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Abstract

Plants defend themselves against pathogens using either resistance, measured as the 

host’s ability to limit pathogen multiplication, or tolerance, measured as the host’s ability 

to reduce the negative effects of infection. Tolerance is a promising trait for crop 

breeding, but its genetic basis has rarely been studied and remains poorly understood. 

Here, we reveal the genetic basis of leaf tolerance to the fungal pathogen Zymoseptoria

tritici that causes the globally important septoria tritici blotch disease on wheat. Leaf 

tolerance to Z. tritici is a quantitative trait that was recently discovered in wheat by using 

automated image analyses that quantified the symptomatic leaf area and counted the 

number of pycnidia found on the same leaf. A genome-wide association study identified 

four chromosome intervals associated with tolerance and a separate chromosome 

interval associated with resistance. Within these intervals, we identified candidate 

genes, including wall-associated kinases similar to Stb6, the first cloned STB resistance 

gene. Our analysis revealed a strong negative genetic correlation between tolerance 

and resistance to STB, indicative of a trade-off. Such a trade-off between tolerance and 

resistance would hinder breeding simultaneously for both traits, but our findings suggest

a way forward using marker-assisted breeding. We expect that the methods described 

here can be used to characterize tolerance to other fungal diseases that produce visible 

fruiting bodies, such as speckled leaf blotch on barley, potentially unveiling conserved 

tolerance mechanisms shared among plant species.
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Introduction

Plants defend themselves against pathogens using either resistance, measured as the 

host’s ability to limit pathogen multiplication, or tolerance, measured as the host’s ability 

to reduce the negative effects of infection (Pagan and Garcia-Arenal 2020). A 

fundamental difference between these two strategies is that resistance reduces the 

multiplication rate of the pathogen, whereas tolerance does not. Tolerance was first 

recognized by plant pathologists in 1894 (Cobb 1894), and it is thought to be a host 

defense strategy as common and important as resistance (Pagan and Garcia-Arenal 

2020). Yet, our knowledge of the mechanisms and genes controlling tolerance pales in 

comparison to our knowledge of the mechanisms and genes underlying resistance. This

stems in part from the difficulty of measuring tolerance in plants and also from a lack of 

agreement in how tolerance should be defined. The excellent, comprehensive review by

Pagan and Garcia-Arenal (2020) presents well-reasoned definitions that should resolve 

the latter difficulty. 

The genetic basis of tolerance in plants has rarely been studied and remains poorly 

understood. The Pagan and Garcia-Arenal (2020) review identified ten examples where 

tolerance was inferred and its genetic basis was analyzed. In most of these cases, 

tolerance appeared to be a quantitative trait, involving from one to 70 quantitative trait 

loci (QTL) or candidate genes, but in some of these cases, it remains unclear whether 

the measured trait was truly tolerance or a form of resistance that was treated as 

tolerance (Ayala et al., 2002; Williams et al., 2003; Han et al., 2008). For example, Han 
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et al. (2008) identified eight QTLs associated with tolerance to Phytophthora sojae in 

soybeans, using the proportion of surviving plants as a proxy for tolerance. But it is 

possible that the plants surviving an exposure to P. sojae were displaying partial 

resistance instead of tolerance to this pathogen. The most extensive work on tolerance 

has been conducted with plant viruses, including a study where tolerance to the barley 

yellow dwarf virus in wheat was ascribed to 22 QTLs of minor effect (Ayala et al. 2002). 

In tomatoes, a MAP kinase was found to enhance tolerance to the tomato yellow leaf 

curl virus (TYLCV) by regulating salicylic acid and jasmonic acid signaling (Li et al. 

2017). More recently, the overexpression of a cellulose synthase-like gene was shown 

to boost tolerance to TYLCV (Choe et al., 2021). Functional alleles of flowering 

repressor genes in Arabidopsis thaliana were found to contribute to plant tolerance to 

cucumber mosaic virus (Shukla et al., 2021). Tamisier et al. (2022) identified candidate 

genes for potato virus Y tolerance in peppers (Capsicum annuum), including a cluster of

NBS-LRR genes. But we are not aware of any studies that have identified candidate 

genes specifically associated with tolerance to fungal plant pathogens until now.

Septoria tritici blotch (STB) is the most damaging disease of wheat in Europe 

(Jorgensen et al. 2014) and among the most important diseases of wheat globally 

(Savary et al. 2019). STB is caused by the fungus Zymoseptoria tritici, a pathogen that 

has co-evolved with wheat for more than 10,000 years (Stukenbrock et al. 2007) and 

has a high evolutionary potential (McDonald et al. 2022). The most common strategies 

for controlling STB are deployments of fungicides and STB-resistant wheat cultivars. 
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Exposed Z. tritici populations typically evolve resistance to fungicides and virulence 

against resistant cultivars within a few years of deployment (McDonald and Mundt 2016;

McDonald et al. 2019; Kildea et al. 2020). The genetic basis of fungicide resistance and 

virulence has been explored in several populations of Z. tritici, leading to the discovery, 

cloning and functional validation of several of the underlying genes for both traits (Meile 

et al. 2018; Zhong et al. 2017; Amezrou et al. 2023; Garnault et al. 2019). Several STB 

resistance genes in wheat have also been cloned and functionally validated (Saintenac 

et al. 2021; Saintenac et al. 2018; Hafeez et al. 2023). The cloned pathogen avirulence 

genes and cloned wheat resistance genes have been shown to largely conform to the 

gene-for-gene concept of plant-pathogen interactions, though resistance to STB does 

not appear to involve a hypersensitive response (Saintenac et al. 2018).

