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Abstract:

Working memory allows an animal to gather sensory evidence over time, integrate it
with evolving internal needs, and make informed decisions about when and how to act.
Simple nervous systems enable careful mechanistic dissection of neuronal micro-
dynamics underlying putative conserved mechanisms of cognitive function. In this study,
we show that the nematode C. elegans makes sensory-guided turns while foraging and
can maintain a working memory of sensory activation prior to the execution of a turn.
This information is integrated with body posture to localize appetitive stimuli. Using a
virtual-reality whole-brain imaging and neural perturbation system, we find that this
working memory is implemented by the coupled oscillations of two distributed neural
motor command complexes. One complex decouples from motor output after sensory
evidence accumulation, exhibits persistent oscillatory dynamics, and initiates turn
execution. The second complex serves as a reference timer. We propose that the
implementation of working memory via internalization of motor oscillations could
represent the evolutionary origin of internal neural processing, i.e. thought, and a
foundation of higher cognition.
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Main Text:
Introduction

Any animal navigating a complex environment stands to benefit from the ability to
quickly form impressions of the world, retain them internally, and act on them later.
Such a working memory system allows for deferred, contingent actions, which may
serve the animal better than reflex actions by allowing for more nuanced behavior or
cognitive processing. But how did nervous systems acquire this ability? Distributed brain
oscillations and their interactions have long been hypothesized to be a building block of
cognitive function in complex-brained animals (7). Considerable theoretical work has
been devoted to understanding how these observed phenomena might implement
various cognitive functions (2). However, experimental establishment of causal roles
and mechanistic understanding has been elusive, due at least in part to the sheer
complexity of mammalian brains and the challenge of observing these neural networks
at sufficient sampling density or completeness.

By contrast, in simpler brained animals with vastly lower neuron counts,
oscillators serving to produce repetitive bodily movement, i.e. central pattern
generators, have been closely studied and systematically dissected, yielding
mechanistic insight in the production of adaptive but robust rhythmic motor patterns (3).
But cognitive functions such as sensory-driven decision-making have rarely been
studied in simple animals (4).

The 1 mm long nematode C. elegans crawls on its right or left side when on a flat
surface. During foraging, the worm crawls in a straight or curved forward direction and
punctuates bouts of forward crawling with discrete reversal-then-turn reorientation
maneuvers, known as pirouettes, either in the dorsal or ventral direction (5, Fig. 1A).
The choice of this direction has traditionally been described as an unregulated random
process, akin to the randomizing tumbles of a bacterium performing “biased-random-
walk” chemotaxis (5). However, worm olfactory neurons signal reliably on fast
timescales (6), and mutations which slow temporal dynamics of olfactory receptors
drastically disrupt chemotaxis, suggesting worms can integrate sensory information with
instantaneous body posture.

Here, we construct a closed-loop virtual olfactory environment (Fig. 1A,B), and
show that worms integrate olfactory sensory dynamics with instantaneous body posture
to navigate towards attractants, by executing directed turns that are deferred by tens of
seconds, suggesting the existence of a working memory system. By monitoring neural
activity across the brain, we find that this working memory is implemented by the phasic
interaction of two distributed dynamical complexes associated with motor control. We
contend that the internalization of motor command dynamics to direct deferred
contingent actions may represent the evolutionary transition from reflex actions to
actions guided by internal neural processing.

Results
C. elegans executes directed, sensory-guided reorientations

We engineered a closed-loop virtual odor environment to emulate a directional
odor signal from the worm’s frame of reference by delivering optogenetic stimulation
timed to particular body postures of the worm while crawling on an agar surface. We
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75 optogenetically stimulated the AWA sensory neuron, known to mediate chemotaxis to
76 certain attractants, synchronized to either ventral or dorsal head swings during forward
77 motion (Fig. 1A). In the absence of explicit sensory cues, when crawling on an agar
78 surface, worm post-reversal turns are biased 60-75% towards their ventral side (7).
79 After posture-timed optogenetic stimulation during bouts of forward crawling, individuals
80 showed a strong preference for resolving the following reversal bout with a turn in the
81 favored direction before resuming forward locomotion (Fig. 1B).
82 This observation suggests two key features of the sensory control of the
83 behavior. First, to assign the stimulus to a particular spatial direction, the animal needs
84 to integrate olfactory sensation with proprioceptive signals or efference signals of motor
85 commands for head swings. Second, to turn in a favorable direction after an intervening
86 reversal, the animal needs some form of working memory (Fig. 1C).
87
88 Distributed dynamical complexes encode motor command state and head
89 curvature
90 Studies across the animal kingdom have established a universal phenomenon
91 that high-level motor commands are encoded in the low-dimensional state space of
92 broadly distributed neural dynamics (4, 8-12). We asked whether lower-level sub-
93 commands may also be encoded across many neurons, such as the sinusoidal
94 movement of head swings in C. elegans. Previous studies have observed several
95 neurons which correlate with dorsal or ventral head bending, however to what extent
96 this signal reflects head musculature proprioception, motor output, causal decision
97 processes, or any combination thereof, is unresolved (8, 13-16).
