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Neural activity is often analyzed with respect to external referents, such as the onset of a sensory 
stimulus or an overt motor action. Simultaneous recordings allow referencing neurons’ activity to each 
other and thus detecting signals that are internal to the organism. Further, multi-region simultaneous 
recordings allow observing how these internal signals are coordinated across the brain. Following this 
logic in rats performing a perceptual decision-making task, we recorded simultaneously from 
thousands of neurons across up to 20 brain regions at once. Here we report two internal signals which 
we found to profoundly shape decision-related neural dynamics and brain states. First, we decoded the 
continuously evolving decision state separately from each region, and found surprisingly large 
magnitude co-fluctuations in these measures. Dimensionality analysis showed these to be dominated 
by a single state variable, suggesting that only a single decision-making computation, not multiple 
parallel computations, are being carried out during the analyzed period. Second, we found that the 
precise time the subject commits to a decision – a covert event that we decoded from large-scale 
neural activity in primary motor cortex – was accompanied by a coordinated change, across the brain, 
from a decision formation to a post-commitment state. The two states differ substantially in their 
choice-predictive neural dynamics and in their inter-region correlations. Therefore, knowing the time of 
this state change on single trials is needed to correctly parse fundamentally different phases of 
decision-making. Overall, our data suggest that internally-referenced signals and state changes, not 
timelocked to external events but detectable through simultaneous recordings, are major features of 
neural activity during cognition.  
 

Cognitive processes, unlike sensation and action, are often poorly correlated with external events, 
instead reflecting signals and states that are internal to the organism. While traditional neuroscience methods 
correlate neuronal activity to stimuli or overt motor actions, large-scale recording tools allow us to correlate 
neuronal activity with itself—offering the potential to reveal coordinated patterns of neural activity that reflect 
these internal processes. Furthermore, recording populations of neurons across multiple regions 
simultaneously allows observation of how internally-generated signals co-evolve across the brain in real time, 
which provides greater precision in characterizing these signals as well as powerful constraints on the 
multi-region circuits that generate them. Comparing the relative timing of shared cognitive signals across 
regions on single trials allows assessing their origin, and the patterns of cross-region correlation in these 
signals allows assessing the number of independent subcircuits generating them (Fig. 1a). Importantly, 
large-scale surveys across regions that are conducted serially1,2, rather than simultaneously, do not provide 
such constraints, as they only allow comparisons between regions based on referencing to external events. 

Recent advances in silicon probe technology and two-photon imaging have ushered in an age where 
simultaneous, large-scale and multi-region population recordings have become more common. In the context 
of decision-making, which we pursue here, some studies have reported co-fluctuations between regions in the 
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single-trial evolution of decision-related signals3–6. Here we expand on these studies by first, significantly 
enlarging the number and anatomical distribution of brain regions recorded simultaneously at large-scale 
cellular resolution during performance of a cognitive task. And second, we take advantage of a recently 
described measure that estimates, based on neural activity of single trials, the presence and timing of the 
moment in which the subject commits to a decision7 (i.e., the moment when they make up their mind). These 
two developments combined allowed observing two cross-brain internal signals which we now report to be 
substantial in magnitude and to profoundly influence decision-making neural activity. Many cellular resolution 
studies implicitly treat internal fluctuations as noise to be averaged away. But our results suggest that 
coordinated internal fluctuations reflect internal signals that are integral to cognitive processing. The 
measurement and elucidation of such internal signals may thus be an indispensable step towards developing 
an understanding of the neural basis of cognition. 

Brain-wide simultaneous electrophysiology during perceptual decision-making 
Tools for observing neural activity at scale have revealed that, during perceptual decision-making tasks, 

a subject’s upcoming choice can be decoded from numerous and widespread cortical and subcortical brain 
regions (Fig. 1a)1,5,8–10. Thus perceptual decisions, like other cognitive computations11,12, are represented 
broadly in the activity of neuronal populations throughout the brain, but how this distributed activity is 
coordinated to generate a single behavioral choice is not understood. Perceptual decisions are also thought to 
be the result of two linked, sequential processes: evidence accumulation and decision commitment. First, 
because sensory evidence is often noisy or unreliable, decision formation is thought to involve integrating 
evidence over time to improve accuracy and performance13,14. Second, the end of decision formation is often 
marked by a moment in which subjects “make up their mind” in the sense of committing to a choice3,7,13. In the 
task we describe below15, as well as others2,16,17, decision commitment is often a covert event that cannot be 
inferred from a subject’s overt actions. Recent work has nevertheless shown it is possible to infer the moment 
of covert decision commitment directly from spiking activity in large neuronal populations7. 

To assay internal signals related to both evidence accumulation and decision commitment, we 
developed new methods for large-scale electrophysiological recording using Neuropixels 1.0 probes18 
chronically implanted in freely moving rats. We used brain clearing and lightsheet imaging to visualize the 
implanted probe tracks (Fig. 1b,c) and combined this with electrophysiological signatures to confirm probe 
placement. For visualization, we registered the probe tracks to the Princeton RAtlas19 (Extended Data Fig. 1). 
For each brain hemisphere, we chose 4 penetration sites for the probes, targeting a set of cortical and 
subcortical regions previously shown to be involved in evidence accumulation. The penetration sites were 
mirrored bilaterally, for a total of 8 probe insertions per subject. Successful implantation of probes in this dense 
configuration required the design of novel implantation hardware, an accurate CAD model of the entire 
assembly in relation to the skull, and new protocols for the lengthy and invasive surgery (see Methods and 
Extended Data Fig. 2).   

Each recording session (3 rats, 21 sessions, 6-8 sessions per rat) yielded thousands of simultaneously 
recorded units (median=2,888, range 2,385-4,032) from tens of brain regions (median = 19, range 13-20). Our 
analyses focus on a subset of the regions recorded, chosen for their known or potential involvement in the 
perceptual decision-making task: dorsomedial frontal cortex (dmFC)7, medial prefrontal cortex (mPFC), primary 
motor cortex (M1), primary somatosensory cortex (S1), anterior dorsal striatum (ADS)20, the tail of the striatum 
(TS)21, the hippocampus (HPC), basolateral amygdala (BLA), nucleus accumbens (NAc), and medial 
geniculate body (MGB). A complete list of recorded regions, and description of their atlas equivalents, is in 
Extended Data Table 1.  

ADS and dmFC (the strongest cortical input source to ADS) have been directly linked, through 
recording and causal perturbation, to the decision formation process in the task used here7,20. dmFC is 
bidirectionally connected22 to M1 and mPFC, and ADS receives some input from those two regions7,23. MGB is 
the principal relay for all auditory information reaching the forebrain24, and projects directly to TS25,26, which has  
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Figure 1. Assaying coordination of decision signals across the brain. a, Synthetic data depicting how multi-region neuronal 
population recordings allows assaying coordination of internal signals. In the left panel, each row is a neuron and each black tick 
is the time of a spike from the neuron. Regions A, B, and C all have firing rates that, averaged over neurons, ramp upwards after 
the start of each trial at t=0. But weighted sums of the firing rates of individual neurons can reveal otherwise hidden internal 
signals: here, the weighted sums (right panel) show that regions A and B both also represent a continuously evolving signal that 
is not time locked to t=0 and that abruptly changes to a non-fluctuating state. Across trials, the continuously evolving signal 
region in A consistently leads region B (red leads blue), while the state change consistently occurs first in region B (blue goes 
flat before red). Region C’s weighted sum signal is unrelated to that of regions A and B. These observations, which constrain the 
neural circuit architecture generating the signals, could not be made if the regions were not recorded simultaneously. b, 
Schematic of simultaneously implanted Neuropixels 1.0 probes in a rat brain. c, Simultaneous placement of 8 chronically 
implanted Neuropixels probes, with average recorded unit counts per region across sessions (medial prefrontal cortex, mPFC; 
primary motor cortex, M1; somatosensory cortex, S1; dorsomedial frontal cortex, dmFC; anterior dorsal striatum, ADS; nucleus 
accumbens, NAc; tail of striatum, TS; basolateral amygdala, BLA; hippocampus, HPC; medial geniculate body, MGB). d, 
Schematic of a single trial in the “Poisson Clicks” behavioral task. On each trial, at the end of two simultaneous trains of 
randomly timed auditory clicks, subjects are rewarded for orienting to the side that had the greater total number of clicks. 
Gradients represent variable timing in the task timelines. e, Psychometric functions. f, Spike raster of simultaneously recorded 
neural responses across the brain on a single trial.   
 
been shown to be necessary for auditory decision-making27,28. S1 is reciprocally connected to M129, projects 
broadly within striatum23, and has recently been established to play a causal role in the formation of perceptual 
decisions30. Decision-related neurons have also been discovered in HPC and NAc during 
accumulation-of-evidence tasks7,31. BLA contains many auditory-responsive neurons32 and projects broadly 
throughout the striatum23.  

Before the implantation surgery, the subjects were trained to perform an established auditory 
decision-making task requiring accumulation of evidence presented in the form of randomly-timed pulsatile 
auditory clicks15,15,33 (the “Poisson Clicks” task; Fig. 1d). This paradigm allows precise control of the stimulus 
evidence contributing to the subject’s decision and inferring, from each region on each trial, the state of the 
evolving decision. Subjects initiate a trial by poking their nose into a center nose port. While the animal has its 
nose in the center port, and after a variable delay (0.5 - 1.3 s), two randomly-timed trains of broadband 
auditory clicks are played from speakers to the subject’s left and right, until a visual “go” cue, 1.5 s after the 
initial center poke. The subject is then free to withdraw from the center port and poke its nose into one of two 
side ports. Reward is delivered if the subject pokes into the side that played the greater total number of clicks. 
The optimal strategy thus requires gradually accumulating clicks over time on each trial. After surgery, all three 
rats continued to exhibit good behavioral performance. Two consistently maintained low lapse rates (i.e., the 
error rate on the easiest trials), each with a median lapse rate of 2% and maximum of 5% in each session, and 
completed a large number of trials (median 623 per session; range: 370-806). The third rat exhibited greater 
variability across sessions; we excluded from analysis 4 of 14 sessions with lapse >8% and 2 sessions with 
fewer than 300 trials (Fig. 1e; Extended Data Fig. 2f).  
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Evidence for a single brain-wide decision formation computation 
Using these brain-wide recordings during perceptual decision-making, we first used an approach 

established in previous studies of decision formation, which leveraged large-scale recordings of many neurons 
within a single region (sometimes more regions) to estimate the moment-by-moment evolution of gradually 
emerging decision signals34–37.  We reasoned that these simultaneous, brain-wide measures of the evolving 
decision state would allow us to distinguish hypotheses regarding how activity is coordinated across regions to 
generate a coherent decision: namely, do different subcircuits reflect independent processes that compete for 
behavioral expression, as has been proposed for other behaviors38,39 ? Or, do decision-related signals in all 
these regions reflect a single shared computation? (Fig. 2a)  

The approach takes firing rate data from all neurons in a region, time-aligned on each trial to the start of 
the sensory stimulus, and then uses logistic regression to determine, for each time point, the weighted sum of 
neural firing rates that best predicts, across all trials, the animal’s choice (Fig. 2b). On each trial, the weighted 
sum yields a time-varying scalar variable referred to as the “decision variable”,  DV(t)35 (Fig. 2c; see 
Methods). For each region, DV(t) can be thought of as a 1-dimensional summary of decision-related activity in 
that region, and its evolution over time can be traced for each trial. In the formulation used here, the more 
positive (negative) the DV(t), the more confident the logistic regression model is that the subject will decide to 
go right (left). The trial-averaged probability that the logistic regression model, at a given time in the trial, would 
accurately predict the subject’s behavioral choices can be computed from the DV(t)’s for each trial, and is the 
“choice prediction accuracy” (Fig. 2d). Scaling the approach up to simultaneously study many regions across 
the brain4,5, and consistent with the widespread representation of the evolving decision observed by 
others1,2,5,36, we found that for all recorded regions, the trial-averaged choice prediction accuracy was 
significantly greater than chance and increased gradually over time (Fig. 2d). The choice prediction accuracy 
for each region was similar across the left and right hemispheres (Extended Data Fig. 3a). 

