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Abstract 

Modern DNA-based biodiversity surveys result in massive-scale data, including up to millions of species 
– of which most are rare. Making the most of such data for inference and predicƟon requires modelling 
approaches that can relate species occurrences to environmental and spaƟal predictors, while 
incorporaƟng informaƟon about their taxonomic or phylogeneƟc placement. Even if the scalability of 
joint species distribuƟon models to large communiƟes has greatly advanced, incorporaƟng hundreds 
of thousands of species has not been feasible to date, leading to compromised analyses. Here we 
present a novel “common to rare transfer learning” approach (CORAL), based on borrowing 
informaƟon from the common species to enable staƟsƟcally and computaƟonally efficient modelling 
of both common and rare species. We illustrate that CORAL leads to much improved predicƟon and 
inference in the context of DNA metabarcoding data from Madagascar, comprising 255,188 arthropod 
species detected in 2874 samples.  
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MAIN TEXT 

Earth is home to several millions of species1. Among these, the majority are unknown2 and rare3. 
Recent innovaƟons in sensor technologies are now providing unprecedented capacity to record 
paƩerns and changes in the abundance and distribuƟon of all kinds of taxa, from the named to the 
previously unnamed and from the rare to the common. These technologies include DNA-based 
monitoring, passive acousƟc monitoring, and visual sensors4,5. By allowing the efficient recording of 
thousands to hundreds of thousands of species in Ɵme and space, the accumulaƟon of high-
dimensional “novel community data” is transforming our access to informaƟon on species 
distribuƟons and abundances4. As a parƟcularly exciƟng development, the emergence of novel 
community data allows us to target the speciose groups accounƟng for the main part of global 
biodiversity1,2. Where species records to date have been massively biased towards vertebrates, one of 
the least species-rich taxa3, recent methods are now making hyper-diverse taxa such as arthropods 
and fungi arguably easier to sample than vertebrates and plants. As these speciose taxa can be mass-
sampled and mass-idenƟfied, we can derive automated characterizaƟons of what taxa occur where5–

7. Nonetheless, the recent revoluƟon in the generaƟon of data is awaiƟng a matching insurgence of 
novel methods to analyze the data. 

While most species on Earth are rare, these are the species that we know least about, parƟally because 
rare species are the most challenging to model8. Paradoxically, the rare species also encompass the 
taxa in greatest need of protecƟon, and thus the very species for which informaƟon on their 
distribuƟons and ecological requirements is most criƟcal (‘the rare species paradox’9). Understanding 
biodiversity change necessitates models which can relate species occurrences to environmental, bioƟc, 
and spaƟal predictors, and which can predict changes in species communiƟes with changes in the state 
of these drivers10. Hence, the need for predicƟve tools for rare species has been repeatedly 
highlighted11–14. However, the inherent rarity of most species results in highly skewed species-
abundance distribuƟons, where a few species are common whereas most species are present at few 
sites in low numbers. Typical approaches to species-level modelling will then impose a cut-off on 
species occurrences or abundances15,16 – arguing that for the rarest species, the data are simply 
insufficient for any quanƟtaƟve inference regarding the drivers of their distribuƟon. In a world where 
rare is common3, this can and will typically amount to rejecƟng most data, and all the informaƟon 
there then remains hidden. To make the most of increasingly available data, we need modelling 
approaches which can fully exploit such data. 

With species distribuƟon models (SDMs), rare species may be modelled through ensemble predicƟons 
from mulƟple small models, each of which contains just a few predictors to avoid overfiƫng9,17,18. 
Because closely related species are generally ecologically more similar than distantly related 
species19,20, phylogeneƟc informaƟon may be used to infer the distribuƟons of rare species21–25. Joint 
species distribuƟon models (JSDM)26 allow levelling up by modelling large numbers of species 
simultaneously. This enables efficient borrowing of informaƟon across species through their shared 
responses to environmental variaƟon27. Furthermore, when data on species phylogenies and/or traits 
are available, informaƟon can be borrowed especially across similar species28,29. This can lead to 
improved predicƟons, especially for rare species30. 

The high-dimensional, and oŌen extremely sparse, nature of species occurrence data, compounded 
with spaƟotemporal and phylogeneƟc dependencies, presents major challenges for staƟsƟcal analyses 
and computaƟon. High performance compuƟng can scale some exisƟng JSDMs to thousands of 
species31,32. Two-stage methods, which make small concessions by cuƫng dependence between 
species via approximate likelihoods33,34, can scale to tens of thousands of species while sƟll retaining 
reasonable uncertainty esƟmates. Unfortunately, these approaches do not yet scale to the millions of 
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species that comprise the Earth’s biodiversity1. What is more, they may perform poorly for extremely 
sparse rare species, by compromising model structures in the interest of gaining computaƟonal 
advantage. 

