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Abstract

Plants defend themselves against pathogens using either resistance, measured as the
host’s ability to limit pathogen multiplication, or tolerance, measured as the host’s ability
to reduce the negative effects of infection. Tolerance is a promising trait for crop
breeding, but its genetic basis has rarely been studied and remains poorly understood.
Here, we reveal the genetic basis of leaf tolerance to the fungal pathogen Zymoseptoria
tritici that causes the globally important septoria tritici blotch disease on wheat. Leaf
tolerance to Z. tritici is a quantitative trait that was recently discovered in wheat by using
automated image analyses that quantified the symptomatic leaf area and counted the
number of pycnidia found on the same leaf. A genome-wide association study identified
four chromosome intervals associated with tolerance and a separate chromosome
interval associated with resistance. Within these intervals, we identified candidate
genes, including wall-associated kinases similar to Stb6, the first cloned STB resistance
gene. Our analysis revealed a strong negative genetic correlation between tolerance
and resistance to STB, indicative of a trade-off. Such a trade-off between tolerance and
resistance would hinder breeding simultaneously for both traits, but our findings suggest
a way forward using marker-assisted breeding. We expect that the methods described
here can be used to characterize tolerance to other fungal diseases that produce visible
fruiting bodies, such as speckled leaf blotch on barley, potentially unveiling conserved

tolerance mechanisms shared among plant species.
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Introduction

Plants defend themselves against pathogens using either resistance, measured as the
host’s ability to limit pathogen multiplication, or tolerance, measured as the host’s ability
to reduce the negative effects of infection (Pagan and Garcia-Arenal 2020). A
fundamental difference between these two strategies is that resistance reduces the
multiplication rate of the pathogen, whereas tolerance does not. Tolerance was first
recognized by plant pathologists in 1894 (Cobb 1894), and it is thought to be a host
defense strategy as common and important as resistance (Pagan and Garcia-Arenal
2020). Yet, our knowledge of the mechanisms and genes controlling tolerance pales in
comparison to our knowledge of the mechanisms and genes underlying resistance. This
stems in part from the difficulty of measuring tolerance in plants and also from a lack of
agreement in how tolerance should be defined. The excellent, comprehensive review by
Pagan and Garcia-Arenal (2020) presents well-reasoned definitions that should resolve

the latter difficulty.

The genetic basis of tolerance in plants has rarely been studied and remains poorly
understood. The Pagan and Garcia-Arenal (2020) review identified ten examples where
tolerance was inferred and its genetic basis was analyzed. In most of these cases,
tolerance appeared to be a quantitative trait, involving from one to 70 quantitative trait
loci (QTL) or candidate genes, but in some of these cases, it remains unclear whether
the measured trait was truly tolerance or a form of resistance that was treated as

tolerance (Ayala et al., 2002; Williams et al., 2003; Han et al., 2008). For example, Han
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et al. (2008) identified eight QTLs associated with tolerance to Phytophthora sojae in
soybeans, using the proportion of surviving plants as a proxy for tolerance. But it is
possible that the plants surviving an exposure to P. sojae were displaying partial
resistance instead of tolerance to this pathogen. The most extensive work on tolerance
has been conducted with plant viruses, including a study where tolerance to the barley
yellow dwarf virus in wheat was ascribed to 22 QTLs of minor effect (Ayala et al. 2002).
In tomatoes, a MAP kinase was found to enhance tolerance to the tomato yellow leaf
curl virus (TYLCV) by regulating salicylic acid and jasmonic acid signaling (Li et al.
2017). More recently, the overexpression of a cellulose synthase-like gene was shown
to boost tolerance to TYLCV (Choe et al., 2021). Functional alleles of flowering
repressor genes in Arabidopsis thaliana were found to contribute to plant tolerance to
cucumber mosaic virus (Shukla et al., 2021). Tamisier et al. (2022) identified candidate
genes for potato virus Y tolerance in peppers (Capsicum annuum), including a cluster of
NBS-LRR genes. But we are not aware of any studies that have identified candidate

genes specifically associated with tolerance to fungal plant pathogens until now.

Septoria tritici blotch (STB) is the most damaging disease of wheat in Europe
(Jorgensen et al. 2014) and among the most important diseases of wheat globally
(Savary et al. 2019). STB is caused by the fungus Zymoseptoria tritici, a pathogen that
has co-evolved with wheat for more than 10,000 years (Stukenbrock et al. 2007) and
has a high evolutionary potential (McDonald et al. 2022). The most common strategies

for controlling STB are deployments of fungicides and STB-resistant wheat cultivars.
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Exposed Z. tritici populations typically evolve resistance to fungicides and virulence
against resistant cultivars within a few years of deployment (McDonald and Mundt 2016;
McDonald et al. 2019; Kildea et al. 2020). The genetic basis of fungicide resistance and
virulence has been explored in several populations of Z. tritici, leading to the discovery,
cloning and functional validation of several of the underlying genes for both traits (Meile
et al. 2018; Zhong et al. 2017; Amezrou et al. 2023; Garnault et al. 2019). Several STB
resistance genes in wheat have also been cloned and functionally validated (Saintenac
et al. 2021; Saintenac et al. 2018; Hafeez et al. 2023). The cloned pathogen avirulence
genes and cloned wheat resistance genes have been shown to largely conform to the
gene-for-gene concept of plant-pathogen interactions, though resistance to STB does

not appear to involve a hypersensitive response (Saintenac et al. 2018).

