 5B).
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296 Expanded LNCTP in silico comparisons across all 102 NDD genes (Fig. 2; Sl. Fig. 17)
297 predicted greater convergence in excitatory neurons compared to inhibitory neurons,
298 consistent with our in vitro findings (Fig. 2C, 3D), even more so for synaptic NDD genes
299 (n=24) relative to regulatory genes (n=58) (Fig. 5C). Predominantly ASD genes (n=50)
300 had greater predicted convergence in excitatory neurons (Fig. 5C), whereas
301 predominantly DD genes (n=40) in inhibitory neurons (Fig. 5C). Overall, across
302 functional or clinical categories, despite limited overlap in specific convergent genes
303 (Fig. 5D) and terms (Fig. 5E, F), there was overall enrichment for synaptic, epigenetic,
304 and mitochondrial biology (Fig. 5G), consistent with in vitro sScCCRISPR-KO (Fig. 2F).

305 Convergent genes and networks in glutamatergic neurons targeted synaptic, epigenetic,
306 and mitochondrial biology.

307 Convergent genes and networks revealed cell-type-specific disease (Fig. 2E) and
308 functional enrichments (Fig. 2F, 5G,6A-B), many consistent with established NDD
309 etiology in neurogenesis®**"**%° and synaptic biology*”™°. For example, iNPCs were
310 significantly enriched for pathways involved in proliferation and differentiation, whereas
311 mature IGLUTs showed unique enrichments in neuronal communication (e.g., pre-
312 synaptic function) and regulation of gene expression (e.g., MRNA processing and
313 protein translation). Unexpectedly, both mature iGLUT and iGABA neurons were
314 enriched for mitochondrial biology (e.g., oxidative phosphorylation: mature IGLUTS:
315 NEs=2.8, p<2.2e-16, FDR<0.001; mature iGABAs: NES=1.67, p=0.023, FDR<0.05).

316 Functional validation of five NDD genes (KMT5B, NRXN1, CHD8, ASH1L, ARID1B) in
317 inducible Cas9 (iCas9)’’ NPCs (CD184*/CD133~ NPCs) in arrayed format revealed
318 effects on proliferation (Ki67; Fig. 6C; Sl Fig. 18A), neurogenesis (NPCs:
319 CD184+/CD44-/CD24+, neurons: CD184-/CD44-/CD24+; Sl Fig. 18B), and gliogenesis
320 (astrocytes: CD184+/CD44+; Sl Fig. 18C) that varied between genes. Likewise, a
321 pooled CRISPR analysis in iCas9 cortical organoids confirmed effects on neurogenesis,
322  again with variable effects between NDD genes (S| Fig. 19).

323 To assess how loss of NDD-associated genes affects mitochondrial function, we
324 performed a pooled CRISPR knockout screen using a nearly identical library (same
325 backbone, guide density, and control set) in the H1-iCas9 line. Transduced cells were
326 differentiated into NPCs and iGLUTs by day 21, stained with the Aym-sensitive dye JC-
327 1, and sorted by fluorescence-activated cell sorting (FACS) into high- (PE-high) and
328 low- (FITC-high) membrane-potential fractions, following amplicon sequencing to
329 quantify gRNA representation in each fraction (Fig. 6D). Of the fifteen KOs, ten resulted
330 in elevated mitochondrial membrane potential (MPP) in both NPCs and iGLUTS, the
331 remaining five caused cell-type-specific impacts on mitochondrial membrane potential.
332 Pathway enrichment of the ten NDD genes that increased mitochondrial membrane
333 revealed a convergence on chromatin remodeling complexes, microRNAs, and
334 transcription factors.

335 For three NDD KOs (ASH1L, ARID1B, NRXN1), we validated mitochondrial effects in
336 arrayed format, using a platform with the ability to resolve dose-dependent changes in
337 mitochondrial fragmentation following pharmacological insults (SI Fig. 20). By high
338 content imaging, we analyzed and quantified 1 x 10* mitochondria per genotype, with
339 morphological measurements taken for mitochondrial (TOMMZ20-positive) volume,
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340 surface area, and sphericity (roundness) as well as total OXPHOS complex, within
341 neuronal dendrites (MAP2-positive) of mature (d21) iGLUTs. Among the three NDD
342 KOs, ARID1B resulted in increased mitochondrial networking (indicated by decreased
343 mitochondrial sphericity and increased branch length; one-way ANOVA, Sidak’s
344  adjusted p=0.0213 and p=0.0081 respectively) concomitant with increased levels of
345 OXPHOS proteins (one-way ANOVA, Sidak’s, adjusted p=0.0024) (Fig. 6E; SI Fig.
346 21A), overall consistent with increased mitochondrial efficiency. Second, we tested
347 oxygen consumption using Seahorse Cell Mito Stress test. NRXN1 KO resulted in
348 increased coupled and maximal respiration in iGLUTs (one-way ANOVA, p<0.05; Fig.
349 6F); increased mitochondrial reliance, in the absence of fused mitochondria with
350 elevated OXPHOS protein levels point to a possible metabolic overload due to reduced
351 mitochondrial efficiency (Fig. 6E). In contrast, ARID1B and ASH1L KOs did not show
352 significant changes in these Seahorse parameters (S| Fig. 21B—C). Taken together,
353 both ARID1B and NRXN1 KO neurons show evidence of increased mitochondrial
354 activity, ARID1B KO through enhanced fusion and elevated expression of OXPHOS
355 complexes, whereas NRXN1 KO by increasing OXPHOS activity to meet ATP
356 demands. As observed for neurogenesis in INPCs, single gene knockouts iGLUTs
357 confirmed convergent effects on mitochondrial biology, finding distinct but related
358 phenotypes between NDD genes.

359 Pharmacological targeting of convergent genes reversed behavioral phenotypes in
360 mutant zebrafish

361 By design, in vitro models substantially limit the complexity of the observed impact of
362 NDD genes, lacking higher circuit-level effects. Towards applying molecular
363 convergence in vitro to explore the mechanisms of phenotypic convergence in vivo, the
364 convergence of sets of NDD genes were next explored on the basis of shared
365 behavioral effects in zebrafish mutants (Fig. 7; Sl Tables 4-5). A comprehensive in vivo
366  high-throughput, automated behavioral analysis in larval zebrafish®® revealed clear
367 stratification of NDD genes based on basic arousal and sensory processing behaviors in
368 the developing vertebrate brain (Fig. 7A; Sl Fig. 22). Given that zebrafish brain gene
369 expression was significantly correlated with in vitro human-derived mature neurons (Fig.
370 7B; Sl Fig. 23), we asked whether behavioral stratification of NDD mutants in larval
371 zebrafish can be attributed to molecular convergence. For fifteen NDD genes for which
372  we have matched behavioral and molecular analyses, zebrafish stable mutant lines and
373 CRISPR FO mutants were clustered based on 24 sleep-wake and visual-startle
374 parameters, yielding four distinct clusters of genes: set 1 (nrxnla, mbd5, kdm5bab),
375 set2 (phfl2ab, skiab, chd2, smarcc2), set 3 (kdm6bab, kmt5b, kmt2cab), and set 4
376 (wacab, aridlb, phf2laab, chd8, ashll) (Fig. 7A; Sl Data 3). Gene-level convergence
377 between NDD genes in these sets was distinct, largely non-overlapping between cell-
378 types, and stronger in mature iGLUTs than mature iGABAs (Fig. 7C). Across behavioral
379 sets, rare ASD, SCZ, and ID LoF genes were enriched primarily in iGLUTSs, with all sets
380 converging on FMRP targets, highly intolerant CNVs, and ASD variants (Fig. 7D).
381 Phenotypes related to developmental delay, behavior, and motor function showed
382 unique enrichments by set, predominately in the iIGLUTs, whereas all sets were
383 enriched for seizure, hypertonia, and abnormal skeletal muscle morphology (Fig. 7E).
384 Candidate drugs predicted to reverse convergent genes (i.e., drugs with anticorrelatin%
385 transcriptomic signatures) in iGLUTs and iGABAs were prioritized from the 776 cMAP’
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386 drugs with matched clinical and experimental zebrafish data. Top enriched drugs
387 included antidepressants, antipsychotics, and statins (S| Data 2; Sl Fig. 24A). Whereas
388 some drugs were broadly predicted to reverse convergent signatures in all four NDD
389 gene sets (e.g., the antipsychotic perphenazine), others uniquely targeted specific sets
390 (e.g., naltrexone in set 2 iIGLUTSs, sirolimus in set 3 iIGLUTs, and valsartan in set 3
391 iIGABAs). Sets 3 and 4 showed the greatest number of cMAP enrichments. By
392 considering existing pharmacological effects of the top drugs on zebrafish behavior,®
393 some of the predicted drug reversers were shown to oppose effects on NDD related
394 phenotypes in zebrafish (S| Fig. 24B). Yet, the direction of effect predicted based on
395 transcriptomic convergence in human neurons did not always align with anti-correlating
396 Dbehavioral effects in zebrafish (e.g., moxifloxacin, perphenazine).

397 The top negatively enriched drugs for iGLUT convergence from cMAP and anti-
398 correlating drugs predicted from a pharmaco-behavioral screen of 376 drugs in larval
399 zebrafish were empirically tested in representative mutants from sets 2-4, which showed
400 the strongest cMAP enrichments (Fig. 7F). We determined whether the phenotypic
401 impact of mutant-x-drug combinations led to partial rescue, rescue, over-correction, or
402 exacerbation of the mutant phenotype across significant arousal and startle behavioral
403 parameters (Fig. 7G). Ten out of eleven drugs rescued at least one dysregulated
404  behavioral parameter (Fig. 7G, S| Fig. 24C-E). Paclitaxel robustly rescued behavioral
405 parameters in kdm6bab FO mutants and pravastatin partially and completely rescued
406 select parameters in chd2”*" mutants (Fig. 7Gi), including nighttime sleep bouts in
407 kdmébab FO mutants and responses to lights-ON stimuli in chd24”4” mutants (SI Fig.
408  24Fi-ii). Interestingly, we also observed over-correction of the phf2laab FO mutant
409 phenotype by fluvoxamine (Fig. 7Gii), such as increased sleep bouts that were
410 significantly decreased following fluvoxamine treatment (SI Fig. 24Fiii). Taken together,
411 in vivo behavioral profiling of NDD genes in zebrafish overlaps with in vitro-defined
412  convergent networks and identifies pharmacological suppressors of specific behavioral
413  phenotypes.

414
415 DISCUSSION

416 Towards empirically resolving the common pathways converged upon by NDD risk gene
417 effects, 29 NDD genes were targeted through a pooled CRISPR-KO strategy. The
418 molecular points of convergence across NDD risk genes varied between the cell types
419 of the brain, being greatest in mature glutamatergic neurons, where they were enriched
420 not just for pathways with well-established links to ASD etiology (e.g., gene regulation,
421  synaptic biology), but also mitochondrial function”. While downstream effects of
422  epigenetic NDD genes unexpectedly targeted mitochondrial genes, in fact, five percent
423 of NDD cases meet diagnostic criteria for classic mitochondrial disorders®.
424  Mitochondrial DNA mutations®*®?, haplotypes® and heteroplasmy®*®* have all been
425 associated with NDD. Not only do mitochondrial mutations cause synaptic and
426 behavioral phenotypes®, but multiple lines of human and animal evidence link NDDs to
427  mitochondrial deficits and oxidative stress'®®®®! with neuronal and/or behavioral
428 phenotypes reversed by antioxidant treatment®’®*°!. Conversely, knockout of NDD
429 genes in NPCs primarily alter neurogenesis®**"*° and developmental dynamics?®”*2. Put
430 simply, perturbations of the same NDD genes resulted in different convergent networks
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431  across cell types. This observation connects the pleiotropic nature of many NDD genes
432  and pathophysiological evidence linking multiple cell types and distinct cellular functions
433 to NDD.

434  What explains phenotypic convergence between NDD genes with distinct annotated
435 functions? The strength of convergence was most highly correlated to common clinical
436 associations, biological annotations, and co-expression patterns in the post-mortem
437  brain. Critically, these factors are inter-dependent. NDD risk genes most strongly
438 implicated in DD are enriched for expression in progenitor cells and immature neurons,
439 and those in ASD in mature neurons®. Indeed, cellular identities and biological
440 pathways are captured by patterns of gene co-expression®*®*. Transcriptomic and
441  epigenomic analyses of post-mortem brain from NDD cases likewise indicate
442  convergent molecular signatures®™ and subtypes of NDD®. Thus, we posit that shared
443  clinical and phenotypic effects of distinct NDD genes in fact reflect the patterns of co-
444 expression in the developing brain.

445  Personalized medicine seeks to tailor treatments to individual patients®’; for example,
446 cancer®® and monogenic disease®™ patients with specific genetic mutations receive
447  targeted treatments. Previous efforts to classify genes that predict NDD clinical features
448  or treatment response applied gene ontology*®" or differential neurodevelopmental KO
449  effects in vitro®® or in vivo®™. Here, we proposed to stratify risk genes based on
450 convergent molecular impacts in human neurons. Our overarching hypothesis, in doing
451 so, was that by resolving shared downstream gene targets between multiple NDD
452  genes, we might inform a precision medicine-based approach that did not necessarily
453 need to target risk genes one-at-a-time. Although convergent networks did not predict
454  behavioral stratification of zebrafish mutants, they did inform drug prediction, with ten
455  out of eleven drugs tested found to ameliorate at least one mutant behavioral phenotype
456 in vivo. This ability to reverse, rather than prevent, a behavioral phenotype, indicates
457 that targeting convergent networks in post-mitotic neurons may represent a clinically-
458 actionable neurodevelopmental window that persists through symptom onset. The
459 extent to which convergent downstream targets, whether associated with risk or
460 resilience, can be manipulated to prevent or ameliorate NDD signatures and
461 phenotypes warrants future investigation.

