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ABSTRACT 54 

Over three hundred and seventy-three risk genes, broadly enriched for roles in neuronal 55 
communication and gene expression regulation, underlie risk for autism spectrum 56 
disorder (ASD) and developmental delay (DD). Functional genomic studies of subsets 57 
of these genes consistently indicate a convergent role in neurogenesis, but how these 58 
diverse risk genes converge on a smaller number of biological pathways in mature 59 
neurons is unclear. To uncover shared downstream impacts between 60 
neurodevelopmental disorder (NDD) risk genes, here we apply a pooled CRISPR 61 
approach to contrast the transcriptomic impacts of targeting 29 NDD loss-of-function 62 
genes across human induced pluripotent stem cell (hiPSC)-derived neural progenitor 63 
cells, glutamatergic neurons, and GABAergic neurons. Points of convergence vary 64 
between the cell types of the brain and are greatest in mature glutamatergic neurons, 65 
where they broadly target not just synaptic and epigenetic, but unexpectedly, 66 
mitochondrial biology. The strongest convergent networks occur between NDD genes 67 
with common co-expression patterns in the post-mortem brain, biological annotations, 68 
and clinical associations, suggesting that convergence may one-day inform patient 69 
stratification and treatment. Towards this, ten out of eleven drugs tested that were 70 
predicted to reverse convergent signatures in human cells and/or arousal and sensory 71 
processing behaviors in zebrafish ameliorated at least one behavioral phenotype in 72 
vivo. Altogether, robust convergence in post-mitotic neurons represents a clinically 73 
actionable therapeutic window.  74 
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INTRODUCTION 75 

Autism spectrum disorder (ASD) and related developmental delay (DD) are highly 76 
heritable1. The aggregate impact of common variants of small effect reflects most 77 
genetic risk2, but in as many as a quarter of cases, potentially damaging rare inherited 78 
and de novo mutations in risk genes are detected3. There is significant overlap between 79 
those genes affecting ASD4 and those more broadly affecting developmental5,6 and 80 
psychiatric7,8 disorders. Altogether, neurodevelopmental disorder (NDD) risk genes are 81 
typically expressed during cortical development9, particularly the excitatory and 82 
inhibitory lineages4, and broadly split between two functional classes: neuronal 83 
communication (e.g., synaptic function) and gene expression regulation (e.g., chromatin 84 
regulators and transcription factors)4,10-15. Over half of NDD genes have roles in gene 85 
expression regulation4, sharing substantial overlap in genomic binding sites in the 86 
brain16, and with targets enriched for NDD risk genes17-20. Yet, evidence to support the 87 
parsimonious explanation that regulatory NDD genes preferentially target synaptic NDD 88 
genes, is lacking4. It remains unclear how disrupting NDD genes with distinct functions 89 
yields similar outcomes.  90 

Many NDD genes seem to have broad roles outside their annotated function; for 91 
example, some chromatin regulators (e.g., CHD8, CHD2, and POGZ) localize to 92 
microtubules in the centrosome21, mitotic spindle22, and cilia23,24, suggesting the 93 
possibility that they function directly in neurogenesis and/or synaptic biology. Indeed, 94 
both regulatory and synaptic genes impact proliferation and patterning of progenitors 95 
(e.g., ARID1B25,26, CHD827,28, NRXN129,30, SYNGAP131), excitatory transmission by 96 
glutamatergic neurons (e.g., CHD832,33, NRXN134, SHANK335, SYNGAP136), and 97 
inhibitory transmission by GABAergic neurons (e.g., ARID1B37, CHD832, NRXN138, 98 
SHANK339). Do overlapping downstream impacts explain how heterogeneous gene 99 
mutations result in similar neuronal phenotypes and clinical outcomes40? 100 

Many have proposed that diverse ASD genes are convergent41-43. Indeed, NDD genes 101 
are co-expressed in the brain44-46, suggesting that they are regulated together and 102 
involved in related biological processes, and result in highly interconnected protein-103 
protein interactomes47-50, indicating functional relationships between NDD 104 
proteins. Even as the number of NDD genes grows, risk genes continue to converge on 105 
a finite number of biological pathways, developmental stages, brain regions and cell 106 
types41. Disentangling these complex etiologies remains an outstanding challenge. 107 

Excitatory-inhibitory (E:I) imbalance is widely believed to underlie NDD51-53, whether 108 
arising from altered proportions of neuronal lineage cell types in the developing brain or 109 
synaptic deficits in glutamatergic or GABAergic neurons. Indeed, knockdown of subsets 110 
of NDD genes in human neural progenitor cells (NPCs)22,54,55, cerebral organoids27,56,57, 111 
and developing mouse58, tadpole59 and zebrafish60 brains reveal overlapping impacts on 112 
neurogenesis. Despite synaptic dysfunction being a hallmark of NDD, the extent to 113 
which downstream impacts of NDD genes also converge in mature neurons is largely 114 
unknown.  115 

Given emerging evidence that epigenetic NDD genes have diverse and interconnected 116 
roles21-24, we tested the hypothesis that the nature of convergence is dynamic, 117 
influenced by developmental and cell-type contexts. We report a pooled CRISPR-118 
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knockout (KO) strategy targeting loss-of-function (LoF) mutations to 29 NDD genes, 119 
most with roles in chromatin biology (ANK3, ARID1B, ASH1L, ASXL3, BCL11A, CHD2, 120 
CHD8, CREBBP, DPYSL2, FOXP2, KMT5B (SUV420H1), KDM5B, KDM6B, KMT2C, 121 
MBD5, MED13L, NRXN1, PHF12, PHF21A, POGZ, PPP2R5D, SCN2A, SETD5, 122 
SHANK3, SIN3A, SKI, SLC6A1, SMARCC2, WAC) in induced NPCs, glutamatergic 123 
neurons, and GABAergic neurons in vitro. We describe convergent networks that are 124 
unique between cell types, and in neurons, enriched not just for synaptic biology, but 125 
also epigenetic regulation and, unexpectedly, mitochondrial function. Novel applications 126 
of machine learning allowed us to extend our analyses in silico across all known NDD 127 
genes, resolving how the degree of convergence between risk genes was influenced by 128 
clinical associations, biological function, and co-expression patterns in the post-mortem 129 
brain. Convergent analyses resolved the genes and cell types that underlie in vivo 130 
behavioral stratification and successfully predicted drugs capable of suppressing 131 
phenotypes in mutant zebrafish, suggesting that precision medicine-based approaches 132 
can successfully target shared downstream gene targets between multiple NDD genes. 133 
Novel points of convergence in post-mitotic neurons represent exciting new therapeutic 134 
targets occurring within a clinically actionable therapeutic window. 135 

 136 

RESULTS 137 

A systematic comparison of NDD gene effects across neuronal cell types 138 

From 102 highly penetrant loss-of-function (LoF) gene mutations associated with NDD 139 
(previously described as 58 gene expression regulation, 24 neuronal communication, 140 
and 20 other)4, we used gene ontology and primary literature to identify 21 epigenetic 141 
modifiers specifically involved in chromatin organization, rearrangement, and 142 
modification (ASH1L, ARID1B, ASXL3, BCL11A, CHD2, CHD8, CREBBP, PPP2R5D, 143 
KDM5B, KDM6B, KMT2C, KMT5B (SUV420H1), MBD5, MED13L, PHF12, PHF21A, 144 
SETD5, SIN3A, SKI, SMARCC2, WAC), as well as two transcription factors with 145 
putative roles as chromatin regulators (FOXP2, POGZ). Three extensively studied 146 
synaptic genes (NRXN1, SCN2A, SHANK3) and three under-explored neuronal 147 
communication genes (ANK3, DPYSL2, SLC6A1) strongly associated with NDD were 148 
added (SI Fig. 1A). Many of these 29 genes differed in relative frequency of LoF gene 149 
mutations between ASD (n=16) and DD (n=4)61, schizophrenia62, and epilepsy63,64 (Fig. 150 
1A-B, SI Fig. 1B), as well as general associations with GWAS for many 151 
neuropsychiatric disorders (MAGMA65) (Fig. 1C; SI Fig. 1C), indicating a pleotropic 152 
effect consistent with the shared genetic liability across neuropsychiatric disorders66. 153 
iNPCs, iGLUTs, and iGABAs (SI Fig. 2A), as well as their in vivo fetal counterparts (SI 154 
Fig. 2B), expressed all genes prioritized herein67. 155 

Towards resolving whether regulatory genes confer continuous or distinct periods of 156 
susceptibility across neurodevelopment, we knocked out (KO) regulatory NDD genes in 157 
neural progenitor cells (SNaPs68, here termed iNPCs), immature and mature 158 
glutamatergic neurons (iGLUTs)69, and mature GABAergic neurons (iGABAs)70 (Fig. 159 
1D). A pooled CRISPR approach (ECCITE-seq71) combined direct detection of sgRNAs 160 
and single-cell RNA sequencing to compare loss-of-function effects across 29 NDD 161 
genes. The CRISPR-KO library was generated from pre-validated gRNAs (three to four 162 
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gRNAs per gene; SI Table 1). Sequencing of the gRNA library confirmed the presence 163 
of gRNAs targeting 24 genes (ANK3, ARID1B, ASH1L, ASXL3, BCL11A, CHD2, CHD8, 164 
DPYSL2, FOXP2, KMT5B (SUV420H1), KDM5B, KDM6B, KMT2C, MBD5, MED13L, 165 
NRXN1, PHF12, PHF21A, SCN2A, SETD5, SIN3A, SKI, SMARCC2, WAC), but three 166 
(DPYSL2, FOXP2, SCN2A) were present at lower frequency (SI Fig. 3B-C). 167 

Control hiPSCs were induced to iNPCs, iGLUTs, and iGABAs (SI Fig. 3A), transduced 168 
first with lentiviral-Cas9v2 (Addgene #98291) and subsequently with the pooled lentiviral 169 
gRNA library three days before harvest, at day 7 (iNPC and immature iGLUT), day 21 170 
(iGLUT), and day 36 (iGABA) (experimental workflow SI Fig. 4A; computational 171 
workflow SI Fig. 4B; experimental validation of CRISPR editing efficiency in SI Fig. 5). 172 
After filtering and QC (SI Fig. 4C-E), we resolved NDD transcriptomes for 118,436 173 
single cells: 25,402 iNPC, 38,097 immature (d7) iGLUT, 28,388 mature (d21) iGLUT, 174 
and 26,549 mature (d36) iGABA. Because original gene-expression based clustering 175 
was driven by cellular heterogeneity, cell quality, and sequencing lane effects (SI Fig. 176 
6A), independent of gRNA identity, we removed cells with high expression of subtype 177 
markers and adjusted for cellular heterogeneity (SI Fig. 6B,C; SI Tables 2-3). 178 
‘Weighted-nearest neighbor’ (WNN) analysis assigned clusters based on both gRNA 179 
identity class and gene expression to ensure that cells assigned to a gRNA identity 180 
class demonstrated successful perturbation of the targeted NDD gene72. For those 181 
WNN clusters where most cells were assigned to a single KO target, the transcriptomic 182 
signatures were compared to non-targeting scramble control clusters. Altogether, 183 
35,777 cells were used for downstream analyses: 12,107 iNPC, 3,171 immature iGLUT, 184 
11,802 mature iGLUT, and 8,697 mature iGABA). An average of 474 cells were 185 
assigned to each individual sgRNA (757 iNPC, 227 immature iGLUT, 562 mature 186 
iGLUT, 414 mature iGABA), totaling 33,150 perturbed cells and 2,627 controls (882 187 
iNPC, 90 immature iGLUT, 1,258 mature iGLUT, and 397 mature iGABA). The gene 188 
expression patterns of non-perturbed iNPCs and iNeurons (>30% of all pooled cells) 189 
were significantly correlated with fetal brain cells and cortical adult neurons. 190 

Successful perturbations (scCRISPR-KO) were identified for 23 NDD genes (SI Fig. 191 
6,7): 16 in iNPCs, 14 in immature iGLUT neurons, and 21 in mature iGLUT and iGABA 192 
neurons (SI Fig. 6). Nine NDD genes were perturbed in all four cell types (ARID1B, 193 
ASH1L, CHD2, MED13L, NRXN1, PHF21A, SETD5, SIN3A, SMARCC2; SI Fig. 7A,B). 194 
For most NDD genes, KO in mature iGLUTs yielded the largest number of differentially 195 
expressed genes (DEGs, pFDR<0.05) (SI Fig. 7B), an effect that was not driven by 196 
differences in the extent of perturbation of the NDD gene itself between cell types (SI 197 
Fig. 7Ci). The transcriptomic effects of individual NDD genes cluster by cell type: the 198 
strongest NDD gene correlations are in mature iGLUTs (i.e., all nominally significant 199 
(p<0.01) log2FC DEGs are most highly correlated with each other and least correlated 200 
with the other cell types, whether relative to all scramble control cells (Fig. 1Ei,ii; SI Fig. 201 
7Cii) or random subsets of scramble control cells (SI Fig. 8A,B). DEGs across 202 
individual NDDs shared significant gene ontology enrichments (SI Fig. 8C), with mature 203 
iGLUTs frequently enriched for SCZ GWAS genes (12 of 21 NDD genes), whereas 204 
mature iGABAs for migraine GWAS genes (8 of 21) (SI Fig. 9). 205 

Unsurprisingly, given the greater within cell-type correlations between NDD genes and 206 
the unique pathway enrichments across cell-types, very few DEGs shared significance 207 
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and direction of effect for the same NDD gene perturbation across all four cell-types 208 
(FDR adjusted pmeta<0.05, Cochran’s heterogeneity Q-test pHet > 0.05; computational 209 
workflow, SI Fig. 10A); in fact, the only common DEG between cell types was frequently 210 
the targeted NDD gene itself. With a more relaxed statistical threshold (nominal p-value 211 
<0.05), modest shared effects of individual NDD genes could be resolved across cell 212 
types. These effects rarely resulted in perturbation of the other NDD genes themselves 213 
(SI Fig. 10B), showed very little overlap between NDD genes (SI Fig. 10C), and no 214 
significant enrichments with psychiatric GWAS after multiple testing correction (SI Fig. 215 
10D). 216 

NDD gene knockouts resulted in cell-type-specific convergent genes and networks that 217 
were strongest in glutamatergic neurons. 218 

“Convergent genes” (Fig. 2) are those DEGs with significant and shared direction of 219 
effect across all NDD gene perturbations (FDR adjusted pmeta<0.05, Cochran’s 220 
heterogeneity Q-test pHet > 0.05)73,74 (computational workflow, Fig. 2A). Across the nine 221 
NDD genes perturbed in all four cell types (ARID1B, ASH1L, CHD2, MED13L, NRXN1, 222 
PHF21A, SETD5, SIN3A, SMARCC2), convergence was highly cell-type specific (Fig. 223 
2; SI. Fig. 11A-C; SI Data 2). Although the strength of convergence correlated across 224 
cell types (Fig. 2C,ii), it was greatest in mature iGLUTs (quantified as the ratio of 225 
convergent genes to the average number of DEGs across all 152 unique two-to-five 226 
gene combinations of these nine NDD genes) (Fig. 2C,i).The unique “top” convergent 227 
genes (Table 1) showed little overlap across all cell-types, with mature iGLUTs (11,473) 228 
having the largest absolute number of convergent genes (Fig. 2D). Convergent genes 229 
were enriched for schizophrenia GWAS loci (MAGMA65, FDR <0.05) (Fig. 2Ei), rare 230 
ASD and FMRP target genes (FDR <0.05) (Fig. 2E,ii), and pathways involved in 231 
neurodevelopment, mitochondrial function, and translational regulation (SI Fig. 12). 232 
When tested again across the 21 NDD genes perturbed in both iGLUTs and iGABAs, 233 
mature iGLUTs again showed the largest absolute number of convergent genes 234 
(iGLUTs, 10,557, SI Fig. 13A; iGABAs, 892, SI Fig. 13B). Intriguingly, although 235 
convergent genes were highly cell-type-specific, those NDD gene combinations that 236 
were highly convergent in one cell type were likely to be convergent in others; in 237 
neurons, top convergent sets most frequently included ARID1B, SETD5 and NRXN1 (SI 238 
Fig. 11D).  239 

