bioRxiv preprint doi: https://doi.org/10.1101/2024.08.05.606572; this version posted March 13, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Integrating Natural and Engineered Genetic Variation to Decode
Regulatory Influence on Blood Traits

Authors: Manuel Tardaguﬂal’z*, Dominique Von Schiller!, Michela Colombo?, Tlaria Gori®, Fve
L. Coomber', Thomas Vanderstichele', Paola Benaglioz, Chiara Chiereghinz, Sebastian Geretyl,
Dragana Vuckovic’, Arianna Landini®, Giuditta Clerici®, Patrick Albers', Helen Ray—]onesS, Katie
L. Burnham', Alex Tokolyi', Flodie Persyn*>", Mikhail Spivakov®, Vijay G. Sankaran®, Klaudia
Walter', Kousik Kundu"", Nicola Pirastu®, Michael l110uye4’5’7’8’9’13, Dirk S. Paul*'*”, Emma E.
Davenport1, Pelin Sahlén™, Stephen Watt', Nicole Soranzo™>2514"

Abstract

Understanding the functional consequences of genetic variants associated with human traits and
diseases —particularly those in non-coding regions—remains a significant challenge. Here we
use analyses based on natural genetic variation and genetic engineering approaches to dissect the
function of 94 non-coding variants associated with haematological traits. We describe 22
genetic vardants with impact on haematological variation through gene expression. Further,
through in-depth functional analysis, we illustrate how a rare, non-coding varant near the CUX7
transcrption factor impacts on megakaryopoiesis through modulation of the CUX7
transcriptional cascade. With this work we advance the understanding of the translational value
of association studies for variants implicated in blood and immunity.
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Introduction

Genome-wide association studies (GWAS) of haematological traits have yielded thousands of
high quality variant to phenotype associations that underpin key aspects of blood homeostasis
and immune response . Population-scale quantitative trait loci (QTL) initiatives in immune cells’
and whole blood* have been instrumental in explaining how GWAS supported genes modulate
blood traits in health and discase™. Tt has been estimated that up to 90% of the GWAS
associations for haematological phenotypes lie in the non-coding genomez, slowing down efforts
to identify target genes and to elucidate the mechanisms by which these variants exert their
effects. Identifying transcriptional regulators underpinning such genetic effects is critical to
enable progress into pharmaceutical intervention, as recently illustrated by the approval of
CRISPR/Cas9 ex-vivo therapies (Casgevyﬁ) to treat sickle cell disease and Beta-Thalassemia®. Tn
this first case study example, the accumulation of non-coding variants that control foetal
haemoglobin levels through the expression of the transcriptional repressor BCL11A™ informed
the identification of an erythroid-specific enhancer that could be targeted to thus successfully
ameliorate the symptoms of both diseases".

Varant-to-function studies are hindered by several factors including difficulties in scaling-up
functional validation techniques, in prioritising variants within extended blocks of vadants in
linkage disequilibrium (LLD) and in linking unequivocally genetic variants to their candidate
effector genes. Functional validation of haematological variants has relied on expression QTL
eQTL)* studies and high-throughput experimental screenings such as Massively Parallel
Reporter Assays (MPKA)LM, CRISPR-Cas9"” and CRISPR interference (CRISPRi)13 assays.
Despite the valuable insights provided by these approaches, important challenges remain. The
functional impact of hundreds of rare non-coding GWAS wvariants (RNVs) increasingly
uncovered by the use of denser imputation panels and whole genome sequencing (WGS)™ has
not been fully addressed, as eQTL studies use under-powered methods for rare variation and few
MPRAY and CRISPRi®” screenings have included them in their design. In addition, little has been
done to reconcile the differences between iz vivo results from expression studies and 2 vitro
results from screenings taking into account that the latter often do not assay variants in their
native chromatin context (episomal MPRAs™) and tend to produce experimental artifacts
(MPRA15 and CRIPSRi”’). Furthermore, phased WGS data that allows to break down the effect
of different haplotypes is often lacking in eQTL studies. Finally, very few screenings have
assessed variants in cell contexts that are relevant for the blood phenotypes mapped to the
variants' .

Here we have addressed the function of 94 rare non-coding variants (RNVs) associated with
haematological traits using a MPRA for enhancer activity and an analysis for differential gene
expression (DL) and alternative transcript usage (ATU) in a large collection of samples with
whole blood RNA-seq and phased WGS data. After extensive manual curation we identify 22
variants with direct regulatory evidence to genes robustly associated with blood traits. Finally, we
have carried out an in-depth functional validation of one of these variants elucidating a molecular
mechanism that recapitulates the GWAS association.
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Results
Variant prioritisation and MPRA in hematopoietic cell lineages

To identify a set of variants to perform our study we started from 12,181 loci associated with 29
different blood phenotypes from a GWAS study conducted by our group®. These haematological
traits (Table S1) encompass a broad range of clinical indices used to evaluate the state of the
erythrocyte, megakaryocyte, monocyte and lymphoid lineages in blood. From the 178,890
variants contained in 95% fine mapping credible sets, we applied sequential filters. We first
restricted the dataset to rare variants (minor allele frequency [MAF] < 1%) leaving 5,813 variants.
Next we retained only rare non-coding variants, defined using the most severe consequence in
Vanant Effect Predictor (VEP), leaving 5,248 variants. We then selected varants with at least
one trait association fine-mapped with a posterior probability (PPFM) 2 0.9 narrowing the set to
196 variants and finally we prioritised variants with high effect sizes (beta < first or > third
quartile of standardised trait distribution) (Figure 1A-C and Methods). Following these steps
we identified a set of 123 rare non-coding variants (RNVs) meeting all criteria, henceforth named
‘index variants” (Figure 1A and Table S2). These index variants exhibited significantly higher
effect sizes compared to reported heterozygous blood ClinVar/HGMD pathogenic variants® (p
value = 0.009, Wiloxon fes?). Notably, 95% of index variants remained significantly associated
with at least one blood trait after conditioning on common variants, in contrast to other selection
approaches that prioritize subsets whose signal is ultimately driven by LD with nearby common
variants'. Furthermore, index variants had significantly higher orthogonal prioritisation scores;
including combined annotation dependent depletion ([CADD]"), NCBoost™, and genomic non-
coding constraint of haploinsufficient variation (|[Gnocchi]*) compared to other tiers of RNVs

(Figure 1C).

Out of the 123 index variants, 94 were incorporated into an MPRA library design for enhancer
activity>* alongside positive and negative controls selected from previous studies™. To account
for sequence context effects™, each variant allele was synthesised within five partially overlapping
tiles tagged with unique barcodes and cloned into an MPRA reporter vector (Methods). The
resulting MPRA library (19,050 oligos) was transfected in seven different replicates into four
cancer cell lines used as models of blood cell types: K-562 (chronic myeloid leukaemia, a model
erythroid cell), CHRF-288-11 (acute megakaryoblastic leukaemia, a model for megakaryocytes),
HIL-60 (acute myeloid leukaemia, a model neutrophil line) and THP-1 (acute monocytic
leukaemia, a model for monocytes) (Figure 2A). To quantify enhancer activity and allele specific
expression we employed MPRAmodel” estimating log2 Fold Change(log2FC) and log2 Allelic
Skew, (log2AS) per ecach tile, variant and cell type (Table S3). We performed a meta-analysis
across tiles to obtain a single value of log2FC and log2 AS per variant and cell type as described
in'’(Table S4). The directionality of the log2AS positive controls showed high concordance with
a prior MPRA study in K-562 cells” (R*2 = (.821, Supplementary Figure 1B). We identified 43
variants that significantly impacted the activity of enhancer sequences and labelled them as
MPRA positive (Figure 2A-B, Supplementary Figure 1C, Table S4 and S6). The high
proportion of MPRA positive variants (45.7%) is consistent with previous findings that high
PPEM variants are enriched in MPRA activity'®. Among the four cell lines tested, THP-1 cells
displayed the lowest number of MPRA positive variants (4, Supplementary Figure 1C) possibly
due to them being refractory to nucleofection™ as they also had the lowest % of GFP positive
cells after transfection (median values 55.5 and 6.8 for CHRF-288-11 and THP1 cells,
respectively, p value = 0.01, Wikoxon lesi).

Among the 43 MPRA positives, 25 were specific to a single cell type while 14 and 4 were shared
across two and three cell types respectively (Figure 2C, Supplementary Figure 1C). We
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observed high correlation (Pearson correlation > 0.9) in log2FC and log2AS for the MPRA
positive variants shared by the K-562 and HL-60 cells (Figure 2D, Supplementary Figure 1D)
possibly reflecting their common myeloid leukaemia origin®*. To investigate the factors
influencing log2FC activity we incorporated cell-matched sequence features obtained from
Enformer™* into our set GWAS parameters and scores and applied lasso regression™. Among
the GWAS parameters, MAL' emerged as predictive factor in K-562, CHRIF-288-11 and HL-60
cells (Figure 2E), suggesting that rare variants in the lower spectrum of allele frequency in our
study (MAE < 0.01) tended to have higher values of Log2lFC (Supplementary Figure 1E). In
addition, higher CADD scores were predictive of higher Log2l'C variants in the HL-60 cell line
(Figure 2E). CHIP-seq data further revealed that motifs occupied by classical activating
transcription factors (S1AT7, STATZ) predicted higher Logl'C values whereas known repressors
and insulators (CTCF, RFXT) predicted negative LogFC values (Figure 2E). Altogether, these
findings indicated that the MPRA captured the capacity of multiple index varants to impact the
activity of enhancer sequences, reinforcing their potential functional relevance.

Population survey of RNA expression in healthy volunteers supports variant effects
mediated by transcription

To assess regulatory impact of the index variants in their native chromatin context we used two
bulk RNA-seq datasets (Table S5). First, the INTERVAL RNA-seq studySO, that includes gene
and transcript quantification from whole blood samples of 2,971 samples with matched WGS
data (15x). Overall, we identified heterozygous carriers for 88 of the 94 MPRA screened variants
with 2 median of 40 carriers per variant. Since the traditional ¢QTT. approach* is under-powered
for variants with low allele counts, we employed a more calibrated differential gene expression
analysis (DL), accounting for an array of experimental covadates to test for differences in
expression levels between neldiype and heterozygous carriers of rare alleles at index variants
(Methods). Additionally, we explored regulatory mechanisms beyond gene expression control by
testing for alternative transcript usage (ATU), defined as changes in the relative abundance of
transcripts expressed for each gene®. To model ATU we used an additive log ratio approach that
accounts for its compositional nature incorporating all the experimental covariates used in the
DE analysis (Methods).

