

1 **Title:** Plant functional groups and root traits are linked to exudation rates of mature temperate trees.

2
3 **Authors:** Young E. Oh¹, Meghan G. Midgley², M. Luke McCormack², Katelyn V. Beidler³,
4 Marshall McCall⁴, Savannah Henderson², Renato K. Braghieri^{5,6}, and Richard P. Phillips¹

5
6 1. Department of Biology, Indiana University, Bloomington IN, USA
7 2. Center for Tree Science, The Morton Arboretum, Lisle, IL, United States,
8 3. Department of Plant and Microbial Biology, University of Minnesota, Saint Paul MN, USA
9 4. School of the Environment, Yale University, New Haven, USA
10 5. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
11 6. California Institute of Technology, Pasadena, CA, US

12
13 **Keywords:** fine root, root traits, root economic space, rhizodeposition, belowground carbon
14 allocation, rhizosphere carbon flux

15 **Abstract.**

16 While root exudation has the potential to affect soil biogeochemistry profoundly, the process is
17 rarely quantified in mature, field-grown trees. We measured rates of carbon (C) exudation in 11
18 trees species that exhibit divergent root traits, including gymnosperms and angiosperms that
19 associate with either arbuscular mycorrhizal (AM) or ectomycorrhizal (EcM) fungi. Our goal was
20 to explore how tree species, plant functional groups and root traits collectively influence exudation
21 patterns. Intraspecific variation in exudation rates was larger than interspecific variation, and
22 neither functional groups nor morphological traits alone could sufficiently explain variation in this
23 flux. EcM-associated gymnosperms exuded 2.4 times more C than EcM angiosperms and 1.5 times
24 more than AM gymnosperms. Exudation rates correlated positively with specific root length (SRL)
25 and specific root area (SRA), and were correlated with root tissue density and root diameter in
26 EcM-associated species. Mixed-effect models revealed that exudation rates were best determined
27 by a combination of phylogenetic group, tree-mycorrhizal type and SRA, though a large portion
28 of unexplained variation suggests that contemporary environmental and local edaphic conditions
29 are likely important. Collectively, our results reveal that exudation is a complex physiological
30 process governed by multiple factors and cannot be fully explained by functional groups or root
31 traits alone. Instead, a combined consideration of these factors and new experimental approaches
32 may be needed before exudation patterns can be linked to plant trait frameworks and incorporated
33 into large-scale models.

35 **Introduction**

36

37 Global environmental changes are altering plant community composition, with poorly understood
38 impacts on belowground processes and biogeochemical cycling (Fei et al., 2017; Jo et al., 2019).
39 Root carbon (C) exudation is a physiological process that links aboveground-belowground
40 interactions (Bardgett, 2014; McCormack et al., 2017; Weemstra et al., 2022; Wen et al., 2022)
41 and, in many cases, mediates ecosystem responses to global change (Norby et al., 2024; Phillips
42 et al., 2011). Root exudates represent 5–20% of photosynthetically-fixed C (Chari et al., 2024),
43 and much of this C fuels rhizosphere microbes that, in turn, determine soil organic matter dynamics
44 (Chari & Taylor, 2022) and nutrient availability (Brzostek et al., 2014; Finzi et al., 2015; Meier et
45 al., 2017; Yin et al., 2014). In this way, exudation rates affect ecosystem C balance through their
46 effects on both nutrient uptake/primary production and microbial decomposition. Given this role,
47 a deeper understanding of factors that mediate exudate fluxes should enhance our understanding
48 of the ecosystem effects of plant community change (Freschet et al., 2021; Jo et al., 2019;
49 McCormack et al., 2017).

50

51 Root traits impact many ecosystem processes (Bardgett, 2014), yet there is little consensus about
52 which traits, if any, align with exudation rates. Exudation rates have been reported to be associated
53 positively with both specific root length (SRL; Meier et al., 2020; Tückmantel et al., 2017; Wang
54 et al., 2021) and negatively with root tissue density (RTD; Sun et al., 2017, 2021) - traits that
55 capture different dimensions of root economic space (RES; Bergmann et al., 2020; McCormack &
56 Iversen, 2019; Weemstra et al., 2016; Weigelt et al., 2021). In the RES, RTD and root N represent
57 a ‘conservation’ gradient (e.g., ‘fast’ vs. ‘slow’), whereby long-lived, tissue-dense roots (high RTD)
58 slowly provision N to hosts relative to fast-growing acquisitive roots with low RTD and high root
59 N (Bergmann et al., 2020; Weigelt et al., 2021). Orthogonal to this axis is the ‘collaboration’
60 gradient (e.g., ‘outsourcing’ vs. ‘do-it-yourself’) defined by SRL and root diameter (Bergmann et
61 al., 2020; McCormack & Iversen, 2019; Weemstra et al., 2016; Weigelt et al., 2021; Wen et al.,
62 2022; Yaffar et al., 2022). Here, large diameter roots with low SRL are colonized by mycorrhizal
63 fungi to a greater extent than thin, high SRL roots (Bergmann et al., 2020; Weigelt et al., 2021).
64 However, links between exudation and both axes of the RES remain unclear, indicating that the
65 relationship may depend on site factors (climate, soils and nutrient availability) and the traits of

66 the species under consideration. As such, investigations of multiple tree species (with divergent
67 traits) growing in a common soil may help resolve this apparent paradox.

68

69 Tree species also exhibit varying degrees of plasticity in terms of their root traits (Weemstra &
70 Valverde-Barrantes, 2022), which could influence exudation dynamics. Traits like SRL and
71 branching intensity (BI) are associated with nutrient acquisition (Comas & Eissenstat, 2009), and
72 tend to be more plastic than traits linked to structural stability and longevity, such as RTD and root
73 diameter (Comas et al., 2012, 2014; Comas & Eissenstat, 2009; Sun et al., 2021). Whether
74 exudation rates display greater intraspecific variation than morphological root traits remains
75 unresolved (Sun et al., 2021), posing a key challenge for detecting the exudation-trait relationships.

76

77 Many root traits show a strong phylogenetic signal (Brundrett, 2002; Comas et al., 2012, 2014)
78 suggesting that exudation rates may differ among tree species with divergent evolutionary histories
79 (e.g., angiosperms vs. gymnosperms) and distinct mycorrhizal associations (e.g., arbuscular vs.
80 ectomycorrhizal associations; AM vs. EcM). Moreover, if exudation patterns evolved as a means
81 for dealing with nutrient limitations, links between tree species' evolutionary history, root traits
82 and exudation might be expected. Early gymnosperms had thick, dense, long-lived roots that
83 associated with 'ancestral' AM fungi (Brundrett, 2002; Comas et al., 2012). As greater water and
84 nutrient limitations emerged and selected for gymnosperms with highly-branched roots colonized
85 by fungi derived from saprotrophs (i.e., EcM fungi), high exudation rates may have represented
86 an additional strategy for nutrient acquisition (Brundrett, 2002; Read & Perez-Moreno, 2003).
87 When angiosperms arose in the early Cretaceous, some species evolved thin diameter, highly
88 proliferative roots (Brundrett, 2002; Comas et al., 2012; Guo et al., 2008) whereas others - often
89 in nutrient-poor soils - developed EcM associations (Comas et al., 2012; Read & Perez-Moreno,
90 2003). Whether exudation rates relate to tree species' belowground C allocation and nutrient
91 acquisition strategies is unknown, yet there are reasons to suspect that the evolutionary processes
92 that shape root trait syndromes and tree-mycorrhizal associations also affect exudation.

