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Abstract 
Esophageal adenocarcinoma (EAC) is a highly lethal cancer of the upper gastrointestinal tract with 
rising incidence in western populations. To decipher EAC disease progression and therapeutic 
response, we performed multiomic analyses of a cohort of primary and metastatic EAC tumors, 
incorporating single-nuclei transcriptomic and chromatin accessibility sequencing, along with 
spatial profiling. We identified tumor microenvironmental features previously described to 
associate with therapy response. We identified five malignant cell programs, including 
undifferentiated, intermediate, differentiated, epithelial-to-mesenchymal transition, and cycling 
programs, which were associated with differential epigenetic plasticity and clinical outcomes, and 
for which we inferred candidate transcription factor regulons. Furthermore, we revealed diverse 
spatial localizations of malignant cells expressing their associated transcriptional programs and 
predicted their significant interactions with microenvironmental cell types. We validated our 
findings in three external single-cell RNA-seq and three bulk RNA-seq studies. Altogether, our 
findings advance the understanding of EAC heterogeneity, disease progression, and therapeutic 
response.  
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Introduction  
 
Esophageal adenocarcinoma (EAC) is believed to arise from Barrett’s esophagus, an uncommon 
metaplastic condition1–7. EAC is exceptionally lethal, with a 5-year survival rate of under 5% for 
patients with non-resectable disease or detectable metastases, representing over half of diagnosed 
patients7,8. The recalcitrant and heterogeneous response to treatment underscores the need to 
understand EAC progression at a cellular level and delineate malignant cell and tumor 
microenvironment (TME) heterogeneity in therapy-resistant and metastatic settings4,9. 
 
While recent studies explored EAC at single-cell resolution to identify candidate immune and 
stromal cell types relevant to pathogenesis9,10,  malignant cell states and their heterogeneity in 
EAC across disease stages — crucial for predicting disease progression, metastasis, and 
therapeutic response — remain largely undetermined11,12. Moreover, epigenetic heterogeneity, 
vital for understanding malignant cell plasticity12, as well as spatial relationships between distinct 
cell types and states, remain unexplored in EAC. Given recent advances of single-cell and spatial 
transcriptomics studies13–15, we hypothesized that joint inference of transcriptional, epigenetic, and 
spatial heterogeneity in EAC across disease stages, metastatic foci, and therapeutic exposures may 
provide novel insights into programs dictating lethal disease. Our analysis uncovered malignant 
cell programs and their spatial localizations and interactions with microenvironmental cell types 
that inform EAC disease progression and therapeutic resistance. 
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Results 

 
Fig 1: EAC primary and metastatic samples show a diverse landscape of TME and malignant cells 
in transcriptomic and epigenetic data. a, Schematic representation of the study workflow. Biopsies from 
10 patients in our discovery cohort, including normal adjacent tissue (NAT), primary tissue, and metastatic 
samples, were subjected to single-nuclei RNA and ATAC sequencing using 10X Chromium technology. 
For a subset of these patients, matched primary and metastatic samples were sequenced with 10X Visium 
spatial transcriptomics (ST) technology. For single-nuclei data, cells were annotated by cell type and 
categorized into malignant and TME components. TME subtypes were linked to metastasis, with validation 
against an external pan-cancer fibroblast atlas16. The malignant cell components underwent analysis using 
consensus non-negative matrix factorization (cNMF) to uncover malignant programs, which were further 
characterized for transcriptional and epigenetic heterogeneity at a single-cell and spatial level and candidate 
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master transcription factors. External validation was performed in two single-cell validation cohorts9,10, and 
associations with clinical and molecular characteristics, as well as survival, were assessed in three bulk 
validation cohorts7,10,17. b, Uniform Manifold Approximation and Projection (UMAP) representation of the 
full cohort in Harmony-corrected integrated transcriptomic data, with major cell type compartments labeled 
and cell counts indicated. c, Proportion of major cell types in each sample based on transcriptomic data, 
with percentages for compartments representing over 5% of the total sample composition. d, UMAP 
representation of the full cohort in Harmony-corrected integrated ATAC data, with cell type annotations 
transferred from the RNA annotations. "NA" denotes cells without paired associated RNA information. e, 
Proportion of major cell types in each sample based on ATAC data, with percentages for compartments 
representing over 5% of the total sample composition. 

Characterizing the transcriptional and chromatin accessibility landscape of primary 
and metastatic EAC  
 
For our discovery cohort, we analyzed a total of 10 biopsies from therapy-naïve and therapy-
exposed EAC patients using multiome sequencing (single-nuclei RNA sequencing [snRNA-seq] 
and single-nuclei ATAC sequencing [snATAC-seq]), and Visium spatial transcriptomics (ST) for 
a subset of 5 matched samples from 3 patients (Fig. 1a; Suppl. Fig. S1; Methods). Metastatic 
tumors were obtained from diverse anatomical sites, including three from the liver, one from the 
adrenal gland, and one from the peritoneum (Suppl. Fig. S1).  
 
After preprocessing, we identified 72,552 high-quality cells with expression information for 
21,444 genes within the snRNA-seq data and 33,966 cells with chromatin accessibility information 
for 311,978 genomic regions within the snATAC-seq data, represented for visualization purposes 
only in Harmony-corrected space (Methods; Fig. 1b-e; Suppl. Fig. S1). Seven major cellular 
compartments were delineated: carcinoma, epithelial/nerve, myeloid, muscle, fibroblast, and 
lymphoid, for which we uncovered various cell subtypes (Fig. 1b; Suppl. Fig. S2). Malignant cells 
represented an average of 54% of all cells across tumor samples (interquartile range, IQR: 48-
63%); Fig. 1c).  
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Fig 2: The EAC TME contains several pro- and anti-inflammatory populations of macrophages and 
RUNX1/RUNX2/PRRX1/BNC2-regulated inflammatory cancer-associated fibroblasts enriched in 
metastatic samples. a, Uniform Manifold Approximation and Projection (UMAP) representation of the 
myeloid compartment in Harmony-corrected integrated transcriptomic data, with annotated subtypes 
indicated. b, Proportion of myeloid subtypes per patient. c, Distribution of Milo18 fold-change scores 
between normal-adjacent and tumor samples for myeloid cells; Milo scores measure differential 
abundances of specific cell subtypes by assigning cells to overlapping neighborhoods in a k-nearest 
neighbor graph. d, Marker genes of annotated myeloid subtypes, with cells grouped by subtype and 
expression information provided. e, UMAP representation of the fibroblast compartment in Harmony-
corrected integrated transcriptomic data, with annotated subtypes indicated. f, Proportion of fibroblast 
subtypes per patient. g, Distribution of Milo fold-change scores between metastatic and primary tumor 
samples for fibroblast subtypes, with labeling and exclusion criteria similar to (c). h, Marker genes of 
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annotated fibroblast subtypes, with cells grouped by subtype and expression information provided. i, 
Distribution of the inflammatory cancer-associated fibroblast (CAF) score in the stromal compartment of 
the Carroll et al. 9 cohort, stratified by response to immune checkpoint inhibitor (ICI) therapy: clinical 
benefit (CB) and no clinical benefit (NCB). The inflammatory CAF program is scored on the entire cohort. 
Paired measurements of patients were made before treatment (PreTx) and after a 4-week ICI treatment 
window (ICI-4W). The distribution of the inflammatory CAF score is compared among the CB and NCB 
groups across PreTx and ICI-4W time points. Significance testing is conducted using a Mann-Whitney test 
to assess differences between the CB and NCB groups.  j-l, Results for SCENIC+-derived transcription 
factor (TF) candidates for inflammatory fibroblasts, with cells grouped by subtype and Z-scores of  TF 
expression (j), eRegulon gene-based expression (k), and eRegulon region-based expression (l) shown. m,  
TF gene expression correlation with inflammatory CAF score in the external pan-cancer fibroblast 
validation cohort of Luo et al. 16, with candidate TFs identified with the SCENIC+ analysis highlighted. n, 
Correlation of all available TFs’ gene expression and SCENIC-estimated gene-based eRegulon score with 
the inflammatory CAF score in the pan-cancer fibroblast atlas 16. Only PRRX1’s eRegulon activity, but not  
BNC2 and RUNX1/2, was estimated using SCENIC. 

The EAC TME contains distinct macrophage and fibroblast populations 
Although the response of EAC to immunotherapy can vary, recent studies have demonstrated that 
specific myeloid cell subtypes within EACs are associated with the effectiveness of immune 
checkpoint inhibitors (ICI)9. We found 5 distinct cell subtypes within the myeloid compartment, 
including two tumor-associated macrophage (TAM) populations (TAM1 and TAM2; Fig. 2a-b). 
TAM1 cells, exhibiting pro-inflammatory gene expression patterns19–21, were significantly 
enriched in tumor samples, whereas TAM2 cells, exhibiting characteristics of anti-inflammatory 
macrophages22,23, although present in tumor tissue, were differentially enriched in normal adjacent 
tissue (one-sample t-tests p<0.0001) (Fig. 2c)18. 
 
These TAM subpopulations resembled previously described populations in the pan-cancer tumor-
infiltrating myeloid cell atlas24 and a study in EAC by Carroll et al.9  (Suppl. Fig. S3). Importantly, 
the TAM1 cells resembled the TAMs from the latter study, linked to higher monocyte content and 
selective ICI response, whereas TAM2 appeared similar to the M2 macrophages from the same 
study, linked to lower monocyte content and resistance to ICI.  
 