Leaf-level tolerance to Z. tritici is a quantitative trait that was recently discovered in 

wheat (Mikaberidze and McDonald 2020) by using automated image analyses that could

accurately quantify the leaf area affected by STB and count the number of fungal fruiting

bodies (called pycnidia) found on the same leaf (Stewart et al. 2016; Karisto et al. 2018).

These measures were then used to quantify degrees of STB resistance and STB 

tolerance in wheat, the latter using a novel measure called kappa, in 335 elite winter 

wheat cultivars growing in the same field. Resistance was quantified as the average 

number of pycnidia on a leaf, Np, adjusted for the overall leaf area. More resistant plant 

genotypes suppressed pathogen reproduction, and consequently carried fewer pycnidia 

on their leaves. Kappa is an exponential slope that characterizes the negative 
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relationship between green leaf area and the number of pycnidia on a leaf. Lower kappa

values correspond to higher tolerance: when inhabited by pathogen populations of the 

same size (i.e., when leaves carry the same numbers of pycnidia), more tolerant plant 

genotypes retain larger green leaf areas than less tolerant genotypes (Figure 1). 

Mikaberidze & McDonald (2020) showed that there was a wide, continuous variation in 

both resistance and leaf tolerance across the 335 wheat cultivars. They also found a 

negative relationship between tolerance and resistance, indicative of a trade-off 

between these traits.

Before the discovery of leaf tolerance, we used these data to conduct a genome-wide 

association study (GWAS) to analyze the genetic architecture of STB resistance in the 

335 wheat cultivars and identified several chromosome regions that contained 

interesting candidate STB resistance genes (Yates et al., 2019). Here we use the leaf 

tolerance trait kappa to conduct a GWAS aiming to elucidate the genetic architecture of 

tolerance and identify candidate genes that may be associated with leaf tolerance. We 

also sought to determine if the trade-off between tolerance and resistance to STB has a 

genetic basis. We discovered that the genetic associations for tolerance were 

independent from the previously described genetic associations for resistance to this 

pathogen. We identified four chromosome intervals associated with leaf-level tolerance 

and a separate chromosome interval associated with resistance. A bivariate GWAS that 

jointly considered both tolerance and resistance did not provide significant marker 

associations, even though there was a significant negative genetic correlation between 
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these traits. Within each of the significant chromosome intervals, we identified candidate

genes associated with tolerance.

Results

Leaf tolerance (quantified as kappa) and resistance to STB (quantified as the number of 

pycnidia per leaf, Np) were measured based on the analysis of 11,152 individual images 

of naturally infected leaves coming from 335 elite winter wheat cultivars growing in a 

replicated field experiment (Karisto et al. 2018). On average, each leaf was infected by a

different strain of Z. tritici (Lorrain et al. 2024; McDonald et al. 2022), hence the 

measures of leaf tolerance and resistance calculated for each cultivar represent average

values across a very large number of pathogen strains. Despite the large variance 

associated with infections involving thousands of pathogen strains, the heritabilities 

were high for both leaf tolerance (0.44 for kappa) and resistance (0.88 for Np). There 

were strong phenotypic (rp = -0.40, p<0.001) and genetic (rg = -0.67, p<0.001; Figure 2) 

correlations between leaf tolerance and resistance. 

The leaf tolerance and resistance phenotypes were used to conduct a GWAS that 

included, after filtering, 9,125 single nucleotide polymorphisms (SNPs) in 330 of the 

wheat cultivars. The GWAS identified three marker-trait associations (MTAs) for leaf 

tolerance that exceeded the Bonferroni significance threshold, located on chromosomes

2D, 6B and 7D (Figure 3). An additional leaf tolerance MTA on chromosome 7A fell just 

below the Bonferroni threshold (LOD = 5.19, Figure 3), but was included in further 

analyses. For resistance, Np, one significant MTA was detected on chromosome 5A. 
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The bivariate GWAS that jointly considered leaf tolerance and resistance did not detect 

any significant associations, though the MTAs observed on chromosomes 5A, 6B and 

7D in the univariate analyses remained distinct relative to other SNPs (Figure 3, panel 

C). Though it was not significant at the Bonferroni threshold, a distinctive peak visible on

chromosome 7A (LOD = 4.01, Figure 3, panel C) was included in further analyses.

The SNPs and chromosome positions for each of the six identified MTAs are shown in 

Table 1. For each MTA, a chromosome interval was defined by including the DNA 

sequences positioned 2.5 million base pairs (Mbp) in each direction from the significant 

SNP, i.e., by placing the most significant SNP at the center of a 5 Mbp interval on the 

IWGSC reference sequence v1.0 (IWGSC, 2018). The positions of these chromosome 

intervals were then compared to the positions of chromosome intervals containing STB 

resistance QTL that were reported in recent publications (Yates et al. 2019; Zakieh et al.

2023; Mekonnen et al. 2021; Alemu et al. 2021; Mahboubi et al. 2022) to determine if 

there were any overlaps (Supplementary Table S1). The leaf tolerance MTA on 

chromosome 2D was found to be 0.9 Mbp upstream of an STB resistance MTA that was

previously detected in a greenhouse experiment where seedlings of 316 Nordic 

breeding lines were inoculated with two Nordic strains of Z. tritici (Zakieh et al. 2023). 

