

1 **Tree nursery environments and their effect on early trait variation**

2 Annika Perry<sup>1\*</sup>, Joan K. Beaton<sup>2</sup>, Jenni A. Stockan<sup>2</sup>, Glenn R. Iason<sup>2</sup>, Joan E.  
3 Cottrell<sup>3</sup> and Stephen Cavers<sup>1</sup>

4 <sup>1</sup>UK Centre for Ecology & Hydrology (UKCEH), Bush Estate, Midlothian, EH26 0QB,  
5 UK

6 <sup>2</sup>Ecological Sciences, James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH,  
7 UK

8 <sup>3</sup>Northern Research Station, Forest Research, Roslin, EH25 9SY, UK

9 \*Corresponding author: [annt@ceh.ac.uk](mailto:annt@ceh.ac.uk)

10 **Abstract**

11 Despite the major role of nurseries in raising young plants and trees prior to  
12 transplantation, not enough is known about how the nursery climate impacts the  
13 growth and development of plants from germination through to maturity. It is  
14 important for forestry practitioners to understand the effect that different nursery  
15 environments may have on early stage growth as these may exceed differences due  
16 to genetic variation and can confound the use of early stage traits for selection. Here,  
17 a replicated progeny-provenance experiment of the economically and ecologically  
18 important species Scots pine (*Pinus sylvestris* L.) was established in three  
19 environmentally distinct nurseries in Scotland and traits including survival, growth,  
20 form and phenology were measured. Temperature variation and photoperiod were  
21 the only uncontrolled environmental variables during this period, and their effect on  
22 measured traits was found to be significant among nurseries from the first growing  
23 season onwards. Trait interactions were not consistent between nurseries, indicating  
24 that the effectiveness of using proxy traits to select for desirable characteristics may  
25 depend on the environment in which the trees are grown. This study is the first in a  
26 series that will examine trait variation in Scots pine from seedlings to mature trees  
27 and highlights the importance of carefully considering and accounting for the nursery  
28 environment when growing trees for subsequent transplantation.

29 **Introduction**

30 Globally, forests function as the major terrestrial carbon sink (Pan *et al.* 2011) and  
31 increasing the area of forest cover is vital to achieving net zero targets (Westaway *et*  
32 *al.* 2023). In addition, increased forest cover would help tackle biodiversity loss,  
33 increase filtering of pollutants, provide natural management of flood risk and  
34 contribute to soil stabilisation and water purification (Holl and Brancalion 2020).  
35 Ongoing afforestation efforts create an increased need for planting stock, which is  
36 most commonly supplied as nursery-grown saplings (Brancalion and Holl 2020) and  
37 this places the forest nursery in a pivotal and crucially important position. In Great

38 Britain alone, forest nurseries produced around 173 million saplings for the year  
39 2022-2023 (Forestry Commission 2023).

40 In their role as the primary location for raising young trees, choices made by  
41 nurseries have been shown to profoundly influence size and development of young  
42 trees, effects that may be observable long after transplantation. For example, the  
43 choice of fertiliser (Gruffman *et al.* 2012), growing medium (Heiskanen and Rikala  
44 2000),<sup>1</sup> container type, root management, watering regime (Villar-Salvador *et al.*  
45 1999) and timing of operational activities (such as transplantation, Luoranen 2018)  
46 during early life stages can affect root growth, seedling morphology, and  
47 susceptibility to pests and pathogens (Selander and Immonen 1992). Whilst soil,  
48 water and nutrients can be controlled quite precisely by nursery managers, the  
49 geographic location of a nursery and any protection measures used, such as  
50 glasshouse cover, determine other critical components of the nursery environment.  
51 As variables like temperature and photoperiod can strongly affect the growth,  
52 development and biochemistry of seedlings (Downs and Borthwick 1956;  
53 Vapaavuori, Rikala and Ryppö 1992; Nerg *et al.* 1994; Domisch, Finér and Lehto  
54 2001) with effects lasting well beyond transplantation (Dhar *et al.* 2015), the nursery  
55 environment can be hugely influential.

56 The use of locally sourced seed is an explicit requirement when planting native  
57 species in the UK (Herbert, Samuel and Patterson 1999), but the location of the  
58 nursery in which the resulting plants are raised is rarely specified. For example, the  
59 contemporary guiding document for UK forestry – The UK Forestry Standard (Forest  
60 Research 2023) - does not comment on nursery management, nor does it connect  
61 nursery practice to its recommendations on seed sourcing. Previous publications,  
62 such as the Forestry Nursery Practice (Aldhous and Mason 1994), do consider site  
63 selection factors, but largely from the point of view of maximising plant performance,  
64 minimising risk and logistical considerations. In practice, choice of nursery is  
65 generally governed by what the market offers and by economics. Consequently, the  
66 nursery site may be environmentally distant from both the site of seed origin and  
67 planting site of raised seedlings. If the effect of the nursery environment on plant  
68 phenotype is large, then the effect of local seed sourcing may be minimal in  
69 comparison. A quantitative evaluation of the impact of the nursery environment on  
70 trait variance is therefore potentially very important to seed sourcing policy, nursery  
71 practice and to the long-term success of planting initiatives.

72 The impact of the early growing environment is also a critical factor to consider in  
73 tree improvement and breeding programmes, particularly with regards to its effect on  
74 survival and on variation in desirable traits. Traditional breeding practice, which  
75 makes selections at around half rotation length (Zobel and Talbert 1984), is highly  
76 inefficient for trees with long rotation times and there is much interest in methods for  
77 screening trait variation at the nursery stage (Wu *et al.* 1997). However, trait values  
78 measured prior to transplantation (ca. two years) rarely predict values in later years

79 (Burdon, Bannister and Low 1992; Hong, Fries and Wu 2015; Dong *et al.* 2018)  
80 (apart from species with very short rotation lengths, e.g. *Eucalyptus grandis* in  
81 Colombia, (Osorio, White and Huber 2003)). The use of 'proxy' traits to enable early  
82 selection relies on the stability of trait-trait relationships among environments, which  
83 may (Fukatsu *et al.* 2011) or may not be (Marron, Dillen and Ceulemans 2007)  
84 identifiable. Significant variation in age-age and trait-trait correlations among  
85 environments (Williams 1988; Osorio, White and Huber 2003) means that nursery  
86 effects may confound selection based on early evaluation of trait variation.

87 Identifying such nursery effects is particularly relevant for widely planted,  
88 economically relevant species. *Pinus sylvestris* L. (Scots pine) is a globally important  
89 tree species with a natural range that extends from southern Spain to northern  
90 Finland, and from western Scotland to far-eastern Russia. As a foundation species  
91 with high conservation value, it has been shown to exhibit high adaptive trait  
92 variation at both regional and international scales (Salmela *et al.* 2011; Perry *et al.*  
93 2016; Donnelly *et al.* 2018; Benavides *et al.* 2021; Ramírez-Valiente *et al.* 2021).  
94 *Pinus sylvestris* is also an economically valuable timber production species and is  
95 widely planted both within and beyond its natural range: it is estimated that it  
96 occupies more than 20 percent of the productive forest area in the EU (Mason and  
97 Alía 2000) and, within Great Britain, it is the second most abundantly grown species  
98 in tree nurseries after Sitka spruce (*Picea sitchensis*, Forestry Commission 2023).  
99 Globally, *Pinus sylvestris* grows (both naturally and planted) across a vast range. Its  
100 distribution is extremely environmentally heterogeneous and the species has  
101 adapted to survive across a massive spectrum of temperature profiles, from hugely  
102 variable to relatively stable. *Pinus sylvestris*' ability to grow across a huge  
103 environmental gradient is also associated with a strong phenotypic variation.

104 Common garden trials are widely used in forestry to quantify the genetic component  
105 of phenotypic variation. Replicated common gardens in different environments can  
106 be used to examine the environmental component of phenotypic variation. Nurseries,  
107 in their efforts to minimise environmental variation within a site and to standardise  
108 conditions for each plant, are functionally common gardens. By making use of a  
109 controlled, replicated common garden experimental design in nursery settings, we  
110 can identify the contribution of the nursery environment to phenotypic variation. This  
111 allows evaluation of the importance of the nursery environment to longer term  
112 development of the plant and establishes a baseline for interpreting field trial results  
113 in years to come. In addition, these results will enable age-age correlations to be  
114 explored as the trees mature in field trials.

115 For this study, we compared early life stage traits of *P. sylvestris* seedlings grown in  
116 three nursery environments (subsequently planted in multisite common garden field  
117 trials in 2012, for full description see Beaton *et al.*, 2022; Perry *et al.*, 2024b). The  
118 plants in each nursery trial had a common genetic background (seed collected  
119 systematically from across the natural range in Scotland and arranged in a fully

120 replicated design), were grown under standard soil, nutrient and watering regimes  
121 and were managed and measured by the same team of people. As the first paper in  
122 a series exploring adaptive trait variation in these trials we focus here exclusively on  
123 the effect of nursery environment on overall trait variation (although the experimental  
124 design allows for genetic effects on early trait variation to be examined, we do not  
125 deal with these here). We quantified the environmental effect on early growth and  
126 development and survival and examined relationships within and among traits.

127 **Methods**

128 *Source of material*

129 Seedling source and nursery environments are detailed in Beaton *et al.* (2022).  
130 Briefly, seed was collected from 10 mother trees from each of 21 provenances of *P.*  
131 *sylvestris* from across the native range in Scotland in March 2007. Following  
132 stratification, seeds were germinated at the James Hutton Institute, Aberdeen  
133 (latitude 57.133214, longitude -2.158764) in June 2007 and transplanted into  
134 individual pots. The full final collection consisted of 210 families (10 families from  
135 each of 21 provenances) each consisting of 24 half-sibling progeny (total 5,040  
136 individuals).

