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Abstract:  13 
Working memory allows an animal to gather sensory evidence over time, integrate it 14 
with evolving internal needs, and make informed decisions about when and how to act. 15 
Simple nervous systems enable careful mechanistic dissection of neuronal micro-16 
dynamics underlying putative conserved mechanisms of cognitive function. In this study, 17 
we show that the nematode C. elegans makes sensory-guided turns while foraging and 18 
can maintain a working memory of sensory activation prior to the execution of a turn. 19 
This information is integrated with body posture to localize appetitive stimuli. Using a 20 
virtual-reality whole-brain imaging and neural perturbation system, we find that this 21 
working memory is implemented by the coupled oscillations of two distributed neural 22 
motor command complexes. One complex decouples from motor output after sensory 23 
evidence accumulation, exhibits persistent oscillatory dynamics, and initiates turn 24 
execution. The second complex serves as a reference timer. We propose that the 25 
implementation of working memory via internalization of motor oscillations could 26 
represent the evolutionary origin of internal neural processing, i.e. thought, and a 27 
foundation of higher cognition.  28 
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Main Text:  29 
Introduction 30 

Any animal navigating a complex environment stands to benefit from the ability to 31 
quickly form impressions of the world, retain them internally, and act on them later. 32 
Such a working memory system allows for deferred, contingent actions, which may 33 
serve the animal better than reflex actions by allowing for more nuanced behavior or 34 
cognitive processing. But how did nervous systems acquire this ability? Distributed brain 35 
oscillations and their interactions have long been hypothesized to be a building block of 36 
cognitive function in complex-brained animals (1). Considerable theoretical work has 37 
been devoted to understanding how these observed phenomena might implement 38 
various cognitive functions (2). However, experimental establishment of causal roles 39 
and mechanistic understanding has been elusive, due at least in part to the sheer 40 
complexity of mammalian brains and the challenge of observing these neural networks 41 
at sufficient sampling density or completeness.  42 

By contrast, in simpler brained animals with vastly lower neuron counts, 43 
oscillators serving to produce repetitive bodily movement, i.e. central pattern 44 
generators, have been closely studied and systematically dissected, yielding 45 
mechanistic insight in the production of adaptive but robust rhythmic motor patterns (3). 46 
But cognitive functions such as sensory-driven decision-making have rarely been 47 
studied in simple animals (4).  48 

The 1 mm long nematode C. elegans crawls on its right or left side when on a flat 49 
surface. During foraging, the worm crawls in a straight or curved forward direction and 50 
punctuates bouts of forward crawling with discrete reversal-then-turn reorientation 51 
maneuvers, known as pirouettes, either in the dorsal or ventral direction (5, Fig. 1A). 52 
The choice of this direction has traditionally been described as an unregulated random 53 
process, akin to the randomizing tumbles of a bacterium performing “biased-random-54 
walk” chemotaxis (5). However, worm olfactory neurons signal reliably on fast 55 
timescales (6), and mutations which slow temporal dynamics of olfactory receptors 56 
drastically disrupt chemotaxis, suggesting worms can integrate sensory information with 57 
instantaneous body posture.  58 

Here, we construct a closed-loop virtual olfactory environment (Fig. 1A,B), and 59 
show that worms integrate olfactory sensory dynamics with instantaneous body posture 60 
to navigate towards attractants, by executing directed turns that are deferred by tens of 61 
seconds, suggesting the existence of a working memory system. By monitoring neural 62 
activity across the brain, we find that this working memory is implemented by the phasic 63 
interaction of two distributed dynamical complexes associated with motor control. We 64 
contend that the internalization of motor command dynamics to direct deferred 65 
contingent actions may represent the evolutionary transition from reflex actions to 66 
actions guided by internal neural processing. 67 
 68 
 69 
Results 70 
C. elegans executes directed, sensory-guided reorientations 71 

We engineered a closed-loop virtual odor environment to emulate a directional 72 
odor signal from the worm’s frame of reference by delivering optogenetic stimulation 73 
timed to particular body postures of the worm while crawling on an agar surface. We 74 
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optogenetically stimulated the AWA sensory neuron, known to mediate chemotaxis to 75 
certain attractants, synchronized to either ventral or dorsal head swings during forward 76 
motion (Fig. 1A). In the absence of explicit sensory cues, when crawling on an agar 77 
surface, worm post-reversal turns are biased 60-75% towards their ventral side (7). 78 
After posture-timed optogenetic stimulation during bouts of forward crawling, individuals 79 
showed a strong preference for resolving the following reversal bout with a turn in the 80 
favored direction before resuming forward locomotion (Fig. 1B). 81 

This observation suggests two key features of the sensory control of the 82 
behavior. First, to assign the stimulus to a particular spatial direction, the animal needs 83 
to integrate olfactory sensation with proprioceptive signals or efference signals of motor 84 
commands for head swings. Second, to turn in a favorable direction after an intervening 85 
reversal, the animal needs some form of working memory (Fig. 1C). 86 
 87 
Distributed dynamical complexes encode motor command state and head 88 
curvature 89 