93

94 There has been little consensus over whether exudation rates differ among tree species from
95 different functional groups (Brzostek et al., 2013; Liese et al., 2018; Wang et al., 2021). Exudation
96 could be greater in EcM trees (relative to AM trees) if exudation is a reflection of the C sink

97 strength of roots, which is typically greater in EcM root systems (Hobbie, 2006). Alternatively, if
98 exudation rates reflect C allocation tradeoffs within the root system (e.g., C exuded by roots comes
99 at a cost to C used to support mycorrhizal fungi; Wen et al., 2019), one might expect higher
100 exudation in AM trees where the C costs of supporting AM hyphae are low relative to EcM
101 mycelium (Hawkins et al., 2023). To date, support for both hypotheses is apparent. In temperate
102 forests, EcM trees have been shown to exude more C than AM trees (Brzostek et al., 2013; Phillips
103 & Fahey, 2006; Yin et al., 2014), though this effect is not apparent in young trees (Liese et al.,
104 2018) and the opposite pattern has been reported in sub-tropical forests ([Sun et al., 2021](#)). Likewise,
105 deciduous trees have been shown to have higher exudation rates than evergreen trees in some
106 temperate forests (Sun, et al., 2017; Wang et al., 2021) but not others (Brzostek et al. 2013). In a
107 recent synthesis of dozens of studies, Chari et al. (2024) found no evidence of exudation
108 differences between angiosperms and gymnosperms or between AM and EcM trees. These mixed
109 findings highlight the need to investigate tree functional group effects on exudation at a common
110 site where other factors (climate, tree age, soil characteristics, etc.) can be controlled for.

111

112 In this study, we assessed the effects of tree species, functional groups, and root traits on exudation
113 rates in mature trees grown in monodominant plots in a common soil. Importantly, to disentangle
114 the effects of functional groups (e.g., AM and EcM vs. angiosperms and gymnosperms) from root
115 traits across the RES, we selected tree species from each functional group that spanned a range of
116 root trait space. Our objectives were to (1) characterize the extent to which exudation rates vary
117 among tree species and across functional groups, (2) determine which root traits in the RES, if any,
118 are closely related to exudation rates, and (3) build a framework for predicting exudation using
119 readily-measurable root traits and tree functional groups. We hypothesized that exudation rates
120 would differ among tree species and functional groups due to differences in root traits, leading to
121 the prediction that considering both root traits and functional groups would better predict exudation
122 rates (H1). Additionally, we hypothesized that exudation is linked to one or more axes of the RES
123 (H2): (a) congruent to the collaboration gradient (leading to the prediction that exudation correlates
124 positively with SRL or SRA) or (b) congruent to the conservation gradient (leading to the
125 prediction that exudation correlates negatively to RTD).

126

127 **Materials and methods**

128

129 ***Site description***

130 This study was conducted in monoculture plots at the Morton Arboretum, Lisle, Illinois (41.81N,
131 88.05W). The plots were established between 1922 and 1948 to test and study “all the timber trees
132 of the world which might come under consideration for reforestation purposes in this part of the
133 country” (Morton Arboretum Staff, 1929). Soils in the plots are poorly drained Alfisols that form
134 from a thin layer of loess (0.31 m) underlain by glacial till and Mollisols that formed from alluvium
135 (Soil Survey Staff, NRCS, USDA, 2024). The soil series in the plots are primarily Ozaukee silt
136 loams and Sawmill silty clay loam (Midgley & Sims, 2020). The area has a continental climate
137 with temperatures ranging from -6°C in January to 22°C in July and 800-1,000 mm mean annual
138 precipitation.

139

140 Eleven tree species were selected to capture the heterogeneity in root traits among species from
141 distinct functional groups: phylogenetic group (angiosperm *vs.* gymnosperm), tree-mycorrhizal
142 association (AM *vs.* EcM), and leaf habit (deciduous *vs.* evergreen). Within each group, species
143 were chosen based on mean SRL and root tissue N concentration (root N) - the traits that were
144 found to correlate positively with exudation rates in previous studies (Meier et al., 2020; Sun et
145 al., 2021; Wang et al., 2021). As such, selected eleven species spanned a wide range of SRL and
146 root N for each group, ensuring that all selected species captured diverse trait space (Table 1). This
147 allowed for minimizing phylogenetic covariations among traits while maximizing species trait
148 dissimilarities. Out of the eight combinations, only two combinations were absent: evergreen-AM-
149 angiosperms and evergreen-EcM-angiosperms (Table 1).

150

151 ***Root exudation rates***

152 Fine-root exudates were collected during the growing season of 2022 (i.e., from May to July 2022)
153 using an *in-situ* culture-based cuvette system (Phillips et al., 2008). To mitigate the impact of
154 variable weather, sampling campaigns were conducted under sunny and clear conditions, to the
155 extent possible, and each plot was visited twice: once in late May/early June to collect exudates
156 from three individuals and once in late June/early July to collect exudates from 3-4 additional
157 individuals. The terminal roots were excavated carefully from the mineral topsoil below the
158 organic layer. The excavated root segments were examined to ensure that the fine-root system

159 consisted of the first three branching orders with an intact absorptive function. Organic matter and
160 soil particles adhering to the root system were removed with DDI water with extreme caution while
161 keeping the roots moist with wet paper towels. In cases where the distal fine roots were damaged
162 or broken off, samples were discarded, and a new sample was prepared. The intact root systems
163 were placed in cuvettes (30mL syringe) filled with sterile, C-free glass beads (>1mm diameter).
164 The root systems with glass beads were flushed three times with C-free nutrient solution (0.5 mM
165 NH₄NO₃, 0.1 mM KH₂PO₄, 0.2 mM K₂SO₄, 0.15 mM MgSO₄, 0.3 mM CaCl₂) to ensure the root
166 segments and glass beads were well-mixed and to remove any C adhering to the root surface. To
167 ensure the same amount of solution was added to the cuvettes, we added 15mL of nutrient trap
168 solution in the field using a bottle-top dispenser. The cuvette was covered in aluminum foil to
169 allow the root system to equilibrate with the cuvette environment. The same procedure was applied
170 to the control (i.e., no root) cuvette with the same glass beads and nutrient solution. The cuvettes
171 were placed at the exact excavated area and covered with soils and organic matter and incubated
172 for approximately 24 hrs.

173

174 After the one-day incubation period, the sampled roots with the cuvette were clipped with care and
175 brought to the laboratory for analysis. Within one hour of clipping, each cuvette was flushed with
176 15mL of the working nutrient solution three times to remove accumulated exudates in the cuvette.
177 All solutions were filtered immediately through a sterile 0.22 μ m syringe filter (Millex-GV 0.22 μ m
178 PVDF 33mm Gamma Sterilized 50/Pk, Millipore Co., Billerica, MA) and refrigerated at 4°C until
179 analyses (<24 h). All samples were analyzed for non-particulate organic C on a TOC analyzer
180 (Shimadzu Scientific Instruments, Columbia, MD) within a day of sample collection. The total
181 mass-specific exudation rate was calculated with the total C captured from the trap solution minus
182 the total C flushed from the root-free control cuvettes divided by the dry root biomass and day (mg
183 C * g_{root}⁻¹ * day⁻¹).