A group of two frontal cortical regions (M1 and dmFC), together with anterior dorsal striatum (ADS), 
showed the highest choice prediction accuracy. While choice prediction accuracy showed a dependence on 
population size (Extended Data Fig. 3b), these three regions did not typically yield the largest populations 
(Extended Data Fig. 3D), indicating that choice prediction accuracy differences between regions were not 
trivially due to population size differences amongst regions.  

Simultaneous recordings allow the observation of how DV(t)’s evolve on single trials, not only within a 
region, but across all recorded regions. In a subset of 5 sessions distributed across all 3 rats, we used a 
“frozen noise” task design in which only 54 fixed click trains were presented, in random order across trials; 
each of the 54 trains was thus repeated over multiple trials (median of 10) within each of five sessions. This 
allowed assessing how the variable evolution of the DV(t)’s across trials was correlated across regions, 
independent of shared variability trivially driven by a changing stimulus. Within groups of trials with the same 
click train, multiple trials with the same choice further allowed us to assess correlations in the DV(t)’s across 
regions independent of those introduced by signals yoked to choice, which may reflect shared motor 
preparatory signals not of central interest here.  

The left column of Fig. 2e shows the temporal evolution of DV(t)’s from 9 brain regions, in each of the 
two hemispheres (18 regions total), averaged over repeats of one of these 54 click trains, which is shown at 
the top. For this click train, there were many more Right clicks than Left clicks, making this an easy “go Right” 
trial. On average for this stimulus, the DV(t)’s in all the brain regions gradually grew increasingly positive, 
corresponding to an increasingly strong signal predictive of a Right choice. But how did DV(t)’s across the brain 
evolve on single trials?  

The five columns to the right show the temporal evolution of the DV(t)’s in each of five representative 
single trials that were part of the average to their left. The plots show the single-trial residuals around the left 
column’s average (that is, with the stimulus- and choice-conditioned mean in the left column subtracted). 
Several striking features, typical of the data as a whole, are immediately apparent: First, the residuals are 
substantial in magnitude. These are not small fluctuations around the mean, but instead have magnitudes  
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Figure 2. Single-trial decision variable residuals reveal a single, shared decision process. a. Competing hypotheses 
regarding the degree of independence of the decision formation processes of each region, assessed using the DV(t)’s, for a set 
of regions, all of which have decision-predictive activity. Colored circles indicate individual regions; larger gray ellipses 
demarcate independent networks. Traces depict a schematic time course of decision-related activity. The function f represents 
an unknown mechanism for combining decision-related activity from different regions to generate a behavioral choice. b, Single 
trial dmFC population activity projected onto the first two principal components of the set of choice axis directions obtained 
across time points, shown separately at three time points relative to the first click. Note that firing rates were obtained by 
smoothing the spike times, so data from neighboring time points are not independent (see Methods). Blue (purple) dots depict 
neural activity on chose L (chose R) trials. Black arrows indicate the weight vectors that best predict the subject’s choice using 
logistic regression, whose direction defines the “choice axis”. Red lines indicate projection onto the weight vector (the “decision 
variable”) for an example trial. Data shown for an example session. c, Decision variable time course – DV(t) – across all trials; 
the example trial is highlighted in red. d, Time course of choice prediction accuracy using neural activity from each brain region 
bilaterally and from all regions combined. Mean +/- 1 s.e. across sessions shown. e, Simultaneously obtained DV(t)’s for all 
recorded regions in an example “frozen noise” session, shown for a subset of trials that shared the same click train and choice. 
The left column shows the average DV(t) across this set of trials for each region, and the remaining columns show the residual 
fluctuations (DV(t) residuals) for five example trials around that mean. f, Standard deviation of the mean and residual (i.e. 
stimulus- and choice-conditioned mean subtracted) DV(t)’s across all trials in the session whose data is shown in b, c and e. g, 
State space representation of the coordinated variability in the moment-to-moment, single-trial DV(t) residuals across 3 brain 
regions.  Each axis corresponds to the DV(t) residuals across timepoints and trials computed using firing rates from a different 
region. Pearson correlations between the data shown for each pair. Units are log-odds; shown for an example session. Arrows 
shown indicating directions explaining maximum variance. To focus on the trial period when the subjects are still actively forming 
their decision, only trial timepoints before the inferred moment of decision commitment using M1 spikes (nTc-M1) are included 
(see Methods). h, Matrix of DV(t) residual correlations (Pearson’s ρ) between pairs of regions, across timepoints and trials 
within a session. Average across the frozen noise sessions (and across the two hemispheres per session) shown. Diagonal 
entries correspond to the inter-hemispheric correlation for a given region. i, Fraction of variance explained per principal 
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component (PC) of the brain-wide residual DV(t)’s. The left panel displays predictions from the three competing models in (a), 
and the right panel compares the recorded data with the “Independent DVs” prediction, which provides an estimate of the noise 
floor (see Methods). Error bars indicate 1 s.e. obtained from a hierarchical bootstrap across 5 frozen noise sessions. j, Plot 
showing the loading (averaged across hemispheres and sessions) of each region onto the first PC. Error bars indicate 1 s.e. 
obtained from a hierarchical bootstrap across 5 frozen noise sessions. k, DV(t) residuals for each region and their projection 
onto PC1 for three example trials with identical click trains and behavioral choices (same set of trials as in Fig. 2e). 

 
comparable to the mean itself (Fig. 2f). Across regions, the standard deviation of the DV(t) residuals was 
similar in magnitude to the average DV(t) traces (99% as large as, +/- 5% s.e. bootstrap across sessions). 
Second, the fluctuations are significantly correlated across regions, with different time courses across trials but 
similar time courses across regions within a trial. We quantify this aspect below, but it is strong enough that in 
the example of Fig. 2e it can be seen by simple visual inspection. Importantly, the co-fluctuations across 
regions are not due to shared fluctuations in the stimulus driving the DV(t)’s or in the subject’s final choice, as 
here the stimulus is held constant across trials, and all trials used in Fig. 2e resulted in the same choice 
(Right). Whatever is being so markedly shared across brain regions appears to reflect internally generated, 
moment-by-moment variability not determined by the sensory stimulus, nor the overt choice report. Within 
single regions, DV(t) fluctuations have previously been linked to meaningful aspects of the subject’s internal 
decision formation process, such as changes of mind34. Indeed, for sets of trials in which the stimulus was held 
fixed but the animal’s choice varied across trials, we found that we could predict choice from the DV(t) 
fluctuations well above chance for all recorded regions, even though the mean DV(t) for each given click train 
had been removed (Extended Data Fig. 4). This confirms that these apparently internally-generated signals 
are related to the subject’s decision-making process. If regions are independent–given a particular stimulus 
and choice–then the residuals would not be expected to co-fluctuate. If regions form N mutually-independent 
groups, then we would expect co-fluctuations within but not across groups. Finally, if regions form a single 
group representing a single shared computation, we would expect co-fluctuations shared across all regions. 
More generally, separately from how computations are mapped onto subcircuits, the number of state variables 
underlying the neural activity places an upper bound on the number of computations being carried out. The 
analysis and differentiation of hypotheses are strengthened by a task design with multiple repeats of a given 
stimulus40–43, as used in Fig. 2e, to enable controlling for the co-fluctuations that stimulus and choice can 
themselves generate. This is done by assessing residual fluctuations around the mean trajectory, for each set 
of trials with a given stimulus and a given choice. As we show in depth later, subjects in our task do not 
accumulate evidence over the entire stimulus presentation, but instead often commit to a choice before the end 
of the full click train. To focus on the trial period when the subjects are still actively forming their decision, we 
confine the present analysis of inter-regional co-fluctations in the DV(t) residuals to time points that occur 
before the estimated moment of decision commitment on each trial. We took the set of DV(t) residuals over 
time and considered each time point in each trial as a point in high-dimensional space, where each axis 
corresponds to the DV(t) residuals of one brain region (pooled across hemispheres). Fig. 2g illustrates three of 
those dimensions for an example session. Pairwise correlations between any two given regions are shown in 
Fig. 2g as correlation coefficients on the corresponding two-dimensional “face” of the space spanned by each 
region’s DV(t) residuals. The set of all pairwise correlations across regions is shown in Fig. 2h. As can be 
seen, residual DV(t) correlations between most pairs of regions were well above zero, with the correlations 
between three regions (dmFC, ADS and M1) clearly standing out from the rest as strongest (𝜌≈0.3). This 
pattern of inter-regional correlations was highly specific to activity along each region’s choice axis: correlations 
between other one-dimensional summaries of population activity, such as mean firing rate, were much lower 
overall and did not share the same structure (Extended Data Fig. 5). Considering the left and right 
hemispheres separately (Extended Data Fig. 3c) revealed strikingly similar patterns of correlation across 
hemispheres, demonstrating a remarkable degree of inter-hemispheric coordination of decision formation. 
Given the similarity across hemispheres, we pooled across the two hemispheres for subsequent analyses, 
from Fig. 3 onwards.  

Patterns of co-fluctuations across regions can be characterized by the principal components (PCs) and 
PC spectrum of the data in the space illustrated in Fig. 2g. We first shuffled region labels across neurons, to 
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generate surrogate data in which fluctuations in all regions are equivalent to each other. In this surrogate data, 
a single shared DV(t) describes co-fluctuations across all regions, and a single principal component will 
dominate the PC spectrum (Fig. 2i left, dark green; see Methods). Next, we divided regions into two groups 
and shuffled trial labels within but not across groups. This shuffle corresponds to the hypothesis that 
co-fluctuations across regions are described by two separate DV(t)’s (Fig. 2i left, medium green). Finally, we 
shuffled trial labels independently within each region to simulate the null hypothesis that all regions are 
independent of each other. While this would produce a flat PC spectrum for infinite numbers of trials, here, with 
finite data, the results of this shuffle can be thought of as the noise floor, i.e. what we expect from independent 
regions but finite data (Fig. 2i left, lightest green).  

Applying the analysis to the experimental data (Fig. 2i right) revealed that the data’s PC spectrum was 
remarkably similar to the prediction from the hypothesis with a single DV(t) across regions. The first principal 
component alone accounted for 40% of the variance in the dataset, which was 3.8 times ([2.5-6.4] 95% 
coverage interval using a hierarchical bootstrap test across sessions) greater than the next principal 
component, which fell below the noise floor. The prominence of the first PC in the data, consistent with the 
prediction given a single DV(t), was apparent in each individual frozen noise session (Extended Data Fig. 6). 
While this does not preclude the possibility that a larger dataset would allow further principal components to 
rise above the noise floor, a single component clearly dominates strongly above all others, implying that 
brain-wide co-fluctuations in DV(t) residuals can be well described by fluctuations in a single scalar variable, 
namely the projection onto that first PC. This single scalar variable, reflected in each region’s DV(t) residuals, is 
consistent with a single, internally-generated decision formation process, shared across regions. 

A frontostriatal subnetwork temporally leads decision formation 
Three regions (dmFC, ADS, and M1) had the strongest loading onto the first PC (Fig. 2j), meaning that 

the DV(t) residuals in these regions covaried most strongly with the single, dominant mode. In Fig. 2k we show 
the DV(t) residuals across each brain region for three example trials, and the projection of the brain-wide 
residuals onto the first PC. This illustrates how this single dimension captures a large fraction of the 
fluctuations across brain regions, and how the DV(t) residuals in dmFC, ADS and M1 most strongly covary with 
this projection. Recall that dmFC and M1 are reciprocally connected frontal cortical regions, and project directly 
to ADS. ADS, in turn, likely projects indirectly to these cortical regions through the cortico-striatal-thalamic 
loop44. The strength with which these 3 brain regions represent the brain’s single, shared DV(t) suggests that 
the decision formation process shared across the brain may emerge within this anatomically-interconnected 
frontostriatal subnetwork, a hypothesis we explicitly test below. 