Results 

The Hierarchical Modelling of Species CommuniƟes framework 

In this paper, we apply Bayesian transfer learning35 to develop the “common to rare transfer learning 
approach” (CORAL) (Fig. 1). Transfer learning refers to a broad class of mulƟ-stage analysis methods 
which leverage informaƟon from a pre-trained model to improve performance for a new but related 
inference task. In a Bayesian context, this is oŌen achieved by using the posterior model from one 
dataset to define an intelligent prior model for another dataset. Sharing informaƟon between models 
can improve parameter esƟmates and significantly boost out-of-sample performance, parƟcularly 
when studying new, smaller datasets. Our transfer learning method builds on the Hierarchical 
Modelling of Species CommuniƟes (HMSC)10,29,36 approach to joint species distribuƟon modelling 
(JSDM)26. The core idea of CORAL is very general and will thus apply to many other JSDM approaches, 
too. What makes its applicaƟon in the HMSC context so intuiƟve is that HMSC models species 
responses to predictors as a funcƟon of species traits and phylogeneƟc relaƟonships. This feature can 
be efficiently harnessed for transfer learning.  

In brief, HMSC is a mulƟvariate generalized linear model fiƩed in a Bayesian framework. As a response 
it considers a matrix of species occurrences or abundances. We exemplify our approach with presence-
absence data, denoƟng by 𝑦௜௝ = 1 if species 𝑗 (with 𝑗 = 1, … , 𝑛௦) is present in sample 𝑖 (with 𝑖 =

1, … , 𝑛௬) and 𝑦௜௝ = 0 if this is not the case. Presence-absence data are modelled in HMSC with probit 
regression: Pr൫𝑦௜௝ = 1൯ = Φ(𝐿௜௝), where Φ(. ) is the standard normal cumulaƟve distribuƟon 
funcƟon and 𝐿௜௝ is the linear predictor modelled as:  

𝐿௜௝ = ෍ 𝑥௜௞𝛽௞௝

௡೎

௞
+ ෍ 𝜂௜௞𝜆௞௝

௡೑

௞
,         (1) 

where 𝑥௜௞ are measured predictors, 𝜂௜௞  are latent predictors, and 𝛽௞௝ and 𝜆௞௝ are regression 
coefficients quanƟfying responses of the species to the measured and the latent predictors. The latent 
features induce within-sample dependence across species; these features may encode characterisƟcs 
of the habitat, the environment and the spaƟo-temporal seƫng not captured by the 𝑥௜௞s. HMSC uses 
a Bayesian hierarchical model to (a) automaƟcally infer how many latent features 𝑛௙ are needed and 
(b) to borrow informaƟon across species in inferring the 𝛽௞௝s. For (b) HMSC esƟmates to what degree 
taxonomically or phylogeneƟcally related species, or species with similar traits, show similar responses 
𝛽௞௝ to environmental variaƟon through the mulƟvariate normal distribuƟon10,28 

vec(𝐵)~𝑁(𝜇, 𝑃 ⊗ 𝑉).         (2) 

Here, 𝐵 is the matrix of the regression parameters 𝛽௞௝ of the 𝑝 species, 𝜇 is the average response, 𝑃 =

𝜌𝐶 + (1 − 𝜌)𝐼௡ೞ
 is a weighted average between the phylogeneƟc or taxonomic correlaƟon matrix 𝐶 

and the idenƟty matrix 𝐼 corresponding to unrelated species, 0 ≤ 𝜌 ≤ 1 is the strength of the 
phylogeneƟc signal, and 𝑉 is the variance-covariance matrix of species-specific deviaƟons from the 
average 𝜇. The average response 𝜇 is further modelled as 𝜇 = vec(Γ𝑇୘), where 𝑇 is a matrix of species 
traits, Γ are the esƟmated responses of the traits to environmental variaƟon, and the superscript T 
denotes the matrix transpose. With Eq. 2, HMSC learns if and to what extent related species, or species 
with similar traits, show similar environmental responses. This allows for effecƟve borrowing of 
informaƟon among species; for example, improving parameter esƟmaƟon for rare species, for which 
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it would be difficult to obtain accurate esƟmates if considering the data in isolaƟon from the 
community context29. As a result, HMSC shows higher predicƟve performance compared to 
approaches that do not enable such borrowing of informaƟon30. 

 

 

 

Figure 1. (A) High-level descripƟon of CORAL considering its applicaƟon to Malagasy arthropods and 
(B) generic CORAL model structure implemented in the R package provided with this paper. (A) CORAL 
is based on fiƫng a backbone JSDM model to a subset of the most common species in the data and 
then borrowing informaƟon from this backbone to model the rare species. The backbone model learns 
about latent factors represenƟng relevant missing environmental predictors, as well as about the 
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species responses to both the measured and the latent predictors. The backbone model provides an 
informaƟve prior distribuƟon for each rare species. This is parƟcularly efficient when we have access 
to phylogeneƟc or trait informaƟon, allowing informaƟon to be borrowed especially from common 
species closely related to the rare species, or species sharing similar traits with the rare species. As we 
show with a case study targeƟng a quarter million rare Malagasy arthropods, such informaƟve prior 
distribuƟons greatly improve the modelling of the rare species, both in terms of inference and 
predicƟon. (B) CORAL simplifies a fully Bayesian JDSM by replacing latent factors with a pre-esƟmated 
point esƟmate and by accounƟng for dependence from common to rare species – but not for 
dependence from rare to common species. For a full explanaƟon of the data (orange squares) and the 
parameters (blue squares), see text and methods. The first panel shows the parameter and data 
dependencies used to fit HMSC to the common species only; this esƟmates the latent factors as a 
parameter (𝜂 in blue square), a point esƟmate of which is considered as data (𝜂 in orange square) in a 
second HMSC model fit to the common species. The second HMSC model, called the backbone model, 
has fewer parameters, significantly simplifying inference. Finally, parameters from the backbone model 
are used to define independent rare species models leveraging informaƟon from common species. To 
enable easy applicaƟon of the CORAL approach to high-dimensional biodiversity data, we provide an 
R package for fiƫng these models, visualizing the results, and generaƟng predicƟons. 