Given that the biological impact of convergence is likely to be impacted by the strength 240 
of shared gene regulatory relationships and functions, we re-examined convergence 241 
within the framework of co-expression networks (Bayesian bi-clustering). “Convergent 242 
networks” (Fig. 3) are co-expressed genes that share similar expression patterns 243 
across NDD gene perturbations73,74  (computational workflow, Fig. 3A). The network 244 
connectivity score (“network convergence”) informs the strength and composition across 245 
cell types (i.e., networks with more interconnectedness and containing genes with 246 
greater functional similarity have increased convergence). Convergent networks 247 
generated from the 9 NDD genes perturbed in all four cell types (Fig. 3B) or across the 248 
21 NDDs genes in both iGLUTs and iGABAs (SI Fig. 13C) revealed the greatest 249 
convergent network strength in iGLUTs. Network-level convergence was weakly 250 
correlated between cell types (Fig. 3C); the number of convergent unique network 251 
nodes was greatest in iGLUTs, distinct across cell types (Fig. 3D; Tables 2-4; SI Data 252 
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2), and significantly enriched for rare variants linked to schizophrenia and ASD (Fig. 3E; 253 
Tables 2-4). Convergent networks in iNPCs highlighted pathways associated with 254 
neurogenesis (e.g., cell cycle, cell division, EPO signaling) (Fig. 3F), while in mature 255 
iGLUTs they were enriched for synaptic function (transmembrane transport and 256 
receptor signaling, secretory vesicles, SNARE complex) (Fig. 3G). 257 

Convergent networks are strongest between NDD genes with shared co-expression 258 
patterns in the post-mortem brain, biological annotations (synaptic or epigenetic), and 259 
clinical outcomes (ASD or DD). 260 

To resolve the extent to which functional similarity and co-expression patterns between 261 
NDD genes predicted convergence, we trained a prediction model (random forest linear 262 
regression)75 using 70% of our data, evaluated it using 30% of our data, and validated in 263 
an external dataset73 (computational workflow, Fig. 4A; model predictor variables, Fig. 264 
6B; more information SI Fig. 14,15). Cell type, brain co-expression (dorsolateral 265 
prefrontal cortex, DLPFC), and functional similarity (i.e., gene ontology) correlate with 266 
convergence (Fig. 4C) and well-predicted gene level convergence (97% variance 267 
explained; mean of squared residuals (RMSE)=0.021) (Fig. 4Di) and moderately 268 
predicted network-level convergence (53% variance explained; RMSE=0.73) (Fig. 4Dii). 269 
Our trained model accurately predicted gene-level (Pearson’s R=0.998, P<0.001, 270 
RMSE=0.15) (Fig. 4Ei; SI Fig. 15C) and network-level convergence in our testing set 271 
(R=0.72, P<2.2e-16, RMSE=0.85) (Fig. 4Eii; SI Fig. 15D), and performed moderately 272 
well in predicting network-level convergence (R=0.26, P<0.001, RMSE=0.68) (Fig. 4Fii; 273 
SI Fig. 15Eii) and to a lesser extent gene-level convergence (R=0.14, P<0.001 274 
RMSE=1.75) (Fig. 4Fi; SI Fig. 15Ei) in the external dataset.  275 

To query whether convergence reflected clinical associations to ASD or DD, we again 276 
quantified convergence as the ratio of convergent genes to the average number of 277 
DEGs (see Fig. 2E), here across all (2-5 gene) combinations of all NDD genes 278 
perturbed in each cell type (e.g., 27,824 unique combinations of 21 NDD genes in 279 
iGLUTs and iGABAs; SI Fig. 16A). Convergence, both gene-level (SI Fig. 16A,C) and 280 
network-level (SI Fig. 16B,D), was greater between genes with stronger associations to 281 
ASD compared to DD61, particularly in mature neurons (SI Fig. 16E-F). Yet this analysis 282 
was limited by the relatively small number of predominantly ASD (n=16) and DD (n=4) 283 
included in our dataset (Fig. 1B). 284 

To extend our comparisons of convergence across larger sets of NDD genes, 285 
particularly those clinically defined as predominantly ASD or DD genes61, or those with 286 
biologically annotated synaptic or epigenetic roles4, we asked if it was possible to train a 287 
machine learning model to predict cell-type-specific impacts of CRISPR knockout of all 288 
102 NDD genes4. An integrative Linear Network of Cell Type Phenotypes (LNCTP) 289 
model, previously trained on >2.8 million nuclei from the prefrontal cortex across 388 290 
individuals, accurately imputes single-cell expression following simulated 291 
perturbations76. By retraining the LNCTP model using our scCRISPR-KO data (Fig. 5A), 292 
we resolved convergent genes within three in silico post-mortem brain network models 293 
(bulk prefrontal cortex (PFC) tissue, excitatory neurons only, and inhibitory neurons 294 
only), noting that the LNCTP model better replicates experimental iGLUT data (Fig. 5B).  295 
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Expanded LNCTP in silico comparisons across all 102 NDD genes (Fig. 2; SI. Fig. 17) 296 
predicted greater convergence in excitatory neurons compared to inhibitory neurons, 297 
consistent with our in vitro findings (Fig. 2C, 3D), even more so for synaptic NDD genes 298 
(n=24) relative to regulatory genes (n=58) (Fig. 5C). Predominantly ASD genes (n=50) 299 
had greater predicted convergence in excitatory neurons (Fig. 5C), whereas 300 
predominantly DD genes (n=40) in inhibitory neurons (Fig. 5C). Overall, across 301 
functional or clinical categories, despite limited overlap in specific convergent genes 302 
(Fig. 5D) and terms (Fig. 5E, F), there was overall enrichment for synaptic, epigenetic, 303 
and mitochondrial biology (Fig. 5G), consistent with in vitro scCRISPR-KO (Fig. 2F). 304 

Convergent genes and networks in glutamatergic neurons targeted synaptic, epigenetic, 305 
and mitochondrial biology. 306 

Convergent genes and networks revealed cell-type-specific disease (Fig. 2E) and 307 
functional enrichments (Fig. 2F, 5G,6A-B), many consistent with established NDD 308 
etiology in neurogenesis22,27,54-60 and synaptic biology47-50. For example, iNPCs were 309 
significantly enriched for pathways involved in proliferation and differentiation, whereas 310 
mature iGLUTs showed unique enrichments in neuronal communication (e.g., pre-311 
synaptic function) and regulation of gene expression (e.g., mRNA processing and 312 
protein translation). Unexpectedly, both mature iGLUT and iGABA neurons were 313 
enriched for mitochondrial biology (e.g., oxidative phosphorylation: mature iGLUTs: 314 
NEs=2.8, p<2.2e-16, FDR<0.001; mature iGABAs: NES=1.67, p=0.023, FDR<0.05).   315 

Functional validation of five NDD genes (KMT5B, NRXN1, CHD8, ASH1L, ARID1B) in 316 
inducible Cas9 (iCas9)77 NPCs (CD184⁺/CD133⁻ NPCs) in arrayed format revealed 317 
effects on proliferation (Ki67; Fig. 6C; SI Fig. 18A), neurogenesis (NPCs: 318 
CD184+/CD44-/CD24+, neurons: CD184-/CD44-/CD24+; SI Fig. 18B), and gliogenesis 319 
(astrocytes: CD184+/CD44+; SI Fig. 18C) that varied between genes. Likewise, a 320 
pooled CRISPR analysis in iCas9 cortical organoids confirmed effects on neurogenesis, 321 
again with variable effects between NDD genes (SI Fig. 19). 322 

To assess how loss of NDD‐associated genes affects mitochondrial function, we 323 
performed a pooled CRISPR knockout screen using a nearly identical library (same 324 
backbone, guide density, and control set) in the H1-iCas9 line. Transduced cells were 325 
differentiated into NPCs and iGLUTs by day 21, stained with the Δψm-sensitive dye JC-326 
1, and sorted by fluorescence-activated cell sorting (FACS) into high- (PE-high) and 327 
low- (FITC-high) membrane-potential fractions, following amplicon sequencing to 328 
quantify gRNA representation in each fraction (Fig. 6D). Of the fifteen KOs, ten resulted 329 
in elevated mitochondrial membrane potential (MPP) in both NPCs and iGLUTs, the 330 
remaining five caused cell-type-specific impacts on mitochondrial membrane potential. 331 
Pathway enrichment of the ten NDD genes that increased mitochondrial membrane 332 
revealed a convergence on chromatin remodeling complexes, microRNAs, and 333 
transcription factors. 334 

For three NDD KOs (ASH1L, ARID1B, NRXN1), we validated mitochondrial effects in 335 
arrayed format, using a platform with the ability to resolve dose-dependent changes in 336 
mitochondrial fragmentation following pharmacological insults (SI Fig. 20). By high 337 
content imaging, we analyzed and quantified 1 x 104 mitochondria per genotype, with 338 
morphological measurements taken for mitochondrial (TOMM20-positive) volume, 339 
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surface area, and sphericity (roundness) as well as total OXPHOS complex, within 340 
neuronal dendrites (MAP2-positive) of mature (d21) iGLUTs. Among the three NDD 341 
KOs, ARID1B resulted in increased mitochondrial networking (indicated by decreased 342 
mitochondrial sphericity and increased branch length; one-way ANOVA, Šidák’s 343 
adjusted p=0.0213 and p=0.0081 respectively) concomitant with increased levels of 344 
OXPHOS proteins (one-way ANOVA, Šidák’s, adjusted p=0.0024) (Fig. 6E; SI Fig. 345 
21A), overall consistent with increased mitochondrial efficiency. Second, we tested 346 
oxygen consumption using Seahorse Cell Mito Stress test. NRXN1 KO resulted in 347 
increased coupled and maximal respiration in iGLUTs (one-way ANOVA, p<0.05; Fig. 348 
6F); increased mitochondrial reliance, in the absence of fused mitochondria with 349 
elevated OXPHOS protein levels point to a possible metabolic overload due to reduced 350 
mitochondrial efficiency (Fig. 6E). In contrast, ARID1B and ASH1L KOs did not show 351 
significant changes in these Seahorse parameters (SI Fig. 21B–C). Taken together, 352 
both ARID1B and NRXN1 KO neurons show evidence of increased mitochondrial 353 
activity, ARID1B KO through enhanced fusion and elevated expression of OXPHOS 354 
complexes, whereas NRXN1 KO by increasing OXPHOS activity to meet ATP 355 
demands. As observed for neurogenesis in iNPCs, single gene knockouts iGLUTs 356 
confirmed convergent effects on mitochondrial biology, finding distinct but related 357 
phenotypes between NDD genes. 358 

Pharmacological targeting of convergent genes reversed behavioral phenotypes in 359 
mutant zebrafish 360 

By design, in vitro models substantially limit the complexity of the observed impact of 361 
NDD genes, lacking higher circuit-level effects. Towards applying molecular 362 
convergence in vitro to explore the mechanisms of phenotypic convergence in vivo, the 363 
convergence of sets of NDD genes were next explored on the basis of shared 364 
behavioral effects in zebrafish mutants (Fig. 7; SI Tables 4-5). A comprehensive in vivo 365 
high-throughput, automated behavioral analysis in larval zebrafish60 revealed clear 366 
stratification of NDD genes based on basic arousal and sensory processing behaviors in 367 
the developing vertebrate brain (Fig. 7A; SI Fig. 22). Given that zebrafish brain gene 368 
expression was significantly correlated with in vitro human-derived mature neurons (Fig. 369 
7B; SI Fig. 23), we asked whether behavioral stratification of NDD mutants in larval 370 
zebrafish can be attributed to molecular convergence. For fifteen NDD genes for which 371 
we have matched behavioral and molecular analyses, zebrafish stable mutant lines and 372 
CRISPR F0 mutants were clustered based on 24 sleep-wake and visual-startle 373 
parameters, yielding four distinct clusters of genes: set 1 (nrxn1a, mbd5, kdm5bab), 374 
set2 (phf12ab, skiab, chd2, smarcc2), set 3 (kdm6bab, kmt5b, kmt2cab), and set 4 375 
(wacab, arid1b, phf21aab, chd8, ash1l) (Fig. 7A; SI Data 3). Gene-level convergence 376 
between NDD genes in these sets was distinct, largely non-overlapping between cell-377 
types, and stronger in mature iGLUTs than mature iGABAs (Fig. 7C). Across behavioral 378 
sets, rare ASD, SCZ, and ID LoF genes were enriched primarily in iGLUTs, with all sets 379 
converging on FMRP targets, highly intolerant CNVs, and ASD variants (Fig. 7D). 380 
Phenotypes related to developmental delay, behavior, and motor function showed 381 
unique enrichments by set, predominately in the iGLUTs, whereas all sets were 382 
enriched for seizure, hypertonia, and abnormal skeletal muscle morphology (Fig. 7E). 383 
Candidate drugs predicted to reverse convergent genes (i.e., drugs with anticorrelating 384 
transcriptomic signatures) in iGLUTs and iGABAs were prioritized from the 776 cMAP78 385 
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drugs with matched clinical and experimental zebrafish data. Top enriched drugs 386 
included antidepressants, antipsychotics, and statins (SI Data 2; SI Fig. 24A). Whereas 387 
some drugs were broadly predicted to reverse convergent signatures in all four NDD 388 
gene sets (e.g., the antipsychotic perphenazine), others uniquely targeted specific sets 389 
(e.g., naltrexone in set 2 iGLUTs, sirolimus in set 3 iGLUTs, and valsartan in set 3 390 
iGABAs). Sets 3 and 4 showed the greatest number of cMAP enrichments. By 391 
considering existing pharmacological effects of the top drugs on zebrafish behavior,60 392 
some of the predicted drug reversers were shown to oppose effects on NDD related 393 
phenotypes in zebrafish (SI Fig. 24B). Yet, the direction of effect predicted based on 394 
transcriptomic convergence in human neurons did not always align with anti-correlating 395 
behavioral effects in zebrafish (e.g., moxifloxacin, perphenazine).  396 

The top negatively enriched drugs for iGLUT convergence from cMAP and anti-397 
correlating drugs predicted from a pharmaco-behavioral screen of 376 drugs in larval 398 
zebrafish were empirically tested in representative mutants from sets 2-4, which showed 399 
the strongest cMAP enrichments (Fig. 7F). We determined whether the phenotypic 400 
impact of mutant-x-drug combinations led to partial rescue, rescue, over-correction, or 401 
exacerbation of the mutant phenotype across significant arousal and startle behavioral 402 
parameters (Fig. 7G). Ten out of eleven drugs rescued at least one dysregulated 403 
behavioral parameter (Fig. 7G, SI Fig. 24C-E). Paclitaxel robustly rescued behavioral 404 
parameters in kdm6bab F0 mutants and pravastatin partially and completely rescued 405 
select parameters in chd2Δ7/Δ7 mutants (Fig. 7Gi), including nighttime sleep bouts in 406 
kdm6bab F0 mutants and responses to lights-ON stimuli in chd2Δ7/Δ7 mutants (SI Fig. 407 
24Fi-ii). Interestingly, we also observed over-correction of the phf21aab F0 mutant 408 
phenotype by fluvoxamine (Fig. 7Gii), such as increased sleep bouts that were 409 
significantly decreased following fluvoxamine treatment (SI Fig. 24Fiii). Taken together, 410 
in vivo behavioral profiling of NDD genes in zebrafish overlaps with in vitro-defined 411 
convergent networks and identifies pharmacological suppressors of specific behavioral 412 
phenotypes. 413 