462  Although rare LoF NDD gene mutations tend to confer large effects in the individuals
463 who carry them, the small effects of common variants account for much of the genetic
464  risk for NDD at the population level>'®. The differences in expressivity and incomplete
465 penetrance of high effect-size rare variants is frequently attributed to diversity across
466  polygenic backgrounds'®; in vitro, NDD gene effects are indeed influenced by the
467 individual genomic context’’. In psychiatry, common genetic variants are more
468 associated with cross-disorder behavioral dimensions'® and rare variants with co-
469 occurring intellectual disability’®®>. Common risk variants interact with rare mutations to
470 determine individual-level liability in ASDY % schizophrenia®®” ' epilepsy'®,
471 Huntington's disease™® and more®!. Our results, highlighting that convergence
472  downstream of NDD gene effects are enriched for cross-disorder GWAS variants and
473 rare LoF genes, inform pleiotropy of genetic risk for psychiatric disorders. Moving
474 forward, we argue that it is critical that empirical functional genomic studies

475  systematically consider the impact of common and rare variants together, including
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476  screening the impact of LoF genes in hiPSC lines derived from donors with high and low
477  polygenic risk scores™*?. Intriguingly, even susceptibility to environmental risk factors for
478 NDD (e.g., valproic acid'*®) seems to be mediated by genetic background**. Deeper
479  phenotypic characterization of NDD effects across donors will be critical in determining
480 how complex genetic (or environmental) interactions shape cellular phenotypes, circuit
481 function, and human behavior in the clinic.

482 In the post-mortem brain, NDD gene signatures are not just associated with
483  downregulation of co-expression modules involving synaptic signalling''®, but also
484  upregulation of microglial and astrocyte gene modules®®*1>12° The extent to which
485 increased neuroimmune activity in NDD is a response to cellular or environmental
486 sources of inflammation, or indicative of a role for glia cells in risk is unclear; evidence
487 supports both possibilities. Consistent with a model of maternal immune activation
488  during neurodevelopment*?!, glucocorticoids and inflammatory cytokines perturb the
489  expression of psychiatric risk genes'?*'# altering the regulatory activity of psychiatric
490 risk loci*®*, and interfering with neuronal maturation in brain organoids'®. Yet, in vivo
491 analysis of NDD genes in zebrafish revealed global increases in microglia® and in vitro
492  screening in human microglia uncovered roles in endocytosis and uptake of synaptic
493 material*®®. Indeed, given the reciprocal relationships between neuronal activity and glial
494  function, epigenetic state, and gene expression'?"**, it seems probable that both cell-
495 autonomous and non-cell-autonomous effects underlie and/or exacerbate NDD gene
496 effects.

497 In summary, we demonstrate that convergent effects of NDD risk genes vary between
498 cell types. Our analyses suggest that clinical convergence between regulatory and
499 synaptic genes in the etiology of NDD is driven more so by co-expression patterns of
500 risk genes then direct regulation of epigenetic genes on synaptic targets. If the
501 convergence of multifold risk genes on a smaller number of shared molecular pathways
502 indeed explains how genetically heterogeneous mutations result in similar clinical
503 features, then genetic stratification of cases will inform novel therapeutic targets. We
504 predict that such individualized points of therapeutic intervention may be most effective
505 when targeting mature glutamatergic neurons, which not only harbor the strongest
506 convergent effects but also represent a therapeutic window that is actionable after
507 diagnosis.

508
509 MATERIALS AND METHODS

510 Generation of neural cells: Informed consent was obtained at the National Institute of
511 Mental Health, under the review of the Internal Review Board of the NIMH. hiPSC work
512 was reviewed by the Internal Review Board of the Icahn School of Medicine at Mount
513 Sinai as well as by the Embryonic Stem Cell Research Oversight Committee at the
514 Icahn School of Medicine at Mount Sinai and Yale University. Fibroblasts were
515 genotyped by IlluminaOmni 2.5 bead chip genotyping*****?, PsychChip**, and exome
516 sequencing™®; hiPSCs'® were validated by G-banded Kkaryotyping (Wicell
517 Cytogenetics) and genome stability monitored by Infinium Global Screening Array v3.0
518 (llumina). SNP genotype was inferred from all RNAseq data using the Sequenom
519 SURESelect Clinical Research Exome (CRE) and Sure Select V5 SNP lists to confirm
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520 that neuron identity matched donor. Control hiPSCs were cultured in StemFlex media
521 (Gibco, #A3349401) supplemented with Antibiotic-Antimycotic (Gibco, #15240062) on
522  Geltrex-coated plates (Gibco, #A1413302). Cells were passaged at 80-90% confluence
523 with 5mM EDTA (Life Technologies #15575-020) for 3 min at room temperature (RT).
524 EDTA was aspirated and cells dissociated in fresh StemFlex media. Media was
525 replaced every 48-72 hours for 4-7 days until the next passage.

526 Transient transcription factor overexpression from stable clonal hiPSCs was used to
527 induce control hiPSCs to iNPCs (here SNaPs)®®, iGLUTs®, and iGABAs. iNPCs are
528 rapidly generated by 48-hour induction with NGN2°®'34 iGLUTs are induced via
529 transient overexpression of NGN2, and are >95% glutamatergic neurons, robustly
530 express excitatory genes, and show spontaneous excitatory synaptic activity by three-
531 to-four weeks in vitro?®343>676913514L iGABA neurons are induced via transient
532 overexpression of ASCL1 and DLX2, and are >95% GABAergic neurons, robustly
533 express inhibitory genes, and show spontaneous inhibitory synaptic activity by five-to-
534  six weeks®*®70137142143 iNPCs, iGLUTs, and iGABAs express most NDD genes,
535 including all genes prioritized herein®’.

536 We transduced hiPSCs from two control donors (553-3, karyotypic XY; 3182-3,
537  karyotypic XX) with lentiviral pUBIQ-rtTA (Addgene #20342) and tetO-NGN2-eGFP-
538 NeoR (Addgene #99378) for INPCs and iGLUTs, or pUBIQ-rtTA (Addgene #20342),
539 tetO-ASCL1-PuroR (Addgene #97329), and tetO-DLX2-HygroR (Addgene #97330) for
540 iGABAs. Following transduction by spinfection at 1000g for 1 hour at 37°C, hiPSCs
541 were subjected to 48-hour antibiotic selection (Img/mL neomycin G418 (Thermo
542  #10131027), 0.5ug/mL puromycin (Thermo #A1113803), and/or 250ug/mL hygromycin
543 (Thermo, #10687010) and then clonalized by expansion from single colonies.
544  Ultimately, clonal and inducible INPC/iGLUT 3182-3-clone5 (XX) and iGABA 553-3-
545 clone34 (XY) hiPSCs were validated lentiviral genome integration by PCR, doxycycline
546 induced transcription factor expression by gPCR, and robust and consistent neuronal
547 induction confirmed by RNA-seq and immunocytochemistry for relevant cell type
548 markers. Analyses throughout reflect data from iGLUT 3182-3-clone5 (iNPC, d7 iGLUT
549 and d21 iGLUT) and iGABA 553-3-clone34 (d36 iGABA).

550 iNPCs: At DIVO, 3182-3-clone5 hiPSCs were dissociated and plated at 1.5 x 10° cells
551 per well onto Geltrex-coated 6-well plates (1:250 dilution coating) in SNaP Induction
552 Media (DIV0): DMEM/F12 with Glutamax (ThermoFisher, 11320082), Glucose (0.3%
553  v/v), N2 Supplement (1:100, ThermoFisher, 17502048), Doxycycline (2 pg/mL; Sigma-
554  Aldrich, D9891), LDN-193189 (200 nM; Stemgent, 04-0074), SB431542 (10 uM; Tocris,
555 1614), and XAV939 (2 uM; Stemgent, 04-00046) supplemented with 25 ng/mL Chroma |
556 ROCK2 Inhibitor. After 24 hours, DIV2, cells were fed with Selection Media: DMEM/F12
557  with Glutamax, Glucose (0.3% v/v), N2 Supplement (1:100), Doxycycline (2 pg/mL),
558 Geneticin (0.5 mg/mL; Thermofisher, 10131035), LDN-193189 (100 nM), SB431542 (5
559  uM), and XAV939 (1 uM). After 48 hours post induction (DIV2), SNaPs were dissociated
560 with Accutase for 10 minutes at 37°C, quenched in DMEM, pelleted at 800g for 5
561 minutes, and replated at 1.5x10° cells per well onto Geltrex-coated 6-well plates in
562 SNaP Selection Media supplemented with Geneticin (0.5 mg/mL). After 16-18 hr (DIV3),
563 medium was switched to SNaP maintenance Medium: DMEM/F12 with Glutamax,
564 Penn/Strep (1:100), MEM-NEAA (1:100; Life Technologies, 10370088), B27 minus
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565 Vitamin A (1:50; Life Technologies, 12587010), N2 Supplement (1:100; Life
566 Technologies, 17502048), recombinant human EGF (10 ng/mL; R&D Systems, 236-EG-
567 200), recombinant human basic FGF (10 ng/mL; Life Technologies, 13256029),
568 Geneticin (0.5 mg/mL), and Chroman | (25 ng/mL). Cells were fed every 48 hours with
569 SNaP maintenance medium lacking Chroman | and Geneticin. Cells were dissociated
570 and seeded weekly at a density of 1.25-1.5x10° cells per well onto Geltrex-coated 6-well
571 plates until NPC morphology was observed and persistent. Cells were expanded and
572  cryofrozen.

573 DIV7 iGLUTSs: 3182-3-clone5 iNPCs were thawed and seeded at 1x 10° cells per well
574  onto Geltrex-coated 12-well plates. NGN2 expression was induced with Doxycycline (2
575 ug/mL) for 24 hrs (DIVO) with antibiotic selection for 48 hrs (DIV1-3) in SNaP
576 maintenance medium. At DIV 4 SNaPs were dissociated with Accutase, switched into
577  Neuronal Medium: Brainphys (Stemcell, 05790), Glutamax (1:100), Sodium Pyruvate (1
578 mM), Anti-Anti (1:100), N2 (1:100), B27 without vitamin A (1:50), BDNF (20 ng/mL;
579 R&D, 248-BD-025), GDNF (20 ng/mL; R&D, 212), dibutyryl cAMP (500 pg/mL; Sigma,
580 D0627), L-ascorbic acid (200 puM; Sigma, A4403), Natural Mouse Laminin (1.2 ug/m;
581 Thermofisher, 23017015) and seeded in Geltrex-coated (1:120 dilution coating) 12-well
582 plates. Medium was changed every 24 hrs until DIV7 harvest.

583 D21 iGLUTs: hiPSCs were harvested in Accutase (Innovative Cell Technologies, AT-
584  104) for 5 minutes 37°C, dissociated into a single-cell suspension, quenched in DMEM,
585 pelleted via centrifugation for five minutes at 1000 rcf and resuspended in StemFlex
586 containing 25 ng/mL Chroma | ROCK2 Inhibitor and 2.0 yg/mL doxycycline (DIV0),
587 seeded 1 x 10° cells per well onto Geltrex-coated 6-well plates (1:250 dilution coating),
588 and incubated overnight at 37°C. The next day, DIV1, hiPSCs were subjected to 48-
589 hour antibiotic selection by medium replacement with Induction Media: DMEM/F12
590 (Thermofisher, 10565018), Glutamax (1:100; Thermofisher, 10565018), N-2 (1:100;
591 Thermofisher, 17502048), B27 without vitamin A (1:50; Thermofisher, 12587010),
592  Antibiotic-Antimycotic (1:100) with 1.0ug/mL doxycycline and 0.5mg/ml Geneticin. At
593 DIV3, cells were treated with 4.0uM cytosinep-D-arabinofuranoside hydrochloride (Ara-
594 C) and 1.0pg/mL doxycycline to arrest proliferation and eliminate non-neuronal cells in
595 the culture. At DIV4 immature neurons were dissociated with Accutase and 5 units/mL
506 DNAse | at 37°C for 7-10 min, quenched in DMEM, centrifuged for five minutes at 1,500
597 rpm and resuspended in 25 ng/mL Chroma | ROCK2 Inhibitor, 1.0 ug/mL doxycycline
508 and 4.0uM Ara-C and switched to Neuron Medium: Brainphys (Stemcell, 05790),
599 Glutamax (1:100), Sodium Pyruvate (1 mM), Anti-Anti (1:100), N2 (1:100), B27 without
600 vitamin A (1:50), BDNF (20 ng/mL; R&D, 248-BD-025), GDNF (20 ng/mL; R&D, 212),
601 dibutyryl cAMP (500 ug/mL; Sigma, D0627), L-ascorbic acid (200 uM; Sigma, A4403),
602  Natural Mouse Laminin (1.2 yg/mL; Thermofisher, 23017015) and seeded 7 x 10° cells
603 per well onto Geltrex-coated (1:60 dilution coating) 12-well plates and incubated
604 overnight at 37°C. The next day, DIV 6, Chroman | was removed from culture and Ara-C
605 lowered to 2.0 uM with a full Neuronal medium change. At DIV 7 a full Neuronal Medium
606 change was performed to remove doxycycline and Ara-C from culture, to allow for
607 antibiotic resistant genes silencing. From DIV7 onwards, half neuronal medium changes
608 were performed every 72 — 96 hrs until mature DIV 21 for harvest.
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609 DIV36 iGABAs: hiPSCs were harvested in Accutase (Innovative Cell Technologies, AT-
610 104) for 5 minutes 37°C, dissociated into a single-cell suspension, quenched in DMEM,
611 pelleted via centrifugation for five minutes at 1000 rcf and resuspended in StemFlex
612 containing 25 ng/mL Chroma | ROCK2 Inhibitor and 2.0 yg/mL doxycycline (DIVO0),
613 seeded 1.5-2x 10° cells per well onto Geltrex-coated 6-well plates (1:250 dilution
614 coating), and incubated overnight at 37°C. The next day, DIV1, hiPSCs were subjected
615 to 48-hour antibiotic selection by medium replacement with Induction Media: DMEM/F12
616 (Thermofisher, 10565018), Glutamax (1:100; Thermofisher, 10565018), N-2 (1:100;
617 Thermofisher, 17502048), B27 without vitamin A (1:50; Thermofisher, 12587010),
618  Antibiotic-Antimycotic (1:100) with 1.0pg/mL doxycycline, 1.0 yg/mL puromycin (Sigma,
619 P7255) and 250 ug/mL hygromycin (Sigma, 10687010). At DIV3, cells were treated with
620 4.0uM cytosineB-D-arabinofuranoside hydrochloride (Ara-C) and 1.0pg/mL doxycycline
621 to arrest proliferation and eliminate non-neuronal cells in the culture. At DIV5 immature
622 neurons were dissociated with Accutase and 5 units/mL DNAse | at 37°C for 7-10 min,
623 quenched in DMEM, centrifuged for five minutes at 1,500 rpm and resuspended in 25
624 ng/mL Chroma | ROCK2 Inhibitor, 1.0 pg/mL doxycycline and 4.0uM Ara-C and
625 switched to Neuron Medium: Brainphys (Stemcell, 05790), Glutamax (1:100), Sodium
626  Pyruvate (1 mM), Anti-Anti (1:100), N2 (1:100), B27 without vitamin A (1:50), BDNF (20
627 ng/mL; R&D, 248-BD-025), GDNF (20 ng/mL; R&D, 212), dibutyryl cAMP (500 ug/mL;
628 Sigma, D0627), L-ascorbic acid (200 uM; Sigma, A4403), Natural Mouse Laminin (1.2
629  pg/mL; Thermofisher, 23017015) and seeded 7 x 10° cells per well onto Geltrex-coated
630 (1:60 dilution coating) 12-well plates and incubated overnight at 37°C. The next day,
631 DIV 6, Chroman | was removed from culture and Ara-C lowered to 2.0 uM with a full
632 Neuronal medium change. At DIV 7 a full Neuronal Medium change was performed to
633 remove doxycycline and Ara-C from culture, to allow for antibiotic resistant genes
634 silencing. From DIV7 onwards, half neuronal medium changes were performed every
635 72-96 hrs until mature DIV 36 for harvest.