Studies across the animal kingdom have established a universal phenomenon 90 
that high-level motor commands are encoded in the low-dimensional state space of 91 
broadly distributed neural dynamics (4, 8-12). We asked whether lower-level sub-92 
commands may also be encoded across many neurons, such as the sinusoidal 93 
movement of head swings in C. elegans. Previous studies have observed several 94 
neurons which correlate with dorsal or ventral head bending, however to what extent 95 
this signal reflects head musculature proprioception, motor output, causal decision 96 
processes, or any combination thereof, is unresolved (8, 13-16).  97 

To look for neurons encoding headswing commands while avoiding the potential 98 
confound of proprioceptive state encoding, we restrained worms in microfluidic chips 99 
that enable high-quality volumetric whole-brain calcium imaging at cellular resolution 100 
(Fig 1D,E). In all trials, we observed cycles of the fictive command state sequence 101 
(forward-backward-turn) widely distributed across many neurons. For convenience, we 102 
define command states (and corresponding fictive neural network states): forward 103 
(FWD), reversal (REV), and dorsal or ventral (DOR, VEN) turn (TURN). As reported 104 
previously, the first principal component of whole brain recordings reliably encodes the 105 
command state sequence (8, Fig. 1F,H,J). We refer to the neural sub-network which 106 
exhibits these distributed dynamics as the command state complex, and the first 107 
principal component of these dynamics as the command state projection. Since the 108 
command state signal dominates the variance of brain-wide neuronal activity, we then 109 
performed PCA on the residuals of the command state projection, restricting time series 110 
data to periods for fictive forward locomotion only, which yielded a second strong, 111 
stereotyped network oscillation (Fig. 1G,I,K).  112 

We found this faster oscillating component to be distributed across 14-20 113 
neurons in the head of the animal that are variously implicated in motor control of the 114 
head muscles, sensorimotor integration, and proprioception (14, 17, Fig. 1G,I,K, S1A). 115 
The neuron class we observed with highest component loading was SMDD, and its 116 
contralateral neuron class SMDV had a large negative loading. Previous studies have 117 
shown SMDV reliably correlates with ventral head curvature during forward crawling 118 
and ventral post-reversal turns, and SMDD correlates with dorsal turns (8, 13, 15, Fig. 119 
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S1B,C). Their anti-phasic coupling during FWD suggests their activity corresponds to 120 
fictive dorsal-ventral head swings consistent with sinusoidal crawling during the forward 121 
command state. We name this component the headswing projection. While TURN 122 
trajectories of different directions are mixed together in a single bundle together when 123 
plotted in command projection phase space (Fig 1J), they strongly split when plotted in 124 
joint command/headswing state space (Fig. 1K,L, Fig. S2A-F).  125 

We asked if there was a relationship between the oscillation periods of the two 126 
projections. Interestingly, we found that distribution of the duration of FWD/REV epochs 127 
of the command state projection was enriched at integer multiples of the headswing 128 
projection periods (Fig. 1L, 1M).  This coupling of internal dynamics is consistent with 129 
the nesting of headswings within forward crawling bouts previously reported (15). The 130 
persistence of an interaction across multiple fictive headswing periods suggested to us 131 
a potential substrate for maintaining a stable value, i.e. a memory, via the phase of the 132 
headswing oscillation, that could be leveraged for executing deferred sensory-guided 133 
decisions. To test this hypothesis, we examined neural network dynamics while evoking 134 
directed TURN. 135 
 136 
Decoding deferred, sensory-driven action in immobilized worms 137 

We next combined closed-loop perturbative optogenetic stimulation with whole-138 
brain imaging (Fig. 2A-C), recapitulating our virtual olfactory setup in immobilized 139 
worms. Each 16-24 minute recording captured 10-30 FWD-REV-TURN sequences. 140 
Within a trial, repeated AWA stimulations of ~4-8s were delivered at a particular phase 141 
of the headswing projection oscillation (Fig. 2C,D).  142 

Stimulation of AWA shifted the distribution of times until the next REV initiation 143 
(Fig. 2E,F), sometimes eliciting early reversals. We observed a secondary bump in the 144 
shifted distribution of time-to-REV for AWA stimulations, at ~20s, which roughly 145 
corresponds to one typical period of headswing oscillation under immobilization (Fig. 1I, 146 
2D), suggesting that we may observe the system as it maintains a sensory-evoked 147 
memory trace over the course of one of more fictive headswing oscillations.  148 

We evaluated the direction of the TURN produced after the intervening REV 149 
state, about 30 to 90 seconds in the future (Fig. 2G), and found that our stimulations 150 
biased the DOR/VEN ratio in both directions, depending on the value of the estimated 151 
headswing phase at the time of last stimulation before a reversal (Fig. 2H).  152 