Leaf-level tolerance to Z. tritici is a quantitative trait that was recently discovered in
wheat (Mikaberidze and McDonald 2020) by using automated image analyses that could
accurately quantify the leaf area affected by STB and count the number of fungal fruiting
bodies (called pycnidia) found on the same leaf (Stewart et al. 2016; Karisto et al. 2018).
These measures were then used to quantify degrees of STB resistance and STB
tolerance in wheat, the latter using a novel measure called kappa, in 335 elite winter
wheat cultivars growing in the same field. Resistance was quantified as the average
number of pycnidia on a leaf, N,, adjusted for the overall leaf area. More resistant plant
genotypes suppressed pathogen reproduction, and consequently carried fewer pycnidia

on their leaves. Kappa is an exponential slope that characterizes the negative
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relationship between green leaf area and the number of pycnidia on a leaf. Lower kappa
values correspond to higher tolerance: when inhabited by pathogen populations of the
same size (i.e., when leaves carry the same numbers of pycnidia), more tolerant plant
genotypes retain larger green leaf areas than less tolerant genotypes (Figure 1).
Mikaberidze & McDonald (2020) showed that there was a wide, continuous variation in
both resistance and leaf tolerance across the 335 wheat cultivars. They also found a
negative relationship between tolerance and resistance, indicative of a trade-off

between these traits.

Before the discovery of leaf tolerance, we used these data to conduct a genome-wide
association study (GWAS) to analyze the genetic architecture of STB resistance in the
335 wheat cultivars and identified several chromosome regions that contained
interesting candidate STB resistance genes (Yates et al., 2019). Here we use the leaf
tolerance trait kappa to conduct a GWAS aiming to elucidate the genetic architecture of
tolerance and identify candidate genes that may be associated with leaf tolerance. We
also sought to determine if the trade-off between tolerance and resistance to STB has a
genetic basis. We discovered that the genetic associations for tolerance were
independent from the previously described genetic associations for resistance to this
pathogen. We identified four chromosome intervals associated with leaf-level tolerance
and a separate chromosome interval associated with resistance. A bivariate GWAS that
jointly considered both tolerance and resistance did not provide significant marker

associations, even though there was a significant negative genetic correlation between
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these traits. Within each of the significant chromosome intervals, we identified candidate

genes associated with tolerance.

Results

Leaf tolerance (quantified as kappa) and resistance to STB (quantified as the number of
pycnidia per leaf, N,) were measured based on the analysis of 11,152 individual images
of naturally infected leaves coming from 335 elite winter wheat cultivars growing in a
replicated field experiment (Karisto et al. 2018). On average, each leaf was infected by a
different strain of Z. tritici (Lorrain et al. 2024; McDonald et al. 2022), hence the
measures of leaf tolerance and resistance calculated for each cultivar represent average
values across a very large number of pathogen strains. Despite the large variance
associated with infections involving thousands of pathogen strains, the heritabilities
were high for both leaf tolerance (0.44 for kappa) and resistance (0.88 for N;). There
were strong phenotypic (r, = -0.40, p<0.001) and genetic (ry = -0.67, p<0.001; Figure 2)

correlations between leaf tolerance and resistance.

The leaf tolerance and resistance phenotypes were used to conduct a GWAS that
included, after filtering, 9,125 single nucleotide polymorphisms (SNPs) in 330 of the
wheat cultivars. The GWAS identified three marker-trait associations (MTAS) for leaf
tolerance that exceeded the Bonferroni significance threshold, located on chromosomes
2D, 6B and 7D (Figure 3). An additional leaf tolerance MTA on chromosome 7A fell just
below the Bonferroni threshold (LOD = 5.19, Figure 3), but was included in further
analyses. For resistance, N,, one significant MTA was detected on chromosome 5A.

7
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The bivariate GWAS that jointly considered leaf tolerance and resistance did not detect
any significant associations, though the MTAs observed on chromosomes 5A, 6B and
7D in the univariate analyses remained distinct relative to other SNPs (Figure 3, panel
C). Though it was not significant at the Bonferroni threshold, a distinctive peak visible on

chromosome 7A (LOD = 4.01, Figure 3, panel C) was included in further analyses.

The SNPs and chromosome positions for each of the six identified MTAs are shown in
Table 1. For each MTA, a chromosome interval was defined by including the DNA
sequences positioned 2.5 million base pairs (Mbp) in each direction from the significant
SNP, i.e., by placing the most significant SNP at the center of a 5 Mbp interval on the
IWGSC reference sequence v1.0 (IWGSC, 2018). The positions of these chromosome
intervals were then compared to the positions of chromosome intervals containing STB
resistance QTL that were reported in recent publications (Yates et al. 2019; Zakieh et al.
2023; Mekonnen et al. 2021; Alemu et al. 2021; Mahboubi et al. 2022) to determine if
there were any overlaps (Supplementary Table S1). The leaf tolerance MTA on
chromosome 2D was found to be 0.9 Mbp upstream of an STB resistance MTA that was
previously detected in a greenhouse experiment where seedlings of 316 Nordic
breeding lines were inoculated with two Nordic strains of Z. tritici (Zakieh et al. 2023).
The resistance MTA on chromosome 5A was found to be within the same interval as a
different STB resistance trait, PLACL (percentage of leaf area covered by lesions), that
was identified in our earlier analyses of the same dataset (Yates et al. 2019). The

tolerance MTA on chromosome 7D was found to be 1.6 Mbp downstream of the STB
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resistance QTL detected in a greenhouse experiment where seedlings of 185 wheat
genotypes of globally diverse origin were inoculated with ten different Z. tritici strains of
global origin (Mahboubi et al., 2022). Using the consensus map by Wang et al. (2014),
we also compared our results to earlier publications reviewed in Brown et al. (2015).
There, we found that the resistance MTA on chromosome 5A and the tolerance MTAs
on chromosomes 6B, 7A and 7D were within the reported intervals for MQTL19, 21, 24
and 27, respectively. However, these intervals are too large (45, 22, 55 and 13 cM,
respectively) to be confident that these overlaps are biologically meaningful. Therefore,
while our tolerance MTA on chromosomes 2D, and 7D fall within previously reported
resistance intervals, our tolerance MTA on chromosomes 6B and 7A are likely to
constitute new loci or refined loci for tolerance within meta-QTL previously associated

with resistance.