The resistance MTA on chromosome 5A was found to be within the same interval as a 

different STB resistance trait, PLACL (percentage of leaf area covered by lesions), that 

was identified in our earlier analyses of the same dataset (Yates et al. 2019). The 

tolerance MTA on chromosome 7D was found to be 1.6 Mbp downstream of the STB 
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resistance QTL detected in a greenhouse experiment where seedlings of 185 wheat 

genotypes of globally diverse origin were inoculated with ten different Z. tritici strains of 

global origin (Mahboubi et al., 2022). Using the consensus map by Wang et al. (2014), 

we also compared our results to earlier publications reviewed in Brown et al. (2015). 

There, we found that the resistance MTA on chromosome 5A and the tolerance MTAs 

on chromosomes 6B, 7A and 7D were within the reported intervals for MQTL19, 21, 24 

and 27, respectively. However, these intervals are too large (45, 22, 55 and 13 cM, 

respectively) to be confident that these overlaps are biologically meaningful.  Therefore, 

while our tolerance MTA on chromosomes 2D, and 7D fall within previously reported 

resistance intervals, our tolerance MTA on chromosomes 6B and 7A are likely to 

constitute new loci or refined loci for tolerance within meta-QTL previously associated 

with resistance.

Table 1: Marker-trait associations (MTAs) for tolerance (kappa), resistance and the 

combined, bivariate GWAS. For each MTA, we report the physical position, minor allele 

frequency (MAF), LOD score, the SNP effect estimates, and the percentage of 

phenotypic variance explained (PVE). Non-significant MTAs are indicated with “n.s.”

Interval SNP Position MAF LO
D Effect PV

E

kappa 2D IAAV8779 647,278,479 0.288 5.46 0.178 4.47

resistance 5A Ra_c7322_2294 20,816,495 0.297 8.12 -0.286 12.72

kappa 6B wsnp_Ex_c702_1383612 21,415,561 0.053 8.04 0.446 33.61
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kappa 7D wsnp_Ex_c12102_19361467 557,843,433 0.198 5.39 0.195 8.02

kappa 7A (n.s.) BS00099804_51 89,835,842 0.139 5.19 -0.226 7.55

(kappa, resistance) 
7A (n.s.)

CAP7_c7296_88 642,736,799 0.212 4.01
(-0.233;
0.025)

-

In order to identify candidate genes, we employed a two-pronged approach: (i) a gene 

motif overrepresentation analysis and (ii) a differential gene expression analysis based 

on published data (Ramírez-González et al., 2018, Rudd et al., 2015). To accomplish (i),

we first searched the IWGSC refseq1.0 annotation (IWGSC, 2018) within 5 Mbp 

windows around each of the six identified MTAs. We selected candidate genes within 

these regions based on their functional description (Supplementary Tables S2-S7) and 

classified them into 13 motif groups. Next, we compared the occurrence of these groups

within each interval to their occurrence in 10,000 intervals of 5 Mbp size randomly 

chosen across the genome (see Materials and Methods). This analysis allowed us to 

determine whether the 5 Mbp intervals around the MTAs we identified were more likely 

to contain a gene with a specific function related to plant defense as compared to 

intervals of the same size randomly chosen across the genome. Seven of these motif 

groups showed a significant (p<0.05) overrepresentation compared to random genome 

intervals and contained a total of 16 candidate genes (Table 2). For details regarding the

motif groups and individual genes, see Supplementary Tables S8, S9 and S10. 

Around the MTAs for leaf tolerance, we found a significant overrepresentation of gene 

motifs that can be associated with programmed cell death, including, cysteine 
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proteinase inhibitors (observed=4, p<0.01), cysteine proteases (observed=2, p<0.05), 

DCD domain (observed=1, p<0.05) and wound responsive motifs (observed=2, p<0.05).

We also found a significant overrepresentation of disease resistance motifs (GCN1, 

observed=1, p<0.01), aspartate--tRNA ligase  (observed=1, p<0.05), cell wall-

associated Ran-binding (observed=1, p<0.001), and wall-associated kinases (WAK; 

observed=1, with a more relaxed significance threshold p<0.1). The bivariate MTA on 

chromosome 7A also showed a significant overrepresentation of cell wall associated 

Ran-binding (observed=1, p<0.001) and wound-responsive (observed=2, p<0.05) 

motifs. Around the resistance MTA on chromosome 5A, we observed one cysteine 

protease and eight genes with “leucine rich repeat” (LRR) motifs, neither of which was 

significantly overrepresented. 

We note that based on the Automated Assignment of Human Readable Descriptions 

(AHRD), only one WAK gene has been found in the tolerance MTA interval on 

chromosome 6B, but we examined this interval more thoroughly (based on InterPro; 

https://www.ebi.ac.uk/interpro/) and found three more WAKs (which have been identified

as receptor-like kinases by AHRD). We consider these four WAKs in this interval to be 

interesting because STB6, the first cloned resistance gene for STB, is also a wall-

associated serine/threonine kinase with a galacturonan-binding domain (Saintenac et al.

2018); although the four WAKs have an epidermal growth factor (EGF) domain, which 

STB6 does not have.