Cancer-associated fibroblasts (CAFs) have also been previously implicated in tumor progression 
and therapy resistance25,26. We identified four distinct CAF populations in our cohort (Fig. 2e-f), 
including an inflammatory CAF population (iCAF) (expressing e.g., CDH11, RUNX1, COL1A1) 
enriched in metastatic EAC tumor samples and non-activated fibroblasts displaying relative 
abundance in primary EAC tumors (one-sample t-test p<0.0001) (Fig. 2g-h; Methods)18. These 
CAF populations were also consistently recovered in external pan-cancer and EAC-specific 
cohorts, encompassing a total of 246 tumor samples (Suppl. Fig. S4)9,16.  
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We next examined whether the presence of iCAFs correlated with selective ICI response in an 
external cohort9. Among the non-clinical benefit (non-CB) patient group (defined as the group of 
patients showcasing less than 12 months of progression-free survival), there was a significant 
decrease in inflammatory CAF gene signature scores following ICI treatment, consistent across 
patients, whereas a minimal increase, inconsistent across patients, in the inflammatory CAF score 
was observed pre- and post-ICI in the clinical benefit (CB) group (Fig. 2i; Suppl. Fig. S4).  
 
Leveraging our paired snRNA-seq/ATAC-seq data, we used SCENIC+27 to identify candidate 
master transcription factor (mTF) regulons associated with the inflammatory CAF population27. 
RUNX1, RUNX2, PRRX1, and BNC2, previously implicated in various oncogenic processes28–32, 
were nominated as candidate mTFs of these cells (Fig. 2j-l) and further corroborated within the 
external pan-cancer CAF atlas16 (Fig. 2m-n). Overall, distinct macrophage and CAF cells 
associated with therapy response populate the microenvironment of both primary and metastatic 
EAC.  
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Fig 3: Five recurrent transcriptomic programs characterize EAC malignant cells with distinct RNA 
profiles. a, Illustration of the methodology employed for identifying transcriptomic programs. For each 
patient, consensus non-negative matrix factorization (cNMF) is performed on the malignant cell 
compartment, followed by manual filtration to retain high-quality programs characterized by gene 
weightings. Pairwise cosine similarity between programs across all patients is computed to cluster programs 
using hierarchical clustering with average linkage. b, Cosine similarity matrix representing the similarity 
between cNMF-derived programs across all samples, clustered using hierarchical clustering with average 
linkage. The five identified programs (cNMF1 through cNMF5) are delineated. c, UMAP representation of 
the malignant cell compartment using unintegrated transcriptomic data, colored according to their program 
score (cNMF1 through cNMF5) and sample ID. d, GSEA enrichment of the five programs in the 50 
hallmarks of cancer, based on genes ranked according to their weight contribution to cNMF programs. 
Hallmarks are grouped according to category. Enrichments that did not reach significance (FDR=0.05) are 
blanked out. e, GSEA enrichment plots for selected programs described by Nowicki et al. in Barrett’s 
esophagus. f, GSEA enrichment plots for hallmarks G2M checkpoint in cNMF2 and Epithelial-to-
Mesenchymal transition in cNMF3. g, Distribution of the five program scores in metastatic and primary 
samples. Significance is computed using the Mann-Whitney U test. The difference in median score is 
indicated as Δ.  h-i, Cosine similarity between programs derived with cNMF in external datasets and cNMF1 

through cNMF5 programs, derived in the Carroll et al. dataset (h) and in the Croft et al. dataset (i). The 
cosine similarity is computed between the cNMF-derived gene weights of programs for all patients in the 
external datasets and the median gene weight associated with each cNMF program derived in the discovery 
set. 

Five malignant cell programs are identified across primary and metastatic EAC 
tumor samples 
 
In contrast to TME investigations, tumor-intrinsic cellular programs relevant to progression, 
metastasis, and therapy resistance in EAC remain poorly understood11,12,33. To uncover unique 
gene activity programs operant among the EAC tumor compartment, we employed consensus non-
negative matrix factorization (cNMF) and identified five cNMF programs consistently present 
across different patients (cNMF1 to cNMF5) (Fig. 3a-c; Methods). We conducted gene set 
enrichment analysis (GSEA) to assess enrichment of established biological pathways from 
MSigDB within the five cNMF malignant cell programs and compare the identified programs with 
the pan-cancer tumor cell programs from the pan-cancer study by Gavish et al.33 and the Barrett’s 
esophagus programs described by Nowicki-Osuch et al.1 (Fig. 3d, Suppl. Fig. S5). 
 
cNMF1 resembled the intermediate columnar profile in Barrett’s esophagus1 (normalized 
enrichment score NES=2.5, FDR q<0.0001; Fig 3e), and showed enrichment in MYC targets, 
oxidative phosphorylation, and MTORC1 signaling pathways, akin to previously described Gavish 
et al. programs “EMT-III” and “Interferon/MHC-II (II)”. cNMF2 exhibited properties consistent 
with a cell cycling program (NES=2.5, FDR q<0.0001; Fig 3f), reminiscent of Gavish et al. 
program “Cell cycle G2/M”. cNMF3 resembled a classical EMT program (NES=2.0, FDR 
q<0.0001; Fig 3f), enriched in EMT and WNT beta-catenin pathways, aligned with the Gavish et 
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al. program “EMT-I”. cNMF4 resembled the differentiated Barrett’s esophagus program 
(NES=3.8, FDR q<0.0001; Fig 3e)1, displayed enrichment in TNF, interferon-gamma, and 
interferon-alpha signaling, and appeared similar to the Gavish et al. “PDAC-classical”, “PDAC-
related”, and “Epithelial senescence” programs. Finally, cNMF5 resembled the undifferentiated 
Barrett’s esophagus program (NES=2.6, FDR q<0.0001; Fig 3e).  
 
Moreover, cNMF4 (differentiated esophagus program) was significantly enriched in malignant 
cells of primary EAC tumors (difference in median score between primary and metastatic 
malignant cells Δ=-0.35, p<0.0001), while cNMF5 (undifferentiated esophagus program) exhibited 
a slight enrichment in malignant cells of metastatic EAC samples (Δ=0.07, p<0.0001) (Fig. 3g).  
 
To validate the robustness of the malignant cell cNMF programs uncovered in our study, we 
similarly performed cNMF on two external single-cell datasets sourced from Croft et al.10 and 
Carroll et al.9, across an aggregate of 6,838 malignant cells from 17 patient tumors. In the Carroll 
et al. dataset, we identified several programs consistent with cNMF1, cNMF2, cNMF4, and cNMF5; 
moreover, in the Croft et al. dataset, we observed enrichment of cNMF1, cNMF3, and cNMF4 

programs, supporting the generalizability of the identified malignant cell programs across datasets 
(Fig. 3f-g, Suppl. Fig. S5). 
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Fig 4: EAC malignant cell programs display unique ATAC profiles and epigenetic plasticity. a, 
UMAP representation of the malignant cell compartment using unintegrated snATAC-seq data, color-coded 
according to their cNMF gene signature score (cNMF1 through cNMF5) and sample ID. The program score 
is transferred from the RNA annotation. b, Number of open chromatin regions significantly correlated with 
each program (FDR<0.05,  Pearson’s R>0.1). c, Heatmap illustrating chromatin accessibility in cNMF-
associated regions for representative program cells. Cells are scored using cNMF signatures derived from 
RNA, with the top 5% unique cells in each score selected as representative cells. The top 200 regions with 
the higher correlation between chromatin accessibility and each program are represented. d, Chromatin 
accessibility of representative cNMF program cells for genes of interest. Genes are selected based on their 
association with the regions of the highest correlation between chromatin accessibility and gene signature 
scores of cNMF programs. Chromatin accessibility of promoters for AKT2, MKI67, SPARC, BHLHE41, 
and ANXA11 is depicted for representative cells of cNMF1 through cNMF5 and all remaining carcinoma 
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cells. e, The accuracy of classification of cells into cNMF programs using their chromatin accessibility 
profiles. Cells are scored by the average Z-score of chromatin accessibility of the top 200 cNMF-associated 
regions. The maximum score is used to classify cells into a chromatin accessibility identity; the percentage 
of cells from a gene expression identity classified into each chromatin accessibility identity is shown.  f,  
Distribution of the epigenetic plasticity scores across representative cells of cNMF1 to cNMF5. Average Z-
scores of ATAC accessibility vectors are transformed into a probability distribution using a softmax 
transformation with temperature, and the plasticity score is computed as the Shannon entropy over the 
resulting probability distribution. g, Representation of the candidate master transcription factors (mTFs) 
associated with programs consistent across datasets. We jointly model chromatin accessibility and gene 
expression to obtain candidate master transcription factors for each cNMF program in the discovery cohort 
that are subsequently validated in the two external validation cohorts. The identified mTFs consistent across 
datasets are represented. 
 