Table 1: Marker-trait associations (MTASs) for tolerance (kappa), resistance and the
combined, bivariate GWAS. For each MTA, we report the physical position, minor allele
frequency (MAF), LOD score, the SNP effect estimates, and the percentage of

phenotypic variance explained (PVE). Non-significant MTAs are indicated with “n.s.”

Interval SNP Position MAF L[()) Effect PEV
kappa 2D IAAV8779 647,278,479 | 0.288 | 5.46 | 0.178 | 4.47
resistance 5A Ra_c7322_2294 20,816,495 | 0.297 | 8.12 | -0.286 |12.72
kappa 6B wsnp_Ex_c702_1383612 21,415,561 | 0.053 | 8.04 | 0.446 |33.61
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kappa 7D wsnp_Ex_c12102_19361467| 557,843,433 | 0.198 | 5.39 | 0.195 | 8.02

kappa 7A (n.s.) BS00099804_51 89,835,842 | 0.139 5.19 | -0.226 | 7.55
(kappa, resistance) (-0.233; |
7A (n.s) CAP7_c7296_88 642,736,799 | 0.212 | 4.01 0.025)

In order to identify candidate genes, we employed a two-pronged approach: (i) a gene
motif overrepresentation analysis and (ii) a differential gene expression analysis based
on published data (Ramirez-Gonzélez et al., 2018, Rudd et al., 2015). To accomplish (i),
we first searched the IWGSC refseql.0 annotation (IWGSC, 2018) within 5 Mbp
windows around each of the six identified MTAs. We selected candidate genes within
these regions based on their functional description (Supplementary Tables S2-S7) and
classified them into 13 motif groups. Next, we compared the occurrence of these groups
within each interval to their occurrence in 10,000 intervals of 5 Mbp size randomly
chosen across the genome (see Materials and Methods). This analysis allowed us to
determine whether the 5 Mbp intervals around the MTAs we identified were more likely
to contain a gene with a specific function related to plant defense as compared to
intervals of the same size randomly chosen across the genome. Seven of these motif
groups showed a significant (p<0.05) overrepresentation compared to random genome
intervals and contained a total of 16 candidate genes (Table 2). For details regarding the

motif groups and individual genes, see Supplementary Tables S8, S9 and S10.

Around the MTAs for leaf tolerance, we found a significant overrepresentation of gene

motifs that can be associated with programmed cell death, including, cysteine

10
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proteinase inhibitors (observed=4, p<0.01), cysteine proteases (observed=2, p<0.05),
DCD domain (observed=1, p<0.05) and wound responsive motifs (observed=2, p<0.05).
We also found a significant overrepresentation of disease resistance motifs (GCN1,
observed=1, p<0.01), aspartate--tRNA ligase (observed=1, p<0.05), cell wall-
associated Ran-binding (observed=1, p<0.001), and wall-associated kinases (WAK;
observed=1, with a more relaxed significance threshold p<0.1). The bivariate MTA on
chromosome 7A also showed a significant overrepresentation of cell wall associated
Ran-binding (observed=1, p<0.001) and wound-responsive (observed=2, p<0.05)
motifs. Around the resistance MTA on chromosome 5A, we observed one cysteine
protease and eight genes with “leucine rich repeat” (LRR) motifs, neither of which was
significantly overrepresented.

We note that based on the Automated Assignment of Human Readable Descriptions
(AHRD), only one WAK gene has been found in the tolerance MTA interval on
chromosome 6B, but we examined this interval more thoroughly (based on InterPro;

https://www.ebi.ac.uk/interpro/) and found three more WAKSs (which have been identified

as receptor-like kinases by AHRD). We consider these four WAKSs in this interval to be
interesting because STB§, the first cloned resistance gene for STB, is also a wall-
associated serine/threonine kinase with a galacturonan-binding domain (Saintenac et al.
2018); although the four WAKs have an epidermal growth factor (EGF) domain, which

STB6 does not have.

To accomplish (ii), we compared gene expression across all our MTA intervals between
Z. tritici-infected seedlings and mock-inoculated controls using published data (Rudd et

11
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al., 2015; Ramirez-Gonzaélez et al, 2018; data available via www.wheat-expression.com)
and identified candidate genes as those having significant differential expression. We
found that 26 genes around the tolerance MTAS, seven genes around the resistance
MTA and six genes around the MTA for the bivariate model were significantly
differentially expressed (Table 3; Supplementary Table S11 for more details). Among
the MTAs for leaf tolerance, we found significant differences in gene expression for
three glutathione S-transferases (log2-fold difference ranging from 3.7 to 8.3), a
receptor-like protein kinase (log2-fold difference of 1.6), a transposon protein with a
NAC transcription domain (log2-fold difference of 5.5), and a RING finger protein that
was down-regulated (log2-fold difference of -1.6). Another glutathione S transferase was

significantly up-regulated (log2-fold difference of 3.8) in the MTA for resistance.