Next, we trained a decoder on individual stimulation trials (see Methods) to 153 
predict TURN direction using activity leading up to the prior REV. We found that the 154 
dorsal/ventral identity of fictive post-reversal turns could be predicted by evoked AWA 155 
neural responses when combined with phase information of headswing projection at the 156 
time of stimulation (Fig. 2I), consistent with the observed effect of stimulation biasing 157 
turn choice (Fig. 2H). Prediction improved by including headswing state at REV onset 158 
(Fig. 2J), suggesting a post-stimulation role for headswing state in informing the 159 
deferred turn decision. Including features of individual headswing complex neuronal 160 
activity alongside the headswing projection further increased prediction performance, 161 
possibly suggesting that linear projection of headswing network dynamics may not fully 162 
capture the network dynamics underlying the sensation-to-action process. 163 
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The ability to predict deferred fictive turn decisions from prior neural activity in an 164 
immobilized, paralyzed setup demonstrates the existence of an internal neural working 165 
memory. Given the evidence of interaction between headswing projection oscillation 166 
and command state oscillation periods, we sought a closer study of oscillatory 167 
headswing dynamics during the intervening reversal.  168 
 169 
Internalized headswing oscillation phase is set after REV onset 170 

During reverse locomotion, the head oscillations present during forward crawling 171 
are largely suppressed – the animal’s head trails behind the body (18). We found that 172 
during REV epochs in paralyzed worms, headswing projection dynamics continue to 173 
display oscillatory behavior; however, the magnitude is typically attenuated and the 174 
regularity of the oscillation waveform appears reduced (Fig. 1G, 2D, S2D,E). We refer to 175 
these dynamics as internalized because they persist in the absence of both sensory 176 
input (i.e. in completely immobilized worms) and motor behavioral output (i.e. during 177 
reversal/REV). Toward the end of a reversal epoch, the magnitude of the headswing 178 
oscillation typically increases over the course of 1-2 oscillations, exhibited in SMDD/V 179 
as well as other neurons. These data suggest that the headswing projection oscillation 180 
decouples from motor output during reversals but does not disappear, and recouples 181 
leading up to a reversal termination in order to effect the post-reversal turn. 182 

To compare headswing oscillation amplitude, frequency, and phase during FWD 183 
and the following REV epoch, we fit single sinusoids to smoothed derivatives of the 184 
headswing projection as well as a set of high-loading neurons which participate in the 185 
headswing complex (Fig. 3A, Fig. S3). We observed statistically significant correlations 186 
between amplitude and frequency between headswing during FWD and REV (Fig 187 
3B,C), suggesting they may be stable system properties independent of actual 188 
movement production, but we found no correlation between phase during FWD and 189 
REV, suggesting reset of phase (Fig 3D).   190 

Despite the irregularity and reduced magnitude of the headswing projection 191 
during the initial segment of a REV epoch, we wondered if the headswing complex 192 
maintained the ability to convey information in its oscillatory activity until the time of REV 193 
termination. We again fit sinusoids to activity during REV; however, this time we 194 
separately fit on the first and second halves of REV (Fig. 3E) and compared fit 195 
parameters. We found small but statistically significant correlations in amplitude, 196 
frequency, and phase between early and late REV, suggesting that the internalized 197 
headswing oscillation can be stable over the course of a REV epoch (Fig. 3F-H).  198 

Returning to headswing dynamics during FWD or REV segments, we found that 199 
the phase of our sinusoid fits stratified turn choice, especially during REV (Fig. 3J,K). 200 
Therefore, we conclude that the phase of the headswing complex is clustered to one of 201 
two intervals [0, π] or [π, 2π] when internalized to store the intent of future turns.  202 
 203 
Headswing-complex neurons terminate the REV command state 204 

While the head projection oscillation is distributed across many neurons and is 205 
implicated in the memory process, it is possible that the locus of the memory that is 206 
causal for action is limited to a subset of neurons or even one neuron. To probe the 207 
sufficiency of individual neurons in holding a sensory memory or driving turn identity, we 208 
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selectively stimulated headswing complex neurons. We used a digital micromirror 209 
device to spatially restrict our laser stimulation to selectively stimulate either SMDD or 210 
SMDV neurons, timing stimulations to occur during fictive reversals (Fig. 4A,B). 211 
Surprisingly, selective optogenetic stimulation, though demonstrably depolarizing the 212 
neurons (SMDV shown in Fig. 4B,L), did not affect the resulting TURN direction (Fig. 213 
4M, Fig. S4A). This suggests that the activity of SMD neurons, while clearly signaling 214 
TURN identity, are not the causal locus of the memory trace. Interestingly, despite the 215 
inability to bias turn direction, stimulation of either SMD neuron class often elicited 216 
immediate reversal terminations (Fig. 4C,D,H).  217 

We next turned to the head neurons RIA and RIV. Previous studies have 218 
implicated RIA in sensory-proprioceptive integration; it exhibits compartmentalized 219 
calcium dynamics along the nrV and nrD regions of its nerve ring neurite, which tightly 220 
correlate with SMDV and SMDD activation during ventral and dorsal head bending, 221 
respectively (13). The motor neuron RIV has high correlation with SMDV but few shared 222 
synaptic outputs (17, 19). We found that spatially localized optogenetic stimulations of 223 
sub-compartments of RIA, and as well as RIV, also immediately terminated reversals 224 
(Fig. 4E-G). Previous studies have observed that chronic inhibition of SMDs or 225 
optogenetic activation of SAAV and SAAD, which correlate with head curvature during 226 
reverse crawling, can impact reversal timing as well (15, 20). The observations that 5 227 
different tested neuron classes of the headswing complex can terminate reversals but 228 
those investigated do not bias turn direction suggest that the command intent of turn 229 
direction is maintained by a dynamical complex distributed across several neurons. 230 
 231 
Command state dynamics serve as a reference clock for headswing oscillations 232 

