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Abstract 
 
Understanding the functional consequences of genetic variants associated with human traits and 
diseases —particularly those in non-coding regions—remains a significant challenge. Here we 
use analyses based on natural genetic variation and genetic engineering approaches to dissect the 
function of  94 non-coding variants associated with  haematological traits. We describe 22 
genetic variants with impact on haematological variation through gene expression. Further,  
through in-depth functional analysis, we illustrate how a rare, non-coding variant near the CUX1 
transcription factor impacts on megakaryopoiesis through modulation of the CUX1 
transcriptional cascade. With this work we advance the understanding of  the translational value 
of association studies  for variants implicated in blood and immunity. 
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Introduction 
 
Genome-wide association studies (GWAS) of haematological traits have yielded thousands of 
high quality variant to phenotype associations that underpin key aspects of blood homeostasis 
and immune response1,2. Population-scale quantitative trait loci (QTL) initiatives in immune cells3 
and whole blood4 have been instrumental in explaining how GWAS supported genes modulate 
blood traits in health and disease2,5. It has been estimated that  up to 90% of the GWAS 
associations for haematological phenotypes lie in the non-coding genome2, slowing down efforts 
to identify target genes and to elucidate the mechanisms by which these variants exert their 
effects. Identifying transcriptional regulators underpinning such genetic effects is critical to 
enable progress into pharmaceutical intervention, as recently illustrated by the approval of 
CRISPR/Cas9 ex-vivo therapies (Casgevy6) to treat sickle cell disease and Beta-Thalassemia6. In 
this first case study example, the accumulation of non-coding variants that control foetal 
haemoglobin levels through the expression of the transcriptional repressor BCL11A7,8 informed  
the identification of an erythroid-specific enhancer that could be targeted to thus successfully 
ameliorate the symptoms of both diseases8. 
 
Variant-to-function studies are hindered by several factors including difficulties in scaling-up 
functional validation techniques, in prioritising variants within extended blocks of variants in 
linkage disequilibrium (LD) and in linking unequivocally genetic variants to their candidate 
effector genes. Functional validation of haematological variants has relied on expression QTL 
(eQTL)4,5 studies and high-throughput experimental screenings such as Massively Parallel 
Reporter Assays (MPRA)9–11, CRISPR-Cas912 and CRISPR interference (CRISPRi)13 assays. 
Despite the valuable insights provided by these approaches, important challenges remain. The 
functional impact of hundreds of rare non-coding GWAS variants (RNVs) increasingly 
uncovered by the use of denser imputation panels and whole genome sequencing (WGS)14 has 
not been fully addressed, as eQTL studies use under-powered methods for rare variation and few 
MPRA10 and CRISPRi13 screenings have included them in their design. In addition, little has been 
done to reconcile the differences between in vivo results from expression studies and in vitro 
results from screenings taking into account that the latter often do not assay variants in their 
native chromatin context (episomal MPRAs10) and tend to produce experimental artifacts 
(MPRA15 and CRIPSRi16). Furthermore, phased WGS data that allows to break down the effect 
of different haplotypes is often lacking in eQTL studies. Finally, very few screenings have 
assessed variants in cell contexts that are relevant for the blood phenotypes mapped to the 
variants17. 
 
Here we have addressed the function of 94 rare non-coding variants (RNVs) associated with 
haematological traits using a MPRA for enhancer activity and an analysis for differential gene 
expression (DE) and alternative transcript usage (ATU) in a large collection of samples with 
whole blood RNA-seq and phased WGS data. After extensive manual curation we identify 22 
variants with direct regulatory evidence to genes robustly associated with blood traits. Finally, we 
have carried out an in-depth functional validation of one of these variants elucidating a molecular 
mechanism that recapitulates the GWAS association.  
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Results 
 
Variant prioritisation and MPRA in hematopoietic cell lineages 
 
To identify a set of variants to perform our study we started from 12,181 loci associated with 29 
different blood phenotypes from a GWAS study conducted by our group2. These haematological 
traits (Table S1) encompass a broad range of clinical indices used to evaluate the state of the 
erythrocyte, megakaryocyte, monocyte and lymphoid lineages in blood. From the 178,890 
variants contained in 95% fine mapping credible sets, we applied sequential filters. We first 
restricted the dataset to rare variants (minor allele frequency [MAF] ≤ 1%) leaving 5,813 variants. 
Next we retained only rare non-coding variants, defined using the most severe consequence in 
Variant Effect Predictor (VEP), leaving 5,248 variants. We then selected variants with at least 
one trait association fine-mapped with a posterior probability (PPFM) ≥ 0.9 narrowing the set to 
196 variants and finally we prioritised variants with high effect sizes (beta < first or > third 
quartile of standardised trait distribution) (Figure 1A-C and Methods). Following these steps 
we identified a set of 123 rare non-coding variants (RNVs) meeting all criteria, henceforth named 
‘index variants’ (Figure 1A and Table S2). These index variants exhibited significantly higher 
effect sizes compared to reported heterozygous blood ClinVar/HGMD pathogenic variants2 (p 
value = 0.009, Wilcoxon test). Notably, 95% of index variants remained significantly associated 
with at least one blood trait after conditioning on common variants, in contrast to other selection 
approaches that prioritize subsets whose signal is ultimately driven by LD with nearby common 
variants18. Furthermore, index variants had significantly higher orthogonal prioritisation scores; 
including combined annotation dependent depletion ([CADD]19), NCBoost20, and genomic non-
coding constraint of haploinsufficient variation ([Gnocchi]21) compared to other tiers of RNVs 
(Figure 1C).  
 
Out of the 123 index variants, 94 were incorporated into an MPRA library design for enhancer 
activity15,22 alongside positive and negative controls selected from previous studies9,23. To account 
for sequence context effects24, each variant allele was synthesised within five partially overlapping 
tiles tagged with unique barcodes and cloned into an MPRA reporter vector (Methods). The 
resulting MPRA library (19,050 oligos) was transfected in seven different replicates into four 
cancer cell lines used as models of blood cell types: K-562 (chronic myeloid leukaemia, a model 
erythroid cell), CHRF-288-11 (acute megakaryoblastic leukaemia, a model for megakaryocytes), 
HL-60 (acute myeloid leukaemia, a model neutrophil line) and THP-1 (acute monocytic 
leukaemia, a model for monocytes) (Figure 2A). To quantify enhancer activity and allele specific 
expression we employed MPRAmodel25 estimating log2 Fold Change(log2FC) and log2 Allelic 
Skew, (log2AS) per each tile, variant and cell type (Table S3). We performed a meta-analysis 
across tiles to obtain a single value of log2FC and log2AS per variant and cell type as described 
in10(Table S4). The directionality of the log2AS positive controls showed high concordance with 
a prior MPRA study in K-562 cells9 (R^2 = 0.821, Supplementary Figure 1B). We identified 43 
variants that significantly impacted the activity of enhancer sequences and labelled them as 
MPRA positive (Figure 2A-B, Supplementary Figure 1C, Table S4 and S6). The high 
proportion of MPRA positive variants (45.7%) is consistent  with previous findings that high 
PPFM variants are enriched in MPRA activity10. Among the four cell lines tested, THP-1 cells 
displayed the lowest number of MPRA positive variants (4, Supplementary Figure 1C) possibly 
due to them being refractory to nucleofection26 as they also had the lowest % of GFP positive 
cells after transfection (median values 55.5 and 6.8 for CHRF-288-11 and THP1 cells, 
respectively, p value = 0.01, Wilcoxon test).  
 
Among the 43 MPRA positives, 25 were specific to a single cell type while 14 and 4 were shared 
across two and three cell types respectively (Figure 2C, Supplementary Figure 1C). We 
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observed high correlation (Pearson correlation > 0.9) in log2FC and log2AS for the MPRA 
positive variants shared by the K-562 and HL-60 cells (Figure 2D, Supplementary Figure 1D) 
possibly reflecting their common myeloid leukaemia origin27,28. To investigate the factors 
influencing log2FC activity we incorporated cell-matched sequence features obtained from 
Enformer29,24 into our set GWAS parameters and scores and applied lasso regression24. Among 
the GWAS parameters, MAF emerged as predictive factor in K-562, CHRF-288-11 and HL-60 
cells (Figure 2E), suggesting that rare variants in the lower spectrum of allele frequency in our 
study (MAF < 0.01) tended to have higher values of Log2FC (Supplementary Figure 1E). In 
addition, higher CADD scores were predictive of higher Log2FC variants in the HL-60 cell line 
(Figure 2E). CHIP-seq data further revealed that motifs occupied by classical activating 
transcription factors (STAT1, STAT2) predicted higher LogFC values whereas known repressors 
and insulators (CTCF, RFX1) predicted negative LogFC values (Figure 2E). Altogether, these 
findings indicated that the MPRA captured the capacity of multiple index variants to impact the 
activity of enhancer sequences, reinforcing their potential functional relevance. 
 
Population survey of RNA expression in healthy volunteers supports variant effects 
mediated by transcription 
 
To assess regulatory impact of the index variants in their native chromatin context we used two 
bulk RNA-seq datasets (Table S5). First, the INTERVAL RNA-seq study30, that includes gene 
and transcript quantification from whole blood samples of 2,971 samples with matched WGS 
data (15x). Overall, we identified heterozygous carriers for 88 of the 94 MPRA screened variants 
with a median of 40 carriers per variant. Since the traditional eQTL approach4 is under-powered 
for variants with low allele counts, we employed a more calibrated differential gene expression 
analysis (DE), accounting for an array of experimental covariates to test for differences in 
expression levels between wildtype and heterozygous carriers of rare alleles at index variants 
(Methods). Additionally, we explored regulatory mechanisms beyond gene expression control by 
testing for alternative transcript usage (ATU), defined as changes in the relative abundance of 
transcripts expressed for each gene31. To model ATU we used an additive log ratio approach that 
accounts for its compositional nature incorporating all the experimental covariates used in the 
DE analysis (Methods).  
 
We detected evidence for DE or ATU at 42 of the 88 variants, involving 60 genes (Figure 3A, 
and Table S5). Among these, 23 variants (involving 29 genes) exhibited only DE effects, 11 
(involving 11 genes) had only ATU effects and 8 displayed both types of regulation (affecting 14 
genes with DE, 4 genes with ATU and 5 genes with simultaneous DE and ATU, Table S5). 
Eight of the 20 ATU genes harbour splicing QTLs (sQTL) signals in whole blood in the GTEx 
Project32, but implicating common variants (MAF > 1%) that were conditionally independent 
from the ones assayed here (r2>0.7, EUR population, window size 0.5 Mb, Methods). In the 
INTERVAL QTL repository30 we identified three of the ATU variants as sQTLs for the 
correspondent genes and for an additional 11 ATU genes we found independent common 
sQTLs. This suggests complex modes of regulation at the transcript level for ATU genes 
(Supplementary Figure 2A). One of the ATUs involved the synonymous cryptic splicing 
variant rs150813342 in GFI1B, a transcriptional repressor and key regulator of platelet and red 
blood cell development (Supplementary Figure 2B). Editing the same variant using 
CRISPR/Cas9 in K-562 cells induced similar transcript usage changes33. 
 
