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Summary: 
Identifying cell type-specific enhancers in the brain is critical to building genetic tools for investigating the 
mammalian brain. Computational methods for functional enhancer prediction have been proposed and 
validated in the fruit fly and not yet the mammalian brain. We organized the ‘Brain Initiative Cell Census 
Network (BICCN) Challenge: Predicting Functional Cell Type-Specific Enhancers from Cross-Species Multi-
Omics’ to assess machine learning and feature-based methods designed to nominate enhancer DNA 
sequences to target cell types in the mouse cortex. Methods were evaluated based on in vivo validation 
data from hundreds of cortical cell type-specific enhancers that were previously packaged into individual 
AAV vectors and retro-orbitally injected into mice. We find that open chromatin was a key predictor of 
functional enhancers, and sequence models improved prediction of non-functional enhancers that can be 
deprioritized as opposed to pursued for in vivo testing. Sequence models also identified cell type-specific 
transcription factor codes that can guide designs of in silico enhancers. This community challenge 
establishes a benchmark for enhancer prioritization algorithms and reveals computational approaches 
and molecular information that are crucial for identifying functional enhancers in mammalian cortical cell 
types. The results of this challenge bring us closer to understanding the complex gene regulatory 
landscape of the mammalian cortex and to designing more efficient genetic tools to target cortical cell 
types. 
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Introduction 

The mammalian neocortex, responsible for higher-order cognitive functions and sensorimotor processing, 
includes the primary motor cortex (M1), which facilitates fine motor movement and is composed of 
diverse cell types with distinct molecular signatures 1,2. Some neurodegenerative diseases, including 
Parkinson’s, Huntington’s, and amyotrophic lateral sclerosis (ALS), affect specific M1 cell types and result 
in impaired coordination and dexterity 3. There is an urgent need for genetic tools to selectively access 
vulnerable cell populations to probe cortical circuit function and treat disease. To this end, cell type-
selective candidate enhancers have been identified based on single cell genomic profiling of mouse cortex 
and have been used to create recombinant adeno-associated virus (AAV) vectors to drive exogenous 
transgene expression in the predicted target cell types 4–6. With increasingly comprehensive molecular 
phenotyping of the brain 7–11, there is the prospect of developing AAV tools to target a wide diversity of 
cell types across the brain.  

Identification of cell type-specific viral tools remains challenging because experimental validation is low-
throughput and expensive. A recent study by Ben-Simon et al. 2024 6 tested 825 enhancers selected based 
on specificity of open chromatin within a cortical cell type of interest and achieved an overall average 
success rate of 30%. Consequently, the field needs new computational approaches to improve functional 
enhancer prediction 9 and accelerate viral tool development that integrates comprehensive molecular 
profiling within and across species. However, it remains poorly understood how well different approaches 
predict functional over non-functional enhancer genomic sequences. Community-guided challenges have 
demonstrated their effectiveness in rigorously evaluating novel computational methods and advancing 
knowledge in the genomics field 12. To date, there has been no community-led effort to address the 
prioritization of cell type-specific enhancers using cutting edge cell type-resolved atlases from multiple 
species.  

In this study, we present the BICCN Challenge, where six teams from computational biology labs across 
the world participated to predict functional cortical cell type-specific enhancers. We introduce a 
community-driven benchmark and metrics to identify top-performing approaches that prioritize 
functional, cell type-specific viral tools. By investigating the computational approaches and biological 
priors used by high-performance methods, we aim to contribute to the refinement of functional enhancer 
prediction to selectively target cell types in the mammalian cortex. 

Results 

A community challenge to predict functional enhancers 

We provided teams with a comparative multi-omics study of M1 by Zemke et al. 13 that measured the 
molecular profiles of individual nuclei using single-cell multi-omics and single-cell methyl-Hi-C (snm3C) in 
human, macaque, marmoset and mouse (Fig. 1A). Multiple species were included because molecular and 
DNA sequence patterns associated with enhancer activity are conserved in the mammalian brain 1,14. 
Teams were asked to combine cross-species genomics measurements and biological priors to prioritize 
cell type-specific and functional enhancer elements (Fig. 1B). We asked teams to provide the top 10,000 
putative enhancers for each cell type to increase the likelihood of validated enhancers being included in 
the rankings. 
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Teams’ predictions were evaluated against 677 recombinant adeno-associated virus (AAV) vectors among 
825 vectors that were designed to label 19 M1 cell subclasses and assessed for in vivo enhancer specificity 
and brightness in the mouse brain 6. Validation data for 148 enhancers were released after the challenge 
and were therefore excluded from the analysis. The cell type-specificity in the neocortex of each validated 
enhancer virus was assessed through manual evaluation of epifluorescence images, following the 
methodology outlined in Ben-Simon et al. 6. The enhancers were classified into four groups: (1) On-Target 
(N=202), specific labeling of the targeted cell type; (2) Off-Target (N=96), labeling of non-targeted cell 
types in the neocortex; (3) Mixed-Target (N=100), labeling of targeted and non-targeted cell type(s); and 
(4) No-Labeling (N=279), no fluorescence in the mouse neocortex (Fig. 1C, Supplemental Table 1). To 
further quantify the in vivo activity of 191 enhancers, SYFP2-positive cells were extracted from the primary 
visual cortex (V1) and analyzed with Smart-seq v4 (SSv4) sequencing6. 

The challenge was run over a 3-month period. Participants submitted enhancer lists at several intervals, 
and performance was reported on a public leaderboard15. In the final evaluation round, teams provided a 
detailed description of their approach (Methods). To rigorously evaluate methods, we developed a 
benchmark metric that is optimized when enhancers with On-Target activity are ranked highest, and 
Mixed-Target, Off-Target and No-Labeling enhancers are ranked lowest for the respective cell type (Fig. 
1D, Methods). Final scores per method were computed based on both epifluorescence and SSv4 metrics 
using the entire corpus of validated enhancers. The benchmark metric and an automated scoring tool are 
hosted via GitHub15 for the community to fairly evaluate novel enhancer prioritization methods. 

Top performing submissions focused on ATAC-seq specificity 
 
Challenge participants from 5 teams contributed 79 submissions that comprised 16 unique enhancer 
prioritization methods, and the ArchR 16 method was included as a performance baseline due to its 
popularity as a single cell ATAC-seq processing pipeline. We grouped the methods into five broad 
categories based on the included enhancer features: (1) ATAC-seq (meta), (2) Enhancer codes, (3) Feature 
Ranking, (4) Sequence Model and (5) Integration Model (Fig. 1E). The top three teams (Aerts, ArchR and 
PeakRankR) achieved comparable performance with normalized scores between 0.36 and 0.41, while the 
remaining teams achieved scores below 0.27 (Fig. 1F). Comparing methods based on precision and recall 
identifies that even top performing teams are only able to achieve moderate accuracy in recovering On-
Target enhancers (F1-score, Aerts: 0.41, ArchR: 0.37, PeakRankR: 0.36) Teams submitted diverse 
approaches and markedly improved during the challenge (Fig. 1E-F, Supplemental Fig. 1, Supplement 
Table 2). The final challenge ranks were statistically robust (P < 0.05) for 55 of 79 submissions based on a 
bootstrapping analysis (Supplemental Fig. 2, Supplemental Table 2). 
 