The five malignant cell programs displayed differential chromatin accessibility 
patterns and epigenetic plasticity  
We next leveraged the paired snRNA-seq/ATAC-seq data to interrogate the connection between 
observed transcriptional programs and epigenetic diversity, aiming to decipher whether distinct 
EAC malignant cell programs correspond to specific chromatin accessibility patterns (Fig. 4a). We 
correlated the score of malignant cNMF programs with the normalized ATAC peak counts and 
identified significant associations between all cNMF programs and differentially accessible 
chromatin regions, denoted as cNMF-related peaks (Fig. 4b). We uncovered distinct chromatin 
accessibility patterns across cells representing cNMF programs (200 top-scoring cells, Methods), 
with several genes of interest displaying differential promoter accessibility, including AKT234, 
MKI6735, SPARC36,37, BHLHE4138,39, and ANXA1140 (Fig. 4c). These variations in promoter and 
enhancer accessibility suggest a potential functional link between epigenetic alterations and 
evolution trajectories of tumor cells. Of note, cNMF1, cNMF2, and cNMF3 generally displayed 
less distinct chromatin accessibility profiles than cNMF4 and cNMF5.  
 
Epigenetic plasticity, particularly the modulation of chromatin accessibility in malignant cells, is 
a recognized hallmark of cancer41. To determine if the identified cNMF programs exhibited 
chromatin states that facilitate transcriptional program diversity (epigenetic plasticity, as defined 
by Burdziak et al.42), we compared the paired transcriptional gene expression and chromatin 
accessibility profiles among malignant cells. Additionally, we analyzed the distribution of 
epigenetic plasticity scores within the malignant cells representing each cNMF program (Fig. 4d-
f; Methods).  
 
We assigned cells a gene expression (resp. chromatin accessibility) identity using the maximum 
signature score of signature genes (resp. cNMF-related peaks). Cells with strong cNMF4 and 
cNMF5 signature scores (within the top 5% of score distribution; Methods), representing 
differentiated and undifferentiated programs, respectively, exhibited mostly concordant 
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transcriptional gene expression and chromatin accessibility identities, as well as low epigenetic 
plasticity, consistent with the hypothesized stable identity of these programs. Conversely, cells 
from the cell cycling program, cNMF2, displayed discordant expression of chromatin accessibility 
patterns characteristic of different programs along with high epigenetic plasticity43,44. cNMF1 also 
displayed high epigenetic plasticity, and certain malignant cells expressing the program had 
chromatin accessibility profiles that also associated with cNMF4 and cNMF5, consistent with the 
proposed intermediate nature of cNMF1 between the continuum represented by cNMF5 and cNMF4 
programs (Fig. 3e).  
 
Furthermore, cells within the EMT-like cNMF3 program displayed mixed chromatin accessibility 
identity and high epigenetic plasticity, consistent with previous observations of EMT state 
plasticity and its reversible nature45,46. Based on the snATAC-seq scores, i.e., the average Z-score 
of normalized counts over cNMF-related peaks, we speculate that cNMF3 cells predominantly 
originate from the cNMF1 and cNMF5 pools rather than the cNMF4 pool, potentially suggesting 
that terminally differentiated EAC cells do not undergo EMT. 

Predicted transcription factor regulons of the malignant cell programs  
To ascertain whether the identity of malignant cell cNMF programs was governed by a specific 
set of master transcription factors (mTFs), we next inferred the gene regulatory network underlying 
cell programs in our dataset leveraging the paired multiome data with SCENIC+27, and also 
evaluated these findings in the external Croft el al. and Carroll et al. datasets for reproducibility 
(Methods; Fig. 4g; Suppl. Fig. S6). 
 
Candidate mTFs included E2F747 for cNMF2; ZEB148,49, TCF7L150, and MAFB51,52 for cNMF3; 
FOXO1 and FOXO353, MXD154,55, LCOR56,57, CREB3L158–60, MAFK61, PPARD62,63 and 
HNF4A1,64–66 (tumor suppressor TFs and/or associated with favorable prognosis) for cNMF4; and 
MECOM67,68 and HMGA269,70 for cNMF5. Notably, no mTF was robustly identified across 
datasets for cNMF1. We therefore identified a set of candidate mTFs reproducibly associated with 
each malignant cell program except cNMF1 in three independent datasets (summarized in Fig. 4g). 
Lastly, the expression of genes coding for candidate mTFs identified for cNMF4 and cNMF5 was 
analyzed along the axis of expression of these two hypothesized opposing programs by ranking 
cells according to their relative cNMF4 to cNMF5 expression. The mTFs showed a consistent 
positive and negative gradient of expression along the cNMF5 to cNMF4 axis (Suppl. Fig. S6), 
supporting their role in orchestrating these program expressions. 
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Fig 5: Single-nuclei derived transcriptional programs highlight different spatial regions of EAC 
tumors. a-b, Spatial transcriptomics (ST) slides of a, P8 primary tumor A and b, P5 primary tumor, colored 
according to cNMF program score and the CNV-derived label. For each spot, we infer the CNV profile 
with inferCNV and assign spots to tumor, mixed, and normal status. cNMF scores are computed as the 
average Z-score of signature genes using the deconvolved carcinoma-specific gene expression profile of 
spots derived with Cell2Location. c, Average cNMF score according to the position of the spots compared 
to the tumor leading edge. For each tumor spot, we compute the distance to the edge as the shortest path to 
a normal or mixed spot. The distribution of cNMF scores with standard error is represented for normal 
spots, mixed spots, and spots of a certain distance to the edge.   

Malignant and TME cell programs in EAC display differential spatial enrichment in 
defined tumor regions 
To assess whether the malignant cell programs identified in the snRNA-seq data exhibit spatial 
heterogeneity within individual EAC tumor samples, we performed Visium spatial transcriptomics 
(ST) on additional EAC tissue from matched patients (Methods). We categorized ST spots into 
pure tumor regions, mixed regions containing both malignant cells and TME cells in similar 
proportions, or regions of normal tissue, using CNV (copy number variation) profiles inferred from 
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the spatial data (Methods, Fig. 5a-b, Suppl. Fig. S7). Deconvoluted ST spot cell type proportions 
and gene expression71 broadly agreed with CNV assignments (Suppl. Fig. S7-8).We scored the 
five malignant cell cNMF programs based on the corrected, deconvoluted carcinoma-specific gene 
expression matrix and found that they displayed distinct spatial distributions within the EAC tumor 
samples (Fig. 5a-b, Suppl. Fig. S7). 
 
Specifically, in most samples, cNMF1 and cNMF2 were predominantly expressed in the tumor 
core, characterized by higher distances from the periphery; in contrast, cNMF4 was mainly 
expressed at the tumor periphery (Fig. 5c). cNMF5’s spatial location varied, while cNMF3, less 
frequently detected in snRNA-seq, was expressed in only three samples (P8_A, P8_B, and P5) and 
displayed dispersed spatial enrichment across the tumor (Fig. 5a-b, Suppl. Fig. S7). Thus, 
malignant cell programs exhibited reproducible and distinct spatial distributions within EAC 
tumors, although this association would require further validation through additional 
immunofluorescence staining.  
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Fig 6: Discovered malignant programs have different clinical characteristics and predicted drug 
sensitivity. a-b, Link between uncovered programs and a, N stage, i.e., proxy of the number of nearby 
lymph nodes that have cancer, and b, T stage, i.e., size and extent of the main tumor in the TCGA bulk 
cohort 7. Patients are scored using single-sample Gene Set Enrichment Analysis (ssGSEA) with a cancer-
specific gene signature. Statistical testing is performed using the Mann-Whitney U test. c-e, Hazard ratio 
associated with scores in bulk validation cohorts of c, TCGA, d, Hoefnagel et al. 17, e, and Carroll et al. 9. 
Cox proportional hazard univariate models are employed using disease-specific survival for TCGA and 
overall survival for Hoefnagel et al. and Carroll et al. f, Distribution of the cNMF5 score in the malignant  
cell compartment of the Carroll et al. cohort 9, stratified by response to immune checkpoint inhibitor (ICI) 
therapy: clinical benefit (CB) and no clinical benefit (NCB). The cNMF5 program is scored on the full 
cohort. Paired measurements of patients were made before treatment (PreTx) and after a 4-week ICI 
treatment window (ICI-4W). The distribution of the cNMF5 score is compared among the CB and NCB 
groups across PreTx and ICI-4W time points. Significance testing is conducted using a Mann-Whitney U 
test. g, Predicted drug sensitivity by program. scTherapy is used to infer to which drugs may exhibit activity 
in specific tumor programs. The upset plot represents the total number of drugs predicted to target a specific 
program on the left, as well as the size of the intersection represented on the middle panel on the top. h, 
Selected predicted candidate combination therapies that could target all five programs at a time are 
represented. 
 

EAC malignant cell programs correlate with clinical characteristics, differential 
patient prognosis, and differential predicted drug sensitivity 
We then sought to determine whether any of the identified malignant cell cNMF programs were 
associated with distinct clinical prognostic stages and therapeutically relevant states. By projecting 
these programs into the primary EAC TCGA cohort, we observed that cNMF4 was significantly 
linked with lower T and N stages, whereas cNMF3 exhibited a moderate association with higher T 
stages, consistent with its EMT-like nature72 (Fig. 6a-b). Other programs did not display significant 
associations with these clinical stages, and no malignant cell program showed significant 
associations with M staging (Suppl. Fig. S9).  
 