184

185 ***Root morphological and chemical traits***

186 Roots originally placed in the cuvette were carefully collected from the cuvette, washed, and stored
187 at 4°C until processing. Fine-root morphology was analyzed for all the fine roots with a transparent
188 flat-bed scanner and the WinRHIZO program (Regent Instruments, Quebec, QC, Canada). Scans
189 were collected at a resolution of 600 dpi. All root samples were dried at 65°C for at least 48 h, and

190 the dried root biomass was used for root trait calculations. Specific root length (SRL, in m g^{-1} : the
191 length of the fine roots divided by the corresponding root dry weight), specific root area (SRA, in
192 $\text{cm}^2 \text{ g}^{-1}$: the area of the fine roots divided by the corresponding root dry weight), root tissue density
193 (RTD, in g cm^{-3} : root dry weight divided by root volume), root branching intensity (BI, in the
194 number of tips per total fine-root length), and root diameter (diameter, in cm) were calculated from
195 WinRHIZO. Root N concentration (per dry weight) was measured independently in the lab using
196 an elemental combustion system (Costech Analytical Technologies).

197

198 ***Statistical analyses***

199 We used an analysis of variance (ANOVA), mixed linear models, and variance partitioning to
200 characterize the extent to which root exudation rates vary among tree species and across functional
201 groups. To test for differences in exudation rates among tree species, we conducted pairwise
202 comparisons after an ANOVA using a Tukey's Honest Significant Difference (HSD) test. To test
203 for differences in exudation rates among tree functional groups, we built a mixed linear model with
204 mycorrhizal type, phylogeny, and their interaction as fixed effects and species-plot as a random
205 effect using restricted maximum likelihood ('lme4::lmer' via REML). To evaluate the significance
206 of each nested group in the model after accounting for all other groups, Type III ANOVA with
207 Satterthwaite's Method using the 'lme4::anova' was performed to summarize the results of each
208 model. To control the likelihood of false positives in all linear mixed effects models, adjusted p-
209 values from BH Correction (Benjamini-Hochberg) test were performed using the p.adjust function.
210 To quantify the contributions of inter- vs. intraspecific variation to exudation rates in mixed effects
211 models, a variation partitioning analysis was performed using the 'VEGAN::varpart'. To show co-
212 variations among root traits, a pairwise trait relationships between exudation rates and root traits
213 were also performed using Pearson's correlations at the individual tree level using 'corr.test'
214 function. Root traits and exudation rates were natural-log-transformed prior to analyses to meet
215 model assumptions of residual normality and homogeneity of variance.

216

217 To assess how and the extent to which root exudation rates are associated with root trait
218 coordination, we used principal components analysis (PCA) (Weigelt et al., 2023) and Redundancy
219 Analysis (RDA). To examine how exudation rates aligns with major dimensions in the PCA, we
220 created an ordination of RTD, root N, SRL, Diameter, SRA, and BI along with exudation rates

221 using princomp () with standardized PCA. To examine the significance of linear relationships
222 between exudation rates and the first four axes, we created a PCA without exudation rates and
223 preformed Pearson's product-moment correlation test between PCs and exudation using cor.test
224 function. To select the best predicting root trait or subset of predictors, we built a PCA with four
225 core variables (RTD, root N, SRL, and Diameter) and evaluated the relationship between root
226 exudation rates as a trait and the traits that comprise the PCA. We used RDA models for PCs to
227 explain exudation using 'VEGAN::rda' and selected the best predicting trait using
228 'VEGAN::ordistep' with both forward and backward stepwise model selection.

229

230 To identify the functional groups and root traits that collectively best predict exudation rates, we
231 used a stepwise model selection approach using linear mixed-effects models by 'lme4::lmer' via
232 REML. The fixed effects included six root traits (RTD, root N, SRL, Diameter, SRA, and BI) along
233 with mycorrhizal type or phylogenetic group. Monodominant plot identity (i.e., species-plot) was
234 treated as a random effect. Model selection was based on improvements in Akaike Information
235 Criterion (AIC) and likelihood ratio tests comparing full and reduced models. Building on the best-
236 performing model, we further tested interactions between traits and functional groups (e.g.,
237 Exudation ~ Trait \times Functional Group). We examined the explanatory power of each model by
238 calculating marginal (R^2_m) and conditional (R^2_c) R-squared values, where R^2_m represents variance
239 explained by fixed effects and R^2_c includes both fixed and random effects (Nakagawa & Schielzeth,
240 2013). Model assumptions for selected models were verified via checks for residual normality,
241 homoscedasticity, and unbiasedness. All statistical analyses were performed using R v.3.5.3 (R
242 Core Team, 2017).

243

244 Results

245

246 Hypothesis 1: Exudation differences among species and functional groups

247

248 Variation in exudation rates among tree species and functional groups

249 We found partial support for H1, as species explained 22% of the total variation in exudation rates
250 in our model (Adj. $R^2 = 0.22$; $p = 0.01$). While not all species differed in their exudation rates
251 (ANOVA using Tukey's HSD test), *Larix gmelinii* exhibited significantly higher rates of root

252 exudation compared to *Chamaecyparis pisifera* ($p=0.03$) and *Carya ovata* ($p<0.01$) (Fig. 1a; Table
253 2). The mean exudation rate of *L. gmelinii* ($3.82 \text{ mgC g}_{\text{root}}^{-1} * \text{day}^{-1}$) was more than twice that of
254 the second-highest species, *Picea abies* ($1.52 \text{ mgC g}_{\text{root}}^{-1} * \text{day}^{-1}$) (Fig. 1a; Table 2).

255

256 We also found a significant interaction between mycorrhizal type and phylogenetic group in
257 exudation rates ($\text{Chisq} = 9.27$, Adj. $p < 0.01$; Table 3). On average, EcM gymnosperms exuded 2.4
258 times more C than EcM angiosperms and 1.5 times more C than AM gymnosperms (Fig. 1b).
259 Despite these notable differences, tree mycorrhizal type, phylogenetic group, and leaf habit alone
260 did not significantly explain variation in exudation ($\text{Chisq} \leq 0.98$, Adj. $p \geq 0.48$; Table 3).
261 Additionally, we did not detect a significant interaction between mycorrhizal association and leaf
262 habit ($\text{Chisq} = 1.90$, Adj. $p = 0.34$; Table 3).

263

264 Exudation rates exhibited over twice the variability of most root traits with a coefficient of
265 variation (CV%) of 119% compared to lower variability across root traits (Table S1). This higher
266 CV% corresponded to a high intraspecific variation (i.e., 77%) (Fig. S9; Table S3). Most root traits
267 had CV% s below 40%, except for BI at 44% (Table S1), suggesting morphological traits are
268 generally more conservative (i.e., less plastic) than exudation. High interspecific variation was
269 observed in most root traits (RTD, root N, root diameter, and BI), whereas ‘composite’ and
270 ‘acquisitive’ root traits such as SRL and SRA showed high intraspecific variability (>50%) and
271 intermediate CV% s (38% and 30%, respectively) (Fig S9; Table S3). Together, unlike most root
272 traits, exudation rates in our study can only be partially explained by species.

