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Abstract 

Childhood maltreatment effects on cerebral gray matter have been frequently discussed as a 

neurobiological pathway for depression. However, localizations are highly heterogeneous, and recent 

reports have questioned the replicability of mental health neuroimaging findings. Here, we 

investigate the replicability of gray matter correlates of maltreatment (measured retrospectively via 

the Childhood Trauma Questionnaire) across three large adult cohorts (total N=3225). Pooling 

cohorts revealed maltreatment-related gray matter reductions, with most extensive effects when not 

controlling for depression diagnosis (maximum partial R2=.022). However, none of these effects 

significantly replicated across cohorts. Non-replicability was consistent across a variety of 

maltreatment subtypes and operationalizations, as well as subgroup analyses with and without 

depression, and stratified by sex. In this work we show that there is little evidence for the 

replicability of gray matter correlates of childhood maltreatment, when adequately controlling for 

psychopathology. This underscores the need to focus on replicability research in mental health 

neuroimaging. 
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Introduction 

Childhood maltreatment (CM) has been identified to be one of the most important risk factors for 

the development of affective disorders 1,2 and is associated with chronic disease trajectories and 

poorer treatment outcomes in major depressive disorder (MDD) 1,3. Within the past two decades a 

plethora of neuroimaging studies has repeatedly suggested that experiences of abuse and neglect 

during childhood are associated with neurobiological alterations in adults4–8 . Brain regions where 

these effects have been localized overlap with neural correlates of MDD, giving rise to the notion 

that neurobiological alterations may mediate the unfavorable effects of CM on clinical trajectories 
9,10. Thus, studying the neurobiological correlates of CM could give insights into the mechanistic 

processes of its clinical consequences, potentially informing the optimization of treatments or 

preventative measures for this population 11.  

In adults, CM effects on gray matter structure have been observed in an array of regions, with most 

frequent findings implying the hippocampus, amygdala, dorsolateral prefrontal cortex, insula and 

anterior cingulate cortex 8,12–14. However, the investigation of CM-associated gray matter alterations 

has yielded considerable heterogeneity in findings regarding localization of effects. Importantly, 

large-scale consortium studies and meta-analyses do not find these aforementioned regions, but 

rather report a multitude of other areas to be associated with CM, including the postcentral gyrus 

and occipital regions 13, the median cingulate gyri and supplementary motor area 15,  the cerebellum 

and striatum 16, as well as the precuneus 17.  

This heterogeneity could result from the diversity of measurement instruments (e.g., different 

retrospective self-report scales vs. prospective ratings) and operationalizations of CM (e.g., 

continuous vs. categorical), as well as different subtypes of maltreatment being studied separately18–

20. Regarding subtypes of CM there has been considerable debate whether neural correlates could be 

specific to individual types of experiences. The increasingly influential dimensional model of adversity 

postulates that different dimensions of CM, such as threat-related and deprivation-related 

experiences or the unpredictability of one’s environment, underly differential neurobiological 

processes, consequently leading to differential neural correlates 21,22. Evidence for this model in 

children and adolescents has been accumulated over several studies 23. In contrast, other scholars 

have suggested the relevance of dividing CM experiences even further and have argued that brain 

alterations are aligned to these experiences in a very specific manner, such as parental verbal abuse 

impacting gray matter within the auditory cortex or sexual abuse being associated with cortical 

thinning within the somatosensory cortex 8. Another potential source of heterogeneity could stem 

from varying sample characteristics, differing in diagnoses, the degree of psychopathology and the 

severity of CM exposure24. Furthermore, different statistical approaches have been used. One 

statistical challenge is a strong phenomenological co-occurrence with mental health problems. Often, 

psychiatric diagnosis is statistically controlled for which leads to reduced power to detect 

maltreatment effects because both constructs strongly covary 1 and both explain shared variance in 

neurobiological alterations9. On the other side, if not controlling for diagnosis, neurobiological effects 

due to maltreatment or due to depression are impossible to disentangle. Moreover, evidence 

suggests that the neural correlates of CM may differ by sex25–27, underscoring the importance of 

carefully considering sex as a factor in these analyses.  

The recent debate around questionable replicability in the neuroimaging domain due to 

underpowered samples and publication bias suggests the possibility of substantial false-positive 

findings within the previous body of evidence 28,29. This notion is supported by evidence for 

considerable publication bias in meta-analyzed findings of gray matter correlates of CM 12. In fact, 

large-scale neuroimaging consortia, such as the ENIGMA consortium (Frodl et al.26; n=3036) or the 

UK-Biobank (Gheorghe et al.16; n=6751), have yielded much smaller effect sizes compared to studies 
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with smaller samples, and have failed to replicate frequently reported associations of CM with the 

hippocampus or amygdala. However, these consortia still rely exclusively on segmented volumetric 

brain measures, thus losing spatial resolution, which may account for lower sensitivity to find gray 

matter alterations, posing a limitation to these findings.  

In summary, inconclusive previous findings may result from variability in CM operationalizations, 

investigated clinical and non-clinical subgroups, varying statistical approaches, insufficient spatial 

resolution or simply because of false-positive results originating from underpowered studies. 

