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ABSTRACT

Root traits significantly shape rhizosphere microbiomes, yet their interaction with mi-
crobes is often overlooked in plant breeding programs. Here, we propose that selecting
modern cultivars based on microbiome interactive traits (MITs), such as root biomass,
exudate patterns and the rhizosphere microbiome, can enhance agricultural sustainabil-
ity by interacting effectively with soil microbiomes, which in turn, promotes plant
growth and resistance to stress, thereby reducing reliance on synthetic crop protectants.
Through a stepwise selection process (in silico and in vitro) that started with approxi-
mately 1000 potato genotypes, we chose 51 potato cultivars based on known phenotypi-
cal properties and distinct root exudate patterns. We conducted a greenhouse experi-
ment to evaluate their capacity to interact with the soil microbiome and to assess their
MITs. Our findings revealed that cultivars significantly influence plant growth, metabo-
lite profiles, and rhizosphere fungal community composition. Moreover, we observed a
positive correlation between microbial community diversity and root biomass. Addi-
tionally, leaf metabolites were correlated with rhizosphere bacterial composition, sup-
porting the plant holobiont framework. Utilising z-scores, we aggregated all data related

to plant growth, metabolomes, and microbiomes, creating a classification of 51 cultivars
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based on a gradient of MITs. By examining the distribution of low, medium, and high
MITs, we identified a group of 11 potato cultivars suitable for further studies to assess
their resilience and productivity under low-input production systems. This study pro-
vides an in-depth correlation between microbiome and several plant traits across 51 cul-
tivars, offering tools to facilitate and expedite the incorporation of microbiome traits

into breeding goals to support sustainable agriculture.

1 INTRODUCTION

Potato (Solanum tuberosum L.) cultivations rely heavily on conventional agricultural
practices as a staple crop. Conventional management, which includes the widespread
use of synthetic fertilisers and pesticides, is frequently used to enhance yields and pro-
tect crops from pests and diseases (Timsina, 2018). However, this dependency on syn-
thetic compounds comes with substantial environmental issues. Overusing chemical
inputs in conventional agriculture leads to water pollution, soil degradation, and soil
microbial biomass and activity reduction, which are crucial in maintaining soil fertility
and nutrient cycling (AL-Ani et al., 2019; Tripathi et al., 2020). Balancing high yields

with care for our environment is a critical challenge in the breeding of crops.

In conventional breeding, plants are bred for traits such as high yield, disease resistance,
tolerance to environmental stresses, and improved agronomic traits (Breseghello and
Coelho, 2013). While pivotal in crop development, conventional breeding has inadver-
tently led to the dissociation between plant and soil microbiomes, negatively affecting

beneficial plant-microbiome interactions (Spor et al., 2020). Comparisons between do-
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mesticated cultivars and their ancestral plants revealed that the rhizosphere microbiome
of the latter exhibited higher complexity and connectivity (da Silva et al., 2023;
Rossmann et al., 2020). However, relying solely on ancestral or wild plants may not ef-
fectively address the challenge of optimising plant-soil microbiome interactions in mod-
ern agricultural systems. Identifying specific genes associated with beneficial micro-
biomes in ancestral plants, with the aim of a subsequent transfer to modern crops
(Clouse and Wagner, 2021), is complex due to environmental effects on gene expression
(Raaijmakers and Kiers, 2022). Despite the reduced focus on plant-microbiome interac-
tions during domestication (Wei and Jousset, 2017), multiple studies have demon-
strated that inoculating modern crop cultivars with beneficial microbes can significantly
enhance plant growth and stress resistance (Diagne et al., 2020; Frohlich et al., 2012;
Rodriguez et al., 2019; Tiwari et al., 2017). This suggests that modern cultivars retain
the capacity for beneficial interactions with soil microbes, which can be leveraged or
strengthened. Therefore, it is critical to identify gene markers associated with beneficial
microbiomes in modern crops and apply this knowledge in real-world agricultural sys-

tems, particularly in the context of climate change.

The connection between root traits and plant productivity in crops has long been ac-
knowledged, as roots are involved in resource acquisition, drought tolerance, soil explo-
ration and other essential functions (Lynch, 1995; Ober et al., 2021). It is increasingly
evident that our understanding of this connection should extend to how root traits
shape the composition and functionality of the rhizosphere microbiome. While this as-
pect has received somewhat limited attention within plant breeding (Herms et al., 2022),

many studies highlight the role of root traits in the rhizosphere microbiome. For in-
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86 stance, a study on maize revealed that wild maize had a significant impact on the struc-
87  ture of the microbial community, which was attributed to a high root-to-shoot biomass
88 ratio (Szoboszlay et al., 2015). Plant root traits influence the soil microbial community
89 by modulating the fungi-to-bacteria ratio, contributing to nutrient cycling (Wan et al.,
90 2021). Moreover, a study involving beans (Pérez-Jaramillo et al., 2017) indicated that
91 root architecture is linked to increased specific bacterial taxa, which could be connected
92  to plant health. In addition to the root system, root exudates substantially impact the
93 rhizosphere microbiome. As a survival strategy, plants secrete an abundance of com-
94  pounds in their root exudates that can influence the diversity of the rhizosphere micro-
95 bial community, promote the development of a more complex microbial network and
96 enhance microbial carbon cycling, thereby facilitating the growth and survival of the
97  host (Wang et al., 2022). A study on wheat has demonstrated that cultivars with a strong
98 capacity for root exudates contribute to increased soil microbial diversity (Iannucci et al.,
99  2021). Furthermore, the plant-associated microbial community is increasingly consid-
100 ered an extension of the plant phenotype (Bergelson et al., 2021; Whitham et al., 2003).
101 Referred to as the plant's "second genome", plant-associated microbiome is strongly
102 regulated by the plant's genetic makeup (Turner et al., 2013). This suggests that a culti-
103  var harbouring a more diverse community has a great potential to engage in beneficial

104 interaction with microbes.

105 Here, we propose a method for identifying plant cultivars that foster beneficial interac-
106 tions with the soil microbiome. We achieve this by assessing the microbiome interactive
107 traits (MITs) of existing potato cultivars within the European potato germplasm bank.

108 We hypothesise that root architecture and exudate patterns significantly influence the
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109 rhizosphere microbiome. By combining these traits, we propose a classification of culti-
110 vars with different MITs. Beginning with approximately 1000 potato genotypes, we em-
111  ployed a stepwise selection process, conducting in silico, in vitro, and greenhouse-based
112  studies to examine the correlation between the plant traits of 51 potato cultivars and
113  their rhizosphere microbial communities. We advocate for including MITs in breeding
114 and the development of new crop cultivars. By prioritising these interactive traits, we
115 can significantly enhance our understanding of plant-microbiome interactions while
116  supporting microbiome-based innovation, which are essential for achieving sustainable

117  agricultural practices.