We then investigated the relationship between the malignant cell programs and patient survival 
using a univariate Cox proportional hazard model in two external bulk EAC patient cohorts treated 
with conventional therapies, namely surgery and neoadjuvant chemotherapy (TCGA7 and 
Hoefnagel et al.17), and one external EAC patient cohort treated with ICI (Carroll et al.9) 
(Methods). Higher cNMF4 scores were predictive of improved patient survival in the first two 
patient cohorts exposed to conventional therapies (p=0.01 and p=0.08 resp.) but not in the third 
patient cohort exposed to ICI (p=0.49) (Fig. 6c-e). The association of cNMF4 with less aggressive 
clinical features in this context is consistent with other program-specific features previously shown 
(i.e., enrichment in primary tumors, differentiated transcriptional profile, and link to TFs 
associated with improved patient prognosis).  
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2025. ; https://doi.org/10.1101/2024.08.17.608386doi: bioRxiv preprint 

https://paperpile.com/c/9zyVe4/WX1jF
https://paperpile.com/c/9zyVe4/uCNmF
https://paperpile.com/c/9zyVe4/0OtpX
https://paperpile.com/c/9zyVe4/0OtpX
https://paperpile.com/c/9zyVe4/I4BxM
https://paperpile.com/c/9zyVe4/WX1jF
https://paperpile.com/c/9zyVe4/uCNmF
https://paperpile.com/c/9zyVe4/0OtpX
https://doi.org/10.1101/2024.08.17.608386
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Finally, we investigated whether the cNMF programs displayed differential enrichment in therapy 
exposure categories of the external EAC patient cohort treated with ICIs. We assessed the 
distribution shift of the cNMF5 gene signature score in Carroll et al. single-cell data and observed 
the score was high in patients experiencing a clinical benefit (CB) to ICI both pre- and post-ICI 
exposure compared to non-CB patients (Mann Whitney U p<1e-5, Fig. 6f). In addition, the cNMF5 
program gene signature score was significantly lower post-ICI exposure only in patients 
experiencing a CB (Fig. 6f). These patterns were consistent on a per-individual patient sample 
basis (Suppl. Fig. S9).  
 
To assess whether the identified programs exhibit differential sensitivity to existing therapies, we 
used scTherapy73 to predict drug sensitivity for each program. Our analysis revealed a broad range 
of predicted responses, with cNMF2 showing sensitivity to the highest number of drugs, while 
cNMF3 displayed the lowest sensitivity (Fig. 6g). Notably, no single drug was predicted to target 
all five programs simultaneously; however, Delanzomib, a next-generation proteasome inhibitor74, 
Romidepsin, a HDAC inhibitor75, and SN-38, the active metabolite of irinotecan, an FDA-
approved chemotherapy previously shown to have potential in EAC76, were the only agents 
predicted to affect four out of five programs. 
 
Leveraging these predictions, we identified potential combination therapies by pairing drugs that 
together target all five cNMF programs (Fig. 6h). Among these combinations, some included 
FDA-approved chemotherapy agents for EAC, such as paclitaxel and docetaxel. Specifically, the 
combination of paclitaxel with delanzomib74 or with irinotecan76 was predicted to effectively target 
all five programs. Additionally, the combination of docetaxel and onvansertib, a drug recently 
granted FDA fast-track designation for metastatic colorectal cancer77, also emerged as a promising 
therapeutic strategy. 
 
The cNMF programs identified in our study exhibited distinct associations with patient survival, 
therapy exposure status in external EAC cohorts, and predicted drug sensitivity. Notably, no single 
agent was predicted to target all five programs simultaneously, highlighting potential resistance 
mechanisms to standard chemotherapy. Furthermore, we suggest rational combination strategies 
that could be explored in preclinical models to overcome therapy resistance, offering a path toward 
more effective treatment approaches. 
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Fig 7: Uncovered malignant programs show associations with clinical and molecular characteristics, 
prognosis, and distinct ecotypes. a, Ecotype analysis of the data from the TCGA, Hoefnagel et al., and 
Carroll et al. cohorts deconvolved by BayesPrism. Distribution of cNMF scores in the two uncovered 
ecotypes, for each study. Statistical testing is performed using the Mann-Whitney U test. b, Estimated 
strength of interaction between cell types in spatial transcriptomics (ST) data. Using the NCEM method on 
Cell2Location-deconvolved data, we estimate in a spatially constrained manner the strength of interaction 
between cells from the 6 major compartments identified in the discovery cohort, represented for samples 
P8_A, P8_B, P8_C, P4, and P5. c-d, Significant ligand-receptor interactions uncovered with 
CellPhoneDB’s78 Squidpy implementation, LIGREC, for c, TME to tumor interactions and d, tumor to 
TME interactions. CellPhoneDB is run for each sample on spots near the edge of the tumor, defined as 
tumor spots (resp. normal spots) with a distance to the edge of less than 2. Only significant interactions 
(FDR p<0.1), for which the ligand/receptor is part of the signature genes of the cNMF programs/TME 
subtypes are represented. The ligand/receptor is colored according to which signature it belongs to. The hue 
encodes the CellPhoneDB mean of the ligand receptor pair; the level of significance is annotated for each 
existing interaction. ns: FDR  p>0.1; *: 0.1≤p<0.01; **: 0.01≤p<0.001; ***: p≤0.001. e-h, Significant 
ligand-receptor interactions between e, P8 sample A tumor and TME components, f, P8 sample A TME 
and tumor components, g, P5 tumor and TME components, and h, P5 TME and tumor components. Each 
panel represents the log1p expression in spots. The ligand (resp. receptor) is colored according to the 
program whose signature genes it belongs to. Smaller panels represent the score distribution of the 
corresponding cNMF or TME component scores.  

Co-occurring groups of TME cells are linked with malignant cell programs  
Lastly, given our findings of the key roles of tumor cell programs in EAC, we sought to understand 
whether and how the malignant cells interacted with specific TME cells (including the key myeloid 
and CAF populations described above). We first conducted an analysis of ecotypes, i.e., co-
occurring abundance of tumor immune and stromal microenvironment cells, as measured in 
deconvolved data, in EAC79. Leveraging the external TCGA, Hoefnagel et al., and Carroll et al. 
EAC patient cohorts (n = 268 patients), we identified two major ecotypes: ‘immune-desert’ 
(predominantly comprising malignant cells and endothelial cells) and ‘immune-activated’ 
(featuring a mixture of myeloid, lymphoid, and stromal cells; Fig. 7a; Suppl. Fig. 9; Methods). A 
high cNMF3 gene signature score in deconvoluted samples was significantly associated with the 
immune-activated ecotype across all studies, in line with the described interaction of malignant 
cells with stromal and myeloid components to initiate EMT80–82 (Fig. 7a, Suppl. Fig. 9). 
Conversely, cNMF5 exhibited a significantly lower gene signature score in the immune-activated 
ecotype in two out of the three external cohorts (Fig. 7a, Suppl. Fig. 9).  
 
To further investigate significant interactions between malignant cells expressing differential 
cNMF program activity scores and TME cells, we predicted signaling interactions in our ST data 
(Methods)83. From this analysis, we observed that malignant cells had predicted signaling 
interactions with all TME compartments, but the strongest (i.e., highest impact on gene expression 
as predicted by NCEM; Methods) interactions were with myeloid and lymphoid cells (Methods; 
Fig. 7b)9.  
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Using computational cell-cell interaction prediction, we uncovered numerous candidate ligand-
receptor interactions between malignant cells and myeloid and fibroblast subtypes (Methods; Fig. 
7c-h; Suppl. Fig. 9)78. For example, we identified interactions between malignant cells with high 
cNMF3 activity scores and adipose CAFs, a small subpopulation of CAFs that co-occur with iCAFs 
and are predicted to be immunomodulatory16, through FN1 and ITGB1 and TGFBI and ITGA284 
that further support the association of cNMF3 and the immune-activated ecotype in external bulk 
datasets. We also found significant ligand-receptor interactions between cells displaying markers 
of TAM2 and adipose CAFs and malignant cells expressing cNMF4, potentially driven by the 
peripheral localization of cNMF4 discussed above.  
 
