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Abstract

Modern DNA-based biodiversity surveys result in massive-scale data, including up to millions of species
—of which most are rare. Making the most of such data for inference and prediction requires modelling
approaches that can relate species occurrences to environmental and spatial predictors, while
incorporating information about their taxonomic or phylogenetic placement. Even if the scalability of
joint species distribution models to large communities has greatly advanced, incorporating hundreds
of thousands of species has not been feasible to date, leading to compromised analyses. Here we
present a novel “common to rare transfer learning” approach (CORAL), based on borrowing
information from the common species to enable statistically and computationally efficient modelling
of both common and rare species. We illustrate that CORAL leads to much improved prediction and
inference in the context of DNA metabarcoding data from Madagascar, comprising 255,188 arthropod
species detected in 2874 samples.
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MAIN TEXT

Earth is home to several millions of species'. Among these, the majority are unknown? and rare®.
Recent innovations in sensor technologies are now providing unprecedented capacity to record
patterns and changes in the abundance and distribution of all kinds of taxa, from the named to the
previously unnamed and from the rare to the common. These technologies include DNA-based
monitoring, passive acoustic monitoring, and visual sensors*°. By allowing the efficient recording of
thousands to hundreds of thousands of species in time and space, the accumulation of high-
dimensional “novel community data” is transforming our access to information on species
distributions and abundances*. As a particularly exciting development, the emergence of novel
community data allows us to target the speciose groups accounting for the main part of global
biodiversity?. Where species records to date have been massively biased towards vertebrates, one of
the least species-rich taxa3, recent methods are now making hyper-diverse taxa such as arthropods
and fungi arguably easier to sample than vertebrates and plants. As these speciose taxa can be mass-
sampled and mass-identified, we can derive automated characterizations of what taxa occur where®
7. Nonetheless, the recent revolution in the generation of data is awaiting a matching insurgence of
novel methods to analyze the data.

While most species on Earth are rare, these are the species that we know least about, partially because
rare species are the most challenging to model®. Paradoxically, the rare species also encompass the
taxa in greatest need of protection, and thus the very species for which information on their
distributions and ecological requirements is most critical (‘the rare species paradox’®). Understanding
biodiversity change necessitates models which can relate species occurrences to environmental, biotic,
and spatial predictors, and which can predict changes in species communities with changes in the state
of these drivers®. Hence, the need for predictive tools for rare species has been repeatedly
highlighted'!™**, However, the inherent rarity of most species results in highly skewed species-
abundance distributions, where a few species are common whereas most species are present at few
sites in low numbers. Typical approaches to species-level modelling will then impose a cut-off on
species occurrences or abundances!>!®
insufficient for any quantitative inference regarding the drivers of their distribution. In a world where

— arguing that for the rarest species, the data are simply

rare is common?, this can and will typically amount to rejecting most data, and all the information
there then remains hidden. To make the most of increasingly available data, we need modelling
approaches which can fully exploit such data.

With species distribution models (SDMs), rare species may be modelled through ensemble predictions
from multiple small models, each of which contains just a few predictors to avoid overfitting®"/8,
Because closely related species are generally ecologically more similar than distantly related
species¥?, phylogenetic information may be used to infer the distributions of rare species?*™, Joint
species distribution models (JSDM)?* allow levelling up by modelling large numbers of species
simultaneously. This enables efficient borrowing of information across species through their shared
responses to environmental variation?’. Furthermore, when data on species phylogenies and/or traits
are available, information can be borrowed especially across similar species?®?. This can lead to

improved predictions, especially for rare species®.

The high-dimensional, and often extremely sparse, nature of species occurrence data, compounded
with spatiotemporal and phylogenetic dependencies, presents major challenges for statistical analyses
and computation. High performance computing can scale some existing JSDMs to thousands of
species®32, Two-stage methods, which make small concessions by cutting dependence between
species via approximate likelihoods®*34, can scale to tens of thousands of species while still retaining
reasonable uncertainty estimates. Unfortunately, these approaches do not yet scale to the millions of
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species that comprise the Earth’s biodiversity!. What is more, they may perform poorly for extremely
sparse rare species, by compromising model structures in the interest of gaining computational
advantage.