Systematic investigations of the replicability of these neural correlates do not exist to date. To shed 

light on this heterogeneity and re-evaluate our knowledge about the neurobiological underpinnings 

of adverse childhood experiences, we investigated the cross-cohort replicability of gray matter 

correlates of CM. We therefore utilized three large-scale, deeply phenotyped clinical cohort datasets, 

with a broad range of self-reported maltreatment experiences, in combination with high-resolution 

voxel-based morphometry (VBM). These rich datasets were assessed and processed in standardized 

pipelines harmonized across cohorts. We conducted subgroup analyses and probed different 

operationalizations and subtypes of maltreatment. Additional analyses stratified for sex were run for 

all models to account for potential sex-specific neural correlates of CM. Replicability was assessed by 

the spatial overlap of significant findings between our three cohorts, in addition to analyzing all 

cohorts together in a pooled model. Across all models we tested the hypothesis that CM is associated 

with lower gray matter volume (GMV). 

Here, we show that there is little evidence for the replicability of gray matter correlates of childhood 

maltreatment, across well-powered adult cohorts, using retrospective self-report measures. 

Consistent non-replicability is presented across all maltreatment operationalizations (including CM 

subtypes and severe forms of CM), subgroup analyses (including individuals with or without MDD) 

and in additional analyses stratified by sex. The largest evidence for maltreatment-associated gray 

matter is found when not adequately controlling for confounding MDD diagnosis. In contrast, the 

association between childhood maltreatment and depression is found across a variety of different 

clinical characteristics and replicates consistently across cohorts.  
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Results 

Associations of childhood maltreatment with demographic and clinical characteristics 

CTQ scales were highly interrelated with each other and they showed a pattern of small positive 

associations with age and small negative associations with education years (Figure 1a). Furthermore, 

within the MDD participants CTQ scales showed a pattern of weak to moderate associations with 

previous and current clinical characteristics (Figure 1a). Overall, the relationship between CM reports 

and demographic and clinical variables was highly similar across the three cohorts, except that age 

and number of inpatient treatments were not consistently associated with CTQ scales within the 

BiDirect cohort (Supplementary Figure S1-S3). Participants with a MDD diagnosis reported 

significantly more severe CM, as compared to HC participants (Figure 1b, Table S5). This was found 

across all CM subtypes and highly consistent across all cohorts (Figure S2-S5). Largest differences 

were found for the emotional abuse and neglect subscales (up to rrank-biserial=.517).  

 

Gray matter associations in the pooled sample across all cohorts 

A total of 15 different statistical models were conducted for all brain-wide analyses. All conducted 

models are described in Table 1. Results using the full sample from pooling all cohorts together are 

presented at a conservative significance threshold of pFWE<.05, corrected at the voxel-level. Findings 

from the pooled analyses are shown in Table 2 and Figure 2.  

When controlling for MDD diagnosis (Model 1) no voxels with a significant CM association were 

found. Dropping MDD diagnosis as covariate (Model 2) yielded significant widespread clusters (total 

k=5108), located mainly within superior and middle temporal areas, a bilateral fusiform and lingual 

complex, the thalamus, as well as in the orbitofrontal cortex and the insula. Subgroup analyses 

revealed small significant clusters in HC individuals when using CTQ sum as a predictor (Model 3; 

total k=122) within the medial orbitofrontal cortex, while no clusters survived the FWE-correction 

within the MDD sample (Model 4). Regarding subtypes of CM, no CTQ subscales were associated 

with GMV surpassing an FWE-corrected threshold, except a small cluster emerging when using 

physical abuse as a predictor (Model 8; total k=3 within the thalamus). Similar results were obtained 

when investigating individuals with ‘severe’ maltreatment: again, the model without controlling for 

MDD diagnosis yielded widespread reductions in the group with severe maltreatment as compared 

to the group with ‘none to minimal’ maltreatment in widespread clusters (Model 13; total k=11256). 

This effect was also found in much smaller localized clusters within HC samples only (Model 14; total 

k=140). Effect sizes across models when pooling cohorts ranged between partial R2=.006 and partial 

R2=.022. 

Pooled analyses stratified by sex yielded similar results, however with some additional clusters 

emerging in female subsamples when investigating severe CM in HC and MDD samples, while 

controlling for diagnosis (Model 12; total k=1847). Overall, there was a pattern of more models 

yielding significant effects (and larger clusters) in the female subsamples as compared to male 

subsamples. Results stratified by sex are shown in Table S6-S7. 
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Figure 1 

Associations between CTQ scales, demographic variables and clinical variables 

  

Note. a) Spearman correlations are shown. All correlations involving clinical variables (HDRS-17, BDI, Age of 

onset, number of depressive episodes and number of inpatient treatments) were only calculated within the 

MDD subsample. The BDI was only available within MACS and MNC, while the CES-D was only available for the 

BiDirect cohort. Significant associations at p<.05 are shown in bold font. b) Violin plots are shown depicting the 

distribution of the CTQ sum scale, as well as the five CTQ subscales. CTQ, childhood trauma questionnaire; EA, 

emotional abuse; PA, physical abuse; SA, sexual abuse; EN, emotional neglect; PN, physical neglect; HDRS-17, 

17-item Hamilton Depression Rating Scale; BDI, Beck Depression Inventory; CES-D, Center for Epidemiologic 

Studies Depression Scale. 