273

274 **Hypothesis 2: Exudation and the root economic space (RES)**

275

276 The first two principal axes of the PCA generated with seven core root traits (RTD, root N, SRL,
277 Diameter, SRA, BI, and exudation rates) explained 73% of the total variation in root traits (Fig.
278 2a; Table S5). The axis generated by RTD-root N was closely mapped onto PC1 reflecting the
279 conservation gradient, while the axis generated by SRL-Diameter was loaded closely onto PC2
280 representing the collaboration gradient (Bergmann et al., 2020; Fig. 2a). The first five PCs
281 demonstrated eigenvalues exceeding those predicted by random chance (as determined by Broken
282 Stick analysis; Fig. S6), indicating that these axes accounted for more variance than would be

283 expected under random conditions. In addition, the first three PCs showed eigenvalues greater than
284 1.0, indicating the significant contribution of three PCs to the ordination (Table S5; Tabachnik &
285 Fidell, 1996).

286
287 Redundancy analysis (RDA) with permutation tests indicated that exudation rates were not
288 significantly associated with variation along PC1 and PC2, which were generated with six root
289 traits excluding exudation rates ($p>0.15$; Fig. S7). However, exudation rates were significantly
290 correlated with PC3 ($R^2 = 0.08$, $p=0.03$) and PC4 ($R^2 = 0.10$, $p=0.02$), while the two PCs accounted
291 for 10% and 6% of the total variation, respectively (Fig. S7). PC3 and PC4 together explained a
292 greater proportion of variance in exudation (exudation \sim PC3 + PC4; $R^2 = 0.18$, $p=0.004$). Notably,
293 stepwise model selection based on RDA of the PCA derived from four core root traits (SRL–
294 Diameter, RTD–Root N; Fig. S4) identified RTD as the only significant predictor of exudation
295 (AIC = 3.56, F = 5.05, $p=0.015$). These results suggest that exudation likely correlates with the
296 conservation gradient, but also suggest that root exudation is more strongly associated with trait
297 variation captured by more than just the first two principal components in the RES.

298
299 **The effects of tree functional groups on trait-exudation relationships**

300
301 ***Mixed-effect model predictions***
302 Consistent with the prediction derived from the first hypothesis, incorporating both root traits and
303 tree functional groups enhanced model predictions of exudation. As such, the best-performing
304 mixed-effects model included SRA and the interaction term between the phylogenetic group and
305 mycorrhizal types (exudation \sim SRA + mycorrhizal-type:phylogeny + (1|species); $R^2c = 0.36$;
306 $p<0.01$; Fig. 3; Table 4). That is, tree species with higher SRA - indicative of more acquisitive root
307 strategies - exhibited significantly higher exudation rates ($Std \beta = 1.13 \pm 0.39$, Adj. $p=0.013$; Fig.
308 3; Table 4). However, the interaction between mycorrhizal-type and phylogeny modified this
309 relationship: compared to the baseline group (EcM-Gymnosperms), all other combinations (AM-
310 Angiosperms, EcM-Angiosperms, and AM-Gymnosperms) showed significantly lower exudation
311 rates (Adj. $p=0.01$; Fig. 1b). A larger model that additionally included root N also significantly
312 predicted exudation rates ($p<0.01$; Table S4), albeit with a slightly reduced fit. These results

313 supported our second hypothesis, suggesting that exudation rates might be influenced by both
314 acquisitive and conservative root traits, as captured by variation in SRA and root N.

315

316 ***Exudation-trait correlations in mixed effects models***

317 Linear mixed effects models that included significant effects of mycorrhizal association on
318 exudation provide partial support for exudation as both an acquisitive resource exploitation
319 strategy and a physiological process governed by C allocation tradeoffs. Across all species,
320 variation in SRL, and SRA, and partly in root diameter, significantly accounted for variation in
321 root exudation (Fig. 4; Table 4). The negative relationship of exudation with RTD and positive
322 relationship with root diameter were modulated by mycorrhizal association (Fig. 4; Table 4), while
323 phylogenetic group showed little effects on trait-exudation relationships (Table S2).

324

325 Specifically, high SRL and SRA were positively correlated with exudation rates across species
326 (SRL: Std β = 1.5, Adj. p <0.001; SRA: Std β = 1.8, Adj. p =0.03; Table 4). Unlike SRA, this
327 positive relationship between exudation and SRL appeared stronger among AM trees, as indicated
328 by a marginally significant linear relationship in a simple linear model nested in mycorrhizal
329 association (R^2 = 0.13, p =0.051; Fig 4b). The marginally significant interaction term (SRL \times
330 Mycorrhizal Type, Std β = -1.09, Adj. p =0.11; Table 4) suggests that EcM association may
331 modulate this relationship, potentially exhibiting a weaker or even negative association between
332 SRL and exudation compared to AM trees. However, further study is needed to confirm these
333 effects, especially since the relationship was not detected in the bi-variate analysis (Pearson's
334 correlation 'r'; Fig S1).

335

336 While no trend between exudation and RTD across species was detectable, RTD and exudation
337 showed a significant interaction (Std β = -2.0, Adj. p =0.001, Table 4), showing that in ECM trees,
338 increasing RTD was associated with a large decrease in exudation rates (Fig. 4d), with this
339 relationship being more pronounced in gymnosperms (Table 3; Fig 1b). Exudation generally
340 decreased with root diameter across species with marginal significance (Std β = -1.5, Adj. p =0.06;
341 Fig. 4a; Table 4). Notably, EcM trees exhibited higher exudation rates than AM trees after
342 controlling for diameter (Std β = 2.9, adjusted p =0.01; Fig 4a; Table 4), leading to a significant
343 interaction between tree mycorrhizal association and diameter. Together, exploitative root traits

344 such as SRA and SRL associated positively with exudation across species while EcM association
345 significantly influenced the relationships of exudation with RTD, SRA and root diameter.

346

347 **Discussion**

348

349 Our study aimed to identify key drivers of mass-specific root exudation in mature field-grown
350 trees. We hypothesized that exudation rates would differ among tree species and functional groups
351 (H1). Further, we hypothesized that exudation rates would be associated with at least one of the
352 axes of the RES (H2): along the collaboration gradient of the RES owing to exudation's functional
353 role as a nutrient acquisition strategy and/or along the conservation gradient of the RES owing to
354 exudation's role as a competing sink for C (e.g., root tissue construction costs). We found partial
355 support for H1, as exudation rates varied partly among tree species, and EcM gymnosperms
356 exhibited greater exudation rates than other tree functional groups. In partial support of our second
357 hypothesis, exudation rates correlated positively with SRL and SRA (across all species) and in
358 EcM trees, correlated with conserved traits such as root diameter and RTD. However, while
359 exudation rates were loaded weakly onto the 'fast' side of the conservative gradient in the RES,
360 exudation was not correlated with the first two axes. Rather, exudation was better predicted by
361 independent third and fourth (i.e., non-RES) axes. Finally, we found that the best model to predict
362 exudation rates across all 11 species contained SRA (with a significant correlation with SRL)
363 coupled with a strong influence from mycorrhizal type on phylogeny. Collectively, our study
364 indicates that root exudation is a complex physiological process and cannot be fully explained by
365 species identity or root traits alone. Instead, a combined consideration of these factors offers a
366 more accurate prediction of fine-root physiological functioning.

367

368 ***Tree functional groups partially account for variation in exudation***

369 EcM gymnosperms generally had the highest exudation rates (two-fold higher than other groups),
370 though the reasons remain elusive. High exudation rates have been reported for other EcM
371 gymnosperms in temperate forests (Abramoff & Finzi, 2016; Brunn et al., 2022; Jiang et al., 2021;
372 Yang et al., 2020; Zhang et al., 2016) and under controlled conditions (Sell et al., 2022; Yin et al.,
373 2013). One of the highest exuders in our study, *Larix gmelinii*, has been reported to have elevated
374 exudation rates in a boreal forest as well (Yin et al., 2023). Although the influence of EcM

375 associations on root traits is well documented, their differential impacts on root traits and exudation
376 between angiosperms and gymnosperms remain unclear.