Results
The Hierarchical Modelling of Species Communities framework

In this paper, we apply Bayesian transfer learning® to develop the “common to rare transfer learning
approach” (CORAL) (Fig. 1). Transfer learning refers to a broad class of multi-stage analysis methods
which leverage information from a pre-trained model to improve performance for a new but related
inference task. In a Bayesian context, this is often achieved by using the posterior model from one
dataset to define an intelligent prior model for another dataset. Sharing information between models
can improve parameter estimates and significantly boost out-of-sample performance, particularly
when studying new, smaller datasets. Our transfer learning method builds on the Hierarchical
Modelling of Species Communities (HMSC)%2°3 approach to joint species distribution modelling
(JSDM)?. The core idea of CORAL is very general and will thus apply to many other JSDM approaches,
too. What makes its application in the HMSC context so intuitive is that HMSC models species
responses to predictors as a function of species traits and phylogenetic relationships. This feature can
be efficiently harnessed for transfer learning.

In brief, HMSC is a multivariate generalized linear model fitted in a Bayesian framework. As a response
it considers a matrix of species occurrences or abundances. We exemplify our approach with presence-
absence data, denoting by y;; = 1 if species j (with j = 1,...,ny) is present in sample i (with { =
1,..,ny) and y;; = 0if this is not the case. Presence-absence data are modelled in HMSC with probit
regression: Pr(yij = 1) = ®(L;;), where @(.) is the standard normal cumulative distribution
function and L;; is the linear predictor modelled as:

Nne nf
Lij = Zk XirBrj + Zk NikArj, (1)

where x;;, are measured predictors, 7;, are latent predictors, and By and A;; are regression
coefficients quantifying responses of the species to the measured and the latent predictors. The latent
features induce within-sample dependence across species; these features may encode characteristics
of the habitat, the environment and the spatio-temporal setting not captured by the x;;s. HMSC uses
a Bayesian hierarchical model to (a) automatically infer how many latent features ns are needed and
(b) to borrow information across species in inferring the S ;s. For (b) HMSC estimates to what degree
taxonomically or phylogenetically related species, or species with similar traits, show similar responses
Pk to environmental variation through the multivariate normal distribution'®?®

vec(B)~N(u,P Q V). 2

Here, B is the matrix of the regression parameters By ; of the p species, p is the average response, P =
pC + (1— p)InS is a weighted average between the phylogenetic or taxonomic correlation matrix C
and the identity matrix I corresponding to unrelated species, 0 < p < 1 is the strength of the
phylogenetic signal, and V is the variance-covariance matrix of species-specific deviations from the
average u. The average response u is further modelled as u = vec(I‘TT), where T is a matrix of species
traits, I' are the estimated responses of the traits to environmental variation, and the superscript T
denotes the matrix transpose. With Eq. 2, HMSC learns if and to what extent related species, or species
with similar traits, show similar environmental responses. This allows for effective borrowing of
information among species; for example, improving parameter estimation for rare species, for which


https://doi.org/10.1101/2024.08.21.608960
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.21.608960; this version posted March 6, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

it would be difficult to obtain accurate estimates if considering the data in isolation from the
community context®®. As a result, HMSC shows higher predictive performance compared to
approaches that do not enable such borrowing of information®.