Overall, these findings highlight the complex communication within the EAC TME and its spatial 
dependency, which could significantly influence EAC progression and treatment response. 
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Discussion 
Despite progress in dissecting EAC and Barrett’s esophagus biology, as well as relating biological 
programs to selective therapeutic response across treatment modalities, the complexities of its 
malignant cell compartment, epigenetic variations, and disease progression remain poorly 
understood. Leveraging a multi-modal profiling strategy across primary and metastatic EAC 
samples, our study unveiled considerable heterogeneity within and between tumors. In addition to 
identifying previously described myeloid and stromal compartments, this study is the first to define 
EAC malignant cell heterogeneity across primary and metastatic sites in distinct clinical settings 
across transcriptomic, chromatin accessibility, and spatial dimensions. We identified five major 
malignant cell programs, shared across patients in our study and external EAC patient cohorts, that 
possessed distinct chromatin accessibility profiles and spatial distributions. Among the programs 
identified, cNMF5, cNMF1, and cNMF4 delineated a continuum from undifferentiated to 
differentiated programs, mirroring a trajectory observed in Barrett’s esophagus1, cNMF2 
represented a cell cycling program, and cNMF3 emerged as a rarer EMT-associated program (Fig. 
8). Furthermore, we identified candidate transcription factors for various programs and a 
concordance between transcriptional programs and estimated epigenetic plasticity, contributing to 
the growing evidence emphasizing the significance of epigenetic plasticity as a facilitator of cancer 
progression and metastasis through increased heterogeneity85–89. We highlighted differential 
spatial distribution of malignant cell program gene signature scores and the tumor ecosystem's 
complexity. Finally, we identified recurrent interactions between cells with high expression of 
cNMF programs and TME cell types, which could in turn influence therapy response, notably to 
ICI or targeted therapies that have shown strong dependency to TME cells and malignant cell 
heterogeneity90–93.  
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Fig 8: Summary of Key Findings in the Malignant Cell Compartment of Esophageal 
Adenocarcinoma (EAC). Five distinct malignant programs were identified, characterized by unique RNA 
and ATAC accessibility profiles. Among these, cNMF5 and cNMF4 represented two stable opposed 
programs: cNMF5 resembled an undifferentiated program, while cNMF4 exhibited characteristics of a 
differentiated program. cNMF1 displayed features of an intermediate program between cNMF5 and cNMF4. 
Conversely, cNMF3 manifested as a rare epithelial-to-mesenchymal transition (EMT)-like program, and 
cNMF2 represented a cell cycling program. ATAC accessibility profiles suggested potential transitions 
between these programs. Specifically, cNMF3 appeared epigenetically similar to cNMF5 and cNMF1 but 
distinct from cNMF4, and cNMF2 exhibited similarities with cNMF5 and cNMF1 but not cNMF4. The two 
hypothesized stable programs, cNMF4 and cNMF5, displayed lower epigenetic plasticity compared to the 
other programs. Candidate master transcription factors (mTFs) were identified for each transcriptional 
program. Furthermore, cNMF5 was associated with differential response to immune checkpoint inhibitor 
(ICI) therapy, while cNMF4 showed associations with lower T and N stages and better prognosis following 
surgery and/or neoadjuvant therapy treatment. In contrast, cNMF3 exhibited a slight enrichment in higher 
T stages. cNMF1 and cNMF2 were preferentially located at the tumor core, while cNMF4 was preferentially 
located at the tumor periphery. Lastly, cNMF3 and cNMF4 interacted significantly with the TME while 
cNMF5 was associated with immune exclusion.  
 
There are several limitations in our study. Firstly, the discovery cohort comprised 10 samples, with 
8 being tumor samples, hindering direct linkage between proportions of TME cells and clinical 
characteristics with malignant cell composition. Consequently, we mostly depended on bulk 
validation cohorts to elucidate these associations. Second, sampling and processing biases may 
affect differential abundance testing and limit the interpretability of the results. Notably, metastatic 
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tumors were obtained from diverse anatomical sites, meaning that observed TME composition 
differences may reflect site-specific characteristics rather than metastatic status alone. Third, one 
of the single-cell validation cohorts had very few malignant cells (~400 cells), suggesting that 
larger, clinically integrated single-cell EAC cohorts with sufficient malignant cells are needed to 
further validate our cNMF results. Fourth, the relatively small size of the ST samples necessitates 
caution in interpreting quantitative conclusions. Additionally, we did not generate 
immunofluorescence data to validate the differential spatial localization of TME programs (e.g., 
iCAF) or malignant programs (e.g., cNMF4), necessitating further phenotypic and spatial 
validation. Fifth, we did not generate matched whole genome or exome sequencing data and thus 
cannot exclude the impact of genetic heterogeneity on cell type and malignant program abundance. 
Sixth, Lastly, the heterogeneous nature of the cohort, including variations in metastatic status, 
treatment regimen, and anatomical location, posed a challenge.  
 
Broadly, our study underscores the clinical importance of tumor cell heterogeneity in primary and 
metastatic EAC,  elucidating the association of distinct tumor cell states with clinical 
characteristics, ICI response, and potential TME interplay, marking a key step towards 
understanding EAC formation and progression. 
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Methods 

Experimental model and patient details 
The 10 patient samples (eigh tumor tissue and two non-paired normal adjacent tissue) were 
collected with written informed consent and ethics approval by the Dana-Farber Cancer Institute 
Institutional Review Board under protocol numbers 14-408, 03-189, and 17-000. The 
nomenclature designates: normal adjacent tissue samples as P1 and P2; primary tissue samples as 
P3, P4, and P5; and metastatic samples as P6, P7, P8, P9, and P10. 

Patient tissue sample collection and dissociation for multiome snRNA-
seq/ATAC-seq  
Nuclei isolation was performed on frozen biopsy specimens as previously described94. Low-
retention microcentrifuge tubes (Fisher Scientific, Hampton, NH, USA) were used throughout the 
procedure to minimize nuclei loss. Briefly, patient tissue was separated from optimal cutting 
temperature (OCT) by removing the OCT with sharp tweezers and scalpels. Tissues were then 
manually dissociated into a single-nuclei suspension by chopping the tissue with fine spring 
scissors for 10 minutes, homogenizing in TST solution, filtering through a 30 um MACS 
SmartStrainer (Miltenyi Biotec, Germany), and centrifuging for ten minutes at 500g at 4C. The 
resulting nuclei pellet was resuspended in a lysis buffer to permeabilize the nuclei before 
centrifuging again for 10 minutes at 500g at 4C. The final nuclei pellet was resuspended in 100 ul 
of 10x Genomics Diluted Nuclei Buffer and trypan blue-stained nuclei were counted by eye using 
INCYTO C-Chip Neubauer Improved Disposable Hemacytometers (VWR International Ltd., 
Radnor, PA, USA). 
  
Approximately 16,000-25,000 nuclei per sample were loaded per channel of the Chromium Next 
GEM Chip J for processing on the 10x Chromium Controller (10x Genomics, Pleasanton, CA, 
USA) followed by transposition or cDNA generation and library construction according to 
manufacturer’s instructions (Chromium Next GEM Single Cell Multime ATAC + Gene 
Expression User Guide, Rev F). Libraries were normalized and pooled for sequencing on two 
NovaSeq SP-100 flow cells (Illumina, Inc., San Diego, CA, USA).  
 

snRNA and snATAC multiome processing 

snRNA-seq and snATAC paired data preprocessing 
The paired snRNA-seq and snATAC-seq samples were sequenced using Illumina HiSeq X. 
Subsequently, the raw bcl files were aligned to the human reference genome GRCh38 for each 
sample via Cell Ranger Arc 2.0.  
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snRNA-seq specific processing and cell type annotation 
To mitigate potential ambient RNA contamination within the RNA assay of the multiome data, we 
used Cellbender95 to computationally remove ambient RNA counts from each count matrix.  
After, Scrublet96 was employed to identify cell barcodes that may be potential doublets from the 
ambient RNA-adjusted RNA count matrices, and these barcodes were subsequently removed. The 
resulting doublet-free ambient RNA-adjusted count matrices were then employed for further 
downstream analyses. 
 
RNA assay quality control procedures were conducted for each individual patient sample using 
Scanpy97. Cell barcodes with fewer than 200 unique genes expressed, genes expressed in fewer 
than three cells, and cell barcodes exhibiting greater than 20% of all RNA expression counts 
mapped to mitochondrial genes (pctMT) were filtered out. RNA expression per cell was 
normalized via counts per 10k (CP10k), i.e., dividing the counts by the library size of the cell and 
normalizing to 10,000 total counts per cell, followed by log(x+1) transformation. After performing 
Leiden clustering (resolution = 0.7) on the 15-nearest neighbor graph of the RNA assay per 
individual patient sample, component cell types were manually annotated by evaluating canonical 
marker gene expression per cluster identified through differential expression (DE) utilizing the 
overestimated variance t-test. 
 
The copy number variation (CNV) profile of each cell per individual patient sample was computed 
utilizing a Python implementation of InferCNV (https://github.com/icbi-lab/infercnvpy), 
employing a mixture of non-malignant cells as a reference (annotated fibroblasts, endothelial cells, 
and immune cells) based on their presence in the sample. Cells were clustered according to their 
CNV profile using Leiden clustering, with clusters labeled as malignant or non-malignant 
depending on their average CNV score. Subsequently, cells were assigned a malignant or non-
malignant status based on their cluster membership per individual patient sample. 
 
Refinement of cell type annotation was performed by analyzing cells from all patients of a single 
type after integration. For each major TME cell type (T/NK, myeloid, endothelial, fibroblast, 
muscle), cells having a relatively lower pctMT (<15%) were further analyzed downstream. We 
strengthened the pctMT threshold only in the TME compartment, as malignant and epithelial cells 
can display higher basal levels of mitochondrial counts98. Cells were subsetted per cell type and 
all cells of the same type were integrated using Harmony99, followed by Leiden clustering to obtain 
subclusters. The integration was performed on a cell-type level rather than on the full set of cells 
to obtain more fine-grained integration. Manual annotation of subclusters was carried out using 
marker genes identified through differential gene expression with an overestimated variance t-test 
as before. 
 