137 *Nursery environment*

138 After transfer into individual pots, and with the intention of eventually using these  
139 plants to establish field based provenance trials, 8 seedlings per family were moved  
140 to one of three nurseries (total 1,680 seedlings per nursery) in July 2007: an  
141 unheated nursery glasshouse (NG) at the James Hutton Institute, Aberdeen; an  
142 outdoor nursery in the west of Scotland (NW) at Inverewe Gardens, (latitude  
143 57.775714, longitude -5.597181); an outdoor nursery in the east of Scotland (NE) at  
144 the James Hutton Institute (location as above). In each nursery, trees were arranged  
145 in 40 randomised complete blocks, where each block contained two trees per family  
146 (total 42 trees). Watering was automatic in NG, and manually, as required, for NE  
147 and NW. The watering regime ensured that water was never limiting and  
148 waterlogging of seedlings was avoided. No artificial light was provided in any of the  
149 nurseries. In May 2010, the pots containing the seedlings from NG were moved  
150 outdoors to Glensaugh in Aberdeenshire (latitude 56.89, longitude -2.54).

151 Abiotic variation among nurseries was controlled as much as possible by growing the  
152 seedlings under standard soil, nutrient and watering regimes. The major sources of  
153 abiotic variation which could not be/were not controlled were temperature and wind,  
154 of which temperature was measured throughout their growth in the nursery  
155 environments. Biotic interactions were not controlled or measured during this period.

156 Hourly temperature was recorded at each of the nursery sites using data loggers  
157 from July 2007 until December 2010. Temperature data loggers were suspended 50

158 cm above the ground under an aluminium foil-covered funnel. Daily minimum,  
159 maximum and average temperatures (between 0000-2300 each day) and the daily  
160 temperature variances were calculated for each nursery over this period (Perry et al.,  
161 2024a). Daily variance was also partitioned into separate values for the day and  
162 night period, where day variance was estimated between the hours of sunrise and  
163 sunset between 0000-2300 and night variance was estimated between the hours of  
164 sunset and sunrise between 0000-2300. Sunset and sunrise for each day at each  
165 nursery were obtained from [www.timeanddate.com](http://www.timeanddate.com).

166 On the few occasions on which more than one hourly record per 24 hours was  
167 missing, the daily temperatures were replaced with average daily temperature data  
168 derived from the nearest weather stations to the nurseries (information provided by  
169 the National Meteorological Library and Archive, Met Office, UK) for the period July  
170 2007 to December 2010). Weather stations were: Poolewe (0.7 miles from NW);  
171 Craibstone (4.3 miles from NE and NG) and Glensaugh No 2 (0.1 miles from NG  
172 when moved outdoors to Glensaugh). Where weather station data were missing  
173 (only relevant for Poolewe over this period) they were replaced with measurements  
174 from the next closest weather station: Aultbea No 2 (4.2 miles from NW). Due to the  
175 differences in the location between the weather stations and the nurseries and the  
176 different methods of recording temperature, data from weather stations were  
177 adjusted prior to inclusion in the 'nursery temperatures' dataset by comparing daily  
178 temperatures across the whole period. Missing logger temperatures were directly  
179 replaced, where possible, by checking the weather station temperature at the  
180 missing time point and calculating the mean logger temperature recorded at all other  
181 instances that the same weather station temperature was recorded. In the few  
182 instances where there were no direct replacements, replacement logger values were  
183 obtained by taking the mean value for the three logger records either side of the  
184 missing logger data point in a dataset which was ordered by the weather station  
185 temperatures. For missing data in NG (prior to May 2010), replacement  
186 temperatures derived from NE were used instead of weather station data. Where  
187 there were days with missing hourly data for one of more of the nurseries,  
188 temperature variance could not be estimated and so these days were excluded from  
189 analyses for all nurseries to avoid skewing results.

190 The growing season length in each year at each nursery was estimated as the  
191 period bounded by a daily mean temperature  $>5$  °C for  $>5$  consecutive days and  
192 daily mean temperature  $<5$  °C for  $>5$  consecutive days (after 1st July). During the  
193 defined growing season period trees were assumed to be 'growing' whereas outwith  
194 the defined growing season trees were assumed to be 'not growing'. The previously  
195 described temperature variances were compared between these two different  
196 periods. The growing degrees were estimated for each day in the period July 2007 to  
197 December 2010 as the number of degrees above 5 °C. The cumulative growing  
198 degree days (GDD) were estimated by summing the growing degrees for each  
199 period leading up to phenology assessments at each nursery from 1 January in

200 2008. Chilling days were defined as the days in which the average maximum  
201 temperature did not exceed 5 °C.

202 *Phenotype assessments*

203 Seedling phenotypes were assessed for all individuals for a range of traits reflecting  
204 different life history characteristics: growth, form, phenology and survival.

205 *i. Growth traits*

206 Growth traits were assessed annually from 2007-2010. Annual increments in height  
207 (HI, mm) and basal stem diameter (DI, mm) were measured as the increase from the  
208 end of one growing season to the end of the next (for comparisons of height  
209 increment across multiple years, height in the first year of growth in 2007 is  
210 considered as the height increment for this year), whilst absolute height (HA, mm)  
211 and absolute basal stem diameter (measured at the root collar: DA, mm) were  
212 measured at the end of each growing season. Relative growth rate (HR) was  
213 estimated as the percentage increase in HI relative to HA in the previous year and  
214 was recorded for 2008 to 2010.

215 *ii. Form traits*

216 Form was measured annually from 2007-2009. Needle length (NL, mm) was  
217 measured for three randomly selected needles per tree and a mean value was  
218 obtained. The total number of buds (Bu) on each seedling was counted in 2008 and  
219 2009. Slenderness (HD, the ratio of HA to DA) was recorded in 2010 as a measure  
220 of the impact of multiple years of growth on tree form.

221 *iii. Phenology traits*

222 Phenology was assessed weekly during the spring and autumn of 2008. Budburst  
223 timing (BB) was defined as the number of days from 31 March 2008 to the time when  
224 newly emerged green needles were observed. The estimated proportion of trees  
225 which had burst bud in each nursery was calculated at each assessment. To  
226 compare budburst progression across the three sites, the point at which an  
227 estimated 50 % of trees had undergone budburst ( $BB_{50}$ ) was calculated as follows:

$$BB_{50} = (50 - B_{i<50}) - \frac{B_{i>50} - B_{i<50}}{A_{i>50} - A_{i<50}} + A_{i<50}$$

228 where  $i<50$  is the  $i$ th assessment performed at each nursery where < 50 % of trees  
229 had undergone budburst ( $i<50$ : NE = 2; NG = 3; NW = 2);  $i>50$  is the  $i$ th assessment  
230 where > 50 % of trees had undergone budburst ( $i>50$ : NE = 3; NG = 4; NW = 3);  $A$  is  
231 the variable associated with each assessment performed at each nursery ( $A$ : number  
232 of days after 31 March; or cumulative growing degree days since 1 January); and  $B$

233 is the percentage of trees observed with budburst at each nursery at each  
234 assessment.

235 Growth cessation (GC) was defined as the number of days from 10 September 2008  
236 to the date when no further height growth was observed by eye. To compare the  
237 growing season length at each nursery with the duration of growth observed in the  
238 seedlings, 'growth duration' (GD) was calculated for each seedling as the number of  
239 days between budburst and growth cessation.

240 *iv. Survival traits*

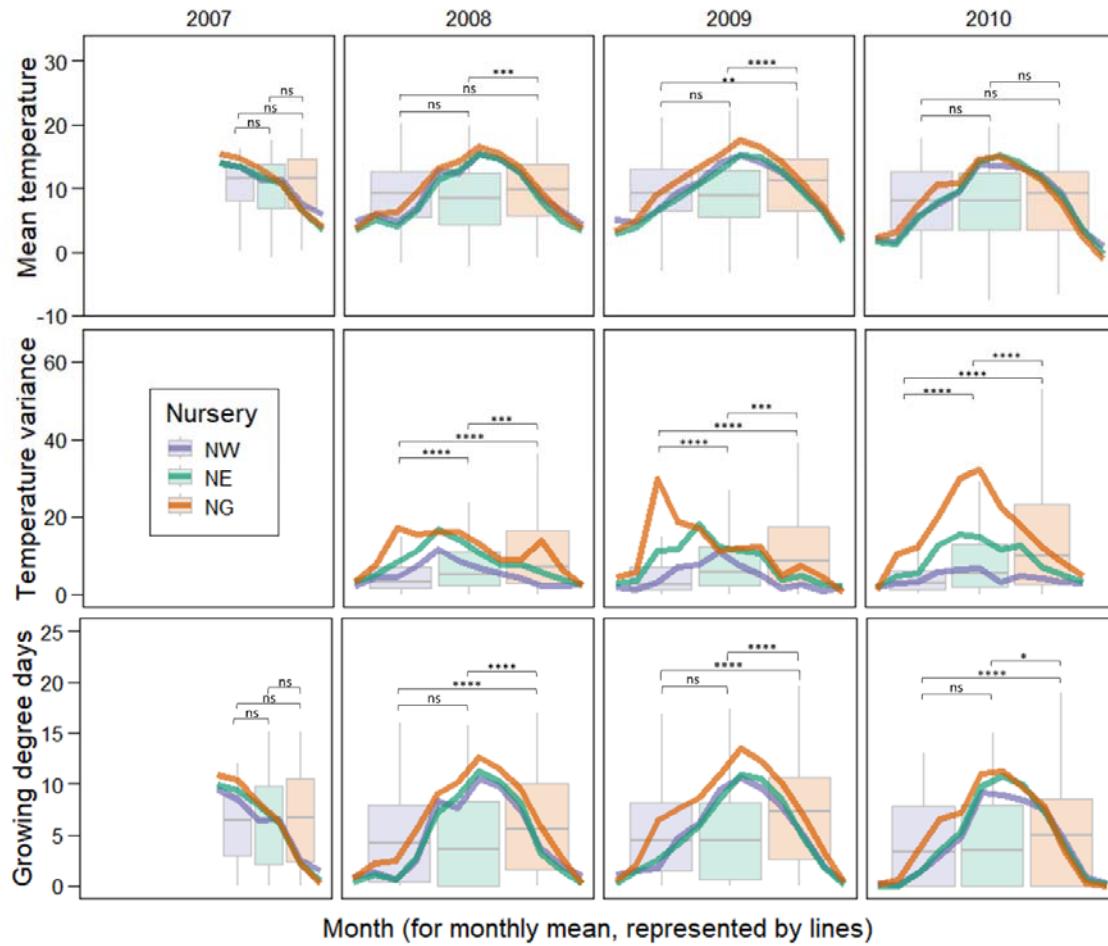
241 Mortality (number of trees which died by the end of a given growing season as a  
242 percentage of the total number of trees alive at the end of the previous growing  
243 season) was recorded each year from 2007 to 2010. Survival was recorded as the  
244 percentage of surviving trees in each nursery by 2010).