 

 

 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 4, 2025. ; https://doi.org/10.1101/2024.08.15.608132doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.15.608132
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1 

Summary of all conducted statistical models and the respective included sample sizes 

Model CM 

operationalization 

Controlled for 

MDD diagnosis 

Subsamples Sample size - n 

        MACS MNC BiDirect Pooled 

Model 1 CTQ sum yes HC/MDD 1752 916 557 3225 

Model 2 CTQ sum no HC/MDD 1752 916 557 3225 

Model 3 CTQ sum - HC 930 647 321 1898 

Model 4 CTQ sum - MDD 822 269 236 1327 

Model 5 Abuse/threat yes HC/MDD 1752 916 557 3225 

Model 6 Neglect/deprivation yes HC/MDD 1752 916 557 3225 

Model 7 EA subscale sum yes HC/MDD 1752 916 557 3225 

Model 8 PA subscale sum yes HC/MDD 1752 916 557 3225 

Model 9 SA subscale sum yes HC/MDD 1752 916 557 3225 

Model 10 EN subscale sum yes HC/MDD 1752 916 557 3225 

Model 11 PN subscale sum yes HC/MDD 1752 916 557 3225 

Model 12 Extreme groups 

(none/severe) 

yes HC/MDD None: 644 

Severe: 348 

None: 369 

Severe: 145 

None: 213 

Severe: 98 

None: 1226 

Severe: 591 

Model 13 Extreme groups 

(none/severe) 

no HC/MDD None: 644 

Severe: 348 

None: 369 

Severe: 145 

None: 213 

Severe: 98 

None: 1226 

Severe: 591 

Model 14 Extreme groups 

(none/severe) 

- HC None: 500 

Severe: 51 

None: 324 

Severe: 41 

None:  165 

Severe: 17 

None: 989 

Severe: 109 

Model 15 Extreme groups 

(none/severe) 

- MDD None: 144 

Severe: 297 

None: 45 

Severe: 104 

None: 48 

Severe: 81 

None: 237 

Severe: 482 

Note. In all models we additionally controlled for age, sex and total intracranial volume. The extreme group 

comparisons are based on cutoff-based categorizations of severity. For Models with comparison of extreme 

groups (Models 10-12) sample sizes are given for both the group with ‘none to minimal’ maltreatment (labelled 

‘none’) and the group with ‘severe’ maltreatment. CM, childhood maltreatment; CTQ, Childhood Trauma 

Questionnaire; HC, healthy controls; MDD, major depressive disorder; MACS, Marburg Münster Affective 

Disorders Cohort Study; MNC, Münster Neuroimaging Cohort; BiDirect, BiDirect study cohort; EA, emotional 

abuse; PA, physical abuse; SA, sexual abuse; PN, physical neglect; EN, emotional neglect.  
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Figure 2 

Significant clusters from pooled analysis at pFWE<.05  

 

Note. Glass brains are shown with maximum intensity projections. The cluster in Model 8 is marked with a red 

circle for visualization purposes. Color bars represent the partial R2 of the CM predictor in the respective 

model. All models are shown yielding significant clusters at pFWE<.05. HC, healthy controls; MDD, major 

depressive disorder.  
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Table 2 

Results summary for pooled cohorts (n=3225) at a significance level of pFWE<.05 
  

partial R2 
 

Model k significant min max main regions 

Model 1 0 
   

Model 2 5108 0.006 0.011 Temporal Mid/Sup R, Fusiform L+R, Rectus L+R, Insula 
R, Lingual L, Parahippocampal R, Thalamus L 

Model 3 122 0.010 0.012 OFC Med L, Rectus L 

Model 4 0 
   

Model 5 0 
   

Model 6 0 
   

Model 7 0 
   

Model 8 3 0.006 0.006 Thalamus Ra 

Model 9 0 
   

Model 10 0 
   

Model 11 0 
   

Model 12 0 
   

Model 13 11256 0.011 0.021 Temporal Mid/Sup R, Rectus L+R, Fusiform L+R, 
Cerebellum L+R, Insula R, Lingual L+R 

Model 14 140 0.017 0.022 Cerebellum R, Thalamus Ra 

Model 15 0 
   

Note. Number of significant voxels at pFWE<.05 are shown, as well as their minimum and maximum effect size 

for each analysis. Cluster labelling was conducted based on the aal atlas using the atlasreader python package 
30. Main regions are reported. aCluster labelling using aal resulted in ‘no_label’ however checking Desikan-

Killiany and Harvard-Oxford atlases indicated localization within the thalamus. L, left; R, right; Mid, middle; Sup, 

superior; OFC, orbitofrontal cortex; med, medial. 

 

Replicability of gray matter associations across single cohorts 

The same 15 models conducted in the pooled cohorts were also fitted in each cohort separately, 

using liberal uncorrected significance thresholds of punc<.001 and punc<.01. Within single cohorts, 

both significance thresholds and each statistical model yielded significant voxels in at least one of the 

three cohorts. In turn, each of the three cohorts produced significant voxels in most of the statistical 

models. The highest number of significant voxels was observed in model 2 and model 13 - both 

models where HC and MDD samples were included but diagnosis was not included as a covariate. A 

detailed summary of cohort-wise results across models, including additional analyses stratified by sex 

is shown in supplementary Tables S8-S13. Across probed models and across single cohorts the 

nominally significant voxels were widespread throughout the brain, including the cerebellum, 

temporal and frontal areas, subcortical areas and somatosensory cortices.  