Annotations of myeloid cell populations were cross-referenced with pan-cancer myeloid 
annotations from Cheng et al.24, while cancer-associated fibroblasts (CAF) cells were compared 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2025. ; https://doi.org/10.1101/2024.08.17.608386doi: bioRxiv preprint 

https://paperpile.com/c/9zyVe4/bxGau
https://paperpile.com/c/9zyVe4/Pzxld
https://paperpile.com/c/9zyVe4/AM12h
https://github.com/icbi-lab/infercnvpy
https://paperpile.com/c/9zyVe4/Z9qgL
https://paperpile.com/c/9zyVe4/Cph5n
https://paperpile.com/c/9zyVe4/3U0wD
https://doi.org/10.1101/2024.08.17.608386
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

to pan-cancer CAF annotations from Luo et al.16. For visualization only, we integrated the fully 
annotated cohort using Harmony, opting not to use the cell-type-specific Harmony integration. 

snATAC-seq specific preprocessing 
The processed snATAC-seq data was acquired utilizing CellRanger Arc 2.0 (snapshot 28). 
Subsequently, the Signac package was employed for comprehensive processing of the ATAC 
data100 (https://stuartlab.org/signac/). Adhering to the guidelines outlined in the 10X multiome 
Signac vignette, the filtered counts and ATAC fragments obtained from CellRanger Arc 2.0 were 
utilized to re-call peaks using MACS2101 (https://pypi.org/project/MACS2/). Additionally, peaks 
located in non-standard chromosomes and genomic blacklisted regions were excluded. The 
consolidated peaks from all samples underwent further filtration, removing those with a width 
below 20 bp or exceeding 10,000 bp. 
 
Cell type annotations were directly transferred from the snRNA annotations, as the RNA and 
ATAC measurements were paired. Cells excluded during standard quality control in the RNA 
measurements but not in the ATAC measurements were annotated as NA. Subsequently, a 
comprehensive quality control assessment was conducted on the entire set of cells across all 
samples. Cells with ATAC counts falling below 1000 or exceeding 100,000, a nucleosome signal 
surpassing 2, a TSS enrichment below 3, or a fraction read in peaks below 0.15 were filtered out. 
 
Normalization of the ATAC count matrix was executed utilizing the term-frequency inverse-
document-frequency (TF-IDF) transformation, following default parameters in Signac. 
Dimensionality reduction was carried out using Latent Semantic Indexing (LSI) with 40 
components on the TF-IDF normalized matrix, with UMAP computed on the harmony-corrected 
LSI components. 

snRNA-seq analysis 

Differential abundance testing  
 
Differential abundance testing for the myeloid, CAF, and lymphoid compartments was conducted 
employing the milopy package 18 (https://github.com/emdann/milopy). Of note, the sampling bias, 
i.e., the fact the resection from the tumor tissue and adjacent normal tissue may vary in tissue size 
and baseline abundance and types of cells across the tissue, as well as the processing bias, i.e., the 
fact cells differentially suffer from dissociation and processing, might bias differential abundance 
testing and limit the interpretability of differential abundance results. For the myeloid 
compartment, differential abundance testing compared normal adjacent tissue with tumor tissue. 
For the CAF compartment, differential abundance testing compared primary with metastatic tissue. 
The Milo method was executed on the cell-type specific Harmony-corrected principal components 
(PC), utilizing a 20-nearest neighbors graph. Neighborhoods were assigned labels through majority 
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voting: if over 60% of cells within a neighborhood belonged to an individual cell type, the 
neighborhood was labeled accordingly. Otherwise, the label "mixed" was assigned. 

Malignant cell program discovery through consensus Negative Matrix Factorization 
(cNMF) and characterization 
To dissect the malignant cell compartment, we employed consensus non-negative matrix 
factorization (cNMF)102 (https://github.com/dylkot/cNMF) per individual patient sample and then 
aggregated the results as described below. cNMF was performed on a sample-level rather than on 
the full cohort to avoid detecting patient-specific programs primarily driven by technical factors 
such as batch effects or copy-number variation (CNV) profiles. Cells annotated as putatively 
malignant based on canonical marker gene expression but not from clustering on inferCNVpy copy 
number score were filtered. For each sample, cNMF was performed on the RNA counts matrix of 
the 2,000 most highly variable genes, selecting the number of components (k) based on 
recommended criteria (i.e., inspecting the error and stability plot and picking the smallest k that 
minimized error while maximizing stability). Density threshold was set to 0.1 for each sample. 
cNMF programs expressed in too few cells or showing expression of TME-related genes, 
potentially indicating contamination, were manually removed. 
 
The cNMF gene expression programs generated per individual patient sample were characterized 
by a vector of weights per gene representing its contribution to the program. These programs were 
combined across all samples by calculating their pairwise cosine similarity after removing small 
(high score in <10 of cells) or contaminated programs. Hierarchical clustering with an average 
linkage method was then applied to group similar programs into five clusters. A cNMF program 
was defined by the median weight of clustered gene expression programs, with the top 100 
contributing genes used as a gene signature for the cNMF program. Cells from all patients were 
scored for the resulting cNMF gene signatures using the scanpy scoring method, i.e., the average 
gene expression of signature genes subtracted with the average gene expression of control genes. 
 
The programs were compared to pan-cancer programs described in Gavish et al.33. For each 
combination of program uncovered in our dataset and program uncovered in the Gavish et al. 
publication, we computed the fraction of genes that were found in both programs on the number 
of genes from the Gavish et al. programs captured in our dataset. We also compared the programs 
to the Barrett’s esophagus programs described by Nowicki-Osuch et al.1 using Gene Set 
Enrichment Analysis (GSEA)103. Finally, GSEA103 was run using the prerank function on the 
ranked list of genes associated with each program, using the hallmarks of cancer as a search 
database 104.  

Validation of malignant cell programs in external datasets 
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In order to assess the reproducibility of the malignant cell cNMF programs identified within our 
cohort, we conducted a similar analysis on the malignant cell compartment of two external single-
cell RNA sequencing studies focusing on esophageal adenocarcinoma: the datasets from Carroll 
et al.9 and Croft et al.10. Following the methodology outlined in the previous section, we applied 
cNMF to derive programs for each sample in these external datasets. Subsequently, we computed 
the cosine similarity between each of these programs and the cNMF programs previously identified 
in our own dataset. This comparative analysis allowed us to determine the degree of recurrence 
and consistency of the identified programs across multiple independent datasets. 

snATAC analysis and link with snRNA 

Link between snRNA and snATAC 
To establish a connection between the programs identified in the malignant cell compartment and 
ATAC peaks, we calculated the Pearson correlation in malignant cells between the TF-IDF-
normalized peak accessibility and program score transferred from the snRNA-seq. We then filtered 
out peaks in the 25% least expressed category in malignant data before performing the correlation 
computation. Subsequently, we determined the false-discovery rate (FDR) corrected q-value 
associated with correlation for each peak. Peaks with an FDR q-value below 0.05 and a Pearson 
correlation coefficient exceeding 0.1 were considered significantly correlated with a specific 
program. 

Representative cells and link between RNA and ATAC identity 
To establish the connection between the transcriptomic and epigenetic characteristics of cells, we 
identified representative cells for each cNMF program. Specifically, we selected cells within the 
top 5% highest cNMF score for each program, ensuring exclusivity by removing cells that 
ranked in the top 5% for two or more programs. These cells were designated as cNMF 
representative cells and were utilized to depict genome tracks surrounding genes of interest. 
Notably, due to differential recovery rates of ATAC and RNA, the proportion of representative 
cells with paired ATAC measurements varied. 
 
To characterize the ATAC identity of cells, we identified the top 200 most significantly 
correlated regions with each cNMF program as cNMF-associated regions. Subsequently, we 
computed the Z-score for each region, estimating the mean and standard deviation across the 
population of cNMF representative cells. The ATAC data were then scored for each program 
using the mean Z-score of cNMF-associated regions, and each cell was assigned an ATAC 
identity based on the maximum score. A comparison between RNA and ATAC identities was 
performed using a confusion matrix. 
 
Drawing inspiration from previous work42, we assigned a plasticity score to each cell using 
Shannon’s entropy as a measure of plasticity. We assigned a probability of belonging to a 
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program using a softmax transformation with temperature. Let 𝑠!(𝐴𝑇𝐴𝐶") be the ATAC score 
associated with cNMFi in cell j; we transformed the score in probability 𝑝",!  

𝑝",! =
𝑒$!(&'&(")/'

∑ 𝑒$!(&'&(#)/'5
+

	

The temperature parameter T was chosen to optimize the calibration curve associated with RNA 
and ATAC identity correspondence (Suppl. Fig. S11). The plasticity score of cell j was then 
computed as  

𝑝𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦! 	= 	−3𝑝+,!log(𝑝+,!)
5
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We finally computed the distribution of plasticity scores in the cNMF representative populations.  