98 To look for neurons encoding headswing commands while avoiding the potential
99 confound of proprioceptive state encoding, we restrained worms in microfluidic chips
100 that enable high-quality volumetric whole-brain calcium imaging at cellular resolution
101 (Fig 1D,E). In all trials, we observed cycles of the fictive command state sequence
102 (forward-backward-turn) widely distributed across many neurons. For convenience, we
103 define command states (and corresponding fictive neural network states): forward
104 (FWD), reversal (REV), and dorsal or ventral (DOR, VEN) turn (TURN). As reported
105 previously, the first principal component of whole brain recordings reliably encodes the
106 command state sequence (8, Fig. 1F,H,J). We refer to the neural sub-network which
107 exhibits these distributed dynamics as the command state complex, and the first
108 principal component of these dynamics as the command state projection. Since the
109 command state signal dominates the variance of brain-wide neuronal activity, we then
110 performed PCA on the residuals of the command state projection, restricting time series
111 data to periods for fictive forward locomotion only, which yielded a second strong,
112 stereotyped network oscillation (Fig. 1G,|,K).
113 We found this faster oscillating component to be distributed across 14-20
114 neurons in the head of the animal that are variously implicated in motor control of the
115 head muscles, sensorimotor integration, and proprioception (14, 17, Fig. 1G,|,K, S1A).
116 The neuron class we observed with highest component loading was SMDD, and its
117 contralateral neuron class SMDV had a large negative loading. Previous studies have
118 shown SMDV reliably correlates with ventral head curvature during forward crawling

119 and ventral post-reversal turns, and SMDD correlates with dorsal turns (8, 13, 15, Fig.
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120 S1B,C). Their anti-phasic coupling during FWD suggests their activity corresponds to
121 fictive dorsal-ventral head swings consistent with sinusoidal crawling during the forward
122 command state. We name this component the headswing projection. While TURN
123 trajectories of different directions are mixed together in a single bundle together when
124 plotted in command projection phase space (Fig 1J), they strongly split when plotted in
125 joint command/headswing state space (Fig. 1K,L, Fig. S2A-F).
126 We asked if there was a relationship between the oscillation periods of the two
127 projections. Interestingly, we found that distribution of the duration of FWD/REV epochs
128 of the command state projection was enriched at integer multiples of the headswing
129 projection periods (Fig. 1L, 1M). This coupling of internal dynamics is consistent with
130 the nesting of headswings within forward crawling bouts previously reported (15). The
131 persistence of an interaction across multiple fictive headswing periods suggested to us
132 a potential substrate for maintaining a stable value, i.e. a memory, via the phase of the
133 headswing oscillation, that could be leveraged for executing deferred sensory-guided
134 decisions. To test this hypothesis, we examined neural network dynamics while evoking
135 directed TURN.
136
137 Decoding deferred, sensory-driven action in immobilized worms
138 We next combined closed-loop perturbative optogenetic stimulation with whole-
139 brain imaging (Fig. 2A-C), recapitulating our virtual olfactory setup in immobilized
140 worms. Each 16-24 minute recording captured 10-30 FWD-REV-TURN sequences.
141 Within a trial, repeated AWA stimulations of ~4-8s were delivered at a particular phase
142 of the headswing projection oscillation (Fig. 2C,D).
143 Stimulation of AWA shifted the distribution of times until the next REV initiation
144 (Fig. 2E,F), sometimes eliciting early reversals. We observed a secondary bump in the
145 shifted distribution of time-to-REV for AWA stimulations, at ~20s, which roughly
146 corresponds to one typical period of headswing oscillation under immobilization (Fig. 11,
147 2D), suggesting that we may observe the system as it maintains a sensory-evoked
148 memory trace over the course of one of more fictive headswing oscillations.
149 We evaluated the direction of the TURN produced after the intervening REV
150 state, about 30 to 90 seconds in the future (Fig. 2G), and found that our stimulations
151 biased the DOR/VEN ratio in both directions, depending on the value of the estimated
152 headswing phase at the time of last stimulation before a reversal (Fig. 2H).
153 Next, we trained a decoder on individual stimulation trials (see Methods) to
154 predict TURN direction using activity leading up to the prior REV. We found that the
155 dorsal/ventral identity of fictive post-reversal turns could be predicted by evoked AWA
156 neural responses when combined with phase information of headswing projection at the
157 time of stimulation (Fig. 21), consistent with the observed effect of stimulation biasing
158 turn choice (Fig. 2H). Prediction improved by including headswing state at REV onset
159 (Fig. 2J), suggesting a post-stimulation role for headswing state in informing the
160 deferred turn decision. Including features of individual headswing complex neuronal
161 activity alongside the headswing projection further increased prediction performance,
162 possibly suggesting that linear projection of headswing network dynamics may not fully
163 capture the network dynamics underlying the sensation-to-action process.
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164 The ability to predict deferred fictive turn decisions from prior neural activity in an
165 immobilized, paralyzed setup demonstrates the existence of an internal neural working
166 memory. Given the evidence of interaction between headswing projection oscillation
167 and command state oscillation periods, we sought a closer study of oscillatory
168 headswing dynamics during the intervening reversal.