Investigating replicability revealed that there was not one voxel that was congruently significant (i.e., 

replicable) at a threshold of punc<.001 in all three cohorts. This finding was consistent across all 

probed statistical models, including HC and MDD subgroup analyses, testing subtypes of CM and 

comparing groups with severe CM and no CM. Similarly, comparing pairs of cohorts also yielded no 

voxels that regionally overlapped between any pairwise cohort combinations, for most of the tested 

models. Only two models yielded marginal pairwise overlap in significance at this threshold: when 

testing the physical neglect subscale of the CTQ (Model 11) there was a small overlap between the 

MNC and BiDirect cohorts located within the supramarginal gyrus (overlap k=3; Dice=.002). 
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Furthermore, there was an overlap of k=2 voxels (Dice=.001) between the MACS and the BiDirect 

cohort in Model 13 (comparing extreme groups without controlling for diagnosis). This extent of 

replicability was not significant (pFDR>.509), as indicated by permutation-based null-distributions of 

overlap across cohort-combinations.   

When rerunning the replicability analyses using an even more liberal threshold of punc<.01 the 

observed spatial overlap in significant voxels was increased across models. The only models yielding 

any overlap across all three cohorts at this threshold was model 2 (CTQ sum; not controlling for MDD 

diagnosis), with converging significance in k=4 voxels, and model 13 (k=12 voxels; comparing extreme 

groups of CM, not controlling for MDD diagnosis). Pairwise cohort combinations yielded additional 

spatial overlap in significance across models, with maximum overlap in model 13 (k=1329, 

Dice=0.081). All observed overlap of any cohort combination was non-significant. This was consistent 

across all models (all pFDR>.150), as indicated by permutation-based null-distributions of overlap 

across cohort-combinations.  

Replicability results were largely consistent when rerunning all analyses stratified by sex. A summary 

of the extent of spatial overlap of effects across cohorts, as well as the significance of this 

replicability is shown in Table 3 and supplementary Tables S14-S18. Significant clusters across 

significance thresholds, cohorts and statistical models are shown in Figure 3 and supplementary 

Figures S6-S20, with additional results stratified by sex presented in supplementary Figures S21-S50.  

 

Figure 3 

Significant clusters across cohort-wise analyses at punc<.001 for exemplary models (replicability 

analysis) 

 

Note. Glass brains are shown with maximum intensity projections. Color bars represent the partial R2 of the 

maltreatment predictor in the respective model. Exemplary model results are shown for two models without 

any spatial overlap (i.e., replicability), namely the CTQ sum analysis in HC participants (Model 3) and in MDD 
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participants (Model 4), as well as one model showing some degree of spatial overlap (Model 11 testing the 

physical neglect subscale as predictor). HC, healthy controls; MDD, Major Depressive Disorder; MACS, Marburg 

Münster Affective Disorders Cohort Study; MNC, Münster Neuroimaging Cohort; BiDirect, BiDirect cohort.  

 

Table 3 

Replicability across cohorts indicated by spatial overlap in significance at a level of punc<.001 

  MACS-MNC   MACS-BiDirect   MNC-BiDirect   MACS-MNC-BiDirect 

  k overlap DICE   k overlap DICE   k overlap DICE   k overlap DICE 

Model 1 0 0  0 0  0 0  0 - 

Model 2 0 0  0 0  0 0  0 - 

Model 3 0 0  0 0  0 0  0 - 

Model 4 0 0  0 0  0 0  0 - 

Model 5 0 0  0 0  0 0  0 - 

Model 6 0 0  0 0  0 0  0 - 

Model 7 0 0  0 0  0 0  0 - 

Model 8 0 0  0 0  0 0  0 - 

Model 9 0 0  0 0  0 0  0 - 

Model 10 0 0  0 0  0 0  0 - 

Model 11 0 0  0 0  3a 0.002  0 - 

Model 12 0 0  0 0  0 0  0 - 

Model 13 0 0  2b 0.001  0 0  0 - 

Model 14 0 0  0 0  0 0  0 - 

Model 15 0 0   0 0   0 0   0 - 

Note. The overlap in significant voxels is presented across all statistical models and all cohort combinations. The 

DICE score is presented for pairwise combinations with any voxels overlapping. MACS, Marburg Münster 

Affective Disorders Cohort Study; MNC, Münster Neuroimaging Cohort; BiDirect, BiDirect study cohort. 
aCorresponding significance of overlap: p=.011, pFDR=.509. bCorresponding significance of overlap: p=.017, 

pFDR=.509. 

 

Discussion 

Findings implicating long-term effects of CM on the structural morphology of the brain have been 

frequently published over the last decades and are central to a neurobiological model of how 

environmental risk is conveyed to psychopathology. However, in an unprecedented replication effort 

we present evidence that localized brain-wide associations between gray matter structure and 

various operationalizations of CM are essentially non-replicable. This lack of replicability was 

consistently shown for a wide variety of common statistical approaches, across non-clinical and 

clinical, as well as sex-stratified subgroups and across a variety of operationalizations of CM. Central 

limitations arise due to the concrete assessment method of CM utilized in this study (retrospectively 

via the CTQ) and due to low demographic (particularly ethnic) variability of the included samples. The 

extensive non-replicability of CM-related gray matter effects were contrasted by highly replicable 

negative associations of CM with MDD diagnosis and with various measures of current and previous 

depression severity.  

