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ABSTRACT 24 

Root traits significantly shape rhizosphere microbiomes, yet their interaction with mi-25 

crobes is often overlooked in plant breeding programs. Here, we propose that selecting 26 

modern cultivars based on microbiome interactive traits (MITs), such as root biomass, 27 

exudate patterns and the rhizosphere microbiome, can enhance agricultural sustainabil-28 

ity by interacting effectively with soil microbiomes, which in turn, promotes plant 29 

growth and resistance to stress, thereby reducing reliance on synthetic crop protectants. 30 

Through a stepwise selection process (in silico and in vitro) that started with approxi-31 

mately 1000 potato genotypes, we chose 51 potato cultivars based on known phenotypi-32 

cal properties and distinct root exudate patterns. We conducted a greenhouse experi-33 

ment to evaluate their capacity to interact with the soil microbiome and to assess their 34 

MITs. Our findings revealed that cultivars significantly influence plant growth, metabo-35 

lite profiles, and rhizosphere fungal community composition. Moreover, we observed a 36 

positive correlation between microbial community diversity and root biomass. Addi-37 

tionally, leaf metabolites were correlated with rhizosphere bacterial composition, sup-38 

porting the plant holobiont framework. Utilising z-scores, we aggregated all data related 39 

to plant growth, metabolomes, and microbiomes, creating a classification of 51 cultivars 40 
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based on a gradient of MITs. By examining the distribution of low, medium, and high 41 

MITs, we identified a group of 11 potato cultivars suitable for further studies to assess 42 

their resilience and productivity under low-input production systems. This study pro-43 

vides an in-depth correlation between microbiome and several plant traits across 51 cul-44 

tivars, offering tools to facilitate and expedite the incorporation of microbiome traits 45 

into breeding goals to support sustainable agriculture. 46 

 47 

1 INTRODUCTION 48 

Potato (Solanum tuberosum L.) cultivations rely heavily on conventional agricultural 49 

practices as a staple crop. Conventional management, which includes the widespread 50 

use of synthetic fertilisers and pesticides, is frequently used to enhance yields and pro-51 

tect crops from pests and diseases (Timsina, 2018). However, this dependency on syn-52 

thetic compounds comes with substantial environmental issues. Overusing chemical 53 

inputs in conventional agriculture leads to water pollution, soil degradation, and soil 54 

microbial biomass and activity reduction, which are crucial in maintaining soil fertility 55 

and nutrient cycling (AL-Ani et al., 2019; Tripathi et al., 2020). Balancing high yields 56 

with care for our environment is a critical challenge in the breeding of crops. 57 

In conventional breeding, plants are bred for traits such as high yield, disease resistance, 58 

tolerance to environmental stresses, and improved agronomic traits (Breseghello and 59 

Coelho, 2013). While pivotal in crop development, conventional breeding has inadver-60 

tently led to the dissociation between plant and soil microbiomes, negatively affecting 61 

beneficial plant-microbiome interactions (Spor et al., 2020). Comparisons between do-62 
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mesticated cultivars and their ancestral plants revealed that the rhizosphere microbiome 63 

of the latter exhibited higher complexity and connectivity (da Silva et al., 2023; 64 

Rossmann et al., 2020). However, relying solely on ancestral or wild plants may not ef-65 

fectively address the challenge of optimising plant-soil microbiome interactions in mod-66 

ern agricultural systems. Identifying specific genes associated with beneficial micro-67 

biomes in ancestral plants, with the aim of a subsequent transfer to modern crops 68 

(Clouse and Wagner, 2021), is complex due to environmental effects on gene expression 69 

(Raaijmakers and Kiers, 2022). Despite the reduced focus on plant-microbiome interac-70 

tions during domestication (Wei and Jousset, 2017), multiple studies have demon-71 

strated that inoculating modern crop cultivars with beneficial microbes can significantly 72 

enhance plant growth and stress resistance (Diagne et al., 2020; Fröhlich et al., 2012; 73 

Rodriguez et al., 2019; Tiwari et al., 2017). This suggests that modern cultivars retain 74 

the capacity for beneficial interactions with soil microbes, which can be leveraged or 75 

strengthened. Therefore, it is critical to identify gene markers associated with beneficial 76 

microbiomes in modern crops and apply this knowledge in real-world agricultural sys-77 

tems, particularly in the context of climate change. 78 

The connection between root traits and plant productivity in crops has long been ac-79 

knowledged, as roots are involved in resource acquisition, drought tolerance, soil explo-80 

ration and other essential functions (Lynch, 1995; Ober et al., 2021). It is increasingly 81 

evident that our understanding of this connection should extend to how root traits 82 

shape the composition and functionality of the rhizosphere microbiome. While this as-83 

pect has received somewhat limited attention within plant breeding (Herms et al., 2022), 84 

many studies highlight the role of root traits in the rhizosphere microbiome. For in-85 
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stance, a study on maize revealed that wild maize had a significant impact on the struc-86 

ture of the microbial community, which was attributed to a high root-to-shoot biomass 87 

ratio (Szoboszlay et al., 2015). Plant root traits influence the soil microbial community 88 

by modulating the fungi-to-bacteria ratio, contributing to nutrient cycling (Wan et al., 89 

2021). Moreover, a study involving beans (Pérez-Jaramillo et al., 2017) indicated that 90 

root architecture is linked to increased specific bacterial taxa, which could be connected 91 

to plant health. In addition to the root system, root exudates substantially impact the 92 

rhizosphere microbiome. As a survival strategy, plants secrete an abundance of com-93 

pounds in their root exudates that can influence the diversity of the rhizosphere micro-94 

bial community, promote the development of a more complex microbial network and 95 

enhance microbial carbon cycling, thereby facilitating the growth and survival of the 96 

host (Wang et al., 2022). A study on wheat has demonstrated that cultivars with a strong 97 

capacity for root exudates contribute to increased soil microbial diversity (Iannucci et al., 98 

2021). Furthermore, the plant-associated microbial community is increasingly consid-99 

ered an extension of the plant phenotype (Bergelson et al., 2021; Whitham et al., 2003). 100 

Referred to as the plant's "second genome", plant-associated microbiome is strongly 101 

regulated by the plant's genetic makeup (Turner et al., 2013). This suggests that a culti-102 

var harbouring a more diverse community has a great potential to engage in beneficial 103 

interaction with microbes. 104 

Here, we propose a method for identifying plant cultivars that foster beneficial interac-105 

tions with the soil microbiome. We achieve this by assessing the microbiome interactive 106 

traits (MITs) of existing potato cultivars within the European potato germplasm bank. 107 