High-performing teams used similar approaches that leveraged ATAC-seq features, including differential 
chromatin accessibility (specificity) and signal strength at a given enhancer genomic location. The top 
performing submission gained a slight advantage by including RNA-seq and leveraging SCENIC+ 17 to 
predict cell type-specific transcription factor (TF)-enhancer-gene triplets. The runner-up baseline method, 
ArchR, used careful selection of background cells to minimize biases such as transcription start site (TSS) 
enrichment when performing pairwise statistical tests. The third-ranking team, PeakRankR, calculated 
three ATAC-seq metrics – specificity, magnitude and coverage – that were combined to discriminate cell 
type-selective enhancers. 

Comparison of team submissions highlighted the genomics data, biological priors, and methodology that 
enabled accurate prediction of functional cell type enhancers (Supplemental Fig. 3, Supplemental Table 
2). While all submissions used mouse ATAC-seq data, they varied in how the signal was normalized to 
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handle batch effects and how cell type specificity was calculated. Surprisingly, inclusion of DNA-
methylation, chromatin folding (HiC), or primate data decreased performance, potentially due to 
increased model complexity and overfitting. Also, the Tanaka team used all data types but retained only 
the highest magnitude open chromatin features that left primarily promoters, not enhancers, for the 
method to prioritize (Supplemental Text). Notably, a high performance, runner-up method (Aerts 
CREsted) employed deep learning models, trained with the CREsted package 18, that learned to predict 
open chromatin from DNA sequence. Sequence models are of particular interest since they have the 
potential to identify TF motifs that make up cell type-specific enhancer codes 19,20, including repressive 
elements. 

Meta-analysis of performance across teams and cell types 

To assess whether teams identified similar or distinct enhancers, we computed pairwise intersections of 
submissions from the top-performing methods (Fig. 2A). Methods with similar performance predicted 
similar enhancers, and the top three methods (Aerts scATACtriplet, ArchR and PeakRankR) had the highest 
agreement. Many On-Target enhancers were identified across several approaches (Fig. 2B), yet some 
were not recovered by any method, likely due to low ATAC-seq signal (Supplemental Fig. 4). 

The Aerts, PeakRankR, and ArchR methods consistently included On-Target enhancers in the top rankings 
(Fig. 2C), while the Aerts method deprioritized more Mixed-Target, Off-Target and No-Labeling (Fig. 2D). 
From these recovery curves, we calculated the normalized enrichment score (NES) that quantifies 
enrichment of functional enhancers at the top of a method’s ranking (Fig. 2E). Interestingly, compared to 
the top-performing methods, methods that used DNA sequence (Aerts CREsted) and HiC (Gillis) data 
better prioritized enhancers for L6b neurons, and the CREsted method better prioritized enhancers for 
low-abundance Sst Chodl inhibitory neurons (Fig. 2E, Supplemental Figs. 5-6, Supplemental Table 2). In 
addition, Aerts scATACtriplet and Aerts CREsted were better than ArchR and PeakRankR at deprioritizing 
lower quality enhancers for most cell types (Supplemental Figs. 7-8). 

Next, we compared performance in prioritizing L5 ET enhancers, the largest set of validated enhancers. 
The top five strongest and most specific On-Target L5 ET enhancers were ranked highly by most methods, 
with somewhat lower rankings from Gillis (Fig. 2F). Most methods correctly scored a strong L5 ET enhancer 
AiE0456m higher than a weak enhancer AiE0460m, likely due to higher ATAC-seq signal in AiE0456m and 
the presence of multiple POU3F1 motifs (Fig. 2F), a canonical TF of L5 ET neurons 1. The strong enhancer 
AiE0463m had low ATAC-seq signal but multiple POU3F1 motifs and was correctly prioritized only by the 
Aerts CREsted model (Fig. 2F, Supplemental Fig. 9). Thus, methods that can learn from DNA sequence 
have an advantage to prioritize strong and specific enhancers that are associated with chromatin regions 
with limited accessibility. 

Additional genomic features help predict enhancer activity 

Since chromatin accessibility sometimes failed to predict cell type-specific activity, we tested if prediction 
accuracy could be improved by including additional enhancer features that were not provided to teams 
in the challenge. These features included (1) H3K27ac, a histone modification found at active enhancers 
21 from mouse cortical Paired-Tag data 13,22, (2) Activity-By-Contact (ABC) scores, the product of chromatin 
accessibility and contact frequency from HiC 13,23, and (3) conservation of chromatin accessibility between 
human and mouse 13. Like chromatin accessibility, cell type-specific H3K27ac and ABC scores were 
significantly higher for On-Target validated enhancers compared to Mixed-Target, Off-Target, No-Labeling 
and a random control (Fig. 3A). On-Target enhancers had significantly higher conservation of accessibility 
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(Fig. 3A) and sequence (Supplemental Fig. 10) compared with No-Labeling and Random but not Mixed-
Target or Off-Target enhancers. Thus, conservation of accessibility predicted overall enhancer activity, 
while H3K27ac and ABC predicted cell type-specific enhancer activity. 

For validated enhancers, cell type-specific chromatin accessibility was notably correlated with cell type-
specific H3K27ac (r = 0.57) and ABC scores (r = 0.38), but not epigenetic conservation (r = 0.07) (Fig. 3B, 
Supplemental Fig. 11). For example, On-Target enhancer AiE2121m had high chromatin accessibility and 
H3K27ac specifically in astrocytes (Fig. 3B,C). In contrast, No-Labeling element AiE0358h had high 
chromatin accessibility but not H3K27ac specifically in astrocytes (Fig. 3B,C). These examples demonstrate 
a potential for H3K27ac signal to improve the accuracy of enhancer predictions by distinguishing 
functional from non-functional chromatin accessible candidate enhancers. Additionally, we trained a 
binary random forest classification model to predict On-Target enhancers from all enhancers that were 
Off-target or had no labeling. This approach made use of labelled data and thus is a different approach 
than the BICCN Challenge submissions described in this manuscript. In the held-out test set, this model 
resulted in an AUC of 0.75. This model is better able to identify enhancers that are Off-Target, or have no 
labeling (precision 0.77, recall 0.80) than On-Target enhancers (precision 0.52, recall 0.47). While the 
precision is relatively low, this model out-performed the initial enhancer selection where only 30% of 
screened enhancers were scored as On-Target6. The most informative features can be leveraged in future 
enhancer prediction models, including open chromatin metrics (ATAC-seq strength or z-score and cell type 
specificity), linear sequence conservation (% matching bps) and GC content (Fig. 3D, Supplemental Fig. 
12).  