To investigate the contribution of individual cell types, we also analysed DE and ATU in three 
separate immune cell isolates (monocytes, neutrophils and naive CD4+ T-cells) from the 
BLUEPRINT human variation panel3. Of the 88 variants examined in INTERVAL, 25 had at 
least one heterozygous carrier in the 196 BLUEPRINT donors (median number of 5 carriers per 
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variant). We detected evidence for DE or ATU at 10 of the 25 variants, involving 11 genes 
(Figure 3A and Table S5). Among these, 4 variants (affecting 4 genes) exhibited only DE 
effects, 3 (involving 3 genes) had exclusively ATU effects and 3 showed both types of regulation 
(affecting one gene with DE, one gene with ATU and two genes with simultaneous DE and 
ATU). Among the ten BLUEPRINT DE/ATU variants, five were shared with the INTERVAL 
whole blood analysis with 3 implicating the same genes. In 4 of the remaining 5 cases, regulatory 
effects were detected exclusively in one BLUEPRINT cell type (Figure 3A and Table S5). 
Overall, the RNA-seq supported multiple MPRA positives with some differences that we explore 
further. 
 
Regulatory landscapes defined by in vivo and in vitro studies 
 
We combined evidence from the MPRA and RNAseq (DE/ATU) experiments to assess how 
the multiple lines of evidence converge towards a mechanistic interpretation of each association, 
categorising the tested variants into four groups: 18 double-positive variants (showing regulatory 
effects in both MPRA and RNAseq), 22 MPRA+/RNA- variants, 29 MPRA-/RNA+ and 19 
MPRA-/RNA- variants (Figure 3B and Table S6).  
 
In the double-positive set we investigated the concordance in the direction of the effect allele 
between MPRA Allelic Skew and DE and found moderate agreement (8/14, Methods). For the 
22 MPRA +/ RNA- variants (Figure 3B), we hypothesised that the lack of RNA evidence was 
driven by insufficient statistical power in the DE/ATU particularly for variants with lower allele 
frequencies. Indeed, variants with no RNA effect had a significantly lower number of carriers 
than DE and/or ATU variants (p value = 0.045, Wilcoxon test, Figure 3C). Next we examined 
the 29 MPRA-/RNA+ variants to determine whether they were enriched in ATU cases that 
might escape MPRA detection of enhancer activity. However, there was no significant difference 
in the distribution of ATU events between double-positive and MPRA-/RNA+ variants (p value 
=1, Chi square test,  Figure 3B and Table S6). We then applied lasso regression to identify 
sequence based features predictive of the MPRA-/RNA+ class compared to double-positive 
variants (Methods). We found three CHIP-seq motifs in K-562 cells (E2F, RLF and BCLAF1) 
associated with the MPRA-/RNA+ class (Figure 3D). Notably, E2F and RLF (Supplementary 
Figure 2C) exhibited very low expression levels in K-562 cells, suggesting that a some of the 
MPRA-/RNA+ variants might affect motifs of transcription factors that are weakly expressed in 
the cell lines used for the MPRA. 
 
To annotate candidate effector genes underpinning the genetic associations we integrated data 
from the GeneBass34 and OpenTargets35 databases and conducted a comprehensive literature 
search, (Supplementary Figure 3 and Table S6). For variants with regulatory evidence in the 
RNA-seq experiments we used all the DE/ATU genes whereas for RNA negative variants, we 
considered all genes tested in the DE/ATU analysis. In total, we annotated genes for 76 of the 
88 variants. We then leveraged phased WGS (unavailable at the time of the MPRA assay design) 
to identify cases where the association could be explained by a nearby coding variant (labelled as 
“coding proxy”) in high LD with the index variant. Fourteen variants had at least one coding 
proxy variant (r2 range 0.26-0.97); however we observed evidence for regulatory activity at 7 of 
these, suggesting that either the index or the coding proxy variant could be causal 
(Supplementary Figure 4D). Furthermore, using the haplotype resolved information from the 
same WGS data, we identified four instances where other non-coding variants (labelled as 
“regulatory proxy”) in high LD with the index variant (r2 range 0.51-0.85) were driving the 
DE/ATU expression phenotype ( Supplementary Figure 4E). Additionally, we flagged ten 
variants where the regulatory effects are likely mediated in cell types or tissues different from the 
ones used here (labelled as “other tissue”,  Supplementary Figure 4F), and seven cases where 
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the regulated genes were not a solid biological candidate for the GWAS phenotypes (labelled as 
“other gene”). Overall, our curation effort results in a high-confidence set of 22 variants for 
which we can formulate robust hypotheses linking the regulated genes to the blood phenotypes 
(‘GeneBass, Open Targets or literature support’ label, Figure 3E and Table 1). Of these, 11 
implicated DE events (Supplementary Figure 4A), 7 ATU events (Supplementary Figure 4B) 
and 4 had both types of regulation (Supplementary Figure 4C). In addition, five had been 
previously described as eQTLs for the same genes by the eQTLGen4 and/or the BLUEPRINT3 
consortia and 1 as an sQTL in the INTERVAL RNA-seq initiative30, Table 1. Notably, 12 of the 
22 ‘GeneBass, Open Targets or literature support’ variants were MPRA positive in contrast to 
none of the regulatory proxy variants demonstrating the capacity of the MPRA to capture true 
biological effects.  
 
Regulation of megakaryocytic size and maturation by cis variation in CUX1 
 
We validated the double-positive variant rs139141690, which was MPRA positive in K-562 cells 
and downregulated the gene CUX1. CUX1 encodes a transcription factor essential for  
hematopoietic stem cell (HSC)36 maintenance (Figure 4A and Table S4-5). The GWAS 
phenotypes associated with the variant (e.g. mean platelet volume) align with findings observed 
in murine knock-downs of CUX136. The variant is located in a region of accessible chromatin that 
interacts with the promoter of CUX1 in the megakaryocyte lineage (Figure 4A). Motif analysis 
predicts a PU.1 site in the reference sequence that is transformed into a FOXM1 by the 
alternative A allele, while CHIP-seq in whole blood shows the occupancy of the motifs by both 
TFs (Supplementary Figure 5A,B and Methods). Moreover, complementing our RNA-seq 
analysis with a gene set enrichment analysis (GSEA) in the INTERVAL whole blood carriers 
revealed a significant enrichment of the HSC homeostasis and Blood coagulation pathways in 
heterozygous carriers of the variant (Supplementary Figure 5C).  
 
We used Genome engineering-based Interrogation of Enhancers (GenIE)12 to assess whether 
CRISPR/Cas9 introduced unique deletion profiles (UDPs) and rs139141690 ‘A/A’ allele 
significantly affected the expression of CUX112,37. We assayed rs139141690 in three of the 
MPRA cancer cell lines (K-562, HL-60 and THP-1) and a human induced pluripotent cell line 
(hiPSC, Kolf2)12. Multiple UDPs and the rs139141690-A allele showed a significant decrease in 
the abundance of CUX1 transcripts when compared to the wildtype allele in K-562 cells, 
recapitulating the decrease in CUX1 expression observed in vivo (Figure 4B). Next, we explored 
the role of rs139141690 in the megakaryocyte lineage by differentiating K-562 cells to 
megakaryocyte-like CD41+ (ITGA2B gene, megakaryocyte surface marker) cells using PMA33. 
First, we engineered three sets of isogenic K-562 lines carrying respectively: i) the reference allele 
(‘G/G’ clones), ii) the alternative allele (‘A/A’ clones) and iii) a specific 80 bp deletion spanning 
the SNP and covering all the significantly active UDPs from the GenIE (‘80 bp del’ clones) 
(Figure 4C). We monitored the changes in the cell surface abundance of CD235 (GYPA gene, 
erythrocyte surface marker) and CD41 by flow cytometry. The A/A clones accumulated more 
intermediate CD235+CD41+ cells but had fewer terminally differentiated single positive CD41 
cells while the “80 bp del” clones reached high percentages of them faster than any other 
genotype (Figure 4D and Methods). These findings confirmed the capacity of rs139141690 to 
affect megakaryocyte differentiation in vitro. 
 
To explore  the regulatory mechanism of rs139141690 on CUX1 we performed a K-562 
differentiation experiment jointly capturing RNA expression and open chromatin landscapes at 
single cell level (Figure 5A). In this experiment we included two additional clone lines: one 
heterozygous for rs139141690  (‘A/G’) and one carrying a shorter deletion that spanned the 
PU.1 binding site impacted by the variant (‘16 bp del’, Supplementary Figure 5A). We 
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barcoded each clone line using a lentivirus library and recovered 11,250 genotyped cells, which 
clustered into 13 different groups (Figure 5A, B and Methods). We focused on two clusters 
that accumulated over time with treatment: cluster 3, enriched for  co-expression of 
megakaryocyte markers and haemoglobin genes, and cluster 1, with high ITGA2B expression, 
and additionally, high levels of the polyploidization genes indicative of late-stage megakaryocyte 
maturation (Figure 5B-C and Supplementary Figure 5D).  
 
We then analysed the impact of the four mutations relative to ‘G/G’ cells in gene expression 
(differential expression, DE) and in chromatin accessibility (differential accessibility, DA) 
(Methods and Table S8). The heterozygous genotype showed four DE genes and three DA 
peaks connected to the AKT/mTOR signalling pathway (Figure 5D). In contrast, the ‘A/A’ 
genotype showed multiple DE genes belonging to the AKT/mTOR pathway, as well as EZH2 
(a “polyploidization gatekeeper”38), its target XRCC2 and an upregulation of FYB1 implicated in 
the production of platelets of abnormal volume39. Crucially, only the ‘A/A’ genotype exhibited 
significant downregulation of the CUX1 gene concomitant with a decrease in chromatin 
accessibility in the peak that harbours the variant (Figure 5D-E and Table S8). Moreover, 
CUX1 target genes were overrepresented in the DE genes (p value = 0.033, ‘A/A’ vs ‘G/G’ 
genotypes, ORA analysis, Methods) (Figure 5D). DA analysis also identified significant changes 
in peaks linked with the genes EZH2 and XRCC2 (Figure 5D and Table S8). The two deletions 
produced complementary results; the long deletion was associated with differential expression of 
multiple genes involved in megakaryocyte fate (e.g. TBXAS1, TBXA2R) and platelet volume 
(e.g. ITGA2B, TUBB1), while the short deletion was associated with  fewer DE genes with 
concordant direction of effect on gene expression (Figure 5D). In both deletions, CUX1 target 
genes were significantly overrepresented in DE genes despite no change in CUX1 expression (p 
value = 0.002 and p value = 8.95 x10-5, Del16 vs G/G and Del80 vs G/G genotypes 
respectively, ORA analysis) (Figure 5D). Finally, to connect the cellular phenotypes observed at 
the single-cell level with GWAS-associated traits for the variant, we used flow cytometry 
parameters FSC-A and SSC-A as proxies. We observed that “80-bp del” and ‘A/A’ cells were 
significantly bigger CD41 single positive cells after 72 hours of treatment when compared to 
‘G/G’ cells (p value < 0.0001, Wilcoxon test) (Figure 5F). Altogether these results recapitulate the 
increase in mean platelet volume observed in the GWAS. 
 