In our pooled analysis we found small significant effects within HC subsamples and when 

investigating physical abuse. Furthermore, in the pooled analysis we identified large and widespread 
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clusters when not controlling for confounding MDD diagnosis. Notably, the localized clusters 

seemingly associated with CM in this latter analysis  largely overlap with clusters that were identified 

to be associated with a lifetime MDD diagnosis in a systematic case-control study using the same 

cohorts 31.  

When using liberal uncorrected thresholds, we found a vast array of regions seemingly associated 

with CM across the different cohorts and statistical models. In isolation, each of these results could 

easily have been the basis of a publication just like several smaller existing studies in the field, 

including previous publications from our own group 4,9. Importantly, these widespread significant 

effects for each single cohort should not be interpreted as solid evidence for effects due to the liberal 

significance thresholds and resulting massively inflated alpha error (i.e., false-positives). In our most 

liberal analyses, some extent of replicability was observed, particularly when investigating HC and 

MDD samples together while not controlling for MDD diagnosis. However, the identified overlap was 

small even for pairwise combinations of cohorts. Furthermore, permutation-based significance 

testing of this descriptive overlap indicated that it was not higher than expected by chance. Overall, 

our findings suggest that gray matter reductions associated with CM are non-replicable. Similar 

results were obtained when rerunning all analyses stratified by sex. Even highly cited previous 

reports of brain structural correlates of CM, such as associations with lower GMV within the 

hippocampus 4,9 could not be confirmed.  

Null findings are always difficult to interpret due to a multitude of potential reasons for failing to 

detect an effect. Potential reasons for false-negatives can stem from the specific measurement and 

operationalization of the predictor or dependent variable, the specific statistical approach (e.g., 

inclusion of covariates), insufficient statistical power, the sample selection and, regarding 

replicability, differences between specific cohort characteristics. In the following we will discuss each 

of these potential sources of effect variability.  

Despite of its common use, the CTQ has been criticized for neglecting the timing of maltreatment 32 

and showing low agreement with prospective CM measures 33,34, the latter likely due to memory and 

reporting biases 35. Although depressive states are thought to bias childhood reports, we found CTQ 

scores to be highly stable over two years within the MACS and MNC cohorts, with no systematic 

association with changes in depressive symptoms 36. Regardless, retrospective CM measures 

generally show stronger associations with later psychopathology than prospective measures, 

potentially measure different entities 37. Timing of exposure may critically moderate CM’s effects on 

clinical 38–40 and neurobiological endpoints 41–43. Thus, it is unclear whether our findings, based on the 

retrospective CTQ, generalize to prospectively assessed CM measures or those incorporating timing 

information. While the general critique of the CTQ may be valid and posits an important limitation to 

the current findings, it is notable that the CTQ is also the instrument which has been used in most of 

the referenced studies, which have reported GMV associations with CM 4,9,44–47, ensuring 

methodological comparability with our study. Some of the studies reporting on significant effects use 

alternative assessment instruments to measure CM, such as interview measures 44, or CTQ data from 

adolescent or young adult samples, potentially less affected by memory biases 44,45,47. Furthermore, 

our analyses are cross-sectional, and while longitudinal studies are rare, some have shown how CM 

may affect brain development and links to psychopathology over time 45,48–50. Future studies should 

expand our current findings and investigate the replicability of CM neural correlates using alternative 

instruments, designs and samples. 

On the side of the dependent variable, we used state-of-the-art voxel-wise GMV assessments. Meta-

research on neuroimaging replicability suggests that the researchers’ degrees of freedom regarding 

scanning parameters, preprocessing and quality control pipelines contribute to low reproducibility 

and replicability 51,52. While such differences could influence findings, our procedures were closely 
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harmonized across cohorts, making this an unlikely explanation for low replicability in our study. 

Further, it remains unclear whether our null findings generalize to other imaging modalities, such as 

functional or structural connectivity, or alternative measures of gray matter structure (e.g., cortical 

surface or thickness), warranting further investigation.  

Similarly, several decisions are required regarding the operationalization of predictors and statistical 

modeling. In previous studies, CM (even when based on the CTQ) was operationalized in different 

ways (total sum score, subscale scores, different cutoff-based categories), and confounding 

psychopathology was differently addressed. To enable more robust interpretations, we employed a 

comprehensive approach that included a range of common statistical models. While our list of 

models is not exhaustive and our conclusions are limited to these specific approaches, the consistent 

finding of poor replicability across all tested models is striking. 

Insufficient statistical power may partly account for low replicability, especially for some subgroup 

analyses. Although our study represents the largest replicability investigation of brain alterations 

associated with CM to date, it may still lack power to detect small effects typical in biological 

psychology and psychiatry, which rarely exceed 2.5% explained variance 28,53. This limitation is 

particularly relevant for some subgroup analyses (smallest subsample size n=129 ). However, our 

attained sample size and statistical power are well within the realm of previous meta-analyses 12,13 

and large-scale consortia analyses 17,54.  