118

119 2 MATERIALS AND METHODS

120 2.1 In situ analyses

121  In this project, we began our selection by screening late-season potato cultivars from a
122  database of one thousand potato cultivars. Considering that disease-resistant plants are
123  known to interact with beneficial microbes to bolster host immunity (Wille et al., 2019)
124  and that these traits might be associated with their genetic background, we screened
125 these cultivars from various resistance levels to numerous pathogens, especially those
126  relating to potato-specific viruses (Table S1). The resistance scale was assessed using the
127 method described by Michalak and Chrzanowska (2017). Detailed information on se-
128 lected cultivars is available in The FEuropean Cultivated Potato Database
129  (www.europotato.org). This selection resulted in a list of 148 to be used in the second

130 selection round, which included a commercial cultivar, Desiree, as a reference.
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131 2.2 In vitro experiment

132  For the second selection, the 148 cultivars including Desiree were evaluated according to
133  the amount of dissolved organic carbon (DOC) in the root exudates of 6-week-old in vi-
134  tro plants grown under sterile conditions (cf. section 2.1). Specifically, two-week-old
135 potato plantlets grown from vegetative propagation in tissue culture at the Institute of
136 Plant Breeding and Acclimation in Bonin (Bonin, Poland) were transplanted from agar
137  tubes into 15 ml Eppendorf tubes, each containing 12 ml of sterile 0.5 x Hoagland solu-
138 tion. The agar was carefully removed from the roots of each plant, and to ensure aseptic
139 conditions, sterile cotton wool was wrapped around the above-ground part of the plant-
140 lets, which were then gently placed into the 15 ml tubes. The roots were submerged in
141  the Hoagland medium, while the above-ground part remained above it. The plantlets
142  were allowed to acclimate to their new environment during a one-week growth period in
143  a controlled climate chamber. The climate chamber maintained a temperature of 22 °C
144 during the day and 18 °C at night, with a photoperiod of 16 hours of light and 8 hours of
145 darkness. Upon completion of the initial week, the plantlets were transferred to new
146  sterile 15 mL tubes, maintaining the 12 ml sterile 0.5 x Hoagland solution, as described
147  in the previous step. To compensate for the liquid lost during the experiment, sterile
148  water was added to maintain the volume at 12 ml. After the third week, the plants were
149  harvested, and root and shoot length and dry weight were measured. Additionally, 3 ml
150 aliquots of the growth medium were collected and frozen for DOC analysis. Moreover, 1
151 ml aliquots were freeze-dried for root exudate metabolite analysis (cf. section 2.4). The

152 samples were immediately stored at -80°C until further analysis. The DOC content
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153 analysis was later processed in Helmholtz Zentrum Miinchen GmbH (Munich, Germany)

154  (Data S1).

155 The data based on DOC content of the growth medium per root dry weight and shoot
156  dry weight from the in vitro experiment revealed the variation among cultivars (Figure
157 S1 and Table S2). We then selected a representative set of 50 cultivars plus the commer-
158 cial cultivar, Desiree, representing the whole variation in DOC, for the third selection

159 round in a greenhouse experiment.

160 2.3 Greenhouse experiment

161 The soil used in this experiment originated from a sugar beet field and was sieved with a
162 2 mm sieve. Before starting the experiment, six bulk soil samples were kept for physico-
163 chemical analyses (Table S3) and DNA extraction. Two-week-old potato plantlets grown
164 from vegetative propagation in tissue culture at the Institute of Plant Breeding and Ac-
165 climation in Bonin (Bonin, Poland) were transplanted from agar tubes into small pots
166 containing soil (0.5 L) in the greenhouse. Before transplanting, the agar was carefully as
167 previously described to ensure aseptic conditions. After two weeks of acclimatisation,
168 the potato plants were transplanted into larger pots with the same soil (1.45 L). In the
169 sixth week, the samples were taken as follows: Plant leaves, specifically the second or
170  third leaf from the shoot top, were harvested for metabolomics analysis. The harvested
171  leaves were snap-frozen in liquid nitrogen and then transferred to a freezer at -8o °C.
172  The rhizosphere soil was obtained by gently brushing off adhering soil from the roots
173  with a disposable toothbrush. Additionally, six bulk soil samples were collected from

174  pots without plants for physicochemical analyses (Table S3) and DNA extraction. The
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175 soil samples for DNA analysis were frozen at -20 °C until DNA extraction the following
176 day. Shoot height and root length were measured on the day of harvesting, and shoot

177  and root dry weights were measured after drying at 60 °C for at least 48 hours.

178 2.4 Metabolite profiling of root exudates and leaf tissue

179  Metabolite fractions enriched for primary metabolites were profiled by gas chromatog-
180 raphy and electron impact ionisation-time of flight mass spectrometry (GC/EI-TOF-MS)
181 (Lisec et al., 2006; Erban et al., 2020). Root exudate samples, i.e. equal debris-free 1 mL
182  volumes, of the in vitro experiment, cf. section 2.2, were freeze-dried directly without
183 further sample preparation. A polar metabolite fraction was prepared from 50 mg snap-
184  frozen leaf samples of the greenhouse experiment, cf. section 2.3. The frozen samples
185 were extracted by a water-methanol-chloroform solvent mixture; a polar fraction was
186 prepared from the extracts by water-induced liquid-liquid phase separation and dried in
187 a speed-vacuum-concentrator, as described earlier (Erban et al., 2020). The dried frac-
188 tions were subjected to methoxyamination and trimethylsilylation prior to GC/EI-TOF-
189 MS analysis. 3C¢ Sorbitol was added to all leaf samples before metabolite extraction
190 (Erban et al., 2020). N-alkanes were added to each sample upon chemical derivatisation
191 for subsequent retention index (RI) calibration (Erban et al., 2020). The GC/EI-TOF-
192 MS chromatograms were obtained and baseline adjusted by ChromaTOF software
193 (LECO Instrumente GmbH, Monchengladbach, Germany) and background corrected
194 using non-sample controls. Metabolite annotation was performed using TagFinder
195 software (Luedemann et al., 2008), the NIST17 mass spectral database (U.S. Depart-
196 ment of Commerce, Gaithersburg, USA), and the RI and mass spectral reference data of

197 the Golm Metabolome Database, http://gmd.mpimp-golm.mpg.de/ (Hummel et al.,
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198 2010; Kopka et al., 2005). Compounds representing known contaminants and added
199 internal standards were removed from further analysis. Metabolites absent from more
200 than 75% of all analysed exudates or leaf tissue samples were excluded, resulting in 84
201 characterised leaf metabolites (Data S2) and 49 metabolites (Data S3) that were robustly

202  present in root exudates.