If DV(t) residuals reflect the ongoing decision process, as their link to behavior suggests (Extended 
Data Fig. 4), and if those signals originate in a subset of regions and are then relayed to other regions, we 
would expect the single-trial fluctuations in the DV(t) residuals of “receiver” regions to lag those in the “source” 
regions (Fig. 3a). Comparing the latency with which trial-averaged decision-related activity appears across 
regions has often been used to infer where decisions are first formed2,5,10,45. However, the computation could be 
initially triggered in one set of regions and yet be subsequently led by others. Here, we leverage our 
simultaneous recordings, along with the prolonged decision formation period afforded by our task, to probe 
temporal relationships among the ongoing internally-generated decision formation signals that we found to be 
so prominent on single trials, and having removed the component of decision-related activity driven by the 
stimulus or yoked to the upcoming response. We computed, for each pair of regions, the cross-correlation 
function of their DV(t) residuals, by measuring DV(t) residual correlations at different time lags between the two 
regions. Fig. 3b shows the resulting cross-correlation function between DV(t) residuals in primary motor cortex 
(M1) and all other regions. We found that they peak near zero and decay to negligible values within about 0.5 
s, reflecting relatively short timescale co-fluctuations, less than the duration of a trial.  The peaks of the 
cross-correlation functions are shifted to the right of zero for most pairs, indicating that M1 DV(t) fluctuations 
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lead those of most other regions. Note again that because we are using DV(t) residuals, these correlations 
exclude those introduced by shared coding for stimulus or choice. 

The left panel of Fig. 3c shows the results of the peak time lag analysis of Fig. 3b, but now for all pairs 
of regions. (The first column contains the data from Fig. 3b). Each region’s peak lag, averaged over all other 
regions, is shown in the right panel of Fig. 3c. This shows that during decision formation, dmFC, ADS and M1 
– the same set of three interconnected frontostriatal regions that most strongly represented the shared internal 
decision process – tended to have DV(t) fluctuations that led the rest of the brain by the largest amount (~50 
ms), and were statistically indistinguishable from each other in this measure (p>0.05 in all cases, using 
hierarchical bootstrap test across sessions). We found that, across all regions, the average peak lag was highly 
correlated with the loading of each region onto the first PC (Fig. 3d). In other words, the strength with which 
the shared decision process is represented is closely correlated with the latency with which it is observed. 
Taken together, these results show that decision formation is a single, shared brain-wide process, and within 
the set of regions recorded here, it is led by dmFC, M1, ADS.  

 
Figure 3. A frontostriatal subnetwork temporally leads 
decision formation. a, Schematic of the motivating 
problem, namely identifying where signals related to 
decision formation originate. The residual DV(t)’s in source 
regions are predicted to lead those in recipient regions, 
leading to shifted cross-correlogram peaks. b, Pearson 
correlation between the residual DV(t)’s of each brain 
region with M1 as a function of different relative time lags, 
with regions considered bilaterally. Average across trials 
across all frozen noise sessions is shown. The time lag at 
which the maximum value occurs (the cross-correlogram 
peak lag) is shown at the top for each pair, with error bars 
indicating 1 s.e. obtained using a bootstrap across trials. c, 
At left, lag of the cross-correlogram peaks, computed as in 
panel b, but here shown for all pairs of brain regions. The 
first column corresponds to the cross-correlogram peaks in 
(b). Negative values (purple) indicate that the region on the 
row leads the region on the column. Note that the matrix is 
therefore antisymmetric by construction. At right, the 
average of each row in the matrix, with error bars 

indicating 1 s.e. obtained by bootstrap across trials. Negative values indicate a region’s residual DV(t) tends to lead other 
regions.  d, Scatter plot of each region’s residual DV(t) loading on PC1 (as in from Fig. 2e) versus its mean peak lag in (c).  

Brain-wide estimates of the time of covert decision commitment 
Decision formation comes to an end when the subject commits to a choice (“makes up their mind”). The 

timing of this moment can be driven by processes that appear to be internally generated and not timelocked to 
external events such as a stimulus or an overt motor action. Recent work found that, during a subset of trials in 
the Poisson Clicks task, subjects covertly commit to a choice before the end of the stimulus presentation, 
disregarding further evidence. This moment, referred to as the “neurally-inferred time of commitment” or “nTc”7 
occurs at a precise time point–not time-locked to the stimulus or motor report–that can be detected and 
identified from the neural activity of tens of simultaneously recorded choice-selective neurons from frontal 
cortex and striatum. Here, the brain-wide simultaneous recordings present an opportunity to determine how 
this internal state change manifests at the level of the whole brain.  

We first describe the method of nTc estimation and validate that the main conclusions from the study 
presenting nTc7 also apply to the current dataset, which includes a much broader range of brain regions. We 
then examine the relationship between nTc estimates from different regions. We find that, as with the DV(t)’s of 
the previous section, nTc estimates are highly correlated across the brain.  
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The existing method to identify nTc relies on a model of spiking data that is an expansion of the classic 
behavioral drift-diffusion model (DDM)13,46 of accumulation of evidence for decision-making. In the DDM, 
rightwards (leftward) evidence adds (subtracts) to a scalar latent variable , such that as  evolves, it 𝑧 𝑧
represents the evidence accumulated over time. Noise corrupts this process, and in addition, if  reaches a |𝑧|
bound , the subject is taken to have committed to the decision indicated by the sign of . The “multi-mode” 𝐵 𝑧
drift-diffusion model7 used to infer nTc (MMDDM; Fig. 4a) maps the DDM onto spiking data in a manner that, 
critically, is different during the decision formation phase (i.e., before hitting the bound) versus the committed 
phase (after reaching the bound). Neuron ’s firing rate depends on two components added together:  a 𝑛

time-varying term  that captures the overall temporal shape of the choice-independent firing rate of the 𝑏𝑛(𝑡)

neuron and a decision-related term, formed by the DDM’s latent variable  multiplied by a weight parameter . 𝑧 𝑤𝑛

The sum is passed through a rectifying nonlinearity to produce the neuron’s firing rate (Fig. 4a). Critically, the 

neuron’s parameter , which is fitted to the data, is allowed to be different before hitting the bound ( , 𝑤𝑛 𝑤𝑛
𝐸𝐴

evidence accumulation phase) versus after ( , decision commitment phase): this implies that the model 𝑤𝑛
𝐷𝐶

firing rates lie in a different direction in neural space (a different “mode”) before versus after decision 
commitment, abruptly shifting from one to the other at the time of commitment. This abrupt mode change 
serves as a precise signature of commitment timing. The model’s parameters were fit to maximize the 
probability of observing the experimentally-observed spiking and choice data under the model. 

When  and  are constrained to be equal, the model reduces to a straightforward map of the 𝑤𝑛
𝐸𝐴

𝑤𝑛
𝐷𝐶

DDM onto firing rates along a single mode in neural space. Ref. 7 showed that for anterior regions, MMDDM fit 
cross-validated experimental data better than the single-mode DDM, and was also better able to account for 
heterogeneity of single neuron temporal profiles. This held true in the current dataset, including posterior 
regions not studied in ref. 7 (Extended Data Fig. 7). The mode shift, rather than a global change in firing rate 
(Extended Data Fig. 8a), defines commitment time.   

After fitting the model's parameters, which are then fixed and the same for all trials, we computed, for 
each trial, the posterior distribution of the latent variable  as a function of time during the trial, given the entire 𝑧
trial’s click train and spiking activity from each individual region. Fig. 4b shows the temporal evolution of this 
posterior distribution, for one particular trial and using neural activity from region M1. The bottom panel shows 
the evolution of the posterior probability of reaching the commitment bound; if this reached 0.95 before the 
subject began its choice-reporting movement and remained above this threshold, then the earliest time this 
threshold was reached was defined as nTc for that trial. Fig. 4c shows the same estimates for the same trial, 
when the subject’s behavioral choice was used instead of the neural spiking data to constrain the posterior 
distributions. As in ref. 7, the spiking data produces a far more precise estimate (compare Fig. 4b and 4c; Fig. 
4e).  

Considering all recorded brain regions, nTc could be detected most frequently in M1 (48% of trials), 
ADS (35%), and dmFC (33%; Fig. 4d), indicating that decision commitment signals are strongest in the same 
set of brain regions that most robustly represent the shared process of decision formation (Fig. 2). Since nTc 
could be detected most reliably from M1, we focused on the M1-derived estimates (“nTc-M1”) for the remainder 
of the paper. Consistent with findings in ref 7, nTc-M1 was broadly distributed with respect to stimulus onset 
(Fig. 4f; s.t.d.=196ms), movement onset (Fig. 6a; s.t.d.=239 ms) and stimulus offset (Extended Data Fig. 8b; 
s.t.d.=225 ms). Moreover, again confirming findings in ref. 7 and as predicted for a marker for the moment when 
a subject “makes up their mind”, the influence of the auditory stimulus clicks on the subject’s behavioral choice 
ended abruptly after nTc-M1 (Fig. 4h; Extended Data Fig. 8c), although this could not be consistently 
observed for nTc estimates from other brain regions (Extended Data Fig. 8d). Consistent with predictions from 
the MMDDM model fits, trials with an nTc-M1 had higher behavioral accuracy than those without, even when 
controlling for evidence strength (Fig. 4g). Additionally, nTc-M1 occurred more frequently (Fig. 4i; logistic 
regression coefficient=1.8, 95%CI [1.6, 2.0], t(3587)=16.0, p=9x10-58) and earlier (Fig. 4j; linear regression 
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coefficient=-0.05, 95%CI [-0.08, -0.02], t(2170)=-3.6, p=3x10-4) on easier trials than harder trials. We note that 
here we do not treat MMDDM as a generative model underlying the DV(t)’s, which may emerge from more 
complex dynamics, but only as a tool for inferring commitment timing.  

Our brain-wide recordings allowed us to simultaneously detect nTc from a large number of brain 
regions, across the same set of trials. As with the DV(t) signals related to gradual decision formation, we found 
that even when considering trials with identical click trains and behavioral choices, the time at which nTc 
occurred varied widely across trials, indicating that the particular timing on each trial was internally generated 
and not determined by the click stimuli or the subject’s choice. Moreover, and again as with DV(t)s, this 
variability was strikingly correlated across regions, which we quantify below but which is visually apparent on 
example trials (Fig. 4k). This demonstrates a remarkable coordination in signaling of covert decision 
commitment across brain regions. 

 

 
Figure 4. Brain-wide estimates of the time of covert decision commitment. a, Schematic illustrating the procedure used to 
infer region-specific neurally inferred time of commitment (nTc) based on a model assuming accumulation to a decision bound 
with an abrupt change in neural encoding at commitment. b, Posterior probability of commitment over time for an example trial, 
computed using M1 spike data. c, Same trial and format as b, with posterior probability computed using choice. d, Detection 
rates of nTc across brain regions. Error bars indicate bootstrapped standard error computed from across 21 sessions. e, Time 
constants of sigmoid curves fitted to the posterior probability traces. f, Distribution of nTc across trials on which detection was 
possible using M1 spikes. N=5,135. g, Psychometric curves on trials with (n=5,135) and without (n=5,632) detectable nTc-M1, 
along with corresponding curves from simulated data. h, Psychophysical kernel showing the influence of stimulus clicks on 
choice before and after nTc-M1. N=2,544 trials. Shading indicates 95% bootstrapped confidence intervals. i-j, Detection rates (h) 
and timing (i) for neurally-inferred commitment times (nTc-M1) across levels of stimulus evidence strength. Error bars and 
shading indicate 95% bootstrapped confidence intervals across 21 sessions. k, Colored dots indicate nTc’s estimated from 
different brain regions on six example trials with identical click trains and choices, highlighting correlated variability in 
commitment timing across regions.  
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Decision commitment is shared across the brain and is led by M1 
Similar to our previous analysis of the DV(t)s – which were used to constrain models of the multi-region 

circuits underlying decision formation – how nTc estimates from different regions relate to each other provides 
similar constraints to how decision commitment arises from distributed circuits. We first assessed whether the 
correlated nTc timing we observed across regions is consistent with a single, shared process of decision 
commitment or with multiple independent processes (Fig. 5a). We again took advantage of the frozen noise 
task design to quantify correlations that by definition, cannot be explained by shared coding for the stimulus or 
choice-specific preparatory signals. For each region, we separated trials into groups with identical click trains 
and choices, computed the mean nTc within each group, and subtracted it from the corresponding trials. We 
then examined how the remaining “nTc residuals” were coordinated across regions. We considered the 
brain-wide nTc residuals as points in a space whose axes are the nTc residuals from each region (Fig. 5b). 
The dimensionality of this point cloud serves as a quantitative measure of the number of latent processes 
generating the brain-wide nTc’s, which we confirmed using MMDDM simulations. (Fig. 5c; see Methods). 
Because nTc was not detected on every trial from each region, we used probabilistic PCA (PPCA) to assess 
dimensionality in the presence of missing data (see Methods). We found that one dimension explained 
approximately 50% of the variance of the residual nTc’s, and the rest of the dimensions explained a fraction of 
variance that was below the noise floor (Fig. 5d). While this was most consistent with simulations that 
assumed a single, shared moment of decision commitment, we do note that the dominance of the first principal 
component here is not as strong as for the DV(t)’s in Fig. 2b. This may be due to the fact that nTc provides 
only one data point per trial, whereas the DV(t) residuals provide many points per trial, implying less statistical 
power in our ability to distinguish a 1-dimensional from a 2-dimensional system.  