169
170 Internalized headswing oscillation phase is set after REV onset
171 During reverse locomotion, the head oscillations present during forward crawling
172 are largely suppressed — the animal’s head trails behind the body (78). We found that
173 during REV epochs in paralyzed worms, headswing projection dynamics continue to
174 display oscillatory behavior; however, the magnitude is typically attenuated and the
175 regularity of the oscillation waveform appears reduced (Fig. 1G, 2D, S2D,E). We refer to
176 these dynamics as internalized because they persist in the absence of both sensory
177 input (i.e. in completely immobilized worms) and motor behavioral output (i.e. during
178 reversal/REV). Toward the end of a reversal epoch, the magnitude of the headswing
179 oscillation typically increases over the course of 1-2 oscillations, exhibited in SMDD/V
180 as well as other neurons. These data suggest that the headswing projection oscillation
181 decouples from motor output during reversals but does not disappear, and recouples
182 leading up to a reversal termination in order to effect the post-reversal turn.
183 To compare headswing oscillation amplitude, frequency, and phase during FWD
184 and the following REV epoch, we fit single sinusoids to smoothed derivatives of the
185 headswing projection as well as a set of high-loading neurons which participate in the
186 headswing complex (Fig. 3A, Fig. S3). We observed statistically significant correlations
187 between amplitude and frequency between headswing during FWD and REV (Fig
188 3B,C), suggesting they may be stable system properties independent of actual
189 movement production, but we found no correlation between phase during FWD and
190 REV, suggesting reset of phase (Fig 3D).
191 Despite the irregularity and reduced magnitude of the headswing projection
192 during the initial segment of a REV epoch, we wondered if the headswing complex
193 maintained the ability to convey information in its oscillatory activity until the time of REV
194 termination. We again fit sinusoids to activity during REV; however, this time we
195 separately fit on the first and second halves of REV (Fig. 3E) and compared fit
196 parameters. We found small but statistically significant correlations in amplitude,
197 frequency, and phase between early and late REV, suggesting that the internalized
198 headswing oscillation can be stable over the course of a REV epoch (Fig. 3F-H).
199 Returning to headswing dynamics during FWD or REV segments, we found that
200 the phase of our sinusoid fits stratified turn choice, especially during REV (Fig. 3J,K).
201 Therefore, we conclude that the phase of the headswing complex is clustered to one of
202 two intervals [0, 1] or [11, 211 when internalized to store the intent of future turns.
203
204 Headswing-complex neurons terminate the REV command state
205 While the head projection oscillation is distributed across many neurons and is
206 implicated in the memory process, it is possible that the locus of the memory that is
207 causal for action is limited to a subset of neurons or even one neuron. To probe the

208 sufficiency of individual neurons in holding a sensory memory or driving turn identity, we
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209 selectively stimulated headswing complex neurons. We used a digital micromirror
210 device to spatially restrict our laser stimulation to selectively stimulate either SMDD or
211 SMDV neurons, timing stimulations to occur during fictive reversals (Fig. 4A,B).
212 Surprisingly, selective optogenetic stimulation, though demonstrably depolarizing the
213 neurons (SMDV shown in Fig. 4B,L), did not affect the resulting TURN direction (Fig.
214 4M, Fig. S4A). This suggests that the activity of SMD neurons, while clearly signaling
215 TURN identity, are not the causal locus of the memory trace. Interestingly, despite the
216 inability to bias turn direction, stimulation of either SMD neuron class often elicited
217 immediate reversal terminations (Fig. 4C,D,H).
218 We next turned to the head neurons RIA and RIV. Previous studies have
219 implicated RIA in sensory-proprioceptive integration; it exhibits compartmentalized
220 calcium dynamics along the nrV and nrD regions of its nerve ring neurite, which tightly
221 correlate with SMDV and SMDD activation during ventral and dorsal head bending,
222 respectively (13). The motor neuron RIV has high correlation with SMDV but few shared
223 synaptic outputs (77, 19). We found that spatially localized optogenetic stimulations of
224 sub-compartments of RIA, and as well as RIV, also immediately terminated reversals
225 (Fig. 4E-G). Previous studies have observed that chronic inhibition of SMDs or
226 optogenetic activation of SAAV and SAAD, which correlate with head curvature during
227 reverse crawling, can impact reversal timing as well (15, 20). The observations that 5
228 different tested neuron classes of the headswing complex can terminate reversals but
229 those investigated do not bias turn direction suggest that the command intent of turn
230 direction is maintained by a dynamical complex distributed across several neurons.
231
232 Command state dynamics serve as a reference clock for headswing oscillations
233 How does the animal know when to recouple the internalized headswing
234 oscillation and terminate a reversal to produce the correct turn direction? To store a
235 persistent value (i.e. memory) reliably using the phase of an oscillator over several
236 oscillation periods, a reference clock with a predictable relationship to the oscillator is
237 needed. Interestingly, the capability of RIA subcompartments to terminate fictive
238 reversal was gated by the instantaneous activity of the command state projection at the
239 time of stimulation on a per-trial basis (Fig. 41,J). Furthermore, individual neuron
240 predictivity was positively correlated with command state projection loading (Fig. 41,J).