203  Relative concentrations were normalised for further analyses to record the sample's
204  fresh weight and internal standard or exudate volume (Schaarschmidt et al., 2020). An
205 ANOVA tool was used to perform a batch correction of the metabolite data sets for dif-
206 ferent measurement batches and the measurement sequence within batches (Lisec et al.,
207  2011). All presented metabolite data are relative metabolite abundances. Three replicate

208 samples per cultivar were analysed. The missing values were substituted by zero.

209 2.5 Soil sample sequencing and processing

210 DNA was extracted from 12 bulk soil samples and 153 rhizosphere samples with DNeasy
211 PowerSoil Kit (Qiagen, Hilden, Germany) on 0.25 g of soil. DNA extraction followed the
212  kit's instructions except for the initial stage of bead beating, which was conducted with a
213  FastPrep-24TM 5G Instrument at 6000 rpm/s for 40 s (MP Biomedicals, Santa Ana,
214  USA). For sequencing of the bacterial community, the V4 region of the 16S rRNA gene
215 was targeted using the primer sets 515F (5'-GTGCCAGCMGCCGCGGTAA-3’) and 806R
216 (5'-GGACTACHVGGGTWTCTAAT-3’) (Caporaso et al., 2012, 2011). For the fungal
217 community, the ITS2 region was sequenced with the primer sets 5.8SR (5'-
218 TCGATGAAGAACGCAGCG-3") and reverse primer ITS4 (5'-

219 TCCTCCGCTTATTGATATGC-3") (White et al., 1990). The Tllumina MiSeq platform was
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220 used for paired-end sequencing (2 x 250bp for 16S, 2 x 300bp for ITS) at the PGTB

221  (Genome Transcriptome Platform of Bordeaux, Cestas, France).

222  The 16S rRNA gene sequencing data were processed using a QIIME2 (version 2020.8)
223  pipeline (Bolyen et al., 2019). Sequences were filtered, denoised, and dereplicated using
224 the default setting of the Divisive Amplicon Denoising Algorithm (DADA2) plugin (Cal-
225 lahan et al., 2016). 16S rRNA taxonomic classification was performed using the q2-
226  feature-classifier plugin (Bokulich et al., 2018) against the SILVA database (version 138)
227  (Yilmaz et al., 2014). ITS sequencing data was processed using the PIPITS v. 2.4 pipeline
228  (Gweon et al., 2015). In brief, the PEAR plugin was used to join read pairs (Zhang et al.,
229  2014). The FASTX-Toolkit was utilised for quality filtering (Gordon and Hannon, 2010).
230 The fungal-specific ITS2 region was extracted via ITSx (version 1.1b) (Bengtsson-Palme
231 et al,, 2013). The VSEARCH 2.13.3 plugin (Rognes et al., 2016) was used to dereplicate
232  unique sequences, clustering to 97% sequence identity, and the UNITE Uchime refer-
233  ence dataset was used for chimera detection (Nilsson et al., 2015). Ultimately, the tax-
234  onomy was assigned with the RDP Classifier against the UNITE database (version 8.0)

235 (Koljalg et al., 2013).

236 2.6 Statistical Analysis

237 A one-way analysis of variance (ANOVA) was used to test variation in plant metabolite
238 diversity, plant performance (shoot and root growth), and rhizosphere microbial alpha
239 diversity (Data S2-S5). Post hoc comparisons were performed through Tukey's honest

240 significant differences or Duncan’s multiple range tests.
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241  Analysis of soil microbial community structure (bacteria and fungi) was performed in R
242  (version 4.2.0). Feature tables were rarefied at 14400 reads for bacterial 16S rRNA gene
243  and 6361 for fungal ITS sequences, resulting in 8970 amplicon sequence variants (ASVs)
244 for the bacterial community and 2006 operational taxonomic units (OTUs) for the fun-
245  gal community after excluding non-microbial OTUs (Data S5). The rarefactions of fea-
246  ture tables were generated via 'rarefy’ function in the package 'vegan' (Dixon, 2003). The
247  same package was used to calculate the alpha diversity metrics for microbial communi-
248 ties and plant metabolites. Specifically, species richness indicates the number of unique
249  species or metabolites observed, evenness describes how evenly the abundances of dif-
250 ferent species or metabolites are distributed, and the Shannon Diversity Index accounts
251  for both the number of species/metabolites and their relative abundances (Jost, 2006;

252  Wagner et al., 2018; Young and Schmidt, 2008).

253  The soil microbial community, root exudate and leaf metabolite compositions (Data S2,
254  S3 and Sj) were visualised through Principal Coordinate Analysis (PCoA) based on
255  Bray-Curtis distance. This analysis used the 'ape’ package in R (Paradis et al., 2004).
256  PCoA scores per axis were averaged for each sample to illustrate the distribution of dis-
257  tinct cultivars in PCoA plots clearly. Permutational multivariate analysis of variance
258 (PERMANOVA) was conducted using the 'adonis' function within the 'vegan' package to
259 assess the impact of cultivars on soil microbial communities and metabolite profiles

260 (Dixon, 2003).

261  Principal Component Analysis (PCA) based on the covariance matrix was performed
262  with the R package '"FactoMineR' to reduce the dimensionality of the data and to visual-

263 ise the distribution of plant cultivars (L€ et al., 2008). The variables included in the
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264  analysis were shoot and root length, shoot and root dry weight, metabolite diversity and
265 composition of plant leaf tissue and root exudates (Data S4). Due to the significant
266 variation in root exudate relative abundance observed in the in vitro experiment, me-
267 dian values were used for PCA plotting. Normalisation of plant data and metabolite
268 richness was performed before analysis by calculating Z-scores. Subsequently, a PER-
269 MANOVA was conducted to assess the influence of variables on the distribution of 51
270  cultivars. The cultivars were classified into four functional groups based on their distri-
271  bution across the first and second principal components (PC1 and PC2). The classifica-
272  tion was done by dividing the PCA plot into four quadrants, each representing a distinct
273  functional group of cultivars, reflecting differences in growth characteristics and me-

274  tabolite profiles. The summarised group details can be found in Table S4.

275 To investigate the relationship between plant cultivars and rhizosphere microbiome
276  composition, we categorised the 51 potato cultivars into four distinct functional groups.
277  The category was determined by the distribution of cultivars and variables along the

278  first two axes in the PCA plot.