 414 

DISCUSSION 415 

Towards empirically resolving the common pathways converged upon by NDD risk gene 416 
effects, 29 NDD genes were targeted through a pooled CRISPR-KO strategy. The 417 
molecular points of convergence across NDD risk genes varied between the cell types 418 
of the brain, being greatest in mature glutamatergic neurons, where they were enriched 419 
not just for pathways with well-established links to ASD etiology (e.g., gene regulation, 420 
synaptic biology), but also mitochondrial function79. While downstream effects of 421 
epigenetic NDD genes unexpectedly targeted mitochondrial genes, in fact, five percent 422 
of NDD cases meet diagnostic criteria for classic mitochondrial disorders80. 423 
Mitochondrial DNA mutations81,82, haplotypes83 and heteroplasmy81,84 have all been 424 
associated with NDD. Not only do mitochondrial mutations cause synaptic and 425 
behavioral phenotypes85, but multiple lines of human and animal evidence link NDDs to 426 
mitochondrial deficits and oxidative stress10,86-91, with neuronal and/or behavioral 427 
phenotypes reversed by antioxidant treatment87,89-91. Conversely, knockout of NDD 428 
genes in NPCs primarily alter neurogenesis54,57,59 and developmental dynamics27,92. Put 429 
simply, perturbations of the same NDD genes resulted in different convergent networks 430 
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across cell types. This observation connects the pleiotropic nature of many NDD genes 431 
and pathophysiological evidence linking multiple cell types and distinct cellular functions 432 
to NDD. 433 

What explains phenotypic convergence between NDD genes with distinct annotated 434 
functions? The strength of convergence was most highly correlated to common clinical 435 
associations, biological annotations, and co-expression patterns in the post-mortem 436 
brain. Critically, these factors are inter-dependent. NDD risk genes most strongly 437 
implicated in DD are enriched for expression in progenitor cells and immature neurons, 438 
and those in ASD in mature neurons61. Indeed, cellular identities and biological 439 
pathways are captured by patterns of gene co-expression93,94. Transcriptomic and 440 
epigenomic analyses of post-mortem brain from NDD cases likewise indicate 441 
convergent molecular signatures95 and subtypes of NDD96. Thus, we posit that shared 442 
clinical and phenotypic effects of distinct NDD genes in fact reflect the patterns of co-443 
expression in the developing brain. 444 

Personalized medicine seeks to tailor treatments to individual patients97; for example, 445 
cancer98 and monogenic disease99 patients with specific genetic mutations receive 446 
targeted treatments. Previous efforts to classify genes that predict NDD clinical features 447 
or treatment response applied gene ontology4,61 or differential neurodevelopmental KO 448 
effects in vitro54 or in vivo59. Here, we proposed to stratify risk genes based on 449 
convergent molecular impacts in human neurons. Our overarching hypothesis, in doing 450 
so, was that by resolving shared downstream gene targets between multiple NDD 451 
genes, we might inform a precision medicine-based approach that did not necessarily 452 
need to target risk genes one-at-a-time. Although convergent networks did not predict 453 
behavioral stratification of zebrafish mutants, they did inform drug prediction, with ten 454 
out of eleven drugs tested found to ameliorate at least one mutant behavioral phenotype 455 
in vivo. This ability to reverse, rather than prevent, a behavioral phenotype, indicates 456 
that targeting convergent networks in post-mitotic neurons may represent a clinically-457 
actionable neurodevelopmental window that persists through symptom onset.  The 458 
extent to which convergent downstream targets, whether associated with risk or 459 
resilience, can be manipulated to prevent or ameliorate NDD signatures and 460 
phenotypes warrants future investigation.  461 

Although rare LoF NDD gene mutations tend to confer large effects in the individuals 462 
who carry them, the small effects of common variants account for much of the genetic 463 
risk for NDD at the population level2,100. The differences in expressivity and incomplete 464 
penetrance of high effect-size rare variants is frequently attributed to diversity across 465 
polygenic backgrounds101; in vitro, NDD gene effects are indeed influenced by the 466 
individual genomic context27. In psychiatry, common genetic variants are more 467 
associated with cross-disorder behavioral dimensions102 and rare variants with co-468 
occurring intellectual disability103. Common risk variants interact with rare mutations to 469 
determine individual-level liability in ASD104-106, schizophrenia107,108, epilepsy109, 470 
Huntington’s disease110 and more111. Our results, highlighting that convergence 471 
downstream of NDD gene effects are enriched for cross-disorder GWAS variants and 472 
rare LoF genes, inform pleiotropy of genetic risk for psychiatric disorders. Moving 473 
forward, we argue that it is critical that empirical functional genomic studies 474 
systematically consider the impact of common and rare variants together, including 475 
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screening the impact of LoF genes in hiPSC lines derived from donors with high and low 476 
polygenic risk scores112. Intriguingly, even susceptibility to environmental risk factors for 477 
NDD (e.g., valproic acid113) seems to be mediated by genetic background114. Deeper 478 
phenotypic characterization of NDD effects across donors will be critical in determining 479 
how complex genetic (or environmental) interactions shape cellular phenotypes, circuit 480 
function, and human behavior in the clinic.  481 

In the post-mortem brain, NDD gene signatures are not just associated with 482 
downregulation of co-expression modules involving synaptic signalling115, but also 483 
upregulation of microglial and astrocyte gene modules88,96,115-120. The extent to which 484 
increased neuroimmune activity in NDD is a response to cellular or environmental 485 
sources of inflammation, or indicative of a role for glia cells in risk is unclear; evidence 486 
supports both possibilities. Consistent with a model of maternal immune activation 487 
during neurodevelopment121, glucocorticoids and inflammatory cytokines perturb the 488 
expression of psychiatric risk genes122,123, altering the regulatory activity of psychiatric 489 
risk loci124, and interfering with neuronal maturation in brain organoids125. Yet, in vivo 490 
analysis of NDD genes in zebrafish revealed global increases in microglia60 and in vitro 491 
screening in human microglia uncovered roles in endocytosis and uptake of synaptic 492 
material126. Indeed, given the reciprocal relationships between neuronal activity and glial 493 
function, epigenetic state, and gene expression127-130, it seems probable that both cell-494 
autonomous and non-cell-autonomous effects underlie and/or exacerbate NDD gene 495 
effects.  496 

In summary, we demonstrate that convergent effects of NDD risk genes vary between 497 
cell types. Our analyses suggest that clinical convergence between regulatory and 498 
synaptic genes in the etiology of NDD is driven more so by co-expression patterns of 499 
risk genes then direct regulation of epigenetic genes on synaptic targets. If the 500 
convergence of multifold risk genes on a smaller number of shared molecular pathways 501 
indeed explains how genetically heterogeneous mutations result in similar clinical 502 
features, then genetic stratification of cases will inform novel therapeutic targets. We 503 
predict that such individualized points of therapeutic intervention may be most effective 504 
when targeting mature glutamatergic neurons, which not only harbor the strongest 505 
convergent effects but also represent a therapeutic window that is actionable after 506 
diagnosis.  507 

 508 

MATERIALS AND METHODS 509 

Generation of neural cells: Informed consent was obtained at the National Institute of 510 
Mental Health, under the review of the Internal Review Board of the NIMH. hiPSC work 511 
was reviewed by the Internal Review Board of the Icahn School of Medicine at Mount 512 
Sinai as well as by the Embryonic Stem Cell Research Oversight Committee at the 513 
Icahn School of Medicine at Mount Sinai and Yale University. Fibroblasts were 514 
genotyped by IlluminaOmni 2.5 bead chip genotyping131,132, PsychChip133, and exome 515 
sequencing133; hiPSCs133 were validated by G-banded karyotyping (Wicell 516 
Cytogenetics) and genome stability monitored by Infinium Global Screening Array v3.0 517 
(lllumina). SNP genotype was inferred from all RNAseq data using the Sequenom 518 
SURESelect Clinical Research Exome (CRE) and Sure Select V5 SNP lists to confirm 519 
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that neuron identity matched donor. Control hiPSCs were cultured in StemFlex media 520 
(Gibco, #A3349401) supplemented with Antibiotic-Antimycotic (Gibco, #15240062) on 521 
Geltrex-coated plates (Gibco, #A1413302). Cells were passaged at 80-90% confluence 522 
with 5mM EDTA (Life Technologies #15575-020) for 3 min at room temperature (RT). 523 
EDTA was aspirated and cells dissociated in fresh StemFlex media. Media was 524 
replaced every 48-72 hours for 4-7 days until the next passage.  525 

Transient transcription factor overexpression from stable clonal hiPSCs was used to 526 
induce control hiPSCs to iNPCs (here SNaPs)68, iGLUTs69, and iGABAs70. iNPCs are 527 
rapidly generated by 48-hour induction with NGN268,134. iGLUTs are induced via 528 
transient overexpression of NGN2, and are >95% glutamatergic neurons, robustly 529 
express excitatory genes, and show spontaneous excitatory synaptic activity by three-530 
to-four weeks in vitro29,34,35,67,69,135-141. iGABA neurons are induced via transient 531 
overexpression of ASCL1 and DLX2, and are >95% GABAergic neurons, robustly 532 
express inhibitory genes, and show spontaneous inhibitory synaptic activity by five-to-533 
six weeks38,70,137,142,143. iNPCs, iGLUTs, and iGABAs express most NDD genes, 534 
including all genes prioritized herein67. 535 

We transduced hiPSCs from two control donors (553-3, karyotypic XY; 3182-3, 536 
karyotypic XX) with lentiviral pUBIQ-rtTA (Addgene #20342) and tetO-NGN2-eGFP-537 
NeoR (Addgene #99378) for iNPCs and iGLUTs, or pUBIQ-rtTA (Addgene #20342), 538 
tetO-ASCL1-PuroR (Addgene #97329), and tetO-DLX2-HygroR (Addgene #97330) for 539 
iGABAs. Following transduction by spinfection at 1000g for 1 hour at 37oC, hiPSCs 540 
were subjected to 48-hour antibiotic selection (1mg/mL neomycin G418 (Thermo 541 
#10131027), 0.5µg/mL puromycin (Thermo #A1113803), and/or 250µg/mL hygromycin 542 
(Thermo, #10687010) and then clonalized by expansion from single colonies. 543 
Ultimately, clonal and inducible iNPC/iGLUT 3182-3-clone5 (XX) and iGABA 553-3-544 
clone34 (XY) hiPSCs were validated lentiviral genome integration by PCR, doxycycline 545 
induced transcription factor expression by qPCR, and robust and consistent neuronal 546 
induction confirmed by RNA-seq and immunocytochemistry for relevant cell type 547 
markers. Analyses throughout reflect data from iGLUT 3182-3-clone5 (iNPC, d7 iGLUT 548 
and d21 iGLUT) and iGABA 553-3-clone34 (d36 iGABA).  549 

iNPCs: At DIV0, 3182-3-clone5 hiPSCs were dissociated and plated at 1.5 x 106 cells 550 
per well onto Geltrex-coated 6-well plates (1:250 dilution coating) in SNaP Induction 551 
Media (DIV0): DMEM/F12 with Glutamax (ThermoFisher, 11320082), Glucose (0.3% 552 
v/v), N2 Supplement (1:100, ThermoFisher, 17502048), Doxycycline (2 μg/mL; Sigma-553 
Aldrich, D9891), LDN-193189 (200 nM; Stemgent, 04-0074), SB431542 (10 μM; Tocris, 554 
1614), and XAV939 (2 μM; Stemgent, 04-00046) supplemented with 25 ng/mL Chroma I 555 
ROCK2 Inhibitor. After 24 hours, DIV2, cells were fed with Selection Media: DMEM/F12 556 
with Glutamax, Glucose (0.3% v/v), N2 Supplement (1:100), Doxycycline (2 μg/mL), 557 
Geneticin (0.5 mg/mL; Thermofisher, 10131035), LDN-193189 (100 nM), SB431542 (5 558 
μM), and XAV939 (1 μM). After 48 hours post induction (DIV2), SNaPs were dissociated 559 
with Accutase for 10 minutes at 37°C, quenched in DMEM, pelleted at 800g for 5 560 
minutes, and replated at 1.5x106 cells per well onto Geltrex-coated 6-well plates in 561 
SNaP Selection Media supplemented with Geneticin (0.5 mg/mL). After 16-18 hr (DIV3), 562 
medium was switched to SNaP maintenance Medium: DMEM/F12 with Glutamax, 563 
Penn/Strep (1:100), MEM-NEAA (1:100; Life Technologies, 10370088), B27 minus 564 
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Vitamin A (1:50; Life Technologies, 12587010), N2 Supplement (1:100; Life 565 
Technologies, 17502048), recombinant human EGF (10 ng/mL; R&D Systems, 236-EG-566 
200), recombinant human basic FGF (10 ng/mL; Life Technologies, 13256029), 567 
Geneticin (0.5 mg/mL), and Chroman I (25 ng/mL). Cells were fed every 48 hours with 568 
SNaP maintenance medium lacking Chroman I and Geneticin. Cells were dissociated 569 
and seeded weekly at a density of 1.25-1.5x106 cells per well onto Geltrex-coated 6-well 570 
plates until NPC morphology was observed and persistent. Cells were expanded and 571 
cryofrozen.  572 

DIV7 iGLUTs: 3182-3-clone5 iNPCs were thawed and seeded at 1x 106 cells per well 573 
onto Geltrex-coated 12-well plates. NGN2 expression was induced with Doxycycline (2 574 
μg/mL) for 24 hrs (DIV0) with antibiotic selection for 48 hrs (DIV1-3) in SNaP 575 
maintenance medium. At DIV 4 SNaPs were dissociated with Accutase, switched into 576 
Neuronal Medium: Brainphys (Stemcell, 05790), Glutamax (1:100), Sodium Pyruvate (1 577 
mM), Anti-Anti (1:100), N2 (1:100), B27 without vitamin A (1:50), BDNF (20 ng/mL; 578 
R&D, 248-BD-025), GDNF (20 ng/mL; R&D, 212), dibutyryl cAMP (500 μg/mL; Sigma, 579 
D0627), L-ascorbic acid (200 μM; Sigma, A4403), Natural Mouse Laminin (1.2 μg/m; 580 
Thermofisher, 23017015) and seeded in Geltrex-coated (1:120 dilution coating) 12-well 581 
plates. Medium was changed every 24 hrs until DIV7 harvest.  582 