636 CRISPR knockout gRNA library design (Thermofisher) and validation

637 From the 102 highly penetrant loss-of-function (LoF) gene mutations associated with
638 ASD (58 gene expression regulation, 24 neuronal communication genes, 9 cytoskeletal
639 genes, and 11 multifunction genes)®, gene ontology and primary literature research
640 identified 26 epigenetic modifiers specifically involved in chromatin organization,
641 rearrangement, and modification. ASD gene expression (RNA-seq RPKM in iGLUTS)
642 was plotted against significance of ASD association (TADA FDR Values), to ensure
643 selection of genes with the highest expression and highest clinical association. Gene
644 expression was confirmed across development in the brain (BrainSpan***), and in bulk
645 and scRNA-seq. 21 epigenetic modifiers (ASH1L, ASXL3, ARID1B, CHD2, CHDS,
646 CREBBP, KDM5B, KDM6B, KMT2C, KMT5B, MBD5, MED13L, PHF12, PHF21A,
647 POGZ, PPP2R5D, SETD5, SIN3A, SKI, SMARCC2, WAC,) as well as two transcription
648 factors with putative roles as chromatin regulators (FOXP2, BCL11A) were selected.
649 Gene regulatory transcription factors, general transcription factors, and DNA replication
650 genes were excluded. Three extensively studied synaptic genes (NRXN1, SCN2A,
651 SHANKS) with roles in ASD were included as positive controls and three under-explored
652 genes for ASD role in neuronal communication genes (ANK3, DPYSL2, SLC6A1) were
653 also included in the library.
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654 Individual DNA from glycerol stocks of Invitrogen™ LentiArray™ Human CRISPR
655 Library gRNAs-PuroR (ThermoFisher, A31949) (3-4 individual gRNAs per gene, see Sl
656 Table 1) were prepared using GeneJET Plasmid Miniprep Kit (KO503) and pooled at an
657 equimolar ratio and a 5-fold ratio of scramble control gRNA plasmid. Library quality was
658 confirmed by restriction enzyme digest (10x Cutsart NEB), agarose gel purification
659 using QIAquick Gel Extraction Kit (#28706) to check library purity, followed by Mi-seq
660 for gRNA count distribution. Based on the abundance of gRNAs from Mis-seq, 4 NDD
661 gene targets were highly unlikely to be resolved in the final experiments — POGZ,
662 PP2R5D, SHANKS, SLC6A1 — and 3 with low abundance and less likely to be resolved
663 (SCNA2, FOXP2, DYPSL2).

664 Lentiviral Cas9v2-HygroR (Addgene, 98291) and pooled LentiArray-gRNA-PuroR
665 CRISPR-KO library were packaged as high-titer lentiviruses (Boston Children's Hospital
666 Viral Core) and experimentally titrated in each cell type. Highest viable MOI was used
667 for Cas9v2 and MOI < 0.5 for lentivirus gRNAs pool library.

668 CRISPR and gRNA delivery: Lentiviral Cas9v2-HygroR (Addgene #98291) transduction
669 of INPCs, day 4 (iGLUTSs), or day 5 (iGABAs) occurred via spinfection (one hour at
670 1,000 g) and followed by 72 hr hygromycin (250 ug /mL) (except for iGABAs, which
671 express inducible hygromycin resistance at this stage). Pooled Invitrogen™
672 LentiArray™ Human ¢gRNA-PuroR CRISPR-KO Library gRNAs (ThermoFisher
673 #A31949) (MOI 0.3-0.5) were transduced via spinfection three days prior to harvest
674 (e.g., d4 for D7 iGLUTSs, d18 for D21 iGLUTSs, d33 for d36 iGABA), with fresh medium
675 containing puromycin (1 ug/mL) added 16-24 hours post transduction of gRNAs. For
676 mature IGLUTs and iGABAs, as doxycycline was removed from medium at DIV7, and
677 by DIV18 neurons had lost transcription factor linked antibiotic resistance, at 24 hours
678 post-transduction (DIV19 or DIV34) puromycin (1 pg/mL) and hygromycin (250 pg /mL)
679 were added to media for 48-hr antibiotic selection prior to harvest.

680 Dissociation of different neural cell types to single cells for scRNAseq assays: Cells
681 were dissociated 72 hrs post gRNA library delivery for single cell sequencing, as iNPCs,
682 DIV7 and DIV21 iGLUTS, or DIV36 iGABAs as follows:

683 INPCs and DIV7 iGLUTs were dissociated in accutase for 5min @37°C, washed with
684 DMEM/10%FBS, centrifuged at 1,000xg for 5 min, gently resuspended, and counted.

685 DIV21 iGLUTs and DIV36 iGABAs were dissociated with papain. Papain was pre-
686 warmed (39°C) for 30 minutes in HBSS (ThermoFisher, 14025076), HEPES (10 mM,
687 pH 7.5) EDTA (0.5 mM), Papain (0.84 mg/mL; Worthington-Biochem, LS003127). The
688 cells were washed with PBS-EDTA (0.5 mM) and 300 uL of papain solution and 5 units
689 of DNAse | was added per well of 12-well plate and incubated at 37°C for 10-15
690 minutes, 125 rpm. Dissociation was quenched with DMEM-10%FBS. Detached neurons
691 were broken by gentle manual pipetting, pelleted at 600 g for 5 minutes, resuspended in
692 DMEM-10%FBS, filtered through a cell strainer and counted and submitted for 10X
693 sequencing.

694  Cells were loaded into 10X in four lanes per cell type, targeting 20,000 cells per lane for
695 a total of ~80,000 targeted cells per cell type. scRNA-seq was performed at Yale
696 Genomics Core with the 10X single cell 5' v2 HT with CRISPR barcode Kkit.
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697 Bulk RNAseg and CRISPR-editing efficiency evaluation: The H1 hESC line with iCas9
698 (NIHhESC-10-0043), generousI}/ provided by the Huangfu Lab, was used to assess the
699 editing efficiency of the gRNAs’"*** and conduct the mitochondrial pooled and arrayed
700 experiments. NPCs were generated using the dual SMAD inhibition approach per the
701 STEMdIiff SMADi Neural Induction Kit protocol (STEMCell Technologies, #08581). To
702 validate gene KO, NPCs were transduced with LV particles carrying four gRNAs per
703 target gene. After 48 h of selection with 1 pg/mL puromycin, Cas9 expression was
704  induced by adding dox at 2 pg/mL for 72 h. Following induction, cells were collected for
705 bulk RNA-seq. Total RNA was extracted using TRIzol™ reagent (Invitrogen). PolyA
706 RNA-seq library preparation and sequencing were conducted at the Yale Center for
707 Genomic Analysis (YCGA). Raw fastq files were quality-checked by FastQC, then
708 mapped to human genome reference hg38 (STAR!®). GRNA targeted-loci for each
709  sample were extracted (SAMtools'*’). Variation/small insertion/deletion at site of interest
710 and mutation efficiency at corresponding loci was called (CrispRVariants R package’*),
711  after excluding possible germline variants from Cas9-non-induced samples.

712  Proliferation and neurogenesis analysis: For proliferation analysis using Ki-67, NPCs
713  were seeded into 24-well plates and either treated with doxycycline (induced) to activate
714  Cas9 or left untreated (uninduced). The cells were cultured for 7 days, representin%
715 approximately three NPC generations. On day 7, cells were collected, and ~1 x 10
716 cells were stained with Ki-67-FITC (#130-117-803, Miltenyi Biotec) using the
717  Foxp3/Transcription Factor Staining Buffer Set (#00-5523, Invitrogen), following the
718 manufacturer’s protocol.

719 To evaluate the effects of gene KOs on neurogenesis and gliogenesis, transduced
720 NPC-iCas9 lines were spontaneously differentiated into human cortical neurons and
721 glial cells. Briefly, 1 x 10° cells were seeded in GelTrex-coated (1:5) 6-well plates and
722  cultured in complete neuronal media containing BrainPhys™ Neuronal Medium,
723  Glutamax (100X), Sodium Pyruvate (100 mM), B-27 (-RA) supplement (50X), N2
724  (100X), Anti-Anti (100X), Natural Mouse Laminin (1 mg/ml), dbocAMP (500 mg/ml), L-
725  Ascorbic Acid (200 uM), BDNF (20 pg/ml), and GDNF (20 pg/ml). Media was refreshed
726 every three days. On day 25, cells were collected and stained for FACS analysis using
727  surface markers previously described*® to differentiate NPCs (CD184+/CD44-/CD24+),
728 neurons (CD184-/CD44-/CD24+), and glia (CD184+/CD44+). CD271, a marker for
729 mesenchymal stem cells, was excluded from the original panel as NPCs were pre-
730 purified via FACS using CD133+/CD184+/CD271- markers before differentiation. A
731 minimum of 50,000 cells per gate were acquired using a BD LSRFortessa™ Cell
732  Analyzer at the Yale Flow Cytometry Core. Flow cytometry data were analyzed using
733  FlowJo™ v10.10 Software (BD Life Sciences).

734  All statistical analyses for flow cytometry assessment were conducted using GraphPad
735  Prism version 9.5.1 (528) for macOS (GraphPad Software, San Diego, CA). Each well
736 was treated as an independent replicate. Differences between knockout (induced) and
737 control (uninduced) groups were assessed by comparing the mean fluorescence
738 intensity (MFI) of the target fluorophore using an unpaired t-test with Welch correction to
739 account for individual group variance. Multiple comparisons were corrected using the
740 False Discovery Rate (FDR) method with a two-stage step-up procedure (Benjamini,
741  Krieger, and Yekutieli) at an FDR threshold of 5%.
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742 FACS Analysis of Mitochondrial Membrane Potential and CRISPR Screen Read-out via
743  Amplicon Sequencing

744  For our mitochondrial assays we used a nearly identical library (same backbone, guide
745 density, and control set) screened exclusively in the H1 inducible Cas9 (H1-iCas9)
746  hPSC line. Mitochondrial inner membrane potential (Aym) was measured in H1-iCas9,
747  following differentiation to NPCs or iGlut on day 21. Cells were harvested, counted, and
748 aliquoted at 1 x 1076 cells per sample. JC-1 dye (MitoProbe™ JC-1 Assay Kit;
749 Invitrogen #M34152) was dissolved in DMSO at a stock concentration of 200 uM and
750 added to each sample to achieve a final concentration of 2 uM, then incubated for 30
751 min at 37 °C in 5% CO,. A 50 uM CCCP control was included to induce complete
752 mitochondrial depolarization. After staining, cells were washed once in their respective
753 culture medium, resuspended in FACS buffer (Invitrogen eBioscience Staining Buffer
754  #00422226), and analyzed immediately on a Thermo Fisher “Bigfoot” spectral cell sorter
755 using 488 nm excitation with 525/50 nm (FITC) and 585/40 nm (PE) emission filters.
756 Debris and doublets were excluded by forward/side scatter gating, and CCCP-treated
757 samples were used to define FITC and PE gates. Approximately 1 x 10"6 events per
758 sample were recorded. Cells were then pelleted (300 x g, 5 min) and genomic DNA
759  extracted using the Qiagen DNeasy Blood & Tissue Kit (#69504).