To accomplish (ii), we compared gene expression across all our MTA intervals between 

Z. tritici-infected seedlings and mock-inoculated controls using published data (Rudd et 
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al., 2015; Ramírez-González et al, 2018; data available via www.wheat-expression.com)

and identified candidate genes as those having significant differential expression. We 

found that 26 genes around the tolerance MTAs, seven genes around the resistance 

MTA and six genes around the MTA for the bivariate model were significantly 

differentially expressed (Table 3; Supplementary Table S11 for more details). Among 

the MTAs for leaf tolerance, we found significant differences in gene expression for 

three glutathione S-transferases (log2-fold difference ranging from 3.7 to 8.3), a 

receptor-like protein kinase (log2-fold difference of 1.6), a transposon protein with a 

NAC transcription domain (log2-fold difference of 5.5), and a RING finger protein that 

was down-regulated (log2-fold difference of -1.6). Another glutathione S transferase was

significantly up-regulated (log2-fold difference of 3.8) in the MTA for resistance.
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Table 2: Overrepresentation of gene motifs within 5 Mbp intervals around marker-trait 

associations. The significance of motif overrepresentation was determined based on the probability 

distribution of their occurrence across 10,000 random samples. Column 4 shows the total occurrence of 

motifs across the entire genome. Columns 5-8 show the expected occurrence of motifs in 90%, 95%, 99%

and 99.9% of the random samples, respectively. Column 9 shows the observed occurrence of motifs in 

the intervals around MTAs. The symbols ‘***’, ‘**’, ‘*’, and ‘.’ indicate the level of significance of 

overrepresentation with p<0.001, p<0.01, p<0.05 and p<0.1 respectively; ‘n.s.’ denotes no significant 

overrepresentation. 

expected <= probability 
quantile

interval
genes 
in 
interval

gene group occurrence 
genome q90 q95 q99 q99.9 observed

kappa
2D 97

Cysteine 
proteinase 
inhibitor 101 0 0 3 6 4 **

GCN1 6 0 0 0 1 1 **

Cysteine 
protease 225 1 1 6 11 2 *

LRR 3215 16 20 36 50 17 .

Expansin 262 1 2 5 10 1 n.s.

Wat1 194 1 2 3 6 1 n.s.

kappa
6B 62

LRR 3215 16 20 36 50 17 .

Wall-
associated 
kinase 95 0 1 2 4 1 .

kappa
7A (n.s.)

43 DCD domain 34 0 0 1 2 1 *

Lectin RLK 209 1 1 3 4 1 n.s.
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kappa
7D 30

Ran-binding 12 0 0 0 0 1 ***

Aspartate--
tRNA ligase 16 0 0 1 1 1 *

Wound-
responsive 69 0 0 3 14 2 *

resistance 
5A 50

Cysteine 
protease 225 1 1 6 11 1 n.s.

LRR 3215 16 20 36 50 8 n.s.

(kappa, 
resistance)
7A (n.s.)

61

Ran-binding 12 0 0 0 0 1 ***

Wound-
responsive 69 0 0 3 14 3 *

LRR 3215 16 20 36 50 1 n.s.

 

Table 3: Differentially expressed genes within 5 Mbp intervals around marker-trait associations. 

Transcript id, start and end denote the isoform and position (bp), distance denotes the distance (bp) to the

respective marker-trait association, baseMean denotes the average of the normalized count values, lfcSE 

is the standard error of the log2-fold change in expression (log2FoldChange) and padj is the adjusted p-

value.

interval transcript id human readable description

log2-
Fold 
Change padj

Kappa_2D TraesCS2D01G586500.1 WAT1-related protein 4.61 1.7E-3

TraesCS2D01G587800.2 CsAtPR5 6.39 12.5E-3

TraesCS2D01G588800.1 CsAtPR5 -1.07 4.8E-3

TraesCS2D01G589200.1
Cytochrome P450 family protein, 
expressed 7.80 91.2E-9
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TraesCS2D01G589300.1 Glutathione S-transferase 8.30 12.4E-12

TraesCS2D01G589400.1 Glutathione S-transferase 8.34 12.2E-12

TraesCS2D01G589600.1
Glutathione s-transferase, 
putative 3.69 35.5E-6

TraesCS2D01G590600.1 Receptor-like protein kinase 1.59 33.6E-3

TraesCS2D01G595500.1 Amino acid transporter, putative 2.60 59.3E-6

TraesCS2D01G595900.1
DNA-directed RNA polymerase 
subunit beta 1.76 18.2E-3

TraesCS2D01G596300.1

Late embryogenesis abundant 
(LEA) hydroxyproline-rich 
glycoprotein family 3.04 9.4E-6

TraesCS2D01G596400.1

Late embryogenesis abundant 
(LEA) hydroxyproline-rich 
glycoprotein family, putative 3.51 71.3E-9

TraesCS2D01G596500.1
Transposon protein, putative, 
Pong sub-class, expressed 5.54 782.5E-6

TraesCS2D01G597000.1
Eukaryotic aspartyl protease 
family protein 2.87 9.5E-3

Kappa_6B TraesCS6B01G032400.1 RING finger protein -1.61 19.7E-3

TraesCS6B01G033500.1 3-ketoacyl-CoA synthase 2.67 2.9E-6

TraesCS6B01G037300.1 Flowering promoting factor-like 1 -2.01 5.7E-3

TraesCS6B01G037800.1
Photosystem II CP47 reaction 
center protein 1.36 15.4E-3

Kappa_7A TraesCS7A01G135700.1 Sulfiredoxin -1.21 2.8E-3

TraesCS7A01G137000.1
Pheophorbide a oxygenase, 
chloroplastic -1.61 33.3E-3

Kappa_7D TraesCS7D01G437000.1
Calcium lipid binding protein, 
putative 7.29 6.1E-9

TraesCS7D01G437000.2
Calcium lipid binding protein, 
putative 9.65 11.7E-3

TraesCS7D01G438600.1 Cytochrome P450 1.34 8.1E-3

TraesCS7D01G438700.1 Cytochrome P450 1.14 4.7E-3

TraesCS7D01G439300.1 Cytochrome P450 2.23 540.0E-6

TraesCS7D01G439400.1 Glycosyltransferase 3.21 2.1E-3
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Resistance_5A TraesCS5A01G024100.1 Glutathione S-transferase 3.80 10.1E-3