241 One interpretation of the ability of headswing neurons to immediately terminate fictive
242 reversals is proprioceptive; they signal the successful execution of physical bending that
243 produces reverse movement. As the command projection evolves, the system becomes
244 permissive for proprioception-driven reversal termination. We fit an exponential to the
245 command projection during REV (Fig. 4K, Fig. S4B) and found that the time constant of
246 command projection ramping is correlated with reversal duration, the timescale over
247 which the memory must be maintained, suggesting that the command complex may
248 function as a reliable time reference. The decay in activity of positive loading neurons
249 such as OLQ, URX, AIB or the ramping of neurons with negative loading such as RME,
250 could potentially function as behavioral timers in conjunction with other sensory or motor
251 roles previously proposed (27-23).
252 Focusing next on stimulations that elicited a TURN by terminating REV, we found
253 that the activity level of the headswing projection, or alternatively individual neurons with
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254 high headswing loadings, was predictive of the TURN direction (Fig. 4L,M). Using our
255 decoding framework, we were unable to find neurons whose static, monotonic, or
256 differential activity levels were predictive of turn identity. We suspect the non-monotonic
257 time course of predictivity is a consequence of oscillatory dynamics in these neurons;
258 the headswing projection captures both DOR and VEN depolarizations, whereas
259 individual headswing complex neurons display strongly turn-direction-dependent
260 differential activity only during half of their oscillation cycle. The simultaneous ramping
261 of the command state complex and period nesting with the headswing complex (Fig.
262 1M) may allow the animal to balance two normative functions: drive to terminate
263 reversal and turn in the correct direction.
264
265 A dual half-center oscillator model reproduces nested projection dynamics
266 The emergence of stable, spontaneous oscillations from mutually inhibiting
267 neurons or groups of neurons has been extensively modeled, exemplified by the half-
268 center oscillator (HCO) (24, Fig. 5A). The HCO model produces push-pull oscillatory
269 dynamics strongly reminiscent of the waveforms of the command state projections and
270 headswing projections (Fig. 1H,l). We modeled command state and headswing
271 projections as separate HCOs (Fig. 5B, see Methods), and found that the incorporation
272 of an interaction term between the two HCOs, modeling the influence on command
273 state projection by the headswing complex (Fig. 4), produced a nested distribution of
274 state durations resembling the experimental distribution (Fig. 1M) when random current
275 is injected into a unit, representing fluctuations from sensory input and other internal
276 processes (Fig. 5C). This model raises an intriguing mechanistic hypothesis: the worm
277 brain may be composed of multiple loosely coupled dynamical complexes (e.g. HCOs)
278 whose coordination implements cognitive functions such as working memory and
279 supports purposeful behavior.
280
281
282 Discussion
283 We found that worms are capable of producing directed turns by gathering
284 sensory evidence and integrating it with body posture, revising a longstanding notion
285 that foraging reorientations are undirected. Our data suggest that worms can navigate
286 odor environments based on the following mechanism: (a) sensory input is received
287 during crawling sinusoidal head swings and integrated with body posture to form
288 sensory memory, (b) headswing and command state dynamics are coordinated, and
289 headswing phase is set to the interval [0, 1] or [, 211, (c) during reversal, a ramping
290 process in the command state complex gates reversal termination, until (d) a
291 proprioceptive signal indicates successful movement execution, terminating REV, and
292 finally (e) a directed turn is produced based on whether the headswing complex is in
293 DOR- or VEN- associated phase at the time of headswing recoupling.
294 Our experiments argue against the encoding of working memory in static neural
295 activity levels for the sensory-guided decision-making capability. They instead suggest
296 that working memory is implemented by the maintenance of the relative phase of two
297 coordinated dynamical complexes.
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298 We surmise that the original function of the head neural oscillator was to produce
299 physical movement, and the motor-decoupled mode of operation only arose later to
300 support the function of working memory, endowing the animal the ability to perform
301 deferred sensory-guided action selection. This evolutionary step, from embodied to
302 internal neural oscillations, may represent the origin of a functional primitive of cognition
303 subsequently recruited to do far more complex forms of thinking.
304 The dynamical model we present in Figure 5 provides an expressive basis for
305 building more sophisticated models. Features such as additional neural subnetworks or
306 neuropeptide signaling could be incorporated to capture the cognitive processes
307 enabling the worm’s full behavioral repertoire.