279 The correlation between plant growth and related omics datasets (Data S4) was calcu-
280 lated using the Spearman correlation coefficient via the 'corr.test()' function from the
281 'psych' package in R (Revelle, 2024). The resulting p-values were adjusted using the
282  False Discovery Rate (FDR) method to control for multiple comparisons and minimise
283 false positives. We used the Mantel test with Spearman's rank correlation to assess the
284  correlation between microbial community compositions and metabolite profiles, utilis-
285 ing Bray-Curtis dissimilarity matrices. This analysis aimed to investigate the relation-

286  ship between plant leaf metabolites and rhizosphere soil community.
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287 To assess the overall MIT score of 51 potato cultivars, we calculated the average of the
288 standardised scores (z scores) for various traits, including root length, root biomass,
289  root-to-shoot biomass ratio, root exudate metabolites richness and Shannon diversity,

290 aswell as bacterial and fungal richness and Shannon diversity (Data S6)

291 Using the 'ggsankey' R package (Sjoberg, 2021), a Sankey plot was generated based on
292  functional groups to summarise the selection of the 11 cultivars with the most potential
293 for future research. The distribution of rhizosphere bacterial and fungal community
294  compositions was illustrated for the 11 selected cultivars using Spearman correlation
295 analysis. The first axis of the PCoA plot of bacterial and fungal communities served as

296 the indicator of community composition (Data S4).

297

298 3 RESULTS

299 3.1 Plant growth

300 In the greenhouse experiment, plants from 51 potato cultivars were harvested from the
301 soil in the sixth week, with plant growth varying among the cultivars. Analysis of vari-
302 ance (ANOVA) revealed that most of these cultivars' growth patterns differed signifi-
303 cantly according to their identity, with marked variation in both root biomass and root
304 length (root biomass: p = 0.001, F = 2.26; root length: p = 0.003, F = 1.91; Figure 1).
305 Specifically, the cultivars Inwestor, Salto and Szyper demonstrated higher root biomass
306 than others. In addition, shoot length and shoot biomass varied significantly between

307 cultivars (shoot length: p = 0.001, F = 6.80; shoot biomass: p = 0.009, F = 1.75; Figure
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S2). Here, the cultivars Astrid, Inwestor, and Tewadi cultivars had the highest shoot
biomass. Regarding the root-to-shoot ratio based on length exhibited a significant re-
sponse to distinct cultivars (p = 0.001; Figure S3) while the ratio of root-to-shoot dry

weight did not show a substantial difference between the different cultivars (p = 0.36;

Figure S3).
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Figure 1. Root growth analysis of 51 potato cultivars. The upper panel displays root length, while the
lower panel illustrates root dry weight. Each colour represents a distinct potato cultivar in alphabetical
order. The upper right corner of each plot displays one-way ANOVA results, where the F-value explains
the variation among different cultivars, and the p-value indicates the statistical relationship among culti-

vars. Significance levels are denoted as ** (p = 0.01) and *** (p = 0.001).

3.2 Plant leaf and root exudate metabolites

We further evaluated our selected 51 cultivars according to their root exudate metabo-

lites (obtained under in vitro conditions) and leaf metabolites (obtained from the
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323 greenhouse experiment). To understand the variation in metabolites produced and re-
324 leased by the 51 potato cultivars, we conducted a Principal Coordinates Analysis (PCoA)
325 and visualised the distribution of metabolites among different cultivars (Figure 2). The
326 PERMANOVA results indicated significant differences in metabolite composition
327 among cultivars for both root exudates and leaves (Proot exudate = 0.001 and piear = 0.001;
328  Figure 2). Overall, leaf metabolite composition was more strongly explained by plant
329 cultivar identity than root exudate metabolites (R2ieaf metabolite = 0.68, and R2root exudates =
330 0.58; Figure 2). The first two axes of the PCoA plot explained more than 34% of the

331 variation for both metabolites.

332  Although most cultivars tended to cluster together, several cultivars stood out, suggest-
333 ing a different metabolite profiles. Specifically, Kama, Czapla and Fianna showed dis-
334 tinct root exudate metabolites compared to other cultivars, while Orlik Cs exhibited a
335 unique leaf metabolite profile (Figure 2). To better illustrate the variance of remining

336 cultivars, we remove these four cultivars with extreme metabolites values in Figure S4.

337 Furthermore, we found that the alpha diversity of plant metabolites was significantly
338 affected by cultivars (Table S5). These results indicate that different potato cultivars ex-
339 hibit distinct metabolites, contributing to variations in metabolite composition among

340 cultivars.

341
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Figure 2. Distribution of metabolites in root exudates and leaves across 51 different cultivars. Principal
344  Coordinates Analysis (PCoA) based on mean Bray-Curtis dissimilarity of metabolite composition of root
345  exudates (a) and leaves (b). Distinct potato cultivars are represented by different colours, with the error
346  bars for each cultivar displayed in grey. PERMANOVA results are shown in the upper right corner of each
347  panel, indicating variations in metabolite composition among different cultivars. R2 quantifies the ex-
348  plained variation, and p-values are derived from 9999 permutations; *** denotes statistically significant

349  p-values (p = 0.001).

350 3.3 Plant cultivar functional groups

351 To understand the distribution of plant growth and metabolite traits across our 51 se-
352  lected cultivars, we used PCA to classify them into functional groups (Figure 3). These
353 were based on data on plant cultivar growth characteristics, including shoot and root
354 growth, leaf metabolites and root exudates. This approach allowed us to consider the
355 overall metabolite composition, encompassing alpha and beta diversity, rather than fo-
356 cusing solely on metabolite richness and evenness. Our results revealed that the distri-
357 bution of these traits differed significantly among different potato cultivars, as evi-

358 denced by the results of the PERMANOVA analysis (p = 0.001; Figure 3). Specifically,
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359 the first axis of the PCA biplot prominently reflected the impact of root exudate metabo-
360 lite diversity and composition (Figure 3). In contrast, plant performance metrics and

361 leaf metabolite composition mainly drove the second axis.

362 Based on the distribution of cultivars and variables across the first two axes, the 51 po-
363 tato cultivars were systematically categorised into four distinct functional groups ac-
364 cording to their distribution in each of the four PCA quadrants (Figure 3). Group A fea-
365 tured cultivars exhibiting high leaf metabolite diversity and plant biomass, suggesting
366 strong performance in leaf metabolic diversity and plant development. Group B in-
367 cluded cultivars with high root exudate diversity and plant length, indicating a focus on
368 below-ground metabolic processes and vertical growth of plants. Group C consisted of
369 cultivars characterised by distinct leaf metabolite composition, as this variable primarily
370 derived the cultivars distribution within this group. These cultivars may have a distinct
371 composition of leaf metabolites compared to other groups, indicating specific leaf meta-
372  bolic profiles that differentiate them from other cultivars. Group D comprised cultivars
373  with low root exudate metabolite diversity and different metabolite compositions. The

374  summarised group details and cultivars can be found in Table S4.