 
Discussion 
 
A previous comprehensive association analysis of  blood indices by our group discovered 16,900 
conditionally independent trait-variant associations2. Here we leveraged the GWAS parameters 
to select a group of 94 RNVs for functional follow-up. Our work builds upon and extends 
previous efforts to i) prioritize causal variants within extended linkage disequilibrium (LD) 
blocks, including a detailed examination of the experimental and GWAS evidence to exclude 
cases where other rare variants in LD drive the associations, ii) identify regulated genes that are 
strong candidates for the changes in blood traits, iii) utilize cellular models relevant to the GWAS 
associations and iv) assess the propagation of the impact of non-coding variants affecting 
transcription factors to their target genes13. Importantly, 16 out of the 22 variants for which we 
propose a mechanism had no prior in vivo evidence of regulatory effect on the indicated genes. 
 
Our in-depth validation has focused on rs139141690 and CUX1. This variant was recently 
assayed in an independent CRISPRi study, which showed a CRISPRi-dependent CUX1 
downregulation for the region but failed to reveal a significant effect of the SNP in K-562 cells13. 
Despite its higher throughput, this approach does not provide a genotyped readout (sgRNA 
detection is taken as a proxy for successful editing) and is therefore susceptible to false negatives. 
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We propose that our approach, using genotyped clones and subsequent differentiation in a 
megakaryocyte model is better tailored to reveal the effect of the variant. Our multiome 
experiment provided key insights into the mechanism of rs139141690, demonstrating a causal 
relationship between CUX1 expression and chromatin accessibility in the region that harbours 
the variant. Moreover, it revealed the broad dysregulation of AKT/mTOR related genes  
consistent with the role of CUX1 in the PI3K/AKT pathway in human cancers40. Finally, we 
hypothesise a plausible link between the downregulation of EZH2 in cluster 3 and the 
accumulation of double-positive CD235+CD41+ cells as EZH2 inhibition has been shown to 
block polyploidization and proliferation in megakaryocyte differentiation38. Collectively, these 
results suggest the presence of a genetic program regulating platelet volume controlled by the 
hub of TF motifs in which the variant resides. 
 
This study advances the functional characterization of high impact rare non-coding GWAS 
variants that are often overlooked due to the inherent complexities in their analysis and the 
intricacies of the regulatory mechanisms. Overcoming these challenges is crucial, as our findings 
highlight the unique mechanistic insights into target specificity and regulatory modulation that 
such variants can provide. 
 
 
 
 
 
 
  
 
 
 
.  
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Tables and Figures 
 
Table 1. Variants with curated mechanistic hypotheses. For the abbreviations see Table S1. 
 
Figure 1. Variant prioritisation strategy and MPRA controls and inter-replica variability. 
A) Prioritisation strategy and B) VEP most severe consequence for the variants in the different 
tiers. C) Values of the MAF, PPFM, Absolute effect size, CADD, Gnocchi and NCBoost scores 
across the different tiers.  MAF = minimum allele frequency, PPFM = Posterior Probability in the Fine 
Mapping. The comparisons correspond to the values of the ‘index variants’ versus the rest of the tiers, Wilcoxon 
test. 
 
Figure 2. MPRA screening. A) Design of the MPRA for enhancer activity and B) results after 
the meta-analysis. C) Sharing of MPRA positive variants between the cell types assayed. D) 
Pearson correlation coefficients for MPRA positive variants across K-562, CHRF-288-11 and 
HL-60 cells. THP-1 had too few shared MPRA positives to perform meaningful comparisons. 
E) Lasso regression on sequence features predictive of Log2FC. 
 
Figure 3. RNA-seq study results and curation of screened variants derived from RNA 
Seq, MPRA and GenIE readouts. A) Variants with significant DE/ATU genes. B) 
Breakdown of the overlap between the results of the MPRA and the RNA-seq. C) Variants 
without any regulation detected in the RNA-seq had significantly lower carriers in our datasets. 
D).’Lasso regression on sequence features predictive of belonging to double-positive variants as 
opposed to MPRA-/RNA+. E) Breakdown of the mechanistic and manual curation labels by 
the results of the MPRA and the RNA-seq study. 
 
Figure 4. rs139141690-A downregulates the hematopoietic TF CUX1. A) Locus plot for the 
variant rs139141690 that downregulates CUX1 in whole blood. The variant sits in an intron of 
CUX1 and has PCHi-C and accessible chromatin evidence in the megakaryocytic and erythroid 
lineages. B) GenIE results for the knock-in (highlighted in green) and UDPs (rest of profiles, two 
representative ones highlighted in blue and orange) of rs139141690 in K-562 cells. The 
highlighted UDPs and the knock-in allele significantly decreased the abundance of the mRNA in 
the edited cells. C) Time course differentiation of the edited K-562 cells to CD41+ cells. D) 
Variation in the abundance of the different populations in the differentiation. The percentages 
represent the mean for the observation of the three clones per genotype. On the bottom the -
log10 p values for the genotype comparisons of cell type abundance in the ilr model (see 
Methods). See Table S1 for all abbreviations. 
 
Figure 5. Single Cell multimodal analysis confirms the effects on gene expression and 
chromatin accessibility elicited by rs139141690-A that reveal a regulatory region with key 
effects on platelet size. A) Experimental design including the additional clone lines. B) U-MAP 
combining both sc-RNAseq and sc-ATACseq modality. To the right, changes in their relative 
abundance across time points and genotypes C) Expression of five sets of marker genes 
characterising key stages in the differentiation. The dashed lines indicate the separation of the 
clusters into 4 groups that we hypothesise correspond to the flow cytometry subgroups. D) DE 
and DA analysis in the clusters 3 and 1 for the comparisons of each genotype against wild type 
cells. Genes belonging to more than one of the highlighted groups are mixed coloured (e.g. 
TBXAS1). E). Locus plot detailing the DE and DA changes in clusters number 1 and 3 for the 
CUX1 gene. The cpm values express either the gene expression counts for CUX1 gene or the 
ATAC-seq counts for the different peaks displayed. F) FSC-A and SSC-A analysis across the 
genotypes in K-562 CD41+CD235- cells at 72 hours. Cyt. = cytometry, Mye. = myeloid, Megak. = 
megakaryocyte, Hb = Haemoglobin, polyploid = polyploidization, cpm =counts per million. See Table S8 for 
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Peak coordinates. 
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STAR methods 
 
Experimental model and study participants 
 
MPRA data 
 
The MPRA raw fastq files will be uploaded to the European Nucleotide Archive (ENA) upon 
publication. 
 
ENCODE K-562 expression data 
 

We used processed RNA-seq count matrices from basal K-562 cells.42 
 
INTERVAL and BluePrint data 
 
The INTERVAL study data used in this paper are available to bona fide researchers from ceu-
dataaccess@medschl.cam.ac.uk. The data access policy for the data is available at 
http://www.donorhealth-btru.nihr.ac.uk/project/bioresource. The RNA-seq data in the 
INTERVAL cohort have been deposited at the European Genome-phenome Archive (EGA) 
under the accession number EGAD00001008015 and are available at43. The UK Biobank genetic 
data used in this study were approved under application 82779 and are available to qualified 
researchers via the UK Biobank data access process. For the BluePrint data we used data from5. 
All data are freely available but managed by the BLUEPRINT Data Access Committee. 
 
10X multiome data 
 
The 10X multiome raw fastq files will be uploaded to the European Nucleotide Archive (ENA) 
upon publication. 
 
Cell culture 
 
K-562 (ATCC® CCL-243™, sex female), and HL60 (ATCC®CCL-240, sex female) 
cells were cultured as indicated by the distributor, 1x RPMI 1640 media with L-
glutamine (Gibco Medium.: 52400025), supplemented with 10% FBS (Gibco, A31604-
02) and 1x penicillin/streptomycin (Gibco, 15070-063). THP-1 (ATCC® TIB-202, sex 
male) were culture as indicated by the distributor, 1x RPMI 1640 media with L-
glutamine, 2-mercaptoethanol (Sigma, M3148) was added to a final concentration of 
0.05mM and supplemented with 10% FBS (Gibco, A31604-02) and 1x 
penicillin/streptomycin. CHRF-288-11 (sex male, a kind gift from Prof. Wilen H 
Ouwehand’s lab) were cultured 1x RPMI 1640 media with L-glutamine, supplemented 
with 20% Horse Serum (Gibco 16050-122) and 1x penicillin/streptomycin. All the cell 
types were maintained up to a confluence of 1x106 cells/ml and then reseeded at 1x105 
cells/ml.m, except for THP-1 that were reseeded at 3x105 and cultured in a T75 flask in an 
upright position. Phoenix Ampho (ATCC, CRL-3213, sex female) cells were cultured in DMEM 
10% fbs prior to viral infections. 
 
Induced Pluripotent Stem Cell (iPSC) line Kolf2_c1 line (Wellcome Sanger Institute’s Human 
Induced Pluripotent Stem Cell Initiative, sex male) was cultured in TeSR-E8 complete culture 
media (Stem Cell Technologies #05991) (37°C, 5% CO2) on 10ng/ml Synthemax-II (Corning 
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CLS3535) coated plates. Kolf2_c1 were thawed into TeSR-E8 + 10% CloneR (StemCell 
Technologies # 05888) and split at 70-80% confluence into TeSR-E8 + 10uM Y27632 Rock 
Inhibitor (StemCell Technologies #72302). 
 
To differentiate K-562 cells to CD41+ cells, we seeded 100.000 cells/ml in IMDM + 10% FBS 
and cultured in presence of 5nM phorbol 12-myristate 13-acetate (PMA, Selleckchem) or DMSO 
for 16, 24, 48 and 72 hours. 
 
Method details 
 
Variant Annotation 
 
The 178,890 variants in the 95% credible sets of the 29 blood indices from Vuckovic et al2 were 
prioritised attending to MAF (1% threshold), Variant-Effect-Predictor (VEP)44 Most Severe 
Consequence (MSC), Posterior Probability (PP) and effect size (scaled to amount of standard 
deviation units per trait2). The prioritised subset of index variants were below or equal 1% MAF, 
MSC non-coding, with at least one blood index association above or equal 0.9 PP and with an 
effect size for that association between the absolute minimum and first quartile (beta < Q1) or 
the third quartile and the absolute maximum (beta > Q3), Figure 1A and Table S2. We 
condensed the VEP MSC option45 into coding and non-coding consequences. The coding group 
comprised the following labels: LOF (Loss Of Function, [splice_acceptor_variant, 
splice_donor_variant, stop_gained and frameshift_variant]), MISS (missense_variant), UTR5 
(5_prime_UTR_variant), UTR3 (3_prime_UTR_variant) and SYN (synonymous_variant). The 
non-coding group comprised the following labels: INTRON (intron_variant), INTERGENIC 
(intergenic_variant), UPSTREAM (upstream_gene_variant), DOWNSTREAM 
(downstream_gene_variant), REGULATORY (regulatory_region_variant), TFBS 
(TF_binding_site_variant), SPLICE (splice_region_variant), OTHER (start_lost, stop_lost, 
inframe_deletion, inframe_insertion, stop_retained_variant and mature_miRNA_variant), NMD 
(NMD_transcript_variant) and NCT (non_coding_transcript_variant). PCHi-C data was 
downloaded from Javierre et al46 (PCHiC_peak_matrix_cutoff5.tsv). ATAC-seq data47 was for 
blood cell types was downloaded from48 (29August2017_EJCsamples_allReads_500bp.bed and 
29August2017_EJCsamples_allReads_500bp.counts.txt) and intersected with our variants.  
 