Finally, we compared differences in ATAC-seq preprocessing methods, as there was some variability in 
data processing for the top performing differential accessibility rankings. We compared counts-per-million 
(CPM) normalized coverage and cut site tracks (Supplemental Fig. 13) and found that cell type-specific 
peak heights based on accumulation of the signal inside a peak are significantly (Padj < 0.05) more specific 
in On-Target enhancers if they are obtained from cut site tracks (Fig. 3E). Moreover, additional 
normalization methods to scale peak heights across cell types (see Methods) further increase specificity. 
Using specificity as a metric to score enhancer activity in a multilabel classification setting (Fig. 3F), we 
confirmed the increased performance of cut sites-based peaks compared to coverage peaks both for On-
Target and all, except Off-Target, validated enhancers. These results demonstrate the benefit of peak 
normalization, which ensures better comparability of peak heights across cell types. 

Re-scored enhancers validate model predictions 

To further investigate differences in predicted versus in vivo activity for the 677 tested enhancers, we 
manually inspected the scATAC-seq signals from Aerts scATACtriplet and prediction and nucleotide 
contribution scores from Aerts CREsted. These top-performing models used the same CPM-normalized 
ATAC-seq coverage tracks. We classified each enhancer into one of five categories: ‘Explainable positives’ 
(48%) have in vivo activity and high ATAC specificity and CREsted scores in the corresponding cell type; 
‘Explainable negatives’ (25.4%) have no in vivo activity and low ATAC or CREsted specificity; 
‘Unexplainable positives’ (6.2%) have activity but low ATAC and CREsted specificity; ‘Unexplainable 
negatives’ (13.9%) have no reported activity yet high ATAC and CREsted scores; and ‘Missing data’ (6.5%) 
for the remaining enhancers. We visualized enhancers based on the peak-scaled ATAC signal and labeled 
by the targeted cell type (Fig. 4A). Explainable On-Target enhancers were well segregated and overlapped 
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with some unexplainable No-Labeling (negative) enhancers. This suggested that some negative enhancers 
may have weak in vivo activity that was missed in the initial evaluation. 

We re-evaluated validation data from all 267 No-Labeling enhancers and found that 66 enhancers weakly 
drove SYFP2 expression in the brain (Fig. 4B). 52 of 66 enhancers had weak expression in the targeted cell 
type and were rescored to On-Target. These enhancers were enriched for unexplainable versus 
explainable negatives, which supports our predictions of enhancer activity. Interestingly, among the 140 
explainable negatives that were confirmed to have no activity after rescoring, 45.7% had ATAC-seq signal 
in their targeted cell type but no support from the CREsted model. Conversely, only two enhancers (1.3%) 
contained a specific CREsted prediction and no ATAC-seq peak. The remaining 74 enhancers (53%) were 
not predicted to have cell type-specific activity by either ATAC-seq or CREsted. Thus, considering DNA 
sequence along with ATAC-seq signal can help avoid testing inactive enhancers. 
 
To illustrate the rescoring process, we show two enhancers that had scATAC-seq, CREsted and H3k27ac 
scores that were specific to oligodendrocytes (Oligo). First, an On-Target Oligo enhancer was predicted by 
the CREsted model to include two important candidate TF binding sites: one for the established Oligo TF 
SOX10 24,25, and one for CREB5, known to play an important role in oligodendrocyte myelin synthesis and 
differentiation (Fig. 4C). Second, a No-Labeling enhancer was rescored as weakly On-Target for Oligos, 
and this was consistent with predictions from all modalities and a SOX10 binding site (Fig. 4D). To further 
understand sequence patterns that define cell type-specific On-Target enhancers, we calculated 
contribution scores for all On-Target enhancers in their corresponding cell types and identified frequently 
occurring motifs26 and clustered them across cell types 18 (Supplemental Fig. 14). For example, we found 
DLX-and LHX-like motifs in interneurons, MEF-like motifs and E-box motifs in neurons, SOX-like motifs in 
Oligo and Oligo precursors (OPC) and NFI-like motifs in astrocytes, Oligo, OPC, Vip and L6b neurons, 
consistent with previously reported TF motif enrichments in cortical cell types 9. 
 
Using the rescored enhancers, we assessed the multi-label classification performance of enhancer activity 
by calculating precision and recall at different score thresholds. ATAC-seq modalities scored higher 
(average precision, AP = 0.51 using peak-scaled normalization, AP=0.52 using ArchR ReadInTSS 
normalization) than the CREsted sequence model (AP = 0.42) and H3k27ac (AP = 0.25) (Fig. 4E). A receiver 
operating characteristic (ROC) curve highlights the same trends for the different modalities (Supplemental 
Fig. 15). Interestingly, combining outputs from the CREsted and scATAC-seq models improves prediction 
(AP = 0.54), demonstrating that the modalities contain complementary information. 
 
Next, we examined if the CREsted model captured sequence differences that were associated with the 
magnitude of in vivo activity of On-Target enhancers. On average, the model predicted higher scores for 
strong versus weak enhancers for 9 out of 14 cell types (Fig. 4F, Supplemental Fig. 16) in contrast to 
magnitude of the ATAC-seq signal (Supplemental Fig. 17). Additionally, we investigated how well models 
identified explainable negative enhancers. The CREsted model significantly (P < 0.05) outperformed 
scATAC approaches in avoiding false positives (Fig. 4G) and false negatives (Supplemental Fig. 18). Overall, 
these analyses underscore the benefits of using sequence models to improve non-functional enhancer 
prediction, prioritize strong enhancers, and lay the groundwork for understanding cell type enhancer 
codes. 
 
Discussion 

The BICCN Challenge provides a valuable benchmark for future computational methods aimed at 
predicting functional cell type-specific enhancers. With 677 enhancers validated on a standardized 
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pipeline and scoring criteria, this represents the largest collection of its kind 6. Importantly, both data and 
code are publicly available, facilitating further research and method refinement. However, limitations 
exist, including use of bulk ATAC-seq datasets and selection of enhancers near cell type markers that may 
not represent the most specific peaks per cell type. In addition, the validation experiments used PHP.eB-
pseudotyped AAV that infects most mouse cortical cell types, although with biases6,27, and caution should 
be exercised in using these data to refine prediction models. Furthermore, the epifluorescence scoring, 
while valuable, is an imperfect estimate of target specificity based on cell morphology clues and spatial 
distributions of labeled cells. Finally, SSv4 data was collected from mouse primary visual cortex (V1), and 
validation results may not always align with model predictions based on mouse M1 multi-omic data, 
although cell subclasses share similar molecular profiles across the mouse neocortex 7,28. 