12
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Table 2: Overrepresentation of gene motifs within 5 Mbp intervals around marker-trait
associations. The significance of motif overrepresentation was determined based on the probability
distribution of their occurrence across 10,000 random samples. Column 4 shows the total occurrence of
motifs across the entire genome. Columns 5-8 show the expected occurrence of motifs in 90%, 95%, 99%
and 99.9% of the random samples, respectively. Column 9 shows the observed occurrence of motifs in
the intervals around MTAs. The symbols “*** “** ' and *." indicate the level of significance of

overrepresentation with p<0.001, p<0.01, p<0.05 and p<0.1 respectively; ‘n.s.” denotes no significant

overrepresentation.
expected <= probability
guantile
genes occurrence
interval in gene group q90 q95 (q99 (99.9 observed
. genome
interval
Cysteine
proteinase
inhibitor 101 0 0 3 6 4 *
GCN1 6 0 0 0 1 1 i
kappa 97 Cysteine
2D protease 225 1 1 6 11 2 *
LRR 3215 16 20 36 50 17
Expansin 262 1 2 5 10 1 n.s.
Watl 194 1 2 3 6 1 n.s.
LRR 3215 16 20 36 50 17
g%ppa 62 wall-
associated
kinase 95 0 1 2 4 1
kappa 43 DCD domain 34 0 0 1 2 1 *
7A (n.s.)
Lectin RLK 209 1 1 3 4 1 n.s.
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Ran-binding 12 0 0 0 0 1 rorx
kaopa Aspartate--
7Dpp 30 {RNA ligase 16 0 0 1 1 1
Wound-
responsive 69 0 0 3 14 2 *
Cysteine
resistance protease 225 1 1 6 11 1 n.s.
5A 50
LRR 3215 16 20 36 50 8 n.s.
Ran-binding 12 0 0 0 0 1 rorx
(kappa, ) Wound-
resistance 61 : *
7A (n.s.) responsive 69 0 0 3 14 3
LRR 3215 16 20 36 50 1 n.s.

Table 3: Differentially expressed genes within 5 Mbp intervals around marker-trait associations.
Transcript id, start and end denote the isoform and position (bp), distance denotes the distance (bp) to the
respective marker-trait association, baseMean denotes the average of the normalized count values, IfcSE

is the standard error of the log2-fold change in expression (log2FoldChange) and padj is the adjusted p-

value.
log2-
Fold
interval transcript id human readable description Change padj
Kappa_2D TraesCS2D01G586500.1 WAT1-related protein 4.61 1.7E-3
TraesCS2D01G587800.2 CsAtPR5 6.39 12.5E-3
TraesCS2D01G588800.1 CsAtPR5 -1.07 4.8E-3
Cytochrome P450 family protein,
TraesCS2D01G589200.1  expressed 7.80 91.2E-9
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TraesCS2D01G589300.1

TraesCS2D01G589400.1

TraesCS2D01G589600.1
TraesCS2D01G590600.1

TraesCS2D01G595500.1

TraesCS2D01G595900.1

TraesCS2D01G596300.1

TraesCS2D01G596400.1

TraesCS2D01G596500.1

TraesCS2D01G597000.1

TraesCS6B01G032400.1
TraesCS6B01G033500.1

TraesCS6B01G037300.1

TraesCS6B01G037800.1

TraesCS7A01G135700.1

TraesCS7A01G137000.1

TraesCS7D01G437000.1

TraesCS7D01G437000.2
TraesCS7D01G438600.1
TraesCS7D01G438700.1
TraesCS7D01G439300.1

TraesCS7D01G439400.1

Glutathione S-transferase
Glutathione S-transferase

Glutathione s-transferase,
putative

Receptor-like protein kinase
Amino acid transporter, putative

DNA-directed RNA polymerase
subunit beta

Late embryogenesis abundant
(LEA) hydroxyproline-rich
glycoprotein family

Late embryogenesis abundant
(LEA) hydroxyproline-rich
glycoprotein family, putative

Transposon protein, putative,
Pong sub-class, expressed

Eukaryotic aspartyl protease
family protein

RING finger protein
3-ketoacyl-CoA synthase
Flowering promoting factor-like 1

Photosystem Il CP47 reaction
center protein

Sulfiredoxin

Pheophorbide a oxygenase,
chloroplastic

Calcium lipid binding protein,
putative

Calcium lipid binding protein,
putative

Cytochrome P450
Cytochrome P450
Cytochrome P450

Glycosyltransferase

8.30

8.34

3.69
1.59

2.60

1.76

3.04

3.51

9.65
1.34

1.14

12.4E-12

12.2E-12

35.5E-6
33.6E-3

59.3E-6

18.2E-3

9.4E-6

71.3E-9

782.5E-6
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Resistance_ 5A  TraesCS5A01G024100.1 Glutathione S-transferase 3.80 10.1E-3
TraesCS5A01G024500.2 N-carbamoylputrescine amidase  8.83 27.7E-3
TraesCS5A01G025200.2 2-aminoethanethiol dioxygenase  4.62 2.7E-3