MPRA Library design and cloning 
 
We designed a library of 20,340 200-mer oligonucleotides that were synthesised by Twist 
Bioscience. The library covered 113 SNPs, each one assayed in five partially overlapping tiles, 
every tile having an alternative and reference allele version. Each reference or alternative allele 
tile was tagged by 15 unique 11 bp barcodes. The library included 7 enhancer and allelic skew 
positive controls and 8 enhancer positive controls from47 and four sequences that showed no 
CRISPRa activity in Fulco et al23 as negative controls. The structure of the 200-mers included 
two 15 bp amplification arms at each end to amplify subpools/bins of the library based in GC 
content, an 11 bp barcode, the restriction enzyme sites for BamHI and KpnI and 148 bp of 
candidate regulatory sequence to be assayed. The amplification PCRs (Primers 1-6 Table S7) 
were done with Kapa HiFi HS Ready Mix (Kapa Biosystems), using 20 ng input template and 50 
ul final volume with the exception of the High GC bin in which 20 ul of KAPA2G GC Buffer 
(ROCHE) was added to a final volume of 100 ul. Next we performed a digestion with ExoI 
(NEB) to eliminate free primers and then purified the amplified fragments using Agencourt 
AMPure beads (Beckman Coulter). 
 
We based the backbone vector for this assay on the hSTARR-seq_ORI vector15 (Addgene 
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#99296) following the recommendations from Muerdter et al15. We added GFP to the vector by 
excising sgGFP from the pSTARR-seq_human vector (Addgene Plasmid #7150949) with an o.n. 
digestion with AflII and AgeI (New England Biolabs, NEB) at 37°C and ligating it with 
hSTARR-seq_ORI vector digested in the same manner (T4 DNA ligase 16� o.n. 3 to 1 
molar ratio). Following an idea proposed in the Supplementary Figure 1 I) of Muerdter 
et al15, we excised the polyA site from the hSTARR-seq_ORI GFP vector to be cloned back at a 
later stage of our library construction to separate the barcode and the candidate regulatory 
sequence. The excision was carried out by NaeI digestion of the vector (60’ 10 Units of enzyme, 
NEB) and posterior blunt end ligation to obtain the hSTARR-seq_ORI GFP polyA MINUS 
vector. The excised SV40 poly (A) signal fragment was amplified (Primers 9-10 Table S7) and 
cloned in the pGEM T easy system (Promega). 
 
The amplified subpools of the library and the hSTARR-seq_ORI GFP polyA MINUS vector 
were ligated using Gibson cloning (NEB). Briefly, the vector was linearized by PCR (Primers 7-8 
Table S7) and subsequently we carried out a digestion with DpnI and BamHI (NEB) to degrade 
the circular template. The ligation in Gibson mix was done with 100 ng of the linearized vector 
and a molar insert:vector ratio of 2:1 for each of the bins. The ligations were purified with 
Agencourt AMPure beads and eluted in 20 ul of Elution buffer diluted 1/10 in nuclease-free 
water and 10 ul of each were then used to electroporate electrocompetent E. coli bacteria (NEB) 
at 2000 V 25 uF 200 Ohm. We performed serial dilutions for each of the bins to ascertain the 
yield in colony-forming units (CFU) and aimed to keep a ratio of at least 100 CFU per oligo 
element. The individual colonies in each bin were lysed and the plasmids corresponding to each 
bin were purified using the Qiagen maxi prep kit (cat. 12162). This intermediate step in the 
library construction (PolyA Minus library) was sequenced to check the barcode - candidate 
regulatory sequence association and the design dropout rate. Briefly,  we amplified 25 ngr of each 
of the poly (A) minus library bins (Medium GC, High GC and Low GC content) with oligos 11 
and 19 (Table S7) for 15 cycles with annealing and extension done at 72°C in a combined step 
for 1’. The libraries were then quantified with KAPA Illumina SYBR Universal Lib Q. Kit. 
(Roche), adjusted at 4nM and pooled together for a final volume of 40 ul. The samples were 
subsequently sequenced in a MiSeq (MiSeq Reagent Kit v2 300 cycle, Illumina) with the first 15 
cycles of read 1 set to dark cycling and using custom primers 22 and 23 (Table S7). The PhiX 
amount was set to 10%. 
 
Finally the polyA site was introduced back into the vector separating the barcode from the 
regulatory sequence using the BamHI and KpnI restriction sites that were introduced in the oligo 
design. We digested the PolyA Minus library with KpnI (NEB, 37°C o.n.),  followed by gel 
purification and digestion with BamHI in the presence of Shrimp Phosphatase (NEB) for 2h at 
37°C. In parallel, we digested overnight 20 ugr of the pGEMT-polyA vector to release the SV40 
polyA signal (230 bp) with KpnI and BamHI and gel purified it. We cleaned both fragments with 
Agencourt AMPure beads and quantified them using Qubit 1X dsDNA BR Assay Kit 
(ThermoFisher). For each bin we used 100 ngr of the input vector and a 2:1 insert:vector ratio in 
the T4 ligase 16°C overnight reactions. We purified the ligations with Agencourt AMPure beads 
and performed electroporations in the same conditions as the ones used for the PolyA Minus 
library. After evaluating the efficiency of the electroporation we seeded 0.5 million cfu per 245 
mm Square BioAssayDish with Agar+Ampicillin, keeping at least 100 CFU per oligo element. A 
step-by-step protocol of the procedure is available in protocols.io50. 
 
MPRA Nucleofection and parallel mRNA and gDNA isolation 
 
Cells were seeded at 1.5 to 2x105 /ml into 2-4 T175 flasks (Corning, CLS431085-50EA) in 60 ml 
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of fresh medium (9 to 12 million cells each flask), and cultured for 48 hours changing half of 
their media 24 hours after seeding. The electroporation was performed using the Neon 
Transfection System (ThermoFisher). In K-562 and HL-60 we electroporated 5 million cells with 
25 ugr of a pool of the three plasmid bins per reaction (12.5 ugr of the Medium GC bin and 6.25 
ugr of each of the other two bins). In the case of CHRF-288-11 and THP-1 cells we 
electroporated 5 million cells with a four plasmid mix (10 ugr of the Medium GC bin, 5 ugr of 
each of the other two bins and 5 ugr of the pMAX-GFP vector). The nucleofection was 
performed following the manufacturer instructions using buffer R. The conditions for K-562, 
THP-1 and CHRF-288-11 cells were 1.45 v, 10 ms pulse width and 3 pulses, for HL60 1.350 v, 
35 ms pulse width and 1 pulse.The efficiency of the nucleofection was evaluated at 24h and 48h 
post nucleofection in the pmaxGFP plate with a Countess II FL Automated Cell Counter. We 
routinely observed 80-90% efficiency for K-562 cells. In the case of CHRF-288-11 and THP-1 
due to the low transfection efficiency cells were co-transfected with pMAX-GFP and we used 
FACS to purify GFP positive cells as a way to enrich cells that have incorporated plasmids in the 
nucleofection step. 
 
48 h post-electroporation cells were spun down (300G 5') and resuspended in DNase I 
(NEB) at 37� for 15’ using 10 U of enzyme per ug of plasmid transfected in a final 
volume of 2 ml of DPBS to eliminate possible carryover plasmid in the exterior of the 
cells. Cells were then pelleted (300 G for 5’), washed twice with DPBS and lysed in 600 
ul of Buffer RLT Plus (Qiagen) with added β-mercaptoethanol and homogenised using 
QIAshredder columns (Qiagen 79654). DNA and total RNA were extracted using 
AllPrep DNA/RNA Kit (Qiagen) according to the manufacturer’s instructions. In the 
RNA preparation, a step of on-column DNase I treatment was performed for all samples 
(Rnase_Free Dnase Set, Qiagen). We isolated mRNA from total RNA using the Oligotex 
mRNA Kit (Qiagen) followed by a final treatment with Turbo Dnase (Invitrogen). DNA 
and mRNA quantifications were done using Qubit RNA Quantification, high sensitivity 
assay (ThermoFisher) . A detailed protocol can be found in51,52. 
 
MPRA Library preparation and sequencing 
 
We retrotranscribed 1-1,5 ug of mRNA per replica following the protocol for SuperScript IV 
(ThermoFisher) using a reporter specific RT primer (Primer 24, Table S7) at 2uM carrying the 
10-mer UMIs. Then we split retrotranscription samples for PCR amplification so as the RT 
template would represent 10% of the final volume of the PCR (50 ul). We performed the first 
round of amplification in which we introduced the sample index primer, i5-i8 (Primers 15-18 
Table S7) for the cDNA samples of four replicas. As a reverse primer, we used P7 (Primer 21 
Table S7). The PCR was carried out using Kapa HiFi HS Ready Mix, and 65� annealing 
temperature for a total of 3 cycles. The amplification from each replica was then pooled, 
purified using Agencourt AMPure XP beads and then we assessed the minimum number 
of cycles for a second round of PCR by q-PCR with P5 and P7 with StepOnePlus™ 
Real-Time PCR System (ThermoFisher, Primers 20 and 21 Table S7). We determined 
between 11 and 13 cycles to be a good average range to keep the second round PCR from 
plateauing. Following Klein et al24 we split each of the replicas into 8 reactions and 
performed the second round PCR for the cycles determined with the P5 and P7 primers 
and Kapa HiFi HS Ready Mix at 64� annealing temperature. We then pooled the 
reactions from each replica, purified using Agencourt AMPure XP beads and eluted in 60 
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ul of Elution Buffer. 
 
The gDNA fraction from the All Prep Qiagen kit was used as a source for the episomal plasmid 
nucleofected in every replica. For every replica, we used 12 ugr of gDNA that was split into 24 
PCR reactions following Klein et al24. In this first reaction we introduced the sample index and 
the UMIs using the primers 11-14 (Table S7) as forward primers and primer 24 (Table S7) as 
reverse primer. The PCR was run for 3 cycles at 65� annealing temperature and the 
reactions corresponding to each replica were pooled, purified using Agencourt AMPure 
XPbeads and eluted in 320 ul of Elution Buffer. As in the cDNA library preparation we 
assessed by qPCR the number of cycles to keep the second round PCR from plateauing. 
We determined 10-11 cycles. We split each of the replicas into 29 reactions and 
performed the second round PCR with the P5 and P7 primers and Kapa HiFi HS Ready 
Mix at 72°C annealing temperature. Finally, we pooled the reactions for each replica, 
purified 200 ul of the mix using Agencourt AMPure XP system (1.2X vol/vol of beads) 
and eluted in 30 ul of Elution Buffer. 
 
All the libraries were quantified using KAPA Illumina SYBR Universal Lib Q. Kit, adjusted to 
4nM and pooled afterwards in 40 ul final volume. We used a HiSeq 2500 RR for sequencing each 
batch with the Hiseq Rapid PE Cluster Kit V2 (Illumina) and the HiSeq Rapid SBS Kit v2 200 
cycles (Illumina FC-402-4021). The recipe included the first 15 cycles of read 1 set to dark 
cycling and used custom primers 22, 25 and 26 from Table S7. The amount of PhiX was set to 
10%. A detailed protocol can be found in52. 
 