D21 iGLUTs: hiPSCs were harvested in Accutase (Innovative Cell Technologies, AT-583 
104) for 5 minutes 37°C, dissociated into a single-cell suspension, quenched in DMEM, 584 
pelleted via centrifugation for five minutes at 1000 rcf and resuspended in StemFlex 585 
containing 25 ng/mL Chroma I ROCK2 Inhibitor and 2.0 μg/mL doxycycline (DIV0), 586 
seeded 1 x 106 cells per well onto Geltrex-coated 6-well plates (1:250 dilution coating), 587 
and incubated overnight at 37°C. The next day, DIV1, hiPSCs were subjected to 48-588 
hour antibiotic selection by medium replacement with Induction Media: DMEM/F12 589 
(Thermofisher, 10565018), Glutamax (1:100; Thermofisher, 10565018), N-2 (1:100; 590 
Thermofisher, 17502048), B27 without vitamin A (1:50; Thermofisher, 12587010), 591 
Antibiotic-Antimycotic (1:100) with 1.0μg/mL doxycycline and 0.5mg/ml Geneticin. At 592 
DIV3, cells were treated with 4.0μM cytosineβ-D-arabinofuranoside hydrochloride (Ara-593 
C) and 1.0μg/mL doxycycline to arrest proliferation and eliminate non-neuronal cells in 594 
the culture. At DIV4 immature neurons were dissociated with Accutase and 5 units/mL 595 
DNAse I at 37°C for 7-10 min, quenched in DMEM, centrifuged for five minutes at 1,500 596 
rpm and resuspended in 25 ng/mL Chroma I ROCK2 Inhibitor, 1.0 μg/mL doxycycline 597 
and 4.0μM Ara-C and switched to Neuron Medium: Brainphys (Stemcell, 05790), 598 
Glutamax (1:100), Sodium Pyruvate (1 mM), Anti-Anti (1:100), N2 (1:100), B27 without 599 
vitamin A (1:50), BDNF (20 ng/mL; R&D, 248-BD-025), GDNF (20 ng/mL; R&D, 212), 600 
dibutyryl cAMP (500 μg/mL; Sigma, D0627), L-ascorbic acid (200 μM; Sigma, A4403), 601 
Natural Mouse Laminin (1.2 μg/mL; Thermofisher, 23017015) and seeded 7 x 105 cells 602 
per well onto Geltrex-coated (1:60 dilution coating) 12-well plates and incubated 603 
overnight at 37°C. The next day, DIV 6, Chroman I was removed from culture and Ara-C 604 
lowered to 2.0 μM with a full Neuronal medium change. At DIV 7 a full Neuronal Medium 605 
change was performed to remove doxycycline and Ara-C from culture, to allow for 606 
antibiotic resistant genes silencing. From DIV7 onwards, half neuronal medium changes 607 
were performed every 72 – 96 hrs until mature DIV 21 for harvest. 608 
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DIV36 iGABAs: hiPSCs were harvested in Accutase (Innovative Cell Technologies, AT-609 
104) for 5 minutes 37°C, dissociated into a single-cell suspension, quenched in DMEM, 610 
pelleted via centrifugation for five minutes at 1000 rcf and resuspended in StemFlex 611 
containing 25 ng/mL Chroma I ROCK2 Inhibitor and 2.0 μg/mL doxycycline (DIV0), 612 
seeded 1.5-2x 106 cells per well onto Geltrex-coated 6-well plates (1:250 dilution 613 
coating), and incubated overnight at 37°C. The next day, DIV1, hiPSCs were subjected 614 
to 48-hour antibiotic selection by medium replacement with Induction Media: DMEM/F12 615 
(Thermofisher, 10565018), Glutamax (1:100; Thermofisher, 10565018), N-2 (1:100; 616 
Thermofisher, 17502048), B27 without vitamin A (1:50; Thermofisher, 12587010), 617 
Antibiotic-Antimycotic (1:100) with 1.0μg/mL doxycycline, 1.0 μg/mL puromycin (Sigma, 618 
P7255) and 250 μg/mL hygromycin (Sigma, 10687010). At DIV3, cells were treated with 619 
4.0μM cytosineβ-D-arabinofuranoside hydrochloride (Ara-C) and 1.0μg/mL doxycycline 620 
to arrest proliferation and eliminate non-neuronal cells in the culture. At DIV5 immature 621 
neurons were dissociated with Accutase and 5 units/mL DNAse I at 37°C for 7-10 min, 622 
quenched in DMEM, centrifuged for five minutes at 1,500 rpm and resuspended in 25 623 
ng/mL Chroma I ROCK2 Inhibitor, 1.0 μg/mL doxycycline and 4.0μM Ara-C and 624 
switched to Neuron Medium: Brainphys (Stemcell, 05790), Glutamax (1:100), Sodium 625 
Pyruvate (1 mM), Anti-Anti (1:100), N2 (1:100), B27 without vitamin A (1:50), BDNF (20 626 
ng/mL; R&D, 248-BD-025), GDNF (20 ng/mL; R&D, 212), dibutyryl cAMP (500 μg/mL; 627 
Sigma, D0627), L-ascorbic acid (200 μM; Sigma, A4403), Natural Mouse Laminin (1.2 628 
μg/mL; Thermofisher, 23017015) and seeded 7 x 105 cells per well onto Geltrex-coated 629 
(1:60 dilution coating) 12-well plates and incubated overnight at 37°C. The next day, 630 
DIV 6, Chroman I was removed from culture and Ara-C lowered to 2.0 μM with a full 631 
Neuronal medium change. At DIV 7 a full Neuronal Medium change was performed to 632 
remove doxycycline and Ara-C from culture, to allow for antibiotic resistant genes 633 
silencing. From DIV7 onwards, half neuronal medium changes were performed every 634 
72-96 hrs until mature DIV 36 for harvest. 635 

CRISPR knockout gRNA library design (Thermofisher) and validation 636 
From the 102 highly penetrant loss-of-function (LoF) gene mutations associated with 637 
ASD (58 gene expression regulation, 24 neuronal communication genes, 9 cytoskeletal 638 
genes, and 11 multifunction genes)4, gene ontology and primary literature research 639 
identified 26 epigenetic modifiers specifically involved in chromatin organization, 640 
rearrangement, and modification. ASD gene expression (RNA-seq RPKM in iGLUTs) 641 
was plotted against significance of ASD association (TADA FDR Values), to ensure 642 
selection of genes with the highest expression and highest clinical association. Gene 643 
expression was confirmed across development in the brain (BrainSpan144), and in bulk 644 
and scRNA-seq. 21 epigenetic modifiers (ASH1L, ASXL3, ARID1B, CHD2, CHD8, 645 
CREBBP, KDM5B, KDM6B, KMT2C, KMT5B, MBD5, MED13L, PHF12, PHF21A, 646 
POGZ, PPP2R5D, SETD5, SIN3A, SKI, SMARCC2, WAC,) as well as two transcription 647 
factors with putative roles as chromatin regulators (FOXP2, BCL11A) were selected. 648 
Gene regulatory transcription factors, general transcription factors, and DNA replication 649 
genes were excluded. Three extensively studied synaptic genes (NRXN1, SCN2A, 650 
SHANK3) with roles in ASD were included as positive controls and three under-explored 651 
genes for ASD role in neuronal communication genes (ANK3, DPYSL2, SLC6A1) were 652 
also included in the library. 653 
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Individual DNA from glycerol stocks of Invitrogen™ LentiArray™ Human CRISPR 654 
Library gRNAs-PuroR (ThermoFisher, A31949) (3-4 individual gRNAs per gene, see SI 655 
Table 1) were prepared using GeneJET Plasmid Miniprep Kit (K0503) and pooled at an 656 
equimolar ratio and a 5-fold ratio of scramble control gRNA plasmid. Library quality was 657 
confirmed by restriction enzyme digest (10x Cutsart NEB), agarose gel purification 658 
using QIAquick Gel Extraction Kit (#28706) to check library purity, followed by Mi-seq 659 
for gRNA count distribution. Based on the abundance of gRNAs from Mis-seq, 4 NDD 660 
gene targets were highly unlikely to be resolved in the final experiments – POGZ, 661 
PP2R5D, SHANK3, SLC6A1 – and 3 with low abundance and less likely to be resolved 662 
(SCNA2, FOXP2, DYPSL2). 663 

Lentiviral Cas9v2-HygroR (Addgene, 98291) and pooled LentiArray-gRNA-PuroR 664 
CRISPR-KO library were packaged as high-titer lentiviruses (Boston Children's Hospital 665 
Viral Core) and experimentally titrated in each cell type. Highest viable MOI was used 666 
for Cas9v2 and MOI < 0.5 for lentivirus gRNAs pool library. 667 

CRISPR and gRNA delivery: Lentiviral Cas9v2-HygroR (Addgene #98291) transduction 668 
of iNPCs, day 4 (iGLUTs), or day 5 (iGABAs) occurred via spinfection (one hour at 669 
1,000 g) and followed by 72 hr hygromycin (250 μg /mL) (except for iGABAs, which 670 
express inducible hygromycin resistance at this stage). Pooled Invitrogen™ 671 
LentiArray™ Human gRNA-PuroR CRISPR-KO Library gRNAs (ThermoFisher 672 
#A31949) (MOI 0.3-0.5) were transduced via spinfection three days prior to harvest 673 
(e.g., d4 for D7 iGLUTs, d18 for D21 iGLUTs, d33 for d36 iGABA), with fresh medium 674 
containing puromycin (1 μg/mL) added 16-24 hours post transduction of gRNAs. For 675 
mature iGLUTs and iGABAs, as doxycycline was removed from medium at DIV7, and 676 
by DIV18 neurons had lost transcription factor linked antibiotic resistance, at 24 hours 677 
post-transduction (DIV19 or DIV34) puromycin (1 μg/mL) and hygromycin (250 μg /mL) 678 
were added to media for 48-hr antibiotic selection prior to harvest. 679 

Dissociation of different neural cell types to single cells for scRNAseq assays: Cells 680 
were dissociated 72 hrs post gRNA library delivery for single cell sequencing, as iNPCs, 681 
DIV7 and DIV21 iGLUTs, or DIV36 iGABAs as follows: 682 

iNPCs and DIV7 iGLUTs were dissociated in accutase for 5min @37°C, washed with 683 
DMEM/10%FBS, centrifuged at 1,000xg for 5 min, gently resuspended, and counted.  684 

DIV21 iGLUTs and DIV36 iGABAs were dissociated with papain. Papain was pre-685 
warmed (39°C) for 30 minutes in HBSS (ThermoFisher, 14025076), HEPES (10 mM, 686 
pH 7.5) EDTA (0.5 mM), Papain (0.84 mg/mL; Worthington-Biochem, LS003127). The 687 
cells were washed with PBS-EDTA (0.5 mM) and 300 uL of papain solution and 5 units 688 
of DNAse I was added per well of 12-well plate and incubated at 37°C for 10-15 689 
minutes, 125 rpm. Dissociation was quenched with DMEM-10%FBS. Detached neurons 690 
were broken by gentle manual pipetting, pelleted at 600 g for 5 minutes, resuspended in 691 
DMEM-10%FBS, filtered through a cell strainer and counted and submitted for 10X 692 
sequencing.  693 

Cells were loaded into 10X in four lanes per cell type, targeting 20,000 cells per lane for 694 
a total of ~80,000 targeted cells per cell type. scRNA-seq was performed at Yale 695 
Genomics Core with the 10X single cell 5' v2 HT with CRISPR barcode kit. 696 
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Bulk RNAseq and CRISPR-editing efficiency evaluation: The H1 hESC line with iCas9 697 
(NIHhESC-10-0043), generously provided by the Huangfu Lab, was used to assess the 698 
editing efficiency of the gRNAs77,145 and conduct the mitochondrial pooled and arrayed 699 
experiments. NPCs were generated using the dual SMAD inhibition approach per the 700 
STEMdiff SMADi Neural Induction Kit protocol (STEMCell Technologies, #08581). To 701 
validate gene KO, NPCs were transduced with LV particles carrying four gRNAs per 702 
target gene. After 48 h of selection with 1 µg/mL puromycin, Cas9 expression was 703 
induced by adding dox at 2 µg/mL for 72 h. Following induction, cells were collected for 704 
bulk RNA-seq. Total RNA was extracted using TRIzol™ reagent (Invitrogen). PolyA 705 
RNA-seq library preparation and sequencing were conducted at the Yale Center for 706 
Genomic Analysis (YCGA). Raw fastq files were quality-checked by FastQC, then 707 
mapped to human genome reference hg38 (STAR146). GRNA targeted-loci for each 708 
sample were extracted (SAMtools147). Variation/small insertion/deletion at site of interest 709 
and mutation efficiency at corresponding loci was called (CrispRVariants R package148), 710 
after excluding possible germline variants from Cas9-non-induced samples. 711 

Proliferation and neurogenesis analysis: For proliferation analysis using Ki-67, NPCs 712 
were seeded into 24-well plates and either treated with doxycycline (induced) to activate 713 
Cas9 or left untreated (uninduced). The cells were cultured for 7 days, representing 714 
approximately three NPC generations. On day 7, cells were collected, and ~1 × 106 715 
cells were stained with Ki-67-FITC (#130-117-803, Miltenyi Biotec) using the 716 
Foxp3/Transcription Factor Staining Buffer Set (#00-5523, Invitrogen), following the 717 
manufacturer’s protocol. 718 

To evaluate the effects of gene KOs on neurogenesis and gliogenesis, transduced 719 
NPC-iCas9 lines were spontaneously differentiated into human cortical neurons and 720 
glial cells. Briefly, 1 × 106 cells were seeded in GelTrex-coated (1:5) 6-well plates and 721 
cultured in complete neuronal media containing BrainPhys™ Neuronal Medium, 722 
Glutamax (100X), Sodium Pyruvate (100 mM), B-27 (-RA) supplement (50X), N2 723 
(100X), Anti-Anti (100X), Natural Mouse Laminin (1 mg/ml), dbcAMP (500 mg/ml), L-724 
Ascorbic Acid (200 µM), BDNF (20 µg/ml), and GDNF (20 µg/ml). Media was refreshed 725 
every three days. On day 25, cells were collected and stained for FACS analysis using 726 
surface markers previously described149 to differentiate NPCs (CD184+/CD44-/CD24+), 727 
neurons (CD184-/CD44-/CD24+), and glia (CD184+/CD44+). CD271, a marker for 728 
mesenchymal stem cells, was excluded from the original panel as NPCs were pre-729 
purified via FACS using CD133+/CD184+/CD271- markers before differentiation. A 730 
minimum of 50,000 cells per gate were acquired using a BD LSRFortessa™ Cell 731 
Analyzer at the Yale Flow Cytometry Core. Flow cytometry data were analyzed using 732 
FlowJo™ v10.10 Software (BD Life Sciences). 733 

All statistical analyses for flow cytometry assessment were conducted using GraphPad 734 
Prism version 9.5.1 (528) for macOS (GraphPad Software, San Diego, CA). Each well 735 
was treated as an independent replicate. Differences between knockout (induced) and 736 
control (uninduced) groups were assessed by comparing the mean fluorescence 737 
intensity (MFI) of the target fluorophore using an unpaired t-test with Welch correction to 738 
account for individual group variance. Multiple comparisons were corrected using the 739 
False Discovery Rate (FDR) method with a two-stage step-up procedure (Benjamini, 740 
Krieger, and Yekutieli) at an FDR threshold of 5%. 741 
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FACS Analysis of Mitochondrial Membrane Potential and CRISPR Screen Read-out via 742 
Amplicon Sequencing 743 

For our mitochondrial assays we used a nearly identical library (same backbone, guide 744 
density, and control set) screened exclusively in the H1 inducible Cas9 (H1-iCas9) 745 
hPSC line. Mitochondrial inner membrane potential (Δψm) was measured in H1-iCas9, 746 
following differentiation to NPCs or iGlut on day 21. Cells were harvested, counted, and 747 
aliquoted at 1 × 10^6 cells per sample. JC-1 dye (MitoProbe™ JC-1 Assay Kit; 748 
Invitrogen #M34152) was dissolved in DMSO at a stock concentration of 200 µM and 749 
added to each sample to achieve a final concentration of 2 µM, then incubated for 30 750 
min at 37 °C in 5% CO₂. A 50 µM CCCP control was included to induce complete 751 
mitochondrial depolarization. After staining, cells were washed once in their respective 752 
culture medium, resuspended in FACS buffer (Invitrogen eBioscience Staining Buffer 753 
#00422226), and analyzed immediately on a Thermo Fisher “Bigfoot” spectral cell sorter 754 
using 488 nm excitation with 525/50 nm (FITC) and 585/40 nm (PE) emission filters. 755 
Debris and doublets were excluded by forward/side scatter gating, and CCCP-treated 756 
samples were used to define FITC and PE gates. Approximately 1 × 10^6 events per 757 
sample were recorded. Cells were then pelleted (300 × g, 5 min) and genomic DNA 758 
extracted using the Qiagen DNeasy Blood & Tissue Kit (#69504). 759 

UMI-tagged amplicon libraries were generated in three PCR steps. In PCR-1, genomic 760 
DNA was amplified with Platinum™ II Hot-Start PCR Master Mix (Invitrogen, 761 
#14000012) and UMI-containing primers (Forward: 5′-762 
ACACTCTTTCCCTACACGACGCTCTTCCGATCTACGTGACGTAGAAAGTAATAATTT763 
CTTGGGT-3′; Reverse: 5′-764 
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTN(25)NNNNNNNNNACTCGGTGC765 
CACTTTTTCAA-3′) under the following conditions: 94 °C for 2 min; 4–6 cycles of 98 °C 766 
for 5 s, 60 °C for 15 s, 60 °C for 30 s. The resulting ~180 bp products were purified and 767 
concentrated using the Zymo DNA Clean & Concentrator-5 kit (#D4013) and eluted in 768 
10 µL nuclease-free water (Thermo Fisher #AM9938). In PCR-2, purified product was 769 
amplified with adaptor primers (Forward: 5′-770 
ACACTCTTTCCCTACACGACGCTCTTCCGATCT-3′; Reverse: 5′-771 
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3′) for 22 cycles under identical 772 
cycling conditions in a ~20 µL reaction. A seven-cycle indexing PCR (PCR-3) was 773 
performed by the sequencing facility Yale Center for Genome Analysis (YCGA) prior to 774 
sequencing. Final libraries were sequenced on an Illumina NovaSeq platform (paired-775 
end 150 bp, 5 million reads per sample). 776 