TraesCS5A01G024500.2 N-carbamoylputrescine amidase 8.83 27.7E-3

TraesCS5A01G025200.2 2-aminoethanethiol dioxygenase 4.62 2.7E-3

TraesCS5A01G025400.1
Cationic amino acid transporter, 
putative 1.22 26.5E-3

TraesCS5A01G025600.1
ATP binding cassette subfamily 
B4 7.56 4.6E-3

TraesCS5A01G025900.2 YABBY transcription factor 6.54 29.8E-3

TraesCS5A01G027000.1
Ubiquitin carboxyl-terminal 
hydrolase, putative 1.49 159.3E-6

bivar_Kappa_R
esistance_7A TraesCS7A01G446700.1 Lipid transfer protein 4.14 1.0E-12

TraesCS7A01G447300.1
Calcium lipid binding protein, 
putative 3.70 420.1E-6

TraesCS7A01G449500.1 Cytochrome P450 1.85 591.6E-6

TraesCS7A01G450100.1 Cytochrome P450 1.73 16.5E-3

TraesCS7A01G450300.1

Polynucleotidyl transferase, 
ribonuclease H-like superfamily 
protein 8.02 9.4E-3

TraesCS7A01G450900.1
F-box/RNI-like/FBD-like domains-
containing protein -1.05 4.6E-3

Discussion

Though several studies have analyzed the genetics of disease tolerance in plants 

(Pagan & Garcia Arenal 2020), we believe this is the first study to reveal the genetic 

basis of tolerance to a fungal plant pathogen and to identify candidate genes that may 

confer the leaf tolerance phenotype. Among these candidates are wall-associated 

kinases with galacturonan-binding and serine/threonine kinase domains similar to Stb6, 

the first cloned STB resistance gene (Saintenac et al. 2018). Our automated analyses of

more than 11,000 scanned leaves revealed that wheat’s response to an STB infection 
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can be dissected into resistance and tolerance components that display high and 

moderate heritabilities, respectively. In the analyzed population of 330 elite winter wheat

cultivars, the two traits showed a strongly negative genetic correlation (Figure 2), 

supporting our previous report of a substantial negative phenotypic correlation indicative

of a trade-off between tolerance and resistance (Mikaberidze & McDonald 2020).

While screening for germplasm that performs well during an STB epidemic, wheat 

breeders cannot distinguish between the leaf tolerance and resistance traits using 

traditional visual scoring. A more detailed phenotyping based on leaf image analysis is 

required to distinguish between them. As a result, breeding based on visual 

assessments may select germplasm that has higher resistance or higher tolerance, both

of which could produce an improved yield response to STB infections compared to STB 

susceptible germplasm. This may explain why the STB tolerance QTL that we identified 

on chromosome 2A overlapped with an STB resistance QTL identified in Nordic 

breeding lines based on traditional visual scoring of STB under greenhouse conditions 

(Supplementary Table S1; Zakieh et al., 2023). Furthermore, because breeders have 

been selecting for better performance in elite European winter wheat over several 

decades using visual scoring, we would expect these efforts to result in cultivars with 

high values for both tolerance and resistance. But it was rare to find elite winter wheat 

cultivars that show high values for both traits (Figure 2), suggesting that there is indeed 

a trade-off between the two traits. These interpretations are consistent with our previous

analysis, where we found a positive correlation between cultivar release year and 

17

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2025. ; https://doi.org/10.1101/2024.08.08.607179doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.08.607179
http://creativecommons.org/licenses/by-nc/4.0/


degree of tolerance and an absence of such a relationship for resistance, which 

suggested that European wheat breeders may have been selecting for tolerance instead

of resistance to STB during recent decades (Mikaberidze & McDonald 2020).

Should wheat breeding programs seek to limit STB damage by combining STB 

resistance and tolerance into the same cultivar? This would require that the two traits 

are encoded by a shared pathway or by separate sets of genes that can be recombined 

into the same lineage, as well as the absence of epistasis. Our analyses reveal a 

nuanced picture of genetic connections between STB resistance and tolerance. The 

significant and strongly negative genetic correlation between the two traits suggests that

the traits are not independent of each other. Yet the univariate GWAS analyses 

identified different chromosome intervals associated with tolerance and resistance, while

the bivariate GWAS revealed only one association that was visually striking, but not 

statistically significant. A similar pattern was found in studies of resistance and tolerance

of pepper plants to potato virus Y: the two traits exhibited significant negative phenotypic

and genetic correlations, the GWAS identified markers that were significantly associated

with either tolerance or resistance, but none of the markers were shared between the 

two traits (Tamisier et al., 2020; Tamisier et al., 2022). A possible explanation of these 

outcomes is that there could be several molecular pathways contributing to tolerance. 

Some of the pathways exhibit a negative genetic correlation with resistance and are 

underpinned by a large number of genes of small effect. Here, a negative correlation 

between tolerance and resistance may result from these genes exhibiting negative 
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pleiotropy, whereby the same gene contributes to an increase in tolerance, but a 

decrease in resistance (or vice versa). Alternatively, a negative correlation between the 

two traits can be caused by linked monotropic genes: among several linked genes, 

some contribute to an increase in tolerance, while others contribute to a decrease in 

resistance (Gardner and Latta, 2007). Under either of these scenarios, we would not be 

able to capture these genes via MTAs in the GWAS. Other tolerance pathways could be

independent of resistance, and conferred by fewer genes with larger effects. These 

would be identified as significant MTAs for tolerance in the GWAS, none of which were 

significantly associated with resistance. Hence, purely phenotypic selection for tolerance

may inadvertently select against resistance and vice versa. However, marker-assisted 

selection for components of tolerance that are independent of resistance could avoid 

this pitfall and select for tolerance without compromising resistance. Additional 

experiments will be needed to further validate the tolerance MTAs and the associated 

candidate genes to enable this approach.