MPRA alignments and count matrix 
 
The first six nucleotides of the r2 reads corresponding to the BamHI site (see protocols io) were 
removed. UMIs were added to each read ID in r1 and r2 files using UMI tools53 and merged 
using flash54 prior to aligning against the reference set of barcodes using bwa55. Only primary 
alignments were taken forward. We discarded alignments not matching perfectly the 
corresponding barcodes with bamtools56 and deduplicated the UMIs per barcode using UMI 
tools. Finally we counted all the unique UMIs across all the tagging barcodes of a regulatory 
sequence.The pipeline is available in GitHub57. 
 
INTERVAL WGS analysis workflow 
 
The INTERVAL whole genome sequencing data (WGS) were generated at the Wellcome Sanger 
Institute. The manuscript describing WGS in full is in preparation. Briefly, WGS was performed 
on 12,354 samples using the Illumina HiSeq X10 platform as paired-end 151 bp reads. Raw read 
processing was carried out via customised pipelines at WSI. Reads were aligned with BWA MEM 
to the GRCh38 human reference genome with decoys (also known as HS38DH). Variants were 
called for each sample using GATK HaplotypeCaller version 4.0.0. Then all samples were 
merged, and the combined samples genotyped using GATK4.0.10.1. GATK Variant Quality 
Score Recalibration (VQSR) was used to identify probable false positive calls by assigning quality 
score log-odds (VQSLOD) separately for SNPs and INDELs using GATK VariantRecalibrator 
(v4.0.10.1). Sample quality control removed 491 samples in total, including 77 samples with 
coverage below 12x, 134 samples with > 3% non-reference discordance (NRD), 118 samples 
with > 3% FreeMix (VerifyBamID2) score, 221 samples failing identity checks, 30 samples 
swapped, 40 samples failing sex checks, 39 duplicates and 9 samples with possible 
contamination. Genotypes with allele read balance > 0.1 for homozygous reference variants, < 
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0.9 for homozygous alternative variants or not between 0.2-0.8 for heterozygous variants were 
removed. Genotypes were also removed if the proportion of informative reads was < 0.9 or read 
depth > 100. We performed additional variant quality control and filtered out variants that failed 
to meet the following requirements: call rate per site > 95%, mean genotype quality (GQ) value 
> 20, Hardy-Weinberg equilibrium (HWE) p-value > 1 x 10-6 only for autosomes. All 
monomorphic variants with alternative allele count (AAC) = 0 were further removed, although 
we kept all monomorphic variants with reference allele count (RAC) = 0. For chrX and chrY we 
applied an additional step to correct allele counts and frequencies due to female and male 
samples accounting for diploidy/haploidy in the PAR and non-PAR regions. Finally, the WGS 
data set contains 116,382,870 variants (100,694,832 SNVs and 15,688,038 indels) including 
6,637,420 (5.7%) multi-allelic sites across 11,863 participants. 
 
 
INTERVAL RNA-Seq analysis workflow 
 
The INTERVAL RNA-sequencing data were generated and processed as previously described30. 
We mapped the RNA-sequencing data to the GRCh38 reference and quantified read counts as 
described previously58 with the difference of using GENCODE v31 across 4,731 samples 
passing quality control. Globin genes, rRNA genes, and pseudogenes were removed. 19,841 
genes were selected with > 0.5 CPM in at least 1% of the samples. Gene expression counts were 
converted to FPKM, trimmed mean of M-values (TMM) normalised and log2 transformed. We 
used the probabilistic estimation of expression residuals (PEER) method59, implemented in the R 
package peer v.1.060, to correct for latent batch effects and other unknown confounders. 50 
PEER factors were calculated with age, sex, BMI, and 19 blood cell traits included as covariates. 
 
For transcript quantification we used Salmon v1.1.061. The Salmon index was built against 
GRCh38 cDNA. R packages tximport v1.14.2, AnnotationHub v2.18.0, BiocFileCache v1.10.2, 
BiocGenerics v0.32.0 were applied to obtain various count matrices from these quantifications at 
the transcript or gene level. We subsetted to 4,731 samples passing RNA sequencing QC and 
corrected sample swaps. We focused on the transcripts of the 19,841 genes that passed gene QC. 
From these transcripts, we selected transcripts with TPM ≥ 0.1 in at least 20% samples. 
Subsequently, TPM values were TMM normalised and log2 transformed. 
 
GTEx and INTERVAL sQTLs 
 
For the 20 genes with ATU in our survey of INTERVAL whole blood RNA-seq (ATL1, 
NPRL3, VMP1, ELP5, KDSR, RASAL3, SLC11A1, MFSD2B, GATA2, EEFSEC, TAF8, 
IKZF1, PILRB, ANK1, GFI1B, EVI5, TYMP, ARSA, ODF3B and PILRB) we queried the 
GTEx32 web portal (release v8) and found sQTLs in whole blood for PILRB, SLC11A1, ARSA, 
ANK1, MFSD2B, TAF8, GFI1B and RASAL3. The same query in the INTERVAL web62 
yielded 16 genes: MFSD2B, PILRB, TYMP, ANK1, ARSA, EVI5, NPRL3, VMP1, GFI1B, 
SLC11A1, IKZF1, EEFSEC, ODF3B, TAF8 GATA2 and RASAL3. We obtained all the proxy 
variants at R2=0.7 in the European subpopulations (EUR) in a window size of 0.5 Mb for all the 
sQTLs in these genes using LDLinkR63. None of the index variants leading to ATU were proxies 
of the GTEx sQTLs. Three of the index variants with ATU genes (rs149489081-ANK1, 
rs543594419-TYMP, ODF3B and ARSA and rs187715179-GFI1B) were sQTLs in the same 
genes in INTERVAL. The code for this analysis is available in GitHub64,65. 
 
 
Predicting TF motifs intersecting rs139141690 A > G 
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For the 94 variants screened in MPRA we selected a sequence stretch of 38 bp centred on the 
SNP and extracted the reference allele sequence. In the case of the 80-bp deletion we used the 
complete 80 bp nucleotide stretch. We then substituted the reference allele with the alternative 
allele in the position of the SNP to obtain the alternative allele version. We predicted TF motifs 
in both the reference and alternative allele versions of the 38 bp nucleotide stretch with gimme 
motifs66 with the reference databases HOMER67 and JASPAR68, the -c option set to 0.85 and the 
maximum number of TF motif per nucleotide stretch set to 20. To assess TF occupancy we 
intersected the motifs with CHIP-seq data from whole blood present in the CHIP atlas 
database69. In the case of variant rs139141690 the occupancy of the PU.1 motif in the reference 
genome is supported by CHIP-seq data of PU.1 in 121 experiments in whole blood (ids: 
ERX626856, ERX626869, SRX093183, SRX093189, SRX100429, SRX100443, SRX100576, 
SRX10144602, SRX10144603, SRX1023790, SRX1023791, SRX1023792, SRX1023793, 
SRX103224, SRX1048461, SRX1089832, SRX1089833, SRX1127545, SRX12684447, 
SRX12684451, SRX1431740, SRX14869351, SRX14869352, SRX14869358, SRX14869359, 
SRX18154277, SRX18154278, SRX18154279, SRX18154280, SRX190299, SRX19553539, 
SRX20230007, SRX20230008, SRX20230009, SRX2268282, SRX2268283, SRX2268284, 
SRX2268285, SRX2268286, SRX2268287, SRX24542848, SRX24542849, SRX2770854, 
SRX2770855, SRX2770856, SRX2770857, SRX3824041, SRX3824042, SRX4001818, 
SRX4001819, SRX4001820, SRX4001821, SRX4001958, SRX4001959, SRX4001960, 
SRX4001961, SRX4484984, SRX475793, SRX475794, SRX5141098, SRX5141099, 
SRX5574342, SRX5574343, SRX5574345, SRX5574346, SRX5574348, SRX5574350, 
SRX5574352, SRX5574354, SRX5574355, SRX5574356, SRX5574357, SRX5574359, 
SRX5574361, SRX5574362, SRX5574363, SRX5574364, SRX5574365, SRX5574367, 
SRX5574369, SRX5574370, SRX5574373, SRX5574375, SRX5574376, SRX5574379, 
SRX5574381, SRX5574385, SRX5574387, SRX5574392, SRX5574446, SRX5574447, 
SRX5574448, SRX5574449, SRX5574450, SRX5574451, SRX5574452, SRX5574453, 
SRX5574457, SRX5574458, SRX5574459, SRX5574460, SRX5574461, SRX5574462, 
SRX5574463, SRX5574491, SRX5574492, SRX5574493, SRX5574494, SRX5574498, 
SRX5574499, SRX5574500, SRX5574505, SRX5574506, SRX5574507, SRX627428, 
SRX627430, SRX698188, SRX698189, SRX794057, SRX9029196, SRX9029197, SRX9029208, 
SRX9029209). The FOXM1 motif is supported by whole blood CHIP-seq data in 1 experiment 
(id: SRX190187) . The scripts are available on GitHub70. 
 
GenIE CRISPR/Cas9 targeting and amplicon design 
We followed the protocol described in Cooper et al12. The Wellcome Sanger Institute Genome 
Editing browser (WGE)71, was used to choose CRISPR gRNAs with NGG PAM site within 
20bp of the SNP locus and with less than 1-3 mismatch off-target hits predicted. To introduce 
the SNP of interest a 100bp repair template oligonucleotide was designed. As a positive control 
for cutting we used the sgRNA against ENSG00000178927/ CYBC1/ EROS (numbers 39-43 
from Table S7). 
Primers were designed to amplify <250bp across the SNP of interest, 40-60% GC, Tm 56-65°C 
(NEB Tm Calculator) and with adaptor sequence tails for MiSeq Sequencing (See Table S7). 
Reverse transcriptase primers were designed downstream of the amplicon in the mRNA 
sequence (See Table S7). 
GenIE Nucleofection 
Guide RNAs (IDT) were annealed to tracrRNA (IDT) in duplex buffer (IDT 1072570) at 95°C 
for 2 min and cooled slowly to RT. Nucleofection on Kolf2_c1 was carried out as previously 
described72 and recovered onto 4ng/ul Synthemax-II (Corning CLS3535) coated 6 well plates. K-
562 and HL-60 were nucleofected following Lonza’s protocols. THP1 were nucleofected 
following Lonza’s primary monocyte protocol. Cells were cultured for 1-2 weeks until confluent 
and snap frozen as 2-3 x106 cell pellets.  
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GenIE Library preparation and sequencing 
Genomic DNA was extracted using DNA MagAttract HMW extraction kit (Qiagen), following 
standard instructions and eluted in 100ul H20. Total RNA was extracted using Direct-zol RNA 
Miniprep Plus kit (Zymo), TURBO DNAse treated and run on a 2100 RNA Nano Chip in a 
Bioanalyser (Agilent). Gene specific RT primers were annealed using 2ug RNA, 2uM RT primer 
and 10mM dNTPs, heated to 65°C for 5 min and placed on ice. cDNA synthesis was setup using 
half the annealed RNA, Superscript IV and RNasin (Promega) on ice and heated 50°C 10min, 
55°C 10min, 60°C 10 min, 80°C 10min, 4°C hold. 
Genomic DNA and whole RNA were amplified with PowerUP SYBR green master mix 
(Applied Biosystems A25742) or Q5 Hot Start polymerase (NEB), 10uM adaptor sequence 
primers with 4 PCR replicates for gDNA and 8 PCR replicates for cDNA. PCR conditions for 
PowerUP SYBR reactions were as previously described12. PCR conditions for Q5 Amplicons: 
98°C 30s, (98°C 10s, 57°C 20s, 72°C 20s)x30, 72°C 2min. Amplicons were barcoded using 
WTSI PCR barcoding primers, pooled, gel extracted using Minelute kit (Qiagen 28604) and 
quantified by qPCR (KAPA library quantification). The prepared library was loaded onto a 
MiSeq System (Illumina) at 4nM with 20% PhiX using MiSeq Reagent Kit v2 300 cycles. 
Generation of clone lines: CRISPR/Cas9 sgRNA designs and protocol 
 