Flanking sequences on both sides of each gRNA were trimmed using BBDuk, and 777 
reads were then mapped to gRNA reference sequences and counted using 778 
MAGeCK150. Raw counts for each gRNA were normalized to counts of scrambled 779 
gRNA. Abundance of each target gene was then calculated by summing of all gRNAs 780 
targeting that gene. Log2-transformed fold changes of gRNA-targets abundance were 781 
compared between PE-high samples and FITC-high samples.  782 

Immunostaining. Cells were fixed with fixative solution (4 % sucrose and 4 % 783 
paraformaldehyde prepared in Dulbecco’s Phosphate Buffered Saline (DPBS)) for 10 784 
min at room temperature (RT). Following this, cells were washed twice with DPBS and 785 
incubated in blocking solution (2% normal donkey serum prepared in DPBS) 786 
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supplemented with 0.1% Triton for two hours at RT. After this, cells were incubated 787 
overnight at 4 °C in the primary antibody solution prepared in blocking solution. Cells 788 
were washed three times with DPBS, incubated at RT in secondary antibody prepared 789 
in blocking solution, then washed three times with DPBS. In the second wash, cells 790 
were incubated in DBPS supplemented DAPI (Sigma D9542,1 μg/mL) for 2 min at RT. 791 

Antibody Species Vendor Catalog # Dilution 

anti-MAP2 chicken Invitrogen, Abcam 
PA1-10005, 

ab5392 
1:1000 

anti-Nestin rabbit Millipore ABD69 1:200 

anti-vGLUT1 rabbit Synaptic systems 135-303 1:200 

anti-GABA rabbit Sigma-Aldrich A2052 1:200 

TOMM20 mouse Santa Cruz Biotechnology sc-17764 1:200 

Total 
OXPHOS 

n/a Abcam AB-317270 1:500 

anti-mouse donkey Jackson ImmunoResearch 715-605-151 1:500 

anti-rabbit donkey Jackson ImmunoResearch 711-545-152 1:500 

anti-chicken donkey Jackson ImmunoResearch 
715-605-150, 
703-545-155 

1:500 

Fixed cultures were acquired using a DragonFly Confocal Dual Spinning Disk confocal, 792 
at 60x magnification and 1.4 numerical aperture. All images were acquired with a fixed 793 
laser intensity and exposure time across experimental conditions. Four images were 794 
acquired per well, and 4-10 wells were acquired per experimental condition. Each well 795 
represents a biological replicate and statistical datapoint. Therefore, each replicate 796 
represents hundreds of μm2 of neuronal area and tens of thousands of individual 797 
mitochondria. 798 

Mitochondria morphology features were determined using the Surface module of Imaris 799 
10.2. Likewise, OXPHOS complex features were determined using the surface module 800 
of Imaris 10.2. The Volume, Area and Sphericity features of the Surface modules were 801 
selected for analysis. Mitochondria networking features were determined using 802 
published, open-source methods179. A one-way ANOVA with a Šidák’s multiple 803 
comparisons test was performed on data on GraphPad Prism 10. 804 

To validate robustness and sensitivity of the microscopy assay, we treated D14 iGluts 805 
overnight with carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone/FCCP (Sigma-806 
Aldrich, SML2959) at 5 μM, 10 μΜ and 50 μΜ doses. Following this, we conducted the 807 
immunostaining, mitochondrial structural analysis and statistical analyses outlined 808 
above. 809 
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Seahorse XF Mito Stress Test:  Day�5 iGLUTs were plated at 810 
1.65�×�10��cells/well�in XF24 microplates (Agilent, 100777-004) and cultured to 811 
day�21. One hour prior to measurement, growth medium was removed, leaving 50�µL 812 
per well, and replaced with 1�mL of pre�warmed Seahorse XF DMEM (Agilent, 813 
103575-100) supplemented with 25�mM glucose (Agilent, 103577-100) and 0.23�mM 814 
pyruvate (Agilent, 103578-100). Plates were equilibrated for 1�h at 37�°C in a 815 
non�CO₂ incubator. Immediately before the assay, the medium was replaced with 816 
500�µL of fresh assay buffer. Oxygen�consumption rate (OCR) was recorded on a 817 
Seahorse�XFe24 Analyzer (Agilent) using the standard Mito Stress Test. The program 818 
consisted of three sequential injections—1.5�µM oligomycin (Sigma-Aldrich, 75351), 819 
1.5�µM carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone/FCCP (Sigma-Aldrich, 820 
C2920), and a mix of 0.5�µM rotenone (Sigma-Aldrich, R8875)�+�0.5�µM 821 
antimycin�A (Sigma-Aldrich, A8674)—separated by four measurement phases 822 
(baseline plus post�injection 1–3). Each phase comprised three cycles of 3�min 823 
mixing, 2�min waiting, and 3�min measurement. After the assay, cells were lysed 824 
using M-PER™ Mammalian Protein Extraction Reagent (ThermoFisher, 78501) 825 
supplemented with cOmplete™ Mini Protease Inhibitor Cocktail (Sigma-Aldrich, 826 
11836153001) and PhosSTOP™ (Sigma-Aldrich, 4906845001), according to the 827 
manufacturer’s instructions. Total protein concentrations were determined using the 828 
Pierce™ Dilution-Free™ Rapid Gold BCA Protein Assay (ThermoFisher, A55860), and 829 
OCR values were normalized to total protein content. 830 

CRISPR organoid assays: H1-hESC-iCas9 cells were transduced with a pooled gRNA 831 
library containing four gRNAs per target gene, with 20% of the library comprising non-832 
targeting gRNAs. Following selection with 1 µg/mL puromycin, the established cell line 833 
was used to generate cortical organoids following a well-established protocol151 with 834 
slight modifications. In brief, embryoid bodies (EBs) were generated using AggreWell 835 
plates (Stemcell Technologies) according to the manufacturer’s instructions. Once 836 
formed, EBs were transferred to ultralow-attachment 10 cm plates (Corning) for further 837 
culture. Patterning was initiated using StemFlex base media (A3349401, Gibco) 838 
supplemented with 100 nM LDN193189 (x) and 10 µM SB431542 (x). The media was 839 
refreshed daily. Organoids were cultured on an orbital shaker at 53 rpm for the duration 840 
of the protocol. On Day 6, the patterning media was replaced with growth media; 841 
Neurobasal A medium (10888022, Gibco), 1× GlutaMAX (35050061, Gibco), and 1× 842 
B27 (12587010, Gibco), supplemented with 20 ng/mL FGF (PeproTech) and 20 ng/mL 843 
EGF (PeproTech). On Day 14, Cas9 expression was induced by treating the organoids 844 
with 2 µg/mL doxycycline (Sigma-Aldrich) for 72 hours. From Day 25, FGF and EGF 845 
were replaced with 20 ng/mL BDNF (PeproTech) and 20 ng/mL NT-3 (PeproTech). 846 
Media changes were performed every other day. Starting from Day 42, organoids were 847 
maintained in growth media without additional supplements. Media was refreshed 2–3 848 
times per week.  849 

The organoids were maintained in culture for ~80 days, at which point five organoids 850 
from three biological replicates were collected for DNA extraction using the DNeasy 851 
Blood & Tissue Kit (#69504, Qiagen). Extracted DNA was subjected to PCR amplicon 852 
sequencing with unique molecular identifiers (UMIs) using a three-step PCR protocol. In 853 
the first step (PCR-1), UMI-containing primers (5’-854 
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ACACTCTTTCCCTACACGACGCTCTTCCGATCTACGTGACGTAGAAAGTAATAATTT855 
CTTGGGT-3’) and (5’-856 
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTN(25252525)NNNNNNNNNACTC857 
GGTGCCACTTTTTCAA-3’) were used for 4 cycles. PCR-2 utilized adaptor primers (5’-858 
ACACTCTTTCCCTACACGACGCTCTTCCGATCT-3’) and (5’-859 
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3’) for 22 cycles. PCR-3, 860 
performed by the sequencing facility, added sample-specific indexing in 7 additional 861 
cycles. The prepared libraries were sequenced on a NovaSeq platform with paired-end 862 
150 bp reads, generating 10 million reads per sample at the Yale Center for Genomic 863 
Analysis (YCGA). 864 

Fragments amplified by PCR were sequenced on NovaSeq 6000 sequencer pair end at 865 
150bp with ~10 million reads per sample. Flanking sequence on both side of gRNAs 866 
were trimmed using BBDuk, and reads were then mapped to gRNA reference 867 
sequences and counted using MAGeCK package150. Raw counts for each gRNA were 868 
normalized to counts of scrambled gRNA. Abundance of each gRNA-target genes were 869 
then calculated by sum of all gRNAs targeting that gene after excluding gRNAs with low 870 
KO-efficiency (<5%). Average Log2-transformed fold change of gRNA-targets 871 
abundance were compared between doxycycline-induced versus uninduced samples on 872 
day 77 samples.  873 

Analysis of single-cell CRISPRko screens in NPCs, DIV 7, DIV 21 iGLUTs and DIV 36 874 
iGABAs. mRNA sequencing reads were mapped to the GRCh38 reference genome 875 
using the Cellranger Software. To generate count matrices for GDO (gRNA) libraries, 876 
the kallisto indexing and tag extraction (kite) workflow were used. Count matrices were 877 
used as input into the R/Seurat package152 to perform downstream analyses, including 878 
QC, normalization, cell clustering, GDO demultiplexing, and covariate regression71,153. 879 

Normalization and downstream analysis of RNA data were performed using the Seurat 880 
R package (v.5.1.0), which enables the integrated processing of multimodal single-cell 881 
datasets. CRISPR-screen experiments in each cell-type were processed independently. 882 
Within each cell-type, ~100-80,000 cells were sequenced across 4 lanes. gRNA and 883 
RNA UMI feature counts were filtered removing the top and bottom decile of cells based 884 
on distribution of counts in each cell-type. The percentage of all the counts belonging to 885 
the mitochondrial, ribosomal, and hemoglobin genes calculated using 886 
Seurat::PercentageFeatureSet were filtered with cell-type specific thresholds, given the 887 
relatively high proportion of mitochondrial genes expressed in neurons. Mitochondrial, 888 
ribosomal, and hemoglobin genes as well as MALAT1 were removed 889 
(^RP[SL][[:digit:]]|^RPLP[[:digit:]]|^RPSA|^HB[AEGQ][[:digit:]]|^HB[ABDMQ]|^MT-890 
|^MALAT1$). Lowly expressed genes, those that had at fewer than 2 read counts in 891 
90% of samples were also removed. Hashtag and guide-tag raw counts were 892 
normalized using centered log ratio transformation, where counts were divided by the 893 
geometric mean of the corresponding tag across cells and log-transformed. gRNA 894 
demultiplexing was performed using the Seurat::MULTIseqDemux function for each 895 
lane individually and then counts were merged across lanes (SI Fig. 3B). In NPCs, 896 
94,363 cells were retained after filtering and removal of negatively assigned cells with 897 
62,7% classified as doublets and 37.3% classified as singlets. In DIV7 and DIV21 898 
iGLUTs, 57,685 and 31,473 cell were retained with 34% and 9.8% doublets and 66% 899 
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and 90.2% singlets respectively. In DIV35 iGABAs, 64,462 cells were retained with 900 
48.3% doublets and 51.7% singlets. For all downstream analysis only cells with “singlet” 901 
gRNA classification were used (26,549-38,097 cells per experiment) (SI Fig. 4C-E). 902 
Number of singlet cells by gRNA per cell-type shown in SI Fig. 6AB. 903 

Cell-type specific population heterogeneity correction. Gene-expression based 904 
clustering was largely driven by cellular heterogeneity, cell quality, and sequencing lane 905 
effects. gRNA identity was not correlated with these covariates (SI. Fig. 7), so we 906 
adjusted for transcriptomic variability arising from cellular heterogeneity by applying 907 
maturity and cellular subtype scores across both perturbed and non-perturbed cells. 908 
First, variation related to cell-cycle phase of individual cells was accounted for by 909 
assigning cell cycle scores using Seurat::CellCycleScoring which uses a list of cell cycle 910 
markers154 to segregate by markers of G2/M phase and markers of S phase. Second, to 911 
address variance due to cellular heterogeneity within a single experiment, we adapted 912 
the method applied by Seurat::CellCycleScoring to calculate a “Maturity. Score” and 913 
"Subtype.Score” for each cell based on cellular subtype (more variable in mature 914 
GABAergic neurons) and developmental time-point specific markers (mora variable in 915 
NPCs and immature iGLUTs) (SI Table 2-3). Cells with outlier maturity scores and 916 
subtype scores were removed from downstream analyses. RNA UMI count data were 917 
then normalized, log-transformed and the percent mitochondrial, hemoglobulin, and 918 
ribosomal genes (markers of cell quality), lane, cell cycle scores (Phase), and maturity 919 
scores regressed out using Seurat::SCTransform. The scaled residuals of this model 920 
represent a ‘corrected’ expression matrix, that was used for all downstream analyses.  921 

Although demultiplexing assigned the correct guide identity to each cell, to remove 922 
“false positives” whereby gRNAs were assigned but gene expression was unperturbed, 923 
the transcriptomes of gRNA clusters were evaluated relative to scramble gRNAs, 924 
ensuring that cells assigned to a guide-tag identity class demonstrated successful 925 
perturbation of the targeted NDD gene. To remove subsequent “false negatives”, 926 
whereby a successful CRISPR-KO may not result in significant down-regulation of the 927 
targeted gene71 yet still achieve an overall transcriptomic profile distinct from scramble 928 
populations, we performed ‘weighted-nearest neighbor’ (WNN) analysis to assign 929 
clusters based on both guide-tag identity class and gene expression72. To identify 930 
successfully perturbed cells, the transcriptomes of gRNA clusters were compared to 931 
Scramble-gRNA control clusters by differential gene expression analysis (Wilcoxon 932 
Rank Sum) comparing each cluster to all other clusters. Non-targeting WNN clusters 933 
and KO gRNA WNN clusters were filtered by setting a quantile base average 934 
expression threshold of target genes based on the distribution of target gene average 935 
expression across all other clusters. Clusters were the collapsed by gRNA identity; 936 
gRNAs with less than 75 cells were removed from analysis. These cells were then used 937 
for downstream differential gene-expression analyses155. For each cell-type individually, 938 
single-cell gene expression matrices were PseudoBulked using 939 
scuttle::aggregateAcrossCells function across lanes (4 pseudo-bulk samples per 940 
perturbation), lowly-expressed genes were removed (leaving 18-22,000 genes) followed 941 
by edgeR/limma differential gene expression analysis. Concordance between Wilcox-942 
rank sum differential gene expression analysis using single-cell data and limma:voom 943 
using PseudoBulked data was assessed for each gene.  944 
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Altogether, Wilcoxon Rank Sum was applied to measure NDD gene knockdown from 945 
single-cell DEG analysis. Given the concordance between the DEG results using single-946 
cell Wilcox and pseudo-bulk limma:voom (SI Fig. 6C), all main figure and all SI figures 947 
thereafter applied pseudobulked data analyzed with limma. 948 

To validate whether the high correlation within cell type was due to exactly the same 949 
scramble control cells, we re-performed DEGs using random selection of subset of 950 
scramble cells for each cell type (SI Fig. 8). Briefly, for each gene, 50% (if number of 951 
pseudobulked sample cells > 50) or 80% (if number of pseudobulked sample cells < 50) 952 
of scramble cells were randomly selected using sample function from R. DEGs were 953 
then performed as described above using limma/dreamlet package between KOs and 954 
subset of scrambles different among genes. The process was repeated three times to 955 
avoid random selection bias and median of each gene logFC was used as the final 956 
logFC. Average overlap of random scramble cells across different genes is 957 
approximately 50%.  958 