We detected evidence for DE or ATU at 42 of the 88 varants, involving 60 genes (Figure 3A,
and Table S5). Among these, 23 variants (involving 29 genes) exhibited only DE effects, 11
(involving 11 genes) had only ATU effects and 8 displayed both types of regulation (affecting 14
genes with DE, 4 genes with ATU and 5 genes with simultancous DE and ATU, Table S5).
Eight of the 20 ATU genes harbour splicing QTLs (sQQTL) signals in whole blood in the GTEx
Project™, but implicating common variants (MAF > 1%) that were conditionally independent
from the ones assayed here (r2>0.7, EUR population, window size 0.5 Mb, Methods). In the
INTERVAL QTL repository” we identified three of the ATU varants as sQTLs for the
correspondent genes and for an additional 11 ATU genes we found independent common
sQTLs. This suggests complex modes of regulation at the transcript level for ATU genes
(Supplementary Figure 2A). One of the ATUs involved the synonymous cryptic splicing
variant r$s150813342 in GFI/B, a transcriptional repressor and key regulator of platelet and red
blood cell development (Supplementary Figure 2B). Editing the same vagant using
CRISPR/Cas9 in K-562 cells induced similar transcript usage changes™.

To investigate the contribution of individual cell types, we also analysed DE and ATU in three
separate immune cell isolates (monocytes, neutrophils and naive CD4+ T-cells) from the
BLUEPRINT human variation panel’. Of the 88 variants examined in INTERVAT, 25 had at
least one heterozygous carrier in the 196 BLUEPRINT donors (median number of 5 carriers per
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variant). We detected evidence for DE or ATU at 10 of the 25 varants, involving 11 genes
(Figure 3A and Table S5). Among these, 4 variants (affecting 4 genes) exhibited only DE
effects, 3 (involving 3 genes) had exclusively ATU effects and 3 showed both types of regulation
(affecting one gene with DE, one gene with ATU and two genes with simultancous DE and
ATU). Among the ten BLUEPRINT DE/ATU variants, five were shared with the INTERV AL
whole blood analysis with 3 implicating the same genes. In 4 of the remaining 5 cases, regulatory
effects were detected exclusively in one BLUEPRINT cell type (Figure 3A and Table S5).
Overall, the RNA-seq supported multiple MPRA positives with some differences that we explore
further.

Regulatory landscapes defined by in vivo and in vitro studies

We combined evidence from the MPRA and RNAseq (DE/ATU) experiments to assess how
the multiple lines of evidence converge towards a mechanistic interpretation of each association,
categorising the tested varants into four groups: 18 double-positive variants (showing regulatory
effects in both MPRA and RNAseq), 22 MPRA+/RNA- variants, 29 MPRA-/RNA+ and 19
MPRA-/RNA- variants (Figure 3B and Table S6).

In the double-positive set we investigated the concordance in the direction of the effect allele
between MPRA Allelic Skew and DE and found moderate agreement (8/14, Methods). For the
22 MPRA +/ RNA- variants (Figure 3B), we hypothesised that the lack of RNA evidence was
driven by insufficient statistical power in the DE/ATU particularly for variants with lower allele
frequencies. Indeed, variants with no RNA effect had a significantly lower number of carriers
than DE and/or ATU vardants (p value = 0.045, Wilkoxon test, Figure 3C). Next we examined
the 29 MPRA-/RNA+ variants to determine whether they were enriched in ATU cases that
might escape MPRA detection of enhancer activity. However, there was no significant difference
in the distribution of A'T'U events between double-positive and MPRA-/RNA+ variants (p value
=1, Chi square test, Figure 3B and Table S6). We then applied lasso regression to identify
sequence based features predictive of the MPRA-/RNA+ class compared to double-positive
variants (Methods). We found three CHIP-seq motifs in K-562 cells (E2F, RLIF and BCLALT)
associated with the MPRA-/RNA+ class (Figure 3D). Notably, E2FF and RILF (Supplementary
Figure 2C) exhibited very low expression levels in K-562 cells, suggesting that a some of the
MPRA-/RNA+ variants might affect motifs of transcription factors that are weakly expressed in
the cell lines used for the MPRA.

To annotate candidate effector genes underpinning the genetic associations we integrated data
from the GeneBass™ and OpenTargets® databases and conducted a comprehensive literature
search, (Supplementary Figure 3 and Table S6). For variants with regulatory evidence in the
RNA-seq experiments we used all the DE/ATU genes whereas for RNA negative variants, we
considered all genes tested in the DE/ATU analysis. In total, we annotated genes for 76 of the
88 variants. We then leveraged phased WGS (unavailable at the time of the MPRA assay design)
to identify cases where the association could be explained by a nearby coding variant (labelled as
“coding proxy”) in high LD with the index variant. Fourteen variants had at least one coding
proxy variant (* range 0.26-0.97); however we observed evidence for regulatory activity at 7 of
these, suggesting that either the index or the coding proxy varant could be causal
(Supplementary Figure 4D). Furthermore, using the haplotype resolved information from the
same WGS data, we identified four instances where other non-coding variants (labelled as
“regulatory proxy”) in high LD with the index varant (# range 0.51-0.85) were driving the
DE/ATU expression phenotype ( Supplementary Figure 4E). Additionally, we flagged ten
variants where the regulatory effects are likely mediated in cell types or tissues different from the
ones used here (labelled as “other tissue”, Supplementary Figure 4F), and seven cases where
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the regulated genes were not a solid biological candidate for the GWAS phenotypes (labelled as
“other gene”). Overall, our curation effort results in a high-confidence set of 22 variants for
which we can formulate robust hypotheses linking the regulated genes to the blood phenotypes
(‘GeneBass, Open Targets or literature support’ label, Figure 3E and Table 1). Of these, 11
implicated DE events (Supplementary Figure 4A), 7 ATU cvents (Supplementary Figure 4B)
and 4 had both types of regulation (Supplementary Figure 4C). In addition, five had been
previously described as ¢QTTs for the same genes by the eQTT.Gen' and/or the BLUEPRINT?
consortia and 1 as an sQT'L in the INTERVAL RNA-seq initiative”’, Table 1. Notably, 12 of the
22 ‘GeneBass, Open Targets or literature support’ variants were MPRA positive in contrast to
none of the regulatory proxy varants demonstrating the capacity of the MPRA to capture true
biological effects.

Regulation of megakaryocytic size and maturation by c7s variation in CUX1

We validated the double-positive variant rs139141690, which was MPRA positive in K-562 cells
and downregulated the gene CUX7. CUX7 encodes a transcription factor essential for
hematopoietic stem cell (HSC)* maintenance (Figure 4A and Table S4-5). The GWAS
phenotypes associated with the variant (e.g. mean platelet volume) align with findings observed
in murine &nock-downs of CUX17. The variant is located in a region of accessible chromatin that
interacts with the promoter of CUX/ in the megakaryocyte lineage (Figure 4A). Motif analysis
predicts a PU.T site in the reference sequence that is transformed into a FOXM7 by the
alternative A allele, while CHIP-seq in whole blood shows the occupancy of the motifs by both
TFs (Supplementary Figure 5A,B and Methods). Moreover, complementing our RNA-seq
analysis with a gene set enrichment analysis (GSEA) in the INTERVAL whole blood carriers
revealed a significant enrichment of the HSC homeostasis and Blood coagulation pathways in
heterozygous carriers of the variant (Supplementary Figure 5C).

We used Genome engineering-based Interrogation of Enhancers (GenIE)" to assess whether
CRISPR/Cas9 introduced unique deletion profiles (UDPs) and rs139141690 ‘A/A’ allele
significantly affected the expression of CUX7*”. We assayed rs139141690 in three of the
MPRA cancer cell lines (K-562, HL-60 and THP-1) and a human induced pluripotent cell line
(hiPSC, Kolf2) 2, Multiple UDPs and the rs139141690-A allele showed a significant decrease in
the abundance of CUXT7 transcripts when compared to the wildtype allele in K-562 cells,
recapitulating the decrease in CUXT expression observed 7z vz (Figure 4B). Next, we explored
the role of rs139141690 in the megakaryocyte lineage by differentiating K-562 cells to
megakaryocyte-like CD41+ (ITGAZB gene, megakaryocyte surface marker) cells using PMA™.
First, we engineered three sets of isogenic K-562 lines carrying respectively: i) the reference allele
(‘G/G’ clones), ii) the alternative allele (‘A/A’ clones) and iif) a specific 80 bp deletion spanning
the SNP and covering all the significantly active UDPs from the GenlE (‘80 bp del’ clones)
(Figure 4C). We monitored the changes in the cell surface abundance of CID235 (GYPA gene,
erythrocyte surface marker) and CD41 by flow cytometry. The A/A clones accumulated more
intermediate CD235"CD417 cells but had fewer terminally differentiated single positive CD41
cells while the “80 bp del” clones reached high percentages of them faster than any other
genotype (Figure 4D and Methods). These findings confirmed the capacity of rs139141690 to
affect megakaryocyte differentiation zz vitr.

To explore the regulatory mechanism of rs139141690 on CUX7 we performed a K-562
differentiation experiment jointly capturing RNA expression and open chromatin landscapes at
single cell level (Figure 5A). In this experiment we included two additional clone lines: one
heterozygous for rs139141690 (‘A/(G’) and one carrying a shorter deletion that spanned the
PU.1 binding site impacted by the variant (16 bp del’, Supplementary Figure 5A). We
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barcoded each clone line using a lentivirus library and recovered 11,250 genotyped cells, which
clustered into 13 different groups (Figure 5A, B and Methods). We focused on two clusters
that accumulated over time with treatment: cluster 3, enriched for  co-expression of
megakaryocyte markers and haemoglobin genes, and cluster 1, with high ITGAZB expression,
and additionally, high levels of the polyploidization genes indicative of late-stage megakaryocyte
maturation (Figure 5B-C and Supplementary Figure 5D).