375
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377  Figure 3. Distribution of 51 potato cultivars based on plant performance, root exudates and leaf metabo-
378 lite profiles. Principal Component Analysis (PCA) based on the covariance matrix, highlighting variables
379  impacting the distribution of potato cultivars. Distinct potato cultivars are represented by different col-
380  ours, with the error bars for each cultivar displayed in grey. The result of PERMANOVA is shown in the
381  upper right, elucidating the cultivar's influence on the distribution. R2 quantifies the explained variation,
382  and p-values, derived from 9999 permutations, are denoted with *** for statistically significant results (p

383  =0.001). Letters A, B, C and D represent the four distinct functional groups.

384 3.4 Soil microbial communities

385 The analysis of microbial communities in bulk and rhizosphere soil from the greenhouse
386 experiment revealed a significant impact of plant presence on microbial communities.
387 There was a significant difference in bacterial evenness between different soil compart-

388 ments (p = 0.001; Figure S5b), whereas no significant effect on fungal richness and
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389 evenness (p > 0.05; Figure S5c,d) was observed. Bacterial and fungal community com-
390 positions responded to the presence of plants (Figure S6). Specifically, all bulk soil sam-
391 ples were found to cluster together in bacterial communities, separate from the
392 rhizosphere samples (Figure S6a). Some potato cultivars' rhizosphere fungal communi-

393 ties were grouped distinctly apart from the bulk soil (Figure S6b).

394 Comparison across the 51 potato cultivars revealed considerable variation and no sig-
395 nificant effect of cultivar on bacterial and fungal alpha diversities, except for the cultivar
396 effect on fungal evenness (p = 0.03; Figure S7). Plant cultivars showed no significant
397 impact at the composition level but a trend towards influencing bacterial community
398 distribution (p = 0.093 and R2 = 0.34; Figure 4a). However, cultivars exhibited signifi-
399 cant variation in fungal community composition (p = 0.001 and R2 = 0.37; Figure 4b),
400 indicating that cultivars can significantly influence the fungal community composition

401  within their rhizosphere.

402
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403

404  Figure 4. Rhizosphere microbial community composition. Principal Coordinates Analysis (PCoA) based
405  on mean Bray-Curtis dissimilarity of community composition of bacteria (a) and fungi (b). Distinct potato
406  cultivars are represented by different colours, with the error bars for each cultivar displayed in grey.
407 PERMANOVA results in the upper left corner of each panel elucidate the influence of cultivars on com-
408  munity composition. R2 quantifies the explained variation, and p-values are derived from 9999 permuta-

409  tions. The symbol *** denotes statistically significant p-values (p = 0.001).

410  Grouping the cultivars in the functional groups determined by MIT revealed no signifi-
411  cant differences in the alpha diversity of bacterial and fungal communities between the
412  different functional groups (p > 0.05; Figure S8). Similarly, the composition of
413  rhizosphere microbial communities did not vary among the functional groups (puacteria =

414  0.49 and prung = 0.14; Figure S9).

415 3.5 Correlation between plant traits, metabolites and rhizosphere micro-

416 biome

417  To evaluate how different plant traits relate to root-associated microbes and metabolite

418 release, we correlated plant shoot biomass, root biomass and root exudate metabolites
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419  with leaf metabolites and rhizosphere microbial communities of the 51 potato cultivars.
420 Positive correlations were observed between plant biomass and leaf metabolite richness.
421 In contrast, negative correlations were identified between plant shoot growth and leaf
422  metabolite composition (Figure 5). One possible explanation is that investment in
423  growth represents a cost of metabolite synthesis but this needs to be proven by further

424  experiments.

425 Regarding the microbiome, we observed positive correlations between rhizosphere bac-
426 terial species richness, root biomass, and root-to-shoot biomass ratio (Figure 5). Simi-
427 larly, rhizosphere fungal species richness positively correlated with the root-to-shoot
428 biomass ratio. However, the composition of the rhizosphere microbial community
429  showed no significant correlations with root growth. Notably, the bacteria-to-fungi spe-
430 cies richness ratio (B/F) was positively associated with root and root-to-shoot biomass
431 ratios. Additionally, we did not observe a pronounced correlation between root exudate

432  metabolites and the rhizosphere microbial community (Figure 5).

433 We performed Mantel tests based on Bray-Curtis dissimilarity matrices to further inves-
434  tigate the relationship between plant leaf metabolites and soil microbial communities.
435 Our analysis revealed a subtle yet statistically significant positive correlation between
436  bacterial community compositions and leaf metabolite profiles (r = 0.10, p = 0.02). This
437  suggests that plant cultivars with similar leaf metabolite profiles tend to harbour similar
438  bacterial communities in the rhizosphere. In contrast, the Mantel test for fungi showed
439 no significant correlation between fungal community compositions and leaf metabolite

440 profiles (r = 0.04, p = 0.22).
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444  community of the 51 potato cultivars. Correlations are based on the Spearman's rank correlation coeffi-
445  cient. Dark-coloured boxes indicate a significant correlation (p < 0.05), with the colour intensity reflecting
446  the strength of the correlation coefficient. Red represents a positive correlation, while blue represents a
447  negative correlation. The numbers displayed within the boxes represent the correlation coefficient. Sig-

448  nificance levels are denoted as follows: * (p < 0.05), ** (p < 0.01), and *** (p < 0.001).

449

450 When examining the correlations between plant root biomass and rhizosphere bacterial
451 community diversity across different functional groups, functional groups A and D
452  showed significant positive correlations (p < 0.05; Figure S10a,b). Functional groups B
453  and C show no significant correlation between these variables. There were no significant
454  correlations between root biomass and fungal community diversity (p > 0.05; Figure

455  Sioc, d) across functional groups.
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456 3.6 Classification of cultivars based on MITs

457  To evaluate the overall MIT scores of different cultivars, we calculated the average of the
458 standardised scores (z scores) for various traits, including root length, root biomass,
459  root-to-shoot biomass ratio, root exudate metabolites richness and Shannon diversity,
460 as well as bacterial and fungal richness and Shannon diversity. Based on these MIT z-
461  score values, the 51 cultivars were categorised into either high, middle, or low MIT levels
462 (Figure 6a; Table S6). Furthermore, we illustrated the distribution of the rhizosphere
463  community composition of the 51 cultivars in Figure 6b, which shows a substantial sepa-

464  ration in bacterial and fungal compositions among the MIT-selected cultivars.