Spatial transcriptomics (ST) analysis 

ST data preparation and sequencing 
FFPE-embedded tissue sections of 3 -10 μm thickness were sectioned then placed on a slide. H&E 
staining was performed by Brigham and Women’s Hospital Pathology Department core facility. 
When available, 2-4 FFPE scrolls of 10 - 20 μm thickness were collected in microtubes and stored 
at -200C. RNA quality was assessed using FFPE scrolls or from tissue sections previously placed 
on a slide by gently removing the FFPE section with a sterile blade and immediately transferring 
it to a microtube. RNA extraction was carried out using a Qiagen RNeasy® FFPE kit. RNA 
integrity, measured by DV200 value, was determined using the Agilent 4200 TapeStation with 
RNA High Sensitivity ScreenTape was used. FFPE H&E-stained slides were imaged according to 
the Visium CytAssist Spatial Gene Expression Imaging Guidelines Technical note. Briefly, using 
the Leica Aperio VERSA scanner microscope, slides were scanned at 10X magnification.  Next, 
the hardest coverslip was removed, and the sample deparaffinized according to the 10X Genomics 
Visium CytAssist Spatial Tissue Preparation guide (CG000518 Rev C) and FFPE – 
deparaffinization and decrosslinking guide (CG000520 Rev B). Hardset coverslips were removed 
by immersing them in xylene for 10 minutes, twice for each slide. Then, slides were immersed in 
100% ethanol for 3 minutes, 2 times, followed by immersion in 96% ethanol for 3 minutes twice 
and finally in 70% ethanol for 3 minutes. Slides were incubated overnight at 40C before proceeding 
to destaining and decrosslinking according to the guidelines. Next, the slide was placed in the 
Visium CytAssist Tissue Slide Cassette and destained by incubating on a low profile thermocycler 
adapter in a thermal cycler (BioRad C1000 Touch) at 420C in 0.1 N HCL. Subsequently, 
decrosslinking with 10X buffers was performed at 950C for one hour. All 5 downstream steps 
were followed according to the Visium CytAssist Spatial Gene Expression User Guide 
(CB000495, Rev E) including using 6.5 mm x 6.5 mm Visium capture area slides;  (1) Probe 
hybridization; (2) Probe ligation, (3) Probe Release & Extension; (4) Pre-amplification and 
SPRIselect cleanup; (5) Visium CytAssist Spatial Gene Expression - Probe Based library 
construction. Visium Human Transcriptome probe set v2.0 used, which contains 18,536 genes 
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targeted by 54,5018 probes. 2.4% (451) of these genes are excluded by default due to predicted 
off-target activity to a different gene. All cleanup methods were performed using SPRIselect beads 
(Beckman Coulter), Qiagen EB buffer, and 10X Magnetic separator. Cycle number determination 
for GEX sample index PCR was performed using Kapa SYBR Fast qPCR Master Mix and qPCR 
amplification plots were visualized on the 7900HT Real-Time PCR system. Dual Index TS Set A, 
contains a mix of one unique i7 and one unique i5 sample index was used for sample index PCR. 
GEX Post-Library Construction QC was performed on Agilent TapeStation DNA High-Sensitivity 
ScreenTape. Libraries were normalized and pooled for sequencing on NextSeq 150 flow cells 
(Illumina, Inc., San Diego, CA, USA). 
 

ST data preprocessing and cell type annotation 
 
Following the spatial transcriptomics sequencing, the raw bcl files were demultiplexed using 
bcl2fastq and aligned to the human reference genome GRCh38 for each sample via SpaceRanger 
(v2.1.1). Quality control procedures were conducted individually for each patient using Squidpy 
105. Spots with fewer than 5,000 counts, genes expressed in fewer than 10 spots, and spots 
exhibiting over 30% reads mapped to mitochondrial DNA (pctMT) were filtered out.  
 
The copy number variation (CNV) profile of each cell was computed utilizing a Python 
implementation of InferCNV (https://github.com/icbi-lab/infercnvpy). To get an initial estimate of 
malignant versus normal ST spots, used as input to inferCNV, we employed a method inspired 
from the STARCH method initialization106. Briefly, we ran PCA on the log(1+CP10K) normalized 
ST data and clustered the data using K-means (k=2). We assigned the cluster with the highest 
average expression to the tumor cluster and the remaining cluster to normal. Normal spots are used 
as reference for the inferCNV algorithm. We then clustered spots according to their CNV profile 
using Leiden clustering and assigned clusters with a strong CNV profile to tumor spots. Clusters 
with a similar CNV profile to the tumor spots but with a weaker overall signal were assigned to 
mixed spots. Finally, spots with no CNV profile or with a CNV profile opposite to the tumor 
profile were labeled as normal spots. Hence, this procedure yields a refined assignment to spots to 
mostly tumor, mixed tumor and TME, and mostly TME regions. We further refined the annotations 
by spatially smoothing annotations: if a tumor or normal spot contained one or zero spots in the 6-
nearest neighbors of the same category, the label was reassigned to the majority label of the 
neighborhood (tumor, mixed, or normal).  
 
We then computed the distance of each tumor spot to the periphery of the tumor using the shortest 
path to the nearest normal or mixed spot. Spots with a small assigned distance were hence located 
at the tumor periphery, while spots with a large assigned distance were located at the tumor core.  
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Deconvolution of ST data 
To estimate the proportion of specific cell types within each spot as well as to obtain cell-type 
specific gene expression, we ran Cell2Location71 on each sample, using the full annotated snRNA-
seq discovery cohort as reference. We trained the negative binomial model on the discovery cohort 
using default parameters to obtain estimated cell-type specific average gene profiles. We then ran 
the Cell2Location model, using as prior N=5 average cells per spot and alpha=20 (relaxed 
regularization). This yielded an estimated number of cells from a specific cell type per spot. We 
then sampled from the posterior distribution of the trained model to obtain cell-type specific gene 
expression per spot.  

Scoring the cNMF programs and TME subtypes 
We used the carcinoma-specific gene expression matrix generated by Cell2Location to score the 
cNMF programs, using the top 100 cNMF contributing genes as a signature, similarly as for the 
snRNA-seq data. The matrix was first normalized using the log(1+CP10K) transformation. The 
cNMF score was computed as the average expression of the Z-score of signature genes, where the 
Z-score of a gene is computed as 𝑍 = (,	.	/$)

0$
, where X is the original gene expression, 𝜇, (resp. 

𝜎,) is the gene average (resp. standard deviation) over all spots. We used a similar procedure to 
score the TME subtypes, using the corresponding deconvolved layer for scoring, i.e., myeloid-
specific gene expression matrix for myeloid subtypes and fibroblast-specific for fibroblast 
subtypes.  

Spatially constrained malignant and TME interaction with NCEM 
To obtain estimates of interaction between cell types present in our data, we used node-centric 
expression models (NCEM)83 on the Cell2Location deconvolved data, using the following tutorial 
to prepare the data 
(https://github.com/theislab/ncem_benchmarks/blob/main/notebooks/data_preparation/deconvolu
tion/cell2location_human_lymphnode.ipynb) and the following tutorial to process the data 
(https://github.com/theislab/ncem_tutorials/blob/main/tutorials/type_coupling_visium.ipynb). In 
brief, the intensity of the interaction is estimated as the L1 norm of the significant coefficients of 
the model predicting the gene expression from the cell type and niche. In the visual representation, 
the strength of interactions is proportional to the width of the line linking two cell types; only cell 
types that have more than 25 significant coefficients (FDR p<0.05) are linked in the graph. 
 
Ligand-receptor interactions using CellPhoneDB  
To compute the significant interactions at a local scale, we used LIGREC, a variation of 
CellPhoneDB implemented within Squidpy105, with default parameters. Given this method does 
not include spatial information to inform possible interactions, we constrained our analysis to spots 
located near the tumor periphery. We labeled tumor spots with a distance of 2 or less to the nearest 
tumor or mixed spot as tumor periphery, and those with a distance of 3 or more as tumor core. 
Normal spots with a distance of 2 or less to the nearest tumor or mixed spot were labeled as normal 
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periphery, and those with a distance of 3 or more as normal healthy. We then ran LIGREC using 
these labels and restricted our analysis to significant interactions between tumor periphery and 
normal periphery spots. Significant interactions were hence computed only using cells located near 
the periphery, which does not however ensure that each spot expressing a specific ligand was in 
the direct periphery of the spot expressing the receptor. Although we found numerous interactions, 
we visually represented only significant interactions (FDR p<0.1) where the ligand or receptor 
belonged to the signature genes of the cNMF programs or the myeloid or fibroblast subtypes, 
specifically the top 100 contributing or most differentially expressed genes. 

Enhancer-driven gene regulatory network inference 
 
To construct an enhancer-driven gene regulatory network (GRN), we utilized the SCENIC+ 
software27. The SCENIC+ analysis was conducted at a sample level, with subsequent aggregation 
of the sample results. Samples with adequate ATAC recovery were included, excluding two 
normal adjacent samples and one primary sample (P1, P2 and P3). 

Enhancer-driven GRN inference with SCENIC+ 
For each sample, we first created a pycisTopic object by integrating the filtered gene expression 
and cell type annotations, preprocessed according to the pipeline outlined in “snRNA-seq data 
preprocessing and cell type annotation,” along with the ATAC fragments obtained through the 
Cellranger ARC pipeline and the MACS2-called peaks. The analysis encompassed all cells that 
passed the Cellranger ARC filtering. Subsequently, we employed the serial Latent Dirichlet 
Allocation (LDA) implementation in pycisTopic, running models with 2, 4, 10, and 16 topics. The 
selection of the optimal model was based on a combination of metrics as recommended in the 
pycisTopic tutorial (https://pycistopic.readthedocs.io/en/latest/Single_sample_workflow-
RTD.html). 
 