We then analysed the impact of the four mutations relative to ‘G/G” cells in gene expression
(differential expression, DI) and in chromatin accessibility (differential accessibility, DA)
(Methods and Table S8). The heterozygous genotype showed four DE genes and three DA
peaks connected to the AKT/mTOR signalling pathway (Figure 5D). In contrast, the ‘A/A’
genotype showed multiple DE genes belonging to the AKT/mTOR pathway, as well as EZH2
(a “polyploidization gatekeeper™™), its target XRCC2 and an upregulation of FYBT7 implicated in
the production of platelets of abnormal volume™. Crucially, only the ‘A/A’ genotype exhibited
significant downregulation of the CUX7 gene concomitant with a decrease in chromatin
accessibility in the peak that harbours the variant (Figure 5D-E and Table S8). Morcover,
CUXT target genes were overrepresented in the DE genes (p value = 0.033, ‘A/A’ vs ‘G/G’
genotypes, ORA analysis, Methods) (Figure 5D). DA analysis also identified significant changes
in peaks linked with the genes EZHZ and XRCC2 (Figure 5D and Table S8). The two deletions
produced complementary results; the long deletion was associated with differential expression of
multiple genes involved in megakaryocyte fate (e.g. TBXAST, TBXAZR) and platelet volume
(e.g. ITGAZB, TUBBT), while the short deletion was associated with fewer DE genes with
concordant direction of effect on gene expression (Figure 5D). In both deletions, CUX7 target
genes were significantly overrepresented in DE genes despite no change in CUX7 expression (p
value = 0.002 and p value = 8.95 x10°, Dell6 vs G/G and Del80 vs G/G genotypes
respectively, ORA analysis) (Figure 5D). Finally, to connect the cellular phenotypes observed at
the single-cell level with GWAS-associated traits for the variant, we used flow cytometry
parameters FSC-A and SSC-A as proxies. We observed that “80-bp del” and ‘A/A’ cells were
significantly bigger CD41 single positive cells after 72 hours of treatment when compared to
‘G/G’ cells (p value < 0.0001, Wilkoxon test) (Figure 5F). Altogether these results recapitulate the
increase in mean platelet volume observed in the GWAS.

Discussion

A previous comprehensive association analysis of blood indices by our group discovered 16,900
conditionally independent trait-variant associations’. Here we leveraged the GWAS parameters
to select a group of 94 RNVs for functional follow-up. Our work builds upon and extends
previous efforts to 1) prioritize causal variants within extended linkage disequilibrium (ILD)
blocks, including a detailed examination of the experimental and GWAS evidence to exclude
cases where other rare variants in LD drive the associations, ii) identify regulated genes that are
strong candidates for the changes in blood traits, iif) utilize cellular models relevant to the GWAS
associations and 1iv) assess the propagation of the impact of non-coding variants affecting
transcription factors to their target genesw. Importantly, 16 out of the 22 variants for which we
propose a mechanism had no prior 2z vive evidence of regulatory effect on the indicated genes.

Our in-depth validation has focused on rs139141690 and CUX/. This variant was recently
assayed in an independent CRISPRi study, which showed a CRISPRi-dependent CUXT
downregulation for the region but failed to reveal a significant effect of the SNP in K-562 cells®.
Despite its higher throughput, this approach does not provide a genotyped readout (sgRNA
detection is taken as a proxy for successful editing) and is therefore susceptible to false negatives.
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We propose that our approach, using genotyped clones and subsequent differentiation in a
megakaryocyte model is better tailored to reveal the effect of the variant. Our multiome
experiment provided key insights into the mechanism of 5139141690, demonstrating a causal
relattonship between CUXT expression and chromatin accessibility in the region that harbours
the variant. Moreover, it revealed the broad dysregulation of AKT/mTOR related genes
consistent with the role of CUX7 in the PI3K/AKT pathway in human cancers”. Finally, we
hypothesise a plausible link between the downregulation of EZHZ in cluster 3 and the
accumulation of double-positive CD235"CD41" cells as EZFH2 inhibition has been shown to
block polyploidization and proliferation in megakaryocyte differentiation™. Collectively, these
results suggest the presence of a genetic program regulating platelet volume controlled by the
hub of TF motifs in which the variant resides.

This study advances the functional characterization of high impact rare non-coding GWAS
variants that are often overlooked due to the inherent complexities in their analysis and the
intricacies of the regulatory mechanisms. Overcoming these challenges is crucial, as our findings
highlight the unique mechanistic insights into target specificity and regulatory modulation that
such variants can provide.
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Tables and Figures
Table 1. Variants with curated mechanistic hypotheses. Lor /e abbreviations see Table S1.

Figure 1. Variant prioritisation strategy and MPRA controls and inter-replica variability.
A) Prioritisation strategy and B) VEP most severe consequence for the variants in the different
tiers. C) Values of the MAF, PPFM, Absolute effect size, CADD, Gnocchi and NCBoost scores
across the different tiers. MAE = wmunimum allele frequency, PPEM = Posterior Probability in the Line
Mapping. The comparisons correspond to the values of the Gndex variants’ versus the rest of the tiers, Wilcoxon
lest.

Figure 2. MPRA screening. A) Design of the MPRA for enhancer activity and B) results after
the meta-analysis. C) Sharing of MPRA positive variants between the cell types assayed. D)
Pearson correlation coefficients for MPRA positive variants across K-562, CHRE-288-11 and
HL-60 cells. THP-1 had too few shared MPRA positives to perform meaningful comparisons.
E) Lasso regression on sequence features predictive of Log2lFC.

Figure 3. RNA-seq study results and curation of screened variants derived from RNA
Seq, MPRA and GenlE readouts. A) Variants with significant DE/ATU genes. B)
Breakdown of the overlap between the results of the MPRA and the RNA-seq. C) Varants
without any regulation detected in the RNA-seq had significantly lower carriers in our datasets.
D).’Lasso regression on sequence features predictive of belonging to double-positive variants as
opposed to MPRA-/RNA+. E) Breakdown of the mechanistic and manual curation labels by
the results of the MPRA and the RNA-seq study.

Figure 4. rs139141690-A downregulates the hematopoietic TF CUXI. A) Locus plot for the
variant 15139141690 that downregulates CUX7 in whole blood. The variant sits in an intron of
CUXT and has PCHi-C and accessible chromatin evidence in the megakaryocytic and erythroid
lineages. B) GenlE results for the &rock-zn (highlighted in green) and UDPs (rest of profiles, two
representative ones highlighted in blue and orange) of rs139141690 in K-562 cells. The
highlighted UDPs and the &nock-in allele significantly decreased the abundance of the mRNA in
the edited cells. C) Time course differentiation of the edited K-562 cells to CD41% cells. D)
Variation in the abundance of the different populations in the differentiation. The percentages
represent the mean for the observation of the three clones per genotype. On the bottom the -
logl0 p values for the genotype comparisons of cell type abundance in the ilr model (see

Methods). See Table S for all abbreviations.

Figure 5. Single Cell multimodal analysis confirms the effects on gene expression and
chromatin accessibility elicited by rs139141690-A that reveal a regulatory region with key
effects on platelet size. A) Experimental design including the additional clone lines. B) U-MAP
combining both sc-RNAseq and sc-ATACseq modality. To the right, changes in their relative
abundance across time points and genotypes C) Expression of five sets of marker genes
characterising key stages in the differentiation. The dashed lines indicate the separation of the
clusters into 4 groups that we hypothesise correspond to the flow cytometry subgroups. D) DE
and DA analysis in the clusters 3 and 1 for the comparisons of each genotype against wild type
cells. Genes belonging to more than one of the highlichted groups are mixed coloured (e.g.
TBXAST). E). Locus plot detailing the DE and DA changes in clusters number 1 and 3 for the
CUXT gene. The cpm values express cither the gene expression counts for CUXT7 gene or the
ATAC-seq counts for the different peaks displayed. F) FSC-A and SSC-A analysis across the
genotypes in K-562 CD41*CD235" cells at 72 hours. Cyt. = cytometry, Mye. = myeloid, Megak. =
megakaryocyte, b = Haemoglobin, polyploid = pobploidization, cpm =counts per million. See Table S8 for
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STAR methods
Experimental model and study participants
MPRA data

The MPRA raw fastq files will be uploaded to the Buropean Nucleotide Archive (ENA) upon
publication.

ENCODE K-562 expression data

We used processed RNA-seq count matrices from basal K-562 cells.”

INTERVAL and BluePrint data

The INTERVAL study data used in this paper are available to bona fide researchers from ceu-
dataaccess@medschl.cam.ac.uk.  The data access policy for the data is available at
http://www.donorhealth-btru.nihr.ac.uk/project/bioresource. The RNA-seq data in the
INTERVAL cohort have been deposited at the European Genome-phenome Archive (EGA)
under the accession number EGAD00001008015 and are available at®. The UK Biobank genetic
data used in this study were approved under application 82779 and are available to qualified
researchers via the UK Biobank data access process. For the BluePrint data we used data from’.
All data are freely available but managed by the BLUEPRINT Data Access Committee.

10X multiome data

The 10X multiome raw fastq files will be uploaded to the European Nucleotide Archive (ENA)
upon publication.

Cell culture

K-562 (ATCC® CCL-243™, sex female), and HL60 (ATCC®CCL-240, sex female)
cells were cultured as indicated by the distributor, 1x RPMI 1640 media with L-
glutamine (Gibco Medium.: 52400025), supplemented with 10% FBS (Gibco, A31604-
02) and 1x penicillin/streptomycin (Gibco, 15070-063). THP-1 (ATCC® TIB-202, sex
male) were culture as indicated by the distributor, 1x RPMI 1640 media with L-
glutamine, 2-mercaptoethanol (Sigma, M3148) was added to a final concentration of
0.05mM and supplemented with 10% FBS (Gibco, A31604-02) and 1x
penicillin/streptomycin. CHRF-288-11 (sex male, a kind gift from Prof. Wilen H
Ouwehand’s lab) were cultured 1x RPMI 1640 media with L-glutamine, supplemented
with 20% Horse Serum (Gibco 16050-122) and 1x penicillin/streptomycin. All the cell

types were maintained up to a confluence of 1x10° cells/ml and then resceded at 1x10°
cells/ml.m, except for THP-1 that were reseeded at 3x10° and cultured in a T75 flask in an
upright position. Phoenix Ampho (ATCC, CRL-3213, sex female) cells were cultured in DMEM
10% fbs prior to viral infections.

Induced Pluripotent Stem Cell (1PSC) line Kolf2_c1 line (Wellcome Sanger Institute’s Human

Induced Pluripotent Stem Cell Initiative, sex male) was cultured in TeSR-E8 complete culture
media (Stem Cell Technologies #05991) (37°C, 5% CO2) on 10ng/ml Synthemax-II (Corning
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CLS3535) coated plates. Kolf2 ¢l were thawed into TeSR-E8 + 10% CloneR (StemCell
Technologies # 05888) and split at 70-80% confluence into TeSR-E8 + 10uM Y27632 Rock
Inhibitor (StemCell Technologies #72302).