We hypothesise that root architecture and exudate patterns significantly influence the 108 
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rhizosphere microbiome. By combining these traits, we propose a classification of culti-109 

vars with different MITs. Beginning with approximately 1000 potato genotypes, we em-110 

ployed a stepwise selection process, conducting in silico, in vitro, and greenhouse-based 111 

studies to examine the correlation between the plant traits of 51 potato cultivars and 112 

their rhizosphere microbial communities. We advocate for including MITs in breeding 113 

and the development of new crop cultivars. By prioritising these interactive traits, we 114 

can significantly enhance our understanding of plant-microbiome interactions while 115 

supporting microbiome-based innovation, which are essential for achieving sustainable 116 

agricultural practices. 117 

 118 

2 MATERIALS AND METHODS 119 

2.1 In situ analyses 120 

In this project, we began our selection by screening late-season potato cultivars from a 121 

database of one thousand potato cultivars. Considering that disease-resistant plants are 122 

known to interact with beneficial microbes to bolster host immunity (Wille et al., 2019) 123 

and that these traits might be associated with their genetic background, we screened 124 

these cultivars from various resistance levels to numerous pathogens, especially those 125 

relating to potato-specific viruses (Table S1). The resistance scale was assessed using the 126 

method described by Michalak and Chrzanowska (2017). Detailed information on se-127 

lected cultivars is available in The European Cultivated Potato Database 128 

(www.europotato.org). This selection resulted in a list of 148 to be used in the second 129 

selection round, which included a commercial cultivar, Desiree, as a reference. 130 
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2.2 In vitro experiment 131 

For the second selection, the 148 cultivars including Desiree were evaluated according to 132 

the amount of dissolved organic carbon (DOC) in the root exudates of 6-week-old in vi-133 

tro plants grown under sterile conditions (cf. section 2.1). Specifically, two-week-old 134 

potato plantlets grown from vegetative propagation in tissue culture at the Institute of 135 

Plant Breeding and Acclimation in Bonin (Bonin, Poland) were transplanted from agar 136 

tubes into 15 ml Eppendorf tubes, each containing 12 ml of sterile 0.5 x Hoagland solu-137 

tion. The agar was carefully removed from the roots of each plant, and to ensure aseptic 138 

conditions, sterile cotton wool was wrapped around the above-ground part of the plant-139 

lets, which were then gently placed into the 15 ml tubes. The roots were submerged in 140 

the Hoagland medium, while the above-ground part remained above it. The plantlets 141 

were allowed to acclimate to their new environment during a one-week growth period in 142 

a controlled climate chamber. The climate chamber maintained a temperature of 22 °C 143 

during the day and 18 °C at night, with a photoperiod of 16 hours of light and 8 hours of 144 

darkness. Upon completion of the initial week, the plantlets were transferred to new 145 

sterile 15 mL tubes, maintaining the 12 ml sterile 0.5 x Hoagland solution, as described 146 

in the previous step. To compensate for the liquid lost during the experiment, sterile 147 

water was added to maintain the volume at 12 ml. After the third week, the plants were 148 

harvested, and root and shoot length and dry weight were measured. Additionally, 3 ml 149 

aliquots of the growth medium were collected and frozen for DOC analysis. Moreover, 1 150 

ml aliquots were freeze-dried for root exudate metabolite analysis (cf. section 2.4). The 151 

samples were immediately stored at -80°C until further analysis. The DOC content 152 
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analysis was later processed in Helmholtz Zentrum München GmbH (Munich, Germany) 153 

(Data S1). 154 

The data based on DOC content of the growth medium per root dry weight and shoot 155 

dry weight from the in vitro experiment revealed the variation among cultivars (Figure 156 

S1 and Table S2). We then selected a representative set of 50 cultivars plus the commer-157 

cial cultivar, Desiree, representing the whole variation in DOC, for the third selection 158 

round in a greenhouse experiment. 159 

2.3 Greenhouse experiment 160 

The soil used in this experiment originated from a sugar beet field and was sieved with a 161 

2 mm sieve. Before starting the experiment, six bulk soil samples were kept for physico-162 

chemical analyses (Table S3) and DNA extraction. Two-week-old potato plantlets grown 163 

from vegetative propagation in tissue culture at the Institute of Plant Breeding and Ac-164 

climation in Bonin (Bonin, Poland) were transplanted from agar tubes into small pots 165 

containing soil (0.5 L) in the greenhouse. Before transplanting, the agar was carefully as 166 

previously described to ensure aseptic conditions. After two weeks of acclimatisation, 167 

the potato plants were transplanted into larger pots with the same soil (1.45 L). In the 168 

sixth week, the samples were taken as follows: Plant leaves, specifically the second or 169 

third leaf from the shoot top, were harvested for metabolomics analysis. The harvested 170 

leaves were snap-frozen in liquid nitrogen and then transferred to a freezer at -80 °C. 171 

The rhizosphere soil was obtained by gently brushing off adhering soil from the roots 172 

with a disposable toothbrush. Additionally, six bulk soil samples were collected from 173 

pots without plants for physicochemical analyses (Table S3) and DNA extraction. The 174 
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soil samples for DNA analysis were frozen at -20 °C until DNA extraction the following 175 

day. Shoot height and root length were measured on the day of harvesting, and shoot 176 

and root dry weights were measured after drying at 60 °C for at least 48 hours. 177 

2.4 Metabolite profiling of root exudates and leaf tissue 178 

Metabolite fractions enriched for primary metabolites were profiled by gas chromatog-179 

raphy and electron impact ionisation-time of flight mass spectrometry (GC/EI-TOF-MS) 180 

(Lisec et al., 2006; Erban et al., 2020). Root exudate samples, i.e. equal debris-free 1 mL 181 

volumes, of the in vitro experiment, cf. section 2.2, were freeze-dried directly without 182 

further sample preparation. A polar metabolite fraction was prepared from 50 mg snap-183 

frozen leaf samples of the greenhouse experiment, cf. section 2.3. The frozen samples 184 

were extracted by a water-methanol-chloroform solvent mixture; a polar fraction was 185 

prepared from the extracts by water-induced liquid-liquid phase separation and dried in 186 

a speed-vacuum-concentrator, as described earlier (Erban et al., 2020). The dried frac-187 

tions were subjected to methoxyamination and trimethylsilylation prior to GC/EI-TOF-188 

MS analysis. 13C6 Sorbitol was added to all leaf samples before metabolite extraction 189 

(Erban et al., 2020). N-alkanes were added to each sample upon chemical derivatisation 190 

for subsequent retention index (RI) calibration (Erban et al., 2020). The GC/EI-TOF-191 

MS chromatograms were obtained and baseline adjusted by ChromaTOF software 192 

(LECO Instrumente GmbH, Mönchengladbach, Germany) and background corrected 193 

using non-sample controls. Metabolite annotation was performed using TagFinder 194 

software (Luedemann et al., 2008), the NIST17 mass spectral database (U.S. Depart-195 

ment of Commerce, Gaithersburg, USA), and the RI and mass spectral reference data of 196 

the Golm Metabolome Database, http://gmd.mpimp-golm.mpg.de/ (Hummel et al., 197 
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2010; Kopka et al., 2005). Compounds representing known contaminants and added 198 

internal standards were removed from further analysis. Metabolites absent from more 199 

than 75% of all analysed exudates or leaf tissue samples were excluded, resulting in 84 200 

characterised leaf metabolites (Data S2) and 49 metabolites (Data S3) that were robustly 201 

present in root exudates. 202 

Relative concentrations were normalised for further analyses to record the sample's 203 

fresh weight and internal standard or exudate volume (Schaarschmidt et al., 2020). An 204 