To introduce the rs139141690 (G>A) mutation into K-562 cells, a synthetic crRNA was selected 
using CRISPOR73 (Table S7, number 46). An 81bp ssODN carrying the mutation G>A was 
chemically made by IDT with 4 phosphorothioate bonds (Table S7, number 47). To delete the 
80 bp region encompassing the rs139141690 two crRNAs were selected one upstream and one 
downstream of the desired SNP (Table S7, 48-49). 
The crRNA and trans-activating crRNA (tracrRNA) were synthesised by IDT. An 
electroporation enhancer was also bought by IDT and resuspended at 100 µM in water. SgRNAs 
are made by combining 160 µM of crRNA and tracrRNA (1:1 v/v) to get a final concentration 
of 80 µM and incubated at 37C for 30 min.   
To assemble the Cas9/sgRNA RNPs, the sgRNAs and electroporation enhancer (0.8:1 volume 
ratio) were first mixed and then 40µM S.p. Cas9 Nuclease (IDT) at 1:1 v/v was added. This 
mixture was incubated at 37C for 15-30 min prior use. 
Electroporation was performed using SF Cell Line 4D-Nucleofector™ X Kit (Lonza) 
according to manufacturer’s instructions. The kit / program for K-562 used is SF kit / 
FF-120. 
For the knock-in experiment, 50 pmol of the RNP was electroporated into K-562 cells together 
with 4µM ssODN as HDR template. 15 min after electroporation cells are incubated with a 
combination of 0.5µM Trichostatin A (TSA, Selleckem) and 1µM M3814 (Selleckem) to enhance 
the HDR as previously reported in Shy et al74. 24 hours post treatment drugs are removed and 
fresh medium is added74. For the deletion of 80 bp, 50 pmol of each of the two RNPs was 
electroporated.  
After 24h cells were single-cell sorted in 96 wells plates using MoFlo Astrios (Beckman Coulter). 
Propidium Iodide (Sigma Aldrich) was added prior to analysis as a cell viability dye. 
 
Generation of clone lines: isolation of clones and genotyping by amplicon sequencing 
 
K-562 clones were let to grow from single cells for 10-14 days, then genomic DNA was 
extracted with the QIAamp 96 DNA QIAcube HT Kit and quantified using the QuantiFluor® 
dsDNA System (Promega). 2-5 ng of DNA from every colony were used as template for 
targeted amplicon sequencing (Table S7, 44-45). Samples were then indexed with Nextera XT 
DNA Library Preparation Kit (Illumina), pooled and sequenced on NovaSeq 6000 (Illumina, 500 
cycles, PE). Data were analysed by using CRISPResso2 v2.2.1275 and clones with the desired 
genotypes were expanded to generate the modified cell lines. 
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In the same nucleofection we isolated: i) three clone lines homozygous reference for the SNP 
rs139141690 chr7:101499930 (‘G/G’), ii) one heterozygous clone line chr7:101499930 (‘A/G’) 
and iii) three homozygous alternative clone lines chr7:101499930 (‘A/A’). In addition to this we 
isolated: i) one homozygous clone line carrying the deletion of 16 bp (chr7:101499917 
CTCACTAGAGCAAGTCC > C) and ii) three homozygous clone lines carrying the 80 bp 
deletion (chr7:101499894 
GTTAGTGACTTCAAAAGCTGTCCTCACTAGAGCAAGTCCAACTCTTCCTCTA 
GTTCTGATGACTTCACGGCAGCCAACTG > G). All the coordinates are in GRCh37. 
 
Generation of clone lines: lentiviral barcoding 
 
Plasmids carrying single unique barcodes were isolated from the Larry Barcode Library V176  
(Addgene, #140025) characterised by whole plasmid sequencing (Eurofins) to identify the 
different barcodes and used to transfect Phoenix Ampho (ATCC, CRL-3213) cells,  together 
with the pMD2.G77 (Addgene, #12259) and psPAX277 (Addgene, #12260) lentiviral packaging 
vectors. 48h after the transfection, the viral supernatant was collected, filtered, and used to infect 
the K-562 clones with the different genotypes, in presence of 6ug/ml polybrene. 
GFP+ cells were sorted after 4 days and expanded to obtain 11 different cell lines (K-562-Larry), 
each one carrying a specific barcode, detectable both at gDNA and mRNA level. 
 
Flow cytometry tracking of CD41 expressing K-562 cells 
 
K-562 cells were seeded at 100.000 cells/ml in IMDM + 10% FBS and cultured in presence of 
5nM phorbol 12-myristate 13-acetate (PMA, Selleckchem) or DMSO for 16, 24, 48 and 72 
hours. For each time point cells were analysed by flow cytometry and collected for RNA 
extraction. 
For flow cytometry tracking, cells were washed in PBS and incubated with anti-CD235a BUV395 
(Clone GA-R2, BD Biosciences) and anti-CD41 AF700 (clone HIP8, Biolegend) antibodies for 
20 min at 4°C in PBS + 1% FCS + 2mM EDTA. Cells were then washed and acquired with the 
CytoFLEX (Beckman Coulter) flow cytometer. DAPI (Sigma Aldrich) was added prior to 
analysis as a cell viability dye. Data was analysed using the FlowJo software. 
 
10X Multiome nuclei isolation 
 
For each time point, cells were analysed by flow cytometry and 50.000 cells per genotype were 
pooled for nuclei isolation. Single nuclei were isolated using the Nuclei Prep Buffer (Zymo 
Research), counted and processed following the Chromium Single Cell Multiome ATAC + Gene 
Expression workflow78. 
 
10X Multiome aligning and QC 
10x genomics multiome data were processed using Cell Ranger ARC (2.0.2) using default 
parameters and the provided reference genome GRCh38-2020-A-2.0.0. Initial filtering steps were 
applied to the raw gene expression and peak (ATAC) matrices of each sample using functions 
from the Seurat and Signac (v5) packages79,80. Cells with <500 gene features were first removed 
and the package scDBfinder81 was used to mark doublets in both RNA and ATAC data. Further, 
cells with < 1000 peak features, >10% mitochondrial reads, and multiplets marked by cellranger 
were removed. At this stage, doublets were additionally identified in the ATAC data using 
Amulet82. Prior to merging samples, ATAC matrices were rebuilt to reflect unique fragment 
counts in 5kb genomic windows instead of peaks, using a custom pipeline83, and RNA matrices 
were adjusted to remove ambient contamination using CellBender84. The merged Seurat object 
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was then filtered to retain cells that could be unequivocally assigned to a lentiviral Larry barcode. 
To deconvolute samples based on the lentiviral barcodes, reads that did not map to the reference 
genome were extracted from the original cellranger genome + transcriptome alignments 
(gex_possorted_bam.bam) using samtools view -f 4, converted to fastq, and then re-mapped to a 
new reference containing the 11 possible GFP+barcodes transgenes. Multimappers were then 
removed (samtools view -q 5) to keep only the reads uniquely mapping to each GFP barcode. 
For each read, molecular barcode (UMI), cell barcode and Larry barcode were recorded. Only 
cell/Larry barcodes combinations supported by a minimum of 3 UMI were retained. Cell 
barcodes were assigned to a genotype only if one cell/Larry barcodes combination was found. 
The RNA and ATAC reductions from the merged and filtered Seurat object were then integrated 
using the Weighted Nearest Neighbour (WNN) analysis following the steps and recommended 
parameters in guidelines85

.  For clustering analysis on the integrated WNN graph, the Leiden 
algorithm with resolution 2 was used. At this stage, a low-quality cluster with lower read counts 
and higher mitochondrial content was removed, as well as doublets, which were previously 
marked as such by both Amulet and scDBfinder. After these final filters, we called ATAC peaks 
on the remaining cells with MACS2 (2.2.9.1) using the Signac callPeaks function and generated a 
new feature ATAC matrix with these peak coordinates, which replaced the window matrix. 
WNN analysis was then repeated as above, but with 0.5 resolution for the final clusters. The final 
object was composed of 13 clusters, 11.250 cells, ~29.000 genes and ~357.000 peaks. Processing 
and analysis codes can be found in Github86.  
 
Quantification and statistical analysis 
 
Comparisons between sets of variants 
 
In the case of the comparison with pathogenic variants, the list was obtained from Table 1 
Vuckovic et al2 and restricted to GWAS traits associated with the pathogenic variants. Index 
variants had higher effect sizes to reported heterozygous blood ClinVar/HGMD pathogenic 
variants2 (median absolute effect size values 0.169 and 0.13 respectively, p value = 0.009, 
Wilcoxon test) 
 
For the comparisons shown in Figure 1C we used pairwise Wilcoxon tests to assess statistically 
significant differences between categories, applying multiple testing correction (Benjamini–
Hochberg) across all the comparisons. The scripts are in GitHub87. Median values of MAF: Tier 
1 0.285, Tier 2 0.013, Tier 3 0.018, Tier 4 0.016 and index variants 0.007. 
Median values of PPFM: Tier 1 0.01, Tier 2 0.422, Tier 3 0.012, Tier 4 0.986 and index variants 
0.999. Median values of absolute effect size: Tier 1 0.019, Tier 2 0.092, Tier 3 0.062, Tier 4 0.075 
and index variants 0.152. Median values of CADD raw: Tier 1 -0.009, Tier 2 1.189, Tier 3 -0.049, 
Tier 4 0.034 and index variants 0.119. Median values of Gnocchi: Tier 1 0.653, Tier 2 1.834, Tier 
3 0.868, Tier 4 1.203 and index variants 1.235. Median values of NCBoost: Tier 1 0.029, Tier 2 
0.076, Tier 3 0.031, Tier 4 0.045 and index variants 0.077. 
 