760 UMI-tagged amplicon libraries were generated in three PCR steps. In PCR-1, genomic
761 DNA was amplified with Platinum™ |l Hot-Start PCR Master Mix (Invitrogen,

762  #14000012) and UMI-containing primers (Forward: 5'-
763 ACACTCTTTCCCTACACGACGCTCTTCCGATCTACGTGACGTAGAAAGTAATAATTT
764 CTTGGGT-3; Reverse: 5'-

765 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTN(25)NNNNNNNNNACTCGGTGC
766 CACTTTTTCAA-3') under the following conditions: 94 °C for 2 min; 4—6 cycles of 98 °C
767 for5s, 60 °C for 15 s, 60 °C for 30 s. The resulting ~180 bp products were purified and
768 concentrated using the Zymo DNA Clean & Concentrator-5 kit (#D4013) and eluted in
769 10 pL nuclease-free water (Thermo Fisher #AM9938). In PCR-2, purified product was
770 amplified with adaptor primers (Forward: 5'-
771 ACACTCTTTCCCTACACGACGCTCTTCCGATCT-3 Reverse: 5'-
772 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3') for 22 cycles under identical
773 cycling conditions in a ~20 pL reaction. A seven-cycle indexing PCR (PCR-3) was
774  performed by the sequencing facility Yale Center for Genome Analysis (YCGA) prior to
775 sequencing. Final libraries were sequenced on an Illumina NovaSeq platform (paired-
776  end 150 bp, 5 million reads per sample).

777  Flanking sequences on both sides of each gRNA were trimmed using BBDuk, and
778 reads were then mapped to gRNA reference sequences and counted using
779  MAGeCK'™. Raw counts for each gRNA were normalized to counts of scrambled
780 gRNA. Abundance of each target gene was then calculated by summing of all gRNAs
781 targeting that gene. Log2-transformed fold changes of gRNA-targets abundance were
782 compared between PE-high samples and FITC-high samples.

783 Immunostaining. Cells were fixed with fixative solution (4 % sucrose and 4 %
784  paraformaldehyde prepared in Dulbecco’s Phosphate Buffered Saline (DPBS)) for 10
785 min at room temperature (RT). Following this, cells were washed twice with DPBS and
786 incubated in blocking solution (2% normal donkey serum prepared in DPBS)
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787 supplemented with 0.1% Triton for two hours at RT. After this, cells were incubated
788 overnight at 4 °C in the primary antibody solution prepared in blocking solution. Cells
789 were washed three times with DPBS, incubated at RT in secondary antibody prepared
790 in blocking solution, then washed three times with DPBS. In the second wash, cells
791 were incubated in DBPS supplemented DAPI (Sigma D9542,1 ug/mL) for 2 min at RT.

Antibody Species Vendor Catalog # Dilution
PA1-10005, 1:1000
anti-MAP2  chicken Invitrogen, Abcam ab5392
anti-Nestin rabbit Millipore ABDG69 1:200
anti-vGLUT1 rabbit Synaptic systems 135-303 1:200
anti-GABA  rabbit Sigma-Aldrich A2052 1:200
TOMM20 mouse Santa Cruz Biotechnology sc-17764 1:200
Total n/a Abcam AB-317270 1:500
OXPHOS
anti-mouse donkey Jackson ImmunoResearch  715-605-151 1:500
anti-rabbit = donkey ' Jackson ImmunoResearch  711-545-152 1:500
715-605-150, 1:500

anti-chicken donkey Jackson ImmunoResearch  703-545-155

792  Fixed cultures were acquired using a DragonFly Confocal Dual Spinning Disk confocal,
793 at 60x magnification and 1.4 numerical aperture. All images were acquired with a fixed
794  laser intensity and exposure time across experimental conditions. Four images were
795 acquired per well, and 4-10 wells were acquired per experimental condition. Each well
796 represents a biological replicate and statistical datapoint. Therefore, each replicate
797 represents hundreds of um? of neuronal area and tens of thousands of individual
798  mitochondria.

799  Mitochondria morphology features were determined using the Surface module of Imaris
800 10.2. Likewise, OXPHOS complex features were determined using the surface module
801 of Imaris 10.2. The Volume, Area and Sphericity features of the Surface modules were
802 selected for analysis. Mitochondria networking features were determined using
803 published, open-source methods'®. A one-way ANOVA with a Sidak’s multiple
804 comparisons test was performed on data on GraphPad Prism 10.

805 To validate robustness and sensitivity of the microscopy assay, we treated D14 iGluts
806 overnight with carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone/FCCP (Sigma-
807  Aldrich, SML2959) at 5 uM, 10 uM and 50 uM doses. Following this, we conducted the
808 immunostaining, mitochondrial structural analysis and statistical analyses outlined
809 above.
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810 Seahorse XF Mito  Stress  Test: Day@5 iGLUTs were plated at
811 1.65 1x[ 11001 cells/well 1in XF24 microplates (Agilent, 100777-004) and cultured to
812 day[J21. One hour prior to measurement, growth medium was removed, leaving 50CuL
813 per well, and replaced with 1 ImL of pre@warmed Seahorse XF DMEM (Agilent,
814 103575-100) supplemented with 25 ImM glucose (Agilent, 103577-100) and 0.23 'mM
815 pyruvate (Agilent, 103578-100). Plates were equilibrated for 1 |h at 37(1°C in a
816 nonBCO, incubator. Immediately before the assay, the medium was replaced with
817 5000JuL of fresh assay buffer. OxygenBiconsumption rate (OCR) was recorded on a
818 Seahorse JXFe24 Analyzer (Agilent) using the standard Mito Stress Test. The program
819 consisted of three sequential injections—1.50uM oligomycin (Sigma-Aldrich, 75351),
820 1.57uM carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone/FCCP (Sigma-Aldrich,
821 C2920), and a mix of 0.5uM rotenone (Sigma-Aldrich, R8875)1+10.5MuM
822 antimycin JA (Sigma-Aldrich, A8674)—separated by four measurement phases
823 (baseline plus post@injection 1-3). Each phase comprised three cycles of 3 min
824 mixing, 2 Tmin waiting, and 37 'min measurement. After the assay, cells were lysed
825 using M-PER™ Mammalian Protein Extraction Reagent (ThermoFisher, 78501)
826 supplemented with cOmplete™ Mini Protease Inhibitor Cocktail (Sigma-Aldrich,
827 11836153001) and PhosSTOP™ (Sigma-Aldrich, 4906845001), according to the
828 manufacturer’s instructions. Total protein concentrations were determined using the
829 Pierce™ Dilution-Free™ Rapid Gold BCA Protein Assay (ThermoFisher, A55860), and
830 OCR values were normalized to total protein content.

831 CRISPR organoid assays: H1-hESC-iCas9 cells were transduced with a pooled gRNA
832 library containing four gRNAs per target gene, with 20% of the library comprising non-
833 targeting gRNAs. Following selection with 1 pug/mL puromycin, the established cell line
834 was used to generate cortical organoids following a well-established protocol*** with
835 slight modifications. In brief, embryoid bodies (EBs) were generated using AggreWell
836 plates (Stemcell Technologies) according to the manufacturer’s instructions. Once
837 formed, EBs were transferred to ultralow-attachment 10 cm plates (Corning) for further
838 culture. Patterning was initiated using StemFlex base media (A3349401, Gibco)
839 supplemented with 100 nM LDN193189 (x) and 10 uM SB431542 (x). The media was
840 refreshed daily. Organoids were cultured on an orbital shaker at 53 rpm for the duration
841 of the protocol. On Day 6, the patterning media was replaced with growth media;
842 Neurobasal A medium (10888022, Gibco), 1x GlutaMAX (35050061, Gibco), and 1x
843 B27 (12587010, Gibco), supplemented with 20 ng/mL FGF (PeproTech) and 20 ng/mL
844 EGF (PeproTech). On Day 14, Cas9 expression was induced by treating the organoids
845  with 2 pg/mL doxycycline (Sigma-Aldrich) for 72 hours. From Day 25, FGF and EGF
846 were replaced with 20 ng/mL BDNF (PeproTech) and 20 ng/mL NT-3 (PeproTech).
847 Media changes were performed every other day. Starting from Day 42, organoids were
848 maintained in growth media without additional supplements. Media was refreshed 2—-3
849 times per week.

850 The organoids were maintained in culture for ~80 days, at which point five organoids
851 from three biological replicates were collected for DNA extraction using the DNeasy
852 Blood & Tissue Kit (#69504, Qiagen). Extracted DNA was subjected to PCR amplicon
853 sequencing with unique molecular identifiers (UMIs) using a three-step PCR protocol. In
854 the first step (PCR-1), UMI-containing primers (5-
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855 ACACTCTTTCCCTACACGACGCTCTTCCGATCTACGTGACGTAGAAAGTAATAATTT
856 CTTGGGT-3) and (5-
857 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTN(25252525)NNNNNNNNNACTC
858 GGTGCCACTTTTTCAA-3') were used for 4 cycles. PCR-2 utilized adaptor primers (5'-
859 ACACTCTTTCCCTACACGACGCTCTTCCGATCT-3) and (5-
860 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3) for 22 cycles. PCR-3,
861 performed by the sequencing facility, added sample-specific indexing in 7 additional
862 cycles. The prepared libraries were sequenced on a NovaSeq platform with paired-end
863 150 bp reads, generating 10 million reads per sample at the Yale Center for Genomic
864  Analysis (YCGA).

865 Fragments amplified by PCR were sequenced on NovaSeq 6000 sequencer pair end at
866  150bp with ~10 million reads per sample. Flanking sequence on both side of gRNAs
867 were trimmed using BBDuk, and reads were then mapped to gRNA reference
868 sequences and counted using MAGeCK package™®. Raw counts for each gRNA were
869 normalized to counts of scrambled gRNA. Abundance of each gRNA-target genes were
870 then calculated by sum of all gRNAs targeting that gene after excluding gRNAs with low
871 KO-efficiency (<5%). Average Log2-transformed fold change of gRNA-targets
872 abundance were compared between doxycycline-induced versus uninduced samples on
873 day 77 samples.

874  Analysis of single-cell CRISPRko screens in NPCs, DIV 7, DIV 21 iGLUTs and DIV 36
875 IGABAs. mRNA sequencing reads were mapped to the GRCh38 reference genome
876 using the Cellranger Software. To generate count matrices for GDO (gRNA) libraries,
877 the kallisto indexing and tag extraction (kite) workflow were used. Count matrices were
878 used as input into the R/Seurat package®? to perform downstream analyses, including
879  QC, normalization, cell clustering, GDO demultiplexing, and covariate regression’**°2,

880 Normalization and downstream analysis of RNA data were performed using the Seurat
881 R package (v.5.1.0), which enables the integrated processing of multimodal single-cell
882 datasets. CRISPR-screen experiments in each cell-type were processed independently.
883  Within each cell-type, ~100-80,000 cells were sequenced across 4 lanes. gRNA and
884 RNA UMI feature counts were filtered removing the top and bottom decile of cells based
885 on distribution of counts in each cell-type. The percentage of all the counts belonging to
886 the mitochondrial, ribosomal, and hemoglobin genes calculated using
887  Seurat::PercentageFeatureSet were filtered with cell-type specific thresholds, given the
888 relatively high proportion of mitochondrial genes expressed in neurons. Mitochondrial,
889 ribosomal, and hemoglobin genes as well as MALAT1 were removed
890 ("RP[SL][[:digit:]][*RPLPI[:digit:]]|"RPSA|"HB[AEGQ][[:digit:]]|"HB[ABDMQ]|*"MT-

891 |*MALAT1S$). Lowly expressed genes, those that had at fewer than 2 read counts in
892 90% of samples were also removed. Hashtag and guide-tag raw counts were
893 normalized using centered log ratio transformation, where counts were divided by the
894 geometric mean of the corresponding tag across cells and log-transformed. gRNA
895 demultiplexing was performed using the Seurat::MULTIseqDemux function for each
896 lane individually and then counts were merged across lanes (S| Fig. 3B). In NPCs,
897 94,363 cells were retained after filtering and removal of negatively assigned cells with
898 62,7% classified as doublets and 37.3% classified as singlets. In DIV7 and DIV21
899 IGLUTSs, 57,685 and 31,473 cell were retained with 34% and 9.8% doublets and 66%
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900 and 90.2% singlets respectively. In DIV35 iIGABAs, 64,462 cells were retained with
901 48.3% doublets and 51.7% singlets. For all downstream analysis only cells with “singlet”
902 gRNA classification were used (26,549-38,097 cells per experiment) (Sl Fig. 4C-E).
903 Number of singlet cells by gRNA per cell-type shown in Sl Fig. 6AB.

904 Cell-type specific _population _heterogeneity correction. Gene-expression based
905 clustering was largely driven by cellular heterogeneity, cell quality, and sequencing lane
906 effects. gRNA identity was not correlated with these covariates (SI. Fig. 7), so we
907 adjusted for transcriptomic variability arising from cellular heterogeneity by applying
908 maturity and cellular subtype scores across both perturbed and non-perturbed cells.
909 First, variation related to cell-cycle phase of individual cells was accounted for by
910 assigning cell cycle scores using Seurat::CellCycleScoring which uses a list of cell cycle
911 markers™*to segregate by markers of G2/M phase and markers of S phase. Second, to
912 address variance due to cellular heterogeneity within a single experiment, we adapted
913 the method applied by Seurat::CellCycleScoring to calculate a “Maturity. Score” and
914 "Subtype.Score” for each cell based on cellular subtype (more variable in mature
915 GABAergic neurons) and developmental time-point specific markers (mora variable in
916 NPCs and immature iGLUTS) (SI Table 2-3). Cells with outlier maturity scores and
917 subtype scores were removed from downstream analyses. RNA UMI count data were
918 then normalized, log-transformed and the percent mitochondrial, hemoglobulin, and
919 ribosomal genes (markers of cell quality), lane, cell cycle scores (Phase), and maturity
920 scores regressed out using Seurat::SCTransform. The scaled residuals of this model
921 represent a ‘corrected’ expression matrix, that was used for all downstream analyses.