To differentiate K-562 cells to CD41+ cells, we seeded 100.000 cells/ml in IMDM + 10% FBS
and cultured in presence of 5nM phorbol 12-myristate 13-acetate (PMA, Selleckchem) or DMSO
for 16, 24, 48 and 72 hours.

Method details
Variant Annotation

The 178,890 variants in the 95% credible sets of the 29 blood indices from Vuckovic et al* were
prioritised attending to MAF (1% threshold), Variant-Effect-Predictor (VEP)* Most Severe
Consequence (MSC), Posterior Probability (PP) and effect size (scaled to amount of standard
deviation units per trait’). The prioritised subset of index variants were below or equal 1% MAF,
MSC non-coding, with at least one blood index association above or equal 0.9 PP and with an
effect size for that association between the absolute minimum and first quartile (beta < Q1) or
the third quartile and the absolute maximum (beta > Q3), Figure 1A and Table S2. We
condensed the VEP MSC option® into coding and non-coding consequences. The coding group
comprised the following labels: LOF (Loss Of Function, [splice_acceptor_variant,
splice_donor_variant, stop_gained and frameshift variant]), MISS (missense_variant), UTR5
(5_prime_UTR_variant), UTR3 (3_prime UTR_variant) and SYN (synonymous_variant). The
non-coding group comprised the following labels: INTRON (intron_variant), INTERGENIC
(intergenic_variant), UPSTREAM (upstream_gene_variant), DOWNSTREAM
(downstream_gene_variant), REGULATORY (regulatory_region_variant), TFBS
(I'F_binding_site_variant), SPLICE (splice_region_varant), OTHER (start_lost, stop_lost,
inframe_deletion, inframe_insertion, stop_retained_variant and mature_miRNA_varant), NMD
(NMD_transcript_variant) and NCT (non_coding transcript_variant). PCHi-C data was
downloaded from Javierre et al* (PCHiC_peak_matrix_cutoff5.tsv). ATAC-seq data’ was for
blood cell types was downloaded from™ (29August2017_TJCsamples_allReads_500bp.bed and
29 August2017_E]Csamples_allReads_500bp.counts.txt) and intersected with our variants.

MPRA Library design and cloning

We designed a library of 20,340 200-mer oligonucleotides that were synthesised by Twist
Bioscience. The library covered 113 SNPs, each one assayed in five partially overlapping tiles,
every tile having an alternative and reference allele version. FEach reference or alternative allele
tile was tagged by 15 unique 11 bp barcodes. The library included 7 enhancer and allelic skew
positive controls and 8 enhancer positive controls from*’ and four sequences that showed no
CRISPRa activity in Fulco et al® as negative controls. The structure of the 200-mers included
two 15 bp amplification arms at each end to amplify subpools/bins of the library based in GC
content, an 11 bp barcode, the restriction enzyme sites for BamHI and Kpnl and 148 bp of
candidate regulatory sequence to be assayed. The amplification PCRs (Primers 1-6 Table S7)
were done with Kapa Hili HS Ready Mix (Kapa Biosystems), using 20 ng input template and 50
ul final volume with the exception of the High GC bin in which 20 ul of KAPA2G GC Buffer
(ROCHE) was added to a final volume of 100 ul. Next we performed a digestion with Exol
(NEB) to eliminate free primers and then purified the amplified fragments using Agencourt
AMPure beads (Beckman Coulter).

We based the backbone vector for this assay on the hSTARR-seq ORI vector” (Addgene
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#99296) following the recommendations from Muerdter et al>. We added GFP to the vector by
excising sgGEFP from the pSTARR-seq_human vector (Addgene Plasmid #71509%) with an o.n.
digestion with Af/I and Agl (New England Biolabs, NEB) at 37°C and ligating it with
hSTARR-seq_ORI vector digested in the same manner (T4 DNA ligase 16/ o.n. 3 to 1
molar ratio). Following an idea proposed in the Supplementary Figure 1 1) of Muerdter
et al”®, we excised the polyA site from the hSTARR-seq_ ORI GFP vector to be cloned back at a
later stage of our library construction to separate the barcode and the candidate regulatory
sequence. The excision was carried out by Nael digestion of the vector (60 10 Units of enzyme,
NEB) and posterior blunt end ligation to obtain the hSTARR-seq_ ORI GEFP polyA MINUS
vector. The excised SV40 poly (A) signal fragment was amplified (Primers 9-10 Table S7) and
cloned in the pGEM T easy system (Promega).

The amplified subpools of the library and the hSTARR-seq_ ORI GI'P polyA MINUS vector
were ligated using Gibson cloning (NEB). Briefly, the vector was linearized by PCR (Primers 7-8
Table S7) and subsequently we carried out a digestion with Dpzl and BamHI (NEB) to degrade
the circular template. The ligation in Gibson mix was done with 100 ng of the linearized vector
and a molar insert:vector ratio of 2:1 for cach of the bins. The ligations were purified with
Agencourt AMPure beads and eluted in 20 ul of Elution buffer diluted 1/10 in nuclease-free
water and 10 ul of each were then used to electroporate electrocompetent E. coli bacteria (NEB)
at 2000 V 25 ulF 200 Ohm. We performed serial dilutions for each of the bins to ascertain the
yield in colony-forming units (CFU) and aimed to keep a ratio of at least 100 CFU per oligo
element. The individual colonies in each bin were lysed and the plasmids corresponding to each
bin were purified using the Qiagen maxi prep kit (cat. 12162). This intermediate step in the
library construction (PolyA Minus library) was sequenced to check the barcode - candidate
regulatory sequence association and the design dropout rate. Briefly, we amplified 25 ngr of each
of the poly (A) minus library bins (Medium GC, High GC and Low GC content) with oligos 11
and 19 (Table S7) for 15 cycles with annealing and extension done at 72°C in a combined step
for 1. 'The libraries were then quantified with KAPA Illumina SYBR Universal Lib Q. Kit.
(Roche), adjusted at 4nM and pooled together for a final volume of 40 ul. The samples were
subsequently sequenced in a MiSeq (MiSeq Reagent Kit v2 300 cycle, Illumina) with the first 15
cycles of read 1 set to dark cycling and using custom primers 22 and 23 (Table S7). The PhiX
amount was set to 10%.

Finally the polyA site was introduced back into the vector separating the barcode from the
regulatory sequence using the BamHI and Kpaul restriction sites /hat were introduced in the oligo
design. We digested the PolyA Minus library with Kpzl (NEB, 37°C o.n.), followed by gel
purification and digestion with BamII in the presence of Shrimp Phosphatase (NEB) for 2h at
37°C. In parallel, we digested overnight 20 ugr of the pGEMT-polyA vector to release the SV40
polyA signal (230 bp) with Kpnl and BamHI and gel purified it. We cleaned both fragments with
Agencourt AMPure beads and quantified them using Qubit 1X dsDNA BR Assay Kit
(ThermoFisher). For each bin we used 100 ngr of the input vector and a 2:1 insert:vector ratio in
the T4 ligase 16°C overnight reactions. We purified the ligations with Agencourt AMPure beads
and performed electroporations in the same conditions as the ones used for the PolyA Minus
library. After evaluating the efficiency of the electroporation we seeded 0.5 million cfu per 245
mm Square BioAssayDish with Agar+Ampicillin, keeping at least 100 CFU per oligo element. A
step-by-step protocol of the procedure is available in protocols.io™.

MPRA Nucleofection and parallel mRNA and gDNA isolation

Cells were seeded at 1.5 to 2x10° /ml into 2-4 T175 flasks (Corning, CL.8431085-50EA) in 60 ml
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of fresh medium (9 to 12 million cells each flask), and cultured for 48 hours changing half of
their media 24 hours after seeding. The electroporation was performed using the Neon
Transfection System (I'hermokisher). In K-562 and HL-60 we electroporated 5 million cells with
25 ugr of a pool of the three plasmid bins per reaction (12.5 ugr of the Medium GC bin and 6.25
ugr of cach of the other two bins). In the case of CHRF-288-11 and THP-1 cells we
electroporated 5 million cells with a four plasmid mix (10 ugr of the Medium GC bin, 5 ugr of
each of the other two bins and 5 ugr of the pMAX-GIP vector). The nucleofection was
performed following the manufacturer instructions using buffer R. The conditions for K-562,
THP-1 and CHRE-288-11 cells were 1.45 v, 10 ms pulse width and 3 pulses, for HL60 1.350 v,
35 ms pulse width and 1 pulse.The efficiency of the nucleofection was evaluated at 24h and 48h
post nucleofection in the pmaxGLEP plate with a Countess 11 FL. Automated Cell Counter. We
routinely observed 80-90% efficiency for K-562 cells. In the case of CHRF-288-11 and THP-1
due to the low transfection efficiency cells were co-transfected with pMAX-GFP and we used
FACS to purify GFP positive cells as a way to enrich cells that have incorporated plasmids in the
nucleofection step.

48 h post-electroporation cells were spun down (300G 5') and resuspended in DNase 1
(NEB) at 370 for 15’ using 10 U of enzyme per ug of plasmid transfected in a final
volume of 2 ml of DPBS to eliminate possible carryover plasmid in the exterior of the
cells. Cells were then pelleted (300 G for 5°), washed twice with DPBS and lysed in 600
ul of Buffer RLT Plus (Qiagen) with added B-mercaptoethanol and homogenised using
QlAshredder columns (Qiagen 79654). DNA and total RNA were extracted using
AllPrep DNA/RNA Kit (Qiagen) according to the manufacturer’s instructions. In the
RNA preparation, a step of on-column DNase I treatment was performed for all samples
(Rnase_Free Dnase Set, Qiagen). We isolated mRNA from total RNA using the Oligotex
mRNA Kit (Qiagen) followed by a final treatment with Turbo Dnase (Invitrogen). DNA

and mRNA quantifications were done using Qubit RNA Quantification, high sensitivity
assay (1'hermoFisher) . A detailed protocol can be found in*"*.

MPRA Library preparation and sequencing

We retrotranscribed 1-1,5 ug of mRNA per replica following the protocol for SuperScript IV
(ThermoFisher) using a reporter specific RT primer (Primer 24, Table S7) at 2uM carrying the
10-mer UMIs. Then we split retrotranscription samples for PCR amplification so as the RT
template would represent 10% of the final volume of the PCR (50 ul). We performed the first
round of amplification in which we introduced the sample index primer, 15-18 (Primers 15-18
Table S7) for the cDNA samples of four replicas. As a reverse primer, we used P7 (Primer 21

Table S7). The PCR was carried out using Kapa HiFi HS Ready Mix, and 65F annealing
temperature for a total of 3 cycles. The amplification from each replica was then pooled,
purified using Agencourt AMPure XP beads and then we assessed the minimum number
of cycles for a second round of PCR by q-PCR with P5 and P7 with StepOnePlus™
Real-Time PCR System (ThermOFiShel‘, Primers 20 and 21 Table S7). We determined

between 11 and 13 cycles to be a good average range to keep the second round PCR from
plateauing. Following Klein et al** we split each of the replicas into 8 reactions and
performed the second round PCR for the cycles determined with the P5 and P7 primers
and Kapa HiFi HS Ready Mix at 64: annealing temperature. We then pooled the

reactions from each replica, purified using Agencourt AMPure XP beads and eluted in 60
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ul of Elution Buffer.