308
309
310 Methods
311 Behavior imaging and quantification
312 Worms were prepared 24 hours in advance of imaging: L4 worms were picked onto
313 fresh NGM agar plates with an OP50 lawn. Immediately before imaging, worms were
314 picked onto a fresh NGM agar plate without food, into a drop of M9. Single worms were
315 aspirated out of that drop and washed 3x by aspirating into new drops of M9. Finally,
316 the worm was aspirated onto an NGM agar plate without food, with care taken to re-
317 aspirate excess M9. Worms were imaged while crawling on the surface of the agar
318 without lid for 1-2 recordings of 12 minutes each. Data were acquired on an M205FCA
319 motorized stereo microscope equipped with a LMT260 XY-Scanning stage, a TL5000
320 transmitted light base, an LEDS epifluorescence light source (Leica Microsystems) and
321 combined with an ORCA-FLASH V3 sCMOS camera (Hamamatsu). Hardware was set
322 up for control in micro-manager (25). Zoom was set to result in a field-of-view of
323 4.78mm. Worms were tracked over the course of an experiment with the microscope’s
324 motorized stage centered on the worm’s centroid.
325 For experiments involving optogenetics, care was taken to reduce activation of the
326 optogenetic channel from brightfield illumination light. About 24 hours prior to imaging,
327 80ul of 100uM all-trans retinal in M9 was added to the bacteria lawn of L4s. Worms
328 were then placed in foil at 20C until imaging. During an imaging session, worms were
329 partially covered if not being immediately prepared for an experiment. Optogenetic
330 illumination was made in widefield mode with the LED3 set to 100%.
331
332 Whole-brain Ca2+ imaging of C. elegans
333 Two-layer PDMS microfluidic devices were fabricated as described previously (23,
334 26). Worms were prepared 24 hours in advance of imaging: L4 worms were picked on
335 to fresh NGM agar plates with an OP50 lawn. Immediately prior to imaging, worms were
336 picked onto fresh NGM agar plates without food and placed in a drop of M9 solution
337 with 5mM tetramisole. Worms were left in tetramisole for 10 minutes prior to being
338 aspirated into the microfluidic channel. Worms were imaged for 16-24 minutes. Data
339 were acquired on an inverted spinning disk microscope (Yokogawa W1-SoRa) set up on
340 a DMI8 inverted microscope stand (Leica Microsystems) equipped with a Kinetix
341 sCMOS camera (Telydyne Photometrics) and a Versalase Laser combiner (Vortran).

342 Roughly half of recordings were acquired at 2x2 camera binning, the rest without


https://doi.org/10.1101/2024.08.11.607402
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.11.607402; this version posted May 13, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Preprint V2
343 binning. The microscope objective lens was 40x 1.25NA WI. Sample volumetric scans
344 were performed using a piezo stage (ASI) with 10-12 z-planes with z-spacing 2.5-3um.
345 In select recordings, 4 z-planes with z-spacing 3um were used to measure neurons in
346 lateralized anterior, lateral, dorsal, and ventral ganglia at higher temporal resolution
347 under equivalent optical conditions. Prior to acquiring videos for calcium timeseries, a
348 reference high-resolution structural image was acquired using 40x1um z-planes under
349 4 different optical conditions to measure NeuroPAL fluorescence (27). Exposures
350 ranged from 30ms - 80ms under 100 - 200uW/mm? illumination to minimize
351 photobleaching and optogenetics/fluorescence crosstalk.
352 For experiments involving optogenetics, care was taken to reduce activation of the
353 optogenetic channel via illumination for measuring GCaMP fluorescence. About 24
354 hours prior to imaging, 80ul of 1TuM ATR in M9 was added to the bacterial lawn of L4s.
355 Worms were then placed in foil at 20 C until imaging. During an imaging session, worms
356 were partially covered if not being immediately prepared for an experiment. Worms
357 were imaged at roughly 70-140uW/mm2 (measured at sample plane) of light at the
358 sample, for 20-30ms exposures within an 80 ms duty cycle - 20 ms-30 ms of light
359 exposure and 50-60 ms of blank time. Optogenetic illumination was perfomed using a
360 digital micromirror device (Mightex Polygon P1000) combined with an LDI-7 laser
361 combiner (89North)) at 640 nm, powered to 10-20% of maximum laser
362 intensity. lllumination was performed in widefield for worms with optogenetic construct
363 expressed under a single-neuron promoter, and localized to about 5x5 um for selective
364 single-neuron illumination of optogenetic constructs driven by multi-neuronal
365 promoters.
366 Behavioral decoding of whole-brain recordings was performed as previously
367 described (8).
368
369 Region of interest (ROI) detection in volumetric Ca2+ imaging data
370 ROI detection from neural timeseries videos was adapted from (8), implemented by
371 the Napari (28) eats-worm plugin. Briefly, interframe motion was first registered using
372 manual tracking (29). A reference ROl movie was then generated composed of each
373 image plane by averaging successive blocks of 20-200 movie frames to reduce noise.