Sample selection is a key source of variability. While our cohorts encompass a broad range of 

maltreatment severity and clinical characteristics, they are relatively homogeneous demographically, 

consisting of German individuals of Western European ancestry with relatively high education levels. 

This homogeneity enhances conditions for replicability but limits the generalizability of our null 

findings to other populations. Differences between cohorts may also contribute to low replicability. 

For instance, the BiDirect cohort was considerably older, while the MNC cohort included only acutely 

depressed inpatient MDD patients, compared to a mix of outpatient and remitted individuals in the 

other cohorts. Differences in current depression severity and illness history were also observed 

across MDD samples. However, the extent of non-replicability across all pairwise cohort comparisons 

suggests that cohort-specific differences alone are unlikely to fully explain our null findings. 

All these aspects pose potential sources of effect variability and could account for false-negative 

findings. However, previous studies reporting CM associations were highly comparable regarding 

utilized methodology. It should be noted that it is possible that conventional conceptualizations of 

clearly localizable gray matter reductions due to CM on a group-level could be too simplistic. 

Recently, machine learning and normative modelling approaches have been increasingly promoted 

following the notion that the concrete shape of neurobiological consequences in the brain may be 

highly individual 55,56.  

The absence of evidence cannot directly be interpreted as evidence for the absence of a 

phenomenon 57. However, the extent of non-replicability of gray matter correlates of CM still appears 

disconcerting. Notably, this is in contrast to the replicability of GMV reductions linked to lifetime 

MDD, observed using a similar approach 31. Replicability is a fundamental principle of the scientific 

process and essential for accumulating scientific knowledge 58. However, non-replicability of 

published findings is a growing concern across disciplines, such as cell biology 59, genetics 60,61, 

oncology 62, epidemiology 63 and psychology 64. Factors contributing to this replication crisis include 

publication pressure, bias toward positive results, and analytic flexibility 65,66. Neuroimaging, with its 

high analytic flexibility, numerous tests, and small, underpowered samples, is particularly susceptible 

to overestimated effect sizes and non-replicability 67,68. Recent research shows that thousands of 

participants may be needed for robust, replicable brain-wide associations due to small true effect 
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sizes 28, which has sparked ongoing debates in the field69–74. Our study supports this view, suggesting 

that low replicability may be a broader issue, not limited to this research question alone. Notably, no 

consensus exists on how to define "successful" replicability in voxel-based neuroimaging. We 

contribute to this by formalizing and testing cross-sample replicability of voxel-based analyses. 

Concerns about low replicability have led to the development of open science policies, such as 

preregistration of hypotheses and analysis plans, as well as comprehensive disclosure of analysis 

code and results 75, to achieve transparency and reduce biases. Accordingly, scholars have 

increasingly advocated for these practices to enhance replicability in neuroimaging research 76. 

However, replications and open science practices remain very rare in neuroimaging 77. Additionally, 

approaches like cross-validation, which assess the generalizability of statistical findings to 

independent data, can help identify overestimated effect sizes and non-replicability in smaller 

samples 78. 

Our findings underline the importance of taking a step back and shifting the focus towards increasing 

and investigating the replicability and generalizability of presumably established research findings. 

Various open science practices are available for this: 1) preregistrations of hypotheses and analyses, 

2) transparent sharing of analysis code and methods, and the publication of comprehensive (i.e., 

non-thresholded) results 79, as well as 3) the mere execution of direct and conceptual replication 

studies, and 4) the publication of null findings. Open science practices should be routinely adopted in 

neuroimaging research on mental disorders to increase replicability and thus maximize the potential 

for clinical translation.  

 

Methods 

Participants 

Samples from three large-scale independent cohorts were included in the present analysis: the 

Marburg Münster Affective Disorders Cohort Study (MACS), the Münster Neuroimaging cohort 

(MNC) and the BiDirect cohort. All three cohorts include adults (age 18-65 years) with and without 

mental disorders. Recruitment was restricted to individuals proficient in the German language and 

with western European ancestry (as the cohorts were originally conceptualized for genetic analyses). 

For the current analyses we included healthy control (HC) individuals, as well as individuals with a 

lifetime MDD diagnosis. In total, a sum of n=3225 participants were included (HC: n=1898; MDD: 

1327). Identical exclusion criteria were applied for all three independent cohorts: 1) duplicate cases 

resulting from individuals that were included in more than one of the utilized cohorts, 2) presence of 

a lifetime bipolar disorder, psychosis spectrum disorder or substance dependencies (other psychiatric 

comorbidities were permitted), 3) severe head trauma or severe/chronic somatic illness (e.g., 

Parkinson’s disease, multiple sclerosis, stroke, myocardial infarction), 4) missing MRI data and image 

artefacts diagnosed during quality control, 5) missing data in the CTQ.  