A CORAL: Common to Rare Transfer Learning
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Figure 1. (A) High-level description of CORAL considering its application to Malagasy arthropods and
(B) generic CORAL model structure implemented in the R package provided with this paper. (A) CORAL
is based on fitting a backbone JSDM model to a subset of the most common species in the data and
then borrowing information from this backbone to model the rare species. The backbone model learns
about latent factors representing relevant missing environmental predictors, as well as about the
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species responses to both the measured and the latent predictors. The backbone model provides an
informative prior distribution for each rare species. This is particularly efficient when we have access
to phylogenetic or trait information, allowing information to be borrowed especially from common
species closely related to the rare species, or species sharing similar traits with the rare species. As we
show with a case study targeting a quarter million rare Malagasy arthropods, such informative prior
distributions greatly improve the modelling of the rare species, both in terms of inference and
prediction. (B) CORAL simplifies a fully Bayesian JDSM by replacing latent factors with a pre-estimated
point estimate and by accounting for dependence from common to rare species — but not for
dependence from rare to common species. For a full explanation of the data (orange squares) and the
parameters (blue squares), see text and methods. The first panel shows the parameter and data
dependencies used to fit HMSC to the common species only; this estimates the latent factors as a
parameter (1 in blue square), a point estimate of which is considered as data (1 in orange square) in a
second HMSC model fit to the common species. The second HMSC model, called the backbone model,
has fewer parameters, significantly simplifying inference. Finally, parameters from the backbone model
are used to define independent rare species models leveraging information from common species. To
enable easy application of the CORAL approach to high-dimensional biodiversity data, we provide an
R package for fitting these models, visualizing the results, and generating predictions.

Deriving conditional priors for rare species by borrowing information from common species

Our key idea is that even if it is not feasible to include 100,000+ species in a JSDM model such as HMSC,
one can still borrow information from the common species. The structure of our approach follows
naturally from three assumptions, namely that (1) users have enough data to perform high-quality
inference on common species without leveraging rare species data, (2) information from these
common species is relevant for modelling rare species, and (3) rare species may be viewed as
conditionally independent given the common species data and measured sample covariates. This
suggests a two-stage analysis which first studies the common species jointly and then studies each
rare species independently using the results of the common species analysis.

The first stage of CORAL is to fit an HMSC to the common species to pre-estimate latent factors (Fig.
1). From this analysis we obtain a point estimate of the latent features n; = (9;1, ...,r)inf), which
provides key information not captured in x; = (X1, ..., Xi,) about environmental and habitat
conditions and the overall biological community represented in sample i. We define a new covariate

vector X; = (iil, ...,iinr)T by concatenating x; and 1; to be used as a fixed predictor in the second
stage of CORAL, which fits HMSC to the common species to provide a backbone model (Fig. 1). The
third stage fits CORAL models (independent Bayesian probit models) to each rare species:
Pr(y, = 1) = ®(x! B,), forr € J, with J, < {1, ..., p} the set of rare species (Fig. 1). To reduce mean
square error in inferring 8, for j € J,, we construct a prior which adaptively shrinks towards the
common species coefficients accounting for taxonomic/phylogenetic similarity.

Our prior is motivated by the prior for fixed-effects coefficients in HMSC. To simplify inference and
learn relevant hyper-parameters, we first re-run HMSC with the expanded covariate vector X;. Under
HMSC, the prior conditional distribution of the rare species coefficients given the common species
coefficients is

.Br~N(mr'Sr)- 3)

Here, the mean is given by

m, = Tt + [(pc)) (P ® In,)|(vec(B) — ) (4)
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where P = pC + (1 — p)I,. The variance-covariance matrix is S = k,.V, where the variance scaling
factor k, is given by

k., =1-pcfPtc,.. (5

The vector ¢, encodes relatedness between a rare species r € J, and all the ng species in the
backbone analysis and t,. is the trait vector for this rare species. As HMSC is fitted to data with Bayesian
inference, parameter uncertainty can be accounted for by defining the prior as a mixture of
multivariate normal distributions (each defined by Egs. 3-5) over the posterior samples. To achieve a
simple functional form for the prior, we approximated the mixture by a single multivariate normal
distribution, the mean and variance-covariance matrix of which we set equal to those of the mixture
(see Methods).