Next, similar to our approach using DV(t) residuals to assess the origin of gradual decision formation 
signals, we measured lead-lag relationships between nTc’s from different regions (Fig. 5e) to assess where the 
highly coordinated decision commitment signal first emerges. We calculated the average difference in nTc 
timing between each pair of regions, using only those trials in which nTc was detected from both regions. We 
then summarize these pairwise measurements for each region by calculating the average nTc timing difference 
of that region with all others (Fig. 5f). As with the earlier finding that nTc could be detected most frequently 
from M1, followed by ADS and dmFC (Fig. 4d), this timing analysis revealed that decision commitment could 
be first detected from M1, with nTc-M1 leading nTc obtained from all other regions by approximately 100 ms, 
on average (Fig. 5f, left; Extended Data Fig. 8b). Decision commitment signals in M1 were most closely 
followed by ADS and dmFC. Across regions, here was a strong correlation (Pearson’s r=0.93) between nTc 
detection frequency and nTc timing (Fig. 5g). This is predicted under the model used to infer nTc (MMDDM), 
where stronger encoding of decision commitment provides a higher signal-to-noise ratio for determining 
whether and when the latent variable z reaches the decision bound. More robust decoding of bound-crossing 
leads to both a greater fraction of trials in which nTc could be detected (i.e., the posterior probability of z at the 
bound reaches 0.95 on a given trial) and earlier estimates. In sum, analyses of nTc timing across regions 
reveal a low dimensional, highly coordinated representation consistent with a single, shared decision 
commitment process that can be detected earliest in M1. 
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Figure 5. Decision commitment is shared across the brain and is led by M1. a, Schematic of competing hypotheses: the 
timing of decision commitment may be independent across brain regions or reflect one or more shared processes. Rows show 
four example trials with the same click train and behavioral choice. Tick marks indicate single-trial residual nTc for each region, 
relative to the average nTc for trials with that click train and choice. b, State-space representation of the coordinated variability in 
single-trial nTc residuals across 3 brain regions, shown for one session with 246 trials that had nTc estimates for all three 
regions. Orange arrows indicate directions explaining the maximum variance. c, Plot of variance in across-region nTc residuals 
explained by each principal component (PC), as predicted by the competing hypotheses in (a) and tested using MMDDM 
simulations (see Methods). Error bars indicate 1 s.e. using a hierarchical bootstrap across sessions. d, Same as (c) but using 
the observed data. The prediction assuming independence across regions is reproduced for comparison, as it provides a 
measure of the noise floor. Error bars indicate 1 s.e. using a hierarchical bootstrap across sessions. e, Schematic of the 
approach for identifying where decision commitment signals first emerge. f, Matrix representing the trial-averaged difference in 
nTc timing between all pairs of brain regions. Left, each region’s average difference relative to all others, corresponding to the 
mean of each row in the matrix on the right. Each pairwise comparison includes only trials with nTc detected in both regions. 
Negative values indicate that a region’s nTc tends to lead other regions. g, Scatter plot of the mean relative nTc timing from (f) 
the fraction of trials in which nTc could be detected from each region. f-g, Values indicates the mean +/- 1 s.e. across 21 
sessions. 

Decision commitment marks a coordinated, brain wide state change in 
decision-related activity 

Conceptually, decision commitment marks a change of state in the decision-making process, from (1) 
accumulating evidence as the decision is being formed, to (2) maintaining the decision the subject has 
committed to until an action reporting it is performed. But whether it marks a corresponding state change in 
brain-wide neural activity has not been previously examined. The simultaneous recordings enabled us to 
address this question by aligning neural data from all recorded regions to each individual trial’s nTc-M1 (Fig. 
6b; we remind the reader that “nTc-M1” indicates nTc estimated from neural activity in region M1). We 
characterized two measures of decision-related activity. First, we examined choice prediction accuracy (Fig. 
1h), which has been observed to have a very regular property across multiple tasks, brain regions, and 
species: when trials are aligned to externally-observable task events, such as stimulus onset or the onset of 
the movement that reports the animal’s choice, choice-prediction accuracy from neural activity ramps steadily 
upwards over time2,5,47. Indeed, using this alignment, we found the same pattern in our data (Fig. 6c). However, 
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aligning trials to nTc-M1 revealed a dramatically different pattern: for almost all regions, choice prediction 
accuracy ramped upwards until nTc-M1 but then abruptly plateaued (Fig. 6d; the two exceptions are MGB, 
where it falls instead of plateauing, and NAc, where it continues growing). This held even for trials in which 
nTc-M1 occurred many hundreds of milliseconds before movement onset. This surprising finding is consistent 
with choice prediction accuracy largely reflecting an internal estimate of accumulated evidence that stops 
evolving when the subject commits to a decision. It suggests that monotonically increasing choice prediction 
accuracy when aligning to movement onset (Fig. 6c) is due to averaging data across two different states.  

To rule out that the observed plateauing is artefactually generated by choice prediction accuracy 
nearing its maximum value of 1, we also analyzed the sign-corrected trial-averaged DV(t)’s for each region: to 
pool across both right- and left-choice trials, we first flipped the sign of DV(t) on left-choice trials. The resulting 
DV(t) is an unbounded measure of the strength with which neural activity predicts the upcoming choice (Fig. 1; 
Methods).  These region-specific DV(t)’s confirmed the observations found with choice prediction accuracy: 
steadily upwards ramping when aligning on movement onset (Fig. 6e) but upon aligning on nTc-M1, a 
plateauing that begins around the time of that alignment point, for data across all regions (Fig. 6f). To quantify 
this observation, we performed bilinear regression on each of the DV(t) traces in Fig. 6e,f. For visibility, we 
show here the bilinear fit for the M1 data only (red dashed lines in Fig. 6e,f; see Extended Data Fig. 9 for all 
bilinear fits and for alignment to stimulus onset). For data aligned to movement onset, the slopes of both the 
first and second line segments in the bilinear fits were positive for all regions (Fig. 6g). However, for data 
aligned to nTc-M1, the bilinear fits confirmed brain-wide plateauing around nTc-M1: for all regions, the slopes of 
the first line segment were significantly positive (p<0.05 using hierarchical bootstrap test across sessions) 
while none were significantly positive for the second line segment (p>0.05 using hierarchical bootstrap test 
across sessions; Fig. 6h).  For all regions, the time of the breakpoint from the first to the second line in the fits 
was closely aligned to the time of nTc-M1 (Fig. 6i). The temporal order of breakpoint timing between regions 
(Fig. 6i) was similar to that of nTc inferred separately from each region (Fig. 5f), with the exception of MGB, 
which here exhibited the earliest breakpoint but has a much later relative nTc timing in Fig. 5f. We interpret the 
fast initial rise in MGB’s choice prediction accuracy (see also Fig. 1h) as likely due to MGB’s robust and low 
latency responses to auditory clicks48, which are expected from an early region in the auditory pathway that 
strongly encodes momentary evidence (Extended Data Fig. 5c). Thus, the brain-wide plateauing in 
choice-related activity around the time of nTc-M1 provides independent evidence for the coordinated nature of 
the decision commitment signal observed across the brain. The relative timing of the plateauing across regions 
supports the cascading nature of the decision commitment signal observed across the brain, even while 
highlighting nTc as a more precise measure of neural encoding of decision commitment. 

 In Fig. 2, we showed that the DV(t) residuals strongly covary across regions in the time period before 
nTc-M1 on each trial, consistent with a single shared decision formation process. Here we directly compare 
coordination in the DV(t) residuals in the period before commitment (from stimulus start to nTc-M1) and after 
commitment (from nTc-M1 to the onset of the decision-reporting movement; see grey schematic bars in Fig. 
6b). We found that after nTc-M1, correlations fell precipitously by ~3x compared to the period before nTc-M1 
(Fig. 6j). This result held separately for each of the five frozen noise sessions (Extended Data Fig. 10). To 
provide a time-resolved view of the transition, we computed residual correlations for individual time bins around 
nTc-M1, averaging across region pairs from within three groups of regions (Fig. 6k). We found that the 
decrease in correlations was not uniform over the course of the trial but instead began approximately 250 
milliseconds before nTc-M1. The fraction of variance explained by the first principal component of the residuals 
provides another measure of the degree of correlation. Computing this for each time bin exhibited a similar 
drop ~250 ms before nTc-M1 (Fig. 6l), suggesting that the drop in correlations may predict a commitment 
event that is about to occur. We excluded the period when DV(t) residual correlations were rapidly dropping 
(from 250ms before nTc-M1 to nTc-M1) from calculations of the average magnitude of coordination in the 
pre-commitment period (Fig. 2, Fig. 6j and Extended Data Fig. 10). 
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Figure 6. A coordinated, brain-wide state change at the time of decision commitment. a, Timing of nTc-M1 relative to 
movement onset. Top, sequence of the first click, nTc-M1, last click and movement onset for 5 example trials. Bottom, 
distribution of nTc-M1 across trials aligned to movement onset. b, Same as (a) with trials aligned to nTc-M1. Purple shading 
highlights the period before nTc-M1. Yellow shading highlights the time window after nTc-M1. c, Choice prediction accuracy 
using each brain region, as in Fig. 1h, but here aligned to movement onset. Mean across sessions shown. d, Same as (c), with 
trials aligned to nTc-M1. e, Trial-averaged DV(t) from each brain region, aligned to movement onset. The sign of the DV(t)s on 
left choice trials was flipped before averaging. Note that neuronal firing rates were smoothed with a 50-ms symmetric Gaussian 
filter before the logistic regression was performed to generate the DV(t)’s. f, Same as (e), with trials aligned to nTc-M1. g, Slopes 
of the first and second line segments of bilinear fits of the mean DV(t) traces in (e). h, Same as (g), for the bilinear fits of the 
mean DV(t) traces in (f). i, Timing of the breakpoint from the bilinear fits for each region relative to nTc-M1. Data represented as 
mean +/-1 s.e. across 5 frozen noise sessions. j, Matrix of DV(t) residual correlations for all pairs of brain regions, across all time 
points and trials within a session here shown separately for time points before (left, reproduced from Fig. 2c) and after (right) 
nTc-M1. The diagonal shows the interhemispheric correlation for each region. Values show mean across the 5 frozen noise 
sessions. The time period when DV(t) residual correlations were rapidly changing (from 250ms before nTc-M1 to nTc-M1) were 
excluded from these averages. k, Time course of mean (+/-1 s.e.) DV(t) residual correlation relative to nTc-M1, using 50 ms bins. 
l, Time course of fraction of across-region DV(t) residual variance explained by the first PC, similar to Fig. 2d but here shown in 
200 ms bins relative to nTc-M1. Mean +/- 1 s.e. shown. All panels, only trials with detected nTc-M1 in the 5 frozen noise sessions 
are included (n=1656). 
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Taken together, the results in Fig. 6 show that nTc-M1, the time of decision commitment as inferred 
from neural activity in region M1, marks a substantial change across the brain between two very different 
phases of decision-related activity. Since nTc-M1 varies substantially between trials (Fig. 5c,j) accurate 
trial-by-trial estimates of it will be important for correctly parsing and analyzing brain activity during 
decision-making. Without this trial-by-trial estimate, data from two very different states, each with very different 
properties, may be inadvertently mixed and blurred together.  