The validation data from this challenge reveal which features are critical for predicting enhancer function, 
and the highest-performing methods primarily leveraged the specificity of ATAC-seq peaks in the mouse 
data set. Interestingly, the top submission combined RNA-seq with ATAC-seq to predict cell type-specific 
TF-enhancer-gene triplets. Additionally, incorporating HiC data was valuable for predicting enhancers in 
specific neuron types, such as L6b. H3K27ac and ABC scores tended to be higher in On-Target enhancers, 
although with lower recall and precision compared to cell-type specific ATAC-seq signals. Moreover, 
biological priors played a crucial role in the success of these models. For instance, including moderately 
sized ATAC-seq peaks was critical to predict candidate enhancers since the largest peaks often represent 
promoters. 

Despite initial expectations that deep learning and DNA sequence models would outperform, the results 
showed that simpler ranking of ATAC-seq peaks by their cell type specific signal performed similarly. 
However, the top model did not consistently excel across all cell types and enhancer categories. The 
distinct methodologies used by the top three teams indicate that there are opportunities to refine 
enhancer prioritization. For example, the CREsted sequence model avoided Mixed-Target or Off-Target 
enhancers and predicted a strong oligodendrocyte enhancer by finding a coactivating TF motif AP-1 near 
a motif for SOX10, an oligodendrocyte marker 24,25. We further showed that combining cell type-specific 
predictions from the sequence model together with cell type-specific peaks from scATAC-seq data 
provides the best predictive factor of enhancer function and specificity (Fig. 4E). Future challenge 
submissions that incorporate more diverse molecular profiling of cortical cells will be critical in evaluating 
the importance of open chromatin data for enhancer prediction. 

Looking forward, a major goal of the field is to develop a comprehensive toolkit to target cell types across 
the brain. Improving data coverage and quality is crucial, as many On-Target enhancers were missed due 
to low ATAC-seq signal. Fortunately, on-going work supported by the NIH BRAIN Initiative is focused on 
whole-brain atlasing of cell types, including high read-depth single cell ATAC-seq, HiC, and histone marker 
profiling. Sequence models will enable the rational design of enhancers tailored to cell types or groups of 
types, a strategy successfully applied in fruit fly models 20. Cross-species sequence models were under-
represented in this challenge, but On-Target enhancers tend to have conserved open chromatin and 
sequence, and TF regulatory networks show conservation across primates and rodents 1. Additionally, 
sequence models trained on ATAC-seq data from multiple species enhance the prediction of chromatin 
accessibility13. Given these observations, we propose that decoding conserved enhancer codes presents 
a promising avenue for developing robust and precise tools to target cell types across many species. 

It will be essential to expand validation experiments to include more brain regions and cell types and to 
quantify specificity and completeness of labeling using automated scoring of whole brain imaging and 
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single cell sequencing. Community sharing of raw data will enable re-evaluation with future algorithms 
and comprehensive whole-brain analysis, while negative results will provide valuable insights into DNA 
repressor codes and enhancer function. Cross-species testing, including in non-human primates, will help 
assess the predictive power of these models across model organisms and will bolster confidence in 
translational applications for humans. 

Integrating modeling and experimental approaches will be key to advancing enhancer tool development. 
Selecting enhancers that offer the most informative data for models will refine predictions and improve 
success rates. Testing enhancers with conflicting predictions from different modalities, such as ATAC-seq 
versus DNA sequence, could yield critical insights, even if they do not result in the most effective tools. 
Additionally, reinterpreting experiments with no labeling that have strong model support may uncover 
challenges in transducing some cell types such as has been reported for microglia 29. Ultimately, we need 
interpretable models that help to generate viral tools to target cell types and provide insights into cell 
type identity and genetic regulation in the context of human specializations and disease. 
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Methods 
 
Single nucleus molecular profiling 
10x multiome ATAC + Gene Expression and methyl-3C-sequencing (snm3C-seq) experiments were carried 
out on the same tissue samples from human, macaque, marmoset, and mouse M1, as described 13. 
 
In vivo enhancer validation data 
Detailed experimental methods are described in the companion paper 6 and other recent viral tools 
publications 4,5,25. 
 
Primary screen scoring 
Each enhancer vector was screened and scored based on the labeling pattern it produced across the entire 
brain, with additional emphasis on cortical populations. First, each region of the brain where labeling of 
cell somata was observed was manually scored based on the labeling brightness and density, classifying 
each into either low or high. In addition, we created 11 categories of cell populations within the neocortex 
that could be visually distinguished one from the other. Whenever labeling was observed in one or more 
of these cortical populations, each population was individually evaluated based on its own brightness and 
density. Whereas brightness was classified based on whether the labeling was stronger or weaker than 
the common brightness observed across all experiments, density was evaluated based on the expected 
density of cells for each of the scored regions or populations, using the nuclear markers as reference. To 
determine target specificity, we aligned each target cell population with the labeled population which 
best matches its known anatomical location, distribution, and morphological characteristics. We 
determined an enhancer to be “On-Target” if the target population aligned with the labeled population, 
“Mixed-Target” if labeling was observed in populations other populations, in addition to the target one, 
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“Off-Target” if labeling was observed exclusively in population/s other than the target population, and 
“No-Labeling” if no labeling was observed in the neocortex, regardless of whether labeling was observed 
in other brain regions. 
 
Cell type enhancer activity quantified by single cell RNA-seq 
SSv4 data for cortical enhancers were generated from mouse primary visual cortex (V1/VISp) and mapped 
to the Allen Institute AIT2.1.1 VISp taxonomy as described in Ben-Simon et al. 6. The data were reused in 
this study to establish ground truth cell type specificity in combination with primary screening expression 
analysis. 
 
Benchmark metrics for evaluation of enhancer prioritization methods 
We defined an interpretable benchmark metric based on the experimentally validated enhancer collection 
reported in Ben-Simon et al. 6. This benchmark metric is available to the community at: 
https://github.com/AllenInstitute/EnhancerBenchmark. The benchmark metric is a composite of an 
epifluorescence imaging score and SSv4 quantifications score per enhancer that captures different 
properties of enhancer activity. Epifluorescence validation of an enhancer captures broad patterns such 
as cortical layer labeling and provides cell type-specificity when cellular morphologies are known. 
Additionally, the intensity of SYFP2 fluorescence provides a measure of enhancer strength. We scored 
each validated enhancer based on the cell type-specific rank and placed more weight on strong enhancers 
being enriched in the top ranks. However, the epifluorescence validation does not provide a quantitative 
measure of specificity for each cell type targeted by the enhancer virus. To achieve this, we used SSv4 to 
quantify the transcriptome of cells with high SYFP2 fluorescence and mapped these cells to a cortical 
taxonomy to determine accurate abundances of each cell type targeted by the enhancer. 
 