245 *Statistical analysis*

246 Paired t tests were performed using R (R Core Team 2024) to compare nursery  
247 means for annual climatic variables (mean daily temperature, daily variance, growing  
248 degree days) and climatic variables measured within and outside the growing  
249 season (day temperature variance and night temperature variance). Where there  
250 were days with missing hourly data for one of more of the nurseries, temperature  
251 variance could not be estimated and so these days were excluded from analyses for  
252 all nurseries to avoid skewing results.

253 Coefficient of variation, calculated as standard deviation divided by the mean, was  
254 estimated for each trait in each nursery (Figure S1). Where traits were measured in  
255 multiple years only the most recent year was used.

256 To evaluate relationships among traits, Pearson's correlation coefficients and  
257 significance values were estimated for trees growing in each nursery using the  
258 'Hmisc' package (Harrell Jr 2024) in R (R Core Team 2024). Absolute height,  
259 absolute basal stem diameter and slenderness were only included for the final  
260 assessment year (2010).


261 Nested analyses of variance (ANOVA) were performed in Minitab version 21 (Minitab  
262 2024) for all trees with nursery as a fixed effect and block nested within nursery as a  
263 random effect. Nested ANOVA was also used to analyse the distribution of variance  
264 among these traits. In order to account for variance due to relatedness and/or  
265 phenotypic plasticity which would otherwise fall within the residual variance,  
266 additional terms (provenance; family nested within provenance; a nursery and  
267 provenance interaction term) were included but were not considered separately,  
268 given that the focus of this study is on the impact of environment on trait variation.  
269 Tukey's post-hoc tests were performed to determine whether mean values among  
270 nurseries were significantly different from one another for all traits and for mean

271 temperature, temperature variance (daily, day and night) and growing degree days  
272 for each year. ANOVAs were repeated with all terms included as random effects to  
273 identify their contribution to the total variance.

274 **Results**

275 *Climatic variation among nurseries*

276 Trees growing at each of the three nurseries experienced broadly similar mean daily  
277 temperatures for each year between 2007 and 2010 which were not significantly  
278 different among nurseries (Figure 1) with the exception of NE and NG in both 2008  
279 and 2009, where mean daily temperature at NG was significantly warmer than at NE  
280 in both years and warmer in NG than NW in 2009. Trees at NG also experienced the  
281 fewest chilling days (total 119 between 2007 and 2010, compared with NE = 157 and  
282 NW = 123) and had higher daily GDD throughout the majority of the year (Figure 1)  
283 compared to the other two nurseries. In contrast, the daily temperature variance that  
284 trees were exposed to was consistently and significantly lower for trees growing at  
285 NW than for trees growing at either NG or NE (Figure 1). The daily temperature  
286 variance that trees experienced in NG and NE was also significantly different,  
287 although the magnitude of the difference was less than when comparing NW with  
288 either NE or NG (Figure 1).



289

290 *Figure 1. Climatic variation at the three nurseries for the period July 2007 to*  
291 *December 2010 when seedlings were growing in individual pots at the nursery sites.*  
292 *Lines indicate smoothed monthly means for each year. Boxplots indicate values for*  
293 *the entire year: solid grey lines indicate the median value; the bottom and top of the*  
294 *boxes indicate the first and third quartile; and the upper and lower whiskers extend to*  
295 *the highest and lowest values within 1.5 times for interquartile range (no outliers are*  
296 *shown for ease of visualisation. No data are included for daily temperature variance*  
297 *in 2007 due to the extent of missing hourly data for this year. Significant differences*  
298 *among nurseries within each year are indicated with asterisks (\*: p = 0.01-0.05; \*\*: p*  
299 *= 0.001-0.01; \*\*\*: p = 0.0001-0.001; \*\*\*\*: p < 0.0001; ns: not significant. Units: mean*  
300 *temperature, °C; daily temperature variance, °C<sup>2</sup>, growing degree days, number of*  
301 *degrees above 5 °C for each day.*

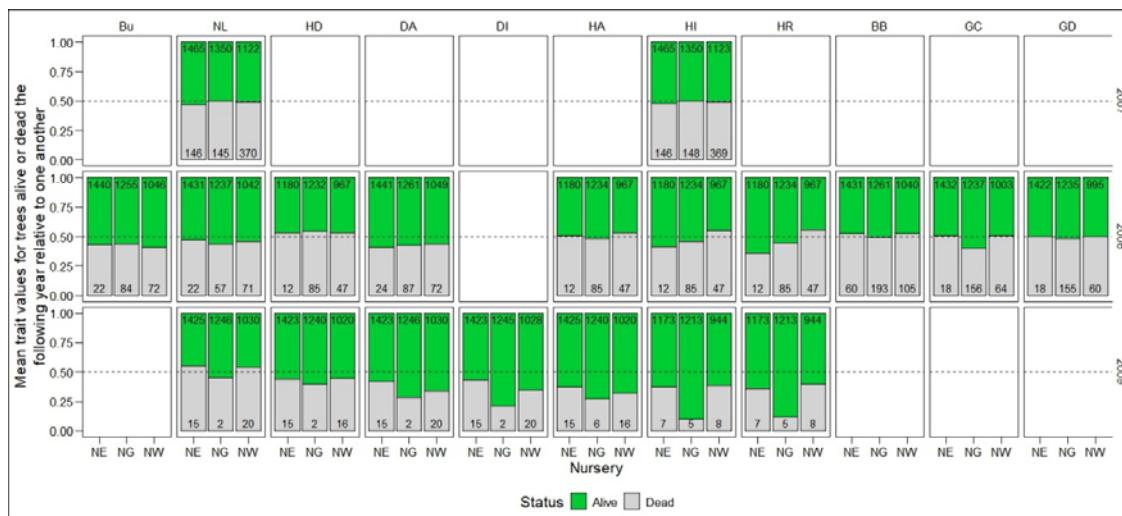
302 Differences in temperature variance were most pronounced among nurseries and  
303 consistent among years during the daytime within the growing season period (Figure  
304 S2). During this period, daytime variance was significantly higher at NG than at NE  
305 or NW, and higher at NE than at NW in all years. In contrast, variance during the  
306 night-time was lowest at NG compared to the outdoor nurseries in all years outside

307 the growing season (mean night temperature variance 2008-2010: NE = 2.40 °C<sup>2</sup>;  
308 NG = 1.35 °C<sup>2</sup>; NW = 2.17 °C<sup>2</sup>).

309 *Trait variation among nurseries*

310 Trees growing in NG had higher mean values for traits relating to growth than those  
311 growing outdoors in NE and NW by 2010 (Table 1): they had thicker stems and grew  
312 taller and faster, on average. They also had larger increments for both height and  
313 basal stem diameter in 2010. Trees grown in NE were the smallest and thinnest with  
314 the slowest growth rate and lowest increments on average in 2010. Mean values for  
315 traits relating to form and survival were lower, and budburst timing was earlier, for  
316 trees growing in NG than those growing in one or both outdoor nurseries (Table 1)  
317 with the exception of needle length.

318 *Table 1. Traits measured in individual seedlings, grouped into the following*  
319 *categories: 'Growth', 'Form', 'Phenology' and 'Survival'. Overall means and*  
320 *associated standard errors are provided for each nursery (NE, NG and NW)*  
321 *separately. Tukey pairwise comparisons are reported as a subscript letter (A, B, C)*  
322 *after the mean value: nurseries that do not share a letter (within traits for each year)*  
323 *have significantly different means. Number of observations for each nursery are in*  
324 *parentheses.*