374 Each frame of the reference was adaptively thresholded based on median image
375 brightness, median filtered, then convolved with a gaussian kernel. Local maxima were
376 found and merged if peaks were adjacent within a greedy threshold. For each ROI
377 center, a surrounding region with radius 5-7 was defined, with overlapping adjacent
378 regions excluded via Voronoi tessellation with area shrinkage of 0.5 pixels. ROls in
379 adject timepoints were linked via local greedy matching. Cells below detection threshold
380 were extrapolated based on the motion of neighboring ROIs. Finally, time-varying multi-
381 plane ROls were adjoined based on overlap. Each neuron was manually inspected for
382 artifacts and overlapping fluorescence with adjacent neurons by R.L.D. For high
383 temporal resolution half-brain imaging experiments, images were compressed along the
384 Z axis via maximum intensity projection, becoming 3D ROlIs. Neural time series
385 extraction was adapted from (8). Briefly, for each 4D ROI, a single-cell fluorescence
386 intensity was computed taking the average of the brightest 30-60 voxels at every time
387 point after subtracting z-plane specific background intensity. Background values were
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388 computed by averaging pixels not belonging to any ROI within a radius of 21 pixels.
389 DF/FO was computed for each neuron, with FO as mean background fluorescence.
390
391 Identification of neuron genetic identities
392 In each recording, we detected 45-140 neurons. Neurons were identified by
393 assessing their anatomical position, relationship to surrounding neurons, and their
394 established activity patterns. Furthermore the strains used for experiments here express
395 the NeuroPAL genetic cassette (27), which uses a genetically defined combination of 4
396 fluorophores to discriminate neurons based on multi-color reporter expression. Neuron
397 labels were assigned by hand, using NeuroPAL documentation for guidance. In many
398 cases ambiguity still existed, so here we opted for a more conservative approach and
399 chose not to ID neurons which could not be identified beyond reasonable doubt. In rare
400 cases, ambiguous identities are denoted in parentheses.
401
402 Neural time series derivatives and embeddings
403 Derivatives and PCA on neural time series data was performed as previously
404 described (8, 30). Specifically, total-variation regularization was used to compute de-
405 noised time derivatives while resolving the accuracy of command state transitions to
406 single frames. Differentiation ensures some degree of stationarity to the signal,
407 improving subsequent analyses. This approach was also used for the calculation of
408 proj(headswing). In more detail, for calculating proj(headswing), we first subtracted the
409 sums of projections to the derivative time series onto temporal PC1. Next, we sub-
410 segment forward command states and remove unsustained forward states defined by a
411 threshold (<4s). The resulting segments are concatenated for PCA (37) to compute
412 loadings. Full time series are then projected onto these loadings. Prior to PCA, time
413 series were detrended and regularized. For comparison across animals, we applied PC
414 matching by inverting projections such that the genetically identified neuron SMDV
415 would be negative. In some cases, such as a large number of neurons drifting out of the
416 focal plane contributing high variance, this procedure was adjusted by first filtering
417 neurons with thresholded (0.5) normalized covariance to SMDV or by cropping the
418 beginning, or end, of the full time series.
419
420 Linear predictive modeling framework
421 For predictive modeling, we used KNN and SVM classifiers, respectively,
422 implemented by scikit-learn (32) with 20-fold cross-validation to limit overfitting. To
423 account for class balance, we report the balanced accuracy metric, which is equivalent
424 to accuracy score with class-balanced sample weights. Model performance was
425 averaged over 100 iterations with randomized seeds for cross-validation. For timepoint
426 predictive analysis, separate models were fit on neural activity (DF/F and derivative as
427 independent features) at single timepoints relative to stimulation. In both cases, control
428 distributions were generated by shuffling class labels.
429
430 Evaluating the effect of neuron stimulation on global state transition
431 The significance of the effect of neuron stimulation on command state transitions
432 (time to REV initiation or REV termination) was assessed using a Kolmogorov-Smirnov
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433 test. The comparable control distribution must account for spontaneous command state
434 transitions unaffected by stimulation. To calculate control null distribution, first we took
435 unstimulated states from control worms and computed the marginal distribution of time
436 until state transition. We then accumulated shifted state durations selected from our
437 experimental group, based on time from stimulation, to generate the marginal
438 distribution of time until state transition.
439
440 proj(command) ramping and phase analysis
441 The time constant of proj(command) ramping was calculated by fitting a saturated
442 curve to proj(command) traces scaled to each reversal. proj(command) and
443 proj(headswing) phase were calculated by smoothing both traces with a gaussian filter,
444 identifying extrema (scipy.signal.find_peaks), and linearly interpolating between peaks
445 and valleys. The ratio of proj(command) to proj(headswing) period was calculated using
446 the inter-peak-intervals of each signal for the corresponding cycles.
447
448 Function fitting
449 For fitting sinusoids to headswing-associated neurons, we selected a subset of
450 neurons with high average embedding in proj(headswing) to fit on: SMDVL, SMDVR,
451 SMDDL, SMDDR, RIVL, RIVR, and additionally proj(headswing) and fit the following
452 functional form: Asin(wt + ©) Where A is a vector of neuron weights, omega is the frequency
453 of the sine, and phi is the phase offset. Parameters were fit with the Nelder optimization
454 procedure using the python package Imfit. Minimum and maximum constraints were placed on
455 fit parameters depending on the parameter being evaluated; for example, when evaluating
456 omega or phi, dorsal and ventral head curvature associated neurons were constrained to have
457 non-zero amplitudes of opposite sign and curves were normalized to the interval {-1, 1}. We
458 further conducted these analyses on trials with and without AWA stimulation. For specifics,
459 reference the accompanying code. In all cases, we fit on the numerical derivative of neuron
460 curves, estimated with total-variance regularization (30), and these curves were then
461 smoothened with a box filter. We found our results were similar without temporal smoothing. For
462 parameter initial values, omega = 0.18, phi = pi, and amplitudes were as follows:
463 proj(headswing), SMDDL, and SMDDR: 1, SMDVL, SMDVR: -1, RIVL, RIVR: -0.5.