For details on the methods and general inclusion criteria of the study samples we refer to previous 

publications (MACS: Kircher et al.80; Vogelbacher et al.81; MNC: Dannlowski et al.82; Opel et al.6; 

BiDirect: Teismann et al.83) and to the supplements. The final samples included in the current 

analyses comprised n=1752 participants from MACS (HC: n=930; MDD: n=822), n=916 participants 

from MNC (HC: n=647; MDD: n=269), and n=557 participants from BiDirect (HC: n=321; MDD: 

n=236). Detailed sample characteristics of the three cohorts, including demographics, reports of CM 

and clinical characteristics, are described in Table S1 and Table S2. Differences between cohorts in 

sample characteristics are shown in Table S3, while differences in clinical characteristics between the 
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MDD subsamples of the cohorts are shown in Table S4. Age distributions across cohorts and 

diagnosis groups are shown in Figure S1. 

Of note, findings regarding gray matter correlates of CM have been previously published using MNC 

data at earlier stages of data assessments. However, these analyses only included a fraction of the 

data available for the current analysis (the largest sample including n=170 subjects).4,9  

The study was approved by the local Institutional Review Board of the medical faculties of the 

University of Marburg and the University of Münster and written informed consent was obtained 

before participation. Patients received financial compensation for their participation. 

 

Assessment of childhood maltreatment and clinical characterization 

CM was assessed using the German version of the Childhood Trauma Questionnaire (CTQ) 84,85. The 

CTQ is a 25-item retrospective self-report questionnaire capturing five different subtypes of CM, 

namely emotional abuse, physical abuse, sexual abuse, emotional neglect, and physical neglect. Each 

of these subtypes can be scored separately using a sum score of the five corresponding items, while 

the sum of these subscale scores amounts to the total CTQ score (expressing the total severity or 

load of experienced maltreatment). In addition, a categorical scoring of the CTQ has been introduced 

based on validated subscale cutoff values, dividing scores in each subscale into different severity 

categories from ‘none to minimal’ to ‘severe’ 86. As described in detail below, here we utilize the total 

and subscale sum scores, as well as categorical cutoffs for group comparisons. The CTQ has been 

used in several hundreds of studies across different nationalities and validated on clinical and non-

clinical populations 87. It has been extensively tested for its psychometric properties in several 

languages and geographic contexts 85,87–94.  

Lifetime clinical diagnosis was assessed using structured clinical interviews by trained study 

personnel in each cohort. Within MACS and MNC the German version of the Structured Clinical 

Interview for the DSM-IV (SCID)95 was used. Within the BiDirect cohort the Mini International 

Neuropsychiatric Interview (MINI)96 was used, also based on the DSM-IV criteria. Further clinical 

characterization was done using a variety of standardized clinical interviews, rating scales and self-

report questionnaires, capturing information on current remission status, current depression severity 

and previous course of disease (see supplements).  

 

Structural image acquisition and processing 

T1-weighted high-resolution anatomical brain images were acquired using 3T MRI scanner using 

highly harmonized scanning protocols across all three cohorts. For the MACS sample two different 

MRI scanners were used at the recruitment sites in Marburg (Tim Trio, Siemens, Erlangen, Germany; 

combined with a 12-channel head matrix Rx-coil) and Münster (Prisma, Siemens, Erlangen, Germany; 

combined with a 20-channel head matrix Rx-coil). MNC and BiDirect samples were both scanned 

using a Gyroscan Intera scanner with Achieva update (both by Philips Medical Systems, Best, The 

Netherlands).  

Image preprocessing was conducted using the CAT12-toolbox97 (https://neuro-jena.github.io/cat/) 

using default parameters equally for all cohorts. Briefly, images were bias-corrected, tissue classified, 

and normalized to MNI-space using linear (12-parameter affine) and non-linear transformations, 

within a unified model including high-dimensional geodesic shooting normalization 98. The modulated 

gray matter images were smoothed with a Gaussian kernel of 8 mm FWHM. Absolute threshold 
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masking with a threshold value of 0.1 was used for all second level analyses as recommended for 

VBM analyses (http://www.neuro.uni-jena.de/cat/). Image quality was assessed by visual inspection 

as well as by using the check for homogeneity function implemented in the CAT12 toolbox. Image 

acquisition and processing for all study samples were extensively described elsewhere 48,81,83. 

Image harmonization was conducted using the neuroCombat toolbox in python 99 with default 

parameters to control for differences in scanner hardware and corresponding effects on brain 

images. This procedure allows the specification of ‘biological covariates’ that are excluded from 

harmonization in order to preserve desired variance of potentially confounding variables. We defined 

CTQ sum, age, sex, total intracranial volume (TIV) and MDD diagnosis as such covariates. The 

harmonization process was conducted across six different scanner groups: MACS Münster scanner, 

MACS Marburg scanner before and after body coil change, MNC scanner before and after gradient 

coil change and the BiDirect scanner setting. 

 

Statistical analysis 

Associations between CM reports, demographic and clinical variables were investigated using 

spearman correlations (due to highly non-normal distributions in the CTQ scales) and Man-Whitney-

U tests. For the latter, rank-biserial correlations were calculated as a measure of effect size.  

Brain-wide associations between CM and voxel-wise GMV were tested using general linear models in 

a mass-univariate VBM approach. The available cohorts were investigated in two different steps: In a 

first step we pooled all cohorts together in order to harvest the maximum sample size and thus the 

maximum available statistical power. For this pooled analysis we used a voxel-wise family-wise error 

(FWE)-corrected significance threshold of pFWE<.05. 