We identified tolerance candidate genes using analyses of both motif enrichment and 

differential gene expression. The enrichment analysis revealed a significant 

overrepresentation of genes encoding programmed cell death, leucine-rich repeats, 

responses to wounding, and wall-associated kinases. Many of these candidate genes 

encode functions that are typically associated with disease resistance, such as NBS-

LRRs, lectin receptor-like kinases, and wall associated kinases, including genes that are

similar to Stb6, the first cloned STB resistance gene (Saintenac et al. 2018). Similarly, 
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Tamisier et al (2022) found a cluster of candidate NBS-LRR genes to be associated with

tolerance of pepper plants to potato virus Y. The differential gene expression analysis 

also revealed genes known to be associated with disease resistance, including a 

receptor-like protein kinase. These findings suggest that there may be a common 

genetic architecture underlying plant resistance and tolerance. In particular the same 

pathogen sensing, recognition, and signaling processes may be involved at the 

beginning of the tolerance and resistance response pathways. Under this scenario, the 

same gene may confer tolerance to one pathogen, but resistance to a different 

pathogen. For example, a candidate NBS-LRR gene for potato virus Y tolerance in 

pepper (Capsicum annuum) shares 87.1% nucleotide identity with the Bs2 gene in a 

different pepper species (Capsicum chacoense) known to confer resistance to bacterial 

spot disease (Tamisier et al., 2022). For tolerance, we found a greater 

overrepresentation of gene motifs associated with wound responses and programmed 

cell death (PCD) compared to the resistance trait (Table 2). We speculate that inhibition 

or appropriate regulation of wound response or PCD pathways may lead to increased 

leaf tolerance via reduction of excessive necrosis of leaf tissue.

While this is the first work to identify candidate genes affecting tolerance to fungal 

pathogens, we expect that the methods described in this paper can be applied to many 

other fungal diseases that produce visible fruiting bodies, such as speckled leaf blotch 

on barley, septoria leaf blotch on oats, or septoria leaf spot of tomatoes. As tolerance is 

analyzed in other plant pathosystems, it will become possible to compare candidate 
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genes identified across different systems to determine if tolerance, like resistance, is 

encoded by conserved mechanisms shared among many plant species. 

Materials and Methods 

Naturally infected penultimate leaves from 335 elite winter wheat cultivars were sampled

from replicated plots during the 2016 field season as described in earlier publications 

(Karisto et al., 2018; Yates et al., 2019; Mikaberidze and McDonald, 2020). We estimate

that at least half a million Z. tritici genotypes were present in the sampled plots 

(McDonald et al. 2022; Lorrain et al. 2024), thus our results are relevant for epidemics 

caused by highly diverse, natural pathogen populations. On average, 16 infected leaves 

from each plot were imaged using a flatbed scanner (Canon CanoScan LiDe 220) at 

1200 dpi resolution to obtain the percentage of leaf area covered by lesions (PLACL, a 

damage function that reduces the green leaf area, a measure of disease-induced 

reduction of plant fitness for each leaf) and numbers of pycnidia (Np, associated with 

pathogen reproduction, a measure of the pathogen burden in each leaf) (Stewart et al., 

2016; Karisto et al., 2018). In order to control for the effect of total leaf area on the 

number of pycnidia per leaf, we performed the adjustment Np,i → (Atot/Atot,i) Np,i, where Np,i

and Atot,i are the number of pycnidia and the total area of an individual leaf i, and Atot is 

the mean total leaf area averaged over the entire dataset (Mikaberidze and McDonald, 

2020). 
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These measures were then used to quantify degrees of STB resistance and tolerance, 

the latter using a novel measure called kappa. Kappa is an exponential slope that 

characterizes the negative relationship between green leaf area and the number of 

pycnidia on each leaf (Figure 4; Mikaberidze & McDonald, 2020). Small values of kappa 

indicate a high level of leaf tolerance, while large values of kappa indicate a low level of 

leaf tolerance. The kappa values were calculated for each cultivar based on 

measurements from approximately 32 leaves (each cultivar was replicated twice in the 

experiment), with each leaf typically infected by a different pathogen strain (McDonald et

al. 2022; Lorrain et al. 2024). Hence the tolerance measures represented average 

values across a wide range of pathogen genotypes (≈32 Z. tritici strains) for each wheat

cultivar and the range of kappa values encompassed a wide range of host genotypes 

(~330 wheat cultivars). Resistance was quantified as the average number of pycnidia 

found on each leaf (Np; adjusted for the total leaf area). More susceptible cultivars allow 

higher numbers of pycnidia per leaf that translate to more pathogen reproduction, while 

more resistant cultivars limit the numbers of pycnidia per leaf and therefore reduce 

pathogen reproduction. Additional details on how tolerance and resistance were 

calculated for each cultivar can be found in Mikaberidze & McDonald 2020. The 

workflow for data acquisition and analysis is illustrated in Figure 4. The raw data 

stemming from the image analysis of each individual diseased leaf reported by Karisto 

et al. (2018) are available via Dryad Digital Repository: 

https://doi.org/10.5061/dryad.171q4. The processed phenotypic and genomic datasets 
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underlying the outcomes of this study, and the code that can be used the reproduce the 

analyses are available via Zenodo https://doi.org/10.5281/zenodo.14962847. 