Deriving condiƟonal priors for rare species by borrowing informaƟon from common species 

Our key idea is that even if it is not feasible to include 100,000+ species in a JSDM model such as HMSC, 
one can sƟll borrow informaƟon from the common species. The structure of our approach follows 
naturally from three assumpƟons, namely that (1) users have enough data to perform high-quality 
inference on common species without leveraging rare species data, (2) informaƟon from these 
common species is relevant for modelling rare species, and (3) rare species may be viewed as 
condiƟonally independent given the common species data and measured sample covariates. This 
suggests a two-stage analysis which first studies the common species jointly and then studies each 
rare species independently using the results of the common species analysis.  

The first stage of CORAL is to fit an HMSC to the common species to pre-esƟmate latent factors (Fig. 
1). From this analysis we obtain a point esƟmate of the latent features 𝜂௜ = (𝜂௜ଵ, … , 𝜂௜௡೑

), which 

provides key informaƟon not captured in 𝑥௜ = (𝑥௜ଵ, … , 𝑥௜௡೎
) about environmental and habitat 

condiƟons and the overall biological community represented in sample 𝑖. We define a new covariate 

vector 𝑥෤௜ = ൫𝑥෤௜ଵ, … , 𝑥෤௜௡ೝ
൯

்
 by concatenaƟng 𝑥௜ and 𝜂௜  to be used as a fixed predictor in the second 

stage of CORAL, which fits HMSC to the common species to provide a backbone model (Fig. 1). The 
third stage fits CORAL models (independent Bayesian probit models) to each rare species: 
Pr(𝑦௜௥ = 1) = Φ(𝑥෤௜

்𝛽௥), for 𝑟 ∈ 𝒥௥ with 𝒥௥ ⊂ {1, … , 𝑝} the set of rare species (Fig. 1). To reduce mean 
square error in inferring 𝛽௥ for 𝑗 ∈ 𝒥௥, we construct a prior which adapƟvely shrinks towards the 
common species coefficients accounƟng for taxonomic/phylogeneƟc similarity.  

Our prior is moƟvated by the prior for fixed-effects coefficients in HMSC. To simplify inference and 
learn relevant hyper-parameters, we first re-run HMSC with the expanded covariate vector 𝑥෤௜. Under 
HMSC, the prior condiƟonal distribuƟon of the rare species coefficients given the common species 
coefficients is 

𝛽௥~𝑁(𝑚௥, 𝑆௥).       (3) 

Here, the mean is given by 

𝑚௥ =  Γ𝑡௥ + ൣ(𝜌𝑐௥
்)൫𝑃ିଵ ⊗ 𝐼௡೎

൯൧(vec(𝐵) − 𝜇)       (4) 
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where 𝑃 = 𝜌𝐶 + (1 − 𝜌)𝐼௣. The variance-covariance matrix is 𝑆 = 𝑘௥𝑉, where the variance scaling 
factor 𝑘௥ is given by 

𝑘௥ = 1 − 𝜌𝑐௥
்𝑃ିଵ𝑐௥.       (5) 

The vector 𝑐௥ encodes relatedness between a rare species 𝑟 ∈ 𝒥௥ and all the 𝑛௦ species in the 
backbone analysis and 𝑡௥ is the trait vector for this rare species. As HMSC is fiƩed to data with Bayesian 
inference, parameter uncertainty can be accounted for by defining the prior as a mixture of 
mulƟvariate normal distribuƟons (each defined by Eqs. 3-5) over the posterior samples. To achieve a 
simple funcƟonal form for the prior, we approximated the mixture by a single mulƟvariate normal 
distribuƟon, the mean and variance-covariance matrix of which we set equal to those of the mixture 
(see Methods). 