464
465 Dynamical model of nested oscillators
466 We implemented a model with two connected half-center oscillators (HCOs)
467 described in (24). Each HCO is composed of two Morris-Lecar neurons (33), i.e. models
468 of graded conductances. Each Morris-Lecar neuron consists of two voltage dependent
469 conductances, a leak current, and an inhibitory synaptic current:
470 1
471 C% = Lext — (gL(Vl - VL) -+ gca]\"f;o(vl — Vca) -+ gKNl(V] . VK) + gsynS‘;(V‘ - Vsm))“)
dN] 1 1 1
472 dt Av(Noo = N7) (2)
473 and 1
NL(VYH = 1 (1 + tanh (—V — Y% )>
474 2 Vi (3)

[ V]

1_
A’I-;-)(Vl) = l(1—%tamh<v Vl))
475 Va (4)
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AL (V1) = ¢ cosh <u>
76 N(V7) = én %‘/4 5)
SLv?) =1 (1 + tanh (—V“ — Vitoosh ))
477 2 Vslopc (6)
478
479 We parameterize two HCOs, one to model the dynamics seen in the command
480 projection, and one for the headswing projection. We simulated this system using a 5th-
481 order Runge-Kutta solver or, for expediency, the Euler method, which did not affect the
482 qualitative results. In this study, we extend this model by adding a noise process and
483 interaction term to the external applied current to one unit in the slow HCO:
484
485 Iext = Inco + OU + k(V1gast — V25ast)(7)
486
487 Where I(HCO) is external applied voltage, OU is an Ornstein—Uhlenbeck process,
488 and V1 and V2 are the voltages of the two units in the fast HCO. Together these
489 equations produce a distribution of spontaneous state durations, which exhibit nesting
490 at k>0. For all model parameters, please see accompanying code.
491
492 Table of statistical comparisons:
493 Please see Table S2 (Supplementary Information) for details of statistical comparisons
494 made in this study.
495
496 Data and materials availability:
497 All data and code are available at WormlD.org.
498
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619 Fig. 1. Worms make directed turns in a virtual olfactory environment, and
620 discovery of a distributed headswing complex in whole-brain dynamics in
621 paralyzed worms. (A) Schematic of closed-loop optogenetic stimulation of attractant
622 sensory neuron with respect to instantaneous head curvature during forward crawling.
623 [Inset] stereotypical motor command state sequence during foraging. (B) Angle of post-
624 reversal turn following closed-loop stimulation, colored by whether stimulation was
625 triggered by dorsal or ventral head bending during preceding bout of forward crawling.
626 Test statistic (Tstat) = 77.32, p<0.0001. (C) Schema for deferred actions as a model for
627 proto cognitive behavior. Memory of sensory experience is maintained across the
628 reversal interval to turn execution. (D) NeuroPAL and pan-neuronal nuclear-localized
629 GCaMP6s enable whole-brain imaging at cellular resolution with unambiguous neuron
630 identification in restrained worms. Scale bar 20um. (E) Example heat plot of
631 fluorescence (AF/F) time series of 109 segmented head neurons, one neuron per row.
632 Top horizontal bars specify time intervals in (F, G). Bottom colored bar specifies the
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633 inferred command state. (F-G) Diagram of neuron classes with high magnitude in what
634 we term the command state projection, which encodes FWD/REV, or the headswing
635 projection, which encodes head curvature commands. (H-L) Representative neuron
636 traces and phase plots from (E) of proj(command) or proj(headswing), and several
637 neurons which participate in these complexes. Trajectories in (K) go from termination of
638 preceding REV (red), until initiation of subsequent FWD (green) state. In trajectories of
639 deriv(proj(headswing) vs. proj(command) state space (L), we see that there is a
640 relationship between the onset timing, or phase of the post-reversal turn and the turn
641 identity. (M) Distribution of proj(command) states (FWD or REV epochs), expressed in
642 terms of contemporaneous headswing oscillation period. Shuffled (i.e. proj(command)
643 and proj(headswing) periods are selected from random recordings) data do not show

644 phase nesting. Tstat = 0.15, p<0.0001.