922  Although demultiplexing assigned the correct guide identity to each cell, to remove
923 “false positives” whereby gRNAs were assigned but gene expression was unperturbed,
924  the transcriptomes of gRNA clusters were evaluated relative to scramble gRNAs,
925 ensuring that cells assigned to a guide-tag identity class demonstrated successful
926 perturbation of the targeted NDD gene. To remove subsequent “false negatives”,
927 whereby a successful CRISPR-KO may not result in significant down-regulation of the
928 targeted gene’* yet still achieve an overall transcriptomic profile distinct from scramble
929 populations, we performed ‘weighted-nearest neighbor’ (WNN) analysis to assign
930 clusters based on both guide-tag identity class and gene expression’. To identify
931 successfully perturbed cells, the transcriptomes of gRNA clusters were compared to
932 Scramble-gRNA control clusters by differential gene expression analysis (Wilcoxon
933 Rank Sum) comparing each cluster to all other clusters. Non-targeting WNN clusters
934 and KO gRNA WNN clusters were filtered by setting a quantile base average
935 expression threshold of target genes based on the distribution of target gene average
936 expression across all other clusters. Clusters were the collapsed by gRNA identity;
937 gRNAs with less than 75 cells were removed from analysis. These cells were then used
938 for downstream differential gene-expression analyses™”. For each cell-type individually,
939 single-cell gene expression matrices were PseudoBulked using
940 scuttle::aggregateAcrossCells function across lanes (4 pseudo-bulk samples per
941 perturbation), lowly-expressed genes were removed (leaving 18-22,000 genes) followed
942 by edgeR/limma differential gene expression analysis. Concordance between Wilcox-
943 rank sum differential gene expression analysis using single-cell data and limma:voom
944  using PseudoBulked data was assessed for each gene.
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945  Altogether, Wilcoxon Rank Sum was applied to measure NDD gene knockdown from
946 single-cell DEG analysis. Given the concordance between the DEG results using single-
947  cell Wilcox and pseudo-bulk limma:voom (Sl Fig. 6C), all main figure and all Sl figures
948 thereafter applied pseudobulked data analyzed with limma.

949 To validate whether the high correlation within cell type was due to exactly the same
950 scramble control cells, we re-performed DEGs using random selection of subset of
951 scramble cells for each cell type (Sl Fig. 8). Briefly, for each gene, 50% (if number of
952 pseudobulked sample cells > 50) or 80% (if number of pseudobulked sample cells < 50)
953 of scramble cells were randomly selected using sample function from R. DEGs were
954 then performed as described above using limma/dreamlet package between KOs and
955 subset of scrambles different among genes. The process was repeated three times to
956 avoid random selection bias and median of each gene logFC was used as the final
957 logFC. Average overlap of random scramble cells across different genes is
958 approximately 50%.

959 Meta-analysis of gene expression across perturbations’®. Across NDD KOs, DEGs were
960 meta-analyzed (METAL™®), and “convergent” genes were defined as those with
961 significant and shared direction of effect across all NDD gene perturbations and with
962 non-significant heterogeneity (FDR adjusted pmeta<0.05, Cochran’s heterogeneity Q-test
963 puet > 0.05). To test convergence between NDD-KOs, meta-analyses were performed
964 across all possible combinations of 2-5 KO perturbations with and without sub-setting
965 for those shared across cell types (>40,000 combinations across cell-types) (S| Data 1).

966 Bayesian Bi-clustering to identify Convergent Networks”. Across NDD KOs, convergent
967 networks were generated by Bayesian bi-clustering™’ and undirected gene co-
968 expression network reconstruction from the NDD KOs. Not constrained by statistical
969 cut-offs, and able to capture the effect of more lowly expressed genes, convergent
970 networks may be a more sensitive measure of convergence. Networks were built based
971 on bi-clustering (BicMix)'**® using log2CPM expression data from all the replicates
972 across each of the NDD gene sets and Scramble gRNA jointly. We performed 40 runs
973 of BicMix on these data and the output from iteration 400 of the variational Expectation-
974 Maximization algorithm was used. Target Specific Network reconstruction™® was
975 performed to identify convergent networks across all possible combinations of the 9
976 NDD gene KO perturbations shared across cell-types (n=502 combinations/cell-type)
977 and randomly sampled combinations of 2-21 KO perturbations without sub-setting for
978 those shared across cell types (n=1400-2300 combinations).

979 Influence of Functional Similarity on Convergence Degree. To test the influence of
980 functional similarity and brain co-expression between KOs on convergence and
981 compare the degree of convergence between the same KOs in different cell-types we
982 established two methods for defining and measuring convergence. First, gene-level
983 convergence using meta-analysis as described above, with the strength of convergence
984 for each set defined as ratio of convergent genes to the average number of DEGs.

nConvergent Genes
mean(}Y nDEGs)

985 Second, network-level convergence based on undirected network reconstruction from
986 Bayesian bi-clustering as described above. Bi-clustering identifies co-expressed genes

gene level convergence =
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987 shared across the downstream transcriptomic impacts of any given set of KO
988 perturbations, thus, the resolved networks are the transcriptomic similarities between
989 distinct perturbations (convergence). We calculated the “degree of convergence” for
990 each network based on previously described metric”. Briefly, convergence scores are
991 based on (1) network connectivity as defined by the sum of the clustering coefficient
992 (Cp) and the difference in average length path (Lp) from the maximum average length
993 path resolved across all possible sets [(max)Lp-Lp] and (2) similarity of network genes
994 based on biological pathway membership scored by taking the sum of the mean
995 semantic similarity scores '*° between all genes in the network and (3) minimum
996 percent duplication rate across 40 runs. Duplication thresholds are network-dependent
997 and a metric of confidence in the connections.

network level convergence

N
= Cp + [(Lp) — Lp] + mean (2 MFsemsim + BPsemsim + CCsemsim)
1

+ nDuplication runs/nTotal Runs

998 Functionally similarity scores across the NDD KO genes represented in each set was
999 calculated using (1) Gene Ontology Semantic Similarity Scores: the average semantic
1000 similarity score based on Gene Ontology pathway membership within Biological
1001 Pathway (BP), Cellular Component (CC), and Molecular Function (MF) between NDD
1002 genes in a set'® and (2) brain expression correlation (BEC) score: based on the
1003 strength of the correlation in NDD gene expression in the CMC (n=991 after QC) post-
1004 mortem dorsa-lateral pre-frontal cortex (DLPFC) gene expression data,.

1005 We performed Pearson’s correlation analysis (Holm’s adjusted P) on similarity scores
1006 and the degree of network convergence to determine the influence of the similarity of
1007 the initial KO genes on downstream convergence. We compared the average strength
1008 of convergence across cell-types using a parametric Welch’'s F-test and pairwise
1009 Games-Howell test.

1010 Enrichment analysis of convergence for risk loci using MAGMA. We intersected cross
1011 cell-type perturbation specific and cross perturbation cell-type-specific gene-level
1012 convergence with genetic risk of psychiatric and neurological disorders/traits [attention-
1013  deficit/hyperactivity disorder (ADHD)'!, anorexia nervosa (AN)'? autism spectrum
1014  disorder (ASD)?, alcohol dependence (AUD)*3, bipolar disorder (BIP)'***, cannabis use
1015 disorder (CUD)'*°, major depressive disorder (MDD)*®, obsessive-compulsive disorder
1016  (OCD)'’, post-traumatic stress disorder (PTSD)*®®, and schizophrenia (SCZ)'*®°, Cross
1017 Disorder (CxD)'"°, Alzheimer disease (AD)'"*, Parkinson disease (PD)'", amyotrophic
1018 lateral sclerosis gALS)m, Tourette’s'”®, migraine'’, chronic pain'’®, and neurotic
1019 personality traits’’’ GWAS summary statistics] using multi-marker analysis of genomic
1020  annotation (MAGMA)®. SNPs were mapped to genes based on the corresponding build
1021 files for each GWAS summary dataset using the default method, snp-wiseJ="_mean (a
1022 test of the mean SNP association). A competitive gene set analysis was then used to
1023 test enrichment in genetic risk for a disorder across gene sets with an FDR<0.05.

1024  To test if observed effects were due to the differential size of the gene sets for each
1025 GWAS or owing to the fact that DEGs are more likely to include neural genes, which are
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1026 more likely to be associated with brain disorder, GWAS sets were filtered for genes
1027 expressed in each cell-type prior to enrichment testing and enrichment tests were
1028 performed after randomly down-sampling GWAS Gene Sets to 100, 250, 500, 750, and
1029 1000 genes (Sl Fig. 9), performed ten times within each set size (i.e., 50 tests for each
1030 GWAS).”

1031 Over-representation_analysis, functional enrichment annotation, and biological theme
1032 comparison of convergence. To identify pathway enrichments unique to individual KOs,
1033 convergent genes, and convergent networks based on zebrafish behavioral subgroups
1034 (see zebrafish methods below), we performed biological theme comparison and GSEA
1035 using ClusterProfiler'’®. Using FUMAGWAS: GENE2FUNC, the 102 ASD genes were
1036 functionally annotated and overrepresentation gene-set analysis for each convergent
1037 gene set was performed'®. Using WebGestalt (WEB-based Gene SeT Analysis
1038  Toolkit)'®°, over-representation analysis (ORA) was performed on all convergent gene
1039 sets against publicly available genset lists GeneOntology, KEGG, DisGenNet, Human
1040 Phenotype Ontology, and a curated gene list of rare-variant targets associated with
1041 ASD,SCZ, and ID®".

1042 Random forest prediction model of convergence strength. To determine how well
1043 functional similarity between KOs can predict gene-level and network-level convergence
1044 we trained a random forest model”® (randomForest package in R) for each type of
1045 convergence, evaluated the model in an independent internal dataset, and validated the
1046 model in an external CRISPRa activation screen’®. Data from randomly tested gene
1047 combinations (2-5 KO sets at the gene level and 2-10 KO sets at the network level)
1048 tested across cell-types were randomly down-sampled into a training set (70%) and
1049 testing set (30%) — all with comparable proportions of data by cell-type. The random
1050 forest model was trained with bootstrap aggregation using C.C, M.F, B.P semantic
1051 similarity scores, brain expression correlation, number of genes, and cell-type as
1052 predictors. The Random Forest linear regression model was evaluated in the testing
1053 data by comparing actual values to predicted values, estimating the root mean squared
1054 error and performing Pearson’s correlations. Predictor models were validated using an
1055 external dataset of 10 CRISPR-activation perturbations of SCZ common variant target
1056 genes with multifunctional annotations broadly grouped as signaling/cell communication
1057 (CALN1, NAGA, FES, CLCN3, PLCL1) and epigenetic/regulatory (SF3B1, TMEM219,
1058 UBE2Q2L, ZNF804A, ZNF823)", and assessed based the root mean squared error and
1059 Pearson’s correlation between actual and predicted convergence strength.

1060 LNCTP in silico model

1061 To investigate the perturbation of ASD g7enes in silico, we adapt the Linear Network of
1062 Cell-Type Phenotypes (LNCTP) model® to predict the effects of changes in gene
1063 expression in the prefrontal cortex, across neuronal and non-neuronal cell-types. The
1064 LNCTP is defined as an energy model representing the joint distribution of a collection
1065 of phenotypes of interest conditioned on the genotype. Since we are interested
1066 primarily in the effects of gene expression perturbations on the expression of other
1067 genes, we use only the imputation segment of the LNCTP model (excluding the
1068 prediction of higher-order phenotypes and cell-cell interactions).

1069 The probabilistic model for the imputation-based LNCTP may be expressed as:
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pivere (Xi|z;) = exp(—E(x;]z;))
1070

E(xilzi) = ng)~]xi0- + Z xﬂ)gb(zi; ﬁg) + Z(xi1;~]cxic- + xz;bc)
g c
2
+ AZ(xiOg - f(Zi)Txi,l...C,g) .
)

1071 (1)

1072 Here, z; represents the genotype of individual i, and x; represents bulk and cell-type
1073  specific gene expression from individual i. We further index the gene expression by C
1074 cell-types (which are here: Excitatory Neurons, Inhibitory Neurons, Oligodendrocytes,
1075  Astrocytes, Oligodendrocyte Precursor Cells, Endothelial Cells and Microglia), which will
1076  be denoted x,, x,, ... x;, and we will use x, to denote the bulk expression. The variables
1077  f, . represent the estimated cell-fractions in the bulk observations (predicted from the
1078 genotype, z). The parameters of the model are 8 ={f, ;,Jo.c} and A1 acts as a
1079 hyperparameter. The parameters 5, , and J, . reflect the gene specific expression
1080 biases and pairwise interactions respectively, whose non-zero elements are determined
1081 by the sparsity structure arising from eQTLs and Gene Regulatory Network (GRN)
1082 linkages respectively; the non-zero elements of /. occur only between genes connected
1083 in the GRN of cell-type c.

1084  Further details on the training of the model in Eq. (1) can be found in’®; here, we outline
1085 the specific differences in the training for the purposes of our analysis. As in’®, we use
1086 genetics and expression data from post-mortem PFC samples from the PsychENCODE
1087 consortium. However, we group together samples from all higher-order phenotypes
1088  during training (control (CTR), schizophrenia (SCZ), bipolar disorder (BPD) and autism
1089 spectrum disorder (ASD)), and split the data into three partitions of size 760, 100 and
1090 100 for training, validation and testing respectively (each including samples from all
1091 higher-order phenotypes). Further, we include all 29 CRISPR targeted genes, 102 NDD
1092 genes®™, Transcription Factors’® and neuropsychiatric TWAS-selected genes’®, and the
1093 top 100 up and down regulated CRISPR convergent genes in iGLUT and iIGABA cells
1094 (400 genes in total), in the model, generating 1325 genes in total. The eQTL and GRN
1095 linkages from PsychENCODE are then restricted to this subset of genes.