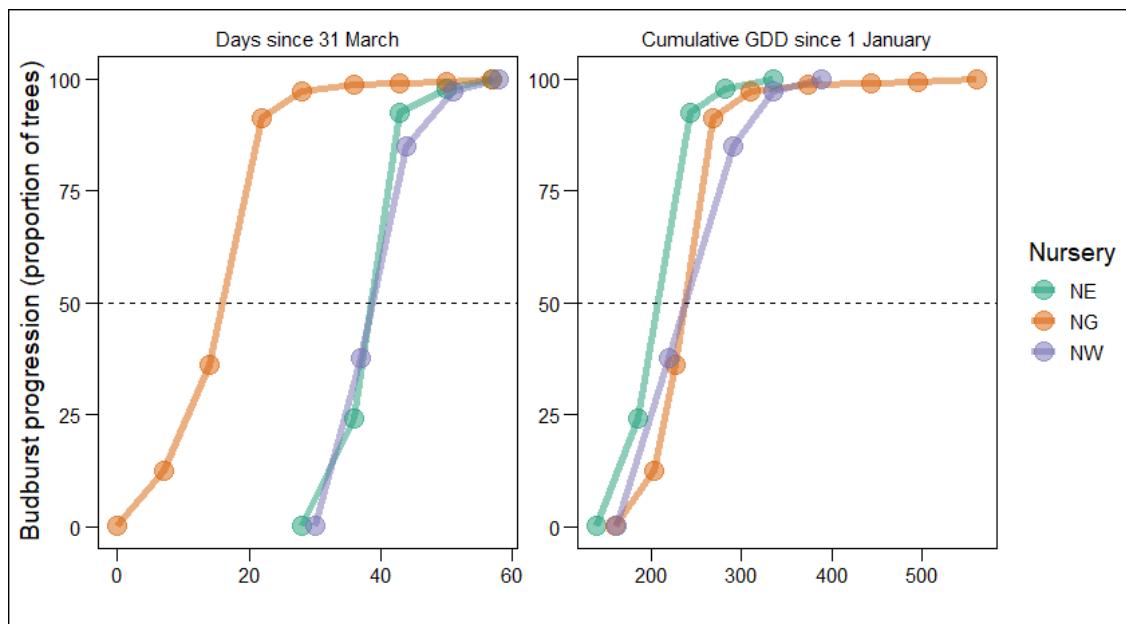

| Trait/year code* | Unit                | NE                                | NG                                | NW                                |
|------------------|---------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| <i>Growth</i>    |                     |                                   |                                   |                                   |
| DA08             | Mm                  | 3.58 <sup>A</sup> ± 0.02 (1465)   | 2.87 <sup>C</sup> ± 0.02 (1348)   | 2.96 <sup>B</sup> ± 0.03 (1121)   |
| DA09             | Mm                  | 5.74 <sup>A</sup> ± 0.02 (1438)   | 4.80 <sup>B</sup> ± 0.02 (1248)   | 4.69 <sup>C</sup> ± 0.04 (1050)   |
| DA10             | Mm                  | 6.77 <sup>C</sup> ± 0.04 (1419)   | 8.81 <sup>A</sup> ± 0.04 (1247)   | 7.19 <sup>B</sup> ± 0.07 (1029)   |
| DI09             | Mm                  | 2.14 <sup>A</sup> ± 0.02 (1438)   | 1.90 <sup>B</sup> ± 0.02 (1247)   | 1.71 <sup>C</sup> ± 0.03 (1048)   |
| DI10             | Mm                  | 1.08 <sup>C</sup> ± 0.02 (1416)   | 4.01 <sup>A</sup> ± 0.04 (1246)   | 2.48 <sup>B</sup> ± 0.04 (1029)   |
| HA08             | Mm                  | 81.12 <sup>C</sup> ± 0.5 (1192)   | 100.36 <sup>A</sup> ± 0.83 (1319) | 88.32 <sup>B</sup> ± 0.82 (1014)  |
| HA09             | Mm                  | 237.76 <sup>A</sup> ± 1.33 (1440) | 241.14 <sup>A</sup> ± 1.9 (1246)  | 216.9 <sup>B</sup> ± 2.51 (1036)  |
| HA10             | Mm                  | 322.80 <sup>C</sup> ± 1.69 (1416) | 382.73 <sup>A</sup> ± 2.03 (1245) | 334.87 <sup>B</sup> ± 4.13 (775)  |
| HI07             | Mm                  | 59.98 <sup>A</sup> ± 0.3 (1611)   | 57.30 <sup>B</sup> ± 0.32 (1498)  | 47.92 <sup>C</sup> ± 0.29 (1492)  |
| HI08             | Mm                  | 21.59 <sup>C</sup> ± 0.46 (1192)  | 42.93 <sup>A</sup> ± 0.73 (1319)  | 40.14 <sup>B</sup> ± 0.80 (1014)  |
| HI09             | Mm                  | 164.83 <sup>A</sup> ± 1.23 (1180) | 142.54 <sup>B</sup> ± 1.46 (1218) | 138.72 <sup>B</sup> ± 2.03 (952)  |
| HI10             | Mm                  | 84.20 <sup>C</sup> ± 0.75 (1415)  | 141.48 <sup>A</sup> ± 1.24 (1238) | 125.84 <sup>B</sup> ± 1.85 (767)  |
| HR08             | %                   | 40.11 <sup>C</sup> ± 1.08 (1192)  | 77.85 <sup>B</sup> ± 1.50 (1319)  | 90.59 <sup>A</sup> ± 2.15 (1014)  |
| HR09             | %                   | 212.06 <sup>A</sup> ± 2.05 (1180) | 150.43 <sup>C</sup> ± 1.87 (1218) | 162.66 <sup>B</sup> ± 2.45 (952)  |
| HR10             | %                   | 36.55 <sup>B</sup> ± 0.41 (1415)  | 65.81 <sup>A</sup> ± 1.07 (1237)  | 65.33 <sup>A</sup> ± 1.11 (767)   |
| <i>Form</i>      |                     |                                   |                                   |                                   |
| Bu08             | Count               | 7.14 <sup>A</sup> ± 0.07 (1462)   | 5.79 <sup>B</sup> ± 0.09 (1339)   | 4.55 <sup>C</sup> ± 0.09 (1118)   |
| HD08             | Ratio               | 22.56 <sup>C</sup> ± 0.16 (1192)  | 35.46 <sup>A</sup> ± 0.27 (1317)  | 29.74 <sup>B</sup> ± 0.28 (1014)  |
| HD09             | Ratio               | 41.67 <sup>C</sup> ± 0.21 (1438)  | 50.24 <sup>A</sup> ± 0.35 (1242)  | 45.56 <sup>B</sup> ± 0.35 (1036)  |
| HD10             | Ratio               | 48.50 <sup>A</sup> ± 0.25 (1414)  | 44.21 <sup>B</sup> ± 0.26 (1245)  | 47.76 <sup>A</sup> ± 0.36 (774)   |
| NL07             | Mm                  | 25.55 <sup>B</sup> ± 0.12 (1611)  | 26.22 <sup>A</sup> ± 0.12 (1495)  | 22.84 <sup>C</sup> ± 0.13 (1492)  |
| NL08             | Mm                  | 100.42 <sup>C</sup> ± 0.36 (1453) | 115.96 <sup>A</sup> ± 0.56 (1294) | 104.92 <sup>B</sup> ± 0.62 (1113) |
| NL09             | Mm                  | 31.21 <sup>C</sup> ± 0.22 (1440)  | 54.67 <sup>A</sup> ± 0.39 (1248)  | 49.56 <sup>B</sup> ± 0.37 (1050)  |
| <i>Phenology</i> |                     |                                   |                                   |                                   |
| BB08             | Days since 31/03/08 | 41.99 <sup>B</sup> ± 0.11 (1491)  | 19.14 <sup>C</sup> ± 0.19 (1454)  | 42.58 <sup>A</sup> ± 0.16 (1145)  |
| GC08             | Days since 10/09/08 | 44.61 <sup>B</sup> ± 0.53 (1450)  | 44.75 <sup>B</sup> ± 0.56 (1393)  | 57.61 <sup>A</sup> ± 0.35 (1067)  |
| GD08             | Days                | 165.71 <sup>C</sup> ± 0.53 (1440) | 188.76 <sup>A</sup> ± 0.57 (1390) | 178.32 <sup>B</sup> ± 0.37 (1055) |
| <i>Survival</i>  |                     |                                   |                                   |                                   |
| Su10             | %                   | 84.88                             | 74.23                             | 61.31                             |
| M07              | %                   | 4.11                              | 10.83                             | 10.83                             |
| M08              | %                   | 9.06                              | 9.88                              | 25.03                             |
| M09              | %                   | 1.64                              | 6.44                              | 6.41                              |
| M10              | %                   | 1.04                              | 1.27                              | 2.00                              |

325 \* Trait/year code: Letter(s) denote trait, number denotes year of measurement: traits - DA, absolute  
326 basal stem diameter; DI, basal stem diameter increment; HA, absolute height; HI, height increment;  
327 HR, relative growth rate; Bu, number of buds; HD, slenderness; NL, needle length; BB, budburst  
328 timing; GC, growth cessation; GD, growth duration; Su, survival; M, mortality; years - 07, 2007; 08,  
329 2008; 09, 2009; 10, 2010.

330 Trait means were significantly different among the three nurseries for each trait and  
331 each year with the exception of height increment in 2009 and relative growth rate in

332 2010, both among NG and NW, and growth cessation among NE and NG (Table 1).  
333 The length of needles was considerably longer in all nurseries in 2008 than in either  
334 2007 or 2009 (Figure S3, Table 1). Needles which grew in 2008 were, on average,  
335 3.93 (NE) to 4.59 (NW) times longer than those which grew in 2007, and 2.11 (NW)  
336 to 3.21 (NE) times longer than needles which grew in 2009. Overall survival was  
337 lower for trees in NW compared to the other two nurseries (Table 1) although this  
338 was due to a spike in mortality in 2008 which was thought to be largely due to biotic  
339 factors such as sand fleas, snails and fungal infection (although cause of mortality in  
340 each case was not recorded). Mortality was highest/joint-highest at NW in three of  
341 the four assessment years and was also high in the other year. Mortality at the other  
342 outdoor site (NE) was the lowest of all nurseries across all four years. By 2010, there  
343 were significant differences among nurseries in seedling survival. Mortality was  
344 highest in 2008 at NW (25.03 % annual mortality) which accounted for over half of  
345 the seedling deaths across the period for this nursery. By 2010, mortality was low for  
346 all nurseries.

347 Trees that died were those which tended, in the previous year, to be shorter and  
348 thinner, formed fewer buds and shorter needles, burst bud and stopped growing later  
349 than trees which remained alive (Figure 2). Exceptions to this were found in only six  
350 out of 57 comparisons (Figure 2): growth cessation in 2008 for trees growing in NG,  
351 some growth traits (absolute and increment height and relative growth rate) for trees  
352 growing in NW in 2008 and needle length in 2009 for trees growing in NW and NE.