We refer to the above approach as Common-to-rare transfer learning (CORAL). Figure 1 shows the full
mathematical structure of this approach, with each box corresponding to a separate stage of CORAL
inference. This contrasts with the (computationally intractable) joint modelling approach, which would
estimate all parameters for all species simultaneously. CORAL is likely to perform well when
assumptions (1)-(3) hold: that is, when there is high-quality common species data that spans the
phylogenetic tree and when the backbone model estimates that species responses are
phylogenetically structured and/or influenced by species traits. To quantify the benefits of CORAL, we
compare its performance to that of a baseline model that does not benefit from the backbone analysis.
In other words, for the baseline model we fit Pr(y;,. = 1) = ®(x] S,), separately for r € J, using a
simple Gaussian prior §,.~N(m,,S,). We expect CORAL to have substantial advantages over the
baseline model due to two considerations: X; contains important latent factor information on top of
x;, and CORAL allows the borrowing of information from the f;s for common species to rare species.
As both CORAL and the baseline models can be fitted independently for r € J,,, computational time
scales linearly with the number of species. As a result, these computations can be trivially parallelized
allowing for inference and prediction for hundreds of thousands or even millions of species.

Case study on Malagasy arthropods

We tested the approach in the context of metabarcoding data on Malagasy arthropods. We applied
Malaise trap sampling in 53 locations across Madagascar, each of which was relatively undisturbed and
where the vegetation represented the conditions of the local environment. We then applied high-
throughput COI metabarcoding®” and the OptimOTU pipeline®® to score the occurrences of 255,188
species-level OTUs (henceforth, species) in 2874 samples (see Methods). To create a backbone model
of common species, we included those 876 species that occurred in at least 50 samples. This left those
254,312 species that occurred less than 50 times in the data as rare species, which we model by the
CORAL approach. We note that the threshold of 50 occurrences is relatively high so some of the rare
species are not so rare. This choice was made to test the hypothesis that borrowing information from
the backbone model changes predictions and inference especially for the very rare species — but less
so for more common species. Most of these rare species were extremely rare in the sense that 182,402
species (71% of all rare species) were detected in one sample only. Among these extremely rare
species, 1479 were singletons, i.e., represented by a single sequence. Some of these taxa may be
artefacts, reflecting chimeric sequences or sequencing error. However, the vast majority (99.4%) of the
rare species were represented by more than one sequence. Thus, the potential interpretation of some
sequencing errors as false species is unlikely to qualitatively influence our conclusions.

As simple and frequently used predictors of species presence, we included covariates related to
seasonality, climatic conditions, and sequencing effort. Climatic conditions were modelled through the
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second order polynomials of mean annual temperature and mean annual precipitation®®, while
including the interaction between these two climatic predictors. We modelled seasonality through
periodic functions sin(2rd/365), cos(2rnd/365), sin(4nd/365), and cos(4nd/365), where d is the
day of sampling. To capture site- and sample-level variation not captured by the measured predictors,
we included ten site-level (n = 53 sites) and four sample-level (n = 2874 samples) latent variables.
Variation in sequencing effort was modelled by including log-transformed sequencing depth as a
predictor. As a proxy of phylogeny, we used taxonomic assignments at the levels of kingdom, phylum,
class, order, family, subfamily, tribe, genus and species, including assignments to pseudotaxa for those
cases that could not be reliably classified to previously known taxa (see Methods).
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Figure 2. Responses of (A) the common species and (B) all species to measured and latent predictors.
Responses that were estimated to be positive (red large dots for common species and pink small dots
for rare species) or negative (blue large dots for the common species and cyan small dots for the rare
species) with at least 95% posterior probability in the backbone model are highlighted. The dots have
been made partially transparent and jittered in the horizontal direction to show the responses to many
predictors for a very large number of species.
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The common species responded especially to site-level variation (Fig. 2A). This was shown both by
responses to climatic variables, which contributed 48% of the explained variation, and by responses to
the site-level random factors, which contributed 42% of the explained variation. The effects of the
remaining predictors were much less pronounced, with seasonality contributing 3% of the explained
variation, sample-level latent factors 7%, and sequencing depth 0.1%. As we did not include any traits
in the model, we only based the CORAL models on borrowing information on taxonomic relatedness .
The responses of the species to the predictors were strongly phylogenetically structured (posterior
mean p = 0.65, posterior probability Pr(p > 0) = 1.00), thus providing potential for borrowing
information especially from related species.