1096 LNCTP Simulating Perturbations

1097 To perform perturbations in this model corresponding to the 29 CRISPR targeted genes,
1098 we use the following perturbation-conditioned version of the LNCTP model:

Zi:xi,c*,g* = {k, _k})

Prncre (xi,ﬁ(c*,g*) Ziy Xijc* g* = {k' _k}) = eXp(xi,ﬁ(c*,g*)

1099
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i Xict gt = {k, k})
= x}.Jx;0. + Z xiogb(zi, By) + Z(xw JeXic. + xE.bo)

+ AZ(xIOg f(Zl) Xi1.. Cg) + K(S(ch*g* - {k k})

1100 (2)

1101  where (c*, g*) denotes the perturbed gene and cell type, whose expression is set to k or
1102 -k, 6(a) is a delta function whose value is O if expression a is true, and 1 otherwise,
1103 and K is an arbitrarily large value. We perturb each of the CRISPR targeted genes in
1104  turn in the bulk network, using k = 2, and applying a negative perturbation to mimic the
1105 effect of the CRISPR perturbation. We note that, since the model is trained on Z-scored
1106 log-normalized expression counts, this corresponds to introducing a large negative fold-
1107 change to the selected gene. The in silico predicted log fold-changes per individual
1108 across all genes (per cell-type) are then calculated by comparing the expected values
1109 before and after perturbation:

A =E

prnerp(1z) [xi,c;g] o ]EpLNCTP( |zl X o+ g*_{k,—k}) [xi,c;g]

1110 3

1111  and the final predicted log fold-changes are calculated by taking the expectation across
1112  individuals. We use the sampling approach in’® to evaluate the expectations in Eq. (3).

icg

1113  To perform perturbations across all 102 NDD genes, for efficiency we learn a reduced
1114 model by remove the dependency on z; in Eq. (1). We sample cell-type specific
1115 expression values for each individual from the full model, and then fit the reduced model
1116 by refitting the model parameters to maximize the likelihood of the full data vectors
1117 (consisting of the original bulk and sampled cell-specific expression vectors for each
1118 individual). Perturbations are performed in the reduced model as in Eq. (2) and fold-
1119 changes are calculated as in Eq. (3), while removing the dependency on z; and the i
1120 subscripts respectively.

1121 LNCTP in silico convergent genes

1122 To identify in silico convergent genes for a set of perturbations, S=
1123 {(c1,91), -, (cn,gn)}, we calculate A, , using Eq. (3) for each perturbation, writing Af:ég*
1124  for the log fold-change to (c, g) generated by applying perturbation (c*, g*), and AZ ; for
1125 the set of log fold-changes by applying all perturbations in S. Then, the set of in silico
1126  convergent genes for S is found by selecting those for which pgg, (A3, - [AS, = 7]) <
1127 0.1, where pgien(.) is the p-value from a 2-tailed one-sample sign-test. The threshold t

1128 s introduced to reduce noise from perturbations which are estimated to generate small
1129 log fold-changes, and throughout we set 7 = 0.3.

1130 For the comparison of in silico convergent genes derived from different perturbation sets
1131 S, we apply two-sided hypergeometric tests to the gene sets defined as above (using all
1132 1325 genes in our model as the background set). For Gene Set Enrichment Analysis of
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1133  convergent genes derived from S, we apply clusterprofiler'’®

1134 our model, ranked by pg;en(As , - [A , = 7]) as defined above.
1135 LNCTP semantic distance test

1136 To test the semantic distance between enriched terms for two sets of perturbations S,
1137 and S,, we generate the set of enriched terms T, and T, by applying GSEA to each set
1138 as described above (using Benjamini Hochberg correction and an FDR threshold of 0.2
1139 to select enriched terms T, and T,). We then calculate the similarity between terms ¢,
1140 and t, by evaluating s(t,,t,) = |G(t;) N G(t,)|/|G(t) U G(t,)|, where G(t) denotes the
1141  set of genes occurring in the leading edge of term t. We test for a significant semantic
1142 distance between S, and S, by evaluating s(t,,t,) between all pairs t, € S;, t, €S,
1143 versus all pairs t; €5,, t, €S, and t; €S5,, t, € S,, and applying a one-sided rank-sum
1144  test for the for a smaller similarity in the former pairs versus the latter.

to the full set of genes in

1145 Transcriptional correlations between hiPSC-derived neural cells, fetal and adult brain
1146 cell types, and the zebrafish brain.

1147 We compared wild-type (WT) zebrafish brain expression to gene expression in our
1148 hiPSC-derived models and to sign-cell expression data for the fetal and adult PFC
1149  (PsychENCODE®'182,

1150 http://resource.psychencode.org/Datasets/Derived/SC_Decomp/DER-

1151  20_Single_cell_expression_processed_TPM.tsv). We first filtered zebrafish gene names
1152  and converted them to the appropriate Homo sapiens orthologs using the R package
1153  orthogene (v3.2.1'%%); genes without matched orthologs were dropped from both
1154  species. Pseudo-bulk expression data from scramble control cells were used as the
1155 baseline expression across NPCs, D7 iGLUTs, D21 iGLUTs, and D36 iGABAs.
1156 Pearson’s correlation coefficients between in vitro cells, fetal and adult postmortem
1157  brain cells, and zebrafish brain were calculated and a Bonferroni correction applied.

1158 Zebrafish

1159 All procedures involving zebrafish were conducted in accordance with Institutional
1160 Animal Care and Use Committee (IACUC; Protocol #2024-20054) regulatory standards
1161 at Yale University. Zebrafish larvae were raised at 28°C on a 14:10 hour light:dark
1162  cycle. Larvae were grown in 150 mm Petri dishes in blue water (0.3g/L Instant Ocean, 1
1163 mg/L methylene blue, pH 7.0) at a density of 60-80 larvae per dish. Behavioral assays
1164  were conducted in zebrafish larvae at 5-7 dpf. At these developmental stages, sex is not
1165 yet determined.

1166 Zebrafish mutant generation

1167 We performed automated, high-throughput, quantitative behavioral profiling of larval
1168 zebrafish to measure arousal and sensorimotor processing as a readout of circuit-level
1169 deficits resulting from gene perturbation.®® We quantified 24 parameters across sleep-
1170 wake activity and visual-startle responses in 18 stable homozygous mutant or FO
1171  mosaic crispant lines for 15 NDD genes (S| Tables 4-5). Stable zebrafish lines were
1172  generated by our lab (arid1b*”#’, chd24"#, chd8*"4’, chd8*'*°, kdm5ba®"4*/p*14/414

1173 kdm5ba**b**)*®® or provided as a generous gift from the Thyme lab
1174 (ash1|lI,A60,19I/1I,A60,19I’ kmt5bA208,ll,A5/A208,1I,A5, kmtzcaA82,l7I/A82,l7IbA6,A29/A6,A29’
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1175  nrxnla??1®4218)184185 £q crispants for the following genes were generated according to
1176  ref. %% chd2, kdmébab, mbd5, phfl2ab, phf21aab, skiab, smarcc2, wacab. Briefly, we
1177 designed two CRISPR crRNAs per allele, prioritizing early exons for targeting. CRISPR
1178 RNPs were assembled individually and then combined prior to injection at the one-cell
1179 stage. The number of scrambled guides injected into the control group was matched to
1180 the number of CRISPR guides used for the experimental group. Injected embryos were
1181 raised to 5 dpf at which point the behavioral assays (described below) were conducted.
1182 We identified unique behavioral fingerprints for each NDD gene mutant, revealing
1183 convergent and divergent phenotypes across mutants (Sl Fig. 22B). To classify
1184 convergent behavioral subgroups that may share circuit-level functions, we performed
1185 correlation analyses with hierarchical clustering across mutants. We identified four
1186  distinct subgroups of NDD genes with highly correlated behavioral features (Fig. 7A).

1187 Behavioral assays

1188 Larvae were placed into individual wells of a 96 well plate (7701-1651; Whatman,
1189  Clifton, NJ) containing 650 pL of standard embryo water (0.3 g/L Instant Ocean, 1 mg/L
1190 methylene blue, pH 7.0) per well within a Zebrabox (Viewpoint LifeSciences; Viewpoint
1191 Life Sciences, Montreal, Quebec, Canada). Locomotion was quantified with automated
1192  video-tracking system (Zebrabox and ZebralLab software). The visual-startle assay was
1193  conducted at 5 days post fertilization (dpf) as described®. To assess larval responses to
1194  lights-off stimuli (VSR-OFF), larvae were acclimated to white light for 1 hour, and
1195 baseline activity was tracked for 30 minutes followed by five 1-second dark flashes with
1196 intermittent white light for 29 seconds. To evaluate larval responsivity to lights-on stimuli
1197 (VSR-ON), the assay was reversed, where larvae were acclimated to darkness for 1
1198 hour, and baseline activity was tracked for 30 minutes followed by five 1-second white
1199 light flashes with intermittent darkness for 29 seconds. For VSR-OFF and VSR-ON, six
1200  behavioral parameters were quantified using custom MATLAB code® (available on
1201 github at  https://github.com/ehoffmanlab/Weinschutz-Mendes-et-al-2023-behavior;
1202 DOI:10.5281/zenodo.7644898):. (i) average intensity of all startle responses; (ii) average
1203  post-stimulus activity; (iii) average activity after first stimulus; (iv) stimulus versus post-
1204 stimulus activity; (v) intensity of responses to the first stimulus; (vi) intensity of
1205 responses to the final stimulus. The sleep-wake paradigm was conducted between 5-7
1206  dpf, following the VSR-OFF and VSR-ON assays. During a 14h:10h white light:darkness
1207  cycle, larvae activity and sleeop patterns were tracked within the Zebrabox and analyzed
1208  with custom MATLAB code® (available on github at (https:/github.com/JRihel/Sleep-
1209 Analysis/tree/Sleep-Analysis-Code; DOI: 10.5281/zenodo.7644073). Six behavioral
1210 parameters were quantified for daytime and nighttime: (i) total activity; (ii) total sleep; (iii)
1211  waking activity; (iv) rest bouts; (v) sleep length; (vi) sleep latency. Across VSR-OFF,
1212 VSR-ON, and sleep-wake assays, we analyzed 24 parameters.

1213 Behavioral analysis

1214 Linear mixed models (LMM) were used to compare phenotypes of each behavioral
1215 parameter between homozygous mutant versus wild-type or crispant versus scramble-
1216 injected fish for each gene of interest. Variations of behavioral phenotypes across
1217  experiments were accounted for by including the date of the experiment as a random
1218 effect in LMM. Hierarchical clustering analysis was performed to cluster mutants and
1219 behavioral parameters based on signed -log10-transformed p-values from LMM, where
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1220 sign indicates direction of the difference in behavioral phenotype when comparing
1221 stable mutant to wild-type or crispant to scrambled-injected. Pearson correlation
1222  analysis was used to assess correlations between mutants based on the difference in
1223 the 24 parameters. Difference was evaluated using signed -log10-transformed p-values.

1224  Druq prioritization based on zebrafish pharmaco-behavioral profiles

1225 NDD gene-associated mutant and crispant behavioral phenotypes were compared to a
1226 dataset of 376 U.S. FDA-approved drugs that were screened for their behavioral effects
1227 in larval zebrafish using the visual-startle and sleep-wake assays described above.
1228 These drugs have a significant effect on at least two behavioral parameters (LMM,
1229 p<0.05/3, corrected for three behavioral assays). Pearson’s correlation analysis was
1230 used to identify drugs that significantly correlate (correlation >0.5, p<0.05, t-statistic) or
1231  anti-correlate (correlation <-0.5, p<0.05, t-statistic) with mutant behavioral signatures (Sl
1232 Data 2-3).

1233  Drug prioritization based on perturbation signature reversal in LINCs Neuronal Cell
1234 Lines. To identify drugs that could reverse cell-type specific convergence across
1235 different KOs, we used the Query tool from The Broad Institute’s Connectivity Map
1236 (Cmap) Server’®. Briefly, the tool computes weighted enrichment scores (WTCS)
1237 between the query set and each signature in the Cmap LINCs gene expression data
1238 (dose, time, drug, cell-line), normalizes the WTCS by dividing by the signed mean within
1239 each perturbation (NCS), and computes FDR as fraction of “null signatures” (DMSO)
1240 where the absolute NCS exceeds reference signature. We prioritized drugs that were
1241  negatively enriched for convergent signatures specifically in neuronal cells (either
1242  neurons (NEU) or neural progenitor cells (NPCs) with NCS <= -1.00, FDR<=0.05) and
1243  filtered for drugs that had clinical data in humans and paired behavioral phenotyping in
1244  zebrafish (SI Data 2).

1245 Tarqgeted drug rescue of behavioral phenotypes in zebrafish

1246  For mutant-x-drug experiments, larval activity was monitored from 5-7 dpf using the
1247  behavioral assays described above. Individual wild-type zebrafish larvae were added to
1248 each well of a 96-well plate containing 650 ul of standard embryo water. A 5 mM stock
1249  solution of each compound dissolved in DMSO or DMSO alone (control) was pipetted
1250 directly into each well after which the visual-startle and sleep-wake assays were
1251 performed. Drugs were tested at a final concentration of 10 uM (0.1% DMSO final
1252  concentration) in 12-24 background-matched homozygous or wild-type larvae or 24
1253 crispant or scrambled control-injected larvae with genotyping conducted after each
1254  experiment to confirm genotypes for stable mutant lines and confirm on-target mutations
1255 in crispants.

1256 For behaviors that were nominally significantly different between mutant+DMSO and
1257 WT+DMSO (p<0.06), we characterized the effect of the mutant-x-Drug on behavior as:
1258 i) “exacerbated” [significant effect mutant+Drug-v-WT > significant effect mutant-v-WT] if
1259 mutant behavior p<=0.06 and mutant-x-drug behavior p.value <= mutant behavior
1260 p.value with increased absolute beta values (i.e., stronger p-value with appreciable
1261 difference in the magnitude of effect but not direction); ii) “unchanged” [significant effect
1262 mutant+drug-v-WT = significant effect mutant-v-WT]; iii) “partial rescue” [significant
1263  effect mutant+Drug-v-WT < significant effect mutant-v-WT], if mutant behavior p<=0.06
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1264 and mutant-x-drug behavior p>0.06 or if mutant behavior p.value <= mutant-x-drug
1265 behavior p.value with reduced effects on the absolute beta value; iv) “rescued” [sig.
1266 effect mutant-v-WT, no sig. effect mutant+Drug-v-WT], mutant behavior p<=0.06 and
1267 mutant-x-drug behavior p>0.06; v) “over-corrected” [mutant+Drug-v-WT opposite
1268 direction of sig. effect mutant-v-WT]. mutant behavior p<=0.06 and mutant-x-drug
1269 behavior p<=0.06, with opposing directions of effect. Note “drug specific/side-
1270 effects” indicate significant mutant-by-drug effects.
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1906 TABLES

1907 Table 1. Disorder and behavioral associations of top convergent up and down-regulated
1908 genes by cell-type from MalaCards, OMIM, and GWAS catalogue.