The gDNA fraction from the All Prep Qiagen kit was used as a source for the episomal plasmid
nucleofected in every replica. For every replica, we used 12 ugr of gDNA that was split into 24
PCR reactions following Klein et al**. In this first reaction we introduced the sample index and

the UMIs using the primers 11-14 (Table S7) as forward primers and primer 24 (Table S7) as
reverse primer. The PCR was run for 3 cycles at 65 annealing temperature and the
reactions corresponding to each replica were pooled, purified using Agencourt AMPure
XPbeads and eluted in 320 ul of Elution Buffer. As in the cDNA library preparation we
assessed by qPCR the number of cycles to keep the second round PCR from plateauing.
We determined 10-11 cycles. We split each of the replicas into 29 reactions and
performed the second round PCR with the P5 and P7 primers and Kapa HiFi HS Ready
Mix at 72°C annealing temperature. Finally, we pooled the reactions for each replica,
purified 200 ul of the mix using Agencourt AMPure XP system (1.2X vol/vol of beads)
and eluted in 30 ul of Elution Buffer.

All the libraries were quantified using KAPA Illumina SYBR Universal Lib Q. Kit, adjusted to
4nM and pooled afterwards in 40 ul final volume. We used a HiSeq 2500 RR for sequencing each
batch with the Hiseq Rapid PE Cluster Kit V2 (Illumina) and the HiSeq Rapid SBS Kit v2 200
cycles (Illumina FC-402-4021). The recipe included the first 15 cycles of read 1 set to dark
cycling and used custom primers 22, 25 and 26 from Table S7. The amount of PhiX was set to
10%. A detailed protocol can be found in*.

MPRA alignments and count matrix

The first six nucleotides of the 12 reads corresponding to the BamIl site (see protocols i0) were
removed. UMTs were added to each read TD in r1 and r2 files using UMI tools™ and merged
using flash> prior to aligning against the reference set of barcodes using bwa®. Only primary
alignments were taken forward. We discarded alignments not matching perfectly the
corresponding barcodes with bamtools® and deduplicated the UMIs per barcode using UMI
tools. Finally we counted all the unique UMIs across all the tagging barcodes of a regulatory
sequence. The pipeline is available in GitHub®".

INTERVAL WGS analysis workflow

The INTERVAL whole genome sequencing data (WGS) were generated at the Wellcome Sanger
Institute. The manuscript describing WGS in full is in preparation. Briefly, WGS was performed
on 12,354 samples using the Mumina HiSeq X10 platform as paired-end 151 bp reads. Raw read
processing was carried out via customised pipelines at WSI. Reads were aligned with BWA MEM
to the GRCh38 human reference genome with decoys (also known as HS38DH). Variants were
called for each sample using GATK HaplotypeCaller version 4.0.0. Then all samples were
merged, and the combined samples genotyped using GATK4.0.10.1. GATK Variant Quality
Score Recalibration (VQSR) was used to identify probable false positive calls by assigning quality
score log-odds (VQSLOD) separately for SNPs and INDELs using GATK VariantRecalibrator
(v4.0.10.1). Sample quality control removed 491 samples in total, including 77 samples with
coverage below 12x; 134 samples with > 3% non-reference discordance (NRD), 118 samples
with > 3% IPreeMix (VerifyBamlID?2) score, 221 samples failing identity checks, 30 samples
swapped, 40 samples failing sex checks, 39 duplicates and 9 samples with possible
contamination. Genotypes with allele read balance > 0.1 for homozygous reference variants, <
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0.9 for homozygous alternative variants or not between 0.2-0.8 for heterozygous variants were
removed. Genotypes were also removed if the proportion of informative reads was < 0.9 or read
depth > 100. We performed additional variant quality control and filtered out variants that failed
to meet the following requirements: call rate per site > 95%, mean genotype quality (GQ) value
> 20, Hardy-Weinberg equilibrium (ITWE) p-value > 1 x 10° only for autosomes. All
monomorphic variants with alternative allele count (AAC) = 0 were further removed, although
we kept all monomorphic variants with reference allele count (RAC) = 0. For chrX and chrY we
applied an additional step to correct allele counts and frequencies due to female and male
samples accounting for diploidy/haploidy in the PAR and non-PAR regions. Finally, the WGS
data set contains 116,382,870 variants (100,694,832 SNVs and 15,688,038 indels) including
06,037,420 (5.7%) multi-allelic sites across 11,863 participants.

INTERVAL RNA-Seq analysis workflow

The INTERVAL RNA-sequencing data were generated and processed as previously described™.
We mapped the RNA-sequencing data to the GRCh38 reference and quantified read counts as
described previously’ with the difference of using GENCODF v31 across 4,731 samples
passing quality control. Globin genes, tRNA genes, and pseudogenes were removed. 19,841
genes were selected with > 0.5 CPM in at least 1% of the samples. Gene expression counts were
converted to FPKM, trimmed mean of M-values (I'MM) normalised and log, transformed. We
used the probabilistic estimation of expression residuals (PEER) method”, implemented in the R
package peer v.1.0%, to correct for latent batch effects and other unknown confounders. 50
PEER factors were calculated with age, sex, BMI, and 19 blood cell traits included as covariates.

For transcript quantification we used Salmon v1.1.0°. The Salmon index was built against
GRCh38 cDNA. R packages tximport v1.14.2, AnnotationHub v2.18.0, BioclileCache v1.10.2,
BiocGenerics v0.32.0 were applied to obtain various count matrices from these quantifications at
the transcript or gene level. We subsetted to 4,731 samples passing RNA sequencing QC and
corrected sample swaps. We focused on the transcripts of the 19,841 genes that passed gene QC.
From these transcripts, we sclected transcripts with TPM = 0.1 in at least 20% samples.
Subsequently, TPM values were TMM normalised and log2 transformed.

GTEx and INTERVAL sQTLs

For the 20 genes with ATU in our survey of INTERVAL whole blood RNA-seq (ATL7,
NPRL3, VMP1, ELP5, KDSR, RASAL3, SL.CT1AT, MESD2B, GATA2, EEFSEC, TAFS,
IKZF1, PILRB, ANK/, GII1B, EVI5, TYMP, ARSA, ODF3B and PILLRB) we queried the
GTEx” web portal (release v8) and found sQTLs in whole blood for PILLRB, SI.C717.47, ARSA,
ANKT1, MESD2B, TAFS, GEFITB and RASALS3. The same query in the INTERVAL web®
yielded 16 genes: MFSDZ2B, PILRB, TYMP, ANK7, ARSA, EV15, NPRL3, 1"MP1, GFI1B,
SLCT1AT, IKZET, EEFSEC, ODE3B, TAFS GATAZ and RASALS. We obtained all the proxy
variants at R’=0.7 in the European subpopulations (EUR) in a window size of 0.5 Mb for all the
sQTLs in these genes using 1LDLinkR®. None of the index variants leading to ATU were proxies
of the GTEx sQTLs. Three of the index varants with ATU genes (rs149489081-4ANK7,
rs543594419-TYMP, ODI3B and ARSA and rs187715179-GLEI7B) were sQTLs in the same
genes in INTERVAL. The code for this analysis is available in GitFTub™*.

Predicting TT motifs intersecting rs139141690 A > G
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For the 94 variants screened in MPRA we selected a sequence stretch of 38 bp centred on the
SNP and extracted the reference allele sequence. In the case of the 80-bp deletion we used the
complete 80 bp nucleotide stretch. We then substituted the reference allele with the alternative
allele in the position of the SNP to obtain the alternative allele version. We predicted TIF motifs
in both the reference and alternative allele versions of the 38 bp nucleotide stretch with gimme
motifs® with the reference databases HOMER® and JASPAR®, the -c option set to 0.85 and the
maximum number of TE motif per nucleotide stretch set to 20. To assess TI occupancy we
intersected the motifs with CHIP-seq data from whole blood present in the CHIP atlas
database”. In the case of variant rs139141690 the occupancy of the PU.1 motif in the reference
genome is supported by CHIP-seq data of PU.1 in 121 experiments in whole blood (ids:
ERX626856, ERX626869, SRX093183, SRX093189, SRX100429, SRX100443, SRX100570,

SRX10144602, SRX10144603, SRX1023790, SRX1023791, SRX1023792, SRX1023793,
SRX103224, SRX1048461, SRX1089832, SRX1089833, SRX1127545, SRX12684447,
SRX12684451, SRX1431740, SRX14809351, SRX14869352, SRX14809358, SRX14869359,
SRX 18154277, SRX18154278, SRX18154279, SRX18154280, SRX190299, SRX19553539,
SRX20230007, SRX20230008, SRX20230009, SRX2268282, SRX2268283, SRX22(68284,
SRX2268285, SRX2268286, SRX2268287, SRX24542848, SRX24542849, SRX2770854,
SRX2770855, SRX2770856, SRX2770857, SRX3824041, SRX3824042, SRX4001818,
SRX4001819, SRX4001820, SRX4001821, SRX4001958, SRX4001959, SRX4001960,
SRX4001961, SRX4484984, SRX475793, SRX475794, SRX5141098, SRX5141099,
SRX5574342, SRX5574343, SRX5574345, SRX5574346, SRX5574348, SRX5574350,
SRX5574352, SRX5574354, SRX5574355, SRX5574356, SRX5574357, SRX5574359,
SRX5574361, SRX5574362, SRX5574363, SRX5574364, SRX5574365, SRX5574367,
SRX5574369, SRX5574370, SRX5574373, SRX5574375, OSRX5574376, SRX5574379,
SRX5574381, SRX5574385, SRX5574387, SRX5574392, SRX5574446, SRX5574447,
SRX5574448, SRX5574449, SRX5574450, SRX5574451, SRX5574452, SRX5574453,
SRX5574457, SRX5574458, OSRX5574459, SRX5574460, OSRX5574461, SRX5574402,
SRX5574463, SRX5574491, SRX5574492, SRX5574493, GSRX5574494, SRX5574498,
SRX5574499, SRX5574500, SRX5574505, SRX5574506, SRX5574507, SRX627428,

SRX627430, SRX698188, SRX698189, SRX794057, SRX9029196, SRX9029197, SRX9029208,
SRX9029209). The FOXM1 motif is supported by whole blood CHIP-seq data in 1 experiment
(id: SRX190187) . The scripts are available on GitHub™.