465 3.7 Summary of the selection procedure

466  From the different functional groups (Figure 3) and MIT levels, we suggested 10 culti-
467  vars plus Desiree for future studies (Figure 6¢, Table S6). The stepwise selection work-
468 flow and the selected cultivars are visualised in Figure 6¢. We initially selected 148 po-
469 tato cultivars, including the commercial cultivar Desiree as a reference, from a pool of a
470 thousand based on their resistance to pathogens in silico. These 148 cultivars were then
471  further grown in vitro, from which 51 were selected based on DOC content in root exu-
472  dates for a subsequent greenhouse experiment. For these 51 cultivars, plant growth, leaf
473  metabolites and root exudate metabolites were used to classify them into four functional
474  groups with distinct growth traits. MIT scores allowed us to identify ten representative
475  cultivars with diverse MIT levels across different functional groups, which should un-
476  dergo further exploration in real-world conditions to evaluate their potential for inter-

477  acting with beneficial soil microbiomes.
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479  Figure 6. Rank of 51 potato cultivars based on microbial interactive trait (MIT) z-scores (a). Cultivars
480  were ranked according to the standardised (z-score) values of multiple MIT-related parameters, including
481  root length, root biomass, root-to-shoot biomass ratio, richness and Shannon diversity of root exudate
482  metabolites, as well as bacterial and fungal richness and Shannon diversity. Based on their overall z-
483  scores, cultivars were grouped into high, middle, and low MIT levels. Distribution of rhizosphere bacteria
484  and fungi community composition through Spearman correlation analysis (b). The first axis of principal
485  coordinate analysis (PCoA1) of microbial community beta-diversity (bacteria and fungi) serves as the in-
486  dicator of community composition. The error bars for each cultivar are displayed in grey. Workflow of
487  potato cultivar selection (c¢). This Sankey plot outlines the selection process of potato cultivars based on
488  functional group classification and MIT levels. The colour of selected cultivars corresponds to functional

489  groups. The cultivars that were not selected are depicted in grey.

490

491 We conducted a comprehensive characterisation of the MIT-selected cultivars (Figure
492  S11). The one-way ANOVA results revealed variations among the selected 11 cultivars
493 (10 + Desiree) in terms of plant metabolites, root development, and rhizosphere micro-
494  bial community richness. Specifically, Desiree and Pasja Pomorska from group A dem-
495 onstrated higher leaf metabolite richness and microbial diversity (Figure S11a, ¢, d, g, h).
496 In contrast, in group B, Krab and Salto showed superior microbial alpha diversity per-
497 formance (Figure Siic, d, g, h). In comparison, Danuta from group D exhibited lower
498 plant metabolite richness, root growth, and bacterial diversity (Figure S11a-c, e-g). Re-
499 garding beta diversity, there were no significant cultivar effects on metabolite or micro-

500 bial profiles, except for root exudate metabolite composition (Figure S11i-1).

501

502 4 DISCUSSION
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503 Conventional breeding primarily harnesses genetic variation to achieve the desired
504 traits of plants. However, the impact of a cultivar's genetic information on associated
505 microbial organisms has yet to receive much consideration, particularly those associated
506 with the rhizosphere. Here, we emphasise that modern breeding should consider the soil
507 microbiome as a strategy to reduce its environmental footprint. Understanding the im-
508 portance of microbiome interactive traits (MITs), such as root traits and exudates, is
509 vital to comprehending how plants and microbiomes interact. Below, we discuss our
510 findings in the context of the correlation between the selected MITs, their potential con-
511 tribution to sustainable agriculture and additional traits that could be considered in fu-
512  ture studies. The integration of this knowledge will contribute to informing the breeding

513 process, providing valuable insights for developing new microbiome-based cultivars.

514 4.1 Correlation between plant traits, metabolites and rhizosphere micro-

515 biome

516  Our findings underscore the significant role of plant genetics in shaping both root exu-
517 date and leaf metabolite profiles. We observed substantial cultivar-dependent variation
518 in root exudate metabolite composition consistent with previous studies. This genetic
519 influence also extends to leaf metabolites, aligning with earlier research on rice (Schaar-
520 schmidt et al., 2020). These results collectively demonstrate that the genetic makeup of
521 different plant cultivars significantly influences the metabolite composition of different

522  plant tissues.

523  We observed a positive correlation between leaf metabolite richness and plant biomass,

524  a relationship that can be explained through considerations of resource availability and
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525 plant growth strategies. Environmental conditions and functional traits influence bio-
526 mass allocation among plant organs, such as leaves and roots, influencing many growth
527  processes (Mensah et al., 2016; Poorter et al., 2012). In optimal environmental condi-
528 tions, biomass allocation (primarily above-ground to compete for light) can enhance the
529 diversity of leaf metabolites instead of root metabolites (Chapin et al., 2005). The crucial
530 role of plant secondary metabolites in host defence may also explain this correlation.
531 These compounds protect hosts against herbivores, pathogens, and (biotic) stresses
532 (Anjali et al., 2023; Divekar et al., 2022; Yadav et al., 2021; Zaynab et al., 2018). Plants
533  with higher biomass may invest more in defence mechanisms, producing a wider range
534  of leaf metabolites for protection. This establishes positive feedback loops, wherein in-
535 creased biomass boosts photosynthetic activity and energy production, consequently

536  supporting the synthesis of more diverse metabolites.

537 Previous studies have demonstrated that plant root traits are crucial in regulating
538 rhizosphere microbial communities (Szoboszlay et al., 2015; Wan et al., 2021). This rela-
539 tionship is further supported by Eisenhauer et al. (2017), who showed that microbial
540 diversity increases with increasing root biomass and exudate amount. Our results align
541  with these findings, revealing positive correlations between plant root biomass and root-
542  to-shoot biomass ratio, rhizosphere bacterial diversity, and bacteria-to-fungi species
543  richness ratio (B/F). A more diverse microbial community, in turn, can enhance soil nu-

544  trient cycling and availability (Jiao et al., 2021), potentially promoting plant growth.

545  Although root exudates significantly influence bacterial and fungal communities in the
546 rhizosphere (Hartmann et al., 2009), our study did not find a significant correlation be-

547  tween root exudate metabolites and the rhizosphere microbial community. This unex-
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548 pected result may be because we collected root exudate metabolites from 51 potato culti-
549  wvars under in vitro conditions, while the microbial community data were obtained from
550 a greenhouse experiment. The differences in substrates between these environments
551 may have influenced the root exudate profiles, leading to variances that could explain

552 the lack of correlation.

553  Given the complexity of collecting root exudates from soil plants, we collected leaf me-
554  tabolites in our current experiment to explore the relationship between plant metabo-
555 lites and the soil microbial community. The marginal but positive correlation observed
556 between leaf metabolites and the rhizosphere bacterial community suggests a potential
557 influence of leaf metabolites on the composition of rhizosphere bacteria. This finding
558 indicates a possible link between above-ground plant tissues and below-ground micro-
559  bial communities, aligning with the holobiont concept, in which plants and their associ-
560 ated microorganisms are viewed as a holistic ecological unit (Vandenkoornhuyse et al.,

561 2015).