Discussion 
Neural activity has traditionally been described with reference to external markers such as the onset of a 

stimulus or a motor output. Yet cognitive processes need not be time-locked to external referents, and may 
instead involve signals that are internal to the organism. Given spikes from only a single neuron, variability 
across trials in these internal signals may be indistinguishable from noise. However, simultaneous recordings 
of many neurons can provide the statistical power to uncover them – revealing internal coordinate systems 
along which cognitive processes evolve. Our work here demonstrates a further evolution of this experimental 
logic: recording populations of neurons across multiple regions simultaneously allows observation of how 
internal signals co-fluctuate across brain regions, which not only illuminates these signals in greater detail but 
also provides powerful constraints on the multi-region circuits that generate them. Surveys of neuronal activity 
that record serially across regions do not provide this ability.  Brain-wide simultaneous recordings that do not 
provide cellular resolution (e.g. fMRI or EEG) cannot reveal internal signals that occupy the many neural 
subspaces orthogonal to the recorded pooled signal (Fig. 1a). 

We developed new methods using chronically implanted Neuropixels probes that allow simultaneous 
recordings of thousands of neurons across up to 20 brain regions in rats performing an auditory evidence 
accumulation task. This approach provides both cross-brain simultaneous coverage and cellular resolution, 
making it suitable for studying coordination of internal signals. We identified two such signals—one reflecting 
the continuous evolution of a single decision formation computation, and another marking the moment of 
covert decision commitment—that together dominate decision-related activity across the brain. Both signals 
were highly variable across trials – even across trials with identical stimuli and choices – but remarkably unified 
across regions. Aligning neural activity across the brain to the decision commitment signal obtained from M1, 
we observed a coordinated transition in decision-related dynamics: a dramatic reorganization of brain-wide 
neural activity at an internally defined time. Our results suggest that methods for uncovering internal signals 
and state changes are indispensable tools for understanding the neural basis of cognition   

To obtain gradually evolving decision formation signals in each brain region, we used logistic regression 
to determine, for each time point, the weighted sum of neural firing rates that best predicts the animal’s choice. 
Within the neural space of that region, these weights define a one-dimensional decision-related subspace. 
Position on that subspace defines what is referred to as that region's "decision variable", or DV(t)34–37 (Fig. 2c). 
The temporal evolution of a region’s DV(t) on single trials is a one-dimensional summary of the evolution of 
decision-related neural activity in that region.  To avoid trivial co-fluctuations that would result from cross-trial 
changes in the sensory stimulus or the subject’s choice, we used a “frozen noise” task design and conducted 
our analyses within sets of trials that had a given choice and click train stimulus, examining co-fluctuations in 
these signals relative to the mean within each of these groups.  This allowed us to remove co-fluctuations 
driven by shared coding of the stimulus, or yoked to choice, instead specifically focusing on those reflecting 
internally-generated decision signals. We found that, despite having subtracted the mean DV(t) trajectory for 
each given stimulus and behavioral choice, the resulting single-trial residuals were substantial in magnitude 
and significantly correlated between regions (Fig. 2f,h).  

 
Using nTc, a neural marker of the moment of decision commitment7 on each trial, allowed examining 

co-fluctuations that are specific to ongoing decision formation, before commitment (Fig. 2). Focusing on 
lead-lag relationships amongst the ongoing internally-generated decision formation signals we found that both 

15 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2025. ; https://doi.org/10.1101/2024.08.21.609044doi: bioRxiv preprint 

https://paperpile.com/c/x7lBi4/t7V2t+93aWJ+HeZJq+COlX3
https://paperpile.com/c/x7lBi4/SLSW
https://doi.org/10.1101/2024.08.21.609044
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

hemispheres of three regions–anterior dorsal striatum (ADS), primary motor cortex (M1), and dorsomedial 
frontal cortex (dmFC), a group that notably includes a subcortical region–led other regions by ~50 ms or more 
(Fig. 3). Ongoing decision formation signals may thus arise in these three regions, and from there spread to 
the rest of the brain. The idea that signals related to an upcoming decision are locally computed but widely 
broadcast, as we provide evidence for here, has been suggested before in experimental4 and theoretical 
studies49,50. How and when such global broadcasting occurs and what function it may serve is an important 
question for future research. Further simultaneous recordings will be required to determine lead-lag 
relationships with other regions associated with perceptual decision formation but not yet recorded here, 
including subcortical regions like superior colliculus1,3,51,52 the midbrain reticular nucleus1,2, and the 
gigantocellular reticular nucleus2. Previous studies have measured the trial-average latency of the first 
decision-predictive signals to indicate in which region the decision formation computation is first triggered, with 
various results2,5,10,45. However, the computation could be initially triggered in one set of regions and yet be 
subsequently led by other regions. Our measurement, which focused on lead-lag relationships of ongoing 
co-fluctuations, not initial triggering decision-predictive signals, is thus distinct from and complementary to 
previous latency measurements. Consistent with ADS, M1, and dmFC being part of a set of regions where 
ongoing decision formation signals could originate, those three temporally-leading regions were also found to 
be the three regions with the strongest choice-predictive activity (Fig. 2d), as well as having the strongest 
pairwise correlations between regions (Fig. 2h).  

Importantly, the large-scale recordings from many regions (median=19 regions per session) facilitated 
dimensionality analysis of decision-related co-fluctuations that are specific to the decision formation period 
(Fig. 2). Under the assumption that decision variables DV(t) reflect the state of the evolving decision process, 
dimensionality analysis can delineate subcircuits involved. This is because distinct computations in distinct 
subcircuits would require distinct state variables. By placing an upper bound on the number of variables 
required to describe the process across all recorded regions, dimensionality analysis places an upper bound 
on the number of state variables and therefore number of subcircuits that are involved. The idea that distinct 
strategies and subcircuits may compete for behavioral expression is prominent in theoretical and experimental 
accounts of operant behaviors38,53–55. Within perceptual decision-making, previous behavioral56, theoretical57, 
and neural activity58 analyses have suggested that decision formation may involve separate and competing 
accumulators. For right-versus-left decisions in particular, the two hemispheres have been proposed to 
separately accumulate evidence for the two choices. Nevertheless, to our surprise, the pattern of 
co-fluctuations during decision formation in our bilateral brain-wide recordings indicated no sign of distinct 
subcircuits (Fig. 2 and Extended Data Fig. 3c). Strikingly, PCA dimensionality analysis indicated that a single 
scalar sufficed to describe residual DV(t) co-fluctuations across all recorded regions, in both hemispheres. This 
single scalar accounted for nearly 4 times as much variance as would be accounted for by a second scalar 
(which fell below the noise floor). This result was remarkably close to what would be predicted if all regions 
were participating in a single integrated decision formation computation (Fig. 2i), and it places strong 
constraints on multi-region models of decision-making.   

Turning to decision commitment, the nTc measure7 uses each trial’s sensory stimulus, together with 
spiking data from a population of neurons, to provide an estimate of whether and when decision commitment 
occurred on that trial. Thus, on any given trial, differences in nTc presence or timing estimated using neurons 
from different regions is due only to differences in each region’s neural activity. We found that nTc could be 
detected in the largest proportion of trials (~50%) from the neural activity of primary motor cortex (M1). 
Furthermore, nTc-M1 (i.e. nTc inferred using M1 activity alone) stood out as temporally leading other regions. 
In particular, nTc-M1 led nTc-ADS and nTc-dmFC by ~50ms (Fig. 5f). This contrasted with the decision 
formation phase, during which all three of M1, ADS, and dmFC were found to have roughly temporally 
coincident DV(t) fluctuations (Fig. 3c), and suggests that temporal relationships across regions change over 
different phases of decision-making. We once again used the frozen noise design to examine co-fluctuations 
not due to the stimulus or choice, now examining nTc residuals around the mean with a given stimulus and 
choice. As with DV(t) residuals in decision formation, nTc residuals had substantial magnitude and were 
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significantly correlated across brain regions (Fig. 4k). PCA dimensionality analysis indicated that their 
co-fluctuations could be described by fluctuations in a single scalar, with a second dimension falling below the 
noise floor (Fig. 5d; although the dominance of the first dimension was not as marked as for decision formation 
signals). Overall, these data suggest that a single integrated decision commitment computation is carried out in 
the brain, perhaps initiated in M1, and that this commitment signal then spreads from M1 to other brain 
regions.  

The superior colliculus (SC), which was not recorded here, has been reported to display a neural 
signature of decision commitment that, in contrast to nTc, is overt in the sense of immediately preceding and 
being tightly linked to the subject’s overt decision-reporting motor act3. Determining the nature of the 
relationship between the SC’s overt commitment signature and the brain-wide covert nTc commitment 
signature will be an important topic for future study. 

One of our most striking findings is that nTc, the neurally-inferred estimate of the moment of decision 
commitment on each trial, appears to mark a major and previously unknown state change in decision-related 
activity across the brain. We focused on nTc-M1, since nTc could be most reliably detected in M1 (Fig. 4d). An 
almost ubiquitous observation in perceptual decision-making, across tasks, species, and brain regions, is that 
the accuracy with which neural activity predicts the subject’s choice increases monotonically over time, steadily 
growing as one approaches the moment in which the subject will begin a motor act to report their choice2. In 
the absence of a trial-by-trial internal time marker (such as nTc-M1), studies have time-aligned trials to 
externally determined or observable timepoints, such as the start of the sensory stimulus, or the onset of the 
subject’s decision report. Indeed, aligned to such timepoints our data showed the very same pattern (Fig. 6c). 
However, aligning trials to nTc-M1 revealed something dramatically different: for almost all brain regions, 
choice prediction accuracy increased monotonically before nTc-M1, but abruptly stopped growing and stayed 
at a roughly constant level after it (Fig. 6d). This surprising finding is consistent with decision commitment 
being a unified, brain-wide signal that marks the end of the temporal evolution of the decision variables. Overall 
firing rates did not fall after nTc-M1 (Extended Data Fig. 8a): what changed before versus after nTc-M1 was 
the temporal evolution of the decision-related activity.  

A second measure that was profoundly different before versus after nTc-M1 was the magnitude of 
cross-region co-fluctuations in DV(t) residuals: after nTc-M1, average correlation magnitude fell by a factor of 3 
(Fig. 6j,k). This remarkable drop suggests that upon completion of a unified process of decision formation and 
a transition to a post-commitment state, brain regions stop coordinating their decision-related activity. 
Interestingly, the reduction in co-fluctuation magnitude began approximately 250 ms before nTc-M1. This 
suggests the existence of neural signatures that predict an upcoming decision commitment event even before 
it occurs. An important observation about the state change is that it occurs at a time that is highly variable 
across trials. nTc-M1 is not timelocked to overt external timepoints such the start of the trial, start or end of the 
stimulus, or onset of the subject’s choice-reporting movement (Extended Data Fig. 8b). Consequently, 
analyses of neural data that are timelocked to such external timepoints and are unaware of each trial’s 
commitment time, as most current analyses are, risk blurring data across two very different states. 

We note that this state change strongly resembles what would be expected if brain-wide 
decision-related activity reflected a single, coherent mechanism approximated by bounded diffusion, as 
described by the well-known drift diffusion model (DDM)13,46. Not only do the DV(t)’s from each region plateau 
at nTc-M1, consistent with an absorbing bound being reached simultaneously at that time, but the DV(t)’s 
become more independent across regions around the time of nTc, consistent with a reduction in variability of a 
shared latent variable. Future studies may investigate in greater depth to what degree these resemblances are 
borne out quantitatively. Nonetheless, it is remarkable that a simple one-dimensional behavioral model has 
proved so enduring in offering a useful framework for understanding neural responses, first at the level of 
single neurons16, then at the level of neural populations34–36, and here, at the level of coordinated, brain-wide 
activity. 