Top . . _n
Z- Rare Disorders GWAS and behavioral associations
Cell-type | Meta Meta P score | MalaCards GWAS Catalog
Gene MARRAAARNAAN

AGAP4 1214 | 7.71
iNPCs

CYTLL 7.8¢-9 | -5.77 | Muscular Trophy (AD) T D,IUC., CD, T2D, psor_laS|s, cellaq,_autmmmune disease,

thyroid disease, ankylosing spondylitis

MBD2 12 Cerebellar Ataxia, Deafness, Allergic disease, psoriasis, neuroticism, hoarding disorder,
. .2e-15 | 8.01 N N N
immature Narcolepsy (AD), Breast Cancer | executive function measurement, memory function
iGLUTs

SHOX 2.9e-13 | -7.30 | Turmer Syndrome, Dysplasia

Immunodeficiency (AR; X- PD, neuroticism, neuroimaging, unipolar depression, mood
MAP3K14 | 6.2e-36 | 12.52 | linked), Ectodermal Dysplasia, disorder, anxiety, cognitive function, MS, asthma, allergic
mature Noonan Syndrome disease,
iGLUTs
Galloway Mowat Syndrome

MY 2.4e-44 | -13.97 (AR; X-linked) T2D

GPRa3 13e-17 | -8.54 testoster:one mgasnf.fm:n;, fr.ee androgen index, age at
mature menarche, anxiety like-behaviors
iGABAs

UBE2D4 29621 | 944 Brachydactyly (AD)
Autosomal dominant (AD), Autosomal recessive (AR), Parkinson’s disease (PD), multiple sclerosis (MS), ulcerative colitis (UC), type-| diabetes
(T1D), type-2 diabetes (T2D), Crohn's disease (CD)

1909

1910 Table 2. Disorder and behavioral associations of top nodes by cell-type from
1911  MalaCards, OMIM, and GWAS catalogue.

Cell-type Top protein-coding Rare disorders GWAS and behavioral associations
nodes across all MalaCards GWAS Catalog
networks
iNPCs KIAA2012 ADHD/conduct disorder (rs1521882), educational attainment

(rs12623702, rs4675248, rs2160317, rs2177083,
rs34189321,rs58100125), migraine/T2D (rs6748072), amygdala
volume (rs72936662)

immature MYH15 Deafness (AR); Sacial interaction measurement (rs13082569), cognitive function
iGLUTs de novo SCZ CNV (rs3860537), unipolar depression (rs1531188), MDD
(rs113689582), insomnia (rs62266174, rs6768511, rs6786515,
rs6795280), BIP (rs1531188), ANX (rs4855559), educational
attainment (rs115910830, rs2290601, rs3860537, rs60785803)

mature GALNTL5 ASD, Spastic
iGLUTs paraplegia 48 (AR)
mature EREG Epilepsy, ADHD (rs1350666), wellbeing measurement (rs112444088),
iGABAs Immune Deficiency learning & memory (pathway)
Disease

Autosomal recessive (AR), Anxiety disorder (ANX), Bipolar Disorder (BIP), Type-2 diabetes (T2D)

1912
1913

1914
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1915 Table 3. Convergent nodes that overlap with CNV and rare variant target genes for
1916 each cell-type.
Celltype Rare variant gene targets for ASD, SCZ, BIP, ID, and Epilepsy
iNPCs
AATK, DLC1, PAK6
immature ACMSD, HCST, MYH15, PAH, RSPO1, SFTPC, SH3RF2, SLC28A2, SNAI2, ACOT6, CSPG4, PYCARD,
iGLUTs SLC5A7, SULT1B1, TBXA2R, TEKT5 ,TEX15, ARG1, ASB14, CACNA1D, OPLAH, GRM4, KCNT1, FKBPS,
NPAP1, OCA2, ATP10A
mature
iGLUTs S100G, TRIM50, FOLR1, COX7B2, KIF23
mature
iGABAS CHRND, RETN, PAX6, RIMBP3, SPDYES, TSKS
1917
1918 Table 4. Disorder and behavioral associations of top nodes by cell-type and behavioral
1919 set from MalaCards, OMIM, and GWAS catalogue.
Cell Top Gene name Meta Z- Rare Disorders GWAS
type Node P sCO
ne
Mature Myotonic Dystrophy,
GLUT MNeurcmyotonia & axonal
: neurcpathy (AR), Creutzfeldt-
ﬁf;g;ﬁgﬁfd Jakob Disease, Deafness (AR),
CcNBP repression b ge.15 | s.1g| Fragile-X tremorfataxia, ALS
1_|ANKRD36 1.958-18 8.8
FOxJ3 1.78-17 8.5
2 |ATPEVOC 53ad44 | -130 ASD. Epilepsy, NDD
Gene exprassion EA (rs35011283)
regulation/chromati
FOxJ3 n 1.96-19 9.02
gﬁlﬁfgg‘m?" Microphta_lmia Syndromic 12 Memory performance
3 |SOX12 during development].6a-17 -B.52 yenRR e
4 FoxJ3 7.90-22 26
MNeuropathy, Giant Axonal SCZ (rs9631085),
lAnkyrin Repeat MNonsyndromic Deafness (AR) neurcimaging (rs11692435,
/ANKRD36 |Domain 36 5.6-626 | -105 rs167684, +6)
Mature 1 (Ubiguitin-
iGABA (Conjugating
UBE2D4  [Enzyme E2D4  |1.28-08 6.1
Wolff-Parkinson-White EA (rs1860735, rs2538046,
Syndrome, Meuromuscular rs4726070), ASD/SCZ
W Disease, Specific Language (rs115136442), impulse
bl i Impairment, Microencephaly, | control (rs2302532), BIP
Mon-Catalytic Epilepsy (rs7T35096), memory
PRKAG2 _|Subunit 5707 | 407 (rs2536058)
2 6.9 Walff-Parkinson-White
BBE & immune cell Syrl!.dmme. Microencephaly,
MYL3  frasnmigration  Me-12 Epilispsy
-6.3 D, DD, developmental &
TNFSF11 3 6e-10 epileptic encephalopathy, IBS,
3 D, ASD, neuropathy, Epilepsy, Insomnia
Spastic Ataxia, Cortical (rs10196604,rs4455151)
&”%”ﬁ:;&?:gpme' Dysplasia, Alacrima, Achalasia,
KIF14 esicles B.8e-12 g.5| and Impaired ID Syndrome
Alzheimer Disease, Familial 1 Insomnia (rs371745379),
wellbeing (rs1169684513),
OCD (rs17384439), cognition
{338451_155}. unipolar
UNCSC  |Metrin Receptor |3.986-8 55 depression (rs6822806)
4 lusezD4 B5e-13 | 72
6.4 Parkinson's disease, epilepsy, Sleep duration (rs10773112),
muscular dystrophy AD (rs78184510),
uBC 1.7e-10
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FIGURES

Figure 1. Knock-out (KO) effects of 21 NDD risk genes are most strongly
correlated in mature neurons.

Figure 2. Gene-level convergence is greatest in mature glutamatergic neurons

Figure 3. Network-level convergence resolves cell-type-specific and
developmental-specific node genes.

Figure 4. Functional similarity and brain co-expression between NDD genes
predict gene-level and network-level convergence, with unique influences by cell-
type.

Figure 5. LNCTP predicts effects of convergent genes in silico.

Figure 6. NDD convergence predicts shared effects on mitochondrial function.

Figure 7. NDD gene mutants with shared behavioral phenotypes in zebrafish
resolve unique and cell-type-specific gene-level convergent signatures and are
rescued by predicted medications.
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1935

1936 Figure 1. Knock-out (KO) effects of 21 NDD risk genes are most strongly
1937 correlated in mature neurons. (A) List of rare-variant target risk genes associated
1938 neurodevelopmental disorders (NDD) separated by chromatin modifiers and neuronal
1939 communication genes. Bold gene names indicate strong associations with ASD based
1940 on Fu et al. 2022. Gene targets of rare variants associated with schizophrenia (SC2),
1941 epilepsy (EPI) and bipolar disorder (BIP) are annotated. (B) Strength of association with
1942 ASD, as estimated by distribution of posterior probability (p.p.) scores from Fu et al.
1943 2022; 4 out of 29 NDD genes were more strongly associated with developmental delay
1944  (DD) (blue; p.p.<=0.1) while 16 out of 29 were more strongly associated with ASD (red;
1945  p.p.>=0.9). Further annotation of individual risk genes are shown in Sl Figures 1-2. (C)
1946 MAGMA enrichments of targeted genes across GWAS for anorexia nervosa (AN),
1947  chronic pain, amyotrophic lateral sclerosis (ALS), SCZ, and BIP, BIP-I (bipolar subtype
1948 1), and BIP-Il (bipolar subtype 2). *nominal p-value<0.05, *FDR<0.05, **FDR<0.01,
1949 *FDR<0.001 (D) Schematic of hiPSC-derived cell-type specific SCCRISPR-KO screen.
1950 Representative immunofluorescence for markers of NPCs (DAPI/Nestin), mature
1951 iGLUTs (DAPI/MAP2/VGLUT), and mature iGABAs (DAPI/MAP2/GABA). (E)
1952  Transcriptomic impact of NDD gene KO represented as the number of nominally
1953 significant (p<0.01) differentially expressed genes (DEGs). (i) Pearson’s correlation
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1954 matrix of log2FC DEGs across all NDDs and cell-types. (ii) Cross cell-type correlation
1955 network diagram across NDD perturbations (number of NDD gene knockout (KO)
1956 perturbations resolved indicated in parentheses); the mature iGLUT cluster was most
1957 dense, and the INPC most sparse.