Cationic amino acid transporter,
TraesCS5A01G025400.1 putative 1.22 26.5E-3
ATP binding cassette subfamily
TraesCS5A01G025600.1 B4 7.56 4.6E-3
TraesCS5A01G025900.2 YABBY transcription factor 6.54 29.8E-3
Ubiquitin carboxyl-terminal
TraesCS5A01G027000.1 hydrolase, putative 1.49 159.3E-6
bivar_Kappa_R
esistance_7A TraesCS7A01G446700.1 Lipid transfer protein 414 1.0E-12
Calcium lipid binding protein,
TraesCS7A01G447300.1 putative 3.70 420.1E-6
TraesCS7A01G449500.1 Cytochrome P450 1.85 591.6E-6
TraesCS7A01G450100.1 Cytochrome P450 1.73 16.5E-3
Polynucleotidyl transferase,
ribonuclease H-like superfamily
TraesCS7A01G450300.1 protein 8.02 9.4E-3
F-box/RNI-like/FBD-like domains-
TraesCS7A01G450900.1 containing protein -1.05 4.6E-3

Discussion

Though several studies have analyzed the genetics of disease tolerance in plants

(Pagan & Garcia Arenal 2020), we believe this is the first study to reveal the genetic

basis of tolerance to a fungal plant pathogen and to identify candidate genes that may

confer the leaf tolerance phenotype. Among these candidates are wall-associated

kinases with galacturonan-binding and serine/threonine kinase domains similar to Stbé,

the first cloned STB resistance gene (Saintenac et al. 2018). Our automated analyses of

more than 11,000 scanned leaves revealed that wheat's response to an STB infection
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can be dissected into resistance and tolerance components that display high and
moderate heritabilities, respectively. In the analyzed population of 330 elite winter wheat
cultivars, the two traits showed a strongly negative genetic correlation (Figure 2),
supporting our previous report of a substantial negative phenotypic correlation indicative

of a trade-off between tolerance and resistance (Mikaberidze & McDonald 2020).

While screening for germplasm that performs well during an STB epidemic, wheat
breeders cannot distinguish between the leaf tolerance and resistance traits using
traditional visual scoring. A more detailed phenotyping based on leaf image analysis is
required to distinguish between them. As a result, breeding based on visual
assessments may select germplasm that has higher resistance or higher tolerance, both
of which could produce an improved yield response to STB infections compared to STB
susceptible germplasm. This may explain why the STB tolerance QTL that we identified
on chromosome 2A overlapped with an STB resistance QTL identified in Nordic
breeding lines based on traditional visual scoring of STB under greenhouse conditions
(Supplementary Table S1; Zakieh et al., 2023). Furthermore, because breeders have
been selecting for better performance in elite European winter wheat over several
decades using visual scoring, we would expect these efforts to result in cultivars with
high values for both tolerance and resistance. But it was rare to find elite winter wheat
cultivars that show high values for both traits (Figure 2), suggesting that there is indeed
a trade-off between the two traits. These interpretations are consistent with our previous

analysis, where we found a positive correlation between cultivar release year and
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degree of tolerance and an absence of such a relationship for resistance, which
suggested that European wheat breeders may have been selecting for tolerance instead

of resistance to STB during recent decades (Mikaberidze & McDonald 2020).

Should wheat breeding programs seek to limit STB damage by combining STB
resistance and tolerance into the same cultivar? This would require that the two traits
are encoded by a shared pathway or by separate sets of genes that can be recombined
into the same lineage, as well as the absence of epistasis. Our analyses reveal a
nuanced picture of genetic connections between STB resistance and tolerance. The
significant and strongly negative genetic correlation between the two traits suggests that
the traits are not independent of each other. Yet the univariate GWAS analyses
identified different chromosome intervals associated with tolerance and resistance, while
the bivariate GWAS revealed only one association that was visually striking, but not
statistically significant. A similar pattern was found in studies of resistance and tolerance
of pepper plants to potato virus Y: the two traits exhibited significant negative phenotypic
and genetic correlations, the GWAS identified markers that were significantly associated
with either tolerance or resistance, but none of the markers were shared between the
two traits (Tamisier et al., 2020; Tamisier et al., 2022). A possible explanation of these
outcomes is that there could be several molecular pathways contributing to tolerance.
Some of the pathways exhibit a negative genetic correlation with resistance and are
underpinned by a large number of genes of small effect. Here, a negative correlation

between tolerance and resistance may result from these genes exhibiting negative
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pleiotropy, whereby the same gene contributes to an increase in tolerance, but a
decrease in resistance (or vice versa). Alternatively, a negative correlation between the
two traits can be caused by linked monotropic genes: among several linked genes,
some contribute to an increase in tolerance, while others contribute to a decrease in
resistance (Gardner and Latta, 2007). Under either of these scenarios, we would not be
able to capture these genes via MTAs in the GWAS. Other tolerance pathways could be
independent of resistance, and conferred by fewer genes with larger effects. These
would be identified as significant MTASs for tolerance in the GWAS, none of which were
significantly associated with resistance. Hence, purely phenotypic selection for tolerance
may inadvertently select against resistance and vice versa. However, marker-assisted
selection for components of tolerance that are independent of resistance could avoid
this pitfall and select for tolerance without compromising resistance. Additional
experiments will be needed to further validate the tolerance MTAs and the associated

candidate genes to enable this approach.