Meta-analysis of gene expression across perturbations73. Across NDD KOs, DEGs were 959 
meta-analyzed (METAL156), and “convergent” genes were defined as those with 960 
significant and shared direction of effect across all NDD gene perturbations and with 961 
non-significant heterogeneity (FDR adjusted pmeta<0.05, Cochran’s heterogeneity Q-test 962 
pHet > 0.05). To test convergence between NDD-KOs, meta-analyses were performed 963 
across all possible combinations of 2-5 KO perturbations with and without sub-setting 964 
for those shared across cell types (>40,000 combinations across cell-types) (SI Data 1). 965 

Bayesian Bi-clustering to identify Convergent Networks73. Across NDD KOs, convergent 966 
networks were generated by Bayesian bi-clustering157 and undirected gene co-967 
expression network reconstruction from the NDD KOs. Not constrained by statistical 968 
cut-offs, and able to capture the effect of more lowly expressed genes, convergent 969 
networks may be a more sensitive measure of convergence. Networks were built based 970 
on bi-clustering (BicMix)158 using log2CPM expression data from all the replicates 971 
across each of the NDD gene sets and Scramble gRNA jointly. We performed 40 runs 972 
of BicMix on these data and the output from iteration 400 of the variational Expectation-973 
Maximization algorithm was used. Target Specific Network reconstruction159 was 974 
performed to identify convergent networks across all possible combinations of the 9 975 
NDD gene KO perturbations shared across cell-types (n=502 combinations/cell-type) 976 
and randomly sampled combinations of 2-21 KO perturbations without sub-setting for 977 
those shared across cell types (n=1400-2300 combinations).  978 

Influence of Functional Similarity on Convergence Degree. To test the influence of 979 
functional similarity and brain co-expression between KOs on convergence and 980 
compare the degree of convergence between the same KOs in different cell-types we 981 
established two methods for defining and measuring convergence. First, gene-level 982 
convergence using meta-analysis as described above, with the strength of convergence 983 
for each set defined as ratio of convergent genes to the average number of DEGs.  984 

���� ����� �����	����� 
 ������	���� 
���������∑�
� ���
�� 

Second, network-level convergence based on undirected network reconstruction from 985 
Bayesian bi-clustering as described above. Bi-clustering identifies co-expressed genes 986 
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shared across the downstream transcriptomic impacts of any given set of KO 987 
perturbations, thus, the resolved networks are the transcriptomic similarities between 988 
distinct perturbations (convergence). We calculated the “degree of convergence” for 989 
each network based on previously described metric73. Briefly, convergence scores are 990 
based on (1) network connectivity as defined by the sum of the clustering coefficient 991 
(Cp) and the difference in average length path (Lp) from the maximum average length 992 
path resolved across all possible sets [(max)Lp-Lp] and (2) similarity of network genes 993 
based on biological pathway membership scored by taking the sum of the mean 994 
semantic similarity scores 160 between all genes in the network and (3) minimum 995 
percent duplication rate across 40 runs. Duplication thresholds are network-dependent 996 
and a metric of confidence in the connections.  997 

�����	� ����� �����	�����

  �� � ����� � ��� � ���� ���

�
 !����"� � #$����"� � ������"�%

� ��&��"���"�� 	&��/�(���� )&�� 

Functionally similarity scores across the NDD KO genes represented in each set was 998 
calculated using (1) Gene Ontology Semantic Similarity Scores: the average semantic 999 
similarity score based on Gene Ontology pathway membership within Biological 1000 
Pathway (BP), Cellular Component (CC), and Molecular Function (MF) between NDD 1001 
genes in a set160 and (2) brain expression correlation (BEC) score: based on the 1002 
strength of the correlation in NDD gene expression in the CMC (n=991 after QC) post-1003 
mortem dorsa-lateral pre-frontal cortex (DLPFC) gene expression data,. 1004 

We performed Pearson’s correlation analysis (Holm’s adjusted P) on similarity scores 1005 
and the degree of network convergence to determine the influence of the similarity of 1006 
the initial KO genes on downstream convergence. We compared the average strength 1007 
of convergence across cell-types using a parametric Welch’s F-test and pairwise 1008 
Games-Howell test. 1009 

Enrichment analysis of convergence for risk loci using MAGMA. We intersected cross 1010 
cell-type perturbation specific and cross perturbation cell-type-specific gene-level 1011 
convergence with genetic risk of psychiatric and neurological disorders/traits [attention-1012 
deficit/hyperactivity disorder (ADHD)161, anorexia nervosa (AN)162, autism spectrum 1013 
disorder (ASD)2, alcohol dependence (AUD)163, bipolar disorder (BIP)164, cannabis use 1014 
disorder (CUD)165, major depressive disorder (MDD)166, obsessive-compulsive disorder 1015 
(OCD)167, post-traumatic stress disorder (PTSD)168, and schizophrenia (SCZ)169, Cross 1016 
Disorder (CxD)170, Alzheimer disease (AD)171, Parkinson disease (PD)172, amyotrophic 1017 
lateral sclerosis (ALS)173, Tourette’s174, migraine175, chronic pain176, and neurotic 1018 
personality traits177 GWAS summary statistics] using multi-marker analysis of genomic 1019 
annotation (MAGMA)65. SNPs were mapped to genes based on the corresponding build 1020 
files for each GWAS summary dataset using the default method, snp-wise�=�mean (a 1021 
test of the mean SNP association). A competitive gene set analysis was then used to 1022 
test enrichment in genetic risk for a disorder across gene sets with an FDR<0.05. 1023 

To test if observed effects were due to the differential size of the gene sets for each 1024 
GWAS or owing to the fact that DEGs are more likely to include neural genes, which are 1025 
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more likely to be associated with brain disorder, GWAS sets were filtered for genes 1026 
expressed in each cell-type prior to enrichment testing and enrichment tests were 1027 
performed after randomly down-sampling GWAS Gene Sets to 100, 250, 500, 750, and 1028 
1000 genes (SI Fig. 9), performed ten times within each set size (i.e., 50 tests for each 1029 
GWAS).” 1030 

Over-representation analysis, functional enrichment annotation, and biological theme 1031 
comparison of convergence. To identify pathway enrichments unique to individual KOs, 1032 
convergent genes, and convergent networks based on zebrafish behavioral subgroups 1033 
(see zebrafish methods below), we performed biological theme comparison and GSEA 1034 
using ClusterProfiler178. Using FUMAGWAS: GENE2FUNC, the 102 ASD genes were 1035 
functionally annotated and overrepresentation gene-set analysis for each convergent 1036 
gene set was performed179. Using WebGestalt (WEB-based Gene SeT AnaLysis 1037 
Toolkit)180, over-representation analysis (ORA) was performed on all convergent gene 1038 
sets against publicly available genset lists GeneOntology, KEGG, DisGenNet, Human 1039 
Phenotype Ontology, and a curated gene list of rare-variant targets associated with 1040 
ASD,SCZ, and ID67. 1041 

Random forest prediction model of convergence strength. To determine how well 1042 
functional similarity between KOs can predict gene-level and network-level convergence 1043 
we trained a random forest model75 (randomForest package in R) for each type of 1044 
convergence, evaluated the model in an independent internal dataset, and validated the 1045 
model in an external CRISPRa activation screen73. Data from randomly tested gene 1046 
combinations (2-5 KO sets at the gene level and 2-10 KO sets at the network level) 1047 
tested across cell-types were randomly down-sampled into a training set (70%) and 1048 
testing set (30%) – all with comparable proportions of data by cell-type. The random 1049 
forest model was trained with bootstrap aggregation using C.C, M.F, B.P semantic 1050 
similarity scores, brain expression correlation, number of genes, and cell-type as 1051 
predictors. The Random Forest linear regression model was evaluated in the testing 1052 
data by comparing actual values to predicted values, estimating the root mean squared 1053 
error and performing Pearson’s correlations. Predictor models were validated using an 1054 
external dataset of 10 CRISPR-activation perturbations of SCZ common variant target 1055 
genes with multifunctional annotations broadly grouped as signaling/cell communication 1056 
(CALN1, NAGA, FES, CLCN3, PLCL1) and epigenetic/regulatory (SF3B1, TMEM219, 1057 
UBE2Q2L, ZNF804A, ZNF823)73, and assessed based the root mean squared error and 1058 
Pearson’s correlation between actual and predicted convergence strength.  1059 

LNCTP in silico model 1060 

To investigate the perturbation of ASD genes in silico, we adapt the Linear Network of 1061 
Cell-Type Phenotypes (LNCTP) model76 to predict the effects of changes in gene 1062 
expression in the prefrontal cortex, across neuronal and non-neuronal cell-types.  The 1063 
LNCTP is defined as an energy model representing the joint distribution of a collection 1064 
of phenotypes of interest conditioned on the genotype.  Since we are interested 1065 
primarily in the effects of gene expression perturbations on the expression of other 1066 
genes, we use only the imputation segment of the LNCTP model (excluding the 1067 
prediction of higher-order phenotypes and cell-cell interactions). 1068 

The probabilistic model for the imputation-based LNCTP may be expressed as: 1069 
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Here, ,�  represents the genotype of individual ", and *� represents bulk and cell-type 1072 
specific gene expression from individual ".  We further index the gene expression by � 1073 
cell-types (which are here: Excitatory Neurons, Inhibitory Neurons, Oligodendrocytes, 1074 
Astrocytes, Oligodendrocyte Precursor Cells, Endothelial Cells and Microglia), which will 1075 
be denoted *�, *�, … *�, and we will use *� to denote the bulk expression.  The variables 1076 7�…� represent the estimated cell-fractions in the bulk observations (predicted from the 1077 
genotype, ,).  The parameters of the model are : 
 ;4�…� , 0�…�< and 6 acts as a 1078 
hyperparameter.  The parameters 4�…� and 0�…� reflect the gene specific expression 1079 
biases and pairwise interactions respectively, whose non-zero elements are determined 1080 
by the sparsity structure arising from eQTLs and Gene Regulatory Network (GRN) 1081 
linkages respectively; the non-zero elements of 0� occur only between genes connected 1082 
in the GRN of cell-type �. 1083 

Further details on the training of the model in Eq. (1) can be found in76; here, we outline 1084 
the specific differences in the training for the purposes of our analysis.  As in76, we use 1085 
genetics and expression data from post-mortem PFC samples from the PsychENCODE 1086 
consortium.  However, we group together samples from all higher-order phenotypes 1087 
during training (control (CTR), schizophrenia (SCZ), bipolar disorder (BPD) and autism 1088 
spectrum disorder (ASD)), and split the data into three partitions of size 760, 100 and 1089 
100 for training, validation and testing respectively (each including samples from all 1090 
higher-order phenotypes).  Further, we include all 29 CRISPR targeted genes, 102 NDD 1091 
genes61, Transcription Factors76 and neuropsychiatric TWAS-selected genes76, and the 1092 
top 100 up and down regulated CRISPR convergent genes in iGLUT and iGABA cells 1093 
(400 genes in total), in the model, generating 1325 genes in total.  The eQTL and GRN 1094 
linkages from PsychENCODE are then restricted to this subset of genes.   1095 

LNCTP Simulating Perturbations 1096 

To perform perturbations in this model corresponding to the 29 CRISPR targeted genes, 1097 
we use the following perturbation-conditioned version of the LNCTP model: 1098 

������2*�,����,
��=,� , *�,��,
� 
 ;�, ��<5 
 exp2*�,����,
��=,� , *�,��,
� 
 ;�, ��<5 

 1099 
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where ���, ��� denotes the perturbed gene and cell type, whose expression is set to � or 1101 ��,  ?��� is a delta function whose value is 0 if expression � is true, and 1 otherwise, 1102 
and > is an arbitrarily large value.  We perturb each of the CRISPR targeted genes in 1103 
turn in the bulk network, using � 
 2, and applying a negative perturbation to mimic the 1104 
effect of the CRISPR perturbation.  We note that, since the model is trained on Z-scored 1105 
log-normalized expression counts, this corresponds to introducing a large negative fold-1106 
change to the selected gene.  The in silico predicted log fold-changes per individual 1107 
across all genes (per cell-type) are then calculated by comparing the expected values 1108 
before and after perturbation: 1109 

Δ�,�,
 
 B�������.|���C*�,�,
D � B�������.���,��,	�,
����,��� 
C*�,�,
D 

            (3) 1110 

and the final predicted log fold-changes are calculated by taking the expectation across 1111 
individuals.  We use the sampling approach in76 to evaluate the expectations in Eq. (3).  1112 

To perform perturbations across all 102 NDD genes, for efficiency we learn a reduced 1113 
model by remove the dependency on ,�  in Eq. (1).  We sample cell-type specific 1114 
expression values for each individual from the full model, and then fit the reduced model 1115 
by refitting the model parameters to maximize the likelihood of the full data vectors 1116 
(consisting of the original bulk and sampled cell-specific expression vectors for each 1117 
individual).  Perturbations are performed in the reduced model as in Eq. (2) and fold-1118 
changes are calculated as in Eq. (3), while removing the dependency on ,�  and the " 1119 
subscripts respectively. 1120 

LNCTP in silico convergent genes 1121 

To identify in silico convergent genes for a set of perturbations, E 
1122 ;����, ��
��, … , ���� , ��

� �<, we calculate Δ�,
 using Eq. (3) for each perturbation, writing  Δ�,

��,
� 1123 

for the log fold-change to ��, �� generated by applying perturbation ���, ���, and Δ�,

!  for 1124 

the set of log fold-changes by applying all perturbations in E.  Then, the set of in silico 1125 
convergent genes for E is found by selecting those for which �"#$%2Δ�,


! F CΔ�,

! G HD5 I1126 0.1, where �"#$%�. � is the p-value from a 2-tailed one-sample sign-test.  The threshold H 1127 

is introduced to reduce noise from perturbations which are estimated to generate small 1128 
log fold-changes, and throughout we set H 
 0.3. 1129 

For the comparison of in silico convergent genes derived from different perturbation sets 1130 E, we apply two-sided hypergeometric tests to the gene sets defined as above (using all 1131 
1325 genes in our model as the background set).  For Gene Set Enrichment Analysis of 1132 
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convergent genes derived from E, we apply clusterprofiler178 to the full set of genes in 1133 
our model, ranked by �"#$%2Δ�,


! F CΔ�,

! G HD5 as defined above. 1134 

LNCTP semantic distance test 1135 

To test the semantic distance between enriched terms for two sets of perturbations E� 1136 
and E�, we generate the set of enriched terms (� and (� by applying GSEA to each set 1137 
as described above (using Benjamini Höchberg correction and an FDR threshold of 0.2 1138 
to select enriched terms (� and (�).  We then calculate the similarity between terms �� 1139 
and �� by evaluating ����, ��� 
 |
���� M 
����|/|
���� N 
����|, where 
��� denotes the 1140 
set of genes occurring in the leading edge of term �.  We test for a significant semantic 1141 
distance between E� and E� by evaluating ����, ��� between all pairs �� O E�, �� O E�, 1142 
versus all pairs �� O E�, �� O E� and �� O E�, �� O E�, and applying a one-sided rank-sum 1143 
test for the for a smaller similarity in the former pairs versus the latter. 1144 

Transcriptional correlations between hiPSC-derived neural cells, fetal and adult brain 1145 
cell types, and the zebrafish brain. 1146 

We compared wild-type (WT) zebrafish brain expression to gene expression in our 1147 
hiPSC-derived models and to sign-cell expression data for the fetal and adult PFC 1148 
(PsychENCODE181,182: 1149 
http://resource.psychencode.org/Datasets/Derived/SC_Decomp/DER-1150 
20_Single_cell_expression_processed_TPM.tsv). We first filtered zebrafish gene names 1151 
and converted them to the appropriate Homo sapiens orthologs using the R package 1152 
orthogene (v3.2.1183); genes without matched orthologs were dropped from both 1153 
species. Pseudo-bulk expression data from scramble control cells were used as the 1154 
baseline expression across NPCs, D7 iGLUTs, D21 iGLUTs, and D36 iGABAs. 1155 
Pearson’s correlation coefficients between in vitro cells, fetal and adult postmortem 1156 
brain cells, and zebrafish brain were calculated and a Bonferroni correction applied. 1157 