How does the animal know when to recouple the internalized headswing 233 
oscillation and terminate a reversal to produce the correct turn direction? To store a 234 
persistent value (i.e. memory) reliably using the phase of an oscillator over several 235 
oscillation periods, a reference clock with a predictable relationship to the oscillator is 236 
needed. Interestingly, the capability of RIA subcompartments to terminate fictive 237 
reversal was gated by the instantaneous activity of the command state projection at the 238 
time of stimulation on a per-trial basis (Fig. 4I,J). Furthermore, individual neuron 239 
predictivity was positively correlated with command state projection loading (Fig. 4I,J). 240 
One interpretation of the ability of headswing neurons to immediately terminate fictive 241 
reversals is proprioceptive; they signal the successful execution of physical bending that 242 
produces reverse movement. As the command projection evolves, the system becomes 243 
permissive for proprioception-driven reversal termination. We fit an exponential to the 244 
command projection during REV (Fig. 4K, Fig. S4B) and found that the time constant of 245 
command projection ramping is correlated with reversal duration, the timescale over 246 
which the memory must be maintained, suggesting that the command complex may 247 
function as a reliable time reference. The decay in activity of positive loading neurons 248 
such as OLQ, URX, AIB or the ramping of neurons with negative loading such as RME, 249 
could potentially function as behavioral timers in conjunction with other sensory or motor 250 
roles previously proposed (21-23). 251 

Focusing next on stimulations that elicited a TURN by terminating REV, we found 252 
that the activity level of the headswing projection, or alternatively individual neurons with 253 
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high headswing loadings, was predictive of the TURN direction (Fig. 4L,M). Using our 254 
decoding framework, we were unable to find neurons whose static, monotonic, or 255 
differential activity levels were predictive of turn identity. We suspect the non-monotonic 256 
time course of predictivity is a consequence of oscillatory dynamics in these neurons; 257 
the headswing projection captures both DOR and VEN depolarizations, whereas 258 
individual headswing complex neurons display strongly turn-direction-dependent 259 
differential activity only during half of their oscillation cycle. The simultaneous ramping 260 
of the command state complex and period nesting with the headswing complex (Fig. 261 
1M) may allow the animal to balance two normative functions: drive to terminate 262 
reversal and turn in the correct direction. 263 
 264 
A dual half-center oscillator model reproduces nested projection dynamics 265 

The emergence of stable, spontaneous oscillations from mutually inhibiting 266 
neurons or groups of neurons has been extensively modeled, exemplified by the half-267 
center oscillator (HCO) (24, Fig. 5A). The HCO model produces push-pull oscillatory 268 
dynamics strongly reminiscent of the waveforms of the command state projections and 269 
headswing projections (Fig. 1H,I). We modeled command state and headswing 270 
projections as separate HCOs (Fig. 5B, see Methods), and found that the incorporation 271 
of an interaction term between the two HCOs, modeling the influence on command 272 
state projection by the headswing complex (Fig. 4), produced a nested distribution of 273 
state durations resembling the experimental distribution (Fig. 1M) when random current 274 
is injected into a unit, representing fluctuations from sensory input and other internal 275 
processes (Fig. 5C). This model raises an intriguing mechanistic hypothesis: the worm 276 
brain may be composed of multiple loosely coupled dynamical complexes (e.g. HCOs) 277 
whose coordination implements cognitive functions such as working memory and 278 
supports purposeful behavior.  279 
 280 
 281 
Discussion 282 

We found that worms are capable of producing directed turns by gathering 283 
sensory evidence and integrating it with body posture, revising a longstanding notion 284 
that foraging reorientations are undirected. Our data suggest that worms can navigate 285 
odor environments based on the following mechanism: (a) sensory input is received 286 
during crawling sinusoidal head swings and integrated with body posture to form 287 
sensory memory, (b) headswing and command state dynamics are coordinated, and 288 
headswing phase is set to the interval [0, π]  or [π, 2π], (c) during reversal, a ramping 289 
process in the command state complex gates reversal termination, until (d) a 290 
proprioceptive signal indicates successful movement execution, terminating REV, and 291 
finally (e) a directed turn is produced based on whether the headswing complex is in 292 
DOR- or VEN- associated phase at the time of headswing recoupling.  293 

Our experiments argue against the encoding of working memory in static neural 294 
activity levels for the sensory-guided decision-making capability. They instead suggest 295 
that working memory is implemented by the maintenance of the relative phase of two 296 
coordinated dynamical complexes. 297 
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We surmise that the original function of the head neural oscillator was to produce 298 
physical movement, and the motor-decoupled mode of operation only arose later to 299 
support the function of working memory, endowing the animal the ability to perform 300 
deferred sensory-guided action selection. This evolutionary step, from embodied to 301 
internal neural oscillations, may represent the origin of a functional primitive of cognition 302 
subsequently recruited to do far more complex forms of thinking. 303 

The dynamical model we present in Figure 5 provides an expressive basis for 304 
building more sophisticated models. Features such as additional neural subnetworks or 305 
neuropeptide signaling could be incorporated to capture the cognitive processes 306 
enabling the worm’s full behavioral repertoire.  307 
 308 
 309 
Methods 310 
Behavior imaging and quantification 311 