We identified tolerance candidate genes using analyses of both motif enrichment and
differential gene expression. The enrichment analysis revealed a significant
overrepresentation of genes encoding programmed cell death, leucine-rich repeats,
responses to wounding, and wall-associated kinases. Many of these candidate genes
encode functions that are typically associated with disease resistance, such as NBS-
LRRs, lectin receptor-like kinases, and wall associated kinases, including genes that are

similar to Stb6, the first cloned STB resistance gene (Saintenac et al. 2018). Similarly,
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Tamisier et al (2022) found a cluster of candidate NBS-LRR genes to be associated with
tolerance of pepper plants to potato virus Y. The differential gene expression analysis
also revealed genes known to be associated with disease resistance, including a
receptor-like protein kinase. These findings suggest that there may be a common
genetic architecture underlying plant resistance and tolerance. In particular the same
pathogen sensing, recognition, and signaling processes may be involved at the
beginning of the tolerance and resistance response pathways. Under this scenario, the
same gene may confer tolerance to one pathogen, but resistance to a different
pathogen. For example, a candidate NBS-LRR gene for potato virus Y tolerance in
pepper (Capsicum annuum) shares 87.1% nucleotide identity with the Bs2 gene in a
different pepper species (Capsicum chacoense) known to confer resistance to bacterial
spot disease (Tamisier et al., 2022). For tolerance, we found a greater
overrepresentation of gene motifs associated with wound responses and programmed
cell death (PCD) compared to the resistance trait (Table 2). We speculate that inhibition
or appropriate regulation of wound response or PCD pathways may lead to increased

leaf tolerance via reduction of excessive necrosis of leaf tissue.

While this is the first work to identify candidate genes affecting tolerance to fungal
pathogens, we expect that the methods described in this paper can be applied to many
other fungal diseases that produce visible fruiting bodies, such as speckled leaf blotch
on barley, septoria leaf blotch on oats, or septoria leaf spot of tomatoes. As tolerance is

analyzed in other plant pathosystems, it will become possible to compare candidate
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genes identified across different systems to determine if tolerance, like resistance, is

encoded by conserved mechanisms shared among many plant species.

Materials and Methods

Naturally infected penultimate leaves from 335 elite winter wheat cultivars were sampled
from replicated plots during the 2016 field season as described in earlier publications
(Karisto et al., 2018; Yates et al., 2019; Mikaberidze and McDonald, 2020). We estimate
that at least half a million Z. tritici genotypes were present in the sampled plots
(McDonald et al. 2022; Lorrain et al. 2024), thus our results are relevant for epidemics
caused by highly diverse, natural pathogen populations. On average, 16 infected leaves
from each plot were imaged using a flatbed scanner (Canon CanoScan LiDe 220) at
1200 dpi resolution to obtain the percentage of leaf area covered by lesions (PLACL, a
damage function that reduces the green leaf area, a measure of disease-induced
reduction of plant fitness for each leaf) and numbers of pycnidia (N,, associated with
pathogen reproduction, a measure of the pathogen burden in each leaf) (Stewart et al.,
2016; Karisto et al., 2018). In order to control for the effect of total leaf area on the
number of pycnidia per leaf, we performed the adjustment N, ;= (Awt/Awti) Npi, Where Np;
and A are the number of pycnidia and the total area of an individual leaf /, and A is
the mean total leaf area averaged over the entire dataset (Mikaberidze and McDonald,

2020).
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These measures were then used to quantify degrees of STB resistance and tolerance,
the latter using a novel measure called kappa. Kappa is an exponential slope that
characterizes the negative relationship between green leaf area and the number of
pycnidia on each leaf (Figure 4; Mikaberidze & McDonald, 2020). Small values of kappa
indicate a high level of leaf tolerance, while large values of kappa indicate a low level of
leaf tolerance. The kappa values were calculated for each cultivar based on
measurements from approximately 32 leaves (each cultivar was replicated twice in the
experiment), with each leaf typically infected by a different pathogen strain (McDonald et
al. 2022; Lorrain et al. 2024). Hence the tolerance measures represented average
values across a wide range of pathogen genotypes (=32 Z. tritici strains) for each wheat
cultivar and the range of kappa values encompassed a wide range of host genotypes
(=330 wheat cultivars). Resistance was quantified as the average number of pycnidia
found on each leaf (N,; adjusted for the total leaf area). More susceptible cultivars allow
higher numbers of pycnidia per leaf that translate to more pathogen reproduction, while
more resistant cultivars limit the numbers of pycnidia per leaf and therefore reduce
pathogen reproduction. Additional details on how tolerance and resistance were
calculated for each cultivar can be found in Mikaberidze & McDonald 2020. The
workflow for data acquisition and analysis is illustrated in Figure 4. The raw data
stemming from the image analysis of each individual diseased leaf reported by Karisto
et al. (2018) are available via Dryad Digital Repository:

https://doi.org/10.5061/dryad.171g4. The processed phenotypic and genomic datasets
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underlying the outcomes of this study, and the code that can be used the reproduce the

analyses are available via Zenodo https://doi.org/10.5281/zenodo0.14962847.

Statistical Analysis

An initial data inspection revealed strong skews in the distributions of both tolerance and
resistance, which resulted in violations of the assumption of independence and
normality of the residual distribution in the subsequent linear modeling (Supplementary
Figure S1). For this reason, the raw data from individual plots was subjected to a rank-
based inverse normal transformation (RINT) using the R-package RNOmni (v1.0.1.2;
McCaw, 2023) before conducting further analyses. This brought the distributions of
tolerance and resistance close to the normal distribution and resulted in independent,

normally distributed residuals with a mean of zero.

To obtain best linear unbiased estimates (BLUES) across replications while accounting
for spatial variability, a spatial model using two-dimensional p-splines was fitted in the R-
package SpATS (v1.0.18; Rodriguez-Alvarez et al., 2017). The two complete blocks
were allocated diagonally in a virtual grid (see Kronenberg et al. 2021, Pérez-Valencia
et al. 2022 for details), with rows and columns corresponding to the relative plot

positions within each replicate of the experiment. The fitted model was:

Y =p+GAflr,cl+r+c,+ey )
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where Yi is the plot value of the respective trait: tolerance quantified as kappa or
resistance quantified as N,. u is the global intercept and G; is the response of the
genotype i. To account for spatial variability, r; and ¢« represent the effects of the row j
and column k, respectively, while f(r,c) is a smoothed bivariate surface across rows and
columns within the virtual grid, thus fitting an independent spatial trend to each of the
two replicates. From this model, the BLUEs were extracted to be used in the GWAS
whereas spatially corrected plot values, comprising the BLUEs and residual errors but
omitting spatial trends and other unwanted design factors, were used to calculate

heritability and genetic correlations.