377

378 Three potential mechanisms driving this pattern include tradeoffs between C allocation to EcM
379 fungi and root exudates, leakiness of highly colonized gymnosperm roots, and high exudation rates
380 of EcM fungi themselves. First, EcM gymnosperms might allocate more C to the rhizosphere and
381 lesser to their mycorrhizal partners. For instance, a global synthesis by Hawkins et al. (2023)
382 reported that C allocation to EcM mycelium biomass was ~2.5 times greater in broad-leaved trees
383 (mostly angiosperms) than needle-leaf trees (mostly gymnosperms). However, the Hawkins et al.
384 (2023) synthesis did not account for biome differences, suggesting that reports of lesser C
385 allocation to mycelium in EcM gymnosperms may have been confounded by climate (e.g., if boreal
386 forest needle-leaf trees were compared to temperate/tropical forest broad-leaved trees). In fact,
387 some of the most striking examples of prodigious EcM mycelium come from studies of EcM
388 gymnosperms like *Pinus spp.* (Anderson & Cairney, 2007), and EcM gymnosperms tend to possess
389 short, thick roots (Fig S8) that are well-colonized by mycorrhizal fungi (Cheng et al., 2016; Comas
390 & Eissenstat, 2009; Ma et al., 2018). As such, a second factor that could explain greater exudation
391 in EcM gymnosperms is mycorrhizal-root leakiness. Little is known about whether the mycorrhizal
392 roots of EcM gymnosperms differ from those of EcM angiosperms in leakiness (Farrar et al., 2003).
393 If the magnitude of leakiness is determined by the strength of the C sink - as described by the “hole
394 in the pipe model” for nitrous oxide gas in Firestone and Davidson (1989) - greater exudation in
395 EcM gymnosperms would result from greater C allocation to mycelium. Finally, while EcM fungi
396 are a sink for plant-derived C (Prescott et al., 2020), they too can exude organic C (e.g., oxalic
397 acid), resulting in an additional source of C in the cuvettes (Ahonen-Jonnarth et al., 2000; Sun et
398 al., 1999; Van Schöll et al., 2008). Further studies are required to elucidate the mechanisms that
399 drive high exudation rates of EcM gymnosperms.

400

401 ***The relationships between exudation and root traits that comprise the RES***

402 Exudation rates were aligned weakly with the fast side of the ‘conservation’ gradient defined by
403 RTD and root N in the RES while also showing a strong association with SRA (Sun et al., 2021).
404 These results suggest that exudation may be linked to acquisitive root traits (e.g., high SRA and
405 root N) to optimize soil resource uptake (Hypothesis 2a; Eissenstat, 1991; Eissenstat & Yanai,

406 1997; Lv et al., 2023; Weemstra et al., 2016). These patterns may also reflect a crucial root-soil
407 process where rapid exudation increases soil N availability (Meier et al., 2017), thereby enhancing
408 root metabolic activity characterized by low RTD and high root N (Sun et al., 2021; Wen et al.,
409 2022). We also found that RTD was the single significant predictor for exudation in the RES,
410 partially supporting the prediction that exudation could correlate with root traits related to the
411 conservation gradient reflecting structural stability, longevity, and metabolic activity such as RTD
412 and root N (Hypothesis 2b). The observed significant relationships of exudation with RTD (from
413 RDA analysis) and SRA (from mixed-effects models) likely result from the interplay of root area,
414 tissue permeability, and diffusion strength - all of which can influence exudation rates (Akatsuki
415 & Makita, 2020; Farrar et al., 2003; Jones et al., 2009; Lv et al., 2023; Sun et al., 2021). Since
416 higher RTD often is association with reduced root leakiness and metabolic activity (Farrar et al.,
417 2003), roots with less dense tissues, high root N, and larger surface areas are more likely to exude
418 C. Consistent with our findings, recent studies in cool-temperate and subtropical forests have also
419 reported significant relationships of exudation rates with RTD (-), root N (+), and SRA (+), but not
420 SRL (Akatsuki & Makita, 2020; Sun et al., 2021).

421
422 The alignment of exudation within the RES suggests that exudation may function as an alternative
423 soil resource exploitation strategy (Sun et al., 2021; Wen et al., 2022), modulated by the interplay
424 between mycorrhizal associations (Brzostek et al., 2013) and root traits under phylogenetic
425 constraints (Williams et al., 2022). However, exudation rates were not associated with the first two
426 PC axes, and additional PC axes (PC3 and PC4; Fig. 2b) were needed to explain variation in
427 exudation. This suggests that exudation may be more strongly associated with traits not considered
428 or other factors. The RES simplifies trait space by collapsing trait variation into ‘collaboration’
429 and ‘conservation’ gradients (Bergmann et al., 2020), yet other dimensions of plant trait variation
430 (e.g., plant height and rooting depth) were found to exist (Weigelt et al., 2021). Whether exudation
431 aligns with this third axis of plant variation is unknown (Freschet et al., 2021; McCormack et al.,
432 2017; Weemstra et al., 2022) or links to other unmeasured processes (e.g., C assimilation and
433 allocation) is not well-understood, but this would be a fruitful line of inquiry in future studies.

434

435 ***Trait-to-exudation relationships constrained by functional group interactions***

436 Exudation rates were significantly linked to acquisitive root traits such as high SRA, high SRL,
437 low RTD, while their variability was strongly influenced by EcM association, root morphology,
438 and C construction costs. Notably, the model that included the interaction between mycorrhizal
439 association and phylogenetic lineage in predicting exudation–SRA relationships outperformed all
440 others (Table 4). These findings collectively suggest that exudation may be linked to acquisitive
441 strategies (e.g., high SRL and SRA, narrow diameters, and low RTD) that favor foraging efficiency
442 under the control of both mycorrhizal association and evolutionary history (Hypothesis 2a;
443 Eissenstat, 1991; Eissenstat & Yanai, 1997; Lv et al., 2023; Weemstra et al., 2016).

444

445 Interestingly, we observed that EcM association influenced the relationship between exudation and
446 diameter, where exudation rates increased with root diameter. This trend was predominantly driven
447 by EcM gymnosperms, which exhibited short, thick roots (Fig. S8) and high exudation rates (Fig.
448 1b) - highlighting their reliance on symbiotic partners for nutrient acquisition. However, a previous
449 study measuring exudation rates of EcM gymnosperms (*Pinus* and *Larix spp.*) found a significant
450 negative relationship between exudation rates and root diameter (Akatsuki & Makita, 2020). These
451 divergent results suggest that while the associations with EcM do broadly affect plant exudation
452 rates, the direction of those relationships likely depends on several factors, including species
453 identity, trait variations and methodological differences (Williams et al., 2021). For example,
454 Akatsuki & Makita (2020) used a glass-fiber filter method that targeted smaller root segments (<
455 3rd order), potentially capturing higher mass-specific exudation rates than the cuvette-base
456 methods of Phillips et al. (2008). This suggests that EcM gymnosperms exude root carbon mostly
457 from lower-order roots and that our cuvette-base methods may underestimate mass-specific
458 exudation rates owing to inclusion of larger root segments (Akatsuki & Makita, 2020). Together,
459 this highlights the complexity of trait-to-exudation relationships and the need for further studies to
460 uncover generalizable patterns across diverse ecosystems.