The variance scaling factor k varied between 0.13 and 0.70, with a mean value of 0.34, thus showing
a substantial reduction in variance. As expected, it was lowest for species with close relatives in the
backbone model (Fig. 3A). The conditional prior models predicted variation in the occurrences of the
rare species better than random (Fig. 3B). This result is non-trivial as the predictions are made by a
completely independent model that has not seen any data for the focal species. The accuracy of the
prior predictions increased with the level of relatedness between the focal species and the species in
the backbone model and the predictions were more accurate for species occurring at least 10 times in
the data than for the very rare species (Fig. 3B).
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Figure 3. Conditional prior models for rare species constructed by borrowing information from the
backbone model of common species. (A) Prior model precision measured by the variance scaling factor
k (Eq. 5), as shown in relation to the taxonomic level shared with the closest relative in the backbone
model. The numbers on top of the bars indicate the number of rare species in each category. (B)
Discrimination powers of the conditional prior models, shown separately for each rank of the closest
relative in the backbone model (different colors of bars) and for two prevalence classes (at most ten
occurrences, left bars; more than ten occurrences, right bars). The blue line shows the null expectation
AUC=0.5. In both panels, the lines show the medians, the boxes the lower and upper quartiles, and
the whiskers the minimum and maximum values.

To compare the baseline and CORAL models in terms of inference, we fitted them to all of the 254,312
rare species. Combining the parameter estimates from the backbone and the CORAL models then
enabled us to reveal the responses of all species (common and rare) to the measured and latent
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predictors (Fig. 2B). These responses illustrate how CORAL transfers information from common species
to rare species, as in Fig. 2B blocks of red dots tend to spread pink dots in their surroundings, and blue
dots tend to spread cyan dots in their surroundings, meaning that common species induce similar
responses to taxonomically related rare species. However, there are exceptions to this general rule, as
Fig. 2B shows the CORAL posteriors rather than the CORAL priors. Thus, if the data for a rare species
has sufficient evidence of e.g. positive response even if the related common species show negative
responses, the estimate of the rare species will be positive. By updating the conditional prior from the
backbone model of common species with data from the focal rare species, we achieved improved
predictions in the sense that the CORAL models showed higher precision than the baseline models
(Fig. 4). This was especially the case for the very rare species (such as the one exemplified in Fig. 4B),
for which the baseline models led to very large credible intervals, as may be expected for the low
information contained in few occurrences. For more common species (such as the one exemplified in
Fig. 4A), the increase in precision was smaller (Fig. 4C). The increase in precision increased with
relatedness between the focal species and the species included in the backbone model (Fig. 4C), thus
mirroring the relation seen between relatedness and the variance scaling factor (Fig. 3A).
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Figure 4. Comparison of inference between CORAL and baseline models. Panels A and B illustrate a
specific prediction for two example species, one which is relatively common (A; the wall spider
Garcorops madagascar, 10 occurrences) and another which is very rare (B; the deer fly Chrysops
madagascarensis, 1 occurrence). The panels show the posterior mean (line) and the interquartile
posterior range (shaded area) of the linear predictor under changing precipitation, keeping
temperature at its mean value over the data. Panel C compares the posterior variance between
baseline and CORAL models systematically for all species. We averaged the posterior variance over the
environmental predictors (excluding intercept and latent factors). The panel shows the difference
between posterior variance in the CORAL and baseline models. Thus, for values below 0 (the blue line)
the CORAL model shows smaller variance. In panels C, the left-hand boxes correspond to very rare
species (1-10 occurrences), the right-hand boxes to relatively common species (11-49 occurrences),
the lines show the medians, the boxes the lower and upper quartiles, and the whiskers the minimum
and maximum values.