Worms were prepared 24 hours in advance of imaging: L4 worms were picked onto 312 
fresh NGM agar plates with an OP50 lawn. Immediately before imaging, worms were 313 
picked onto a fresh NGM agar plate without food, into a drop of M9. Single worms were 314 
aspirated out of that drop and washed 3x by aspirating into new drops of M9. Finally, 315 
the worm was aspirated onto an NGM agar plate without food, with care taken to re-316 
aspirate excess M9. Worms were imaged while crawling on the surface of the agar 317 
without lid for 1-2 recordings of 12 minutes each. Data were acquired on an M205FCA 318 
motorized stereo microscope equipped with a LMT260 XY-Scanning stage, a TL5000 319 
transmitted light base, an LED3 epifluorescence light source (Leica Microsystems) and 320 
combined with an ORCA-FLASH V3 sCMOS camera (Hamamatsu). Hardware was set 321 
up for control in micro-manager (25). Zoom was set to result in a field-of-view of 322 
4.78mm. Worms were tracked over the course of an experiment with the microscope’s 323 
motorized stage centered on the worm’s centroid.  324 

For experiments involving optogenetics, care was taken to reduce activation of the 325 
optogenetic channel from brightfield illumination light. About 24 hours prior to imaging, 326 
80ul of 100uM all-trans retinal in M9 was added to the bacteria lawn of L4s. Worms 327 
were then placed in foil at 20C until imaging. During an imaging session, worms were 328 
partially covered if not being immediately prepared for an experiment. Optogenetic 329 
illumination was made in widefield mode with the LED3 set to 100%.  330 

 331 
Whole-brain Ca2+ imaging of C. elegans 332 

Two-layer PDMS microfluidic devices were fabricated as described previously (23, 333 
26). Worms were prepared 24 hours in advance of imaging: L4 worms were picked on 334 
to fresh NGM agar plates with an OP50 lawn. Immediately prior to imaging, worms were 335 
picked onto fresh NGM agar plates without food and placed in a drop of M9 solution 336 
with 5mM tetramisole. Worms were left in tetramisole for 10 minutes prior to being 337 
aspirated into the microfluidic channel. Worms were imaged for 16-24 minutes. Data 338 
were acquired on an inverted spinning disk microscope (Yokogawa W1-SoRa) set up on 339 
a DMI8 inverted microscope stand (Leica Microsystems) equipped with a Kinetix 340 
sCMOS camera (Telydyne Photometrics) and a Versalase Laser combiner (Vortran). 341 
Roughly half of recordings were acquired at 2x2 camera binning, the rest without 342 
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binning. The microscope objective lens was 40x 1.25NA WI. Sample volumetric scans 343 
were performed using a piezo stage (ASI) with 10-12 z-planes with z-spacing 2.5-3um. 344 
In select recordings, 4 z-planes with z-spacing 3um were used to measure neurons in 345 
lateralized anterior, lateral, dorsal, and ventral ganglia at higher temporal resolution 346 
under equivalent optical conditions. Prior to acquiring videos for calcium timeseries, a 347 
reference high-resolution structural image was acquired using 40x1um  z-planes under 348 
4 different optical conditions to measure NeuroPAL fluorescence (27). Exposures 349 
ranged from 30ms - 80ms under 100 - 200uW/mm2 illumination to minimize 350 
photobleaching and optogenetics/fluorescence crosstalk.  351 

For experiments involving optogenetics, care was taken to reduce activation of the 352 
optogenetic channel via illumination for measuring GCaMP fluorescence. About 24 353 
hours prior to imaging, 80ul of 1uM ATR in M9 was added to the bacterial lawn of L4s. 354 
Worms were then placed in foil at 20 C until imaging. During an imaging session, worms 355 
were partially covered if not being immediately prepared for an experiment. Worms 356 
were imaged at roughly 70-140uW/mm2 (measured at sample plane) of light at the 357 
sample, for 20-30ms exposures within an 80 ms duty cycle - 20 ms-30 ms of light 358 
exposure and 50-60 ms of blank time. Optogenetic illumination was perfomed using a 359 
digital micromirror device (Mightex Polygon P1000) combined with an LDI-7 laser 360 
combiner (89North)) at 640 nm, powered to 10-20% of maximum laser 361 
intensity.  Illumination was performed in widefield for worms with optogenetic construct 362 
expressed under a single-neuron promoter, and localized to about 5x5 um for selective 363 
single-neuron illumination of optogenetic constructs driven by multi-neuronal 364 
promoters.  365 

Behavioral decoding of whole-brain recordings was performed as previously 366 
described (8). 367 