GenlE CRISPR/Cas9 targeting and amplicon design

We followed the protocol described in Cooper et al. ‘The Wellcome Sanger Institute Genome
Editing browser (WGE)™, was used to choose CRISPR gRNAs with NGG PAM site within
20bp of the SNP locus and with less than 1-3 mismatch off-target hits predicted. To introduce
the SNP of interest a 100bp repair template oligonucleotide was designed. As a positive control
for cutting we used the sgRNA against ENSG00000178927/ CYBC1/ FEROS (numbers 39-43
from Table S7).

Primers were designed to amplify <250bp across the SNP of interest, 40-60% GC, Tm 56-65°C
(NEB Tm Calculator) and with adaptor sequence tails for MiSeq Sequencing (See Table S7).
Reverse transcriptase primers were designed downstream of the amplicon in the mRNA
sequence (See Table S7).

GenlE Nucleofection

Guide RNAs (IDT) were annealed to tractRNA (IDT) in duplex buffer (IDT 1072570) at 95°C
for 2 min and cooled slowly to RT. Nucleofection on Kolf2_c1 was carried out as previously
described” and recovered onto 4ng/ul Synthemax-11 (Corning CLS3535) coated 6 well plates. K-
562 and HL-60 were nucleofected following Lonza’s protocols. THP1 were nucleofected
following Lonza’s primary monocyte protocol. Cells were cultured for 1-2 weeks until confluent
and snap frozen as 2-3 x10° cell pellets.
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GenlB Library preparation and sequencing

Genomic DNA was extracted using DNA MagAttract HMW extraction kit (Qiagen), following
standard instructions and eluted in 100ul H20. Total RNA was extracted using Direct-zol RNA
Miniprep Plus kit (Zymo), TURBO DNAse treated and run on a 2100 RNA Nano Chip in a
Bioanalyser (Agilent). Gene specific RT primers were annealed using 2ug RNA, 2uM RT primer
and 10mM dN'TPs, heated to 65°C for 5 min and placed on ice. cDNA synthesis was setup using
half the annealed RNA, Superscript IV and RNasin (Promega) on ice and heated 50°C 10min,
55°C 10min, 60°C 10 min, 80°C 10min, 4°C hold.

Genomic DNA and whole RNA were amplified with PowerUP SYBR green master mix
(Applied Biosystems A25742) or Q5 Hot Start polymerase (NEB), 10uM adaptor sequence
primers with 4 PCR replicates for gDNA and 8 PCR replicates for cDNA. PCR conditions for
PowerUP SYBR reactions were as previously described. PCR conditions for Q5 Amplicons:
98°C 30s, (98°C 10s, 57°C 20s, 72°C 20s)x30, 72°C 2min. Amplicons were barcoded using
WTSI PCR barcoding primers, pooled, gel extracted using Minelute kit (Qiagen 28604) and
quantified by qPCR (KAPA library quantification). The prepared library was loaded onto a
MiSeq System (Illumina) at 4nM with 20% PhiX using MiSeq Reagent Kit v2 300 cycles.

Generation of clone lines: CRISPR/Cas9 sgRINA designs and protocol

To introduce the 15139141690 (G>A) mutation into K-562 cells, a synthetic ctRNA was selected
using CRISPOR™ (Table S7, number 46). An 81bp ssODN carrying the mutation G>A was
chemically made by IDT with 4 phosphorothioate bonds (Table S7, number 47). To delete the
80 bp region encompassing the rs139141690 two ctRNAs were selected one upstream and one
downstream of the desired SNP (Table S7, 48-49).

The ctRNA and trans-activating crRNA (tractRNA) were synthesised by IDT. An
electroporation enhancer was also bought by IDT and resuspended at 100 uM in water. SgRINAs
are made by combining 160 uM of crRNA and tractRNA (1:1 v/v) to get a final concentration
of 80 uM and incubated at 37C for 30 min.

To assemble the Cas9/sgRNA RNPs, the sgRNAs and electroporation enhancer (0.8:1 volume
ratio) were first mixed and then 40uM S.p. Cas9 Nuclease (IDT) at 1:1 v/v was added. This
mixture was incubated at 37C for 15-30 min prior use.

Electroporation was performed using SF Cell Line 4D-Nucleofector™ X Kit (Lonza)
according to manufacturer’s instructions. The kit / program for K-562 used is SF kit /

FF-120.

For the knock-in experiment, 50 pmol of 7he RINP was electroporated into K-562 cells together
with 4uM ssODN as HDR template. 15 min after electroporation cells are incubated with a
combination of 0.5uM Trichostatin A (I'SA, Selleckem) and 1uM M3814 (Selleckem) to enhance
the HDR as previously reported in Shy et al™. 24 hours post treatment drugs are removed and
fresh medium is added™. For the deletion of 80 bp, 50 pmol of each of the two RNPs was
electroporated.

After 24h cells were single-cell sorted in 96 wells plates using MoFllo Astrios (Beckman Coulter).
Propidium lodide (Sigma Aldrich) was added prior to analysis as a cell viability dye.

Generation of clone lines: isolation of clones and genotyping by amplicon sequencing

K-562 clones were let to grow from single cells for 10-14 days, then genomic DNA was
extracted with the QTAamp 96 DNA QTAcube HT Kit and quantified using the QuantiFluor®
dsDNA System (Promega). 2-5 ng of DNA from every colony were used as template for
targeted amplicon sequencing (Table S7, 44-45). Samples were then indexed with Nextera XT
DNA Library Preparation Kit (Illumina), pooled and sequenced on NovaSeq 6000 (Illumina, 500
cycles, PL). Data were analysed by using CRISPResso2 v2.2.12” and clones with the desired
genotypes were expanded to generate the modified cell lines.
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In the same nucleofection we isolated: i) three clone lines homozygous reference for the SNP
r$139141690 chr7:101499930 (‘G/(’), ii) one heterozygous clone line chr7:101499930 (‘A/G)
and iii) three homozygous alternative clone lines chr7:101499930 (‘A/A’). In addition to this we
isolated: 1) one homozygous clone line carrying the deleton of 16 bp (chr7:101499917
CTCACTAGAGCAAGTCC > C) and i) three homozygous clone lines carrying the 80 bp
deletion (chr7:10149989%4
GTTAGTGACTTCAAAAGCTGTCCTCACTAGAGCAAGTCCAACTCTTCCTCTA
GTTCTGATGACTTCACGGCAGCCAACTG > G). All the coordinates are in GRCh37.

Generation of clone lines: lentiviral barcoding

Plasmids carrying single unique barcodes were isolated from the Larry Barcode Library V17
(Addgene, #140025) characterised by whole plasmid sequencing (Eurofins) to identify the
different barcodes and used to transfect Phoenix Ampho (ATCC, CRL-3213) cells, together
with the pMD2.G” (Addgene, #12259) and psPAX2"" (Addgene, #12260) lentiviral packaging
vectors. 48h after the transfection, the viral supernatant was collected, filtered, and used to infect
the K-562 clones with the different genotypes, in presence of 6ug/ml polybrene.

GLEP+ cells were sorted after 4 days and expanded to obtain 11 different cell lines (K-562-Larry),
each one carrying a specific barcode, detectable both at gDNA and mRINA level.

Flow cytometry tracking of CID41 expressing K-562 cells

K-562 cells were seeded at 100.000 cells/ml in IMDM + 10% FBS and cultured in presence of
5nM phorbol 12-myristate 13-acetate (PMA, Selleckchem) or DMSO for 16, 24, 48 and 72
hours. For each time point cells were analysed by flow cytometry and collected for RNA
extraction.

For flow cytometry tracking, cells were washed in PBS and incubated with anti-CID235a BUV395
(Clone GA-R2, BD Biosciences) and anti-CD41 AF700 (clone HIPS, Biolegend) antibodies for
20 min at 4°C in PBS + 1% FCS + 2mM EDTA. Cells were then washed and acquired with the
CytoFLEX (Beckman Coulter) flow cytometer. DAPI (Sigma Aldrich) was added prior to
analysis as a cell viability dye. Data was analysed using the FlowJo software.

10X Multiome nuclei isolation

For each time point, cells were analysed by flow cytometry and 50.000 cells per genotype were
pooled for nuclei isolation. Single nuclei were isolated using the Nuclei Prep Buffer (Zymo
Research), counted and processed following the Chromium Single Cell Multiome ATAC + Gene
Expression workflow™.

10X Multiome aligning and QC

10x genomics multiome data were processed using Cell Ranger ARC (2.0.2) using default
parameters and the provided reference genome GRCh38-2020-A-2.0.0. Initial filtering steps were
applied to the raw gene expression and peak (ATAC) matrices of each sample using functions
from the Seurat and Signac (v5) packages™™. Cells with <500 gene features were first removed
and the package scDBfinder® was used to mark doublets in both RNA and ATAC data. Further,
cells with < 1000 peak features, >10% mitochondral reads, and multiplets marked by cellranger
were removed. At this stage, doublets were additionally identified in the ATAC data using
Amulet”. Prior to merging samples, ATAC matrices were rebuilt to reflect unique fragment
counts in 5kb genomic windows instead of peaks, using a custom pipeline®, and RNA matrices
were adjusted to remove ambient contamination using CellBender®. The merged Seurat object
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was then filtered to retain cells that could be unequivocally assigned to a lentiviral Larry barcode.
To deconvolute samples based on the lentiviral barcodes, reads that did not map to the reference
genome were extracted from the original cellranger genome + transcriptome alignments
(gex_possorted_bam.bam) using samtools view -f 4, converted to fastq, and then re-mapped to a
new reference containing the 11 possible GFP+barcodes transgenes. Multimappers were then
removed (samtools view -q 5) to keep only the reads uniquely mapping to each GIP barcode.
For each read, molecular barcode (UMI), cell barcode and Larry barcode were recorded. Only
cell/Larry barcodes combinations supported by a minimum of 3 UMI were retained. Cell
barcodes were assigned to a genotype only if one cell/Larry barcodes combination was found.
The RNA and ATAC reductions from the merged and filtered Seurat object were then integrated
using the Weighted Nearest Neighbour (WNN) analysis following the steps and recommended
parameters in guidelinesgs. For clustering analysis on the integrated WNN graph, the Leiden
algorithm with resolution 2 was used. At this stage, a low-quality cluster with lower read counts
and higher mitochondrial content was removed, as well as doublets, which were previously
marked as such by both Amulet and scDBfinder. After these final filters, we called ATAC peaks
on the remaining cells with MACS2 (2.2.9.1) using the Signac callPeaks function and generated a
new feature ATAC matrix with these peak coordinates, which replaced the window matrix.
WNN analysis was then repeated as above, but with 0.5 resolution for the final clusters. The final
object was composed of 13 clusters, 11.250 cells, ~29.000 genes and ~357.000 peaks. Processing
and analysis codes can be found in Github™.