562 Recent studies further support this interconnection. Korenblum et al. (2020) demon-
563 strated that the composition of the rhizosphere microbial community affects the me-
564 tabolomes and transcriptomes of tomatoes' leaves and roots. Earlier research showed
565 that Bacillus can influence photosynthesis, leaf growth, and overall plant phenotypes by
566 producing phytohormones or volatile organic compounds (Pang et al., 2021), potentially
567 impacting leaf metabolomes. These findings collectively emphasise the concept of me-
568 tabolites as primary mediators regulating plant-microbiome interactions within the ho-
569 lobiont framework (Carper et al., 2022). As described, the transport of leaf-produced

570 metabolites to the roots via the phloem (Broussard et al., 2023) suggests a potential
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571 mechanism for how above-ground metabolites might influence root exudate patterns
572 and, consequently, the rhizosphere microbiome. However, it's important to note that
573 our study only demonstrates correlation, not causation. The complex interactions be-
574 tween leaf metabolites, root exudates, and microbial communities require further inves-

575 tigation to elucidate the holobiont concept fully.

576 4.2 Enhancing plant-microbiome interactions for sustainable agriculture

577 The soil microbiome promotes plant growth by promoting carbon, nutrient, and phos-
578 phorus cycling (Hartmann and Six, 2022). It also contributes to plant resistance by pro-
579  ducing hormones that protect against abiotic and biotic stress (Eichmann et al., 2021).
580 Despite its critical functions, the soil microbiome has received limited attention in con-
581 ventional breeding (Mitter et al., 2019; Wei and Jousset, 2017). Compounding this issue
582 isthe fact that conventional agricultural management not only negatively affects the en-
583 vironment but also substantially impacts the soil microbiome (Longepierre et al., 2021).
584  This dual impact increases the decoupling between plants and soil microbiomes (Huang

585 et al., 2019; Spor et al., 2020).

586 Studies addressing the role of plants in regulating their associated microbiome remain
587 relatively limited (Wei and Jousset, 2017). More precisely, plant roots, serving as the
588 primary interface for interaction with soil microbes, are underexplored in plant breed-
589 ing (Herms et al., 2022; Reinhold-Hurek et al., 2015). Here, we consider morphological
590 root characteristics and root exudate metabolites as MITs to explore their interaction
591  with the rhizosphere microbiome. We aim to supply a strategy for breeding that consid-

592  ers plant-associated microbiota.
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593 Indeed, the positive correlation between root growth and rhizosphere microbial diver-
594  sity indicates that MITs can aid in identifying plant cultivars with the potential to inter-
595 act effectively with root-associated microbiomes. Cultivars exhibiting high MITs are
596 likely to harbour a more diverse rhizosphere microbiome, which in turn can lead to en-
597 hanced plant growth through the support of beneficial microbial interactions. Identify-
598 ing the genes associated with beneficial microbiomes in modern cultivars and using
599 them in selective breeding efforts to achieve microbial-assisted cultivars can serve as a
600 new plant breeding strategy. This approach represents a promising avenue for sustain-
601 able agriculture, as it harnesses the power of beneficial microorganisms to improve crop

602 performance while reducing the need for chemical inputs.

603 4.3 Integrating additional root traits and phyllosphere microbiome in fu-

604 ture studies

605 We suggest expanding future research beyond the MITs examined in this study to in-
606 clude a broader range of root phenotypic traits. While the current study focuses on root
607 biomass and length, future investigations should include root diameter, surface area,
608 and root type. Although less studied, evidence suggests that fine roots with smaller di-
609 ameters have larger surface areas, potentially recruiting a greater diversity and abun-
610 dance of microbes through enhanced nutrient and metabolite exchange (Saleem et al.,
611 2018; Wan et al., 2021). Pérez-Jaramillo et al. (2017) linked root types (thin or thick) to
612  specific bacterial phyla, highlighting the importance of root morphology in shaping mi-
613 crobial communities. Additionally, the spatial distribution of microbial communities
614 along the root should be considered. Kawasaki et al. (2016) observed that the functional

615 genes detected in microorganisms near the root tip were distinct from those isolated
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616 near the root base. Collectively, these various root phenotypic traits should be consid-

617 ered to improve plant-microbiome interactions.

618 In addition to expanding our focus on root phenotypic traits, we propose incorporating
619 the phyllosphere microbiome into future studies. The phyllosphere microbiome, which
620 includes microorganisms inhabiting the above-ground parts of plants, plays a crucial
621 role in plant health and function (Thapa and Prasanna, 2018; Vorholt, 2012). Previous
622 studies have demonstrated that host genotypes significantly influence the composition
623  of phyllosphere microbial communities (Bodenhausen et al., 2014; Thapa et al., 2017).
624  The phyllosphere microbiome is involved in nitrogen fixation (Abadi et al., 2021), en-
625 hancing stress tolerance (Etemadi et al., 2018; Stone et al., 2018), and suppressing plant
626 diseases (Fan et al., 2019; Das et al., 2023). Additionally, they can regulate plant growth
627 through the production of plant hormones (Stone et al., 2018). These diverse functions
628 highlight the importance of the phyllosphere microbiome in plant health and productiv-

629 ity.

630 By considering the phyllosphere microbiome together with the rhizosphere microbiome
631 and plant metabolites, we can establish a more comprehensive understanding of the
632 plant holobiont. This approach will allow us to bridge the gap between the plant's above-
633 and below-ground components. By harnessing the functions of phyllosphere and
634 rhizosphere microbiomes, we may enhance crop yields, improve plant resilience, and
635 reduce reliance on chemical inputs, ultimately contributing to more sustainable agricul-

636 tural systems.

637
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638 5 CONCLUSION

639 This study underscores the significant impact of plant cultivars on leaf metabolites and
640 root exudate metabolites. We also observe a positive correlation between leaf metabo-
641 lites and rhizosphere bacterial community; further studies are needed to verify the cau-
642 sation and to involve root exudates to expand our knowledge of the holobiont frame-
643 work. We systematically selected potato cultivars to identify those with diverse micro-
644  biome interactive traits (MITs). We lay the foundation for further studies to evaluate the
645 performance of MIT-selected cultivars in the real world. This is needed to provide a
646 promising strategy for future breeding programs, including identifying gene markers
647 associated with a beneficial microbiome and utilising these genes to increase plant-
648 microbiome interactions. This breeding strategy could promote host growth while re-
649 ducing the reliance on synthetic chemicals in conventional agriculture. Finally, we sug-
650 gest integrating additional root phenotypic traits and the phyllosphere microbiome in
651 future studies to establish a more comprehensive understanding of the plant holobiont,

652  which can benefit plant-microbiome interactions.