 368 
Region of interest (ROI) detection in volumetric Ca2+ imaging data 369 

ROI detection from neural timeseries videos was adapted from (8), implemented by 370 
the Napari (28) eats-worm plugin. Briefly, interframe motion was first registered using 371 
manual tracking (29). A reference ROI movie was then generated composed of each 372 
image plane by averaging successive blocks of 20-200 movie frames to reduce noise. 373 
Each frame of the reference was adaptively thresholded based on median image 374 
brightness, median filtered, then convolved with a gaussian kernel. Local maxima were 375 
found and merged if peaks were adjacent within a greedy threshold. For each ROI 376 
center, a surrounding region with radius 5-7 was defined, with overlapping adjacent 377 
regions excluded via Voronoi tessellation with area shrinkage of 0.5 pixels. ROIs in 378 
adject timepoints were linked via local greedy matching. Cells below detection threshold 379 
were extrapolated based on the motion of neighboring ROIs. Finally, time-varying multi-380 
plane ROIs were adjoined based on overlap. Each neuron was manually inspected for 381 
artifacts and overlapping fluorescence with adjacent neurons by R.L.D. For high 382 
temporal resolution half-brain imaging experiments, images were compressed along the 383 
Z axis via maximum intensity projection, becoming 3D ROIs. Neural time series 384 
extraction was adapted from (8). Briefly, for each 4D ROI, a single-cell fluorescence 385 
intensity was computed taking the average of the brightest 30-60 voxels at every time 386 
point after subtracting z-plane specific background intensity. Background values were 387 
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computed by averaging pixels not belonging to any ROI within a radius of 21 pixels. 388 
DF/F0 was computed for each neuron, with F0 as mean background fluorescence. 389 

 390 
Identification of neuron genetic identities 391 

In each recording, we detected 45-140 neurons. Neurons were identified by 392 
assessing their anatomical position, relationship to surrounding neurons, and their 393 
established activity patterns. Furthermore the strains used for experiments here express 394 
the NeuroPAL genetic cassette (27), which uses a genetically defined combination of 4 395 
fluorophores to discriminate neurons based on multi-color reporter expression. Neuron 396 
labels were assigned by hand, using NeuroPAL documentation for guidance. In many 397 
cases ambiguity still existed, so here we opted for a more conservative approach and 398 
chose not to ID neurons which could not be identified beyond reasonable doubt. In rare 399 
cases, ambiguous identities are denoted in parentheses. 400 

 401 
Neural time series derivatives and embeddings 402 

Derivatives and PCA on neural time series data was performed as previously 403 
described (8, 30). Specifically, total-variation regularization was used to compute de-404 
noised time derivatives while resolving the accuracy of command state transitions to 405 
single frames. Differentiation ensures some degree of stationarity to the signal, 406 
improving subsequent analyses. This approach was also used for the calculation of 407 
proj(headswing). In more detail, for calculating proj(headswing), we first subtracted the 408 
sums of projections to the derivative time series onto temporal PC1. Next, we sub-409 
segment forward command states and remove unsustained forward states  defined by a 410 
threshold (<4s). The resulting segments are concatenated for PCA (31) to compute 411 
loadings. Full time series are then projected onto these loadings. Prior to PCA, time 412 
series were detrended and regularized. For comparison across animals, we applied PC 413 
matching by inverting projections such that the genetically identified neuron SMDV 414 
would be negative. In some cases, such as a large number of neurons drifting out of the 415 
focal plane contributing high variance, this procedure was adjusted by first filtering 416 
neurons with thresholded (0.5) normalized covariance to SMDV or by cropping the 417 
beginning, or end, of the full time series. 418 
 419 
Linear predictive modeling framework 420 

For predictive modeling, we used KNN and SVM classifiers, respectively, 421 
implemented by scikit-learn (32) with 20-fold cross-validation to limit overfitting. To 422 
account for class balance, we report the balanced accuracy metric, which is equivalent 423 
to accuracy score with class-balanced sample weights. Model performance was 424 
averaged over 100 iterations with randomized seeds for cross-validation. For timepoint 425 
predictive analysis, separate models were fit on neural activity (DF/F and derivative as 426 
independent features) at single timepoints relative to stimulation. In both cases, control 427 
distributions were generated by shuffling class labels. 428 

 429 
Evaluating the effect of neuron stimulation on global state transition 430 

The significance of the effect of neuron stimulation on command state transitions 431 
(time to REV initiation or REV termination) was assessed using a Kolmogorov-Smirnov 432 
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test. The comparable control distribution must account for spontaneous command state 433 
transitions unaffected by stimulation. To calculate control null distribution, first we took 434 
unstimulated states from control worms and computed the marginal distribution of time 435 
until state transition. We then accumulated shifted state durations selected from our 436 
experimental group, based on time from stimulation, to generate the marginal 437 
distribution of time until state transition. 438 

 439 
proj(command) ramping and phase analysis 440 

The time constant of proj(command) ramping was calculated by fitting a saturated 441 
curve to proj(command) traces scaled to each reversal. proj(command) and 442 
proj(headswing) phase were calculated by smoothing both traces with a gaussian filter, 443 
identifying extrema (scipy.signal.find_peaks), and linearly interpolating between peaks 444 
and valleys. The ratio of proj(command) to proj(headswing) period was calculated using 445 
the inter-peak-intervals of each signal for the corresponding cycles. 446 