Quantification and statistical analysis

Comparisons between sets of variants

In the case of the comparison with pathogenic variants, the list was obtained from Table 1
Vuckovic et al” and restricted to GWAS traits associated with the pathogenic variants. Tndex
variants had higher effect sizes to reported heterozygous blood ClinVar/HGMD pathogenic
variants” (median absolute effect size values 0.169 and 0.13 respectively, p value = 0.009,
Wilcoxon tesi)

For the comparisons shown in Figure 1C we used pairwise Wilcoxon tests to assess statistically
significant differences between categories, applying multiple testing correction (Benjamini—
Hochberg) across all the comparisons. The scripts are in GitHub®. Median values of MAF: Tier
1 0.285, Tier 2 0.013, Tier 3 0.018, Tier 4 0.016 and index variants 0.007.

Median values of PPEM: ‘Tier 1 0.01, Tier 2 0.422, 'Tier 3 0.012, Tier 4 0.986 and index variants
0.999. Median values of absolute effect size: Tier 1 0.019, Tier 2 0.092, Tier 3 0.062, Tier 4 0.075
and index variants 0.152. Median values of CADD raw: Tier 1 -0.009, Tier 2 1.189, Tier 3 -0.049,
Tier 4 0.034 and index variants 0.119. Median values of Gnocchi: Tier 1 0.653, Tier 2 1.834, Tier
3 0.868, Tier 4 1.203 and index varants 1.235. Median values of NCBoost: Tier 1 0.029, Tier 2
0.076, 'Tier 3 0.031, Tier 4 0.045 and index variants 0.077.

Conditional analysis of common variants on the index variants

To condition for known common variants associated with the studied traits, we run GWAS of
29 blood cell counts in ~409 UK Biobank individuals of white British ancestry, following the
procedure described in', the scripts are available in GitHub®. Accordingly, we employed the
same phenotype exclusions, adjustments and normalisation approach, and ran GWAS using
REGENIE” and TOPMed imputed genotypes™, including recruitment center and the first ten
PCs of the kinship matrix as covariates. We then obtained independently associated variants for
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each trait by using the GCTA (v1.94.1) cojo’ joint model function (with parameters: collinearity
= 0.9, p-value < le-4) and I.D structure estimates from the genotypes of 30,000 unrelated
individuals of white British ancestry from UK Biobank samples. Finally, for each of the 123 rare
variants, we gathered all independent GWAS common varants obtained by cojo, having MAF >
1% and joint association p-value < 1x107, and falling within a +/- 500kb window from a rare
variant. We then performed conditional analysis by fitting a linear regression model of the blood
trait and the genotype of the associated rare variant, including the genotypes of the independent
GWAS hits as covariates. The model was fitted in R (using the stats:Im function) and genotypes
of both common and rare variants were obtained from the WGS of UK Biobank 200k release
(GraphTyper population level WGS variants, PLINK format). Out of 123 rare non-coding
variants, genotypes were available for 80 of them; of these 80, 76 (95%), were significantly (p-
value < 0.05) associated with at least one blood trait even after jointly conditioning for common
variants.

MPRA analysis

We used MPRAmodel® to estimate enhancer activity (measured as log2 Fold Change, log2FC)
and allelic specific expression (measured as log2 Allelic Skew, log2 AS) per each tile, index variant
and cell type. First we generated the necessary input files for MPRAmodel per cell type: a count
matrix with the oligos and the barcodes in the rows and the columns (countsData), a file
detailing the replicate breakdown between ¢cDNA and gDNA libraries (condData) and an
attributes files detailing each of the oligos attributes (attributesData). In the majority of the cases
the tiles carried only one SNP so the ‘Allele’ field of the attrbutes table was set to ref or alt. For
the 8 cases of diplotypes (two SNPs present in the same tie) we carried out all the possible
comparisons and set the ‘Allele’ field of the attributes table to ref ref vs alt ref, ref ref vs ref alt
and ref ref vs alt alt according to the tiles analysed. Next we adapted the MPRAmodel Rscript”™
from the MPRASuite to run the dataOut function on our inputs. The results were collected per
cell type and tile and are shown in Table S3. We then performed a meta-analysis for each variant
across all the tiles assayed to come up with a single value of activity per variant and cell type
following'*”. The results of the meta-analysis are shown in Table S4. To establish the log2FC
threshold that defines enhancer activity we employed a set of varants previously described to
have MPRA activity in K-562 cells” as well as four regions deprived of CRISPRa activity in the
same cell line”(Supplementary Figure 1A). We considered active variants those with a log2FC
higher than 0.25 at 1% global false-discovery rate (gI'DR) (68 variants) and we additionally
required that the log2AS was significant at 10% gFDR to label varants as MPRA positive (43
variants). Positive and negative Log2FC values indicate enhancer and repressor activity,
respectively. Positive log2AS values correspond to a skew of the enhancer activity towards the
alternative allele and negative values towards the reference allele. The analysis scripts are in
GitHub™,

MPRA lasso regression on annotated features

Enformer values™ were obtained from the vcf file of the 94 variants screened in the MPRA and
cell matched features were selected for K-562 cells (455 features) and HL-60 cells (6 features).
GWAS parameters, orthogonal scores and cell-matched Enformer features were combined in a
unique matrix per variant to perform lasso regression on the continuous variable log2FC. We
performed the lasso regression for ten iterations and selected predictive variables that had
coefficients greater than O in at least three. Positive coefficients indicate that higher values of the
sequence feature are predictive of higher values of Log2I'C. Conversely, negative coefficients
indicate that higher values of the sequence feature are predictive of lower values of Log2FC.
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In the case of the lasso regression for predictive variables of a qualitative variable, first we
transformed the labels into integers (MPRA negative RNA+ = 0 and Double positive = 1) and
then we ran the lasso regression with all the features and selected those that had coefficients
greater than 0 in at least one iteration. Positive coefficients indicated that higher values of the
sequence feature are predictive of the double-positive class. Conversely, negative coefficients
indicate that higher values of the sequence feature are predictive of belonging to the MPRA-
/RNA+ class. The expression values for the K-562 genes in the basal state were obtained from
ENCODE®. The analysis scripts are in GitHub”.

INTERVAL Differential Expression linear model

We modelled FPKM normalised raw values for each gene with a linear model using as covanates
the PEER factors (top 35 from 50), top 10 genotype principal components, sex, age, BMI, RIN;,
sequencing batch, RNA concentration, read depth, and season (based on month of blood draw).
Depending on the blood phenotypes associated with the variants at PP >= 0.1 we included a set
of cell-count specific covariates (sce Table S1) to account for cell count effects on total blood
composition.

For each variant, we tested a median of 12 genes by combining all expressed genes within the
GWAS association blocks (median size of 0.5 Mb) and those connected with index variants
through PCIi-C interactions™. The multiple testing correction was done using the Benjamini—
Hochberg method at three levels for each variant: 1) all transcripts of all the genes in which the
variant had a direct VEP Most Severe Consequence (LOF, MISS, SYN, UTR5, UTR3,
INTRON, SPLICE, UPSTREAM), i) all transcripts of all the genes within the GWAS
association block plus the genes connected to the variant via PCHi-C (Block and PCHiC levels)
and i) Only for variants in Table 1, all the transcripts of all the genes (genome wide). The code
used in this analysis is in GitHub™.

INTERVAL Alternative Transcript Usage (A'1U) additive logratio model

We calculated the median transcript ratio (median transcript TPM/median Expression of the
gene to which the transcript belongs) for homozygous reference and heterozygous carriers
separately. We discarded all transcripts with median transcript ratios below 0.1 in both genotypes
to filter out transcripts whose contribution to the total expression of a given gene remains low
irrespective of the genotype.

Given the compositional nature of the data we decided to transform proportions using the
additive logratio model. Brefly, for all of the transcripts belonging to the same gene we first
estimated the transcript ratio of gene expression (expression of the transcript/sum of the
expression of all the transcripts belonging to the same gene) and scaled it to a reference
transcript. The most abundant transcript was chosen as the reference transcript for each gene to
avoid having 0 values at the denominator. This proportion was then log transformed. To avoid
having transcripts with 0 TPM value in the logratio model, for any given transcript we imputed
the value of the samples with 0 TPM to 0.65 of the minimum value greater than 0 for that
transcript as this value is suggested to limit the distortion of the covariance matrix’. The
resulting log scaled ratio per transcript was used in a linear regression model with the same
constitutive and cell count specific covariates (see Table S1) per variant as the ones used in the
DE model.

The multiple testing correction of the ATU model was done using the Benjamini—-Hochberg
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method at two levels for each variant: 1) all transcripts of all the genes in which the variant had a
direct VEP Most Severe Consequence (LOF, MISS, SYN, UTR5, UTR3, INTRON, SPLICE,
UPSTREAM), 1i) all transcripts of all the genes within the GWAS association block plus the
genes connected to the variant via PCHi-C (Block and PCHi-C levels). The code used in this
analysis is in GitITub™. To represent the transcripts we used ggtranscript’™.

BluePrint Differential Expression linear model

We used the normalised gene quantification - values from BLUEPRINT data °>. We then applied
a linear model to the gene quantification values for each gene.

The multiple testing correction was done using the Benjamini-Hochberg method at two levels
for each variant: 1) all transcripts of all the genes in which the variant had a direct VEP Most
Severe Consequence (LOF, MISS, SYN, UTR5, UTR3, INTRON, SPLICE, UPSTREAM) and
i) all transcripts of all the genes within the GWAS association block plus the genes connected to
the variant via PCHi-C (Block and PCHiC levels).

The code used in this analysis is in GitHub”.

BluePrint Alternative Transcript Usage (ATU) additive logratio model

We calculated the median transcript ratio (median transcript FPKM/median Expression of the
gene to which the transcript belongs) for homozygous reference and heterozygous carriers per
cell type separately. For every cell type of BLUEPRINT we discarded all transcripts with median
transcript ratios below 0.1 in both genotypes.