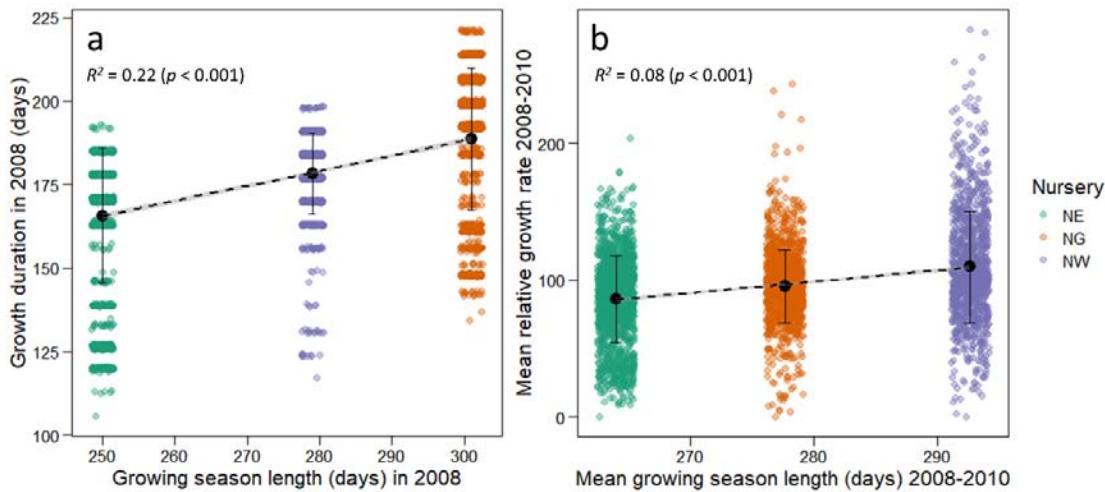



354 *Figure 2. Mean trait values for trees that were either alive or dead by the end of the*  
355 *year after the trait was measured, relative to one another. Where trait means were*  
356 *identical for each group, relative means are each 0.5 (indicated by dashed line).*  
357 *Where means are higher for trees which were alive in the following year, the*  
358 *proportion of the bar that is green exceeds 0.5. Numbers of trees in each group are*  
359 *indicated within the respective coloured section of each bar. Trait codes are given in*  
360 *Table 1.*

361 The relative difference in trait values between trees that were alive and those that  
362 died increased as trees got older (Figure 2), although differences over more than  
363 one year cannot be compared for traits relating to phenology. The numbers of trees  
364 in the 'dead' group also reduced over this period, from an average of 221 trees in  
365 2007 to 64 trees in 2008 and 10 trees in 2009 compared to those in the 'alive' group  
366 (average numbers of trees counted for each trait: 1,313 in 2007; 1,198 in 2008;  
367 1,191 in 2009).

368 *Associations between nursery climate and trait variation*

369 Timing of phenological traits measured in 2008 was significantly different among  
370 nurseries (Table 1): budburst was, on average, 23 days earlier at NG than at either  
371 NE or NW;  $BB_{50}$  was 38.7 and 38.8 days in NE and NW, respectively, but only 16  
372 days in NG (Figure 3). Over the same period, the difference in GDD among  
373 nurseries was much lower (Figure 3, NE: 207.3; NG: 237.7; NW: 238.1). Trees at NE  
374 required fewer cumulative GDD, and those at NW and NG required more cumulative  
375 GDD to complete budburst throughout the assessment period but only by around 30  
376 degree days. Trees at NW were exposed to two chilling days during the budburst  
377 period (5th and 6th April 2008) but the temperature environments were otherwise  
378 similar at the two outdoor nurseries (NE and NW, Figure 1).



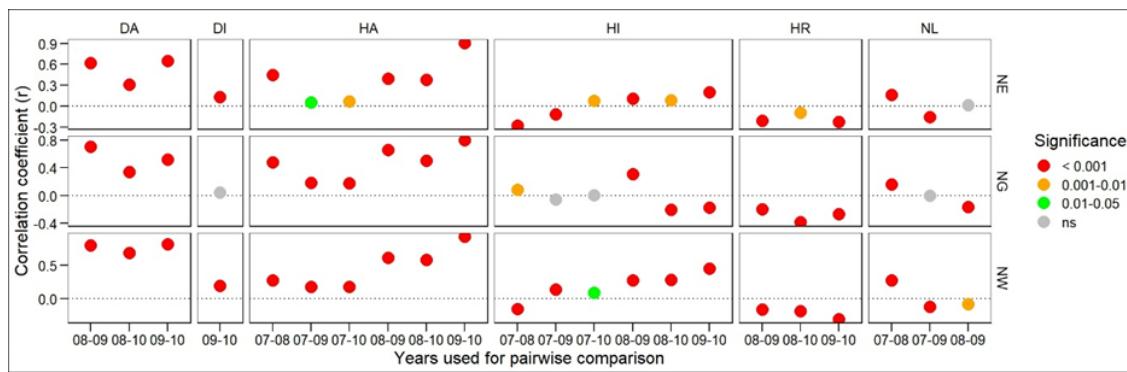

379

380 *Figure 3. Cumulative percentage of trees reaching budburst, expressed as days*  
381 *since 31 March 2008 (left) and cumulative GDD since 1 January 2008 (right). Circles*  
382 *indicate assessment days. The dotted line indicates the day when 50% of trees had*  
383 *burst bud ( $BB_{50}$ ).*

384 Despite significantly earlier initiation of budburst in NG, trees ceased growing at  
385 around the same time as those in NE (Table 1) which was on average about 13 days

386 earlier than in NW. The duration of growth (period between budburst and growth  
387 cessation) therefore varied on average between 166 and 189 days (NE and NG,  
388 respectively) with trees in NW actively growing for an average of 178 days each  
389 year. Mean growth duration was highly significantly positively associated with  
390 growing season length (Figure 4a) although the amount of variation in this trait at  
391 each site was substantial.



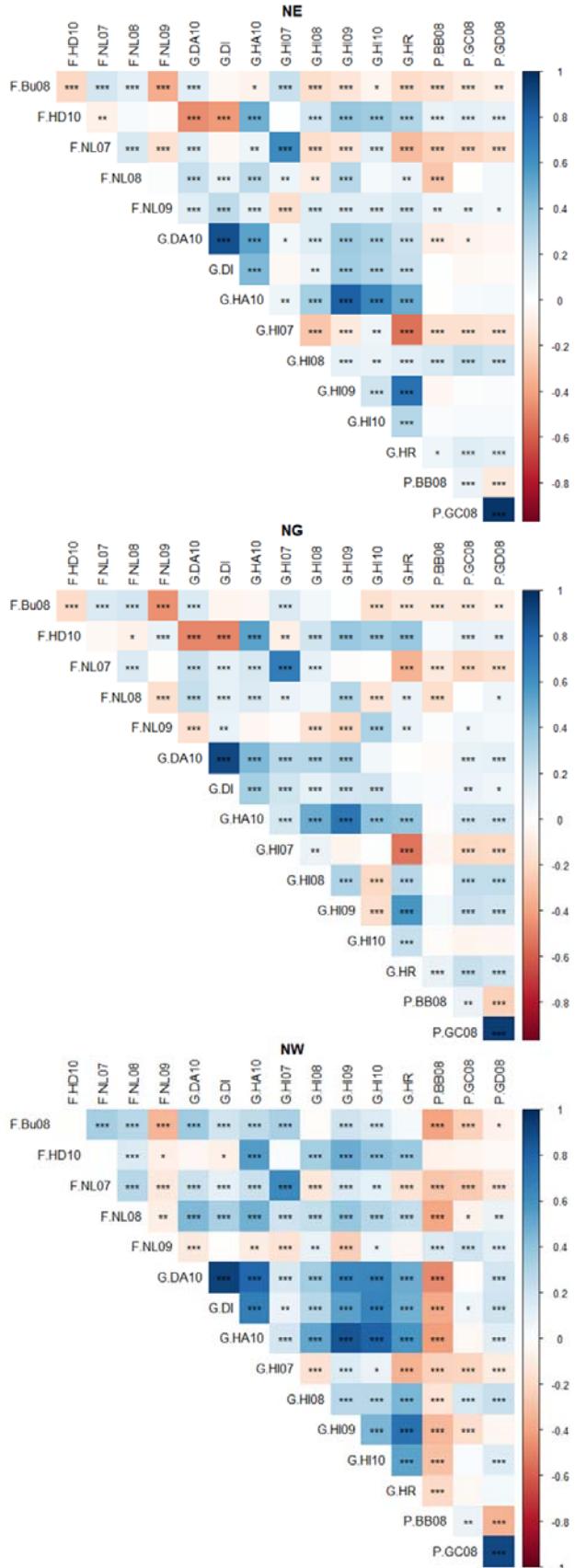

392  
393 *Figure 4. Linear regressions between growing season length (the period in days  
394 bounded by a daily mean temperature >5 °C for >5 consecutive days and daily mean  
395 temperature <5 °C for >5 consecutive days, after 1st July) and a) growth duration in  
396 2008; and b) relative growth rate 2008 to 2010. Regressions were performed on all  
397 data points. Coloured points are trait values for individual seedlings (jittered for  
398 clarity). Black points indicate trait mean for each nursery. Error bars are one  
399 standard deviation either side of the mean. Mean growth duration: number of days  
400 between budburst and growth cessation. Mean relative growth rate: mm per year as  
401 a proportion of its size at the end of the previous growing season.*

402 There was also a significant positive relationship between mean relative growth rate  
403 and the mean growing season length at each site between 2008 and 2010 (Figure  
404 4b). In-season performance in individual years may be strongly associated with the  
405 length of growing season in both the current and the previous year, due to  
406 provisioning of the bud during the growing season, but these comparisons will be  
407 more powerful using field rather than nursery data, due to the comparatively small  
408 number of datapoints available for the latter.

409 *Relationships within and among traits*

410 Age-age phenotypic correlations were performed for measurements of a given trait  
411 obtained in pairs of years for all trees in each nursery site separately (Figure 5). The  
412 majority of age-age phenotypic correlations were significant across each pair of  
413 years in each of the nurseries, with the exception of needle length (between years  
414 2007 and 2008 in NG; between years 2008 and 2009 in NE), basal stem diameter

415 increment (between years 2009 and 2010 in NG), and height increment (between  
416 years 2007 and 2009, and 2007 and 2010 both in NG). Traits were consistently  
417 either positively or negatively correlated among years, with the exception of height  
418 increment and needle length. Phenotypic correlations among height increments in  
419 different years for individuals in NG were negative when 2010 is included (in contrast  
420 to the same years in other nurseries for this trait) – this is the year during which the  
421 pots were moved outdoors from the glasshouse. The patterns of pairwise  
422 comparisons among the sites were more similar for the outdoor sites (NE and NW)  
423 than NG. Correlations generally increased in significance as the age of the trees  
424 increased and as the number of years between comparisons decreased (Figure 5).