 447 
Function fitting 448 

For fitting sinusoids to headswing-associated neurons, we selected a subset of 449 
neurons with high average embedding in proj(headswing) to fit on: SMDVL, SMDVR, 450 
SMDDL, SMDDR, RIVL, RIVR, and additionally proj(headswing) and fit the following 451 
functional form: , Where A is a vector of neuron weights, omega is the frequency 452 
of the sine, and phi is the phase offset. Parameters were fit with the Nelder optimization 453 
procedure using the python package lmfit. Minimum and maximum constraints were placed on 454 
fit parameters depending on the parameter being evaluated; for example, when evaluating 455 
omega or phi, dorsal and ventral head curvature associated neurons were constrained to have 456 
non-zero amplitudes of opposite sign and curves were normalized to the interval {-1, 1}. We 457 
further conducted these analyses on trials with and without AWA stimulation. For specifics, 458 
reference the accompanying code. In all cases, we fit on the numerical derivative of neuron 459 
curves, estimated with total-variance regularization (30), and these curves were then 460 
smoothened with a box filter. We found our results were similar without temporal smoothing. For 461 
parameter initial values, omega = 0.18, phi = pi, and amplitudes were as follows: 462 
proj(headswing), SMDDL, and SMDDR: 1, SMDVL, SMDVR: -1, RIVL, RIVR: -0.5. 463 

 464 
Dynamical model of nested oscillators 465 

We implemented a model with two connected half-center oscillators (HCOs) 466 
described in (24). Each HCO is composed of two Morris-Lecar neurons (33), i.e. models 467 
of graded conductances. Each Morris-Lecar neuron consists of two voltage dependent 468 
conductances, a leak current, and an inhibitory synaptic current: 469 

 470 

(1) 471 

  (2) 472 
and 473 

 (3) 474 

 (4) 475 
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  (5) 476 

 (6) 477 
 478 
We parameterize two HCOs, one to model the dynamics seen in the command 479 

projection, and one for the headswing projection. We simulated this system using a 5th-480 
order Runge-Kutta solver or, for expediency, the Euler method, which did not affect the 481 
qualitative results. In this study, we extend this model by adding a noise process and 482 
interaction term to the external applied current to one unit in the slow HCO:  483 

 484 

(7) 485 
 486 
Where I(HCO) is external applied voltage, OU is an Ornstein–Uhlenbeck process, 487 

and V1 and V2 are the voltages of the two units in the fast HCO. Together these 488 
equations produce a distribution of spontaneous state durations, which exhibit nesting 489 
at k>0. For all model parameters, please see accompanying code. 490 

 491 
Table of statistical comparisons: 492 
Please see Table S2 (Supplementary Information) for details of statistical comparisons 493 
made in this study. 494 