 
Conditional analysis of common variants on the index variants 
 
To condition for known common variants associated with the studied traits, we run GWAS of 
29 blood cell counts in ~409 UK Biobank individuals of white British ancestry, following the 
procedure described in1, the scripts are available in GitHub88. Accordingly, we employed the 
same phenotype exclusions, adjustments and normalisation approach, and ran GWAS using 
REGENIE89 and TOPMed imputed genotypes90, including recruitment center and the first ten 
PCs of the kinship matrix as covariates. We then obtained independently associated variants for 
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each trait by using the GCTA (v1.94.1) cojo91 joint model function (with parameters: collinearity 
= 0.9, p-value < 1e-4) and LD structure estimates from the genotypes of 30,000 unrelated 
individuals of white British ancestry from UK Biobank samples. Finally, for each of the 123 rare 
variants, we gathered all independent GWAS common variants obtained by cojo, having MAF > 
1% and joint association p-value < 1x10-7 , and falling within a +/- 500kb  window from a rare 
variant. We then performed conditional analysis by fitting a linear regression model of the blood 
trait and the genotype of the associated rare variant, including the genotypes of the independent 
GWAS hits as covariates. The model was fitted in R (using the stats::lm function) and genotypes 
of both common and rare variants were obtained from the WGS of UK Biobank 200k release 
(GraphTyper population level WGS variants, PLINK format). Out of 123 rare non-coding 
variants, genotypes were available for 80 of them; of these 80, 76 (95%), were significantly (p-
value < 0.05) associated with at least one blood trait even after jointly conditioning for common 
variants. 
 
MPRA analysis 
 
We used MPRAmodel25 to estimate enhancer activity (measured as log2 Fold Change, log2FC) 
and allelic specific expression (measured as log2 Allelic Skew, log2AS) per each tile, index variant 
and cell type. First we generated the necessary input files for MPRAmodel per cell type: a count 
matrix with the oligos and the barcodes in the rows and the columns (countsData), a file 
detailing the replicate breakdown between cDNA and gDNA libraries (condData) and an 
attributes files detailing each of the oligos attributes (attributesData). In the majority of the cases 
the tiles carried only one SNP so the ‘Allele’ field of the attributes table was set to ref or alt. For 
the 8 cases of diplotypes (two SNPs present in the same tile) we carried out all the possible 
comparisons and set the ‘Allele’ field of the attributes table to ref ref vs alt ref, ref ref vs ref alt 
and ref ref vs alt alt according to the tiles analysed. Next we adapted the MPRAmodel Rscript92 
from the MPRASuite to run the dataOut function on our inputs. The results were collected per 
cell type and tile and are shown in Table S3. We then performed a meta-analysis for each variant 
across all the tiles assayed to come up with a single value of activity per variant and cell type 
following10,93. The results of the meta-analysis are shown in Table S4. To establish the log2FC 
threshold that defines enhancer activity we employed a set of variants previously described to 
have MPRA activity in K-562 cells9 as well as four regions deprived of CRISPRa activity in the 
same cell line23(Supplementary Figure 1A). We considered active variants those with a log2FC 
higher than 0.25 at 1% global false-discovery rate (gFDR) (68 variants) and we additionally 
required that the log2AS was significant at 10% gFDR to label variants as MPRA positive (43 
variants). Positive and negative Log2FC values indicate enhancer and repressor activity, 
respectively. Positive log2AS values correspond to a skew of the enhancer activity towards the 
alternative allele and negative values towards the reference allele. The analysis scripts are in 
GitHub94. 
 
MPRA lasso regression on annotated features 
 
Enformer values29 were obtained from the vcf file of the 94 variants screened in the MPRA and 
cell matched features were selected for K-562 cells (455 features) and HL-60 cells (6 features). 
GWAS parameters, orthogonal scores and cell-matched Enformer features were combined in a 
unique matrix per variant to perform lasso regression on the continuous variable log2FC. We 
performed the lasso regression for ten iterations and selected predictive variables that had 
coefficients greater than 0 in at least three. Positive coefficients indicate that higher values of the 
sequence feature are predictive of higher values of Log2FC. Conversely, negative coefficients 
indicate that higher values of the sequence feature are predictive of lower values of Log2FC. 
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In the case of the lasso regression for predictive variables of a qualitative variable, first we 
transformed the labels into integers (MPRA negative RNA+ = 0 and Double positive = 1) and 
then we ran the lasso regression with all the features and selected those that had coefficients 
greater than 0 in at least one iteration. Positive coefficients indicated that higher values of the 
sequence feature are predictive of the double-positive class. Conversely, negative coefficients 
indicate that higher values of the sequence feature are predictive of belonging to the MPRA-
/RNA+ class. The expression values for the K-562 genes in the basal state were obtained from 
ENCODE42. The analysis scripts are in GitHub95. 
 
INTERVAL Differential Expression linear model 
 
We modelled FPKM normalised raw values for each gene with a linear model using as covariates 
the PEER factors (top 35 from 50), top 10 genotype principal components, sex, age, BMI, RIN, 
sequencing batch, RNA concentration, read depth, and season (based on month of blood draw). 
Depending on the blood phenotypes associated with the variants at PP >= 0.1 we included a set 
of cell-count specific covariates (see Table S1) to account for cell count effects on total blood 
composition. 
 
For each variant, we tested a median of 12 genes by combining all expressed genes within the 
GWAS association blocks (median size of 0.5 Mb) and those  connected with index variants 
through PCHi-C interactions46. The multiple testing correction was done using the Benjamini–
Hochberg method at three levels for each variant: i) all transcripts of all the genes in which the 
variant had a direct VEP Most Severe Consequence (LOF, MISS, SYN, UTR5, UTR3, 
INTRON, SPLICE, UPSTREAM), ii) all transcripts of all the genes within the GWAS 
association block plus the genes connected to the variant via PCHi-C (Block and PCHiC levels) 
and iii) Only for variants in Table 1, all the transcripts of all the genes (genome wide). The code 
used in this analysis is in GitHub96. 
 
 
INTERVAL Alternative Transcript Usage (ATU) additive logratio model 
 
We calculated the median transcript ratio (median transcript TPM/median Expression of the 
gene to which the transcript belongs) for homozygous reference and heterozygous carriers 
separately. We discarded all transcripts with median transcript ratios below 0.1 in both genotypes 
to filter out transcripts whose contribution to the total expression of a given gene remains low 
irrespective of the genotype. 
 
Given the compositional nature of the data we decided to transform proportions using the 
additive logratio model. Briefly, for all of the transcripts belonging to the same gene we first 
estimated the transcript ratio of gene expression (expression of the transcript/sum of the 
expression of all the transcripts belonging to the same gene) and scaled it to a reference 
transcript. The most abundant transcript was chosen as the reference transcript for each gene to 
avoid having 0 values at the denominator. This proportion was then log transformed. To avoid 
having transcripts with 0 TPM value in the logratio model, for any given transcript we imputed 
the value of the samples with 0 TPM to 0.65 of the minimum value greater than 0 for that 
transcript as this value is suggested to limit the distortion of the covariance matrix97. The 
resulting log scaled ratio per transcript was used in a linear regression model with the same 
constitutive and cell count specific covariates (see Table S1) per variant as the ones used in the 
DE model. 
 
The multiple testing correction of the ATU model was done using the Benjamini–Hochberg 
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method at two levels for each variant: i) all transcripts of all the genes in which the variant had a 
direct VEP Most Severe Consequence (LOF, MISS, SYN, UTR5, UTR3, INTRON, SPLICE, 
UPSTREAM), ii) all transcripts of all the genes within the GWAS association block plus the 
genes connected to the variant via PCHi-C (Block and PCHi-C levels).The code used in this 
analysis is in GitHub96. To represent the transcripts we used ggtranscript98. 
 
BluePrint Differential Expression linear model 
 
We used the normalised gene quantification - values from BLUEPRINT data 3. We then applied 
a linear model to the  gene quantification  values for each gene. 
 
The multiple testing correction was done using the Benjamini–Hochberg method at two levels 
for each variant: i) all transcripts of all the genes in which the variant had a direct VEP Most 
Severe Consequence (LOF, MISS, SYN, UTR5, UTR3, INTRON, SPLICE, UPSTREAM) and 
ii) all transcripts of all the genes within the GWAS association block plus the genes connected to 
the variant via PCHi-C (Block and PCHiC levels). 
 
The code used in this analysis is in GitHub99. 
 
BluePrint Alternative Transcript Usage (ATU) additive logratio model 
 
We calculated the median transcript ratio (median transcript FPKM/median Expression of the 
gene to which the transcript belongs) for homozygous reference and heterozygous carriers per 
cell type separately. For every cell type of BLUEPRINT we discarded all transcripts with median 
transcript ratios below 0.1 in both genotypes. 
 
The same compositional model and multiple testing correction used for whole blood was applied 
in the BLUEPRINT per cell type. The code used in this analysis is in GitHub99. 
 
INTERVAL GSEA and ORA 
 
For the GSEA analysis we started from the 22 variants in Table 1 and performed a genome wide 
DE analysis between carriers and non-carriers per variant in the INTERVAL whole blood 
dataset. Next, we used the Fold Change between WT and HET genotypes to order the genes in a 
decreasing manner and input the ordered gene list into the GSEA function of ClusterProfiler100. 
The minimum and maximum gene set size and the p value cutoff were set to 10, 500 and 0.05, 
respectively. The multiple testing was accounted for by Benjamini & Hochberg. The code used 
in this analysis is in GitHub96. 
 
For the ORA analysis we started by defining a list of gene sets for blood and immunity from the 
Molecular Signatures Database (MSigDB)101: we first selected all the gene sets that contained in 
their description at least one of the following blood and immunity related terms: PLATELET, 
ERYTHRO, MEGAKARYOCYTE, MONOCYTE, NEUTROPHIL, EOSINOPHIL, 
BASOPHIL, LYMPHOCYTE, T_HELPER, TH_17, TH17, TH1, TH2, BLOOD, 
BLOOD_COAGULATION, IMMUNE, HUMORAL_IMMUNE_RESPONSE, 
IMMUNOGLOBULIN and HEMATOPOIETIC. We also included two blood and immunity 
unrelated terms (HEPATOCYTE and NEURON). In addition, we included in the ORA analysis 
TF target gene sets for the TFs GATA2, GFI1, CUX1 and RUNX1 in the Dorothea 
collection102 (A,B ,C and D confidence levels). The minimum and maximum gene set size 
allowed was 10 and 500, respectively, but for the Dorothea gene sets which were exempted from 
this filter (CUX1 n=464 genes, FOXP1 n=3,278, GATA2 n=5,370, GFI1 n=8 and RUNX1 
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n=2,551). The list of selected pathways (n=1,423 gene sets) can be found in GitHub103. Next, we 
tested the genome wide DE analysis of the 22 variants in Table 1 used for the GSEA for 
overrepresentation of DE genes applying Active Pathways104 with the significant p value cutoff 
set to 0.01. As a background list of gene sets we used all the gene sets derived from the Human 
Phenotype ontology (c5.hpo.v2023.2.Hs.entrez.gmt, n=5,547 gene sets39,101). We obtained 64 
pathways significantly overrepresented in DE genes of which 3 were from the unrelated terms. 
The remaining 65 pathways corresponded to 11 variants. We excluded from further analysis the 
gene sets from Dorothea (2 variants). A variant was labelled as ‘ORA positive’ if it had at least 1 
ORA pathway at p value = 0.05. To test if the 9 variants were enriched in the TF annotation 
(Table 1) we used a Chi square test (6/7 variants with TF annotation vs 3/15 non TF labelled 
variants were ‘ORA positive’, p value = 0.0141). The code is located in GitHub103. 
 