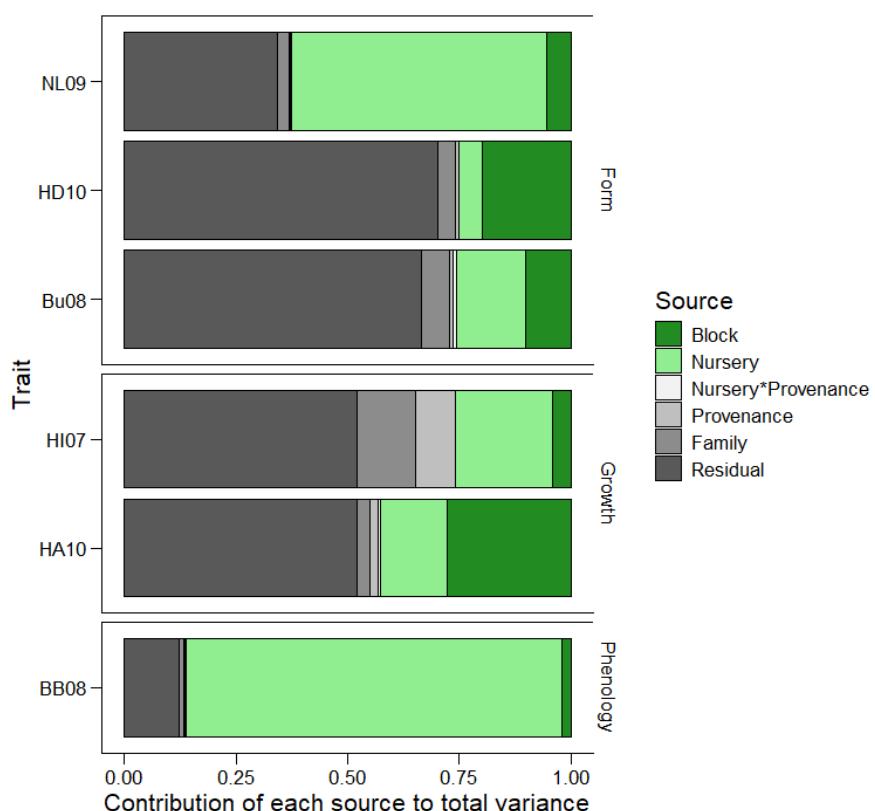



425  
426 *Figure 5. Correlation coefficient (r) and associated significance values (p) for a given*  
427 *trait among years at each nursery (NE, NG, NW). On x-axis, Year is shortened,*  
428 *whereby a pairwise comparison of a trait between years 2007 and 2010 is presented*  
429 *as '07-10'. Trait codes are detailed in Table 1. Height measured in the first year*  
430 *(HI07) has been included in both absolute height (HA) and height increment (HI)*  
431 *comparisons*

432 For simplicity, the number of traits measured across multiple years that were  
433 consistently significantly associated (in the same direction) among years were  
434 reduced prior to subsequent analyses, either to a single (most recent) assessment  
435 year (for traits for which successive measurements were not independent: DA, HA)  
436 or to a mean value among years (HR, DI). Traits which were not consistent among  
437 years (HI, NL) were considered separately for each year.

438 Pairwise comparisons among growth, form and phenology traits both within and  
439 among years (Figure 6) show that pairs of traits were more highly significantly  
440 correlated in NW than in either NG or NE, particularly among growth traits and  
441 among budburst and other traits. Relationships were often inconsistent among sites:  
442 of the 105 pairwise comparisons among traits, 21 were not consistent (i.e. not  
443 always either positive or negative, possibly due to the confounding effects of  
444 genotype  $\times$  environment interactions) among nurseries. Of the inconsistent  
445 correlations, nearly all (N = 17) involved needle length or height increment (Figure 6).  
446 Significantly associated growth traits were always positive, with the exception of  
447 height increment in 2007 in NE and NW and in all years at NG (Figures 6).

448 Phenology traits were highly significantly positively correlated with one another and  
449 were generally negatively correlated with traits related to form (with the exception of  
450 slenderness and needle length in 2009). Considering only traits that were measured  
451 in the same year (i.e. 2008 for phenology traits), days to budburst were negatively  
452 correlated with height increment in NW, positively correlated in NE and not  
453 associated in NG. Days to budburst were highly significantly negatively correlated  
454 with all growth traits at NW, whereas correlations were either not significant or  
455 positively significant for growth traits in NG and NE. In contrast, days to cessation of  
456 growth were highly positively correlated with most growth traits in NG (with the  
457 exception of height increment in 2007) but associations were much weaker and/or  
458 negatively correlated in the other nurseries. Thus, in general, a long growing season  
459 between budburst and growth cessation resulted in larger plants (Figure 6).




461 *Figure 6. Pairwise correlations for traits for Scots pine trees growing in each nursery*  
462 (*NE, NG, NW*); colour indicates value of Pearson correlation coefficient. Significance  
463 values: \*,  $p$  0.01-0.05; \*\*,  $p$  0.001-0.01; \*\*\*,  $p$  < 0.001.

464 For further analyses, traits within groups which were consistently highly significantly  
465 positively correlated with one another were reduced to a single representative trait  
466 (height increment 2008 to 2010, relative growth rate and absolute and increment  
467 basal stem diameter were all represented by absolute height in 2010; needle length  
468 in 2007 and 2008 were represented by number of buds; growth cessation was  
469 represented by budburst)

470 *Partitioning trait variance*

471 There were highly significant differences among nurseries (i.e. environmental  
472 variation over a large scale) as well among blocks within nurseries (environmental  
473 variation over a small scale) for every trait (Table S1). Environmental variation (block  
474 and nursery) accounted for more than half the total variance for budburst and needle  
475 length, close to half for absolute height and around one quarter for the remaining  
476 traits (slenderness, number of buds and height increment). Nursery accounted for a  
477 greater proportion of variation than block for needle length, number of buds, height  
478 increment and budburst (Figure 7), whereas the contribution of block to the total  
479 variance was greater than nursery for slenderness and absolute height.



480

481 *Figure 7. Proportion of variance in growth, form and phenology traits explained by*  
482 *mixed model factors: environmental factors are coloured in shades of green (nursery*  
483 *and block) and genetic/residual factors are coloured in shades of grey*  
484 *(nursery\*provenance, provenance, family, residual).*

485

## 486 **Discussion**

487 This study highlights the profound impact that nursery environment can have on trait  
488 variation in tree seedlings. The nurseries were exposed to the same nutrient, pot and  
489 watering regimes, came from the same genetic background and experienced similar  
490 average temperatures and monthly growing degree days. Differences in recorded  
491 temperature among the nurseries occurred during the daytime within the growing  
492 season, when daily temperature variance was much higher for trees growing in the  
493 nursery in the east of Scotland compared to the nursery in the west. Seedlings in the  
494 glasshouse nursery, in contrast, experienced high daily temperature variance (which  
495 was also higher than in the neighbouring outdoor nursery), but temperatures were  
496 also higher overall. The importance of the effect of warmer mean temperatures  
497 (Morison and Morecroft 2006) and extremes of temperature (Niu *et al.* 2014) on plant  
498 traits is increasingly well recognised, especially in the light of an anticipated increase  
499 in extreme weather events due to climate change (Herring *et al.* 2022). However, the  
500 contrasting effects of temperature variance and mean temperatures and their  
501 comparative impact on the growth and development of plants and trees, is less well  
502 understood.

503 In our study, all traits were strongly and significantly affected by the nursery  
504 environment: both at a large spatial scale (i.e. among nurseries) but also (and  
505 sometimes to a greater extent) at much finer spatial scales (i.e. among blocks within  
506 nurseries). The large spatial effect was particularly pronounced between the  
507 glasshouse and neighbouring outdoor nursery, highlighting the major impact that  
508 nursery type (glasshouse vs outdoor nursery) has on growing plants. While the main  
509 environmental difference among the nurseries adjacent (but of different types) to one  
510 another was mean temperature, we cannot exclude the possibility that other abiotic  
511 (e.g. wind speed, humidity) and/or biotic (e.g. symbionts, pests, pathogens) factors  
512 also played a part in the differences we observed.

513 Growing the seedlings under high temperature variance (resulting in more days at  
514 the extreme ends of the temperature range) but with the same mean temperature  
515 may lead to lower rates of growth. Chiang, Båkestad and Hoch (2020) reported  
516 significantly taller seedlings when grown in fixed or sinusoidal temperature regimes  
517 compared to the same species grown in pots outdoors with a naturally fluctuating  
518 and high temperature variance, but only in spring. When grown in the summer, the  
519 same seedlings grown in a fixed environment were reported to be significantly  
520 shorter than those grown in the outdoor environment, possibly because the lower  
521 temperatures that seedlings were exposed to in the outdoor environment in the

522 spring did not occur during summer. The extent of the difference between day time  
523 and night time temperatures is also known to directly influence key plant traits  
524 relating to growth and form, such as internode length and height (Myster and Moe  
525 1995). Similarly, the allocation of resources to traits relating to tree form in this study  
526 appeared to be more important in the nursery with both high variance and low mean  
527 temperatures, indicating that a more conservative growth strategy was potentially  
528 balanced by investment in traits relating to tree form (Climent *et al.* 2024), such as  
529 number of buds.