Statistical Analysis

An initial data inspection revealed strong skews in the distributions of both tolerance and

resistance, which resulted in violations of the assumption of independence and 

normality of the residual distribution in the subsequent linear modeling (Supplementary 

Figure S1). For this reason, the raw data from individual plots was subjected to a rank-

based inverse normal transformation (RINT) using the R-package RNOmni (v1.0.1.2; 

McCaw, 2023) before conducting further analyses. This brought the distributions of 

tolerance and resistance close to the normal distribution and resulted in independent, 

normally distributed residuals with a mean of zero.

To obtain best linear unbiased estimates (BLUEs) across replications while accounting 

for spatial variability, a spatial model using two-dimensional p-splines was fitted in the R-

package SpATS (v1.0.18; Rodríguez-Álvarez et al., 2017). The two complete blocks 

were allocated diagonally in a virtual grid (see Kronenberg et al. 2021, Pérez-Valencia 

et al. 2022 for details), with rows and columns corresponding to the relative plot 

positions within each replicate of the experiment. The fitted model was:

Y ijk=μ+Gi+ f (r , c )+r j+ck+eijk (1)
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where Yijk is the plot value of the respective trait: tolerance quantified as kappa or 

resistance quantified as Np. μ is the global intercept and Gi is the response of the 

genotype i. To account for spatial variability, rj and ck represent the effects of the row j 

and column k, respectively, while f(r,c) is a smoothed bivariate surface across rows and 

columns within the virtual grid, thus fitting an independent spatial trend to each of the 

two replicates. From this model, the BLUEs were extracted to be used in the GWAS 

whereas spatially corrected plot values, comprising the BLUEs and residual errors but 

omitting spatial trends and other unwanted design factors, were used to calculate 

heritability and genetic correlations.

To calculate heritability, the model:

Y i=μ+Gi+ei (2)

was fitted using the R-package asreml-R (v4.2.0.302, VSNi Team 2023), where Y i is the

spatially corrected plot value from Eq. (1) for the respective trait, Gi is the random 

genotype response with known variance-covariance structure based on the genome-

wide identity by state (IBS) relationship matrix calculated from single nucleotide 

polymorphism (SNP) data using the R-package SNPRelate (v1.30.1; Zheng et al., 2012)

and ei is the residual error. Heritability was estimated on a genotype difference basis:

H ΔBLUP
2  according to Eq. (24) in (Schmidt et al., 2019).
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Phenotypic correlations were calculated as Pearson’s r based on the adjusted genotype 

means extracted from Eq. (1). To calculate the genetic correlation between kappa and 

resistance, Eq. (2) was expanded to the bivariate model:

(Y i1 , Y i2 )= (μ1 , μ2 )+(Gi1 ,Gi2 )+(ei1 , ei2 ) (3)

in the R-package asreml-R, where the superscripts 1 and 2 denote the two traits: kappa 

and Np, respectively. Gi
1 and Gi

2 were again set as random with known variance-

covariance structure based on IBS. The genetic correlation was then calculated from the

estimated variance and covariance components from Eq. (3) following Holland et al. 

(2001):

Corr (G1,G2 )= Cov (G1 ,G2 )
√Var (G1 )Var (G2 )

 (4)

Genome-wide association studies (GWAS)

Genome-wide association studies for the traits kappa, Np and the combined, bivariate 

response were conducted following the same workflow as described by Roth & 

Kronenberg et al. (2024). Marker data were supplied by the GABI wheat consortium 

(Gogna et al., 2022) for the GABI genotypes and by the Agroscope wheat breeding 

program for the Swiss genotypes (Fossati and Brabant, 2003). Markers were mapped to

the Triticum aestivum reference sequence v.1.0 (IWGSC et al., 2018) using ncbi-blast+ 

(v2.9.0-2). Equivocally mapped markers were excluded, and the remaining markers 

were filtered for a missing rate <0.05 and a minor allele frequency >0.05, resulting in 
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9,125 SNPs for 330 wheat cultivars. The remaining missing markers were imputed using

fastPHASE (v.1.4; Scheet and Stephens, 2006) implemented in 

https://github.com/mwylerCH/HapMap_Imputation. Given the large size of the wheat 

genome (>14 Gbp), the SNP marker density is quite low, on average one marker per 1.6

Mbp, which may limit our capacity to detect marker-trait associations.

The univariate GWAS analyses for kappa and Np were conducted using the Blink model 

(Huang et al., 2019) implemented in the R-package GAPIT3 (v.3.1.0) (Wang and Zhang,

2021). The bivariate GWAS was conducted using the software GEMMA (v0.98.1, Zhou 

and Stephens, 2014) using the first three principal components among SNP genotypes 

and the genome-wide IBS matrix to correct for population structure and relatedness, 

respectively.

Taking into account advances in GWAS methodologies in wheat since the publication of

(Yates et al., 2019), we adapted our analyses in four ways. We used (i) an adjustment 

for spatial variability using the R-package SpATS (Rodríguez-Álvarez et al., 2017); (ii) a 

different transformation [RINT-transformation (McCaw et al., 2020) instead of log-

transformation] that better satisfies the assumption of normality in the residuals of the 

applied linear models; (iii) a more comprehensive marker panel that includes Swiss 

cultivars, thus adding 11 genotypes previously excluded due to missing marker data; 

improved imputation of missing genotype data based on similarity of haplotype clusters 

around the missing genotype; and (iv) a different GWA model [single marker-based 
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BLINK (Huang et al., 2019) instead of haplotype based PLINK (Purcell et al., 2007)] that

better manages the systematic inflation of p-values in genetic association tests. To 

ensure reproducibility and better understand the effects of these four modifications, we 

reanalyzed the data of (Yates et al., 2019), and compared those results with the 

outcomes of our new GWAS pipeline applied to the same phenotypes. We illustrate the 

comparison of the two analyses in Supplemental Figure S2.