We refer to the above approach as Common-to-rare transfer learning (CORAL). Figure 1 shows the full 
mathemaƟcal structure of this approach, with each box corresponding to a separate stage of CORAL 
inference. This contrasts with the (computaƟonally intractable) joint modelling approach, which would 
esƟmate all parameters for all species simultaneously. CORAL is likely to perform well when 
assumpƟons (1)-(3) hold: that is, when there is high-quality common species data that spans the 
phylogeneƟc tree and when the backbone model esƟmates that species responses are 
phylogeneƟcally structured and/or influenced by species traits. To quanƟfy the benefits of CORAL, we 
compare its performance to that of a baseline model that does not benefit from the backbone analysis. 
In other words, for the baseline model we fit Pr(𝑦௜௥ = 1) = Φ(𝑥௜

்𝛽௥), separately for 𝑟 ∈ 𝒥௥ using a 
simple Gaussian prior 𝛽௥~𝑁(𝑚௥ , 𝑆௥). We expect CORAL to have substanƟal advantages over the 
baseline model due to two consideraƟons: 𝑥෤௜ contains important latent factor informaƟon on top of 
𝑥௜, and CORAL allows the borrowing of informaƟon from the 𝛽௝s for common species to rare species. 
As both CORAL and the baseline models can be fiƩed independently for 𝑟 ∈ 𝒥௥, computaƟonal Ɵme 
scales linearly with the number of species. As a result, these computaƟons can be trivially parallelized 
allowing for inference and predicƟon for hundreds of thousands or even millions of species.  

Case study on Malagasy arthropods 

We tested the approach in the context of metabarcoding data on Malagasy arthropods. We applied 
Malaise trap sampling in 53 locaƟons across Madagascar, each of which was relaƟvely undisturbed and 
where the vegetaƟon represented the condiƟons of the local environment. We then applied high-
throughput COI metabarcoding37 and the OpƟmOTU pipeline38 to score the occurrences of 255,188 
species-level OTUs (henceforth, species) in 2874 samples (see Methods). To create a backbone model 
of common species, we included those 876 species that occurred in at least 50 samples. This leŌ those 
254,312 species that occurred less than 50 Ɵmes in the data as rare species, which we model by the 
CORAL approach. We note that the threshold of 50 occurrences is relaƟvely high so some of the rare 
species are not so rare. This choice was made to test the hypothesis that borrowing informaƟon from 
the backbone model changes predicƟons and inference especially for the very rare species – but less 
so for more common species. Most of these rare species were extremely rare in the sense that 182,402 
species (71% of all rare species) were detected in one sample only. Among these extremely rare 
species, 1479 were singletons, i.e., represented by a single sequence. Some of these taxa may be 
artefacts, reflecƟng chimeric sequences or sequencing error. However, the vast majority (99.4%) of the 
rare species were represented by more than one sequence. Thus, the potenƟal interpretaƟon of some 
sequencing errors as false species is unlikely to qualitaƟvely influence our conclusions. 

As simple and frequently used predictors of species presence, we included covariates related to 
seasonality, climaƟc condiƟons, and sequencing effort. ClimaƟc condiƟons were modelled through the 
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second order polynomials of mean annual temperature and mean annual precipitaƟon39, while 
including the interacƟon between these two climaƟc predictors. We modelled seasonality through 
periodic funcƟons sin(2𝜋𝑑/365), cos(2𝜋𝑑/365), sin(4𝜋𝑑/365), and cos(4𝜋𝑑/365), where 𝑑 is the 
day of sampling. To capture site- and sample-level variaƟon not captured by the measured predictors, 
we included ten site-level (𝑛 = 53 sites) and four sample-level (𝑛 = 2874 samples) latent variables. 
VariaƟon in sequencing effort was modelled by including log-transformed sequencing depth as a 
predictor. As a proxy of phylogeny, we used taxonomic assignments at the levels of kingdom, phylum, 
class, order, family, subfamily, tribe, genus and species, including assignments to pseudotaxa for those 
cases that could not be reliably classified to previously known taxa (see Methods). 

 

Figure 2. Responses of (A) the common species and (B) all species to measured and latent predictors. 
Responses that were esƟmated to be posiƟve (red large dots for common species and pink small dots 
for rare species) or negaƟve (blue large dots for the common species and cyan small dots for the rare 
species) with at least 95% posterior probability in the backbone model are highlighted. The dots have 
been made parƟally transparent and jiƩered in the horizontal direcƟon to show the responses to many 
predictors for a very large number of species. 
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The common species responded especially to site-level variaƟon (Fig. 2A). This was shown both by 
responses to climaƟc variables, which contributed 48% of the explained variaƟon, and by responses to 
the site-level random factors, which contributed 42% of the explained variaƟon. The effects of the 
remaining predictors were much less pronounced, with seasonality contribuƟng 3% of the explained 
variaƟon, sample-level latent factors 7%, and sequencing depth 0.1%. As we did not include any traits 
in the model, we only based the CORAL models on borrowing informaƟon on taxonomic relatedness . 
The responses of the species to the predictors were strongly phylogeneƟcally structured (posterior 
mean 𝜌 = 0.65, posterior probability Pr(𝜌 > 0 ) = 1.00), thus providing potenƟal for borrowing 
informaƟon especially from related species. 

The variance scaling factor 𝑘 varied between 0.13 and 0.70, with a mean value of 0.34, thus showing 
a substanƟal reducƟon in variance. As expected, it was lowest for species with close relaƟves in the 
backbone model (Fig. 3A). The condiƟonal prior models predicted variaƟon in the occurrences of the 
rare species beƩer than random (Fig. 3B). This result is non-trivial as the predicƟons are made by a 
completely independent model that has not seen any data for the focal species. The accuracy of the 
prior predicƟons increased with the level of relatedness between the focal species and the species in 
the backbone model and the predicƟons were more accurate for species occurring at least 10 Ɵmes in 
the data than for the very rare species (Fig. 3B). 