The epifluorescence metric was designed to be minimized when teams arranged On-Target enhancers in 
the top ranks per-cell type and Mixed Target enhancers relatively lower down the ranks as these 
enhancers both target the intended cell type as well as additional unintended cell types. Negative 
enhancer categories including Off-Target and No-Labeling enhancers optimize the metric when placed at 
the bottom of the ranked lists per-celltype. For each validated enhancer 𝐸! 	 ∈ 	𝐸"#$!%#&'% 	in the ranked 
list across cell types we multiply the predicted rank 𝑅(!  of the enhancer with an indicator variable 
𝐼)#&'*+,- which encodes enhancer categories (On-Target, Mixed-Target, Off-Target or No-Labeling). Then 
the metric is weighted by an indicator variable 𝐼.&,'/*&0		encoding the strength of SYFP2 epifluorescence 
(Strong, Weak or None). 
 

 
 
where: 

   
 
The SSv4 metric was designed to be minimized and replaces epifluorescence strength 𝐼.&,'/*&0	 with a 
quantification of cell type-specificity computed the fraction of cells labeled as the intended target cell type 
𝑆𝑆𝑣4(!,3'$$&-4'"#$%&"[0 − 1]. We then compute the SSv4 metric for each validated enhancer 𝐸! 	 ∈
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	𝐸"#$!%#&'%  by multiplying the predicted rank 𝑅(!  with the associated category 𝐼)#&'*+,- and the fraction 
of cells labeled as the targeted cell type 𝑆𝑆𝑣4(!,3'$$&-4'"#$%&". 
 

 
 
The composite benchmark score is then computed as the unweighted summation of Epi_metric and 
SSv4_metric. 
 

 
 
To define a normalized benchmark score ranging between 0 (worse) and 1 (better) we created an 
optimally ranked enhancer list per cell type and computed the associated benchmark metric. Then the 
benchmark metric score is divided by this optimal score and subtracted from 1 to achieve a normalized 
metric with the desired directionality. 
 
To prevent overfitting during the challenge, we held back enhancers targeting excitatory cell types to 
ensure that no team could gain an advantage by learning patterns in the hidden enhancer validation data 
over the course of multiple challenge submissions. 
 
Statistical quantification of benchmark metric per-team 
 
To assess the significance of the ranking of the given methods we set up a statistical test in which we 
defined: 
 

• Null Hypothesis: The rank of the team is unstable and occurs uniformly across the possible 
ranks. 

 
• Alternative Hypothesis: The rank of the team is stable (e.g., significantly clustered around 

its observed rank). 
 

In which significantly clustered is defined as +/- 2 ranks of the teams rank from the full benchmark score. 
P-value on rank stability per-team were then empirically computed by randomly subsampling to 90% the 
validated enhancer database, 10,000 times. 
 
Recovery curves of functional enhancers per method 
To assess the recovery of validated cell type specific enhancers based on the cell type specific rankings of 
each submission a recovery approach was used. In brief, the set of ground truth cell type specific 
enhancers was defined as the genomic regions (candidate enhancers) for which the specificity was 
classified as "On-Target". Mouse genomic coordinates were used for candidate enhancers originating 
from the mouse genome, and coordinates lifted over to the mouse genome were used for candidate 
enhancers originating from the human genome. The genomic regions in each cell type specific ranking 
were intersected with the ground truth cell type specific enhancers using pyranges identifying hits along 
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the ranking (genomic regions in the ranking overlapping with multiple ground truth enhancers were only 
counted once). Recovery curves were drawn for each submission by calculating the cumulative sum of the 
union of hits along all cell type specific rankings per cell type. In cases where the ranking was shorter than 
10,000 elements, the ranking was padded with non-hits up to a length of 10,000 elements. Normalized 
enrichment scores (NES) per cell type specific ranking per submission were calculated as the area under 
the curve of the recovery curve (AUC) up to the 1,000th element and dividing this by the AUC up to the 
1,000th element of the average recovery curve of 100 random rankings. 
 
Manual annotation of validated enhancers 
We manually inspected a subset of the validated regions by classifying them into five categories: 
explainable positives, unexplainable positives, explainable negatives, unexplainable negatives, and 
undetermined. Explainable positives are defined as functional (both ‘strong’ and ‘weak’, and both ‘On-
Target’ and ‘Mixed-Target’) enhancers that have either a strong accessibility peak in the scATAC-seq data, 
a strong prediction from the CREsted model, or both, in their intended target cell type(s). Unexplainable 
positives are functional enhancers that do not have a clear peak and/or prediction in their target cell 
types, but still show activity for those cell types, or they do have a strong peak and/or prediction in their 
targets, but show activity in other cell types. For validated enhancer candidates that did not show 
functionality (negatives), we identify explainable negatives as regions that either do not have a specific 
peak, a specific prediction, or both, in the target cell type. Unexplainable negatives have either a peak, 
prediction, or both in their target cell types, as well as the presence of positive contribution scores in one 
or more motifs obtained from the CREsted model. Undetermined regions do not contain enough decisive 
information to classify them into one of the other four categories, often because of their target cell types 
not being included in the original dataset.  
 
Precision-recall curves of different modalities 
To compare the different modalities directly on the 677 validated enhancers, we scored each enhancer 
per modality by taking per cell type the score over the sum of all scores. We generated a target binary 
matrix based on the On- and Mixed-Target and No-Labeling enhancers, combined with the SSv4 results, 
to label the targeted cell types on enhancer functionality, and calculated per cell type the precision and 
recall over different prediction thresholds. We excluded off-target enhancers because of uncertainty for 
the actual targeted cell types.  
 
For the scATAC-seq and H3k27ac data, we took the average counts over the exact region. The peak-scaled 
scATAC data was obtained by scaling the peak heights per cell type through the normalization factor 
obtained from the CREsted package. We then applied the specificity metric to the resulting target vectors 
per modality. 
 
For the CREsted model the enhancer regions were put in the center of a 2114 bp background region, since 
the model takes in a fixed 2114 bp sequence. Then, we took the predictions scores per enhancer and 
applied our specificity metric to obtain final scores. The CREsted model is available at 
https://crested.readthedocs.io/en/latest/models/biccn.html. 
 
For the combined CREsted and scATAC prediction scores, we averaged their specificity scores and 
recalculated the average precision and recall. 
 