461

462 Unlike EcM trees, which exhibit differences in some root traits across phylogenies, AM association
463 did not significantly predict most root traits and trait-exudation relationships in our study (Fig. S8)
464 (Akatsuki & Makita, 2020). Instead, AM angiosperms demonstrated greater within-group
465 variability, including exudation rates (Fig. S8), suggesting a flexible, ‘do-it-yourself’ resource
466 acquisition strategy with high plasticity (Bergmann et al., 2020). Together, these findings indicate

467 that elevated exudation rates can result from (1) the interplay of EcM-associated root traits and
468 phylogenetic constraints or (2) enhanced intraspecific variability in acquisitive root traits, allowing
469 for efficient soil resource exploitation with moderate exudation rates.

470

471 ***Challenges and opportunities***

472 Exudation rates for mature, field-grown trees are rare, as all methods used to measure exudation
473 introduce some artifacts; our study is no exception. While the root cuvette method of Phillips et al.
474 (2008) has been used in dozens of forest studies (Chari et al., 2024), important methodological
475 questions remain about how to minimize damage to root systems before placement into cuvettes,
476 how to normalize the rates measured in different scales, the chemistry and sterility of the trapping
477 solution, the duration of the equilibrium period, the duration of the collection period, and the
478 contribution of mycorrhizal fungi to the total exudates (Oburger & Jones, 2018). Moreover, the
479 high degree of spatio-temporal variation in exudation (Jacoby et al., 2017; Jiang et al., 2021; Yang
480 et al., 2020) affects how many samples are needed to draw inferences about species-specific
481 patterns and trait-exudation correlations. While we attempted to minimize variability by selecting
482 tree species grown in a common soil, applying the same methodology to all trees, etc., the
483 substantial amount of variability in exudation within species suggests that this flux may be better
484 linked to dynamic physiological processes such as C assimilation and allocation than to (relatively)
485 static morphological traits.

486

487 **Conclusion**

488

489 We revealed that root exudation was positively associated with acquisitive root traits (SRL and
490 SRA), while exudation-trait relationships were modulated by mycorrhizal association and
491 phylogenetic lineage. EcM trees appeared to influence trait-exudation relationships, especially for
492 RTD and root diameter, with these effects being more pronounced in gymnosperms. As such,
493 constraining trait-exudation relationships with tree functional groups did improve model
494 predictability. Importantly, we demonstrate that root exudation may be a complex physiological
495 process that cannot be explained by species identity, functional groups or individual root traits
496 alone. High intraspecific variation in root exudation (unlike stable morphological traits) likely
497 contributed to the weaker alignment of exudation with the RES. Instead, exudation was linked to

498 additional functional axes beyond the first two axes in the RES. Given the emerging interest in
499 including root physiological traits into the RES (which is based mostly on morphological and
500 chemical traits), our findings suggest that incorporating such dynamic processes into the RES may
501 pose significant challenges and require to identify additional drivers of such dynamics other than
502 root traits. As more mechanistic studies are developed (e.g. tracking exudate responses to tree
503 girdling or nutrient solution culture alterations) and methods for capturing exudates are improved,
504 our ability to understand the role and function of exudates in the environment should come into
505 greater focus.

506

507 **Acknowledgements**

508 This study was supported by the Center for Tree Science fellowship from The Morton Arboretum
509 and Indiana University-Bloomington. Funding to YO and RPP was provided by NSF, DEB,
510 MacroSysBIO & NEON-Enabled Science (Award# 2106096). We thank Elizabeth Huenupi for
511 facilitating lab work in Indiana University and The Morton Arboretum Soils Lab REU students for
512 lab assistance. We are grateful for constructive comments provided by Phillips Lab members.

513

514 **Competing interests**

515 The authors declare that they have no conflict of interest.

516

517 **Author contributions**

518 M.G.M., K.V.B., M.L.M., Y.E.O. and R.P.P. designed the study; M.G.M., K.V.B., M.L.M.,
519 Y.E.O., M.M., R.K.B., and S.H. performed the research; M.G.M., M.M., and Y.E.O. analyzed the
520 data; Y.E.O., M.G.M. and R.P.P. wrote the paper with input from all authors.

521 **References**

522

523 Abramoff, R. Z., & Finzi, A. C. (2016). Seasonality and partitioning of root allocation to
524 rhizosphere soils in a midlatitude forest. *Ecosphere*, 7(11), e01547.
525 <https://doi.org/10.1002/ecs2.1547>

526 Ahonen-Jonnarth, U., Van Hees, P. A. W., Lundström, U. S., & Finlay, R. D. (2000). Organic
527 acids produced by mycorrhizal *Pinus sylvestris* exposed to elevated aluminium and heavy
528 metal concentrations. *New Phytologist*, 146(3), 557–567. <https://doi.org/10.1046/j.1469-8137.2000.00653.x>

529

530 Akatsuki, M., & Makita, N. (2020). Influence of fine root traits on in situ exudation rates in four
531 conifers from different mycorrhizal associations. *Tree Physiology*, 40(8), 1071–1079.
532 <https://doi.org/10.1093/treephys/tpaa051>

533 Anderson, I. C., & Cairney, J. W. G. (2007). Ectomycorrhizal fungi: Exploring the mycelial
534 frontier. *FEMS Microbiology Reviews*, 31(4), 388–406. <https://doi.org/10.1111/j.1574-6976.2007.00073.x>

535

536 Bardgett, R. D. (2014). *Going underground: Root traits as drivers of ecosystem processes*.
537 29(12), 8.

538 Bergmann, J., Weigelt, A., & Laughlin, D. C. (2020). The fungal collaboration gradient
539 dominates the root economics space in plants. *SCIENCE ADVANCES*, 10.

540 Brundrett, M. C. (2002). Coevolution of roots and mycorrhizas of land plants. *New Phytologist*,
541 154(2), 275–304. <https://doi.org/10.1046/j.1469-8137.2002.00397.x>

542 Brunn, M., Hafner, B. D., Zwetsloot, M. J., Weikl, F., Pritsch, K., Hikino, K., Ruehr, N. K.,
543 Sayer, E. J., & Bauerle, T. L. (2022). Carbon allocation to root exudates is maintained in
544 mature temperate tree species under drought. *New Phytologist*, 235(3), 965–977.
545 <https://doi.org/10.1111/nph.18157>

546 Brzostek, E. R., Fisher, J. B., & Phillips, R. P. (2014). Modeling the carbon cost of plant nitrogen
547 acquisition: Mycorrhizal trade-offs and multipath resistance uptake improve predictions of
548 retranslocation: Carbon cost of mycorrhizae. *Journal of Geophysical Research: Biogeosciences*, 119(8), 1684–1697. <https://doi.org/10.1002/2014JG002660>

549

550 Brzostek, E. R., Greco, A., Drake, J. E., & Finzi, A. C. (2013). Root carbon inputs to the
551 rhizosphere stimulate extracellular enzyme activity and increase nitrogen availability in
552 temperate forest soils. *Biogeochemistry*, 115(1–3), 65–76. <https://doi.org/10.1007/s10533-012-9818-9>

553

554 Canarini, A., Kaiser, C., Merchant, A., Richter, A., & Wanek, W. (2019). Root Exudation of
555 Primary Metabolites: Mechanisms and Their Roles in Plant Responses to Environmental
556 Stimuli. *Frontiers in Plant Science*, 10, 157. <https://doi.org/10.3389/fpls.2019.00157>

557 Chari, N. R., & Taylor, B. N. (2022). Soil organic matter formation and loss are mediated by root
558 exudates in a temperate forest. *Nature Geoscience*, 15(12), 1011–1016.