 

Figure 3. CondiƟonal prior models for rare species constructed by borrowing informaƟon from the 
backbone model of common species. (A) Prior model precision measured by the variance scaling factor 

𝑘 (Eq. 5), as shown in relaƟon to the taxonomic level shared with the closest relaƟve in the backbone 
model. The numbers on top of the bars indicate the number of rare species in each category. (B) 
DiscriminaƟon powers of the condiƟonal prior models, shown separately for each rank of the closest 
relaƟve in the backbone model (different colors of bars) and for two prevalence classes (at most ten 
occurrences, leŌ bars; more than ten occurrences, right bars). The blue line shows the null expectaƟon 
AUC=0.5. In both panels, the lines show the medians, the boxes the lower and upper quarƟles, and 
the whiskers the minimum and maximum values. 

 

To compare the baseline and CORAL models in terms of inference, we fiƩed them to all of the 254,312 
rare species. Combining the parameter esƟmates from the backbone and the CORAL models then 
enabled us to reveal the responses of all species (common and rare) to the measured and latent 
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predictors (Fig. 2B). These responses illustrate how CORAL transfers informaƟon from common species 
to rare species, as in Fig. 2B blocks of red dots tend to spread pink dots in their surroundings, and blue 
dots tend to spread cyan dots in their surroundings, meaning that common species induce similar 
responses to taxonomically related rare species. However, there are excepƟons to this general rule, as 
Fig. 2B shows the CORAL posteriors rather than the CORAL priors. Thus, if the data for a rare species 
has sufficient evidence of e.g. posiƟve response even if the related common species show negaƟve 
responses, the esƟmate of the rare species will be posiƟve. By updaƟng the condiƟonal prior from the 
backbone model of common species with data from the focal rare species, we achieved improved 
predicƟons in the sense that the CORAL models showed higher precision than the baseline models 
(Fig. 4). This was especially the case for the very rare species (such as the one exemplified in Fig. 4B), 
for which the baseline models led to very large credible intervals, as may be expected for the low 
informaƟon contained in few occurrences. For more common species (such as the one exemplified in 
Fig. 4A), the increase in precision was smaller (Fig. 4C). The increase in precision increased with 
relatedness between the focal species and the species included in the backbone model (Fig. 4C), thus 
mirroring the relaƟon seen between relatedness and the variance scaling factor (Fig. 3A). 

 

 

Figure 4. Comparison of inference between CORAL and baseline models. Panels A and B illustrate a 
specific predicƟon for two example species, one which is relaƟvely common (A; the wall spider 
Garcorops madagascar, 10 occurrences) and another which is very rare (B; the deer fly Chrysops 
madagascarensis, 1 occurrence). The panels show the posterior mean (line) and the interquarƟle 
posterior range (shaded area) of the linear predictor under changing precipitaƟon, keeping 
temperature at its mean value over the data. Panel C compares the posterior variance between 
baseline and CORAL models systemaƟcally for all species. We averaged the posterior variance over the 
environmental predictors (excluding intercept and latent factors). The panel shows the difference 
between posterior variance in the CORAL and baseline models. Thus, for values below 0 (the blue line) 
the CORAL model shows smaller variance. In panels C, the leŌ-hand boxes correspond to very rare 
species (1-10 occurrences), the right-hand boxes to relaƟvely common species (11-49 occurrences), 
the lines show the medians, the boxes the lower and upper quarƟles, and the whiskers the minimum 
and maximum values. 

 

One benefit of the CORAL approach is that its posterior distribuƟon is presented analyƟcally rather 
than through posterior samples obtained through MCMC. This is achieved by approximaƟng the CORAL 
posterior for each species (both the common and the rare) by a mulƟvariate normal distribuƟon (see 
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Methods). This saves storage space, which could otherwise become limiƟng for models with very large 
numbers of species. The mulƟvariate normal presentaƟon of the CORAL posterior also simplifies 
downstream analyses as posterior mean occurrence probabiliƟes can be computed analyƟcally 
without MCMC sampling (see Methods). The use of an analyƟcal approximaƟon may, however, 
introduce model misspecificaƟon, the extent of which we explored by comparing the posterior 
predicƟve distribuƟon to the data in terms of relevant summary staƟsƟcs (Fig. 5). The CORAL model 
fiƩed to the Malagasy arthropod data was well calibrated in terms of generally predicƟng the number 
of Ɵmes each species was observed, except for some overesƟmaƟon for the rarest species (Fig. 5A). 
The model also saƟsfactorily predicted the number of species present in each sample, but the 
overesƟmaƟon in the occurrences of the rarest species translated to some overesƟmaƟon of species 
richness (Fig. 5B). The model fit was uniform across ranges of temperature (Fig. 5C) and humidity (Fig. 
5D), suggesƟng no substanƟal misspecificaƟon in terms of how the effects of these covariates were 
modelled. 