ANOVA tool was used to perform a batch correction of the metabolite data sets for dif-205 

ferent measurement batches and the measurement sequence within batches (Lisec et al., 206 

2011). All presented metabolite data are relative metabolite abundances. Three replicate 207 

samples per cultivar were analysed. The missing values were substituted by zero. 208 

2.5 Soil sample sequencing and processing 209 

DNA was extracted from 12 bulk soil samples and 153 rhizosphere samples with DNeasy 210 

PowerSoil Kit (Qiagen, Hilden, Germany) on 0.25 g of soil. DNA extraction followed the 211 

kit's instructions except for the initial stage of bead beating, which was conducted with a 212 

FastPrep-24TM 5G Instrument at 6000 rpm/s for 40 s (MP Biomedicals, Santa Ana, 213 

USA). For sequencing of the bacterial community, the V4 region of the 16S rRNA gene 214 

was targeted using the primer sets 515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and 806R 215 

(5′-GGACTACHVGGGTWTCTAAT-3′) (Caporaso et al., 2012, 2011). For the fungal 216 

community, the ITS2 region was sequenced with the primer sets 5.8SR (5'-217 

TCGATGAAGAACGCAGCG-3') and reverse primer ITS4 (5'-218 

TCCTCCGCTTATTGATATGC-3') (White et al., 1990). The Illumina MiSeq platform was 219 
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used for paired-end sequencing (2 × 250bp for 16S, 2 × 300bp for ITS) at the PGTB 220 

(Genome Transcriptome Platform of Bordeaux, Cestas, France). 221 

The 16S rRNA gene sequencing data were processed using a QIIME2 (version 2020.8) 222 

pipeline (Bolyen et al., 2019). Sequences were filtered, denoised, and dereplicated using 223 

the default setting of the Divisive Amplicon Denoising Algorithm (DADA2) plugin (Cal-224 

lahan et al., 2016). 16S rRNA taxonomic classification was performed using the q2-225 

feature-classifier plugin (Bokulich et al., 2018) against the SILVA database (version 138) 226 

(Yilmaz et al., 2014). ITS sequencing data was processed using the PIPITS v. 2.4 pipeline 227 

(Gweon et al., 2015). In brief, the PEAR plugin was used to join read pairs (Zhang et al., 228 

2014). The FASTX-Toolkit was utilised for quality filtering (Gordon and Hannon, 2010). 229 

The fungal-specific ITS2 region was extracted via ITSx (version 1.1b) (Bengtsson-Palme 230 

et al., 2013). The VSEARCH 2.13.3 plugin (Rognes et al., 2016) was used to dereplicate 231 

unique sequences, clustering to 97% sequence identity, and the UNITE Uchime refer-232 

ence dataset was used for chimera detection (Nilsson et al., 2015). Ultimately, the tax-233 

onomy was assigned with the RDP Classifier against the UNITE database (version 8.0) 234 

(Kõljalg et al., 2013). 235 

2.6 Statistical Analysis 236 

A one-way analysis of variance (ANOVA) was used to test variation in plant metabolite 237 

diversity, plant performance (shoot and root growth), and rhizosphere microbial alpha 238 

diversity (Data S2-S5). Post hoc comparisons were performed through Tukey's honest 239 

significant differences or Duncan’s multiple range tests. 240 
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Analysis of soil microbial community structure (bacteria and fungi) was performed in R 241 

(version 4.2.0). Feature tables were rarefied at 14400 reads for bacterial 16S rRNA gene 242 

and 6361 for fungal ITS sequences, resulting in 8970 amplicon sequence variants (ASVs) 243 

for the bacterial community and 2006 operational taxonomic units (OTUs) for the fun-244 

gal community after excluding non-microbial OTUs (Data S5). The rarefactions of fea-245 

ture tables were generated via 'rarefy' function in the package 'vegan' (Dixon, 2003). The 246 

same package was used to calculate the alpha diversity metrics for microbial communi-247 

ties and plant metabolites. Specifically, species richness indicates the number of unique 248 

species or metabolites observed, evenness describes how evenly the abundances of dif-249 

ferent species or metabolites are distributed, and the Shannon Diversity Index accounts 250 

for both the number of species/metabolites and their relative abundances (Jost, 2006; 251 

Wagner et al., 2018; Young and Schmidt, 2008). 252 

The soil microbial community, root exudate and leaf metabolite compositions (Data S2, 253 

S3 and S5) were visualised through Principal Coordinate Analysis (PCoA) based on 254 

Bray-Curtis distance. This analysis used the 'ape' package in R (Paradis et al., 2004). 255 

PCoA scores per axis were averaged for each sample to illustrate the distribution of dis-256 

tinct cultivars in PCoA plots clearly. Permutational multivariate analysis of variance 257 

(PERMANOVA) was conducted using the 'adonis' function within the 'vegan' package to 258 

assess the impact of cultivars on soil microbial communities and metabolite profiles 259 

(Dixon, 2003). 260 

Principal Component Analysis (PCA) based on the covariance matrix was performed 261 

with the R package 'FactoMineR' to reduce the dimensionality of the data and to visual-262 

ise the distribution of plant cultivars (Lê et al., 2008). The variables included in the 263 
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analysis were shoot and root length, shoot and root dry weight, metabolite diversity and 264 

composition of plant leaf tissue and root exudates (Data S4). Due to the significant 265 

variation in root exudate relative abundance observed in the in vitro experiment, me-266 

dian values were used for PCA plotting. Normalisation of plant data and metabolite 267 

richness was performed before analysis by calculating Z-scores. Subsequently, a PER-268 

MANOVA was conducted to assess the influence of variables on the distribution of 51 269 

cultivars. The cultivars were classified into four functional groups based on their distri-270 

bution across the first and second principal components (PC1 and PC2). The classifica-271 

tion was done by dividing the PCA plot into four quadrants, each representing a distinct 272 

functional group of cultivars, reflecting differences in growth characteristics and me-273 

tabolite profiles. The summarised group details can be found in Table S4. 274 

To investigate the relationship between plant cultivars and rhizosphere microbiome 275 

composition, we categorised the 51 potato cultivars into four distinct functional groups. 276 

The category was determined by the distribution of cultivars and variables along the 277 

first two axes in the PCA plot.  278 

The correlation between plant growth and related omics datasets (Data S4) was calcu-279 

lated using the Spearman correlation coefficient via the 'corr.test()' function from the 280 

'psych' package in R (Revelle, 2024). The resulting p-values were adjusted using the 281 