Motif enrichment in On-Target enhancers 
We calculated the most frequently occurring patterns per cell type in On-Target enhancers with 
tfmodisco-lite, based on contribution scores obtained from the CREsted model (Supplemental Fig. 14). We 
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then matched patterns across cell types with the CREsted pattern matching function 
crested.tl.modisco.process_patterns (sim_threshold=4.25, trim_ic_threshold=0.1) We used the frequency 
of the patterns per sequence as pattern_parameter per cell type, and plotted the results using the 
crested.pl.patterns.clustermap_with_pwm_logos function with the importance threshold set to 0.12. 
Random forest modeling using biological priors and per enhancer genomics measures 
To examine the importance of additional variables determining enhancer specificity, we modeled per 
enhancer metrics, including distance to the nearest transcription start site, mouse-human enhancer 
sequence conservation, and published ChIP seq data. ChIP seq data that overlapped enhancers were 
found using the GenomicRanges package in R, and all overlapping bins for each enhancer were summed 
to get values used for downstream analysis. Random forest models were constructed after removing 
enhancers that were ‘Mixed Target’ using scikit-learn version 1.3.0. The “% matching bps” measure was 
determined by calculating the percentage of the initial mouse enhancer length that is preserved upon 
examination of the best BLAST alignment with the human genome. For random forest model 
development, we used a 70/30 split for training and a held-out test set, respectively. Prior to testing on 
the held-out test set, models were constructed and validated using 10 fold cross-validation using 
GridSearchCV. The importance and statistical significance of variables is reported in Figures 3D and S10. 
Statistical significance was calculated using ANOVA, followed by a Tukey post hoc test. 
 
Stein Aerts team methods: 
 
ATAC-based rankings 
We investigated the performance of rankings purely based on scATAC-seq data. We processed fragment 
files through pycisTopic 17:, a tool that aggregates counts in cells per cell type (subclass level) and CPM-
normalizes them to account for the variability in cell numbers per type. For all consensus peaks, we 
obtained the mean accessibility per cell type from the pseudobulked cell type-specific accessibility tracks. 
We ranked regions based on the Gini index of their accessibility profile over all cell types to obtain the 
highest and most specific peaks per cell type. Using the Gini index only provides one value per region, so 
we assigned that value to the cell type with the highest peak value and gave a zero score to all the other 
cell types in that region. To further optimize this approach, we augmented the scATAC-seq data by 
merging the provided mouse dataset with publicly available mouse motor cortex datasets 17,30. We merged 
datasets by manually matching corresponding cell types, and weighted peak heights across datasets by 
using the number of cells per matched cell type. 
 
Normalization of peak heights across cell types 
Since peak heights across cell types are not always in the same scale after count normalization because of 
a potential difference in the total amount of accessible regions, we implemented an additional 
normalization method to create peak-scaled scATAC tracks across cell types. We used the CREsted peak 
normalization functionality with default parameters, a method that is aimed to alleviate this problem. This 
method takes thetop 1% (based on peak strength/height) of peaks per cell type, and only retains peaks 
which are generally accessible (Gini index < 0.25). This is done based on the assumption that strong 
generally accessible peaks should be in a similar range across all cell types. Based on those strong, 
generally accessible peaks, we compared the mean peak height per cell type and calculated scalars per 
cell type that ensure all mean peak heights become equal. These scalars are multiplied with the peak 
heights of their corresponding cell types to put peaks across different cell types in a more comparable 
range. 
 
Sequence-based deep learning models 
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We trained two types of convolutional-based sequence-based accessibility prediction models from the 
CREsted package. The first is a peak regression model, a 9-layer convolutional neural network (CNN) 
model, trained on scATAC-seq data for chromatin accessibility analysis. It uses 2,114 bp DNA sequences 
as input and predicts the average accessibility signal per cell type on the center 1,000 bp of that region, 
inspired by ChromBPNet31. As a loss function for these models, we chose to take the sum of the mean 
squared error (MSE) and the negative cosine similarity (‘CosineMSE Loss’ in CREsted). We first pretrained 
these models on all the given consensus peaks, and we further finetuned them on differentially accessible 
regions (DARs). DARs were determined through different methods, through regions which had a ratio 
higher than 2 between their highest and second highest peak scalar value, or by taking regions which had 
a Gini index higher than the mean plus one standard deviation of all regions in the peak set. The finetuning 
ensures that the models learn cell-type specific features, since most consensus peaks are not specifically 
accessible in a low number of cell types. A second approach is topic classification, which was the modeling 
method used in previously published models9,32–34. We analyzed the scATAC-seq data using pycisTopic 17 
to obtain topics per region required for training such models. Transfer learning to DARs made it possible 
to obtain cell type-specific predictions, as was done in Hecker & Kempynck et al. 2024 9.  
 
We mostly focused on the mouse scATAC-seq data for training our model. For the regression models, we 
also trained a model on the human scATAC-seq data and did cross-species predictions to obtain the mouse 
rankings required for the challenge. For the topic models, we trained a model on all four species. We did 
topic modeling after integrating all four datasets, to obtain topics representing shared regulatory features. 
We finetuned that model on mouse DARs.  
 
We used two methods of ranking all the consensus peaks for these models. The first one was using the 
Gini index on the prediction scores over the cell types per region. The second one was calculating per 
region, for each prediction per cell type, the product of the difference between a given cell type prediction 
and the highest prediction in any other cell type, and the ratio between them. This gave a specificity 
ranking per cell type, per region, which could be sorted to generate global rankings. 
 
Pattern based enhancer scoring 
We reasoned that regions with heterogeneous motif content were more likely to be functional enhancers. 
For this purpose, we generated SHapley Additive exPlanations (SHAP) values for the top 10,000 regions 
per cell type from the CRESted model, generating explanations for the prediction score of that cell type. 
Of these, the top 5,000 regions per cell type were used to identify recurring, important patterns using the 
tfmodisco-lite package 35. To rank regions based on motif diversity, we calculated the Shannon diversity 
index based on the pattern hits. This index was multiplied by a signal over noise metric that was defined, 
per region, as the number of seqlets (short stretches of DNA with a high importance score) having a 
pattern hit divided by all seqlets.  

Scenic+ triplet scores 
We ran SCENIC+ on the provided mouse multiome dataset (scRNA-seq + scATAC-seq) using default 
parameters17. Based on these results we generated a ranking of all transcription factor (TF)-region-gene 
triplets, which is the aggregated ranking (see below) of the TF- and region-to-gene importance scores and 
TF-to-region ranking based on the motif score of all motifs annotated to that TF. To make this ranking cell 
type-specific we combined it with the gini-based cell type-specific ATAC ranking. 
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Aggregate rankings of multiple methods 

To combine multiple rankings of different methods, we used OrderStatistics36. In brief, rankings were 
generated based on the score of each method, ties were broken by assigning incremental rankings to tied 
regions based on the order in which they happen to occur. Next, rank-ratios were calculated as the ranking 
divided by the number of regions in each ranking and combined in a single ranking using the formula 
described in [ref] and implemented in the SCENIC+ package 17.  
 