If we consider a set of trials with a given sensory stimulus and subject choice, then by construction, 
within- and across-trial fluctuations around the average neural trajectory of that set cannot be explained by 
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changes in the stimulus or choice. Such fluctuations instead appear to be generated internally by the organism. 
A very striking feature of our data was the large magnitude of such internally generated fluctuations. Decision 
variable residual fluctuations had a magnitude comparable to that of the mean trajectory itself (Fig. 2f). 
Similarly, nTc times varied widely across trials, over a range comparable to the duration of the trials (Fig. 4f). 
Strong covariations across regions in these fluctuations confirm that they are not single-region measurement 
noise. They are instead very salient features of neural activity on single trials, as also demonstrated by the 
profound state change we observed around nTc-M1. Previous studies have documented substantial neural 
variability arising from uninstructed movements or during spontaneous behaviors59–61. Our data show that even 
when focusing specifically on task-related neural subspaces, we find that internally-generated, within- and 
across-trial fluctuations are highly prominent features of the data. The extent to which uninstructed movements 
play a part in the organism’s internal generation of brain-wide coordinated variability within task-related 
subspaces remains to be determined.  

Our results highlight how the ongoing shift in systems neuroscience toward brain-wide neural recording 
during complex behavior1,2,5 can be dramatically enhanced if recordings are performed simultaneously, rather 
than serially. Referencing neural signals to external events has given us many fundamental insights. However 
it can make neural population dynamics seem like a calm, stately progression towards logical outcomes (see 
left column of Fig. 2e). In contrast, single trials of multi-neuron, multi-region simultaneous recordings suggest 
something starkly different: task-related neural dynamics appear to be more like a vibrant storm, with highly 
varying, internally-generated signals that have a brain-wide reach (Fig. 2e, right, Fig. 3, and Fig. 4k), and 
abrupt state changes at externally externally unpredictable, internally-generated times (Fig. 6). The fact that 
single trials can be very substantially different from one another, even when identically prepared and resulting 
in the same choice outcome, leads us to postulate that understanding the internally-generated signals and 
events that make single trials so variable is an essential step towards understanding the neural substrates of 
behavior. Such internally-referenced and internally-timed signals require simultaneous recordings to detect 
them and analyze them. We speculate that, powered by ever more readily-accessible large-scale simultaneous 
recording tools, the findings we have described here will be only some of many62,63 internal signals to be 
discovered and deciphered. Such discoveries may lead us to see the vividly dynamic tapestry of neural activity 
as perhaps colored more by the organism’s own internal signals and events than by external stimuli or overt 
motor acts64,65. 
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Methods 

Subjects 
Three adult male Long-Evans rats (Hilltop) were used for the experiments presented in this study. All 

procedures were approved by the Princeton University Institutional Animal Care and Use Committee and were 
carried out in accordance with National Institutes of Health standards. Rats were pair-housed in Technoplast 
cages until their implantation surgery and kept in a 12 hour reversed light-dark cycle. All training and testing 
procedures were performed during the rat’s dark cycle. Rats had restricted access to water such that the water 
consumed daily was at least 3% of their body mass.  

Behavioral task 
Rats performed the behavioral task in custom-made training enclosures (Island Motion, NY) within 

sound- and light-attenuated chambers (IAC Acoustics, Naperville, IL). Each enclosure consisted of three 
straight walls and one curved wall in which three nose ports were embedded (one in the center and one on 
each side). Each nose port contained one light-emitting diode (LED) as well as an infrared (IR) beam to detect 
the entrance of the rat’s nose into the port. A loudspeaker was mounted above each of the side ports and was 
used to present auditory stimuli. Each of the side ports also contained a small metal tube that delivered water 
reward, with the amount of water controlled by valve opening time. 

Rats performed an auditory discrimination task in which optimal performance required the gradual 
accumulation of auditory clicks15. At the start of each trial, rats inserted their nose in the central port and 
maintained this placement for 1.5 s (“fixation period”). After a variable delay of 0.5-1.3 s, two trains of randomly 
timed auditory clicks were presented simultaneously, one from the left and one from the right speaker. 
Regardless of onset time, the click trains terminated at the end of the fixation period, resulting in stimuli whose 
duration varied from 0.2-1 s. The train of clicks from each speaker was generated pseudo-randomly by an 
underlying Poisson process, with different mean rates for each side. The combined mean click rate was fixed 
at 40 Hz, and trial difficulty was manipulated by varying the ratio of the generative click rate between the two 
sides. The generative click rate ratio (𝛾) varied from 39:1 clicks/s (easiest) to 20:20 (most difficult). At the end 
of the fixation period, rats could orient towards the nose port on the side where more clicks were played and 
obtain a water reward.  

Psychometric functions were computed by dividing trials into eight similarly sized groups according to 
the total difference in the right and left clicks, and for each group, computing the fraction of trials ending in a 
right choice. The confidence interval of the fraction of right response was computed using the Clopper-Pearson 
method. Recording sessions were excluded if the rat completed <300 trials or showed a lapse rate  > 8%, (λ)
estimated using the following psychometric model: 
 

 𝑝(𝑔𝑜 𝑅 | 𝑥) =  λ/2 +  (1 − λ) · σ(β(𝑥 − θ))
 

where  is the total difference in the number of right and left clicks,  is the threshold (i.e., point of subjective 𝑥 θ
equality),  is the sensitivity (i.e., steepness of the curve), and  is the logistic (sigmoid) function.  β σ(·)

Frozen noise 
In the Poisson Clicks task, the click trains for each trial depends on that trial’s generative click rate ratio 

(𝛾) and a seed that determines the sample of two pseudorandom variables: the stimulus duration and the 
Poisson processes determining left and right click times. For most sessions, stimulus seeds were unique for 
each trial. For a subset of five sessions across the three animals (“frozen noise” sessions) a small number of 
unique stimulus seeds (9 for each of the 6 values of 𝛾 used) were interleaved throughout the session. Only 
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these sessions contributed to the analyses in Figs. 2, 3, 5 and 6 and example frozen noise sessions were used 
for the schematic panels in Figs. 1i,j and 4j. 

Implant 
Previous methods66–69 have focused on reusability, surrounding each probe with a bulky enclosure from 

which it could be removed at the end of the experiment. Here, we sought instead to maximize probe density 
and flexibility in target selection, forgoing reusability by directly cementing each probe to the skull. Only a small 
probe holder was used, to provide an attachment point for a micromanipulator used to lower the probes into 
the brain. This probe holder had two components: one that is glued permanently to a probe, and another that is 
removed after the probe is anchored to the skull, to reduce the volume and weight of the implant. The 
arrangement of the probes on the skulls of the rats was performed using CAD software, as was the design of 
the probe holder and a “chassis” that surrounded the probes and held the headstages (Extended Data Fig. 
2a-e). The probe holders were 3D printed in-house using the Form 3 SLA printer (Formlabs) in Black V4 resin 
(Formlabs; RS-F2-GPBK-04) and the headstage holder was printed in Tough 1500 (Formlabs; 
RS-F2-TO15-01). CAD files for these components can be found at 
https://github.com/Brody-Lab/uberphys_paper/tree/main/CAD_files.  

After printing the parts, they were visually inspected and sanded to ensure proper mating. The probe 
holder parts were secured using two 4 mm M1.2 screws (McMaster; 96817A746). The headstage holder was 
assembled using 3mm M1 screws (McMaster; 96817A704) and headstages were secured to the headstage 
holder using 4 mm M1.2 screws (McMaster; 96817A746). To secure the probes in the probe holders, each 
probe holder was placed in a stereotaxic cannula holder (Kopf, Tujunga, CA, USA; Model 1766-AP Cannula 
Holder) which was held in place by a vise. The probe was then placed on the probe holder and aligned to the 
axis of the cannula holder. A small amount of thick-viscosity cyanoacrylate glue (Mercury Adhesives) was 
applied to the edges of the probe holder using a small wooden dowel.  

Surgery 
Surgery was performed using similar techniques to those reported previously67, but with several 

important innovations to support the lengthy and invasive nature of the 8-probe implantation. All surgical 
procedures were performed under isoflurane anesthesia (1.5-2%) using standard stereotaxic technique. Rats 
were given an intraperitoneal (IP) injection of ketamine (60 mg/kg), ketofen (5 mg/kg) and Ethiqa XR (0.65 
mg/kg) to assist induction and provide analgesia. To ensure proper hydration throughout the surgery, rats were 
given 3 mL saline subcutaneously after induction and every 3 hours afterward.  

The dorsal skull was exposed by making an incision along the rostral/caudal orientation along the top of 
the head. The skull surface between the lambdoid sutures and 20 mm anterior of the frontonasal suture was 
cleaned and scrubbed. The temporalis muscle was detached from the lateral ridge and retracted to gain 
access to the tail of the striatum. The sites of nine craniotomies, one for the ground cannula (Protech 
International, 22G/5mm), and eight for the Neuropixels 1.0 probes were marked with a sterile pen. The 
craniotomy for the ground had a diameter of approximately two millimeters, and each craniotomy for a 
Neuropixels 1.0 probe had a diameter of 1 mm. The 3D profile of each craniotomy intended for a Neuropixels 
1.0 probes had a conical shape to minimize the amount of dura exposed (to maximize the stability of the 
chronic recording) while maximizing the range of angles through which the dura can be accessed, thereby 
facilitating the subsequent durotomy. After completing the nine craniotomies, they were covered with Gelfoam 
(Pfizer), and then dental cement (C&B Metabond Quick Adhesive Cement System) was applied to the skull 
surface. Durotomies were made using a 27G needle and fine forceps. After the ground cannula was lowered, 
the craniotomy was sealed with a silicone adhesive (KWIK-SIL, World Precision Instrument). The cannula was 
adhered to the skull through a dental composite (Absolute Dentin, Parkell).  
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Neuropixels probes were stereotaxically inserted into the brain using a motorized micromanipulator 
(Narshige, MDS-1) at a speed of ~5 µm/s. Each craniotomy in which a probe was inserted was sealed using a 
silicone gel (Dowsil 3-4680), applied using a micropipette. The Neuropixels probes are bonded to the skull and 
existing fixtures using dental composite.  

After all eight probes had been inserted, the silver wire shorting the ground and reference pad of each 
probe were twisted together and soldered onto the ground cannula. To reinforce the attachment between the 
probes and the skull, liquid dental acrylic was applied to the skull surface. To shield the probes and to mount 
the headstages, a chassis (Extended Data Fig. 2) was attached to the fixtures using dental composite.  
The surgeries were considerably longer than typical rat intracranial implant surgeries, lasting >12 hours. A 
team of five surgeons contributed in rotating shifts. We also provided the rats extended analgesia for two days 
post-op and ad libitum water access for at least one week after surgery. 
 

Site # 1 2 3 4 

Craniotomy coordinates, 
mm relative to Bregma (AP, ML) 

+4.2, 
1.0 

+1.9, 
3.0 

[-2.0 : -2.1], 
[5.0 : 5.2] 

[-5.7 : -6.0], 
3.7 

Insertion angle 
in sagittal plane (deg) 

0 0 [0 : 5] [0 : 5] 

Insertion angle 
in coronal plane (deg) -10 -10 5 0 

Insertion Depth (mm) [3.9 : 4.9] [7.4 : 7.9] [6.8 : 7.6] [7.4 : 7.9] 

Regions targeted dmFC, mPFC M1, ADS, NAc S1, TS, GP, 
BLA, Pir 

V1, HPC, 
DS, MGB, 
SBN, HPC, 

SN 
 
Table 1. Recording targets 
Four insertion targets were used, bilaterally in each subject. Probes were sometimes angled in either or both the sagittal 
and coronal plane, both to accommodate multiple probes on the subject’s head and to target specific combinations of 
brain regions. A positive angle in the sagittal plane indicates that the probe tip was more anterior than the probe base. A 
positive angle in the coronal plane indicates the probe tip was more lateral than the probe base. To avoid blood vessels 
and collisions between probes, some variability in coordinates across subjects was required. In these cases, the range of 
coordinates is indicated. 