1958
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Figure 2. Gene-level convergence is greatest in mature glutamatergic neurons. In
total, nine NDD genes showed evidence of knockout across all four cell types: ARID1B,
ASH1L, CHD2, MED13L, NRXN1, PHF21A, SETD5, SIN3A, SMARCC2. For these
nine, “convergent genes” are defined as those differentially expressed genes (DEGS)
with significant and shared direction of effect across all NDD gene perturbations. (A)
Schematic explaining cell-type specific convergence at the individual gene level via
differential gene expression meta-analysis (FDR adjusted pmeta<0.05, Cochran’s
heterogeneity Q-test pHet > 0.05). (B) Convergence across 9 NDD genes is unique to
each cell type, using rank-rank hypergeometric (RRHO) test to explore correlation of
convergent genes shared across 9 NDD perturbations (RRHO score = -log10*direction
of effect) between cell-types. The top right quadrant represents down-regulated genes
(meta-analysis z-score >0) for the y-axis and x-axis cell-type. The bottom left quadrant
represents up-regulated convergent genes (meta-analysis z-score <0) for the y-axis and
x-axis cell-type. Significance is represented by color, with red regions representing
significantly convergent gene expression. (C) (i) The average strength of convergence,
measured as the ratio of convergent genes to the average number of DEGs across all
152 unique combinations of 2-5 genes from the nine NDD genes, was highest in
IGLUTSs. (ii) The magnitude of convergence between the same NDDs tested in different
cell types was highly correlated (Pearson’s correlation, Ppom<2.2e-16); with the
strongest relationship between immature and mature iGLUTs. (D) Venn diagram
representing the absolute overlap (regardless of direction of dysregulation) of cell-type
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1981 specific convergent genes shared across 9 NDDs. (E) (i) MAGMA enrichment —log10(p-
1982 value) of cell-type-specific (color of points) convergence and GWAS-risk associated
1983  genes with significance after multiple testing correction indicated as follows: “unadjusted
1984 p-value=<0.05, *FDR<=0.05, *FDR<0.01, **FDR<0.001. The direction of the triangles
1985 indicates a positive (upwards triangle) or negative (downwards triangle) enrichment
1986 beta. (ii) Over-representation analysis (ORA) enrichment ratios of cell-type-specific
1987 (color of bars) convergence and rare variant target genes. Significance after multiple
1988 testing correction indicated as follows: *unadjusted p-value=<0.05, *FDR<=0.05,
1989 **FDR<0.01, ***FDR<0.001. (F) Gene set enrichment analysis (GSEA) identified
1990 downstream pathways involved in neural proliferation, neurite outgrowth, synaptic
1991 vesicle transport, and mitochondrial function as cell-type specific targets of convergent
1992 genes across 9 NDDs. Results were filtered for pathways with nominal p-values <0.05.
1993 Normalized GSEA enrichment scores represent the direction of enrichment based on
1994 the meta-analyzed Z-score for each convergent gene. Cell-type is represented by shape
1995 and the size of each point represents the —log10(FDR).
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Figure 3. Network-level convergence resolves cell-type-specific and
developmental-specific node genes. “Convergent networks” are co-expressed genes
that share similar expression patterns across NDD gene perturbations, here resolved for
the nine NDD knockouts resolved across all four cell types: ARID1B, ASH1L, CHD2,
MED13L, NRXN1, PHF21A, SETD5, SIN3A, SMARCC2. (A) Schematic explaining cell-
type specific convergence at the network level using Bayesian bi-clustering and
unsupervised network reconstruction. (B) Strength of network convergence across all
random combinations of 9 NDD KO perturbations by cell-type. (i) The mean strength of
network convergence is significantly different by cell-type, with the highest convergence
present in immature iGLUTs. The same KO combinations tested in one cell type may
not resolve convergence in another cell type. Each point represents a resolved network,
and its calculated convergence strength. Dots that represent the same combinations of
KO perturbations, but tested in each cell type, are connected by a line. (C) Convergent
network strength was most correlated between mature iGLUTs and iGABAs (Pearson’s
Correlation Coefficient (PCC) = 0.6, Phom <2.2e-16). Convergent network strength in
INPCs was not correlated with network strength in neurons. (D) Venn diagrams of the
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2014 total number of unique node genes within convergent networks for each cell-type. The
2015 lack of overlapping node genes between cell types (D), as well as the weak correlations
2016  of convergence strength between immature and mature cell-types (C), suggest greater
2017  cell-type specificity in the magnitude of network-level convergence compared to gene-
2018 level convergence. (E) Enrichment ratios from over-representation analysis (ORA) of
2019 cell-type specific (color of bars) convergent node genes for rare variant targets.
2020 (“unadjusted p-value=<0.05, *FDR<=0.05, *FDR<0.01, **FDR<0.001). (F, G)
2021 Representative cell-type specific network plots for convergence across 15 genes
2022  (ARID1B, ASH1L, ASXL3, BCL11A, KDM5B, CHD2, MBD5, MED13L, NRXN1, PHF12,
2023 PHF21A, SETD5, SIN3A, SKI, SMARRC?2) from (F) iNPCs and (G) mature iGLUTSs.
2024  Network genes were filtered for protein-coding genes, clustered, and annotated based
2025 on the primary node gene for each cluster. Gene set enrichment analysis of the
2026  networks identified unique functions by cell type. Convergent networks in iINPCs were
2027  enriched for pathways associated with neurogenesis (e.g., cell cycle, cell division, EPO
2028 signaling), while in mature iGLUTs for pathways associated with synaptic function
2029 (transmembrane transport and receptor signaling, secretory vesicles, SNARE complex).
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similarity and brain co-expression between NDD genes
predict gene-level and network-level convergence, with unique influences by cell-
type. (A) Schematic for training random forest models for gene and network-level
convergence with external validation in a SCZ CRISPRa screen. (B) Predictor variables
included in the model include scores of functional similarity, dorsolateral prefrontal
cortex (DLPFC) brain co-expression, cell-type, and the number of KOs. (B.P score =
semantic similarity of GO: Biological Process membership between KO genes; C.C.
score = semantic similarity of GO: Cellular Component membership between KO
semantic similarity of GO: Molecular functions membership
between KO genes; B.E.C = dorsolateral prefrontal cortex expression correlations
number of KO genes tested for convergence). (C)
and network-level
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2043 convergence (PBonferroni<=0.01**, PBonferroni<=0.01***). (D) Functional similarity,
2044  brain co-expression, cell-type, and the number of KOs assayed strongly predicted gene-
2045 level convergence (97% variance explained by the model; mean of squared
2046 residuals=0.02) and moderately predicted network-level convergence (53% variance
2047  explained; mean of squared residuals=0.73). (i-ii) Importance of each of the predictor
2048 variables was assessed by two metrics: the percent mean increase in squared residuals
2049 (%IncMSE) and the increase in node purity. In the model — number of KO genes in a set
2050 is the most important predictor of convergence based on %Inc MSE, but not node
2051 purity. However, the impact of nKOs on gene-level convergence is much stronger —
2052 likely an artifact of the method used for measuring convergence. For network level
2053 convergence, each variable has a IncMSE between 20-30%. (E) Internal evaluation of
2054 the model using 30% of the original data resulted in high concordance between
2055 convergence predicted by the model and the measured convergence. Predicted gene-
2056 level (i) [gene-level convergence: n=19,823; Pearson’s R=0.984; p<2.2e-16; root mean
2057 squared error (RMSE) =0.15] and network-level (ii) convergence [network-level
2058 convergence: n=962; rho=0.722; p<2.2e-16; RMSE=0.85)] by the model strongly
2059 correlated with the measured convergence in the testing sets. Correlation of predicted
2060 vs. accrual convergence values are color-coded by cell-type with corresponding color-
2061 coded correlations and p-values listed in the upper right corners of the scatterplots. (F)
2062 External validation in an independent scCRISPRa screen of SCZ target genes predicted
2063 showed moderate, but significant, correlation between convergence predicted by the
2064 model and the measured convergence. (i) gene-level (n=1013, R=0.14, p=1.1e-05,
2065 RMSE=1.748) and (ii) network-level convergence (n=826, R=0.26, p=2.9e-14,
2066 RMSE=0.68).
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2068 Figure 5. LNCTP predicts effects of convergent genes in silico. (A) LNCTP
2069 imputation and perturbation model: an energy-based network model is trained to impute
2070 bulk and cell-type specific expression data in the prefrontal cortex over a population of
2071 post-mortem individuals from PsychENCODE using a panel of 1325 genes and
2072 embedded cell-type specific Gene Regulatory Networks (GRNs) (LNCTP in silico
2073 model); a chosen gene is then perturbed by fixing its expression, and the effects on
2074  other genes are predicted by the model; in silico category-specific convergent genes are
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2075 then identified by analyzing the fold-changes across subjects (LNCTP Simulating
2076  Perturbations). (B) Predicted in silico log fold-changes for the in vitro positive and
2077 negative convergent genes across the 29 CRISPR perturbations, in Bulk, Excitatory and
2078 Inhibitory neuron networks (LNCTP Simulating Perturbations, 2-tailed t-test p-values
2079 shown). (C) Proportion of genes showing same direction fold-changes in in silico and in
2080 vitro perturbations across classes of perturbation and cell-type (left), and the
2081 intersection of convergent in silico genes across classes of perturbation (LNCTP in
2082 silico convergent genes, synaptic-epigenetic genes reduced and ASD-DD genes
2083 enriched, p<le-3, 2-tailed hypergeometric test). (D) Venn diagram of in silico
2084  convergent genes across all categories by clinical (ASD vs DD) or functional (synaptic
2085 vs epigenetic) annotation. (E) Number of terms enriched for convergent genes across
2086 all categories for 102 in silico perturbations. (F) Semantic distance of pairs of enriched
2087 terms within or between sets determined by synaptic and epigenetic convergent gene
2088 rankings (LNCTP semantic distance test, 2-tailed Mann Whitney test) (G) Percent of
2089 concordant genes in each perturbation and ontology category within the leading-edge
2090 enriched genes (LNCTP in silico convergent genes).

2091
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2093 Figure 6. NDD knock-outs converge on mitochondrial function. (A) Gene set
2094  enrichment analysis (GSEA) identified downstream pathways involved in neurogenesis,
2095 neurite outgrowth, synaptic biology, and mitochondrial function as cell-type specific
2096 targets of convergent genes across 15 NDD KOs (ARID1B, ASH1L, ASXL3, BCL11A,
2097 KDM5B, CHD2, MBD5, MED13L, NRXN1, PHF12, PHF21A, SETD5, SIN3A, SKiI,
2098 SMARRC?2) in INPCs and mature IGLUTs. Results were filtered for pathways with
2099 nominal p-values <0.05. Normalized GSEA enrichment scores represent the direction of
2100 enrichment based on the meta-analyzed Z-score for each convergent gene. Cell-type is
2101 represented by shape and the size of each point represents the —logl0(FDR). (B)
2102 Summary of network and gene-level pathway enrichments (from Fig. 2-3) for shared
2103 effects of nine and fifteen NDD KOs in INPCs and mature iGLUTs. (C) Proliferation
2104 assessment of NPCs using Ki-67 median fluorescence intensity (MFI) measured with
2105 flow cytometry, wildtype (purple: no iCas9 induction) versus knockout (green:
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2106 doxycycline to induce iCas9). 4-6 replicates per condition, unpaired t-test with Welch
2107  correction; p-values corrected for multiple comparisons using FDR. (D) Scatter plot of
2108 gRNA log; fold-change (high- (PE-high) and low- (FITC-high) Aym-sensitive dye JC-1
2109 membrane-potential fractions) in NPCs (x-axis) and mature iGLUT neurons (y-axis),
2110 with points colored by enrichment category (shared NPC and iGLUT in red; distinct
2111 between NPC and iGLUT in blue). Right: Bar chart of —log,o(FDR) for over-represented
2112  gene sets in the tene gene KOs enriched in both lineages. (E) (i) High resolution, high-
2113 throughput microscopy of mitochondrial morphology (scale bar 10 pm): an isolated
2114  dendrite labelled with a dendritic marker (MAP2), mitochondrial marker (TOMM20) and
2115 marker of the OXPHOS complex (Total OXPHOS) (scale bar 5 pm). (ii) Effect of
2116 ARID1B-KO on mitochondrial sphericity and branch length independent of changes in
2117 mitochondrial volume and surface area (Sl Fig. 20-21). (iii) Effect of ARID1B-KO on
2118 average fluorescence intensity of OXPHOS proteins. Each datapoint indicates one well
2119  of a 96-well, representing hundreds of pm? of neuronal area and tens of thousands of
2120 individual mitochondria (*adjusted p<0.05, ** adjusted p<0.01). (F) Effect of NRXN1-KO
2121 on maximal respiration and coupled respiration in iIGLUTs. Oligo: oligomycin; FCCP:
2122  carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone; R+A: rotenone and antimycin
2123 A. Data are presented as mean + SEM. Statistical analysis was performed using one-
2124  way ANOVA. *p<0.05. Each datapoint represents one well of a 24-well Seahorse assay
2125 plate. The experiment was independently replicated twice.
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Figure 7. NDD gene mutants with shared behavioral phenotypes in zebrafish
resolve unique and cell-type-specific gene-level convergent signatures and are
rescued by predicted medications. (A) NDD risk genes uniquely cluster based on
sleep-wake/visual-startle behavioral responses in zebrafish mutants. set 1. nrxnla,
mbd5, kdm5bab; set 2: phfl2ab, skiab, chd2, smarcc2; set 3: kdm6bab, kmt5Db,
kmt2cab; set 4: wacab, aridlb, phf2laab, chd8, ashll. (B) Gene expression in human
mature iIGLUTs and iGABAs correlate with expression in the zebrafish brain. Cellular
deconvolution of wild-type larval zebrafish brain expression based on adult human
single-cell brain reference identifying neurons as the largest proportion of cells in the
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2137 fish brain. Gene expression in wild-type zebrafish brain significantly positively correlates
2138 with gene expression of mature iGLUTs (rho=0.39, Holm’s adj.P<0.001) and iGABAs
2139 (rho=0.39, Holm’s adj.P <0.001). (C) For each of the four behaviorally defined sets,
2140 gene-level convergence (DEGs with significant and shared direction of effect across all
2141 NDD genes within each of the four sets (FDR adjusted pmeta<0.05, Cochran’s
2142  heterogeneity Q-test puet > 0.05)) is largely non-overlapping between mature iGLUTs
2143 and iGABAs, with unique enrichments for common psychiatric risk gene targets.
2144  Number of convergent genes that are up (+) or down (-) regulated for each NDD set are
2145 indicated. (D) In both iGABAs and iGLUTs, all four behavioral sets were enriched for
2146 FMRP targets. Gene targets of neurodevelopmental rare variants were only significantly
2147 enriched for convergent signatures in mature IGLUTS; behavioral set 4 uniquely
2148 significantly enriched for secondary targets of ASD loss-of-function variant and set 3
2149  uniquely enriched for primary targets of SCZ non-synonymous variants. (E) In iGLUTS,
2150 NDD related behaviors were only enriched in sets 1 and 3, with enrichments for
2151 language, speech, and intellectual delays in sets 1,3 and 4. All sets were enriched for
2152  seizure and hypertonia. (F) Potential “rescue” drugs for these 4 phenotypic groups were
2153 selected from enrichment scores using cMAP and filtered for drugs included in a screen
2154 of 376 compounds for behavioral effects in zebrafish. Top candidates that were
2155 significantly negatively enriched for iGLUT convergence from cMAP and negatively
2156  correlated with mutant behavioral features were tested in mutant lines representative of
2157 sets 2-4. n.p. indicates that the drug repaglinide was not present in the cMAP dataset.
2158  Mutant-x-Drug combinations were as follows: chd24”4’-x-pravastatin; kdmébab FO-x-
2159 paclitaxel; kdm6bab FO-x-sirolimus; kmt5h*2081 A5/A208.1 45y naclitaxel; kmt5b*2%81:
2160  A5/A208.1, 45_y_sirolimus: ashi[ 460.19/ 1, Aﬁo’lgi-x-ezetimibe; ashi[Y: A60.191 1i, A60,19i y
2161 repaglinide; ashi[t: 46019/ 1. 48019y rasyvastating ashil* 40019 L 460190y qunitinib;
2162 phf2laab FO-x-amiodarone; phf2laab FO-x-fluvoxamine. (G) For behaviors that were
2163 significantly different between mutant+DMSO and WT+DMSO (p<0.05), we
2164 characterized the effect of the mutant-x-Drug on behavior as either (a) exacerbated [sig.
2165 effect mutant+Drug-v-WT > sig. effect mutant-v-WT], (b) unchanged [sig. effect
2166  mutant+drug-v-WT = sig. effect mutant-v-WT], (c) partial rescue [effect mutant+Drug-v-
2167 WT < effect mutant-v-WT], (d) rescued [sig. effect mutant-v-WT, no sig. effect
2168 mutant+Drug-v-WT], (e) over-corrected [mutant+Drug-v-WT opposite direction of sig.
2169 effect mutant-v-WT]. All drugs reversed at least one dysregulated behavior except for
2170 sirolimus in kmt5b. (i) Comparison of the magnitude of effect (beta) on behavior
2171 between the mutant+DMSO compared to mutant+Drug groups shows rescue of select
2172  behavioral features in kdm6b and chd2 mutants by paclitaxel (Shapiro Wilk’'s Normality
2173 p= , Student T statistic=-3.533, p=0.0017788, df=23) and pravastatin (Student T
2174  statistic=-3.533, p=0.0017788, df=23), respectively. (ii) the phf2la mutant phenotype
2175 was strongly opposed by fluvoxamine (Pearson’s correlation=-0.58, p=0.0028).
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