The topic-region distributions were binarized using both the Otsu method and the top 3,000 regions 
per topic, as advised in the tutorial. Additionally, we computed the differentially accessible regions 
per cell type, utilizing the cell types annotated in the snRNA data. To identify enriched motifs in 
candidate enhancer regions, we executed pycisTarget with precomputed databases for motif 
enrichment and annotations obtained from the auxiliary data of cisTarget  
(https://resources.aertslab.org/cistarget/).  
 
Subsequently, genes and regions expressed in less than 10% of the cells were filtered out, and the 
September 2019 Ensembl version was employed for annotation 
(https://sep2019.archive.ensembl.org/index.html). Finally, leveraging the paired snRNA- and 
snATAC-seq data and the motif enrichment matrix derived from pycisTarget, we inferred a GRN 
with SCENIC+ default parameters. 
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Identifying candidate master transcription factors associated with TME and 
malignant programs 
To identify potential candidate master transcription factors (TFs) associated with cell types or 
programs, we analyzed the results of SCENIC+ following the tutorial 
(https://scenicplus.readthedocs.io/en/latest/Scenicplus_step_by_step-RTD.html). SCENIC+ 
provided outputs of enhancer-driven regulons (eRegulons), delineated as a transcription factor and 
its regulated genes and regions. The eRegulons were scored in each cell using AUCell, and the 
TF-eRegulon relationship was computed using pseudobulks for each cell type. High-quality 
eRegulons were selected, with those exhibiting a TF-eRegulon correlation below 0.2 being 
removed. 
 
To identify candidate TFs associated with each major cell type in the TME, we calculated the 
regulon specificity score (RSS) for each eRegulon. Candidate TFs were considered associated with 
a TME cell type if they exhibited a significant RSS in at least two samples for this cell type. 
Subsequently, for each cell type, we determined the TF expression Z-score on the entire cohort, 
along with the associated gene-based and region-based eRegulon Z-scores. Candidate TFs were 
evaluated for their consistent overexpression in the cell type of interest across all three Z-scores. 
 
To identify candidate master TFs associated with the cNMF programs, we computed the 
correlation for each available TF between the cNMF program scores and all three measurements 
of TF activity (TF gene expression, gene-based eRegulon score, and region-based eRegulon score). 
The TFs were ranked based on their correlation with the three measurements, and the median rank 
of TFs across all three measurements was computed. Only TFs with a correlation exceeding 0.1 in 
all three modalities were selected. The top 20 TFs with the highest correlation mean across 
modalities were designated as candidate TFs. 

Validation of the identified transcription factors in external datasets 
To validate the association between the inflammatory cancer-associated fibroblast (CAF) 
phenotype we identified and its associated transcription factors (TFs), we utilized the pan-cancer 
CAF atlas provided by Luo et al.16. Furthermore, to confirm the link between the revealed cNMF 
programs and their respective TFs, we employed two previously mentioned external single-cell 
validation cohorts (Croft et al.10 and Carroll et al.9). 
 
Using the top 100 marker genes for the inflammatory CAF phenotype or the cNMF programs as 
signatures, we scored them using the scanpy scoring function in the external cohorts. To prevent 
overestimation of the correlation between the score and TF, we excluded the candidate TFs from 
the original signature. Due to the absence of associated scATAC-seq data, SCENIC+ could not be 
executed in external datasets. Therefore, we utilized the SCENIC program107 on the three external 
datasets to estimate regulon activity. 
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Subsequently, we computed the correlation between the inflammatory CAF score or cNMF scores 
and the expression of all known TFs listed by Lambert et al. 108 (http://humantfs.ccbr.utoronto.ca/). 
Additionally, we calculated the correlation between the scores and the eRegulon score as 
determined by SCENIC. The candidate TFs identified in our dataset through SCENIC+ were 
highlighted among the most highly correlated TFs, considering both their correlation with TF gene 
expression and eRegulon score. Of note, we only computed the correlation between the scores 
uncovered in Carroll et al. (cNMF1, cNMF2, cNMF4, and cNMF5) and Croft et al. (cNMF1, 
cNMF3, and cNMF4).  
 
Furthermore, to examine whether the trajectory of candidate mTFs aligned with the hypothesized 
trajectories across cNMF programs, we investigated the expression of candidate mTFs linked with 
cNMF4 and cNMF5, which were postulated as stable opposed programs. Cells were ranked based 
on the difference Δ=(cNMF4 score - cNMF5 score), representing the trajectory from cNMF5 
towards cNMF4. Subsequently, cells were grouped into ten equally sized bins, and the average 
expression level of candidate mTFs along with their associated 95% confidence interval was 
estimated for each bin.  

Link between malignant programs and clinical characteristics in external bulk 
datasets 
To ascertain whether the identified cNMF programs correlate with clinical characteristics, we 
assessed the scores of these programs in external bulk datasets and examined their association with 
various clinical parameters. To minimize the inclusion of TME components in our signature, we 
curated a cancer-specific signature. We selected the top 200 genes with the highest weight and 
subsequently filtered out genes expressed in at least 10% of any major TME cell type (endothelial, 
fibroblast, muscle, myeloid, lymphoid), using the remaining genes as the signature for each 
program. 
 
We retrieved data from patients with esophageal adenocarcinoma from the TCGA ESCA project7. 
RNA-seq Fragments Per Kilobase of transcript per Million mapped reads (FPKM) data, non-silent 
mutation calls, and survival information from Liu et al. 109 were obtained from the UCSC Xena 
browser (https://xenabrowser.net/datapages/). Additionally, clinical details were directly obtained 
from the TCGA Network study7. RNA-seq expression data and clinical characteristics from the 
study by Hoefnagel et al.17 were also downloaded, with the RNA-seq raw counts transformed into 
transcript per million (TPM). Bulk RNA-seq expression data and associated clinical characteristics 
from the study by Carroll et al.9 were obtained and similarly transformed into TPM. 
 
The cNMF programs were scored using single-sample Gene Set Enrichment Analysis 
(ssGSEA)110, with input data being FPKM for TCGA or TPM for Hoefnagel et al. or Carroll et al. 
The resulting scores were then correlated with TNM staging in the TCGA cohort. Survival analysis 
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was conducted in the three cohorts using a univariate Cox Proportional Hazards model on 
standardized scores, employing default parameters from the lifelines package  
(https://lifelines.readthedocs.io/en/latest/fitters/regression/CoxPHFitter.html). For the Carroll et 
al. dataset, we used the subset of bulk expression obtained before the treatment (PreTx) to avoid 
introducing high correlation between patients.  
 

Link between TME and malignant programs and immune checkpoint inhibitor 
therapy clinical benefit 
 
To assess whether presence of specific programs, notably the inflammatory CAF program and the 
malignant cNMF programs, was linked to response to  immune checkpoint inhibitor (ICI) therapy, 
we compared the distribution of score programs across patients of the Carroll et al. 9with or without 
clinical benefit. Patients were categorized into two groups based on their response to ICI therapy: 
those experiencing clinical benefit (CB) and those with no clinical benefit (NCB), as annotated in 
the Carroll et al. cohort. Notably, some patients lacked CB annotations, and patients from the 
operable cohort in the single-cell atlas were excluded from the CB vs. NCB comparison, 
participating only in patient-level comparisons. Paired measurements were obtained for patients 
before treatment (PreTx), after a 4-week ICI treatment window (ICI-4W), and following combined 
chemotherapy and ICI treatment (PostTx) when available. The distribution of inflammatory CAF 
and cNMF scores was compared between CB and NCB groups across PreTx and ICI-4W 
timepoints. Patient-level comparisons, including PostTx when applicable, were also conducted. 
Significance testing was performed using the Mann-Whitney U test to determine differences 
between scores at PreTx, ICI-4W, and PostTx measurements. 

Ecotype analysis using BayesPrism  
To explore the potential association between the identified malignant programs and the TME 
composition, we conducted a deconvolution analysis on the three previously described 
independent cohorts (TCGA7, Hoefnagel et al.17, and Carroll et al.9). We used the BayesPrism 
algorithm111 with default parameters, with the single-cell data from the Carroll et al. study9 as a 
reference cohort. BayesPrism provided estimates of the proportions of various cell types present 
in the datasets. 
 
Inspired by the methodology outlined by Wang et al.79, we identified ecotypes within the datasets. 
Each sample was characterized based on its estimated proportion of cell types derived from the 
Carroll et al. dataset. Subsequently, we computed the Z-score across all samples from both cohorts 
regarding the proportions of cell types. Euclidean pairwise distances were then calculated between 
all samples, followed by hierarchical clustering with Ward linkage to group samples with similar 
cell type proportions. 
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Using the methodology described in the preceding paragraph, we scored the identified programs 
and assessed the enrichment of scores in the uncovered ecotypes. This analysis aimed to elucidate 
any potential relationships between the malignant programs and the composition of the TME 
across the studied cohorts. 

Prediction of drug sensitivity using scTherapy  

To predict drug sensitivity for each malignant cNMF program, we employed scTherapy73 
following its tutorial for subclone-specific drug response prediction, adapting the approach to use 
cNMF representative cells instead of subclones. We first identified differentially expressed genes 
specific to each program using these representative cells and applied the filtering criteria outlined 
in the tutorial to predict monotherapy sensitivity. For each program, we selected drugs predicted 
to have high or high-to-moderate efficacy. To identify potential combination therapies, we selected 
drug pairs that, together, were predicted to target all five cNMF programs.  
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