 

Electrophysiological recording 
Neural activity was recorded using chronically implanted Neuropixels 1.0 probes that were permanently 

affixed to the skull using custom-designed 3D-printed probe holders described above.  We used acquisition 
hardware from NI (a PXIe-1071 chassis) in conjunction with SpikeGLX software 
(https://github.com/billkarsh/SpikeGLX) to acquire the data. The reference selected for each probe was a silver 
wire shorted to the ground wire and penetrating the olfactory bulb. The amplifier gain used during recording 
was 500. Spikes were sorted offline using Kilosort270, using default parameters and without manual curation. In 
each of three animals, probes bilaterally targeted one of four locations described in detail in Table 1. We 
excluded 3 sessions from the rat A327 due to an error in specifying the electrodes to be recorded. 

28 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2025. ; https://doi.org/10.1101/2024.08.21.609044doi: bioRxiv preprint 

https://paperpile.com/c/x7lBi4/bnqPH
https://doi.org/10.1101/2024.08.21.609044
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Histology 
Rats were transcardially perfused with 10% formalin under anesthesia with 0.4 mL ketamine (100 

mg/ml) and 0.2 mL xylazine (100 mg/ml) IP. Brains were cleared using modified uDisco, volumetrically imaged 
using lightsheet microscopy, and aligned to the Princeton RAtlas19. These methods are described in detail 
elsewhere19. 

While the Princeton RAtlas provides a useful tool for visualizing brains in a common coordinate space, 
adding well validated region annotations to the RAtlas remains a work in progress. Therefore, to assign 
recorded units to brain regions, we used the following procedure. Using the BigDataViewer71 Plugin for Fiji72, 
we dynamically resliced the lightsheet volumes to obtain virtual slices that best visualized each individual probe 
track. These virtual slices were then segmented into brain regions by visual comparison to the Paxinos and 
Watson rat atlas. The recording sites on each probe were then assigned to a position within the virtual slice, by 
converting from image pixels to physical distance given the insertion depth of each probe. We found we could 
more accurately estimate the insertion depth of each probe from electrophysiology rather than by using the 
nominal insertion depth recorded during surgery. The electrophysiological estimate was determined by the 
most superficial channel on each probe at which multi-unit activity could no longer be clearly observed. 

Neuronal selection 
Units were only included for analysis if they exceeded predefined thresholds for a number of quality 

metrics based on waveform shape. These thresholds are defined in Table 2 below, and were designed to 
exclude units that were a) not of biological origin, i.e. noise artifacts; and 2) not of somatic origin, since axonal 
spikes could be generated by fibers of passage. These criteria are highly similar to those recently proposed by 
another group to exclude artifacts and non-somatic units from silicon probe recordings73. In addition, for 
decoding analyses and estimation of decision variables, units were only included if they fired at least 1 spike 
on at least half of trials (i.e. whose “presence ratio” exceeded 0.5). Approximately 65% of units found by 
Kilosort2 were included given these criteria. Note that no criteria were applied to exclude multi-units. 
Additionally, because multiple sessions were recorded from the same animals, the same neurons might have 
been sampled across days. 
 

Quality metric Description Allowed values 

Spatial spread Spatial decay constant of an exponential fit to the 
waveform energy as a function of distance to the 
peak site 

<150 μm 

Peak width Width of main deflection at half height <1 ms 

Peak-trough width Time from trough to peak <1 ms 

Upward-going spike Has an upward-going peak deflection FALSE 

uVpp Peak-to-peak voltage >50 μV 

 
Table 2. Waveform-shape-based unit inclusion criteria.  
Where applicable, metrics are defined for the average waveform on the main channel (i.e. the channel for which the unit 
had the largest peak-to-peak voltage). 
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Neural decoding of choice and calculation of “decision variables”  
We used logistic regression to decode choice from population firing rates.  Neuronal firing rates were 

obtained by convolving spike times with a 50 ms s.d. symmetric Gaussian smoothing filter and sampled at 50 
ms intervals. A separate logistic regression model was fit to each 50 ms sample. The model probability of a 
rightward choice at a given time point t on trial i was , where  is the sigmoidal logistic 𝑝

𝑡,𝑖
(𝑅)  =  𝑓(𝑋

𝑡,𝑖
β

𝑡
+ α

𝑡
) 𝑓

function,  is the vector of neuronal firing rates for time point t on trial i,  is the vector of weights for time 𝑋
𝑡,𝑖

β
𝑡

point t, and  is a model constant for time point t. The subject’s choice on trial i is modeled as α
𝑡

, where  corresponds to a rightward choice. and  are the model parameters, 𝐶
𝑖
~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝

𝑡,𝑖
(𝑅)) 𝐶 = 1 β

𝑡
α

𝑡

shared across trials and chosen to maximize the log-likelihood of the subject’s choices: i.e.
 We used 10-fold stratified cross-validation within sessions to assess model  𝑎𝑟𝑔𝑚𝑎𝑥 Σ

𝑖
𝑙𝑜𝑔 𝑝(𝐶

𝑖
|𝑝

𝑡,𝑖
(𝑅)) .

performance as well as to identify the optimal L1 regularization hyperparameter for .  The “decision variable” β
𝑡

for a given time point and trial  was defined as the linear predictor , which is equivalent to the 𝐷𝑉
𝑡,𝑖

𝑋
𝑡,𝑖

β
𝑡

+ α
𝑡

log-odds of , i.e.  : 𝑝
𝑡,𝑖

(𝑅) 𝑙𝑜𝑔 ( 𝑝
𝑡,𝑖

(𝑅)/𝑝
𝑡,𝑖

(𝐿) )

 
 
To ease comparisons of DVs across timepoints within a trial, we used a constant value of the L1 regularization 
hyperparameter across timepoints, obtained as the geometric mean of the hyperparameters identified through 
cross-validation at each timepoint.  Choice prediction accuracy was calculated for each session using the 
“balanced accuracy”. The standard or unbalanced choice prediction accuracy (CPA) across a set of n trials for 
time point t can be given as: 

  𝐶𝑃𝐴
𝑡

=  1
𝑛

𝑖=1

𝑛

∑  ∆(𝐷𝑉
𝑡,𝑖

 , 𝐶
𝑖
)

where  is an indicator function that equals 1 if  and 0 otherwise.  The balanced accuracy is ∆ 𝑠𝑖𝑔𝑛(𝐷𝑉
𝑡,𝑖

) = 𝐶
𝑖

the average of the unbalanced accuracy computed separately for left and right choice trials. This removes 
upward bias associated with an uneven distribution of choices. To fit the decoding models, we relied on the 
Glmnet74 package in MATLAB R2024a (Mathworks, MA, USA).  
 

Neural decoding of momentary evidence and calculation of “momentary evidence variables” 
We used linear regression to decode momentary evidence from population firing rates (Extended Data 

Fig. 5), using a very similar procedure to decoding of choice. Neuronal firing rates were obtained by convolving 
spike times with a 50 ms s.d. symmetric Gaussian smoothing filter and sampled at 100 ms intervals. 
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Momentary evidence was defined as the difference in right versus left clicks within a 100 ms window before the 
time of the firing rate was sampled. A separate regression model was fit to each 100 ms sample. The model 
prediction of momentary evidence at a given time point t on trial i was , and we refer to 𝑒

𝑡,𝑖
(𝑅)  =  𝑋

𝑡,𝑖
β

𝑡
+ α

𝑡
 

this as the “momentary evidence variable” (MEV), and is analogous to the DV in the choice decoding model. It 
is a 1D summary of the neural population’s estimate of the momentary stimulus evidence. The model 
parameters were chosen to maximize the squared error of the momentary evidence estimates. As with choice 
decoding, 10-fold stratified cross-validation within sessions was used to assess model performance as well as 
to identify the optimal L1 regularization hyperparameter for . To fit the decoding models, we again relied on β
the Glmnet74 package in MATLAB R2024a (Mathworks, MA, USA).  

Calculating DV Residual Correlations 
DV residual correlations were calculated as the Pearson correlation across trials and time points 

between the DVs estimated from different brain regions. To estimate the component of these correlations due 
to shared coding for stimulus and choice, we used a trial-shuffling procedure as follows (and as illustrated in 
Extended Data Fig. 11). For one of the two sets of DVs (i.e. for those corresponding to one of the pair of 
regions) we randomly permuted trial identities while preserving stimulus seed and the subject’s choice. We 
performed this permutation 50 times, each time recalculating the DV correlations, to generate a shuffled 
distribution of DV correlations for which simultaneity between the two sets of DVs had been abolished but for 
which stimulus seed and choice was identical. Then the mean of this shuffle distribution was subtracted from 
the unshuffled DV correlation. Unless otherwise stated, this shuffle-corrected value is what is reported 
throughout the paper. This procedure was also used for shuffle-correcting correlations between the decoded 
momentary evidence and between mean firing rates reported in Extended Data Fig. 5. We note that, unless 
otherwise stated (as in Fig. 6), DV residual correlations were only shown using time points before nTc-M1 on 
each trial, since we observed a dramatic reduction in coordination of the DV residuals after that time point. 

DV residual correlations were also calculated as a function of different lags between pairs of regions 
(i.e. DV residual cross-correlograms). The peak lag was calculated simply as the lag that produces the 
maximum value. A bootstrap across trials was used to assess the uncertainty of the peak lag for each pair. To 
calculate the mean peak lag of a given region relative to all others, a weighted average was used that factored 
in this uncertainty. The weights were proportional to the inverse of the bootstrap s.e.  

Assessing Dimensionality of DV Residuals 
 

To calculate DV residuals, for each region, we separated trials into groups with identical click trains 
(frozen noise seed) and behavioral choices, computed the mean DV within each group, and subtracted it from 
the corresponding trials. We used principal components analysis (PCA) to assess the dimensionality of the DV 
residuals across regions. To do this, we define a matrix  where each column corresponds to the DV residual 𝑋
for a single region in each hemisphere (i.e., a feature) and each row corresponds to a single time point in a trial 
(i.e., a sample). We concatenated time points across trials within a session, and centered the data. PCA 
transforms the coordinates of  such that the axes are ordered by maximum variance explained. The principal 𝑋
component scores (i.e. the coordinates of the original data in the transformed space) are given by . 𝑇 = 𝑋𝑊

The columns of  are equivalent to the eigenvectors of . The variance of  explained by the  principal 𝑊 𝑋𝑇𝑋 𝑋 𝑘𝑡ℎ

component is equal to , where  is the  eigenvalue of . The loadings  are given by the columns λ
𝑘
 / Σ

𝑘
λ λ

𝑘
𝑘𝑡ℎ 𝑋𝑇𝑋 𝐿

of  scaled by the square root of the corresponding eigenvalues (i.e. , where  is the diagonal matrix 𝑊 𝐿 = 𝑊Λ Λ
of eigenvalues). Elements of  give the cross-covariance of the activity of each region with its projection onto 𝐿
each PC, providing a measure of pairwise alignment between the regions and the PCs. 
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To generate predictions for the PCA dimensionality analysis under assumptions of different numbers of 
latent decision processes, we used a set of shuffling procedures. To generate predictions for a single latent 
decision process, we shuffled the anatomical identity of each cell. This creates “pseudo-regions” of the same 
size as the original populations recorded in each region, but containing cells randomly sampled from all 
recorded regions. We then obtained DV residuals from these pseudo-regions, and performed PCA as 
described above. This shuffling procedure tests the idea that the decision-related activity in each region are 
i.i.d samples from the same underlying distribution. 

To generate predictions for the PCA results assuming complete independence across regions, we 
randomly shuffled time points of  separately for each region (columns of ). To generate predictions assuming 𝑋 𝑋
two independent decision processes, we first randomly divided regions (columns of ) into two groups and 𝑋
randomly shuffled time points of each group. In this way, temporal alignment was abolished between groups 
but preserved within groups. These shuffling procedures were applied many times to estimate shuffle-based 
distributions which were then further sampled as part of the hierarchical bootstrap across sessions used to 
generate confidence intervals in the plots shown in Fig. 2. 

We note that the PCA dimensionality described above was performed only on time points before 
nTc-M1 on each trial, since we observed a dramatic reduction in coordination of the DV residuals after that time 
point. 