In a second step we investigated the cross-cohort replicability by analyzing each of the cohorts 

separately using two liberal uncorrected significance thresholds of punc<.001 and punc<.01. Here, we 

examined the spatial convergence (i.e., overlap) of significant voxels across the cohorts as 

conjunctive criteria (convergence either across any subset of two cohorts or across all three cohorts). 

Note that these liberal significance thresholds should not be used by themselves for statistical 

inference due to a massively inflated alpha error from the mass-univariate testing. However, we 

defined these liberal thresholds as minimum thresholds for effects to be recognized as replicable. 

Importantly, the probability of finding the same voxel in two or even three cohorts constitutes a 

higher threshold than a voxel becoming significant just in a single cohort. In numbers, a threshold of 

p<.001 exceeded in each of the three single cohorts, results in an effective false-positive rate of 

p<.001³ = .000000001. No extent threshold for minimum cluster size was used in any analysis. In 

order to test the significance of the replicability (i.e., overlap in effects) we applied permutation 

testing, permuting the respective predictor label for each cohort k=1000 times subsequently 

obtaining a null distribution for the overlap analysis (how much overlap between cohorts can be 

expected by chance). Obtained p-values were FDR-corrected using the Benjamini-Hochberg 

procedure100 across 15 models for which overlap was investigated across four different cohort-

combinations (resulting in correction of sets of 60 tests).  

The following statistical models were probed for 1) pooled analyses and 2) cross-cohort replicability 

analyses, to delineate the conditions under which VBM associations may become evident (an 

overview of all statistical models is presented in Table 1). In all models age, sex and TIV were 

included as covariates. Additionally, lifetime MDD diagnosis was included as a control variable in all 

models unless stated otherwise: 
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- In Model 1 we used CTQ sum as the main predictor of interest, while additionally controlling 

for lifetime MDD diagnosis, as this variable is highly confounded with CM. Thus, in this model 

we tested the effect of CM on GMV beyond any effect of diagnosis.  

- The model described above may not be sufficiently sensitive to detect CM effects due to 

substantial shared variance with the MDD diagnosis effect being partialized out. Therefore, 

we further tested a second model (Model 2) removing MDD diagnosis as a covariate. This 

allowed us to obtain a liberal estimate for the association between CM and gray matter, 

which however is not clearly separable from any MDD diagnosis effects.  

- To investigate CM effects independently from a confounding MDD diagnosis effect, we 

further conducted subgroup analyses within HC (Model 3) and MDD (Model 4) samples 

separately.  

- Based on the dimensional model of adversity 21,22 we probed associations between CM and 

GMV specifically for the abuse subscales (Model 5) and the neglect subscales (Model 6) of 

the CTQ, to differentiate between threat- and deprivation-related experiences.  

- In order to delineate effects of specific subtypes of CM in further detail, we tested a series of 

models with each of the five CTQ subscale sum scores as predictors respectively (Models 7-

11).  

- Lastly, we investigated the effects of severe forms of CM. This was done by identifying 

participants exceeding the subscale cutoff score for severe CM in any CTQ subscale, as 

defined and validated by Bernstein and colleagues.101 This group of individuals with severe 

CM is contrasted with a control group that does not exceed any subscale cutoff (only CM 

reported within the range of “none to minimal”). With this we accounted for the notion that 

CM associations with VBM may become evident particularly in individuals with severe 

experiences of CM. In our sample n=591 individuals (HC: n=109; MDD: n=482) fulfilled the 

criteria for severe maltreatment in at least one of the CTQ subscales, while n=1226 

individuals (HC: n=989; MDD: n=237) fell into the category “none to minimal” maltreatment 

experiences. The extreme group comparisons were done in the full sample (HC and MDD), in 

one model controlling for MDD diagnosis (Model 12) and in another model dropping MDD 

diagnosis as a covariate (Model 13). The distribution of severe CM across diagnostic groups 

was significantly uneven (Chi2=645.71; p<.001, OR=18.45, 95%-CI: [14.348, 23.732). This 

strongly unequal distribution led us to conduct severity group analyses additionally in HC 

(Model 14) and MDD (Model 15) subgroups separately.  

 

To account for potential sex-specific effects all analyses were additionally rerun stratified by female 

and male sex, as self-reported by the participants. One-sided negative contrasts were tested in all 

models (i.e., CM associated with lower gray matter volume) due to poor evidence for potential 

positive associations between CM and VBM 12,13,15,23. Partial R² was calculated based on t-maps and 

reported as an effect size for the partialized percentage of explained variance of the respective CM 

predictor for each analysis. Analyses were conducted using python (version 3.9.12). Analyses were 

not preregistered. 

 

Data availability 

Comprehensive non-thresholded statistical estimates are made openly available via the OSF 

(https://osf.io/j8d9r/?view_only=9edf436ab18f4e8db9ef4c71c4ac356c). Individual raw data is not 

published due to current EU data protection regulations and the sensitive nature of clinical MRI data  
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but can be made available in form of summary statistics or anonymized aggregation of voxel-wise 

data upon reasonable request to the corresponding author.  

 

Code availability 

The code used for analysis is publicly available in an Open Science Framework (OSF) repository 

(https://osf.io/j8d9r/?view_only=9edf436ab18f4e8db9ef4c71c4ac356c), to foster transparency and 

reproducibility of our analyses 29.  
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