Jesse Gillis team method: 
 
We employed a multi-modal approach to predict cell-type-specific enhancers in the mouse brain, utilizing 
three distinct data types: single-cell RNA sequencing (scRNA-seq), single-cell Assay for Transposase-
Accessible Chromatin sequencing (scATAC-seq), and meta-Hi-C. For scATAC-seq data, we obtained 
binarized MACS2 peak scores from three publicly available sources 7,13,30. These scores were then z-scored 
at each genomic bin to capture cell-type specificity accurately. To enhance the power of scATAC-seq data 
further, we aggregated the binarized peaks from the three scATAC-seq sources to create a robust scATAC-
seq matrix. Again, this matrix was z-scored at each bin to enhance cell-type specificity. 

In the case of meta-Hi-C, we used our in-house method to obtain cell-type-specific contact vectors by 
combining meta-Hi-C data with scRNA-seq marker genes. Previously, we aggregated hundreds of Hi-C 
contact matrices for mouse Hi-C to generate meta-Hi-C maps available at 
https://labshare.cshl.edu/shares/gillislab/resource/HiC/37. Similarly, we utilized scRNA-seq data to obtain 
reliable markers for each brain cell type in mice38. The cell-type-specific profile was derived by computing 
the mean of the top markers for each cell type and smoothing the Hi-C contact vector using various marker 
subsets. The resulting meta-Hi-C matrix was z-scored at each bin to enhance cell-type specificity. Only 
intra-chromosomal contact matrices were used for this analysis. The Hi-C vectors are slightly updated 
from the time of submission to the challenge, however this does not alter the validation results 
significantly.  

To integrate the meta-ATAC-seq and meta-Hi-C data, we multiplied the ATAC-seq peak scores with the Hi-
C contact scores for each cell type, resulting in the metaATAC X metaHi-C matrix. This matrix was also z-
scored at each bin to capture cell-type-specific enhancers accurately. 

PeakRankR method: 
  
PeakRankR is an R function (https://github.com/AllenInstitute/PeakRankR) designed for prioritizing and 
ranking cell type-specific peaks based on chromatin accessibility data. It employs a linear model approach 
to calculate the combined effects of positive features associated with a given peak in a cell type, which 
are then used to rank the peaks. 
  
The features computed by PeakRankR include: 
 

1. Specificity: Calculated using an R version of `multiBigWigSummary` from deeptools 
(https://deeptools.readthedocs.io/en/develop/). 

2. Sensitivity: Determined by counting the number of cell types that have a peak at the genomic 
coordinates of the enhancer. 

3. Magnitude: Estimated using MACS2 to assess the ATAC-Seq signal at the genomic 
coordinates of the enhancer for the cell type of interest. 
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These three features are combined to generate a score for each peak as a weighted linear sum of the 
features: 

 
where 𝑤 stands for the weight of each feature. By default, all weights are set to 1, indicating equal 
importance for each feature. 
  
Function: Peak_RankeR (tsv_file_df, group_by_column_name, background_group, bw_table, rank_sum, 
weights) 
  

• tsv_file_df: A tab-separated data frame of enhancer coordinates and peak groups. 
• group_by_column_name: The column name in `tsv_file_df` containing the groups of the 

enhancers. 
• background_group: The group against which the enhancer should be prioritized for the group 

of interest. 
• bw_table: A two-column table with the group BigWig file paths and group names. 
• rank_sum: If TRUE, the sum of the feature scores is included in the output file. 
• weights: Coefficients for the features, representing the influence of each predictor on the 

peak rank. 
 
The function returns an object that includes the input peak coordinates, peak rank, and their 
corresponding scores. 
  

• peakRankR_rank: Prioritized rank assigned to each peak 
• rank_sum: Aggregate sum of scores for the various peak features 

 
We enhanced PeakRankR to include additional features that characterize the shape of a peak: (1) Skew, 
which assesses the asymmetry of read pileups in an enhancer, with higher rankings given to those closer 
to symmetry (skewness near 0); (2) Kurtosis, which evaluates the dispersion of reads between the center 
and tails of an enhancer, with a higher rank for greater dispersion; (3) Modality, indicating the number of 
peaks within an enhancer, with unimodal peaks ranked higher. These features were calculated using 
functions from the `modes` package in R 
(https://www.rdocumentation.org/packages/modes/versions/0.7.0). 
  
Many peak ranking methods demand significant computational resources, and the chosen peaks may lack 
robustness. Therefore, a need exists for a straightforward and efficient function to rank peaks that can be 
adapted for specific cell types. PeakRankR addresses this by identifying the optimal features for a given 
peak set in a cell type and calculating a score based on specificity and sensitivity. 
 
Yoshiaki Tanaka team method: 
 
cisMultiDeep is the repository of R and Python scripts and command lines that identify functional CREs 
from single-cell multi-omics profiles. Given high conservation of the cell type-specific genes, we first 
obtained an orthologous gene list from Biomart (https://ensembl.org/info/data/biomart/) 39. On the 
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other hand, the peak conservation was defined by UCSC LiftOver function in KentUtils and Bedtools 
(v2.30.0) 40. Subsequently, the cell type specificity in each gene and peak was estimated in RNA, mCG, 
mCH, and ATAC profiles by Wilcoxon rank-sum test. Here, the cell type specificity was calculated only in 
orthologous genes, whereas both conserved and non-conserved peaks were used for the assessment of 
the cell type specificity. In each cell type, the top 1,000 genes and 10,000 peaks were selected for 
subsequent deep learning analyses. 

 
To ask if the selected genes/peaks are sufficient to define the cell types, we employed automatically-
tuned deep neural network that was designed by Tensorflow python library (v2.9.0) with Keras Tuner API 
(v1.1.2) 41,42. Briefly, at first, dimensionality of the input data (RNA, mCG, mCH, and ATAC profiles) was 
reduced into 200 by principal component analysis (PCA). Then, the sequential neural network model was 
built with seven tunable hyperparameters: i) the number of layers (2 to 10 with increment of 1), ii) the 
number of nodes in hidden layers (50 to 500 with increment of 50), iii) dropout rates (0 to 0.5 with 
increment of 0.1), iv) activation functions (e.g. sigmoid), v) optimizers (e.g. Adam), vi) learning rate (e.g. 
1e-1, 1e-2, 1e-3, 1e-4, 1e-5), and vii) loss functions (e.g. mean squared error loss function). Once the 
neural network model was optimized, mean absolute SHAP value, which represents the impact of each 
gene or peak on the cell type determination, was calculated by DeepSHAP that is a technique that can 
handle the complex and non-linear interactions across features and is optimized to calculate SHAP value 
for deep neural network 43. 