One benefit of the CORAL approach is that its posterior distribution is presented analytically rather
than through posterior samples obtained through MCMC. This is achieved by approximating the CORAL
posterior for each species (both the common and the rare) by a multivariate normal distribution (see
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Methods). This saves storage space, which could otherwise become limiting for models with very large
numbers of species. The multivariate normal presentation of the CORAL posterior also simplifies
downstream analyses as posterior mean occurrence probabilities can be computed analytically
without MCMC sampling (see Methods). The use of an analytical approximation may, however,
introduce model misspecification, the extent of which we explored by comparing the posterior
predictive distribution to the data in terms of relevant summary statistics (Fig. 5). The CORAL model
fitted to the Malagasy arthropod data was well calibrated in terms of generally predicting the number
of times each species was observed, except for some overestimation for the rarest species (Fig. 5A).
The model also satisfactorily predicted the number of species present in each sample, but the
overestimation in the occurrences of the rarest species translated to some overestimation of species
richness (Fig. 5B). The model fit was uniform across ranges of temperature (Fig. 5C) and humidity (Fig.
5D), suggesting no substantial misspecification in terms of how the effects of these covariates were

modelled.
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Figure 5. For inference to be trustworthy, it is key to verify that CORAL posteriors are consistent with
the observed data, both in terms of the overall scale of the predicted probabilities as well as the
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posterior compared to the observed prevalence, with the identity function is shown as a red line in all
figures. CORAL probabilities are well calibrated in the sense that these predictions agree closely with
the observed values, except for mild overestimation of the very rarest species. (B) Expected species
richness for each sample under the CORAL posterior compared to the observed richness. Some
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overestimation is detectable among the very rarest species, which are roughly uniformly distributed
across the samples. (C) and (D) Observed versus predicted proportion of occurrences below the
median of (C) temperature and (D) precipitation, shown for species that occur at least 10 times in the
data. CORAL probabilities are well calibrated across both covariates across their full range of values.
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Figure 6. Comparison of predictive power for baseline and CORAL models based on two-fold cross
validation. Predictive comparison is compared in terms of AUC (AC) and Tjur’s R? (BD). The upper row
of panels (AB) shows the raw values of the metrics for each species included in the analysis, with the
red line showing the identity line and the red triangle showing mean values over the species. The lower
row of panels (CD) shows the difference between the CORAL and baseline models. For values above 0
(the blue line), predictions by the CORAL model were more accurate. The results are shown separately
for each rank of the closest relative in the backbone model (different colors of bars) and two
prevalence classes (ten or fewer occurrences, left bars; more than ten occurrences, right bars). In
panels C and D, the lines show the medians, the boxes the lower and upper quartiles, and the whiskers
the minimum and maximum values.

To compare the baseline and CORAL models in terms of predictive power, we considered the 22,140
species that were not included in the backbone model but occurred at least five times in the data. We
applied two-fold cross validation, where we randomized the folds separately for each species, re-
sampling until both folds included at least 40% of the occurrences. We compared the models using
AUC, Tjur’s R%, PRAUC, Brier score, negative log-likelihood and log determinant posterior covariance.
Together, these metrics provide a comprehensive overview of model performance covering predictive
power, well calibrated probabilities, and useful inference (see Methods for their interpretations). All
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metrics of predictive performance improved considerably when moving from the baseline model to
the CORAL model: AUC from 0.86 to 0.94, Tjur’s R? from 0.03 to 0.08, PRAUC from 0.07 to 0.16, Brier
score from 0.004 to 0.003, negative log-likelihood from 0.023 to 0.016, and log determinant from -28.2
to -36.4. All these improvements were significant with p<107® as measured by one-sided t-tests (see
Methods). The improvement in the predictions was essentially independent of relatedness between
the focal species and the species in the backbone model (Fig. 6), suggesting that most of the
improvement derived from the inclusion of the latent factors estimated through the joint response of
all common species, with less contribution from the direct borrowing of information from the related
species. We validated this inference by fitting another set of models which included common species
latent factors but not our novel prior; this approach retained about 75% of the gains in AUC over the
baseline model. Additionally, the mean improvement in AUC did not essentially depend on the
prevalence of the species (Fig. 6A), whereas for Tjur’s R? the improvement was higher for the more
common species (Fig. 6B).