 

Figure 5. For inference to be trustworthy, it is key to verify that CORAL posteriors are consistent with 
the observed data, both in terms of the overall scale of the predicted probabiliƟes as well as the 
learned covariate effects. (A) The expected number of observaƟons for each species under the CORAL 
posterior compared to the observed prevalence, with the idenƟty funcƟon is shown as a red line in all 
figures. CORAL probabiliƟes are well calibrated in the sense that these predicƟons agree closely with 
the observed values, except for mild overesƟmaƟon of the very rarest species. (B) Expected species 
richness for each sample under the CORAL posterior compared to the observed richness. Some 
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overesƟmaƟon is detectable among the very rarest species, which are roughly uniformly distributed 
across the samples. (C) and (D) Observed versus predicted proporƟon of occurrences below the 
median of (C) temperature and (D) precipitaƟon, shown for species that occur at least 10 Ɵmes in the 
data. CORAL probabiliƟes are well calibrated across both covariates across their full range of values. 

 

 

Figure 6. Comparison of predicƟve power for baseline and CORAL models based on two-fold cross 
validaƟon. PredicƟve comparison is compared in terms of AUC (AC) and Tjur’s R2 (BD). The upper row 
of panels (AB) shows the raw values of the metrics for each species included in the analysis, with the 
red line showing the idenƟty line and the red triangle showing mean values over the species. The lower 
row of panels (CD) shows the difference between the CORAL and baseline models. For values above 0 
(the blue line), predicƟons by the CORAL model were more accurate. The results are shown separately 
for each rank of the closest relaƟve in the backbone model (different colors of bars) and two 
prevalence classes (ten or fewer occurrences, leŌ bars; more than ten occurrences, right bars). In 
panels C and D, the lines show the medians, the boxes the lower and upper quarƟles, and the whiskers 
the minimum and maximum values. 

To compare the baseline and CORAL models in terms of predicƟve power, we considered the 22,140 
species that were not included in the backbone model but occurred at least five Ɵmes in the data. We 
applied two-fold cross validaƟon, where we randomized the folds separately for each species, re-
sampling unƟl both folds included at least 40% of the occurrences. We compared the models using 
AUC, Tjur’s R2, PRAUC, Brier score, negaƟve log-likelihood and log determinant posterior covariance. 
Together, these metrics provide a comprehensive overview of model performance covering predicƟve 
power, well calibrated probabiliƟes, and useful inference (see Methods for their interpretaƟons). All 
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metrics of predicƟve performance improved considerably when moving from the baseline model to 
the CORAL model: AUC from 0.86 to 0.94, Tjur’s R2 from 0.03 to 0.08, PRAUC from 0.07 to 0.16, Brier 
score from 0.004 to 0.003, negaƟve log-likelihood from 0.023 to 0.016, and log determinant from -28.2 
to -36.4. All these improvements were significant with p<10-16 as measured by one-sided t-tests (see 
Methods). The improvement in the predicƟons was essenƟally independent of relatedness between 
the focal species and the species in the backbone model (Fig. 6), suggesƟng that most of the 
improvement derived from the inclusion of the latent factors esƟmated through the joint response of 
all common species, with less contribuƟon from the direct borrowing of informaƟon from the related 
species. We validated this inference by fiƫng another set of models which included common species 
latent factors but not our novel prior; this approach retained about 75% of the gains in AUC over the 
baseline model. AddiƟonally, the mean improvement in AUC did not essenƟally depend on the 
prevalence of the species (Fig. 6A), whereas for Tjur’s R2 the improvement was higher for the more 
common species (Fig. 6B). 

Discussion 

The CORAL approach overcomes previous limitaƟons on joint models of species communiƟes with very 
large numbers of rare species. By borrowing informaƟon from a backbone model of common species, 
CORAL makes it possible to model even the rarest species in a staƟsƟcally effecƟve manner by 
combining an informaƟve prior model with the limited data available for each rare species. As the rare 
species models can be parameterized independently, CORAL has an embarrassingly parallel 
implementaƟon, making it feasible to analyze datasets comprised of millions of species. Rather than 
omiƫng rare species from all quanƟtaƟve inference15,16, the approach developed here enables one to 
draw on the full informaƟon inherent in novel community data4. This allows one to generate informed 
predicƟons about changes in communiƟes and overall biodiversity with changes in the state of 
environmental drivers. In essence, this amounts to puƫng the “-diversity” back in “biodiversity”. 

We found species’ responses to climaƟc, seasonal, and latent predictors to be phylogeneƟcally 
structured (posterior mean 𝜌 = 0.65, posterior probability Pr(𝜌 > 0 ) = 1.00), forming the basis for 
borrowing informaƟon especially across related species. However, even without phylogeneƟc signal in 
the data, or alternaƟvely by fiƫng a model without phylogeny, CORAL makes it possible to borrow 
informaƟon from the backbone model of common species by idenƟfying sample- and site-level latent 
factors, as well as by basing the condiƟonal mean on the average response of all species. 