 
Chromatin looping enables distal CREs to contact their target genes. Here, we hypothesized that the cell 
type-specific CREs are physically contacted with various cell type-specific genes. Thus, we ranked the 
peaks by the sum of the mean absolute SHAP values of the contacted genes by Hi-C loop. If the peak is 
conserved, we also added up the sum of the mean absolute SHAP values in other species.  
 
Kai Zhang team method: 

Using the genome annotation downloaded from Gencode, for each gene we extracted the 196,608 bp 
DNA sequences centered around its TSS. We then applied the Enformer model 19 to these sequences to 
derive sequence embeddings, followed by attention pooling to further reduce the dimensionality. 
Consequently, the processed sequences were represented as 896 vectors, each with 48 dimensions, 
corresponding to 128-bp segments of the initial sequence. Additionally, we quantified the ATAC-seq 
fragments overlapping these segments, adjusting for reads per kilobase million (RPKM). 

To identify candidate enhancers, we developed a machine learning framework that integrates ATAC-seq 
signals and the aforementioned sequence embeddings to predict gene expression profiles. We first 
transformed normalized counts of ATAC-seq fragments into four-dimensional vectors using convolutional 
and self-attention layers. These ATAC embeddings were then merged with sequence embeddings and fed 
into a sequence of linear layers aimed at predicting levels of gene expression. 

To train the model, we partitioned the data into training, validation and testing sets using an 80:10:10 
split. We employed the Adam optimizer with a learning rate of 0.0001 and trained the model over 10 
epochs, after which the model's performance plateaued. 

To determine the enhancer activity score for a specific region, we modified its ATAC signal by setting its 
count value to zero. The trained model was then used to make two predictions: one for the original 
(unmasked) input and another for the modified (masked) input. The enhancer activity score was 
calculated as the difference in the model's predicted gene expression between these two inputs, serving 
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as an indicator of the ATAC signal's impact on the expression of adjacent genes. For each cell type, the top 
10,000 highest scored peaks were chosen for submission. 
 
ArchR team method: 
 
ArchR was run with default parameters following the tutorial: https://www.archrproject.com/bookdown. 
Briefly, we used ArchR to: (1) create pseudobulk replicates in which careful selection of background cells 
occurs; (2) assign of cell type labels to the ATAC-seq nuclei based on the RNA-seq component of the 10x 
Multiome; (3) call peaks for each cell type group; (4) use the getMarkerFeatures function to identify cell 
type specific peaks and associated summary stats; (5) organize 10,000 putative cell type-specific peaks for 
each cell type by sorting by log2FC > 2 and FDR < 0.05. 
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Figures: 
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Figure 1. Overview of the enhancer prioritization challenge. 
(A) Single nucleus multi-omic data from primary motor cortex of human, macaque, marmoset, and mouse. 
mya, million years ago. 
(B) Schematic of the computational challenge to prioritize candidate cell type-specific enhancers. 
(C) Overview of AAV construction, cell type ATAC-seq specificity, and screening of in vivo activity in the 
mouse brain for three candidate L5 ET enhancers. 
(D) Teams predicted and ranked 10,000 candidate enhancers for each of 19 cortical cell types and were 
scored based on prioritization of strong, On-Target enhancers. 
(E) Combinations of data and methods for top team submissions. 
(F) Normalized benchmark metrics (Methods) based on epifluorescence and SSv4 from in vivo screening. 
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Figure 2. Comparison of team enhancer rankings. 
(A) Average proportion of ranked enhancers that overlap between pairs of team submissions for all cell 
types. 
(B) Upset plot showing the number of validated enhancers that were identified by sets of submissions. 
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(C,D) Rates of identification of (C) On-Target and (D) Mixed-Target, Off-Target and No-Labeling enhancers. 
(E) Comparison of methods based on distributions of normalized enrichment scores (NES). For each 
method and cell type specific ranking, NES measures the area under the recovery curve (AUC) up to the 
1,000th element compared to a random ranking. 
(F) Heatmap ordered by Aerts scATACtriplet scoring of L5 ET enhancers and summary of validation results. 
Examples of a strong (AiE0456m) and weak (AiE0460m) enhancer with Pou3f1 motifs identified by the 
CREsted model in the highlighted region. AiE0456m was also validated with SSv4. 
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Figure 3. Enhancer features predictive of functional activity. 
(A) Comparison of molecular features between On-Target and other enhancer categories. ** P < 0.001, 
*** P < 0.0001 Wilcoxon rank-sum test two-sided, unpaired. 
(B) Correlation of H3K27ac and ATAC-seq specificity for astrocyte enhancers. 
(C) Examples of astrocyte enhancers with in vivo activity that is better predicted by H3K27ac than ATAC-
seq signal. 
(D) Summary of informative features from a Random Forest model predicting enhancer activity. ANOVA 
with Tukey post hoc tests, Bonferroni-corrected P-values. 
(E) Schematic of ATAC-seq peak quantification based on cut sites or coverage. Box plot comparison of 
peak specificity for all on-target enhancers between different preprocessing methods. Adjusted p-values 
were obtained through t-tests, *P < 0.05, **P < 0.01.  
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(F) Overall enhancer activity prediction performance from peak specificity for the different methods for 
On-target (left) and all, except Off-target, (right) enhancers.  
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Figure 4. Refinement of models and enhancer screening results. 
(A) tSNE plots of enhancers based on ATAC-seq specificity and labeled by the targeted cell type. On-Target 
and No-Labeling enhancers had explainable or unexplainable cell type labeling patterns based on ATAC-
seq and DNA sequence (CREsted) model predictions. 
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(B) River plots of enhancer activity, predictions and rescoring of experimental validation data. 
(C-D) Model scores, predicted TF motifs and SYFP fluorescence for two Oligo enhancers with 
epifluorescence strengths (C) strong On-Target and (D) No-Labeling rescored to weak On-Target activity. 
(E) Performance of enhancer ranking methods using the rescored enhancer activities. AP, average 
precision. scATAC included two normalizations: count-normalized coverage pseudobulk or peak-scaled. 
(F) CREsted model scores for strong and weak On-Target enhancers grouped by cell type. Mean +/- SEM. 
(G) Comparison of models at identifying No-Labeling enhancers. * P < 0.05, *** P < 0.001, Wilcoxon rank-
sum test, Bonferroni-corrected P-values. 
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