530 The role of mean temperature on plant growth is better understood, with higher  
531 mean temperatures generally positively associated with higher rates of growth  
532 (measured as specific leaf area (Poorter *et al.* 2010). Our study supported this  
533 finding, with seedlings grown in a nursery with warmer mean temperatures showing  
534 higher rates of growth. Although the temperatures of our nurseries were not  
535 controlled, and only a few nursery environments were studied, the environments are  
536 analogous to those used in the forestry industry (i.e. outdoor nurseries and  
537 glasshouses). We only recorded air temperature, but soil temperature may also have  
538 been an important factor for the growth and development of the seedlings. The latter  
539 is unlikely to have been consistent among the glasshouse and outdoor  
540 environments: it has been reported that soil temperature inside pots tracks but lags  
541 behind the air temperature until solar radiation falls directly onto pots, when the  
542 temperature of the soil within the pots can rise to more than 20 °C higher than the air  
543 temperature (Poorter *et al.* 2016) and that increased soil temperature is associated  
544 with increased growth rate (Weih and Karlsson 1999) in saplings.

545 Growing Scots pine seedlings in nursery environments with different temperature  
546 means, variances and photoperiods also had strong effects on phenological  
547 variation. Budburst timing was strongly associated with growing degree days at all  
548 sites but was not fully explained by differences in this environmental variable among  
549 sites. This suggests a complex relationship between warm temperatures (i.e.  
550 growing degree days) and cold temperatures (often referred to as the chilling  
551 requirement), although the number of nurseries/years assessed in this study is  
552 insufficient to enable firm conclusions to be reached on how these two variables  
553 interact to result in the observed phenotype. Plant species generally cease growing  
554 in response to decreasing photoperiod (Nitsch 1957; Singh *et al.* 2017) although  
555 some may respond to decreasing temperature instead (Heide and Prestrud 2005). In  
556 our study, trees growing in neighbouring nurseries, outside or within a glasshouse,  
557 experienced the same photoperiod (although the light intensity through the glass  
558 may have been different) but different mean temperatures. Whereas budburst  
559 occurred much earlier in the glasshouse than in the neighbouring outdoor nursery  
560 (reflecting the different cumulative growing degree days over the preceding period),  
561 growth cessation occurred on average at a similar time which suggests photoperiod  
562 to be the main driver.

563 The accuracy of using young seedlings to predict economic traits at harvest is of  
564 major interest and importance in the genetic testing of progeny for forestry (Lee  
565 2002; Hong, Fries and Wu 2015), but detailed early and late assessments of the  
566 same tree seedlings are rarely available. Within these experimental trials, which  
567 have since been transplanted to field sites in 2012, the same traits will continue to be  
568 measured into maturity enabling age-age correlations from seedling to mature trees  
569 to be estimated with high resolution (many traits will be measured annually).  
570 Although the assessments presented here were confined to the early years of growth  
571 this study nevertheless highlights the relative consistency of age-age correlations  
572 among the different nursery environments, with the exception of height increment in  
573 NG in the years before and after trees were moved outside. The latter showed that  
574 plants experienced a shock as a result of the move outdoors which impacted their  
575 subsequent growth. The well-documented phenomenon of 'transplantation shock' is  
576 known to induce changes to growth and development (Close, Beadle and Brown  
577 2005) whereby growth is impaired for a period following transfer. The accuracy of  
578 age-age correlations should also, therefore, be reviewed in the context of the general  
579 environment in which the trees are measured and the specific environment the trees  
580 have been exposed to in the recent past.

581 The interactions among different traits were also affected by the nursery that plants  
582 were grown in. For example, while timing (i.e. lateness) of growth cessation was  
583 positively correlated with most growth traits in the protected glasshouse  
584 environment, these relationships were weaker in outdoor environments, possibly  
585 because these traits were not responding to a single climatic variable but to a  
586 combination of many. Similarly, traits relating to form were inconsistent in their  
587 relationship with growth traits among nurseries, with more positive associations  
588 observed in the nurseries with higher temperature variance compared to the one with  
589 low temperature variance.

590 Given the crucially important role of nurseries in the supply chain for forestry and  
591 tree planting, the success of global tree planting efforts depends strongly on the  
592 quality of plants they produce. Here we have shown the vital importance of properly  
593 understanding the strength and persistence of nursery environment effects on tree  
594 seedling growth and development. This knowledge has implications both for genetic  
595 testing of material and also for operational tree production. For example, if analyses  
596 do not also incorporate data relating to the early environment of the tested trees, an  
597 important component of variation might be omitted and may lead to over- or under-  
598 estimation of breeding values. Indeed, environmental variation over both small  
599 (within sites, measured using blocks) and large (among sites) scales can have  
600 significant effects on trait variation and should be carefully recorded and used as  
601 covariates in subsequent analyses. For production forestry, although best practice  
602 may be to target specific nurseries for the growth of particular species and/or for  
603 planting in particular environments (Jaenicke, 1999), economic and practical  
604 constraints often render practitioner choice of nursery environment relatively limited.

605 In this case, improved knowledge of the potential outcomes associated with nursery  
606 environment could help practitioners to better understand field traits as an outcome  
607 of the environment their trees experienced in the nursery. To this end we  
608 recommend routinely monitoring and making available nursery environmental data  
609 alongside plant provenance data on shipment from the nursery. The significant effect  
610 of nursery environment on all aspects of phenotype reported in this study highlights  
611 the cumulative and divergent effect that the early growing environment can have, an  
612 effect that may have particularly profound and persistent effects on long-lived  
613 species like trees. These findings will be investigated and tested further for the  
614 subset of trees that were transplanted to field locations in 2012, using measurements  
615 made over many subsequent years.

## 616 **Conclusions**

617 Despite the relatively low levels of environmental variation recorded among the three  
618 nurseries, there were significant effects on seedling mortality, variation in traits  
619 relating to growth, form and phenology and on interactions among traits. These  
620 findings have implications for the choice of nursery in which plants are raised given  
621 that effects may persist and affect subsequent performance in the field. Growers  
622 may wish to assess whether plants should be preferably raised in less benign  
623 nursery environments in order to minimise the shock they receive when transplanted.  
624 In any case, we are confident of the importance of measuring and collecting data at  
625 an early stage in order to compare trait variation throughout the lifetime of trees, from  
626 seedling through to maturity: an approach which would be of benefit for plants grown  
627 for both research and for operational purposes. The trees in this study have now  
628 been transplanted to three field environments (Beaton *et al.* 2022) and subsequent  
629 analysis explores the persistence of early environment carry over effects following  
630 transplantation (Perry *et al.*, 2024b). Regular measurements on the trees since  
631 transplantation will also enable ontogenetic effects on intraspecific genetic variation  
632 to be characterised for a wide range of phenotypic traits and for age-age correlations  
633 from seedling to maturity to be estimated.

## 634 **Funding**

635 This work was supported by the newLEAF project (NE/V019813/1) under the UK's  
636 '[Future of UK Treescapes](#)' programme, which was led by UKRI-NERC, with joint  
637 funding from UKRI-AHRC & UKRI-ESRC, and contributions from Defra and the  
638 Welsh and Scottish governments.

639 This work was also part of PROTREE, a project supported by grant BB/L012243/1,  
640 funded jointly by UKRI's BBSRC, NERC, & ESRC and Defra, the Forestry  
641 Commission and the Scottish Government, under the Tree Health and Plant  
642 Biosecurity Initiative

643 The James Hutton Institute contribution to this work was supported by Scottish  
644 Government's Rural & Environment Science & Analytical Services Division, through  
645 their Strategic Research Programmes (2006–2011, 2011–2016 and 2016–2022).

646 **Acknowledgements**

647 We thank Stewart Mackie and staff at Forest and Land Scotland (Selkirk Office), the  
648 Forestry Commission, National Trust for Scotland, and Donald Barrie (Glensaugh)  
649 for their help in locating, establishing and securing access to sites.

650 **Conflict of interest statement**

651 None declared

652 **Data availability statement**

653 The data underlying this article are available from the Environmental Information  
654 Data Centre (EIDC, <https://eidc.ac.uk>), at <https://doi.org/10.5285/29ced467-8e03-4132-83b9-dc2aa50537cd>. Temperature and temperature variances at each nursery  
655 are available at <https://doi.org/10.5285/81841d93-41e2-47a7-b15a-92d1e1cf07f7>.  
656

657 **References**

658 Aldhous JR, Mason WL. Forest Nursery Practice. Forest Research, Farnham,  
659 1994:296.

660 Beaton J, Perry A, Cottrell J *et al.* Phenotypic trait variation in a long-term multisite  
661 common garden experiment of Scots pine in Scotland. *Sci Data* 2022;9:671.

662 Benavides R, Carvalho B, Matesanz S *et al.* Phenotypes of *Pinus sylvestris* are more  
663 coordinated under local harsher conditions across Europe. *J Ecol* 2021, DOI:  
664 10.1111/1365-2745.13668.

665 Brancalion PHS, Holl KD. Guidance for successful tree planting initiatives. *J Appl  
666 Ecol* 2020, DOI: 10.1111/1365-2664.13725.

667 Burdon RD, Bannister MH, Low CB. Genetic survey of *Pinus radiata*. 5: Between-  
668 trait and age-age correlations for growth rate, morphology, and disease  
669 resistance. *New Zealand Journal of Forestry Science* 1992;22:211–27.

670 Chiang C, Bánkestad D, Hoch G. Reaching natural growth: the significance of light  
671 and temperature fluctuations in plant performance in indoor growth facilities.  
672 *Plants* 2020;9, DOI: 10.3390/plants9101312.

673 Close DC, Beadle CL, Brown PH. The physiological basis of containerised tree  
674 seedling 'transplant shock': a review. *Australian Forestry* 2005;68:112–20.

675 Climent, J., Alía, R., Karkkainen, K. *et al.* Trade-offs and Trait Integration in Tree  
676 Phenotypes: Consequences for the Sustainable Use of Genetic Resources.  
677 *Current Forestry Reports* 2024;10:196–222.