To illustrate the scale of the gain, we reiterate the proporƟon of rare species in our samples: had we 
imposed a cutoff of species occurrence in 50 samples, we would have omiƩed 254,312 out of 255,188 
species (99.7%), retaining 876 species (0.3%) of the species pool. Leaving the rare species unmodelled 
would hardly be an efficient use of the massive data painstakingly acquired. For the 22,140 species 
(8.7%) which occurred at least five Ɵmes in the data, but which were not included in the backbone 
model, we scored a substanƟal improvement in predicƟve power by borrowing informaƟon from the 
more common species. This is a major achievement, as it shows how the limited informaƟon inherent 
in the distribuƟon of rare species may be leveraged by gleaning informaƟon from more common 
species. 

While this study focused on methodological development, our findings are also of major interest for 
understanding the eco-evoluƟonary community assembly processes of the Malagasy fauna. We found 
seasonality and climaƟc responses of arthropods to vary with their phylogeneƟc relatedness, 
suggesƟng that their distribuƟons across Madagascar are parƟally constrained by their ancestral niche. 
This region is characterized by extreme levels of endemism at both a regional and a very small scale40–
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42. Nonetheless, in adapƟng to local condiƟons, the species appear to maintain a strong signal of their 
ancestral niche. 
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METHODS 

Deriving the CORAL Prior 

CORAL is moƟvated by the default prior for coefficients in HMSC. Under this prior, the prior for a 
species 𝑟 that is not part of the backbone model (i.e., a rare species) is given by 𝛽௥  | 𝐵 ∼ 𝑁(𝑚௥, 𝑆௥), 
with the mean (4) and variance (5) given by the condiƟonal mulƟvariate normal formulas. The 
moments of this distribuƟon are funcƟons of HMSC parameters including Γ, 𝜌, 𝑉, and 𝐵 and do not 
include informaƟon from the common species data, 𝑌௖, a-priori. Fiƫng the backbone model produces 
a posterior distribuƟon, π, over these parameters, which in turn implies a posterior marginal 
distribuƟon for the rare species coefficients, 

𝑝(β௥  |𝑌௖) = න 𝑁(β௥; 𝑚௥ , 𝑆௥)π(𝑚௥ , 𝑆௥|𝑌௖)𝑑𝑚௥ 𝑑𝑆௥ 

This updated distribuƟon is our desired rare species prior. As this distribuƟon is analyƟcally intractable 
due to the integral over the posterior; we approximate it with a Gaussian: 

𝑝(β௥|𝑌௖) ≈ 𝑁(β௥; 𝑚௥
ᇱ , 𝑆௥

ᇱ). 

The mean 𝑚௥
ᇱ  and variance 𝑆௥

ᇱ  of this Gaussian are chosen to be the mean and variance of 𝑝(𝛽௥|𝑌௖), 
respecƟvely. These can be calculated using the laws of total expectaƟon/variance, resulƟng in simple 
expressions in terms of posterior means/variances: 𝑚௥

ᇱ = 𝐸஠[𝑚௥] and 𝑆௥
ᇱ = 𝐸஠[𝑆௥] + 𝑉஠[𝑚௥]. In 

pracƟce, we approximate posterior means/variances using Monte Carlo with posterior samples 
returned by HMSC. This completes specificaƟon of the CORAL prior. 

ComputaƟonal details 

We fiƩed the backbone model with a high-performance compuƟng accelerated version32 of the R-
package Hmsc36, sampling each of the four chains for 37,500 iteraƟons. Of these chains, we omiƩed 
the first 12,500 iteraƟons as transient and then thinned the remaining chains by 100 to obtain 250 
samples per chain and thus 1000 posterior samples in total.  

For each rare species, we fiƩed a single-species model where we either did not (the baseline model) 
or did (the CORAL model) uƟlize informaƟon from the backbone models of common species. The 
baseline models were simple probit models with a Gaussian prior on the regression coefficients. The 
baseline models did not include the latent factors as predictors, and they assumed a default prior 
distribuƟon for the species responses (N(0, 10) for the intercept and N(0, 1) for fixed effect 
coefficients). In the CORAL models, we included the latent factors as predictors, and assumed the 
condiƟonal prior distribuƟon based on Eqs. 3-5. We obtained 5000 samples aŌer 2500 transient 
iteraƟons for each species for both the baseline and CORAL models using MCMCpack43. 

For each species, we summarized the CORAL model in terms of the mean 𝜇 and variance-covariance 
matrix Σ of the posterior samples. As the model contained 25 parameters (including the intercept), the 
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model for each species was thus represented by 25 + 25(25 + 1)/2 = 350 parameters (accounƟng 
for the symmetry of  Σ). The collecƟon of models for all the 255,188 species thus contained ca. 89 
million parameters, which resulted in the manageable file size of ca. 1.1 GB. We approximate the 
CORAL posterior through the mulƟvariate normal distribuƟon 𝑁(𝜇, Σ). For predictor vector 𝑥௜, the 
posterior mean of the linear predictor can be then computed as 𝑥௜

்𝜇, and the posterior mean of the 

occurrence probability as Φ(𝑥௜
்𝜇/ට1 + 𝑥௜

்Σ𝑥௜). 