 495 
Data and materials availability:  496 
All data and code are available at WormID.org. 497 
  498 
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 618 
Fig. 1. Worms make directed turns in a virtual olfactory environment, and 619 
discovery of a distributed headswing complex in whole-brain dynamics in 620 
paralyzed worms. (A) Schematic of closed-loop optogenetic stimulation of attractant 621 
sensory neuron with respect to instantaneous head curvature during forward crawling. 622 
[Inset] stereotypical motor command state sequence during foraging. (B) Angle of post-623 
reversal turn following closed-loop stimulation, colored by whether stimulation was 624 
triggered by dorsal or ventral head bending during preceding bout of forward crawling. 625 
Test statistic (Tstat) = 77.32, p<0.0001. (C) Schema for deferred actions as a model for 626 
proto cognitive behavior. Memory of sensory experience is maintained across the 627 
reversal interval to turn execution. (D) NeuroPAL and pan-neuronal nuclear-localized 628 
GCaMP6s enable whole-brain imaging at cellular resolution with unambiguous neuron 629 
identification in restrained worms. Scale bar 20um. (E) Example heat plot of 630 
fluorescence (ΔF/F) time series of 109 segmented head neurons, one neuron per row. 631 
Top horizontal bars specify time intervals in (F, G). Bottom colored bar specifies the 632 
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inferred command state. (F-G) Diagram of neuron classes with high magnitude in what 633 
we term the command state projection, which encodes FWD/REV, or the headswing 634 
projection, which encodes head curvature commands. (H-L) Representative neuron 635 
traces and phase plots from (E) of proj(command) or proj(headswing), and several 636 
neurons which participate in these complexes. Trajectories in (K) go from termination of 637 
preceding REV (red), until initiation of subsequent FWD (green) state. In trajectories of 638 
deriv(proj(headswing) vs. proj(command) state space (L), we see that there is a 639 
relationship between the onset timing, or phase of the post-reversal turn and the turn 640 
identity. (M) Distribution of proj(command) states (FWD or REV epochs), expressed in 641 
terms of contemporaneous headswing oscillation period. Shuffled (i.e. proj(command) 642 
and proj(headswing) periods are selected from random recordings) data do not show 643 
phase nesting. Tstat = 0.15, p<0.0001.  644 
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 645 
Fig. 2. Decoding deferred, sensory-driven action in immobilized worms. (A) 646 
Maximum intensity projection of panneuronal GCaMP with WOrMsChRmine expressed 647 
under an AWA-specific promoter for acute, transient activation during whole-brain 648 
imaging. (B) Diagram of paralyzed worm under whole-brain volumetric calcium imaging 649 
with brain-state dependent AWA stimulation. Additional red expression is due to 650 
panneuronal tag-RFP present in NeuroPAL. (C) Heatmap of sorted individual AWA ~4-651 
8s stimulations during whole-brain imaging. Each row represents a single AWA from a 652 
different worm, and trial average is shown above. Tstat=-8.12, p<0.0001. (D) Example 653 
trial of simultaneous whole-brain imaging and closed-loop stimulation in paralyzed 654 
worms, recapitulating our simulated virtual olfactory environment in Fig. 1A. Olfactory 655 
activation was repeatedly embedded within spontaneous head-swing dynamics during 656 
forward crawling. Upon reversal initiation, stimulation was then withheld. (E-F) 657 
Distribution of time after AWA stimulation until next fictive reversal (REV), compared to 658 
spontaneous state transition computational control. Tstat=0.29, p<0.0001. (G) 659 
Distribution of time after AWA stimulation until dorsal or ventral TURN. (H) Change in 660 
ventral TURNs ratio, relative to unstimulated control and stratified by phase of 661 
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proj(headswing) at the time of stimulation onset. A logistic regression model predicting 662 
turn direction based on the sine of phase was significant (LLR p=0.018, n=132). The 663 
fitted model showed that dorsal turns were more likely near 3π/2 and ventral turns were 664 
more likely near π/2 (β = -0.724, z = -2.294, p = 0.022). (I) Decoder balanced accuracy 665 
for TURN choice (VEN or DOR). Decoder was fit to neural activity at stimulation onset 666 
of AVA, AWA, proj(DOR/VEN), or AWA+DOR/VEN. Error bars are SEM after cross 667 
validation. For comparisons in (I,J), please see Table S1. (J) Same as in (I) but for 668 
decoder fit on features from both stimulation and reversal onsets.  669 
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 670 
Fig. 3. Internalized headswing oscillation phase is reset at REV onset. (A) 671 
Schematic of functional form fitting. A single sine wave was fit to the smoothed 672 
derivative of proj(headswing) as well as high-loading individual neurons composing it, 673 
for each paired FWD and subsequent REV segment. By convention, the sign of dorsal-674 
associated neuron loadings was fixed to be positive. Sines were fit on continuous time 675 
coordinates for direct comparison of fit parameters. (B-D) Correlation between sine 676 
wave neuron loading (B), frequency (C) and phase (D) in FWD and corresponding REV 677 
segment. (E) Schematic for fitting sine separately to first (early) and second (late) 678 
halves of a REV segment. (F-H) Correlation between neuron loading onto the sine, 679 
frequency, and phase between first and second halves of a REV segment. (I) Summary 680 
of correlation coefficients calculated in (B-D, F-H), see Table S1 for each comparison. 681 
(J-L) Sine wave phase in FWD and REV segments, colored by future TURN direction.  682 
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 683 
Fig. 4. Headswing-complex neurons terminate the REV command state. (A) 684 
Diagram of paralyzed worm under whole-brain volumetric calcium imaging with brain-685 
state dependent activation of neurons with high magnitude loading in the headswing 686 
complex. (B) Example trial of single neuron optogenetics targeting SMDV timed to 687 
fictive reversals, denoted by AVA depolarization. (C-G) Distribution of time after 688 
stimulation until REV termination following stimulation of headswing neurons 689 
(SMDV/SMDD/RIV or nrV/nrD subcompartments of RIA). Computational control for 690 
spontaneous state transition is shown in grey. (H) Empirical cumulative distributions 691 
detailing the effect of stimulating various DOR/VEN neurons (SMDV/SMDD/RIV or 692 
nrV/nrD subcompartments of RIA) on time after stimulation until REV termination. Inset: 693 
expansion of timescale immediately after stimulation. See Table S1 for each statistical 694 
comparison. (I) Balanced accuracy of decoding REV termination after activation of RIA 695 
nrV or nrD, based on neuron features at the time of stimulation correlates with 696 
proj(command state) loading. (J) Balanced accuracy of decoding successful REV 697 
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termination, by fitting a decoder on activity prior to stimulation. Same data as (I). (K) 698 
The rise constant of the REV command state correlates with the reversal duration 699 
(r=0.62). (L) Average evoked SMDV activity on trials where stimulation was immediately 700 
followed by dorsal (purple) or ventral (blue) TURN. Stimulation had no effect on future 701 
turn identity (see Supplementary Information). Shaded regions indicated 95% CI. Note 702 
that given future D/V turn identity, SMDV activity has already diverged prior to 703 
stimulation. Following stimulation, SMDV shows prolonged and sustained depolarization 704 
for ventral but not dorsal TURNs, where depolarization is confined to light-on period. (M) 705 
Balanced accuracy of decoding TURN direction following activation of RIA nrV or nrD, 706 
by fitting a classifier on activity of various neurons features prior to stimulation.  707 
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 708 
Fig. 5. Dynamical model of interacting nested oscillators. (A) Diagram illustrating 709 
model components; two half-center oscillators (HCOs), and a coupling coefficient k 710 
reflecting the input from one HCO onto a neuron in the other. (B) Example 711 
parameterized dynamics of the Morris-Lecar neurons which compose each HCO. (C) 712 
Nonzero interaction between the two HCOs recapitulates state duration nesting 713 
reminiscent of Fig. 1M. 714 
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