Zebrafish 1158 

All procedures involving zebrafish were conducted in accordance with Institutional 1159 
Animal Care and Use Committee (IACUC; Protocol #2024-20054) regulatory standards 1160 
at Yale University. Zebrafish larvae were raised at 28°C on a 14:10 hour light:dark 1161 
cycle. Larvae were grown in 150 mm Petri dishes in blue water (0.3g/L Instant Ocean, 1 1162 
mg/L methylene blue, pH 7.0) at a density of 60-80 larvae per dish. Behavioral assays 1163 
were conducted in zebrafish larvae at 5-7 dpf. At these developmental stages, sex is not 1164 
yet determined.  1165 

Zebrafish mutant generation 1166 

We performed automated, high-throughput, quantitative behavioral profiling of larval 1167 
zebrafish to measure arousal and sensorimotor processing as a readout of circuit-level 1168 
deficits resulting from gene perturbation.60 We quantified 24 parameters across sleep-1169 
wake activity and visual-startle responses in 18 stable homozygous mutant or F0 1170 
mosaic crispant lines for 15 NDD genes (SI Tables 4-5). Stable zebrafish lines were 1171 
generated by our lab (arid1bΔ7/Δ7, chd2Δ7/Δ7,  chd8Δ7/Δ7, chd8Δ5/Δ5, kdm5baΔ17/Δ17bΔ14/Δ14, 1172 
kdm5ba4i/4ibΔ4/Δ4)60 or provided as a generous gift from the Thyme lab 1173 
(ash1l1i,Δ60,19i/1i,Δ60,19i, kmt5bΔ208,1i,Δ5/Δ208,1i,Δ5, kmt2caΔ82,17i/Δ82,17ibΔ6,Δ29/Δ6,Δ29, 1174 
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nrxn1aΔ218/Δ218)184,185. F0 crispants for the following genes were generated according to 1175 
ref. 186: chd2, kdm6bab, mbd5, phf12ab, phf21aab, skiab, smarcc2, wacab. Briefly, we 1176 
designed two CRISPR crRNAs per allele, prioritizing early exons for targeting. CRISPR 1177 
RNPs were assembled individually and then combined prior to injection at the one-cell 1178 
stage. The number of scrambled guides injected into the control group was matched to 1179 
the number of CRISPR guides used for the experimental group. Injected embryos were 1180 
raised to 5 dpf at which point the behavioral assays (described below) were conducted. 1181 
We identified unique behavioral fingerprints for each NDD gene mutant, revealing 1182 
convergent and divergent phenotypes across mutants (SI Fig. 22B). To classify 1183 
convergent behavioral subgroups that may share circuit-level functions, we performed 1184 
correlation analyses with hierarchical clustering across mutants. We identified four 1185 
distinct subgroups of NDD genes with highly correlated behavioral features (Fig. 7A).  1186 

Behavioral assays 1187 

Larvae were placed into individual wells of a 96 well plate (7701-1651; Whatman, 1188 
Clifton, NJ) containing 650 μL of standard embryo water (0.3 g/L Instant Ocean, 1 mg/L 1189 
methylene blue, pH 7.0) per well within a Zebrabox (Viewpoint LifeSciences; Viewpoint 1190 
Life Sciences, Montreal, Quebec, Canada). Locomotion was quantified with automated 1191 
video-tracking system (Zebrabox and ZebraLab software). The visual-startle assay was 1192 
conducted at 5 days post fertilization (dpf) as described60. To assess larval responses to 1193 
lights-off stimuli (VSR-OFF), larvae were acclimated to white light for 1 hour, and 1194 
baseline activity was tracked for 30 minutes followed by five 1-second dark flashes with 1195 
intermittent white light for 29 seconds. To evaluate larval responsivity to lights-on stimuli 1196 
(VSR-ON), the assay was reversed, where larvae were acclimated to darkness for 1 1197 
hour, and baseline activity was tracked for 30 minutes followed by five 1-second white 1198 
light flashes with intermittent darkness for 29 seconds. For VSR-OFF and VSR-ON, six 1199 
behavioral parameters were quantified using custom MATLAB code60 (available on 1200 
github at https://github.com/ehoffmanlab/Weinschutz-Mendes-et-al-2023-behavior; 1201 
DOI:10.5281/zenodo.7644898): (i) average intensity of all startle responses; (ii) average 1202 
post-stimulus activity; (iii) average activity after first stimulus; (iv) stimulus versus post-1203 
stimulus activity; (v) intensity of responses to the first stimulus; (vi) intensity of 1204 
responses to the final stimulus. The sleep-wake paradigm was conducted between 5-7 1205 
dpf, following the VSR-OFF and VSR-ON assays. During a 14h:10h white light:darkness 1206 
cycle, larvae activity and sleep patterns were tracked within the Zebrabox and analyzed 1207 
with custom MATLAB code60 (available on github at (https://github.com/JRihel/Sleep-1208 
Analysis/tree/Sleep-Analysis-Code; DOI: 10.5281/zenodo.7644073). Six behavioral 1209 
parameters were quantified for daytime and nighttime: (i) total activity; (ii) total sleep; (iii) 1210 
waking activity; (iv) rest bouts; (v) sleep length; (vi) sleep latency. Across VSR-OFF, 1211 
VSR-ON, and sleep-wake assays, we analyzed 24 parameters.  1212 

Behavioral analysis 1213 

Linear mixed models (LMM) were used to compare phenotypes of each behavioral 1214 
parameter between homozygous mutant versus wild-type or crispant versus scramble-1215 
injected fish for each gene of interest. Variations of behavioral phenotypes across 1216 
experiments were accounted for by including the date of the experiment as a random 1217 
effect in LMM. Hierarchical clustering analysis was performed to cluster mutants and 1218 
behavioral parameters based on signed -log10-transformed p-values from LMM, where 1219 
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sign indicates direction of the difference in behavioral phenotype when comparing 1220 
stable mutant to wild-type or crispant to scrambled-injected. Pearson correlation 1221 
analysis was used to assess correlations between mutants based on the difference in 1222 
the 24 parameters. Difference was evaluated using signed -log10-transformed p-values. 1223 

Drug prioritization based on zebrafish pharmaco-behavioral profiles 1224 

NDD gene-associated mutant and crispant behavioral phenotypes were compared to a 1225 
dataset of 376 U.S. FDA-approved drugs that were screened for their behavioral effects 1226 
in larval zebrafish using the visual-startle and sleep-wake assays described above. 1227 
These drugs have a significant effect on at least two behavioral parameters (LMM, 1228 
p<0.05/3, corrected for three behavioral assays). Pearson’s correlation analysis was 1229 
used to identify drugs that significantly correlate (correlation >0.5, p<0.05, t-statistic) or 1230 
anti-correlate (correlation <-0.5, p<0.05, t-statistic) with mutant behavioral signatures (SI 1231 
Data 2-3). 1232 

Drug prioritization based on perturbation signature reversal in LiNCs Neuronal Cell 1233 
Lines. To identify drugs that could reverse cell-type specific convergence across 1234 
different KOs, we used the Query tool from The Broad Institute’s Connectivity Map 1235 
(Cmap) Server78. Briefly, the tool computes weighted enrichment scores (WTCS) 1236 
between the query set and each signature in the Cmap LiNCs gene expression data 1237 
(dose, time, drug, cell-line), normalizes the WTCS by dividing by the signed mean within 1238 
each perturbation (NCS), and computes FDR as fraction of “null signatures” (DMSO) 1239 
where the absolute NCS exceeds reference signature. We prioritized drugs that were 1240 
negatively enriched for convergent signatures specifically in neuronal cells (either 1241 
neurons (NEU) or neural progenitor cells (NPCs) with NCS <= -1.00, FDR<=0.05) and 1242 
filtered for drugs that had clinical data in humans and paired behavioral phenotyping in 1243 
zebrafish (SI Data 2). 1244 

Targeted drug rescue of behavioral phenotypes in zebrafish 1245 

For mutant-x-drug experiments, larval activity was monitored from 5-7 dpf using the 1246 
behavioral assays described above. Individual wild-type zebrafish larvae were added to 1247 
each well of a 96-well plate containing 650 μl of standard embryo water. A 5 mM stock 1248 
solution of each compound dissolved in DMSO or DMSO alone (control) was pipetted 1249 
directly into each well after which the visual-startle and sleep-wake assays were 1250 
performed. Drugs were tested at a final concentration of 10 μM (0.1% DMSO final 1251 
concentration) in 12-24 background-matched homozygous or wild-type larvae or 24 1252 
crispant or scrambled control-injected larvae with genotyping conducted after each 1253 
experiment to confirm genotypes for stable mutant lines and confirm on-target mutations 1254 
in crispants. 1255 

For behaviors that were nominally significantly different between mutant+DMSO and 1256 
WT+DMSO (p<0.06), we characterized the effect of the mutant-x-Drug on behavior as: 1257 
i) “exacerbated” [significant effect mutant+Drug-v-WT > significant effect mutant-v-WT] if 1258 
mutant behavior p<=0.06 and mutant-x-drug behavior p.value <= mutant behavior 1259 
p.value with increased absolute beta values (i.e., stronger p-value with appreciable 1260 
difference in the magnitude of effect but not direction); ii) “unchanged” [significant effect 1261 
mutant+drug-v-WT = significant effect mutant-v-WT]; iii) “partial rescue” [significant 1262 
effect mutant+Drug-v-WT < significant effect mutant-v-WT], if mutant behavior p<=0.06 1263 
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and mutant-x-drug behavior p>0.06 or if mutant behavior p.value <= mutant-x-drug 1264 
behavior p.value with reduced effects on the absolute beta value; iv) “rescued” [sig. 1265 
effect mutant-v-WT, no sig. effect mutant+Drug-v-WT], mutant behavior p<=0.06 and 1266 
mutant-x-drug behavior p>0.06; v) “over-corrected” [mutant+Drug-v-WT opposite 1267 
direction of sig. effect mutant-v-WT]. mutant behavior p<=0.06 and mutant-x-drug 1268 
behavior p<=0.06, with opposing directions of effect. Note “drug specific/side-1269 
effects” indicate significant mutant-by-drug effects.  1270 
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FIGURES 1920 

Figure 1: Knock-out (KO) effects of 21 NDD risk genes are most strongly 1921 
correlated in mature neurons. 1922 

Figure 2: Gene-level convergence is greatest in mature glutamatergic neurons 1923 

Figure 3. Network-level convergence resolves cell-type-specific and 1924 
developmental-specific node genes. 1925 

Figure 4. Functional similarity and brain co-expression between NDD genes 1926 
predict gene-level and network-level convergence, with unique influences by cell-1927 
type. 1928 

Figure 5. LNCTP predicts effects of convergent genes in silico. 1929 

Figure 6. NDD convergence predicts shared effects on mitochondrial function. 1930 

Figure 7. NDD gene mutants with shared behavioral phenotypes in zebrafish 1931 
resolve unique and cell-type-specific gene-level convergent signatures and are 1932 
rescued by predicted medications. 1933 
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1935 
Figure 1. Knock-out (KO) effects of 21 NDD risk genes are most strongly1936 
correlated in mature neurons. (A) List of rare-variant target risk genes associated1937 
neurodevelopmental disorders (NDD) separated by chromatin modifiers and neuronal1938 
communication genes. Bold gene names indicate strong associations with ASD based1939 
on Fu et al. 2022. Gene targets of rare variants associated with schizophrenia (SCZ),1940 
epilepsy (EPI) and bipolar disorder (BIP) are annotated. (B) Strength of association with1941 
ASD, as estimated by distribution of posterior probability (p.p.) scores from Fu et al.1942 
2022; 4 out of 29 NDD genes were more strongly associated with developmental delay1943 
(DD) (blue; p.p.<=0.1) while 16 out of 29 were more strongly associated with ASD (red;1944 
p.p.>=0.9). Further annotation of individual risk genes are shown in SI Figures 1-2. (C)1945 
MAGMA enrichments of targeted genes across GWAS for anorexia nervosa (AN),1946 
chronic pain, amyotrophic lateral sclerosis (ALS), SCZ, and BIP, BIP-I (bipolar subtype1947 
1), and BIP-II (bipolar subtype 2). #nominal p-value<0.05, *FDR<0.05, **FDR<0.01,1948 
*FDR<0.001 (D) Schematic of hiPSC-derived cell-type specific scCRISPR-KO screen.1949 
Representative immunofluorescence for markers of NPCs (DAPI/Nestin), mature1950 
iGLUTs (DAPI/MAP2/vGLUT), and mature iGABAs (DAPI/MAP2/GABA). (E)1951 
Transcriptomic impact of NDD gene KO represented as the number of nominally1952 
significant (p<0.01) differentially expressed genes (DEGs).  (i) Pearson’s correlation1953 
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matrix of log2FC DEGs across all NDDs and cell-types. (ii) Cross cell-type correlation 1954 
network diagram across NDD perturbations (number of NDD gene knockout (KO) 1955 
perturbations resolved indicated in parentheses); the mature iGLUT cluster was most 1956 
dense, and the iNPC most sparse. 1957 

1958 
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1959 
Figure 2. Gene-level convergence is greatest in mature glutamatergic neurons. In1960 
total, nine NDD genes showed evidence of knockout across all four cell types: ARID1B,1961 
ASH1L, CHD2, MED13L, NRXN1, PHF21A, SETD5, SIN3A, SMARCC2. For these1962 
nine,  “convergent genes” are defined as those differentially expressed genes (DEGs)1963 
with significant and shared direction of effect across all NDD gene perturbations. (A)1964 
Schematic explaining cell-type specific convergence at the individual gene level via1965 
differential gene expression meta-analysis (FDR adjusted pmeta<0.05, Cochran’s1966 
heterogeneity Q-test pHet > 0.05). (B) Convergence across 9 NDD genes is unique to1967 
each cell type, using rank-rank hypergeometric (RRHO) test to explore correlation of1968 
convergent genes shared across 9 NDD perturbations (RRHO score = -log10*direction1969 
of effect) between cell-types. The top right quadrant represents down-regulated genes1970 
(meta-analysis z-score >0) for the y-axis and x-axis cell-type. The bottom left quadrant1971 
represents up-regulated convergent genes (meta-analysis z-score <0) for the y-axis and1972 
x-axis cell-type. Significance is represented by color, with red regions representing1973 
significantly convergent gene expression. (C) (i) The average strength of convergence,1974 
measured as the ratio of convergent genes to the average number of DEGs across all1975 
152 unique combinations of 2-5 genes from the nine NDD genes, was highest in1976 
iGLUTs. (ii) The magnitude of convergence between the same NDDs tested in different1977 
cell types was highly correlated (Pearson’s correlation, Pholm<2.2e-16); with the1978 
strongest relationship between immature and mature iGLUTs. (D) Venn diagram1979 
representing the absolute overlap (regardless of direction of dysregulation) of cell-type1980 
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specific convergent genes shared across 9 NDDs. (E) (i) MAGMA enrichment –log10(p-1981 
value) of cell-type-specific (color of points) convergence and GWAS-risk associated 1982 
genes with significance after multiple testing correction indicated as follows: #unadjusted 1983 
p-value=<0.05, *FDR<=0.05, **FDR<0.01, ***FDR<0.001. The direction of the triangles 1984 
indicates a positive (upwards triangle) or negative (downwards triangle) enrichment 1985 
beta. (ii) Over-representation analysis (ORA) enrichment ratios of cell-type-specific 1986 
(color of bars) convergence and rare variant target genes. Significance after multiple 1987 
testing correction indicated as follows: #unadjusted p-value=<0.05, *FDR<=0.05, 1988 
**FDR<0.01, ***FDR<0.001. (F) Gene set enrichment analysis (GSEA) identified 1989 
downstream pathways involved in neural proliferation, neurite outgrowth, synaptic 1990 
vesicle transport, and mitochondrial function as cell-type specific targets of convergent 1991 
genes across 9 NDDs. Results were filtered for pathways with nominal p-values <0.05. 1992 
Normalized GSEA enrichment scores represent the direction of enrichment based on 1993 
the meta-analyzed Z-score for each convergent gene. Cell-type is represented by shape 1994 
and the size of each point represents the –log10(FDR). 1995 