False Discovery Rate (FDR) method to control for multiple comparisons and minimise 282 

false positives. We used the Mantel test with Spearman's rank correlation to assess the 283 

correlation between microbial community compositions and metabolite profiles, utilis-284 

ing Bray-Curtis dissimilarity matrices. This analysis aimed to investigate the relation-285 

ship between plant leaf metabolites and rhizosphere soil community.  286 
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To assess the overall MIT score of 51 potato cultivars, we calculated the average of the 287 

standardised scores (z scores) for various traits, including root length, root biomass, 288 

root-to-shoot biomass ratio, root exudate metabolites richness and Shannon diversity, 289 

as well as bacterial and fungal richness and Shannon diversity (Data S6) 290 

Using the 'ggsankey' R package (Sjoberg, 2021), a Sankey plot was generated based on 291 

functional groups to summarise the selection of the 11 cultivars with the most potential 292 

for future research. The distribution of rhizosphere bacterial and fungal community 293 

compositions was illustrated for the 11 selected cultivars using Spearman correlation 294 

analysis. The first axis of the PCoA plot of bacterial and fungal communities served as 295 

the indicator of community composition (Data S4). 296 

 297 

3 RESULTS 298 

3.1 Plant growth 299 

In the greenhouse experiment, plants from 51 potato cultivars were harvested from the 300 

soil in the sixth week, with plant growth varying among the cultivars. Analysis of vari-301 

ance (ANOVA) revealed that most of these cultivars' growth patterns differed signifi-302 

cantly according to their identity, with marked variation in both root biomass and root 303 

length (root biomass: p = 0.001, F = 2.26; root length: p = 0.003, F = 1.91; Figure 1). 304 

Specifically, the cultivars Inwestor, Salto and Szyper demonstrated higher root biomass 305 

than others. In addition, shoot length and shoot biomass varied significantly between 306 

cultivars (shoot length: p = 0.001, F = 6.80; shoot biomass: p = 0.009, F = 1.75; Figure 307 
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S2). Here, the cultivars Astrid, Inwestor, and Tewadi cultivars had the highest shoot 308 

biomass. Regarding the root-to-shoot ratio based on length exhibited a significant re-309 

sponse to distinct cultivars (p = 0.001; Figure S3) while the ratio of root-to-shoot dry 310 

weight did not show a substantial difference between the different cultivars (p = 0.36; 311 

Figure S3). 312 

 313 

314 
Figure 1. Root growth analysis of 51 potato cultivars. The upper panel displays root length, while the 315 

lower panel illustrates root dry weight. Each colour represents a distinct potato cultivar in alphabetical 316 

order. The upper right corner of each plot displays one-way ANOVA results, where the F-value explains 317 

the variation among different cultivars, and the p-value indicates the statistical relationship among culti-318 

vars. Significance levels are denoted as ** (p = 0.01) and *** (p = 0.001). 319 

3.2 Plant leaf and root exudate metabolites 320 

We further evaluated our selected 51 cultivars according to their root exudate metabo-321 

lites (obtained under in vitro conditions) and leaf metabolites (obtained from the 322 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 15, 2025. ; https://doi.org/10.1101/2024.08.21.609084doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.21.609084
http://creativecommons.org/licenses/by-nc-nd/4.0/


greenhouse experiment). To understand the variation in metabolites produced and re-323 

leased by the 51 potato cultivars, we conducted a Principal Coordinates Analysis (PCoA) 324 

and visualised the distribution of metabolites among different cultivars (Figure 2). The 325 

PERMANOVA results indicated significant differences in metabolite composition 326 

among cultivars for both root exudates and leaves (proot exudate = 0.001 and pleaf = 0.001; 327 

Figure 2). Overall, leaf metabolite composition was more strongly explained by plant 328 

cultivar identity than root exudate metabolites (R2
leaf metabolite = 0.68, and R2

root exudates = 329 

0.58; Figure 2). The first two axes of the PCoA plot explained more than 34% of the 330 

variation for both metabolites. 331 

Although most cultivars tended to cluster together, several cultivars stood out, suggest-332 

ing a different metabolite profiles. Specifically, Kama, Czapla and Fianna showed dis-333 

tinct root exudate metabolites compared to other cultivars, while Orlik Cs exhibited a 334 

unique leaf metabolite profile (Figure 2). To better illustrate the variance of remining 335 

cultivars, we remove these four cultivars with extreme metabolites values in Figure S4. 336 

Furthermore, we found that the alpha diversity of plant metabolites was significantly 337 

affected by cultivars (Table S5). These results indicate that different potato cultivars ex-338 

hibit distinct metabolites, contributing to variations in metabolite composition among 339 

cultivars. 340 

 341 
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342 
Figure 2. Distribution of metabolites in root exudates and leaves across 51 different cultivars. Principal 343 

Coordinates Analysis (PCoA) based on mean Bray-Curtis dissimilarity of metabolite composition of root 344 

exudates (a) and leaves (b). Distinct potato cultivars are represented by different colours, with the error 345 

bars for each cultivar displayed in grey. PERMANOVA results are shown in the upper right corner of each 346 

panel, indicating variations in metabolite composition among different cultivars. R² quantifies the ex-347 

plained variation, and p-values are derived from 9999 permutations; *** denotes statistically significant 348 

p-values (p = 0.001). 349 

3.3 Plant cultivar functional groups 350 

To understand the distribution of plant growth and metabolite traits across our 51 se-351 

lected cultivars, we used PCA to classify them into functional groups (Figure 3). These 352 

were based on data on plant cultivar growth characteristics, including shoot and root 353 

growth, leaf metabolites and root exudates. This approach allowed us to consider the 354 

overall metabolite composition, encompassing alpha and beta diversity, rather than fo-355 

cusing solely on metabolite richness and evenness. Our results revealed that the distri-356 

bution of these traits differed significantly among different potato cultivars, as evi-357 

denced by the results of the PERMANOVA analysis (p = 0.001; Figure 3). Specifically, 358 
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the first axis of the PCA biplot prominently reflected the impact of root exudate metabo-359 

lite diversity and composition (Figure 3). In contrast, plant performance metrics and 360 

leaf metabolite composition mainly drove the second axis. 361 

Based on the distribution of cultivars and variables across the first two axes, the 51 po-362 

tato cultivars were systematically categorised into four distinct functional groups ac-363 

cording to their distribution in each of the four PCA quadrants (Figure 3). Group A fea-364 

tured cultivars exhibiting high leaf metabolite diversity and plant biomass, suggesting 365 

strong performance in leaf metabolic diversity and plant development. Group B in-366 

cluded cultivars with high root exudate diversity and plant length, indicating a focus on 367 

below-ground metabolic processes and vertical growth of plants. Group C consisted of 368 

cultivars characterised by distinct leaf metabolite composition, as this variable primarily 369 

derived the cultivars distribution within this group. These cultivars may have a distinct 370 

composition of leaf metabolites compared to other groups, indicating specific leaf meta-371 

bolic profiles that differentiate them from other cultivars. Group D comprised cultivars 372 

with low root exudate metabolite diversity and different metabolite compositions. The 373 

summarised group details and cultivars can be found in Table S4. 374 

 375 
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376 
Figure 3. Distribution of 51 potato cultivars based on plant performance, root exudates and leaf metabo-377 

lite profiles. Principal Component Analysis (PCA) based on the covariance matrix, highlighting variables 378 

impacting the distribution of potato cultivars. Distinct potato cultivars are represented by different col-379 

ours, with the error bars for each cultivar displayed in grey. The result of PERMANOVA is shown in the 380 

upper right, elucidating the cultivar's influence on the distribution. R² quantifies the explained variation, 381 

and p-values, derived from 9999 permutations, are denoted with *** for statistically significant results (p 382 