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646 Fig. 2. Decoding deferred, sensory-driven action in immobilized worms. (A)
647 Maximum intensity projection of panneuronal GCaMP with WOrMsChRmine expressed
648 under an AWA-specific promoter for acute, transient activation during whole-brain
649 imaging. (B) Diagram of paralyzed worm under whole-brain volumetric calcium imaging
650 with brain-state dependent AWA stimulation. Additional red expression is due to
651 panneuronal tag-RFP present in NeuroPAL. (C) Heatmap of sorted individual AWA ~4-
652 8s stimulations during whole-brain imaging. Each row represents a single AWA from a
653 different worm, and trial average is shown above. Tstat=-8.12, p<0.0001. (D) Example
654 trial of simultaneous whole-brain imaging and closed-loop stimulation in paralyzed
655 worms, recapitulating our simulated virtual olfactory environment in Fig. 1A. Olfactory
656 activation was repeatedly embedded within spontaneous head-swing dynamics during
657 forward crawling. Upon reversal initiation, stimulation was then withheld. (E-F)
658 Distribution of time after AWA stimulation until next fictive reversal (REV), compared to
659 spontaneous state transition computational control. Tstat=0.29, p<0.0001. (G)
660 Distribution of time after AWA stimulation until dorsal or ventral TURN. (H) Change in
661 ventral TURNSs ratio, relative to unstimulated control and stratified by phase of
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662 proj(headswing) at the time of stimulation onset. A logistic regression model predicting
663 turn direction based on the sine of phase was significant (LLR p=0.018, n=132). The
664 fitted model showed that dorsal turns were more likely near 3r/2 and ventral turns were
665 more likely near /2 (B = -0.724, z = -2.294, p = 0.022). (I) Decoder balanced accuracy
666 for TURN choice (VEN or DOR). Decoder was fit to neural activity at stimulation onset
667 of AVA, AWA, proj(DOR/VEN), or AWA+DOR/VEN. Error bars are SEM after cross
668 validation. For comparisons in (l,J), please see Table S1. (J) Same as in (l) but for
669 decoder fit on features from both stimulation and reversal onsets.
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671 Fig. 3. Internalized headswing oscillation phase is reset at REV onset. (A)
672 Schematic of functional form fitting. A single sine wave was fit to the smoothed
673 derivative of proj(headswing) as well as high-loading individual neurons composing it,
674 for each paired FWD and subsequent REV segment. By convention, the sign of dorsal-
675 associated neuron loadings was fixed to be positive. Sines were fit on continuous time
676 coordinates for direct comparison of fit parameters. (B-D) Correlation between sine
677 wave neuron loading (B), frequency (C) and phase (D) in FWD and corresponding REV
678 segment. (E) Schematic for fitting sine separately to first (early) and second (late)
679 halves of a REV segment. (F-H) Correlation between neuron loading onto the sine,
680 frequency, and phase between first and second halves of a REV segment. (I) Summary
681 of correlation coefficients calculated in (B-D, F-H), see Table S1 for each comparison.
682 (J-L) Sine wave phase in FWD and REV segments, colored by future TURN direction.
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684 Fig. 4. Headswing-complex neurons terminate the REV command state. (A)
685 Diagram of paralyzed worm under whole-brain volumetric calcium imaging with brain-
686 state dependent activation of neurons with high magnitude loading in the headswing
687 complex. (B) Example trial of single neuron optogenetics targeting SMDV timed to
688 fictive reversals, denoted by AVA depolarization. (C-G) Distribution of time after
689 stimulation until REV termination following stimulation of headswing neurons
690 (SMDV/SMDD/RIV or nrV/nrD subcompartments of RIA). Computational control for
691 spontaneous state transition is shown in grey. (H) Empirical cumulative distributions
692 detailing the effect of stimulating various DOR/VEN neurons (SMDV/SMDD/RIV or
693 nrV/nrD subcompartments of RIA) on time after stimulation until REV termination. Inset:
694 expansion of timescale immediately after stimulation. See Table S1 for each statistical
695 comparison. (I) Balanced accuracy of decoding REV termination after activation of RIA
696 nrV or nrD, based on neuron features at the time of stimulation correlates with
697 proj(command state) loading. (J) Balanced accuracy of decoding successful REV
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698 termination, by fitting a decoder on activity prior to stimulation. Same data as (l). (K)
699 The rise constant of the REV command state correlates with the reversal duration
700 (r=0.62). (L) Average evoked SMDV activity on trials where stimulation was immediately
701 followed by dorsal (purple) or ventral (blue) TURN. Stimulation had no effect on future
702 turn identity (see Supplementary Information). Shaded regions indicated 95% CI. Note
703 that given future D/V turn identity, SMDV activity has already diverged prior to
704 stimulation. Following stimulation, SMDV shows prolonged and sustained depolarization
705 for ventral but not dorsal TURNSs, where depolarization is confined to light-on period. (M)
706 Balanced accuracy of decoding TURN direction following activation of RIA nrV or nrD,
707 by fitting a classifier on activity of various neurons features prior to stimulation.
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709 Fig. 5. Dynamical model of interacting nested oscillators. (A) Diagram illustrating
710 model components; two half-center oscillators (HCOs), and a coupling coefficient k
711 reflecting the input from one HCO onto a neuron in the other. (B) Example
712 parameterized dynamics of the Morris-Lecar neurons which compose each HCO. (C)
713 Nonzero interaction between the two HCOs recapitulates state duration nesting
714 reminiscent of Fig. 1M.
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