To calculate heritability, the model:

Y.=u+G +e, (2)

was fitted using the R-package asreml-R (v4.2.0.302, VSNi Team 2023), where Y, is the
spatially corrected plot value from Eq. (1) for the respective trait, G; is the random
genotype response with known variance-covariance structure based on the genome-
wide identity by state (IBS) relationship matrix calculated from single nucleotide
polymorphism (SNP) data using the R-package SNPRelate (v1.30.1; Zheng et al., 2012)
and e; is the residual error. Heritability was estimated on a genotype difference basis:

H’, 00 according to Eq. (24) in (Schmidt et al., 2019).
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Phenotypic correlations were calculated as Pearson’s r based on the adjusted genotype
means extracted from Eq. (1). To calculate the genetic correlation between kappa and

resistance, Eq. (2) was expanded to the bivariate model:

Y1, Y2)=(', i +(GL, G2+ el €l 3)

in the R-package asreml-R, where the superscripts 1 and 2 denote the two traits: kappa
and N,, respectively. G/ and G7 were again set as random with known variance-
covariance structure based on IBS. The genetic correlation was then calculated from the
estimated variance and covariance components from Eq. (3) following Holland et al.

(2001):

1 2
Corr(Gl,Gz)z COV(G .G )
\/Var(Gl]Var(Gz)

(4)

Genome-wide association studies (GWAS)

Genome-wide association studies for the traits kappa, N, and the combined, bivariate
response were conducted following the same workflow as described by Roth &
Kronenberg et al. (2024). Marker data were supplied by the GABI wheat consortium
(Gogna et al., 2022) for the GABI genotypes and by the Agroscope wheat breeding
program for the Swiss genotypes (Fossati and Brabant, 2003). Markers were mapped to
the Triticum aestivum reference sequence v.1.0 (IWGSC et al., 2018) using ncbi-blast+
(v2.9.0-2). Equivocally mapped markers were excluded, and the remaining markers

were filtered for a missing rate <0.05 and a minor allele frequency >0.05, resulting in
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9,125 SNPs for 330 wheat cultivars. The remaining missing markers were imputed using
fastPHASE (v.1.4; Scheet and Stephens, 2006) implemented in

https://github.com/mwylerCH/HapMap_Imputation. Given the large size of the wheat

genome (>14 Gbp), the SNP marker density is quite low, on average one marker per 1.6

Mbp, which may limit our capacity to detect marker-trait associations.

The univariate GWAS analyses for kappa and N, were conducted using the Blink model
(Huang et al., 2019) implemented in the R-package GAPIT3 (v.3.1.0) (Wang and Zhang,
2021). The bivariate GWAS was conducted using the software GEMMA (v0.98.1, Zhou
and Stephens, 2014) using the first three principal components among SNP genotypes
and the genome-wide IBS matrix to correct for population structure and relatedness,

respectively.

Taking into account advances in GWAS methodologies in wheat since the publication of
(Yates et al., 2019), we adapted our analyses in four ways. We used (i) an adjustment
for spatial variability using the R-package SpATS (Rodriguez-Alvarez et al., 2017); (ii) a
different transformation [RINT-transformation (McCaw et al., 2020) instead of log-
transformation] that better satisfies the assumption of normality in the residuals of the
applied linear models; (iii) a more comprehensive marker panel that includes Swiss
cultivars, thus adding 11 genotypes previously excluded due to missing marker data;
improved imputation of missing genotype data based on similarity of haplotype clusters

around the missing genotype; and (iv) a different GWA model [single marker-based
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BLINK (Huang et al., 2019) instead of haplotype based PLINK (Purcell et al., 2007)] that
better manages the systematic inflation of p-values in genetic association tests. To
ensure reproducibility and better understand the effects of these four modifications, we
reanalyzed the data of (Yates et al., 2019), and compared those results with the
outcomes of our new GWAS pipeline applied to the same phenotypes. We illustrate the

comparison of the two analyses in Supplemental Figure S2.

Identification of candidate genes

To identify candidate genes, we searched the IWGSC refseq 1.0 annotation (IWGSC,
2018; https://urgi.versailles.inra.fr/download/iwgsc/) for 2.5 Mbp in each direction from
the genome position of the associated SNP markers identified by GWAS. In a first step,
likely candidates for either leaf tolerance or resistance were identified based on their
functional description. Genes were categorized into motif groups based on their
description (see Table 2; Supplementary Tables S8 & S9). Then the likelihood of
occurrence for each motif was quantified using a bootstrapping approach. We examined
10,000 random 5 Mb intervals with a gene content >55 genes, i.e. the average of the
gene content of the associated 5 Mb intervals, across the entire genome. We chose the
size of the intervals to be 5 Mb, because this is below the characteristic LD decay
distance (r2<0.2) for all the chromosomes of interest. In these intervals, we counted the
occurrence of the selected candidate motifs identified in the intervals around the MTAs
and calculated quantile distributions for the occurrence of the respective motifs across

the random samples. A motif was considered significantly overrepresented if the
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occurrence in the identified interval was larger than the occurrence in 95% of the

random intervals.