= 0.001). Letters A, B, C and D represent the four distinct functional groups. 383 

3.4 Soil microbial communities 384 

The analysis of microbial communities in bulk and rhizosphere soil from the greenhouse 385 

experiment revealed a significant impact of plant presence on microbial communities. 386 

There was a significant difference in bacterial evenness between different soil compart-387 

ments (p = 0.001; Figure S5b), whereas no significant effect on fungal richness and 388 
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evenness (p > 0.05; Figure S5c,d) was observed. Bacterial and fungal community com-389 

positions responded to the presence of plants (Figure S6). Specifically, all bulk soil sam-390 

ples were found to cluster together in bacterial communities, separate from the 391 

rhizosphere samples (Figure S6a). Some potato cultivars' rhizosphere fungal communi-392 

ties were grouped distinctly apart from the bulk soil (Figure S6b). 393 

Comparison across the 51 potato cultivars revealed considerable variation and no sig-394 

nificant effect of cultivar on bacterial and fungal alpha diversities, except for the cultivar 395 

effect on fungal evenness (p = 0.03; Figure S7). Plant cultivars showed no significant 396 

impact at the composition level but a trend towards influencing bacterial community 397 

distribution (p = 0.093 and R2 = 0.34; Figure 4a). However, cultivars exhibited signifi-398 

cant variation in fungal community composition (p = 0.001 and R2 = 0.37; Figure 4b), 399 

indicating that cultivars can significantly influence the fungal community composition 400 

within their rhizosphere. 401 

 402 
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403 
Figure 4. Rhizosphere microbial community composition. Principal Coordinates Analysis (PCoA) based 404 

on mean Bray-Curtis dissimilarity of community composition of bacteria (a) and fungi (b). Distinct potato 405 

cultivars are represented by different colours, with the error bars for each cultivar displayed in grey. 406 

PERMANOVA results in the upper left corner of each panel elucidate the influence of cultivars on com-407 

munity composition. R² quantifies the explained variation, and p-values are derived from 9999 permuta-408 

tions. The symbol *** denotes statistically significant p-values (p = 0.001). 409 

Grouping the cultivars in the functional groups determined by MIT revealed no signifi-410 

cant differences in the alpha diversity of bacterial and fungal communities between the 411 

different functional groups (p > 0.05; Figure S8). Similarly, the composition of 412 

rhizosphere microbial communities did not vary among the functional groups (pbacteria = 413 

0.49 and pfungi = 0.14; Figure S9). 414 

3.5 Correlation between plant traits, metabolites and rhizosphere micro-415 

biome 416 

To evaluate how different plant traits relate to root-associated microbes and metabolite 417 

release, we correlated plant shoot biomass, root biomass and root exudate metabolites 418 
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with leaf metabolites and rhizosphere microbial communities of the 51 potato cultivars. 419 

Positive correlations were observed between plant biomass and leaf metabolite richness. 420 

In contrast, negative correlations were identified between plant shoot growth and leaf 421 

metabolite composition (Figure 5). One possible explanation is that investment in 422 

growth represents a cost of metabolite synthesis but this needs to be proven by further 423 

experiments. 424 

Regarding the microbiome, we observed positive correlations between rhizosphere bac-425 

terial species richness, root biomass, and root-to-shoot biomass ratio (Figure 5). Simi-426 

larly, rhizosphere fungal species richness positively correlated with the root-to-shoot 427 

biomass ratio. However, the composition of the rhizosphere microbial community 428 

showed no significant correlations with root growth. Notably, the bacteria-to-fungi spe-429 

cies richness ratio (B/F) was positively associated with root and root-to-shoot biomass 430 

ratios. Additionally, we did not observe a pronounced correlation between root exudate 431 

metabolites and the rhizosphere microbial community (Figure 5). 432 

We performed Mantel tests based on Bray-Curtis dissimilarity matrices to further inves-433 

tigate the relationship between plant leaf metabolites and soil microbial communities. 434 

Our analysis revealed a subtle yet statistically significant positive correlation between 435 

bacterial community compositions and leaf metabolite profiles (r = 0.10, p = 0.02). This 436 

suggests that plant cultivars with similar leaf metabolite profiles tend to harbour similar 437 

bacterial communities in the rhizosphere. In contrast, the Mantel test for fungi showed 438 

no significant correlation between fungal community compositions and leaf metabolite 439 

profiles (r = 0.04, p = 0.22). 440 
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 441 

442 
Figure 5. Correlation analysis between shoot biomass, MITs, leaf metabolite, and rhizosphere microbial 443 

community of the 51 potato cultivars. Correlations are based on the Spearman's rank correlation coeffi-444 

cient. Dark-coloured boxes indicate a significant correlation (p < 0.05), with the colour intensity reflecting 445 

the strength of the correlation coefficient. Red represents a positive correlation, while blue represents a 446 

negative correlation. The numbers displayed within the boxes represent the correlation coefficient. Sig-447 

nificance levels are denoted as follows: * (p < 0.05), ** (p < 0.01), and *** (p < 0.001). 448 

 449 

When examining the correlations between plant root biomass and rhizosphere bacterial 450 

community diversity across different functional groups, functional groups A and D 451 

showed significant positive correlations (p < 0.05; Figure S10a,b). Functional groups B 452 

and C show no significant correlation between these variables. There were no significant 453 

correlations between root biomass and fungal community diversity (p > 0.05; Figure 454 

S10c, d) across functional groups. 455 
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3.6 Classification of cultivars based on MITs 456 

To evaluate the overall MIT scores of different cultivars, we calculated the average of the 457 

standardised scores (z scores) for various traits, including root length, root biomass, 458 

root-to-shoot biomass ratio, root exudate metabolites richness and Shannon diversity, 459 

as well as bacterial and fungal richness and Shannon diversity. Based on these MIT z-460 

score values, the 51 cultivars were categorised into either high, middle, or low MIT levels 461 

(Figure 6a; Table S6). Furthermore, we illustrated the distribution of the rhizosphere 462 

community composition of the 51 cultivars in Figure 6b, which shows a substantial sepa-463 

ration in bacterial and fungal compositions among the MIT-selected cultivars. 464 