559 Chari, N. R., Tumber-Dávila, S. J., Phillips, R. P., Bauerle, T. L., Brunn, M., Hafner, B. D.,
560 Klein, T., Obersteiner, S., Reay, M. K., Ullah, S., & Taylor, B. N. (2024). Estimating the
561 global root exudate carbon flux. *Biogeochemistry*. <https://doi.org/10.1007/s10533-024-01161-z>

562

563 Cheng, L., Chen, W., Adams, T. S., Wei, X., Li, L., McCormack, M. L., DeForest, J. L., Koide,
564 R. T., & Eissenstat, D. M. (2016). Mycorrhizal fungi and roots are complementary in
565 foraging within nutrient patches. *Ecology*, 97(10), 2815–2823.
566 <https://doi.org/10.1002/ecy.1514>

567 Comas, L. H., Callahan, H. S., & Midford, P. E. (2014). Patterns in root traits of woody species
568 hosting arbuscular and ectomycorrhizas: Implications for the evolution of belowground
569 strategies. *Ecology and Evolution*, 4(15), 2979–2990. <https://doi.org/10.1002/ece3.1147>

570 Comas, L. H., & Eissenstat, D. M. (2009). Patterns in root trait variation among 25 co-existing
571 North American forest species. *New Phytologist*, 182(4), 919–928.
572 <https://doi.org/10.1111/j.1469-8137.2009.02799.x>

573 Comas, L. H., Mueller, K. E., Taylor, L. L., Midford, P. E., Callahan, H. S., & Beerling, D. J.
574 (2012). Evolutionary Patterns and Biogeochemical Significance of Angiosperm Root
575 Traits. *International Journal of Plant Sciences*, 173(6), 584–595.
576 <https://doi.org/10.1086/665823>

577 Eissenstat, D. M. (1991). On the relationship between specific root length and the rate of root
578 proliferation: A field study using citrus rootstocks. *New Phytologist*, 118(1), 63–68.
579 <https://doi.org/10.1111/j.1469-8137.1991.tb00565.x>

580 Eissenstat, D. M., & Yanai, R. D. (1997). The Ecology of Root Lifespan. In *Advances in
581 Ecological Research* (Vol. 27, pp. 1–60). Elsevier. [https://doi.org/10.1016/S0065-2504\(08\)60005-7](https://doi.org/10.1016/S0065-
582 2504(08)60005-7)

583 Farrar, J., Hawes, M., Jones, D., & Lindow, S. (2003). How roots control the flux of carbon to
584 the rhizosphere. *Ecology*, 84(4), 827–837. [https://doi.org/10.1890/0012-9658\(2003\)084\[0827:HRCTFO\]2.0.CO;2](https://doi.org/10.1890/0012-
585 9658(2003)084[0827:HRCTFO]2.0.CO;2)

586 Fei, S., Desprez, J. M., Potter, K. M., Jo, I., Knott, J. A., & Oswalt, C. M. (2017). Divergence of
587 species responses to climate change. *Science Advances*, 3(5), e1603055.
588 <https://doi.org/10.1126/sciadv.1603055>

589 Finzi, A. C., Abramoff, R. Z., Spiller, K. S., Brzostek, E. R., Darby, B. A., Kramer, M. A., &
590 Phillips, R. P. (2015). Rhizosphere processes are quantitatively important components of
591 terrestrial carbon and nutrient cycles. *Global Change Biology*, 21(5), 2082–2094.
592 <https://doi.org/10.1111/gcb.12816>

593 Firestone, M. K., & Davidson, E. A. (1989). Microbiological basis of NO and N₂O production
594 and consumption in soil. Exchange of trace gases between terrestrial ecosystems and the
595 atmosphere, 47, 7-21.

596 Freschet, G. T., Roumet, C., Comas, L. H., Weemstra, M., Bengough, A. G., Rewald, B.,
597 Bardgett, R. D., De Deyn, G. B., Johnson, D., Klimešová, J., Lukac, M., McCormack, M.
598 L., Meier, I. C., Pagès, L., Poorter, H., Prieto, I., Wurzburger, N., Zadworny, M.,
599 Bagniewska-Zadworna, A., ... Stokes, A. (2021). Root traits as drivers of plant and
600 ecosystem functioning: Current understanding, pitfalls and future research needs. *New
601 Phytologist*, 232(3), 1123–1158. <https://doi.org/10.1111/nph.17072>

602 Guo, D., Xia, M., Wei, X., Chang, W., Liu, Y., & Wang, Z. (2008). Anatomical traits associated
603 with absorption and mycorrhizal colonization are linked to root branch order in twenty-
604 three Chinese temperate tree species. *New Phytologist*, 180(3), 673–683.
605 <https://doi.org/10.1111/j.1469-8137.2008.02573.x>

606 Hawkins, H.-J., Cargill, R. I. M., Van Nuland, M. E., Hagen, S. C., Field, K. J., Sheldrake, M.,
607 Soudzilovskaia, N. A., & Kiers, E. T. (2023). Mycorrhizal mycelium as a global carbon
608 pool. *Current Biology*, 33(11), R560–R573. <https://doi.org/10.1016/j.cub.2023.02.027>

609 Hobbie, E. A. (2006). Carbon allocation to ectomycorrhizal fungi correlates with belowground
610 allocation in culture studies. *Ecology*, 87(3), 563–569. <https://doi.org/10.1890/05-0755>

611 Jacoby, R., Peukert, M., Succurro, A., Koprivova, A., & Kopriva, S. (2017). The Role of Soil
612 Microorganisms in Plant Mineral Nutrition—Current Knowledge and Future Directions.
613 *Frontiers in Plant Science*, 8, 1617. <https://doi.org/10.3389/fpls.2017.01617>

614 Jiang, Z., Wang, Q., Xiao, J., Zhang, Z., & Yin, H. (2021). Differential responses of N benefit
615 mediated by root exudate inputs to N addition between two subalpine forests. *Rhizosphere*,
616 19, 100404. <https://doi.org/10.1016/j.rhisph.2021.100404>

617 Jo, I., Fei, S., Oswalt, C. M., Domke, G. M., & Phillips, R. P. (2019). Shifts in dominant tree
618 mycorrhizal associations in response to anthropogenic impacts. *Science Advances*, 5(4),
619 eaav6358. <https://doi.org/10.1126/sciadv.aav6358>

620 Jones, D. L., Nguyen, C., & Finlay, R. D. (2009). Carbon flow in the rhizosphere: Carbon trading
621 at the soil–root interface. *Plant and Soil*, 321(1–2), 5–33. <https://doi.org/10.1007/s11104-009-9925-0>

622 Kumordzi, B. B., Aubin, I., Cardou, F., Shipley, B., Violle, C., Johnstone, J., Anand, M.,
623 Arsenault, A., Bell, F. W., Bergeron, Y., Boulangeat, I., Brousseau, M., De Grandpré, L.,
624 Delagrange, S., Fenton, N. J., Gravel, D., Macdonald, S. E., Hamel, B., Higelin, M., ...
625 Munson, A. D. (2019). Geographic scale and disturbance influence intraspecific trait
626 variability in leaves and roots of North American understorey plants. *Functional Ecology*,
627 33(9), 1771–1784. <https://doi.org/10.1111/1365-2435.13402>