The leucine rich repeat (LRR) protein domain represents a characteristic feature of
several classes of plant disease resistance proteins (Gururani et al., 2012). Hence, for
the purpose of the representation analysis, we merged the gene groups “NBS-LRR”,
“disease resistance proteins”, “RPM1“ and “RPP13” (all of which contain LRR) into a
single “LRR” category (Table 2). We note that our overrepresentation analysis is based
on Automated Assignment of Human Readable Descriptions (AHRD;

https://github.com/groupschoof/AHRD?tab=readme-ov-file), which represents the official

description of wheat genes published by the scientific community. However, there can
be cases of misclassification, which lead to uncertainties in the occurrence of gene
groups that are difficult to estimate, and for this reason the outcomes of this analysis

need to be interpreted with caution.

Furthermore, differential gene expression analysis has been performed on the genes
within the associated 5 Mbp intervals using publicly available transcript count data

(Ramirez-Gonzélez et al, 2018, https://www.wheat-expression.com/). The RNA-seq data

originated from a gene expression study of Z. tritici-infected seedlings versus mock-
infected seedlings (Rudd et al, 2015). There, seedlings of the wheat cultivar ‘Riband’
were infected with the Z. tritici isolate IPO323 and samples were taken at 5 different

timepoints (1-21 days) after infection (see Rudd et al., 2015 for details). The outcomes
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of this analysis need to be interpreted with caution, because wheat gene expression can
differ between controlled environments and the field environment, and also differ
between seedlings and adult plants; gene expression can also be specific to host and
pathogen genotypes. In this analysis, we pooled the transcript count data across
timepoints. Differential gene expression was calculated across the whole genome using
the R-package DEseq2 (v.1.44.0; Love et al., 2014). Genes were considered
differentially expressed (DE) if their expression changed twofold and was significant
(adjusted p-value <0.05). Only the DE genes within the 5 Mb intervals around each QTL

were considered for candidate gene identification.
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(A) cultivar Intact, tolerant

(B) cultivar Lynx, non-tolerant

Figure 1. lllustration of leaf tolerance. STB symptoms on wheat leaves can be seen as

characteristic necrotic lesions with pycnidia (seen as small, black, round structures
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within lesions) on cultivar Intact (A, tolerant) vs cultivar Lynx (B, non-tolerant). The
number of pycnidia is similar in the two images, but the non-tolerant leaf has a larger
disease-induced necrotic area (and a smaller green leaf area), and therefore suffers
more damage from disease compared to the tolerant leaf. Black rectangles are 4x
magnified in the insets, where two characteristic pycnidia are indicated by arrows. To
quantify leaf tolerance it is not sufficient to compare two leaves, instead, we analyzed
large numbers of diseased leaves from each cultivar and estimated tolerance as the
negative exponential slope of how green leaf areas decrease versus the number of

pycnidia on a leaf (see Figure 4 and Mikaberidze & McDonald 2020).
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rq=-0.67, p =4.4e-06

kappa

<2 0 2
resistance

Figure 2. Genetic correlation between tolerance (quantified as kappa) and resistance
(quantified as N,). Purple dots represent the empirical best linear unbiased predictors

extracted from the bivariate model (Eq. 3) and gray lines represent the standard

deviations.
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Figure 3. Manhattan and QQ-plots depicting the GWAS results for tolerance (kappa)
(A), resistance (B) and the combined, bivariate GWAS (C). Green, red and purple dots
in the Manhattan plots represent the SNPs significantly associated with the respective
traits: kappa, resistance and the bivariate model combining kappa and resistance.
Crossed circles represent marker-trait associations that were not significant at the
Bonferonni threshold, but were nevertheless considered in additional analyses. The

legends in the QQ-plots indicate the applied GWAS model and the genome-wide

inflation coefficient A.
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Figure 4. Workflow for the acquisition of phenotypic data, estimation of leaf tolerance
and GWAS [modified from Figure 1 in (Yates et al., 2019) and Figure 3 in (Mikaberidze

& McDonald, 2020].
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Supplementary Figure S1: Residual vs. fitted values of the SpATS model, before and
after rank based inverse normal transformation.

Supplementary Figure S2: Reproduction of Yates et al. (2019) GWAS outcomes using
different models and marker sets.

Supplementary Table S1: Comparison of detected marker trait associations to
previously reported QTL for Z. tritici resistance.

Supplementary Table S2: Gene list for the associated interval for kappa on
chromosome 2D.

Supplementary Table S3: Gene list for the associated interval for kappa on
chromosome 6B.

Supplementary Table S4: Gene list for the associated interval for kappa on
chromosome 7A.

Supplementary Table S5: Gene list for the associated interval for kappa on
chromosome 7D.

Supplementary Table S6: Gene list for the associated interval for resistance on

chromosome 5A.
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Supplementary Table S7: Gene list for the associated interval for the bivariate GWAS
on chromosome 7A.

Supplementary Table S8: Gene motif group details including functional descriptions
comprised in the motif groups, total occurrence of motifs across the genome, and gene
IDs comprised in the motif groups.

Supplementary Table S9: Identified candidate gene motifs within 5 Mbp intervals
around the respective marker-trait associations including candidate gene IDs per motif
group.

Supplementary Table S10: Details on identified overrepresented genes including motif
group, gene ID, start, end, functional description, Pfam description, interpro description,
GO description and GO IDs from the IWGSC ref. seq. v1.0.

Supplementary Table S11: Details on differentially expressed genes within 5 Mbp

intervals around marker-trait associations.
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