3.7 Summary of the selection procedure 465 

From the different functional groups (Figure 3) and MIT levels, we suggested 10 culti-466 

vars plus Desiree for future studies (Figure 6c, Table S6). The stepwise selection work-467 

flow and the selected cultivars are visualised in Figure 6c. We initially selected 148 po-468 

tato cultivars, including the commercial cultivar Desiree as a reference, from a pool of a 469 

thousand based on their resistance to pathogens in silico. These 148 cultivars were then 470 

further grown in vitro, from which 51 were selected based on DOC content in root exu-471 

dates for a subsequent greenhouse experiment. For these 51 cultivars, plant growth, leaf 472 

metabolites and root exudate metabolites were used to classify them into four functional 473 

groups with distinct growth traits. MIT scores allowed us to identify ten representative 474 

cultivars with diverse MIT levels across different functional groups, which should un-475 

dergo further exploration in real-world conditions to evaluate their potential for inter-476 

acting with beneficial soil microbiomes. 477 
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Figure 6. Rank of 51 potato cultivars based on microbial interactive trait (MIT) z-scores (a). Cultivars 479 

were ranked according to the standardised (z-score) values of multiple MIT-related parameters, including 480 

root length, root biomass, root-to-shoot biomass ratio, richness and Shannon diversity of root exudate 481 

metabolites, as well as bacterial and fungal richness and Shannon diversity. Based on their overall z-482 

scores, cultivars were grouped into high, middle, and low MIT levels. Distribution of rhizosphere bacteria 483 

and fungi community composition through Spearman correlation analysis (b). The first axis of principal 484 

coordinate analysis (PCoA1) of microbial community beta-diversity (bacteria and fungi) serves as the in-485 

dicator of community composition. The error bars for each cultivar are displayed in grey. Workflow of 486 

potato cultivar selection (c). This Sankey plot outlines the selection process of potato cultivars based on 487 

functional group classification and MIT levels. The colour of selected cultivars corresponds to functional 488 

groups. The cultivars that were not selected are depicted in grey. 489 

 490 

We conducted a comprehensive characterisation of the MIT-selected cultivars (Figure 491 

S11). The one-way ANOVA results revealed variations among the selected 11 cultivars 492 

(10 + Desiree) in terms of plant metabolites, root development, and rhizosphere micro-493 

bial community richness. Specifically, Desiree and Pasja Pomorska from group A dem-494 

onstrated higher leaf metabolite richness and microbial diversity (Figure S11a, c, d, g, h). 495 

In contrast, in group B, Krab and Salto showed superior microbial alpha diversity per-496 

formance (Figure S11c, d, g, h). In comparison, Danuta from group D exhibited lower 497 

plant metabolite richness, root growth, and bacterial diversity (Figure S11a-c, e-g). Re-498 

garding beta diversity, there were no significant cultivar effects on metabolite or micro-499 

bial profiles, except for root exudate metabolite composition (Figure S11i-l). 500 

 501 

4 DISCUSSION 502 
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Conventional breeding primarily harnesses genetic variation to achieve the desired 503 

traits of plants. However, the impact of a cultivar's genetic information on associated 504 

microbial organisms has yet to receive much consideration, particularly those associated 505 

with the rhizosphere. Here, we emphasise that modern breeding should consider the soil 506 

microbiome as a strategy to reduce its environmental footprint. Understanding the im-507 

portance of microbiome interactive traits (MITs), such as root traits and exudates, is 508 

vital to comprehending how plants and microbiomes interact. Below, we discuss our 509 

findings in the context of the correlation between the selected MITs, their potential con-510 

tribution to sustainable agriculture and additional traits that could be considered in fu-511 

ture studies. The integration of this knowledge will contribute to informing the breeding 512 

process, providing valuable insights for developing new microbiome-based cultivars. 513 

4.1 Correlation between plant traits, metabolites and rhizosphere micro-514 

biome 515 

Our findings underscore the significant role of plant genetics in shaping both root exu-516 

date and leaf metabolite profiles. We observed substantial cultivar-dependent variation 517 

in root exudate metabolite composition consistent with previous studies. This genetic 518 

influence also extends to leaf metabolites, aligning with earlier research on rice (Schaar-519 

schmidt et al., 2020). These results collectively demonstrate that the genetic makeup of 520 

different plant cultivars significantly influences the metabolite composition of different 521 

plant tissues. 522 

We observed a positive correlation between leaf metabolite richness and plant biomass, 523 

a relationship that can be explained through considerations of resource availability and 524 
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plant growth strategies. Environmental conditions and functional traits influence bio-525 

mass allocation among plant organs, such as leaves and roots, influencing many growth 526 

processes (Mensah et al., 2016; Poorter et al., 2012). In optimal environmental condi-527 

tions, biomass allocation (primarily above-ground to compete for light) can enhance the 528 

diversity of leaf metabolites instead of root metabolites (Chapin et al., 2005). The crucial 529 

role of plant secondary metabolites in host defence may also explain this correlation. 530 

These compounds protect hosts against herbivores, pathogens, and (biotic) stresses 531 

(Anjali et al., 2023; Divekar et al., 2022; Yadav et al., 2021; Zaynab et al., 2018). Plants 532 

with higher biomass may invest more in defence mechanisms, producing a wider range 533 

of leaf metabolites for protection. This establishes positive feedback loops, wherein in-534 

creased biomass boosts photosynthetic activity and energy production, consequently 535 

supporting the synthesis of more diverse metabolites. 536 

Previous studies have demonstrated that plant root traits are crucial in regulating 537 

rhizosphere microbial communities (Szoboszlay et al., 2015; Wan et al., 2021). This rela-538 

tionship is further supported by Eisenhauer et al. (2017), who showed that microbial 539 

diversity increases with increasing root biomass and exudate amount. Our results align 540 

with these findings, revealing positive correlations between plant root biomass and root-541 

to-shoot biomass ratio, rhizosphere bacterial diversity, and bacteria-to-fungi species 542 

richness ratio (B/F). A more diverse microbial community, in turn, can enhance soil nu-543 

trient cycling and availability (Jiao et al., 2021), potentially promoting plant growth. 544 

Although root exudates significantly influence bacterial and fungal communities in the 545 

rhizosphere (Hartmann et al., 2009), our study did not find a significant correlation be-546 

tween root exudate metabolites and the rhizosphere microbial community. This unex-547 
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pected result may be because we collected root exudate metabolites from 51 potato culti-548 

vars under in vitro conditions, while the microbial community data were obtained from 549 

a greenhouse experiment. The differences in substrates between these environments 550 

may have influenced the root exudate profiles, leading to variances that could explain 551 

the lack of correlation. 552 

Given the complexity of collecting root exudates from soil plants, we collected leaf me-553 

tabolites in our current experiment to explore the relationship between plant metabo-554 

lites and the soil microbial community. The marginal but positive correlation observed 555 

between leaf metabolites and the rhizosphere bacterial community suggests a potential 556 

influence of leaf metabolites on the composition of rhizosphere bacteria. This finding 557 

indicates a possible link between above-ground plant tissues and below-ground micro-558 

bial communities, aligning with the holobiont concept, in which plants and their associ-559 

ated microorganisms are viewed as a holistic ecological unit (Vandenkoornhuyse et al., 560 