653

654 Data Availability Statement

655 The raw sequencing data are available in the National Center for Biotechnology Infor-
656 mation (NCBI) Sequence Read Archive (SRA) under the accession number
657 PRJNA1211026. The metadata and datasets used for the bioinformatic analyses are
658 available at the following link: https://github.com/tianci-zhao/potatoMETAbiome-

659  Greenhouse-Experiment.
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691 Supporting information

692 Figure S1. Root dry weight and root-to-shoot ratio of 51 potato cultivars in vitro experiment. Each

693  colour represents a distinct potato cultivar. The upper left corner of each plot displays one-way ANOVA
694  results, where the F-value explains the variation among different cultivars, and the p-value indicates the

695  statistical relationship among cultivars.

696  Figure S2. Shoot growth analysis of 51 potato cultivars. The upper panel displays the shoot length, while
697  the lower panel illustrates the shoot dry weight. Each colour represents a distinct potato cultivar. The
698  upper right corner of each plot displays one-way ANOVA results, where the F-value explains the variation

699  among different cultivars, and the p-value indicates the statistical relationship among cultivars.
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700  Figure S3. Root-to-shoot ratio analysis of 51 potato cultivars. The upper panel displays the root-to-shoot
701  length ratio, while the lower panel illustrates the root-to-shoot dry weight ratio. Each colour represents a
702  distinct potato cultivar. The upper right corner of each plot displays one-way ANOVA results, where the F-
703  value explains the variation among different cultivars, and the p-value indicates the statistical relationship

704  among cultivars.

705  Figure S4. Distribution of metabolites in root exudates and leaves across 47 different cultivars. Four
706  outlier cultivars (Kama, Czapla, Fianna, Orlik Cs) were excluded to better illustrate the distribution of
707  distinet cultivars. A Principal Coordinates Analysis (PCoA) based on Bray-Curtis dissimilarity was per-
708  formed to visualise the composition. The metabolite dissimilarities of root exudates and leaf are depicted
709  separately on the left and right. Distinct potato cultivars are represented by different colours, with the
710  error bars for each cultivar displayed in grey. PERMANOVA (Adonis) results in the upper right corner of
711  each panel elucidate the influence of cultivars on metabolite composition. R2 quantifies the explained
712  variation, and p-values are derived from 9999 permutations. The symbol *** denotes statistically signifi-

713  cant p-values (p = 0.001).

714  Figure S5. The alpha-diversity of the bacterial (a,b) and fungal (¢,d) communities in bulk and
715  rhizosphere soil, displayed by species richness and evenness. Different colours represent bulk samples
716  from the beginning of the experiment (Bulk_Do), at harvest (Bulk_D36), and rhizosphere samples of 51
717  cultivars. The lower right corner of each plot displays one-way ANOVA results, where the F-value explains
718  the variation among different soil compartments (bulk and rhizosphere), and the p-value indicates the

719  statistical relationship.

720  Figure S6. The microbial community composition in bulk and rhizosphere soil. Principal Coordinates
721  Analysis (PCoA) based on Bray-Curtis dissimilarity was performed to visualise the community composi-
722  tion of bacteria (a) and fungi (b). Different shapes represent different soil compartments (bulk and
723  rhizosphere). Different colours represent bulk samples from the beginning of the experiment (Bulk_Do),
724  at harvest (Bulk_D36), and different potato cultivars, with the error bars for each cultivar displayed in

725  grey. PERMANOVA results in the lower left corner of each panel elucidate the influence of soil compart-
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726  ments on community composition. R2 quantifies the explained variation, and p-values are derived from

727 9999 permutations.

728  Figure S7. Rhizosphere microbial community evenness of 51 potato cultivars. The upper panel is bacte-
729  rial evenness, and the lower panel is fungal evenness. Different colours indicate different cultivars. The
730  lower right corner of each plot displays one-way ANOVA results, where the F-value explains the variation

731  among different cultivars, and the p-value indicates the statistical relationship among cultivars.

732  Figure S8. Rhizosphere microbial community species richness. The upper panel is bacterial richness,
733  and the lower panel is fungal richness. Different colours indicate different cultivar functional groups. The

734  “ns” indicates no significant influence of groups on microbial alpha diversity (one-way ANOVA).

735  Figure S9. Rhizosphere microbial community composition. Principal Coordinates Analysis (PCoA) based
736  on Bray-Curtis dissimilarity was performed to visualise the community dissimilarities of bacteria (a) and
737  fungi (b). Distinct potato cultivar functional groups are represented by different colours, with the error
738  bars for each cultivar displayed in grey. PERMANOVA results in the upper right corner of each panel elu-
739  cidate the influence of groups on community composition. R2 quantifies the explained variation, and p-

740  values are derived from 9999 permutations.

741  Figure Si10. Correlation between plant root biomass and rhizosphere bacterial (a,b) and fungal
742  (c,d)alpha diversities (species richness and Shannon diversity) across different functional groups. Dis-
743  played by functional groups A, B, C and D. The Spearman correlation assessed the relationship, with R2
744  indicating the strength of the correlation. Y is the regression equation, and a p-value < 0.05 represents a

745  significant correlation between the variables.

746  Figure S11. Characterisation of selected cultivars. Selected potato cultivars from different functional
747  groups are represented by different colours, with the error bars for each cultivar displayed in grey. Letters
748  in the upper two panels indicate significant differences across cultivars (Duncan post hoc test). In the

749  lower right corner of the last panel plots, PERMANOVA results elucidate the influence of cultivars on
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750  community composition. R2 quantifies the explained variation, and p-values are derived from 9999 per-

751  mutations. A significance level is denoted as *** (p < 0.001).

752  Table S1. Background information on 148 selected cultivars for the in vitro experiment.

753  Table S2. Plant growth data of 148 potato cultivars from in vitro experiment.

754  Table S3. Soil physicochemical characteristics at the beginning and end of greenhouse experiment.

755  Table S4. Functional groups of potato cultivars categorised based on plant growth and metabolite pro-

756 files.

757 Table S5. The one-way analysis of variance (ANOVA) shows the influence of cultivar on the plant me-

758 tabolite alpha diversity.

759  Data S1. Dissolved organic carbon content of root exudates from in vitro experiment

760  Data S2. Leaf tissue metabolites data in greenhouse experiment

761 Data S3. Root exudate metabolites data from in vitro experiment

762  Data S4. Plant performance in greenhouse experiment

763  Data S5. Rhizosphere microbial feature tables

764 Data S6. MIT z scores data
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