Discussion

The CORAL approach overcomes previous limitations on joint models of species communities with very
large numbers of rare species. By borrowing information from a backbone model of common species,
CORAL makes it possible to model even the rarest species in a statistically effective manner by
combining an informative prior model with the limited data available for each rare species. As the rare
species models can be parameterized independently, CORAL has an embarrassingly parallel
implementation, making it feasible to analyze datasets comprised of millions of species. Rather than
omitting rare species from all quantitative inference'>!¢, the approach developed here enables one to
draw on the full information inherent in novel community data®. This allows one to generate informed
predictions about changes in communities and overall biodiversity with changes in the state of
environmental drivers. In essence, this amounts to putting the “-diversity” back in “biodiversity”.

We found species’ responses to climatic, seasonal, and latent predictors to be phylogenetically
structured (posterior mean p = 0.65, posterior probability Pr(p > 0) = 1.00), forming the basis for
borrowing information especially across related species. However, even without phylogenetic signal in
the data, or alternatively by fitting a model without phylogeny, CORAL makes it possible to borrow
information from the backbone model of common species by identifying sample- and site-level latent
factors, as well as by basing the conditional mean on the average response of all species.

To illustrate the scale of the gain, we reiterate the proportion of rare species in our samples: had we
imposed a cutoff of species occurrence in 50 samples, we would have omitted 254,312 out of 255,188
species (99.7%), retaining 876 species (0.3%) of the species pool. Leaving the rare species unmodelled
would hardly be an efficient use of the massive data painstakingly acquired. For the 22,140 species
(8.7%) which occurred at least five times in the data, but which were not included in the backbone
model, we scored a substantial improvement in predictive power by borrowing information from the
more common species. This is a major achievement, as it shows how the limited information inherent
in the distribution of rare species may be leveraged by gleaning information from more common
species.

While this study focused on methodological development, our findings are also of major interest for
understanding the eco-evolutionary community assembly processes of the Malagasy fauna. We found
seasonality and climatic responses of arthropods to vary with their phylogenetic relatedness,
suggesting that their distributions across Madagascar are partially constrained by their ancestral niche.
This region is characterized by extreme levels of endemism at both a regional and a very small scale®®
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42 Nonetheless, in adapting to local conditions, the species appear to maintain a strong signal of their
ancestral niche.
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METHODS
Deriving the CORAL Prior

CORAL is motivated by the default prior for coefficients in HMSC. Under this prior, the prior for a
species r that is not part of the backbone model (i.e., a rare species) is given by 8, | B ~ N(m,., S;),
with the mean (4) and variance (5) given by the conditional multivariate normal formulas. The
moments of this distribution are functions of HMSC parameters including T, p, V, and B and do not
include information from the common species data, Y., a-priori. Fitting the backbone model produces
a posterior distribution, m, over these parameters, which in turn implies a posterior marginal
distribution for the rare species coefficients,

p(BrIYe) = f N(By; my, Sp)n(my, Sy |Y)dm,. dS,

This updated distribution is our desired rare species prior. As this distribution is analytically intractable
due to the integral over the posterior; we approximate it with a Gaussian:

PBrIYe) = N(By;my, Sp).

The mean m,. and variance S,. of this Gaussian are chosen to be the mean and variance of p(B,|Y,),
respectively. These can be calculated using the laws of total expectation/variance, resulting in simple
expressions in terms of posterior means/variances: m, = E;[m,] and S; = E[S,] + Vi [m,]. In
practice, we approximate posterior means/variances using Monte Carlo with posterior samples
returned by HMSC. This completes specification of the CORAL prior.

Computational details

We fitted the backbone model with a high-performance computing accelerated version®? of the R-
package Hmsc3®, sampling each of the four chains for 37,500 iterations. Of these chains, we omitted
the first 12,500 iterations as transient and then thinned the remaining chains by 100 to obtain 250
samples per chain and thus 1000 posterior samples in total.