The same compositional model and multiple testing correction used for whole blood was applied
in the BLUEPRIN'T per cell type. The code used in this analysis is in GitHub”.

INTERVAL GSEA and ORA

For the GSEA analysis we started from the 22 variants in Table 1 and performed a genome wide
DE analysis between carriers and non-carriers per variant in the INTERVAL whole blood
dataset. Next, we used the Fold Change between W1 and HE'T genotypes to order the genes in a
decreasing manner and input the ordered gene list into the GSEA function of ClusterProfiler'®.
The minimum and maximum gene set size and the p value cutoff were set to 10, 500 and 0.05,
respectively. The multiple testing was accounted for by Benjamini & Hochberg. The code used
in this analysis is in GitHub™.

For the ORA analysis we started by defining a list of gene sets for blood and immunity from the
Molecular Signatures Database (MSigDB)™" we first selected all the gene sets that contained in
their description at least one of the following blood and immunity related terms: PLATELET],
ERYTHRO, MEGAKARYOCYTE, MONOCYTE, NEUITROPHIL, EOSINOPHIL,
BASOPHIT, TLYMPHOCYTE, T HELPER, TH 17, THI17, THI1, TH2, BLOOD,
BLOOD_COAGULATION, IMMUNE, HUMORAL_IMMUNE_RESPONSE,
IMMUNOGLOBULIN and HEMATOPOIETIC. We also included two blood and immunity
unrelated terms (HEPATOCYTE and NEURON). In addition, we included in the ORA analysis
TE target gene sets for the TFs GATAZ, GFI1, CUX7 and RUNXT in the Dorothea
collection'” (A,B ,C and D confidence levels). The minimum and maximum gene set size
allowed was 10 and 500, respectively, but for the Dorothea gene sets which were exempted from
this filter (CUX7 n=464 genes, FOXPT n=3278, GALA2 n=5370, Gl n=8 and RUNXT7
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n=2,551). The list of selected pathways (#=1,423 gene sets) can be found in GitHub'”. Next, we
tested the genome wide DE analysis of the 22 variants in Table 1 used for the GSEA for
overrepresentation of DE genes applying Active Pathways'™ with the significant p value cutoff
set to 0.01. As a background list of gene sets we used all the gene sets derived from the Human
Phenotype ontology (c5.hpo.v2023.2Is.entrez.gmt, #=5,547 gene sets”’""). We obtained 64
pathways significantly overrepresented in DE genes of which 3 were from the unrelated terms.
The remaining 65 pathways corresponded to 11 variants. We excluded from further analysis the
gene sets from Dorothea (2 variants). A variant was labelled as ‘ORA positive” if it had at least 1
ORA pathway at p value = 0.05. To test if the 9 variants were enriched in the TF annotation
(Table 1) we used a Chi square test (6/7 variants with TF annotation vs 3/15 non TT labelled
variants were ‘ORA positive’, p value = 0.0141). The code is located in Gitllub'”,

Comparison of number of carriers between variants with DE/ATU regulation and variants

without effect in the RNA-seq studies

Median number of heterozygous carriers for variants with DE and/or ATU = 43 and median
number of heterozygous carriers for varants without RNA-seq effect = 36, p value = 0.045,
Wilcoxon test.

GenlE analysis
Read pairs per amplicon were merged using flash™ with the following parameters: read length (-r)

150, fragment sd (-s) 20, minimum overlap (-m) 10. Fragment size (-f) and maximum mismatch
density (-x) depended on the targeted amplification: CUX1 (223, 0.115) and
ENSG00000178927/CYBC1/EROS (249, 0.12). The reads were aligned using bwa mem'” with
the following parameters: -O 24,48 -E 1 -A 4 -B 16 -1 70 -k 19 -w 200 -d 600 -L 20 -U 40. The
aligned reads were filtered to discard reads with more than 10 clipped bases using samclip'®. The
GenlE results were obtained using the rgenie package™" allowing for 10 bases for the
required_match_right and required_match_left parameters. The scripts are available in GitHub”'.

Flow cytometry data 11L.R compositional analysis

We collected the percentages of CD41°CD235, CD41 CD235%, CD417CD235", CD417CD235
cells and the value of CD41 MFl and GeoMLIl at the four time points of the PMA
differentiations per genotype and clone line (#=3 clone lines per genotype). The ‘Basal’ time
point was assigned to cells mock treated for 16 hours. We used the package Compositions'™>"”
to transform the cell abundance percentages into isometric log ratios (ilr)'"’. Next we model the
ILR values using as covariates time (reduced model) and time and Genotype (full model) and
tested the significance between adding the different terms to the models by ANOVA. The code
for the analysis is located in GitHub'".

Cell size using flow cytometry FSC-A and SSC-A

We collected the values of FSC-A and SSC-A per cell, genotype and time point and restricted
our analysis to CD41"CD235 cells at 72 hours as they were the most mature cell type in our
model (n=4,892, 8,914 and 7,553 for the wild type clone lines, »=3,676, 4,307 and 6,229 for the
homozygous alternative clone lines and #=9,822, 6,476 and 9,677 for the 80 bp deletion clone
lines). The median values for FSC-A are: 585312 (G/G genotype), 592815 (A/A genotype) and
647251 (Del80 genotype). The median values for SSC-A are: 391532 (G/G genotype), 407041
(A/A genotype) and 468646 (Del80 genotype). We used the Wilcoxon-rank test to analyse
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differences between the cells. The code is located in GitHub™

10X Multiome DE and DA analysis

The code and the detailed list of dependencies can be found in GitlTub'?. Briefly, for the DE
analysis we aggregated the counts of all the cells belonging to the same combination of clone
line, time point and Seurat cluster using the function Seurat2PB (Seurat v5.017). Then, per
Seurat cluster, we used DblSqu114 to calculate a linear model accounting for time (reduced
model) or for time and genotype (complete model) and applied a Likelihood ratio test (LR'1) to
test cases in which the complete model was a significantly better fit to the data following analysis
guidelines for time and condition differential analysis'"™>"".

For the ORA analysis we started by defining a list of gene sets relevant for K-562 differentiation
from the Molecular Signatures Database (MSigDB)"": we selected all the gene sets that contained
in their description at least one of the following terms: PLATELET, ERYTHROCYTE, CUX1,
MEGAKARYOCYTE, GATA1l, GATA2, TEI2, RUNXI, RUNX2, MITOSIS,
ANEUPLOIDY, CYTOKINESIS, MYELOID, AML, LIPID, SPHINGOSINE, FOXMI,
SPI1, PU1, PI3K, AKT, FOXP1 and GFI1. We also included two blood and immunity unrelated
terms (HEPATOCYTE and NEURON). In addition, we included in the ORA analysis TF target
gene sets for the TFs GATA2, GFIT, CUXT and RUNXT in the Dorothea collection'® (AB ,C
and D confidence levels). The minimum and maximum gene set size allowed was 10 and 500,
respectively, but for the Dorothea gene sets which were exempted from this filter (CUXT7 n=464
target genes, FOXPT n=3278, GATA2 n=5370, GFIT n=8 and RUNX7 n=2551). The list of
selected pathways (#=803 gene sets) can be found in the GitHub repository. We obtained 59
pathways significantly overrepresented in DE genes of which 2 were from the unrelated terms.

For the DA analysis we first extracted all the linked peaks to the set of DE genes and a set of
marker genes (in total 1,897 genes) using the LinkPeaks function of Signac (V1.12.0)80. To
characterise the linked peaks (n1=14,211 peaks) we overlapped them with annotated gene T'SS
(+/- 2.5 kB of the TSS, n= 4,072 overlaps with a known T'SS, ENSEMBL, release 111'"") and
with the annotated regulatory features of the basal state K-562 cells (ENSEMBL, release 111118).
Next, we produced a reduced seurat object with the ATAC counts of the selected peaks using
the function CreateChromatinAssay (Signac v1.12.0) and then obtained a new Seurat object with
the assay option set to ‘RNA’ as the function Seurat2PB (Seurat v5.01) would not work if it was
set to “ATAC’. From this point onwards the pipeline proceeded as explained in the DE analysis.
To clusterize the results of both analyses we used Pheatmap' and to display them in volcano
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plots and in detailed locus plots we used ggplot2™.

Additional resources

MPRA library synthesis and cloning protocol:

https:/ /www.protocols.io/edit/mpra-synthesis-library-design-and-cloning-soranzo-cs3awgie

Step by step protocol used to design and clone the MPRA oligos into the reporter vector.

MPRA nucleofection: https://www.protocols.io/edit/mpra-synthesis-cellular-work-and-
nucleofection-sor-cs3jwekn

Step by step protocol used to nucleofect the library into the cancer cell lines.
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MPRA library

rna-isolation-and-library-prepa-cs3mwgko

Step by step protocol used to extract and prepare the different MPRA libraries for sequencing,.

Haemvar architecture/ documentation: https://haemvar.org

We created the HaemVar Database of genetic variants and blood-related traits, containing the
complete association and fine-mapping result data set of all the variants associations to 29 blood
cell phenotypes assessed by Vuckovic et al’, and including further annotation data for the
prioritised subset of 178,890 variants as described above; see section “Vadant Annotation’. All
information contained in the HaemVar Database is presented through an open-access website
that generates comprehensive gene and variant-specific data reports with downloadable tables
and figures. The software of the web-based application is written in PHP for server-side handling
and optimisation of database access and data output, and uses the open-source Vega v5
(http:/ /vega.github.io) JavaScript library for custom generation of data-driven and (partially)
interactive visualisations.

Declaration of generative Al and Al-assisted technologies in the writing process

During the preparation of this work the author(s) used ChatGPT in order to improve language
and readability. After using this tool/service, the author(s) reviewed and edited the content as
needed and take(s) full responsibility for the content of the publication.
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Table 1. Variants with curated mechanistic hypothesis. For the abbreviations of blood phenotypes see Table S3. DE = Differential Expression, ATU = Alternative Transcript Usage.
MK = megakaryocytic; ERY = erythroid; LYMPH = lymphocyte; GM = granulocyte monocyte. Trait pleiotropy: No = Lineage restricted, Yes = Multi lineage

Genomic coordinates are in the GRCh37/hg19 assembly

Described as eQTL for the candidate gene in the BluePrint Consortium

Described as eQTL for the candidate gene in the eQTLGen Consortium
Described as sQTL for the candidate gene in the INTERVAL RNA-seq work
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Transcription factor or protein known to regulate gene expression
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