Metrics used to evaluate model performance 

AUC is the probability a randomly chosen posiƟve sample has a higher predicted probability than a 
randomly chosen negaƟve sample. Tjur’s R2 is a pseudo-R2 value which can be read like any other R2 
value, but typically reaches lower values44. PRAUC is the area under the precision recall curve – this 
metric quanƟfies true posiƟves and is useful for analyzing highly imbalanced data where the minority 
class is of primary interest. The Brier score is the average squared error between predicted 
probabiliƟes and labels – this metric penalizes overconfidence. NegaƟve log-likelihood directly 
measures goodness of fit under the proposed Bernoulli model. The determinant of the posterior 
covariance determines the volume of a 95% credible interval for fixed effect coefficients under a 
Gaussian approximaƟon, smaller intervals meaning more confident inference. Together, these metrics 
provide a detailed summary of discriminaƟon ability (AUC, PRAUC), confidence (R2, Brier score), 
goodness of fit (negaƟve log-likelihood), and precision (log-determinant). 

Sampling of Malagasy arthropods 

The sampling was conducted as part of the worldwide LIFEPLAN biodiversity sampling design45. We 
selected 53 locaƟons across Madagascar that were relaƟvely undisturbed and where the vegetaƟon 
represents the condiƟons of the local environment. 28 of the sites were sampled in a spaƟally nested 
sampling design with decreasing distances between them (50 km, 5 km and 500 m apart). The other 
25 sites were spread across different forested habitats in Madagascar (dry, lowland and montane 
forests), at elevaƟons ranging from 8 to 1592 MASL. We conƟnuously collected one-week samples of 
flying arthropods in 95% ethanol using Malaise traps (ez-Malaise Trap, MegaView Science Co.) For a 
detailed descripƟon of the sampling, sample shipping and handling, and steps related to DNA 
extracƟon and sequencing, we refer to the LIFEPLAN Malaise sample metabarcoding protocol46. 

The CORAL method can be applied to sample x species occurrence data generated by a wide variety of 
detecƟon technologies and analysis pipelines.  In this paper, we applied CORAL to DNA sequence data 
analyzed using the OpƟmOTU bioinformaƟcs pipeline38, which was originally developed for the Global 
Spore Sampling Project47 and updated to apply to arthropod COI sequence data as part of the LIFEPLAN 
biodiversity sampling project45. The OpƟmOTU workflow for COI sequence data consists of primer 
removal, quality filtering, denoising, de novo and reference-based chimera removal, flagging likely 
non-animal sequences, removal of putaƟve nuclear-mitochondrial pseudogenes, probabilisƟc 
taxonomic assignment, and finally taxonomically-guided hierarchical clustering. The OpƟmOTU 
pipeline is implemented using the targets 1.5.1 workflow management package48, here executed using 
the crew 0.9.049 and crew.cluster 0.3.050 backends in R 4.2.351 on the PuhƟ cluster at CSC – IT Center 
For Science, Finland. This yielded a full taxonomic tree with approximate placeholder taxa to group 
those sequences which could not be reliably idenƟfied. 

AddiƟonal references 

43. MarƟn, A. D., Quinn, K. M. & Park, J. H. MCMCpack: Markov chain Monte Carlo in R. J Stat 
SoŌw 42, 1 (2011). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2025. ; https://doi.org/10.1101/2024.08.21.608960doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.21.608960
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

19 
 

44. Abrego, N. & Ovaskainen, O. EvaluaƟng the predicƟve performance of presence–absence 
models: Why can the same model appear excellent or poor? Ecol Evol 13, e10784 (2023). 

45. Hardwick, B. et al. LIFEPLAN: A worldwide biodiversity sampling design. PLoS One 19, 
e0313353 (2024). 

46. deWaard, J. R. et al. LIFEPLAN Malaise sample metabarcoding v1. Preprint at 
hƩps://doi.org/10.17504/protocols.io.5qpvokn3xl4o/v1 (2024). 

47. Ovaskainen, O. et al. Global Spore Sampling Project: A global, standardized dataset of 
airborne fungal DNA. Sci Data 11, 561 (2024). 

48. Landau, W. M. The targets R package: a dynamic Make-like funcƟon-oriented pipeline toolkit 
for reproducibility and high-performance compuƟng. J Open Source SoŌw 6, 2959 (2021). 

49. Landau, W. M. crew: A Distributed Worker Launcher Framework. CRAN: Contributed Packages 
Preprint at hƩps://doi.org/10.32614/CRAN.package.crew (2023). 

50. Landau, W. M., Levin, M. G. & Furneaux, B. crew.cluster: Crew Launcher Plugins for TradiƟonal 
High-Performance CompuƟng Clusters. CRAN: Contributed Packages Preprint at 
hƩps://doi.org/10.32614/CRAN.package.crew.cluster (2023). 

51. R Core Team. R: A language and environment for staƟsƟcal compuƟng. R FoundaƟon for 
StaƟsƟcal CompuƟng, Vienna, Austria. URL hƩps://www.R-project.org/. Preprint at (2023). 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2025. ; https://doi.org/10.1101/2024.08.21.608960doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.21.608960
http://creativecommons.org/licenses/by-nc-nd/4.0/