Identification of candidate genes

To identify candidate genes, we searched the IWGSC refseq 1.0 annotation (IWGSC, 

2018; https://urgi.versailles.inra.fr/download/iwgsc/) for 2.5 Mbp in each direction from 

the genome position of the associated SNP markers identified by GWAS. In a first step, 

likely candidates for either leaf tolerance or resistance were identified based on their 

functional description. Genes were categorized into motif groups based on their 

description (see Table 2; Supplementary Tables S8 & S9). Then the likelihood of 

occurrence for each motif was quantified using a bootstrapping approach. We examined

10,000 random 5 Mb intervals with a gene content >55 genes, i.e. the average of the 

gene content of the associated 5 Mb intervals, across the entire genome. We chose the 

size of the intervals to be 5 Mb, because this is below the characteristic LD decay 

distance (r2<0.2) for all the chromosomes of interest. In these intervals, we counted the 

occurrence of the selected candidate motifs identified in the intervals around the MTAs 

and calculated quantile distributions for the occurrence of the respective motifs across 

the random samples. A motif was considered significantly overrepresented if the 
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occurrence in the identified interval was larger than the occurrence in 95% of the 

random intervals.

The leucine rich repeat (LRR) protein domain represents a characteristic feature of 

several classes of plant disease resistance proteins (Gururani et al., 2012). Hence, for 

the purpose of the representation analysis, we merged the gene groups “NBS-LRR”, 

“disease resistance proteins”, “RPM1“ and “RPP13” (all of which contain LRR) into a 

single “LRR” category (Table 2). We note that our overrepresentation analysis is based 

on Automated Assignment of Human Readable Descriptions (AHRD; 

https://github.com/groupschoof/AHRD?tab=readme-ov-file), which represents the official

description of wheat genes published by the scientific community. However, there can 

be cases of misclassification, which lead to uncertainties in the occurrence of gene 

groups that are difficult to estimate, and for this reason the outcomes of this analysis 

need to be interpreted with caution.

Furthermore, differential gene expression analysis has been performed on the genes 

within the associated 5 Mbp intervals using publicly available transcript count data 

(Ramírez-González et al, 2018, https://www.wheat-expression.com/). The RNA-seq data

originated from a gene expression study of Z. tritici-infected seedlings versus mock-

infected seedlings (Rudd et al, 2015). There, seedlings of the wheat cultivar ‘Riband’ 

were infected with the Z. tritici isolate IPO323 and samples were taken at 5 different 

timepoints (1-21 days) after infection (see Rudd et al., 2015 for details). The outcomes 
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of this analysis need to be interpreted with caution, because wheat gene expression can

differ between controlled environments and the field environment, and also differ 

between seedlings and adult plants; gene expression can also be specific to host and 

pathogen genotypes. In this analysis, we pooled the transcript count data across 

timepoints. Differential gene expression was calculated across the whole genome using 

the R-package DEseq2 (v.1.44.0; Love et al., 2014). Genes were considered 

differentially expressed (DE) if their expression changed twofold and was significant 

(adjusted p-value <0.05). Only the DE genes within the 5 Mb intervals around each QTL 

were considered for candidate gene identification.
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Figure 1. Illustration of leaf tolerance. STB symptoms on wheat leaves can be seen as 

characteristic necrotic lesions with pycnidia (seen as small, black, round structures 
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within lesions) on cultivar Intact (A, tolerant) vs cultivar Lynx (B, non-tolerant). The 

number of pycnidia is similar in the two images, but the non-tolerant leaf has a larger 

disease-induced necrotic area (and a smaller green leaf area), and therefore suffers 

more damage from disease compared to the tolerant leaf. Black rectangles are 4x 

magnified in the insets, where two characteristic pycnidia are indicated by arrows. To 

quantify leaf tolerance it is not sufficient to compare two leaves, instead, we analyzed 

large numbers of diseased leaves from each cultivar and estimated tolerance as the 

negative exponential slope of how green leaf areas decrease versus the number of 

pycnidia on a leaf (see Figure 4 and Mikaberidze & McDonald 2020).
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Figure 2. Genetic correlation between tolerance (quantified as kappa) and resistance 

(quantified as Np). Purple dots represent the empirical best linear unbiased predictors 

extracted from the bivariate model (Eq. 3) and gray lines represent the standard 

deviations.
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Figure 3. Manhattan and QQ-plots depicting the GWAS results for tolerance (kappa) 

(A), resistance (B) and the combined, bivariate GWAS (C). Green, red and purple dots 

in the Manhattan plots represent the SNPs significantly associated with the respective 

traits: kappa, resistance and the bivariate model combining kappa and resistance. 

Crossed circles represent marker-trait associations that were not significant at the 

Bonferonni threshold, but were nevertheless considered in additional analyses. The 

legends in the QQ-plots indicate the applied GWAS model and the genome-wide 

inflation coefficient λ.
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Figure 4. Workflow for the acquisition of phenotypic data, estimation of leaf tolerance 

and GWAS [modified from Figure 1 in (Yates et al., 2019) and Figure 3 in (Mikaberidze 

& McDonald, 2020].
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