1996 
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1997 

Figure 3. Network-level convergence resolves cell-type-specific and1998 
developmental-specific node genes. “Convergent networks” are co-expressed genes1999 
that share similar expression patterns across NDD gene perturbations, here resolved for2000 
the nine NDD knockouts resolved across all four cell types: ARID1B, ASH1L, CHD2,2001 
MED13L, NRXN1, PHF21A, SETD5, SIN3A, SMARCC2. (A) Schematic explaining cell-2002 
type specific convergence at the network level using Bayesian bi-clustering and2003 
unsupervised network reconstruction. (B) Strength of network convergence across all2004 
random combinations of 9 NDD KO perturbations by cell-type. (i) The mean strength of2005 
network convergence is significantly different by cell-type, with the highest convergence2006 
present in immature iGLUTs. The same KO combinations tested in one cell type may2007 
not resolve convergence in another cell type. Each point represents a resolved network,2008 
and its calculated convergence strength. Dots that represent the same combinations of2009 
KO perturbations, but tested in each cell type, are connected by a line. (C) Convergent2010 
network strength was most correlated between mature iGLUTs and iGABAs (Pearson’s2011 
Correlation Coefficient (PCC) = 0.6, PHolm <2.2e-16). Convergent network strength in2012 
iNPCs was not correlated with network strength in neurons. (D) Venn diagrams of the2013 
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total number of unique node genes within convergent networks for each cell-type. The 2014 
lack of overlapping node genes between cell types (D), as well as the weak correlations 2015 
of convergence strength between immature and mature cell-types (C), suggest greater 2016 
cell-type specificity in the magnitude of network-level convergence compared to gene-2017 
level convergence. (E) Enrichment ratios from over-representation analysis (ORA) of 2018 
cell-type specific (color of bars) convergent node genes for rare variant targets. 2019 
(#unadjusted p-value=<0.05, *FDR<=0.05, **FDR<0.01, ***FDR<0.001). (F, G) 2020 
Representative cell-type specific network plots for convergence across 15 genes 2021 
(ARID1B, ASH1L, ASXL3, BCL11A, KDM5B, CHD2, MBD5, MED13L, NRXN1, PHF12, 2022 
PHF21A, SETD5, SIN3A, SKI, SMARRC2) from (F) iNPCs and (G) mature iGLUTs. 2023 
Network genes were filtered for protein-coding genes, clustered, and annotated based 2024 
on the primary node gene for each cluster. Gene set enrichment analysis of the 2025 
networks identified unique functions by cell type.  Convergent networks in iNPCs were 2026 
enriched for pathways associated with neurogenesis (e.g., cell cycle, cell division, EPO 2027 
signaling), while in mature iGLUTs for pathways associated with synaptic function 2028 
(transmembrane transport and receptor signaling, secretory vesicles, SNARE complex).  2029 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 16, 2025. ; https://doi.org/10.1101/2024.08.23.609190doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.23.609190
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

2030 
Figure 4. Functional similarity and brain co-expression between NDD genes2031 
predict gene-level and network-level convergence, with unique influences by cell-2032 
type. (A) Schematic for training random forest models for gene and network-level2033 
convergence with external validation in a SCZ CRISPRa screen. (B) Predictor variables2034 
included in the model include scores of functional similarity, dorsolateral prefrontal2035 
cortex (DLPFC) brain co-expression, cell-type, and the number of KOs. (B.P score =2036 
semantic similarity of GO: Biological Process membership between KO genes; C.C.2037 
score = semantic similarity of GO: Cellular Component membership between KO2038 
genes; M.F score = semantic similarity of GO: Molecular functions membership2039 
between KO genes; B.E.C = dorsolateral prefrontal cortex expression correlations2040 
between KO genes; nKOs = number of KO genes tested for convergence). (C)2041 
Pearson’s correlations of predictor variables and gene-level and network-level2042 
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convergence (PBonferroni<=0.01**, PBonferroni<=0.01***). (D) Functional similarity, 2043 
brain co-expression, cell-type, and the number of KOs assayed strongly predicted gene-2044 
level convergence (97% variance explained by the model; mean of squared 2045 
residuals=0.02) and moderately predicted network-level convergence (53% variance 2046 
explained; mean of squared residuals=0.73). (i-ii) Importance of each of the predictor 2047 
variables was assessed by two metrics: the percent mean increase in squared residuals 2048 
(%IncMSE) and the increase in node purity. In the model – number of KO genes in a set 2049 
is the most important predictor of convergence based on %Inc MSE, but not node 2050 
purity. However, the impact of nKOs on gene-level convergence is much stronger – 2051 
likely an artifact of the method used for measuring convergence. For network level 2052 
convergence, each variable has a IncMSE between 20-30%. (E) Internal evaluation of 2053 
the model using 30% of the original data resulted in high concordance between 2054 
convergence predicted by the model and the measured convergence. Predicted gene-2055 
level (i) [gene-level convergence: n=19,823; Pearson’s R=0.984; p<2.2e-16; root mean 2056 
squared error (RMSE) =0.15] and network-level (ii) convergence [network-level 2057 
convergence: n=962; rho=0.722; p<2.2e-16; RMSE=0.85)] by the model strongly 2058 
correlated with the measured convergence in the testing sets. Correlation of predicted 2059 
vs. accrual convergence values are color-coded by cell-type with corresponding color-2060 
coded correlations and p-values listed in the upper right corners of the scatterplots. (F) 2061 
External validation in an independent scCRISPRa screen of SCZ target genes predicted 2062 
showed moderate, but significant, correlation between convergence predicted by the 2063 
model and the measured convergence. (i) gene-level (n=1013, R=0.14, p=1.1e-05, 2064 
RMSE=1.748) and (ii) network-level convergence (n=826, R=0.26, p=2.9e-14, 2065 
RMSE=0.68).  2066 
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 2067 
Figure 5. LNCTP predicts effects of convergent genes in silico.  (A) LNCTP2068 
imputation and perturbation model: an energy-based network model is trained to impute2069 
bulk and cell-type specific expression data in the prefrontal cortex over a population of2070 
post-mortem individuals from PsychENCODE using a panel of 1325 genes and2071 
embedded cell-type specific Gene Regulatory Networks (GRNs) (LNCTP in silico2072 
model); a chosen gene is then perturbed by fixing its expression, and the effects on2073 
other genes are predicted by the model; in silico category-specific convergent genes are2074 
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then identified by analyzing the fold-changes across subjects (LNCTP Simulating 2075 
Perturbations). (B) Predicted in silico log fold-changes for the in vitro positive and 2076 
negative convergent genes across the 29 CRISPR perturbations, in Bulk, Excitatory and 2077 
Inhibitory neuron networks (LNCTP Simulating Perturbations, 2-tailed t-test p-values 2078 
shown).  (C) Proportion of genes showing same direction fold-changes in in silico and in 2079 
vitro perturbations across classes of perturbation and cell-type (left), and the 2080 
intersection of convergent in silico genes across classes of perturbation (LNCTP in 2081 
silico convergent genes, synaptic-epigenetic genes reduced and ASD-DD genes 2082 
enriched, p<1e-3, 2-tailed hypergeometric test). (D) Venn diagram of in silico 2083 
convergent genes across all categories by clinical (ASD vs DD) or functional (synaptic 2084 
vs epigenetic) annotation. (E) Number of terms enriched for convergent genes across 2085 
all categories for 102 in silico perturbations. (F) Semantic distance of pairs of enriched 2086 
terms within or between sets determined by synaptic and epigenetic convergent gene 2087 
rankings (LNCTP semantic distance test, 2-tailed Mann Whitney test) (G) Percent of 2088 
concordant genes in each perturbation and ontology category within the leading-edge 2089 
enriched genes (LNCTP in silico convergent genes).  2090 
  2091 
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 2092 
Figure 6. NDD knock-outs converge on mitochondrial function. (A) Gene set2093 
enrichment analysis (GSEA) identified downstream pathways involved in neurogenesis,2094 
neurite outgrowth, synaptic biology, and mitochondrial function as cell-type specific2095 
targets of convergent genes across 15 NDD KOs (ARID1B, ASH1L, ASXL3, BCL11A,2096 
KDM5B, CHD2, MBD5, MED13L, NRXN1, PHF12, PHF21A, SETD5, SIN3A, SKI,2097 
SMARRC2) in iNPCs and mature iGLUTs. Results were filtered for pathways with2098 
nominal p-values <0.05. Normalized GSEA enrichment scores represent the direction of2099 
enrichment based on the meta-analyzed Z-score for each convergent gene. Cell-type is2100 
represented by shape and the size of each point represents the –log10(FDR). (B)2101 
Summary of network and gene-level pathway enrichments (from Fig. 2-3) for shared2102 
effects of nine and fifteen NDD KOs in iNPCs and mature iGLUTs. (C) Proliferation2103 
assessment of NPCs using Ki-67 median fluorescence intensity (MFI) measured with2104 
flow cytometry, wildtype (purple: no iCas9 induction) versus knockout (green:2105 
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doxycycline to induce iCas9). 4-6 replicates per condition, unpaired t-test with Welch 2106 
correction; p-values corrected for multiple comparisons using FDR. (D) Scatter plot of 2107 
gRNA log₂ fold-change (high- (PE-high) and low- (FITC-high) Δψm-sensitive dye JC-1 2108 
membrane-potential fractions) in NPCs (x-axis) and mature iGLUT neurons (y-axis), 2109 
with points colored by enrichment category (shared NPC and iGLUT in red; distinct 2110 
between NPC and iGLUT in blue). Right: Bar chart of –log₁₀(FDR) for over-represented 2111 
gene sets in the tene gene KOs enriched in both lineages. (E) (i) High resolution, high-2112 
throughput microscopy of mitochondrial morphology (scale bar 10 μm): an isolated 2113 
dendrite labelled with a dendritic marker (MAP2), mitochondrial marker (TOMM20) and 2114 
marker of the OXPHOS complex (Total OXPHOS) (scale bar 5 μm). (ii) Effect of 2115 
ARID1B-KO on mitochondrial sphericity and branch length independent of changes in 2116 
mitochondrial volume and surface area (SI Fig. 20-21). (iii) Effect of ARID1B-KO on 2117 
average fluorescence intensity of OXPHOS proteins. Each datapoint indicates one well 2118 
of a 96-well, representing hundreds of μm2 of neuronal area and tens of thousands of 2119 
individual mitochondria (*adjusted p<0.05, ** adjusted p<0.01). (F) Effect of NRXN1-KO 2120 
on maximal respiration and coupled respiration in iGLUTs. Oligo: oligomycin; FCCP: 2121 
carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone; R+A: rotenone and antimycin 2122 
A. Data are presented as mean ± SEM. Statistical analysis was performed using one-2123 
way ANOVA. *p<0.05. Each datapoint represents one well of a 24-well Seahorse assay 2124 
plate. The experiment was independently replicated twice.  2125 
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 2126 

2127 
Figure 7. NDD gene mutants with shared behavioral phenotypes in zebrafish2128 
resolve unique and cell-type-specific gene-level convergent signatures and are2129 
rescued by predicted medications. (A) NDD risk genes uniquely cluster based on2130 
sleep-wake/visual-startle behavioral responses in zebrafish mutants. set 1: nrxn1a,2131 
mbd5, kdm5bab; set 2: phf12ab, skiab, chd2, smarcc2; set 3: kdm6bab, kmt5b,2132 
kmt2cab; set 4: wacab, arid1b, phf21aab, chd8, ash1l. (B) Gene expression in human2133 
mature iGLUTs and iGABAs correlate with expression in the zebrafish brain. Cellular2134 
deconvolution of wild-type larval zebrafish brain expression based on adult human2135 
single-cell brain reference identifying neurons as the largest proportion of cells in the2136 
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fish brain. Gene expression in wild-type zebrafish brain significantly positively correlates 2137 
with gene expression of mature iGLUTs (rho=0.39, Holm’s adj.P<0.001) and iGABAs 2138 
(rho=0.39, Holm’s adj.P <0.001). (C) For each of the four behaviorally defined sets, 2139 
gene-level convergence (DEGs with significant and shared direction of effect across all 2140 
NDD genes within each of the four sets (FDR adjusted pmeta<0.05, Cochran’s 2141 
heterogeneity Q-test pHet > 0.05)) is largely non-overlapping between mature iGLUTs 2142 
and iGABAs, with unique enrichments for common psychiatric risk gene targets. 2143 
Number of convergent genes that are up (+) or down (-) regulated for each NDD set are 2144 
indicated. (D) In both iGABAs and iGLUTs, all four behavioral sets were enriched for 2145 
FMRP targets. Gene targets of neurodevelopmental rare variants were only significantly 2146 
enriched for convergent signatures in mature iGLUTs; behavioral set 4 uniquely 2147 
significantly enriched for secondary targets of ASD loss-of-function variant and set 3 2148 
uniquely enriched for primary targets of SCZ non-synonymous variants. (E) In iGLUTs, 2149 
NDD related behaviors were only enriched in sets 1 and 3, with enrichments for 2150 
language, speech, and intellectual delays in sets 1,3 and 4. All sets were enriched for 2151 
seizure and hypertonia. (F) Potential “rescue” drugs for these 4 phenotypic groups were 2152 
selected from enrichment scores using cMAP and filtered for drugs included in a screen 2153 
of 376 compounds for behavioral effects in zebrafish. Top candidates that were 2154 
significantly negatively enriched for iGLUT convergence from cMAP and negatively 2155 
correlated with mutant behavioral features were tested in mutant lines representative of 2156 
sets 2-4. n.p. indicates that the drug repaglinide was not present in the cMAP dataset. 2157 
Mutant-x-Drug combinations were as follows: chd2Δ7/Δ7-x-pravastatin; kdm6bab F0-x-2158 
paclitaxel; kdm6bab F0-x-sirolimus; kmt5bΔ208,1i, Δ5/Δ208,1i, Δ5-x-paclitaxel; kmt5bΔ208,1i, 2159 
Δ5/Δ208,1i, Δ5-x-sirolimus; ; ash1l1i, Δ60,19i/ 1i, Δ60,19i-x-ezetimibe; ash1l1i, Δ60,19i/ 1i, Δ60,19i-x-2160 
repaglinide; ash1l1i, Δ60,19i/ 1i, Δ60,19i-x-rosuvastatin; ash1l1i, Δ60,19i/ 1i, Δ60,19i-x-sunitinib; 2161 
phf21aab F0-x-amiodarone; phf21aab F0-x-fluvoxamine. (G) For behaviors that were 2162 
significantly different between mutant+DMSO and WT+DMSO (p<0.05), we 2163 
characterized the effect of the mutant-x-Drug on behavior as either (a) exacerbated [sig. 2164 
effect mutant+Drug-v-WT > sig. effect mutant-v-WT], (b) unchanged [sig. effect 2165 
mutant+drug-v-WT = sig. effect mutant-v-WT], (c) partial rescue [effect mutant+Drug-v-2166 
WT < effect mutant-v-WT], (d) rescued [sig. effect mutant-v-WT, no sig. effect 2167 
mutant+Drug-v-WT], (e) over-corrected [mutant+Drug-v-WT opposite direction of sig. 2168 
effect mutant-v-WT]. All drugs reversed at least one dysregulated behavior except for 2169 
sirolimus in kmt5b. (i) Comparison of the magnitude of effect (beta) on behavior 2170 
between the mutant+DMSO compared to mutant+Drug groups shows rescue of select 2171 
behavioral features in kdm6b and chd2 mutants by paclitaxel (Shapiro Wilk’s Normality 2172 
p= , Student T statistic=-3.533, p=0.0017788, df=23) and pravastatin (Student T 2173 
statistic=-3.533, p=0.0017788, df=23), respectively. (ii) the phf21a mutant phenotype 2174 
was strongly opposed by fluvoxamine (Pearson’s correlation=-0.58, p=0.0028). 2175 
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