 

Multi-mode drift-diffusion model (MMDDM) 
A detailed description of the multi-mode drift-diffusion model (MMDDM) can be found in Ref.7. Briefly, 

MMDDM consists of a dynamic model governing the time evolution of a 1-dimensional latent variable and 
measurement models specifying the conditional distributions of the observations (spike counts and behavioral 
choice) given the value of the latent variable.  

In the dynamic model, when the value of the latent variable (z) is not at either absorbing bound -B or B, 
its value at each time step t depends on the momentary input (u), which is corrupted by multiplicative noise of 
variance 𝜎s

2, and additive noise ε: 
 

 𝑧(𝑡 + 1) = 𝑧(𝑡) +  𝑢(𝑡) +  ϵ
 

When z reaches either bound, it remains at the bound. The dynamic model has three free parameters, the 
bound height B=(10, 20), variance of the multiplicative noise 𝜎s

2=(0.1, 20) and the mean of the initial state of 
the latent variable 𝜇0=(-5, 5). We chose to fit the input-related noise (rather than other sources of noise) 
because previous work suggests it to be the dominant source of noise in our task15. The additive noise on each 
time step is an i.i.d Gaussian with variance Δt, which is the time step Δt=0.01 s. 
​ The measurement model of the behavioral choice depends on only the sign of the latent variable z on 
the last time step of each trial (positive indicating rightward). There is no free parameter in the measurement 
model of the choice.  
The measurement model of the spike count of neuron n at time step t is given by 
 

  𝑦(𝑛, 𝑡) | 𝑧(𝑡) ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛( λ(𝑛, 𝑡) * ∆𝑡 )
 
The firing rate λ, which has the unit of spikes/s, is  
 
​ ​   λ(𝑛, 𝑡)  | 𝑧(𝑡)  =  ℎ{ 𝑤(𝑛) ·  𝑧(𝑡) +  𝑏(𝑛, 𝑡) }

 
where h is the softplus rectifying nonlinearity, w the neuron’s encoding weight of z, and b a time-varying 
baseline input that is independent of z, the left or right clicks, or the animal choice. The baseline b accounts for 
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time-varying influences of neural activity aligned to two events in the trial, stimulus onset and movement onset 
and slow drifts over minutes across a session. The measurement model of each neuron has 19 free 
parameters.  

The parameters of the dynamic model and the measurement models are learned simultaneously. The 
gradient of the log-likelihood of the model has a closed-form expression and is used to optimize the 
parameters using the L-BFGS algorithm. Only responsive (> 2 hz) and choice-selective neurons (among the 
subset selected under the criteria described in “Neuronal selection”) were included in the fitting of MMDDM. 
Choice selectivity was computed using an ideal observer analysis, the receiver operating characteristic (ROC), 
categorizing between left and right choices using the spike counts during the first 0.5 s from the stimulus onset 
on each trial (excluding trials ending before 0.5 after stimulus onset). Choice selectivity is defined as |area 
under the ROC - 0.5| > 2-5 (median choice selectivity among responsive neurons=0.0315). For each session, a 
single model was fit to all neurons combined across brain regions, rather than fitting separate models to 
individual regions. Using the model parameters (θ) optimized from this joint fit, we then computed separate 
posterior probability distributions based on spikes from individual regions:  

 
 𝑝(𝑧{𝑡} | θ,  𝑐𝑙𝑖𝑐𝑘𝑠,  𝑀1 𝑠𝑝𝑖𝑘𝑒𝑠) =  𝑝(𝑧{𝑡} | θ,  𝑐𝑙𝑖𝑐𝑘𝑠)  𝑝(𝑀1 𝑠𝑝𝑖𝑘𝑒𝑠 | 𝑧{𝑡}) / 𝑝(𝑀1 𝑠𝑝𝑖𝑘𝑒𝑠) 

 𝑝(𝑧{𝑡} | θ,  𝑐𝑙𝑖𝑐𝑘𝑠,  𝐴𝐷𝑆 𝑠𝑝𝑖𝑘𝑒𝑠) =  𝑝(𝑧{𝑡} | θ,  𝑐𝑙𝑖𝑐𝑘𝑠) 𝑝(𝐴𝐷𝑆 𝑠𝑝𝑖𝑘𝑒𝑠 | 𝑧{𝑡}) / 𝑝(𝐴𝐷𝑆 𝑠𝑝𝑖𝑘𝑒𝑠) 
… 

 
Each region-specific posterior distribution depends on the evidence provided by the spikes from that region 
alone. The posterior was computed using spikes both before and after that time step (i.e., it is the smoothed, 
not filtered, posterior).  
​ After fitting MMDDM, we simulated spike trains by drawing samples from the latent process on the 
same set of trials used to fit the model. Each simulated trial used the original click train of the corresponding 
real trial. For each trial, we began by computing the prior distribution over the latent state at the first time step, 

, and drew a sample from this distribution. We then computed the conditional prior for the next 𝑝(𝑧{1})  𝑧{1}

time step,  , where  is the click input at time 1, and drew a sample . This process 𝑝(𝑧{2} | 𝑧{1} ,  𝑢{1}) 𝑢{1} 𝑧{2}

was repeated sequentially to generate a full sample path  from the latent process for the  𝑧{1} ,  𝑧{2},  ...  𝑧{𝑇} 𝑇

time steps in the trial. Given this latent trajectory, we computed the firing rate of neuron  on time  is computed 𝑛 𝑡

as  and drew a spike count from a Poisson distribution with rate  λ(𝑛, 𝑡)  | 𝑧(𝑡)  =  ℎ{ 𝑤(𝑛) ·  𝑧(𝑡) +  𝑏(𝑛, 𝑡) }

. λ(𝑛, 𝑡)

Neurally inferred time of commitment (nTc) 
The time of decision commitment is defined as the first moment when the posterior probability of the 

latent variable in MMDDM being either bound exceeds 0.95 and remains above 0.95 for the remainder of the 
trial.  

Psychophysical kernel aligned to nTc  
The psychophysical kernel quantifies the weight of the auditory clicks at each moment relative to the 

neurally estimated time of decision commitment (nTc) on the animal’s upcoming choice. The kernel was 
estimated using a logistic model that regresses the animal’s choice against a constant term, the generative 
(i.e., experimentally specified) difference between the right and left (L) clicks on each trial (λΔt), and the 
deviation of the actual difference between (R) and left (L) click times from the generative 
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 (𝑐ℎ𝑜𝑖𝑐𝑒 | 𝑅, 𝐿, λ∆𝑡) ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖( 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐{𝑥} )
 

 𝑥 = 𝑤
𝑏

+ 𝑤
λ∆𝑡

 λ∆𝑡 +  
𝑡
∑ 𝑤(𝑡) [𝑅(𝑡) − 𝐿(𝑡) −  λ∆𝑡] 

The psychophysical kernel is specified by the time-varying weight of of the deviation between the generative 
and actual difference between right and left clicks is specified as also a logistic function 
 

 𝑤(𝑡) =  𝑎 +  𝑏/(1 + 𝑒𝑥𝑝(− 𝑘[𝑡 − 𝑡
0
])

 
where the parameter a is the weight at a time well before nTc, the parameter b is the weight at a time well after 
the nTc, k the sharpness of the change in the kernel, and t0 the point in the kernel with the steep slope. The 
model has six parameters wb, wλΔt, a, b, k, and t0. The latter four parameters a, b, k, and t0 specify the 
psychophysical kernel. We used the same time step duration Δt=0.01 s as in the multi-mode drift-diffusion 
model (MMDDM). Trials for which clicks occurred at least 0.15s before and also 0.15s after the nTc were 
included for analysis. The shuffling procedure involves randomly permuting the time of the clicks on each trial 
and does not change the behavioral choice, the time of decision commitment, the generative right-minus-left 
click input, or the number of trials. 
 

Assessing Dimensionality of nTc residuals 
 

To calculate nTc residuals, for each region, we separated trials into groups with identical click trains 
(frozen noise seed) and behavioral choices, computed the mean nTc within each group, and subtracted it from 
the corresponding trials. We define a matrix  where each column corresponds to the nTc residuals for a single 𝑋
region in each hemisphere (i.e., a feature) and each row corresponds to a single trial (i.e., a sample). Because 
a value for nTc was not detected from every region on every trial,  has many missing elements. We therefore 𝑋
used probabilistic principal components analysis75 (PPCA) instead of PCA, for its ability to gracefully handle 

missing data.  PPCA models the data as , where  is a matrix of orthonormal coefficients (as in 𝑋𝑇 =  𝑊𝑇𝑇 + ε 𝑊
PCA),  are the latent factors (analogous to the scores in PCA), and ε=v∗I(k) is an isotropic error term that 𝑇
accounts for unexplained variability in the data. For ε to be non-zero,  must have rank k that is lower than the 𝑇
original data. Otherwise, PPCA simply reduces to regular PCA.  Under the model specified by PPCA, 

). The parameters are estimated using EM. We used the PPCA function in 𝑋𝑇~ 𝑁(0,  𝑊 * 𝑊𝑇 + 𝑣∗𝐼(𝑘))
MATLAB R2024a (Mathworks, MA, USA) to fit the model to the data. Principal component variances and 
loadings are computed in the same way as described above for PCA applied to the DV residuals, except in this 
case we use the eigenvalues of the fitted model estimate of . 𝑋

To generate predictions for the dimensionality of the brain-wide nTc residuals under assumptions of 
different numbers of latent decision processes, we used simulations from MMDDM (see “Multi-mode 
drift-diffusion model (MMDDM)” in Methods) and applied the same procedure for computing nTc from the 
simulated spike trains as for the real data. Simulations were run on the same set of trials used to fit the model, 
preserving both the number of trials and the click train stimuli.  

To model a single latent process, we simulated spike trains across all regions using a single run of the 
MMDDM. To model two latent processes, we simulated two independent runs for each trial and randomly 
assigned each brain region to use either the first or the second run consistently across all trials (i.e., a region 
assigned to the first run uses only latent trajectories from that run on every trial). To model fully independent 
latent processes for each region, MMDDM simulations were computationally impractical, since this would 
require simulating as many independent runs as brain regions. Instead, we used the same shuffling approach 
used for the DV residuals, randomly shuffling time points of  separately for each region (columns of ). 𝑋 𝑋
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Quantification of plateau in decision-related activity at decision commitment 
To quantify the rise and then abrupt plateau of the trial-average DVs aligned to nTc-M1 (Fig. 6C), we fit 

the trial-average DVs for each region on each session using piecewise linear regression using two segments 
(i.e. a bilinear model). Specifically, a value of the mean DV at time  was modeled as: 𝑡

  𝐷𝑉(𝑡) =  𝑎
1
(𝑡 − 𝑡

𝑜
) +  𝑐,  𝑓𝑜𝑟 𝑡 < 𝑡

𝑜

  𝐷𝑉(𝑡) =  𝑎
2
(𝑡 − 𝑡

𝑜
) +  𝑐,  𝑓𝑜𝑟 𝑡 > 𝑡

𝑜

Where  is the time of the breakpoint between the two line segments,  and  are the slopes of the 𝑡
𝑜

𝑎
1

𝑎
2

two line segments and  is a model constant, in this formulation parameterized as the predicted value of  𝑐 𝐷𝑉(𝑡
𝑜
)

(the mean DV at the breakpoint). The four model parameters ( , , , and ) were found that minimized the 𝑡
𝑜

𝑎
1

𝑎
2

𝑐

mean squared error, using the lsqcurvefit function in MATLAB R2024a (Mathworks, MA, USA). 

Statistical tests 
Unless otherwise stated, error bars and p-values are calculated non-parametrically, using bootstrap 

resampling either across trials or hierarchically across sessions. All p-values were computed using two-sided 
tests and not adjusted for multiple comparisons, unless otherwise specifically stated. 
​ To test whether nTc-M1 was more likely or occurred earlier on trials with stronger evidence 
([#R-#L]/[#R+#L]), we performed separate regression analyses restricted to the tertile of trials with longest 
stimulus durations. Logistic regression was used to model the binary outcome of whether nTc-M1 occurred on 
a given trial as a function of evidence strength, and for trials where it occurred, linear regression was used to 
model the latency of nTc-M1 as a function of evidence strength. Each model included only evidence strength 
and a constant term and no additional covariates. 
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