2015). 561 

Recent studies further support this interconnection. Korenblum et al. (2020) demon-562 

strated that the composition of the rhizosphere microbial community affects the me-563 

tabolomes and transcriptomes of tomatoes' leaves and roots. Earlier research showed 564 

that Bacillus can influence photosynthesis, leaf growth, and overall plant phenotypes by 565 

producing phytohormones or volatile organic compounds (Pang et al., 2021), potentially 566 

impacting leaf metabolomes. These findings collectively emphasise the concept of me-567 

tabolites as primary mediators regulating plant-microbiome interactions within the ho-568 

lobiont framework (Carper et al., 2022). As described, the transport of leaf-produced 569 

metabolites to the roots via the phloem (Broussard et al., 2023) suggests a potential 570 
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mechanism for how above-ground metabolites might influence root exudate patterns 571 

and, consequently, the rhizosphere microbiome. However, it's important to note that 572 

our study only demonstrates correlation, not causation. The complex interactions be-573 

tween leaf metabolites, root exudates, and microbial communities require further inves-574 

tigation to elucidate the holobiont concept fully. 575 

4.2 Enhancing plant-microbiome interactions for sustainable agriculture 576 

The soil microbiome promotes plant growth by promoting carbon, nutrient, and phos-577 

phorus cycling (Hartmann and Six, 2022). It also contributes to plant resistance by pro-578 

ducing hormones that protect against abiotic and biotic stress (Eichmann et al., 2021). 579 

Despite its critical functions, the soil microbiome has received limited attention in con-580 

ventional breeding (Mitter et al., 2019; Wei and Jousset, 2017). Compounding this issue 581 

is the fact that conventional agricultural management not only negatively affects the en-582 

vironment but also substantially impacts the soil microbiome (Longepierre et al., 2021). 583 

This dual impact increases the decoupling between plants and soil microbiomes (Huang 584 

et al., 2019; Spor et al., 2020). 585 

Studies addressing the role of plants in regulating their associated microbiome remain 586 

relatively limited (Wei and Jousset, 2017). More precisely, plant roots, serving as the 587 

primary interface for interaction with soil microbes, are underexplored in plant breed-588 

ing (Herms et al., 2022; Reinhold-Hurek et al., 2015). Here, we consider morphological 589 

root characteristics and root exudate metabolites as MITs to explore their interaction 590 

with the rhizosphere microbiome. We aim to supply a strategy for breeding that consid-591 

ers plant-associated microbiota. 592 
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Indeed, the positive correlation between root growth and rhizosphere microbial diver-593 

sity indicates that MITs can aid in identifying plant cultivars with the potential to inter-594 

act effectively with root-associated microbiomes. Cultivars exhibiting high MITs are 595 

likely to harbour a more diverse rhizosphere microbiome, which in turn can lead to en-596 

hanced plant growth through the support of beneficial microbial interactions. Identify-597 

ing the genes associated with beneficial microbiomes in modern cultivars and using 598 

them in selective breeding efforts to achieve microbial-assisted cultivars can serve as a 599 

new plant breeding strategy. This approach represents a promising avenue for sustain-600 

able agriculture, as it harnesses the power of beneficial microorganisms to improve crop 601 

performance while reducing the need for chemical inputs. 602 

4.3 Integrating additional root traits and phyllosphere microbiome in fu-603 

ture studies 604 

We suggest expanding future research beyond the MITs examined in this study to in-605 

clude a broader range of root phenotypic traits. While the current study focuses on root 606 

biomass and length, future investigations should include root diameter, surface area, 607 

and root type. Although less studied, evidence suggests that fine roots with smaller di-608 

ameters have larger surface areas, potentially recruiting a greater diversity and abun-609 

dance of microbes through enhanced nutrient and metabolite exchange (Saleem et al., 610 

2018; Wan et al., 2021). Pérez-Jaramillo et al. (2017) linked root types (thin or thick) to 611 

specific bacterial phyla, highlighting the importance of root morphology in shaping mi-612 

crobial communities. Additionally, the spatial distribution of microbial communities 613 

along the root should be considered. Kawasaki et al. (2016) observed that the functional 614 

genes detected in microorganisms near the root tip were distinct from those isolated 615 
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near the root base. Collectively, these various root phenotypic traits should be consid-616 

ered to improve plant-microbiome interactions. 617 

In addition to expanding our focus on root phenotypic traits, we propose incorporating 618 

the phyllosphere microbiome into future studies. The phyllosphere microbiome, which 619 

includes microorganisms inhabiting the above-ground parts of plants, plays a crucial 620 

role in plant health and function (Thapa and Prasanna, 2018; Vorholt, 2012). Previous 621 

studies have demonstrated that host genotypes significantly influence the composition 622 

of phyllosphere microbial communities (Bodenhausen et al., 2014; Thapa et al., 2017). 623 

The phyllosphere microbiome is involved in nitrogen fixation (Abadi et al., 2021), en-624 

hancing stress tolerance (Etemadi et al., 2018; Stone et al., 2018), and suppressing plant 625 

diseases (Fan et al., 2019; Das et al., 2023). Additionally, they can regulate plant growth 626 

through the production of plant hormones (Stone et al., 2018). These diverse functions 627 

highlight the importance of the phyllosphere microbiome in plant health and productiv-628 

ity. 629 

By considering the phyllosphere microbiome together with the rhizosphere microbiome 630 

and plant metabolites, we can establish a more comprehensive understanding of the 631 

plant holobiont. This approach will allow us to bridge the gap between the plant's above- 632 

and below-ground components. By harnessing the functions of phyllosphere and 633 

rhizosphere microbiomes, we may enhance crop yields, improve plant resilience, and 634 

reduce reliance on chemical inputs, ultimately contributing to more sustainable agricul-635 

tural systems. 636 

 637 
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5 CONCLUSION 638 

This study underscores the significant impact of plant cultivars on leaf metabolites and 639 

root exudate metabolites. We also observe a positive correlation between leaf metabo-640 

lites and rhizosphere bacterial community; further studies are needed to verify the cau-641 

sation and to involve root exudates to expand our knowledge of the holobiont frame-642 

work. We systematically selected potato cultivars to identify those with diverse micro-643 

biome interactive traits (MITs). We lay the foundation for further studies to evaluate the 644 

performance of MIT-selected cultivars in the real world. This is needed to provide a 645 

promising strategy for future breeding programs, including identifying gene markers 646 

associated with a beneficial microbiome and utilising these genes to increase plant-647 

microbiome interactions. This breeding strategy could promote host growth while re-648 

ducing the reliance on synthetic chemicals in conventional agriculture. Finally, we sug-649 

gest integrating additional root phenotypic traits and the phyllosphere microbiome in 650 

future studies to establish a more comprehensive understanding of the plant holobiont, 651 

which can benefit plant-microbiome interactions. 652 

 653 

Data Availability Statement 654 

The raw sequencing data are available in the National Center for Biotechnology Infor-655 

mation (NCBI) Sequence Read Archive (SRA) under the accession number 656 

PRJNA1211026. The metadata and datasets used for the bioinformatic analyses are 657 

available at the following link: https://github.com/tianci-zhao/potatoMETAbiome-658 