For each rare species, we fitted a single-species model where we either did not (the baseline model)
or did (the CORAL model) utilize information from the backbone models of common species. The
baseline models were simple probit models with a Gaussian prior on the regression coefficients. The
baseline models did not include the latent factors as predictors, and they assumed a default prior
distribution for the species responses (N(O, 10) for the intercept and N(0O, 1) for fixed effect
coefficients). In the CORAL models, we included the latent factors as predictors, and assumed the
conditional prior distribution based on Egs. 3-5. We obtained 5000 samples after 2500 transient
iterations for each species for both the baseline and CORAL models using MCMCpack®.

For each species, we summarized the CORAL model in terms of the mean y and variance-covariance
matrix X of the posterior samples. As the model contained 25 parameters (including the intercept), the
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model for each species was thus represented by 25 + 25(25 + 1) /2 = 350 parameters (accounting
for the symmetry of X). The collection of models for all the 255,188 species thus contained ca. 89
million parameters, which resulted in the manageable file size of ca. 1.1 GB. We approximate the
CORAL posterior through the multivariate normal distribution N(u, X). For predictor vector x;, the
posterior mean of the linear predictor can be then computed as xl-Tu, and the posterior mean of the

occurrence probability as CD(xl-Tu/\/l + xTZx;).

Metrics used to evaluate model performance

AUC is the probability a randomly chosen positive sample has a higher predicted probability than a
randomly chosen negative sample. Tjur’s R? is a pseudo-R? value which can be read like any other R?
value, but typically reaches lower values*. PRAUC is the area under the precision recall curve — this
metric quantifies true positives and is useful for analyzing highly imbalanced data where the minority
class is of primary interest. The Brier score is the average squared error between predicted
probabilities and labels — this metric penalizes overconfidence. Negative log-likelihood directly
measures goodness of fit under the proposed Bernoulli model. The determinant of the posterior
covariance determines the volume of a 95% credible interval for fixed effect coefficients under a
Gaussian approximation, smaller intervals meaning more confident inference. Together, these metrics
provide a detailed summary of discrimination ability (AUC, PRAUC), confidence (R?, Brier score),
goodness of fit (negative log-likelihood), and precision (log-determinant).

Sampling of Malagasy arthropods

The sampling was conducted as part of the worldwide LIFEPLAN biodiversity sampling design®>. We
selected 53 locations across Madagascar that were relatively undisturbed and where the vegetation
represents the conditions of the local environment. 28 of the sites were sampled in a spatially nested
sampling design with decreasing distances between them (50 km, 5 km and 500 m apart). The other
25 sites were spread across different forested habitats in Madagascar (dry, lowland and montane
forests), at elevations ranging from 8 to 1592 MASL. We continuously collected one-week samples of
flying arthropods in 95% ethanol using Malaise traps (ez-Malaise Trap, MegaView Science Co.) For a
detailed description of the sampling, sample shipping and handling, and steps related to DNA
extraction and sequencing, we refer to the LIFEPLAN Malaise sample metabarcoding protocol®.

The CORAL method can be applied to sample x species occurrence data generated by a wide variety of
detection technologies and analysis pipelines. In this paper, we applied CORAL to DNA sequence data
analyzed using the OptimOTU bioinformatics pipeline®, which was originally developed for the Global
Spore Sampling Project*” and updated to apply to arthropod COI sequence data as part of the LIFEPLAN
biodiversity sampling project®®. The OptimOTU workflow for COI sequence data consists of primer
removal, quality filtering, denoising, de novo and reference-based chimera removal, flagging likely
non-animal sequences, removal of putative nuclear-mitochondrial pseudogenes, probabilistic
taxonomic assignment, and finally taxonomically-guided hierarchical clustering. The OptimOTU
pipeline is implemented using the targets 1.5.1 workflow management package®, here executed using
the crew 0.9.0%° and crew.cluster 0.3.0°° backends in R 4.2.3°! on the Puhti cluster at CSC — IT Center
For Science, Finland. This yielded a full taxonomic tree with approximate placeholder taxa to group
those sequences which could not be reliably identified.
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