 
Comparison of number of carriers between variants with DE/ATU regulation and variants 
without effect in the RNA-seq studies 
 
Median number of heterozygous carriers for variants with DE and/or ATU = 43 and median 
number of heterozygous carriers for variants without RNA-seq effect = 36, p value = 0.045, 
Wilcoxon test. 
 
 
GenIE analysis 
Read pairs per amplicon were merged using flash54 with the following parameters: read length (-r) 
150, fragment sd (-s) 20, minimum overlap (-m) 10. Fragment size (-f) and maximum mismatch 
density (-x) depended on the targeted amplification: CUX1 (223, 0.115) and 
ENSG00000178927/CYBC1/EROS (249, 0.12). The reads were aligned using bwa mem105 with 
the following parameters: -O 24,48 -E 1 -A 4 -B 16 -T 70 -k 19 -w 200 -d 600 -L 20 -U 40. The 
aligned reads were filtered to discard reads with more than 10 clipped bases using samclip106. The 
GenIE results were obtained using the rgenie package12,107 allowing for 10 bases for the 
required_match_right and required_match_left parameters. The scripts are available in GitHub37. 
 
Flow cytometry data ILR compositional analysis 
 
We collected the percentages of CD41-CD235-, CD41-CD235+, CD41+CD235+, CD41+CD235- 

cells and the value of CD41 MFI and GeoMFI at the four time points of the PMA 
differentiations per genotype and clone line (n=3 clone lines per genotype). The ‘Basal’ time 
point was assigned to cells mock treated for 16 hours. We used the package Compositions108,109 
to transform the cell abundance percentages into isometric log ratios (ilr)110. Next we model the 
ILR values using as covariates time (reduced model) and time and Genotype (full model) and 
tested the significance between adding the different terms to the models by ANOVA. The code 
for the analysis is located in GitHub111. 
 
Cell size using flow cytometry FSC-A and SSC-A 
 
We collected the values of FSC-A and SSC-A per cell, genotype and time point and restricted 
our analysis to CD41+CD235- cells at 72 hours as they were the most mature cell type in our 
model (n=4,892, 8,914 and 7,553 for the wild type clone lines, n=3,616, 4,307 and 6,229 for the 
homozygous alternative clone lines and n=9,822, 6,476 and 9,611 for the 80 bp deletion clone 
lines). The median values for FSC-A are: 585312 (G/G genotype), 592815 (A/A genotype) and 
647251 (Del80 genotype). The median values for SSC-A are: 391532 (G/G genotype), 407041 
(A/A genotype) and 468646 (Del80 genotype). We used the Wilcoxon-rank test to analyse 
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differences between the cells. The code is located in GitHub112. 
 
10X Multiome DE and DA analysis 
 
The code and the detailed list of dependencies can be found in GitHub113. Briefly, for the DE 
analysis we aggregated the counts of all the cells belonging to the same combination of clone 
line, time point and Seurat cluster using the function Seurat2PB (Seurat v5.0179). Then, per 
Seurat cluster, we used DESeq2114 to calculate a linear model accounting for time (reduced 
model) or for time and genotype (complete model) and applied a Likelihood ratio test (LRT) to 
test cases in which the complete model was a significantly better fit to the data following analysis 
guidelines for time and condition differential analysis115,116. 
 
 For the ORA analysis we started by defining a list of gene sets relevant for K-562 differentiation 
from the Molecular Signatures Database (MSigDB)101: we selected all the gene sets that contained 
in their description at least one of the following terms: PLATELET, ERYTHROCYTE, CUX1, 
MEGAKARYOCYTE, GATA1, GATA2, TET2, RUNX1, RUNX2, MITOSIS, 
ANEUPLOIDY, CYTOKINESIS, MYELOID, AML, LIPID, SPHINGOSINE, FOXM1, 
SPI1, PU1, PI3K, AKT, FOXP1 and GFI1. We also included two blood and immunity unrelated 
terms (HEPATOCYTE and NEURON). In addition, we included in the ORA analysis TF target 
gene sets for the TFs GATA2, GFI1, CUX1 and RUNX1 in the Dorothea collection102 (A,B ,C 
and D confidence levels). The minimum and maximum gene set size allowed was 10 and 500, 
respectively, but for the Dorothea gene sets which were exempted from this filter (CUX1 n=464 
target genes, FOXP1 n=3,278, GATA2 n=5,370, GFI1 n=8 and RUNX1 n=2,551). The list of 
selected pathways (n=803 gene sets) can be found in the GitHub repository. We obtained 59 
pathways significantly overrepresented in DE genes of which 2 were from the unrelated terms. 
 
For the DA analysis we first extracted all the linked peaks to the set of DE genes and a set of 
marker genes (in total 1,897 genes) using the LinkPeaks function of Signac (v1.12.0)80. To 
characterise the linked peaks (n=14,211 peaks) we overlapped them with annotated gene TSS 
(+/- 2.5 kB of the TSS, n= 4,072 overlaps with a known TSS, ENSEMBL, release 111117) and 
with the annotated regulatory features of the basal state K-562 cells (ENSEMBL, release 111118). 
Next, we produced a reduced seurat object with the ATAC counts of the selected peaks using 
the function CreateChromatinAssay (Signac  v1.12.0) and then obtained a new Seurat object with 
the assay option set to ‘RNA’ as the function Seurat2PB (Seurat v5.01) would not work if it was 
set to ‘ATAC’. From this point onwards the pipeline proceeded as explained in the DE analysis. 
To clusterize the results of both analyses we used Pheatmap119 and to display them in volcano 
plots and in detailed locus plots we used ggplot2120. 
 
 
 
Additional resources 
 
MPRA library synthesis and cloning protocol:  
https://www.protocols.io/edit/mpra-synthesis-library-design-and-cloning-soranzo-cs3awgie 
 
Step by step protocol used to design and clone the MPRA oligos into the reporter vector. 
 
MPRA nucleofection: https://www.protocols.io/edit/mpra-synthesis-cellular-work-and-
nucleofection-sor-cs3jwgkn 
 
Step by step protocol used to nucleofect the library into the cancer cell lines. 
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MPRA library preparation for sequencing: https://www.protocols.io/edit/mpra-synthesis-dna-
rna-isolation-and-library-prepa-cs3mwgk6  
 
Step by step protocol used to extract and prepare the different MPRA libraries for sequencing. 
 
Haemvar architecture/ documentation: https://haemvar.org  
 
We created the HaemVar Database of genetic variants and blood-related traits, containing the 
complete association and fine-mapping result data set of all the variants associations to 29 blood 
cell phenotypes assessed by Vuckovic et al2, and including further annotation data for the 
prioritised subset of 178,890 variants as described above; see section ‘Variant Annotation’. All 
information contained in the HaemVar Database is presented through an open-access website 
that generates comprehensive gene and variant-specific data reports with downloadable tables 
and figures. The software of the web-based application is written in PHP for server-side handling 
and optimisation of database access and data output, and uses the open-source Vega v5 
(http://vega.github.io) JavaScript library for custom generation of data-driven and (partially) 
interactive visualisations. 
 
Declaration of generative AI and AI-assisted technologies in the writing process 
 
During the preparation of this work the author(s) used ChatGPT in order to improve language 
and readability. After using this tool/service, the author(s) reviewed and edited the content as 
needed and take(s) full responsibility for the content of the publication. 
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Rsid chr:pos ref > alt1 Mechanism Candidate gene GWAS traits GWS trait 
lineages 

rs1471766732 chr1:202,129,205 G>A DE PTPN7 MSCV; PLT#; PCT; BASO% ERY; MK 
rs115820925 chr1:29,217,311 G>A ATU EBP41 MRV ERY 
rs127330733 chr1:198,680,015 G>A DE PTPRC MONO%; LYMPH#; LYMPH%; WBC# LYMPH 

rs1506494612,3 chr1:92,925,654 G>C DE + ATU EVI5, GFI15 MONO#; MONO%; LYMPH%; WBC# GM 

rs140397066 chr2:144,162,105 A>G DE ARHGAP15 
PDW; MONO#; NEUT%; LYMPH#; LYMPH%; 

WBC# 
MK; GM; 
LYMPH 

rs183347927 chr2:74,920,648 G>A DE DOK1, WBP15 MPV MK 

rs1140506313 chr2:219,020,958 C>T DE CXCR2 MONO%; NEUT#; NEUT%; BASO#; LYMPH%; 
WBC# 

GM 

rs191451841 chr3:128,317,978 C>T ATU GATA25 EO#; EO% GM 

rs112097551 chr3:128,322,617 G>A ATU EEFSEC MCV; MCH; MSCV; MONO#; MONO%; EO#; 
EO% 

ERY; GM 

rs116577908 chr3:17,098,399 A>G ATU PLCL2 RBC#; MCV; MCH; RDW; MRV; MSCV ERY 
rs182089148 chr3:46,354,444 C>T DE CCR2 MONO#; MONO% GM 
rs35592432 chr3:71,355,240 G>C DE + ATU FOXP1-IT15, FOXP15 NEUT%; LYMPH#; LYMPH% LYMPH 

rs187282666 chr5:1,093,511 G>A DE SLC12A7 MCHC; RDW ERY 
rs1862726303 chr5:35,476,470 G>T DE PRLR MONO#; MONO% GM 
rs139141690 chr7:101499930 G>A DE CUX15 RET#; RET%; HLSR#; HLSR%;MPV;PDW;PCT ERY; MK 

rs1494890814 chr8:41589736 T>G ATU ANK1 MCV; MCHC; RDW; RET#; RET%; HLSR#; 
HLSR%; MRV; MSCV 

ERY 

rs149678861 chr15:65,174,494 A>G DE ZNF6095, PLEKHO2 PDW MK 
rs112401631 chr17:38,764,524 T>A DE + ATU CCR7  EO#;EO%; LYMPH#; LYMPH% GM; LYMPH 

rs17758695 chr18:60,920,854 C>T ATU BCL25 
RBC#; MCV; MCH; MRV; MSCV; PLT#; MPV; 

PCT; MONO#; MONO%; NEUT#; BASO#; 
BASO%; EO#; EO%; WBC# 

ERY; MK; GM 

rs17242843 chr19:11,210,157 C>T DE EPOR, DOCK6 RDW; MSCV ERY 
rs569022307 chr19:15,653,669 T>C ATU RASAL3 LYMPH# LYMPH 
rs62237617 chr22:28761148 C>T DE CHEK2 PCT; LYMPH# MK; LYMPH 

 

Table 1. Variants with curated mechanistic hypothesis. For the abbreviations of blood phenotypes see Table S3. DE = Differential Expression, ATU = Alternative Transcript Usage. 
MK = megakaryocytic; ERY = erythroid; LYMPH = lymphocyte; GM = granulocyte monocyte. Trait pleiotropy: No = Lineage restricted, Yes = Multi lineage 

                                                           

1
 Genomic coordinates are in the GRCh37/hg19 assembly 

2
 Described as eQTL for the candidate gene in the BluePrint Consortium 

3
 Described as eQTL for the candidate gene in the eQTLGen Consortium 

4
 Described as sQTL for the candidate gene in the INTERVAL RNA-seq work 

5
 Transcription factor or protein known to regulate gene expression 
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