Greenhouse-Experiment. 659 
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Supporting information 691 

Figure S1. Root dry weight and root-to-shoot ratio of 51 potato cultivars in vitro experiment. Each 692 

colour represents a distinct potato cultivar. The upper left corner of each plot displays one-way ANOVA 693 

results, where the F-value explains the variation among different cultivars, and the p-value indicates the 694 

statistical relationship among cultivars. 695 

Figure S2. Shoot growth analysis of 51 potato cultivars. The upper panel displays the shoot length, while 696 

the lower panel illustrates the shoot dry weight. Each colour represents a distinct potato cultivar. The 697 

upper right corner of each plot displays one-way ANOVA results, where the F-value explains the variation 698 

among different cultivars, and the p-value indicates the statistical relationship among cultivars. 699 
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Figure S3. Root-to-shoot ratio analysis of 51 potato cultivars. The upper panel displays the root-to-shoot 700 

length ratio, while the lower panel illustrates the root-to-shoot dry weight ratio. Each colour represents a 701 

distinct potato cultivar. The upper right corner of each plot displays one-way ANOVA results, where the F-702 

value explains the variation among different cultivars, and the p-value indicates the statistical relationship 703 

among cultivars. 704 

Figure S4. Distribution of metabolites in root exudates and leaves across 47 different cultivars. Four 705 

outlier cultivars (Kama, Czapla, Fianna, Orlik Cs) were excluded to better illustrate the distribution of 706 

distinct cultivars. A Principal Coordinates Analysis (PCoA) based on Bray-Curtis dissimilarity was per-707 

formed to visualise the composition. The metabolite dissimilarities of root exudates and leaf are depicted 708 

separately on the left and right. Distinct potato cultivars are represented by different colours, with the 709 

error bars for each cultivar displayed in grey. PERMANOVA (Adonis) results in the upper right corner of 710 

each panel elucidate the influence of cultivars on metabolite composition. R² quantifies the explained 711 

variation, and p-values are derived from 9999 permutations. The symbol *** denotes statistically signifi-712 

cant p-values (p = 0.001).  713 

Figure S5. The alpha-diversity of the bacterial (a,b) and fungal (c,d) communities in bulk and 714 

rhizosphere soil, displayed by species richness and evenness. Different colours represent bulk samples 715 

from the beginning of the experiment (Bulk_D0), at harvest (Bulk_D36), and rhizosphere samples of 51 716 

cultivars. The lower right corner of each plot displays one-way ANOVA results, where the F-value explains 717 

the variation among different soil compartments (bulk and rhizosphere), and the p-value indicates the 718 

statistical relationship. 719 

Figure S6. The microbial community composition in bulk and rhizosphere soil. Principal Coordinates 720 

Analysis (PCoA) based on Bray-Curtis dissimilarity was performed to visualise the community composi-721 

tion of bacteria (a) and fungi (b). Different shapes represent different soil compartments (bulk and 722 

rhizosphere). Different colours represent bulk samples from the beginning of the experiment (Bulk_D0), 723 

at harvest (Bulk_D36), and different potato cultivars, with the error bars for each cultivar displayed in 724 

grey. PERMANOVA results in the lower left corner of each panel elucidate the influence of soil compart-725 
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ments on community composition. R² quantifies the explained variation, and p-values are derived from 726 

9999 permutations. 727 

Figure S7. Rhizosphere microbial community evenness of 51 potato cultivars. The upper panel is bacte-728 

rial evenness, and the lower panel is fungal evenness. Different colours indicate different cultivars. The 729 

lower right corner of each plot displays one-way ANOVA results, where the F-value explains the variation 730 

among different cultivars, and the p-value indicates the statistical relationship among cultivars. 731 

Figure S8. Rhizosphere microbial community species richness. The upper panel is bacterial richness, 732 

and the lower panel is fungal richness. Different colours indicate different cultivar functional groups. The 733 

“ns” indicates no significant influence of groups on microbial alpha diversity (one-way ANOVA). 734 

Figure S9. Rhizosphere microbial community composition. Principal Coordinates Analysis (PCoA) based 735 

on Bray-Curtis dissimilarity was performed to visualise the community dissimilarities of bacteria (a) and 736 

fungi (b). Distinct potato cultivar functional groups are represented by different colours, with the error 737 

bars for each cultivar displayed in grey. PERMANOVA results in the upper right corner of each panel elu-738 

cidate the influence of groups on community composition. R² quantifies the explained variation, and p-739 

values are derived from 9999 permutations. 740 

Figure S10. Correlation between plant root biomass and rhizosphere bacterial (a,b) and fungal 741 

(c,d)alpha diversities (species richness and Shannon diversity) across different functional groups. Dis-742 

played by functional groups A, B, C and D. The Spearman correlation assessed the relationship, with R2 743 

indicating the strength of the correlation. Y is the regression equation, and a p-value < 0.05 represents a 744 

significant correlation between the variables. 745 

Figure S11. Characterisation of selected cultivars. Selected potato cultivars from different functional 746 

groups are represented by different colours, with the error bars for each cultivar displayed in grey. Letters 747 

in the upper two panels indicate significant differences across cultivars (Duncan post hoc test). In the 748 

lower right corner of the last panel plots, PERMANOVA results elucidate the influence of cultivars on 749 
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community composition. R² quantifies the explained variation, and p-values are derived from 9999 per-750 

mutations. A significance level is denoted as *** (p < 0.001). 751 

Table S1. Background information on 148 selected cultivars for the in vitro experiment. 752 

Table S2. Plant growth data of 148 potato cultivars from in vitro experiment. 753 

Table S3. Soil physicochemical characteristics at the beginning and end of greenhouse experiment. 754 

Table S4. Functional groups of potato cultivars categorised based on plant growth and metabolite pro-755 

files. 756 

Table S5. The one-way analysis of variance (ANOVA) shows the influence of cultivar on the plant me-757 

tabolite alpha diversity. 758 

Data S1. Dissolved organic carbon content of root exudates from in vitro experiment 759 

Data S2. Leaf tissue metabolites data in greenhouse experiment 760 

Data S3. Root exudate metabolites data from in vitro experiment 761 

Data S4. Plant performance in greenhouse experiment 762 

Data S5. Rhizosphere microbial feature tables 763 

Data S6. MIT z scores data764 
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