678 Dhar A, Balliet N, Hawkins CD *et al.* Bud flush phenology and nursery carryover  
679 effect of paper birch provenances. *iForest* 2015;8:809–17.

680 Domisch T, Finér L, Lehto T. Effects of soil temperature on biomass and  
681 carbohydrate allocation in Scots pine (*Pinus sylvestris*) seedlings at the  
682 beginning of the growing season. *Tree Physiol* 2001;21:465–72.

683 Dong M, Fan Y, Wu Z *et al.* Age–age correlations and early selection for growth  
684 traits in 40 half-sib families of *Larix principis-rupprechtii*. *Journal of Forestry*  
685 *Research* 2018:1–7.

686 Donnelly K, Cavers S, Cottrell JE *et al.* Cryptic genetic variation and adaptation to  
687 waterlogging in Caledonian Scots pine, *Pinus sylvestris* L. *Ecol Evol*  
688 2018;8:8665–75.

689 Downs RJ, Borthwick HA. Effects of photoperiod on growth of trees. *Botanical*  
690 *Gazette* 1956;117:310–26.

691 Falconer DS, Mackay TFC. *Introduction to Quantitative Genetics*. 4th ed. Essex, UK:  
692 Longman, 1996.

693 Forestry Commission. *Tree Supply Report*. UK Government, 2023.

694 Forest Research. *The UK Forestry Standard*. Forest Research, Farnham, 2023:139.

695 Fukatsu E, Tamura A, Takahashi M *et al.* Efficiency of the indirect selection and the  
696 evaluation of the genotype by environment interaction using Pilodyn for the  
697 genetic improvement of wood density in *Cryptomeria japonica*. *J For Res*  
698 2011;16:128–35.

699 Gebhardt-Henrich SG, Van Noordwijk AJ. Nestling growth in the Great Tit I.  
700 Heritability estimates under different environmental conditions. *J Evol Biol*  
701 1991;4:341–62.

702 Gruffman L, Ishida T, Nordin A *et al.* Cultivation of Norway spruce and Scots pine on  
703 organic nitrogen improves seedling morphology and field performance. *Forest*  
704 *Ecology and Management* 2012;276:118–24.

705 Harrell Jr FE. *Hmisc: Harrell Miscellaneous*. R package, 2024.

706 Heide OM, Prestrud AK. Low temperature, but not photoperiod, controls growth  
707 cessation and dormancy induction and release in apple and pear. *Tree Physiol*  
708 2005;25:109–14.

709 Heiskanen J, Rikala R. Effect of Peat-based Container Media on Establishment of  
710 Scots Pine, Norway Spruce and Silver Birch Seedlings after Transplanting in  
711 Contrasting Water Conditions. *Scandinavian Journal of Forest Research*  
712 2000;15:49–57.

713 Herbert R, Samuel S, Patterson G. *Using Native Stock for Planting Native Trees and*  
714 *Shrubs*. Forestry Commission, 1999.

715 Herring SC, Christidis N, Hoell A *et al.* Explaining Extreme Events of 2020 from a  
716 Climate Perspective. *Bull Amer Meteor Soc* 2022;103:S1–129.

717 Hoffmann AA, Merilä J. Heritable variation and evolution under favourable and

718       unfavourable conditions. *Trends Ecol Evol* 1999;14:96–101.

719       Holl KD, Brancalion PHS. Tree planting is not a simple solution. *Science*  
720       2020;368:580–1.

721       Hong Z, Fries A, Wu HX. Age trend of heritability, genetic correlation, and efficiency  
722       of early selection for wood quality traits in Scots pine. *Can J For Res*  
723       2015;45:817–25.

724       Jaenicke H. Good tree nursery practices: practical guidelines for research nurseries.  
725       World Agroforestry Centre; 1999.

726       Lee SJ. Selection of parents for the Scots pine breeding population in Britain.  
727       *Forestry* 2002;75:293–303.

728       Luoranen J. Autumn versus spring planting: the initiation of root growth and  
729       subsequent field performance of Scots pine and Norway spruce seedlings. *Silva*  
730       *Fenn* 2018;52, DOI: 10.14214/sf.7813.

731       Marron N, Dillen SY, Ceulemans R. Evaluation of leaf traits for indirect selection of  
732       high yielding poplar hybrids. *Environ Exp Bot* 2007;61:103–16.

733       Mason WL, Alía R. Current and future status of Scots pine (*Pinus sylvestris* L.)  
734       forests in Europe. *For Syst* 2000;9:317–35.

735       Minitab. *Minitab Statistical Software*. Minitab, 2024.

736       Morison JIL, Morecroft MD eds. *Plant Growth and Climate Change*. Oxford, UK:  
737       Blackwell Publishing Ltd, 2006.

738       Myster J, Moe R. Effect of diurnal temperature alternations on plant morphology in  
739       some greenhouse crops—a mini review. *Sci Hortic* 1995;62:205–15.

740       Nerg A, Kainulainen P, Vuorinen M et al. Seasonal and geographical variation of  
741       terpenes, resin acids and total phenolics in nursery grown seedlings of Scots  
742       pine (*Pinus sylvestris* L.). *New Phytologist* 1994;128:703–13.

743       Nitsch JP. Growth response of woody plants to photoperiodic stimuli. *Proceedings*  
744       *American Society for Horticultural Science* 1957;10:512–25.

745       Niu S, Luo Y, Li D et al. Plant growth and mortality under climatic extremes: An  
746       overview. *Environ Exp Bot* 2014;98:13–9.

747       Osorio LF, White TL, Huber DA. Age-age and trait-trait correlations for *Eucalyptus*  
748       grandis Hill ex Maiden and their implications for optimal selection age and  
749       design of clonal trials. *Theor Appl Genet* 2003;106:735–43.

750       Pan Y, Birdsey RA, Fang J et al. A large and persistent carbon sink in the world's  
751       forests. *Science* 2011;333:988–93.

752       Perry A, Brown AV, Cavers S et al. Has Scots pine (*Pinus sylvestris*) co-evolved  
753       with *Dothistroma septosporum* in Scotland? Evidence for spatial heterogeneity  
754       in the susceptibility of native provenances. *Evol Appl* 2016;9:982–93.

755 Perry, A.; Beaton, J. K.; Stockan, J. A. et al. Long-term multisite Scots pine trial,  
756 Scotland: temperatures and temperature variances for tree nurseries, 2007-  
757 2012. NERC EDS Environmental Information Data Centre. 2024a.  
758 <https://doi.org/10.5285/81841d93-41e2-47a7-b15a-92d1e1cf07f7>

759 Perry A., Beaton, J. K., Stockan, J. A, et al., Significant and persistent carryover  
760 effects in Scots pine. bioRxiv [preprint]. 2024b.  
761 <https://doi.org/10.1101/2024.08.23.609343>

762 Poorter H, Fiorani F, Pieruschka R et al. Pampered inside, pestered outside?  
763 Differences and similarities between plants growing in controlled conditions and  
764 in the field. *New Phytol* 2016;**212**:838–55.

765 Poorter H, Niinemets U, Walter A et al. A method to construct dose-response curves  
766 for a wide range of environmental factors and plant traits by means of a meta-  
767 analysis of phenotypic data. *J Exp Bot* 2010;**61**:2043–55.

768 R Core Team. *R: A Language and Environment for Statistical Computing*. Vienna,  
769 Austria: R Foundation for Statistical Computing, 2024.

770 Ramírez-Valiente JA, Solé-Medina A, Pyhäjärvi T et al. Selection patterns on early-  
771 life phenotypic traits in *Pinus sylvestris* are associated with precipitation and  
772 temperature along a climatic gradient in Europe. *New Phytol* 2021;**229**:3009–25.

773 Salmela MJ, Cavers S, Cottrell JE et al. Seasonal patterns of photochemical  
774 capacity and spring phenology reveal genetic differentiation among native Scots  
775 pine (*Pinus sylvestris* L.) populations in Scotland. *Forest Ecology and*  
776 *Management* 2011;**262**:1020–9.

777 Selander J, Immonen A. Effect of fertilization and watering of Scots pine seedlings  
778 on the feeding preference of the pine weevil (*Hylobius abietis* L.). *Silva Fenn*  
779 1992;**26**, DOI: 10.14214/sf.a15637.

780 Singh RK, Svystun T, AlDahmash B et al. Photoperiod- and temperature-mediated  
781 control of phenology in trees - a molecular perspective. *New Phytol*  
782 2017;**213**:511–24.

783 Vapaavuori EM, Rikala R, Ryyppö A. Effects of root temperature on growth and  
784 photosynthesis in conifer seedlings during shoot elongation. *Tree Physiol*  
785 1992;**10**:217–30.

786 Villar-Salvador P, Ocaña L, Peñuelas J et al. Effect of water stress conditioning on  
787 the water relations, root growth capacity, and the nitrogen and non-structural  
788 carbohydrate concentration of *Pinus halepensis* Mill. (Aleppo pine) seedlings.  
789 *Ann For Sci* 1999;**56**:459–65.

790 Visscher PM. On the sampling variance of interclass correlations and genetic  
791 correlations . *Genetics* 1998;**149**:1605–14.

792 Weih M, Karlsson PS. The nitrogen economy of mountain birch seedlings:  
793 implications for winter survival. *Journal of Ecology* 1999;**87**:211–9.

794 Westaway S, Grange I, Smith J *et al.* Meeting tree planting targets on the UK's path  
795 to net-zero: A review of lessons learnt from 100 years of land use policies. *Land*  
796 *use policy* 2023;125:106502.

797 Williams CG. Accelerated short-term genetic testing for loblolly pine families. *Can J*  
798 *For Res* 1988;18:1085–9.

799 Wu HX, Yeh FC, Dhir NK *et al.* Genotype by environment interaction and genetic  
800 correlation of greenhouse and field performance in *Pinus contorta* ssp. *latifolia*.  
801 *Silvae genetica* 1997;46.

802 Zobel BJ, Talbert JT. *Applied Tree Improvement*. New York: John Wiley & Sons,  
803 1984.