628 Liese, R., Lübbe, T., Albers, N. W., & Meier, I. C. (2018). The mycorrhizal type governs root
629 exudation and nitrogen uptake of temperate tree species. *Tree Physiology*, 38(1), 83–95.
630 <https://doi.org/10.1093/treephys/tpx131>

631 Lv, C., Wang, C., Li, Y., & Zhou, Z. (2023). Coordination among root exudation C, mycorrhizal
632 colonization, and functional traits and their responses to drought in five temperate tree
633 species. *Forest Ecology and Management*, 546, 121316.
634 <https://doi.org/10.1016/j.foreco.2023.121316>

635 Ma, Z., Guo, D., Xu, X., Lu, M., Bardgett, R. D., Eissenstat, D. M., McCormack, M. L., &
636 Hedin, L. O. (2018). Evolutionary history resolves global organization of root functional
637 traits. *Nature*, 555(7694), 94–97. <https://doi.org/10.1038/nature25783>

638 McCormack, M. L., Guo, D., Iversen, C. M., Chen, W., Eissenstat, D. M., Fernandez, C. W., Li,
639 L., Ma, C., Ma, Z., Poorter, H., Reich, P. B., Zadworny, M., & Zanne, A. (2017). Building
640 a better foundation: Improving root-trait measurements to understand and model plant and
641 ecosystem processes. *New Phytologist*, 215(1), 27–37. <https://doi.org/10.1111/nph.14459>

642 McCormack, M. L., & Iversen, C. M. (2019). Physical and Functional Constraints on Viable
643 Belowground Acquisition Strategies. *Frontiers in Plant Science*, 10, 1215.
644 <https://doi.org/10.3389/fpls.2019.01215>

645 Meier, I. C., Finzi, A. C., & Phillips, R. P. (2017). Root exudates increase N availability by
646 stimulating microbial turnover of fast-cycling N pools. *Soil Biology and Biochemistry*,
647 106, 119–128. <https://doi.org/10.1016/j.soilbio.2016.12.004>

648 Meier, I. C., Tückmantel, T., Heitkötter, J., Müller, K., Preusser, S., Wrobel, T. J., Kandeler, E.,
649 Marschner, B., & Leuschner, C. (2020). Root exudation of mature beech forests across a
650 nutrient availability gradient: The role of root morphology and fungal activity. *New
651 Phytologist*, 226(2), 583–594. <https://doi.org/10.1111/nph.16389>

652 Midgley, M. G., & Sims, R. S. (2020). Mycorrhizal Association Better Predicts Tree Effects on
653 Soil Than Leaf Habit. *Frontiers in Forests and Global Change*, 3, 74.
654 <https://doi.org/10.3389/ffgc.2020.00074>

656 Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from
657 generalized linear mixed-effects models. *Methods in ecology and evolution*, 4(2), 133-142.

658 Niu, K., Zhang, S., & Lechowicz, M. J. (2020). Harsh environmental regimes increase the
659 functional significance of intraspecific variation in plant communities. *Functional
660 Ecology*, 34(8), 1666–1677. <https://doi.org/10.1111/1365-2435.13582>

661 Norby, R. J., Loader, N. J., Mayoral, C., Ullah, S., Curioni, G., Smith, A. R., Reay, M. K., Van
662 Wijngaarden, K., Amjad, M. S., Brettle, D., Crockatt, M. E., Denny, G., Grzesik, R. T.,
663 Hamilton, R. L., Hart, K. M., Hartley, I. P., Jones, A. G., Kourmouli, A., Larsen, J. R., ...
664 MacKenzie, A. R. (2024). Enhanced woody biomass production in a mature temperate
665 forest under elevated CO₂. *Nature Climate Change*, 14(9), 983–988.
666 <https://doi.org/10.1038/s41558-024-02090-3>

667 Oburger, E., & Jones, D. L. (2018). Sampling root exudates – Mission impossible? *Rhizosphere*,
668 6, 116–133. <https://doi.org/10.1016/j.rhisph.2018.06.004>

669 Phillips, R. P., Erlitz, Y., Bier, R., & Bernhardt, E. S. (2008). New approach for capturing soluble
670 root exudates in forest soils. *Functional Ecology*, 22(6), 990–999.
671 <https://doi.org/10.1111/j.1365-2435.2008.01495.x>

672 Phillips, R. P., & Fahey, T. J. (2006). TREE SPECIES AND MYCORRHIZAL ASSOCIATIONS
673 INFLUENCE THE MAGNITUDE OF RHIZOSPHERE EFFECTS. *Ecology*, 87(5),
674 1302–1313. [https://doi.org/10.1890/0012-9658\(2006\)87\[1302:TSAMAI\]2.0.CO;2](https://doi.org/10.1890/0012-9658(2006)87[1302:TSAMAI]2.0.CO;2)

675 Phillips, R. P., Finzi, A. C., & Bernhardt, E. S. (2011). Enhanced root exudation induces
676 microbial feedbacks to N cycling in a pine forest under long-term CO₂ fumigation:
677 Rhizosphere feedbacks in CO₂-enriched forests. *Ecology Letters*, 14(2), 187–194.
678 <https://doi.org/10.1111/j.1461-0248.2010.01570.x>

679 Read, D. J., & Perez-Moreno, J. (2003). Mycorrhizas and nutrient cycling in ecosystems – a
680 journey towards relevance? *New Phytologist*, 157(3), 475–492.
681 <https://doi.org/10.1046/j.1469-8137.2003.00704.x>

682 Sell, M., Ostonen, I., Rohula-Okunev, G., Rusalepp, L., Rezapour, A., & Kupper, P. (2022).
683 Responses of fine root exudation, respiration and morphology in three early successional
684 tree species to increased air humidity and different soil nitrogen sources. *Tree Physiology*,
685 42(3), 557–569. <https://doi.org/10.1093/treephys/tpab118>

686 Soil Survey Staff, Natural Resources Conservation Service, United States Department of
687 Agriculture. (2024). *Web Soil Survey*. Retrieved April 22, 2025, from
688 <https://websoilsurvey.nrcs.usda.gov/>

689 Sun, L., Ataka, M., Han, M., Han, Y., Gan, D., Xu, T., Guo, Y., & Zhu, B. (2021). Root exudation
690 as a major competitive fine-root functional trait of 18 coexisting species in a subtropical
691 forest. *New Phytologist*, 229(1), 259–271. <https://doi.org/10.1111/nph.16865>

692 Sun, L., Ataka, M., Kominami, Y., & Yoshimura, K. (2017). Relationship between fine-root
693 exudation and respiration of two *Quercus* species in a Japanese temperate forest. *Tree
694 Physiology*, 37(8), 1011–1020. <https://doi.org/10.1093/treephys/tpx026>

695 Sun, Y.-P., Unestam, T., Lucas, S. D., Johanson, K. J., Kenne, L., & Finlay, R. (1999). Exudation-
696 reabsorption in a mycorrhizal fungus, the dynamic interface for interaction with soil and
697 soil microorganisms. *Mycorrhiza*, 9(3), 137–144. <https://doi.org/10.1007/s005720050298>

698 Tabachnick, B.G. and Fidell, L.S. (1996). Using multivariate statistics. 3rd ed. Harper Collins
699 College. Publ. New York.

700 Tückmantel, T., Leuschner, C., Preusser, S., Kandeler, E., Angst, G., Mueller, C. W., & Meier, I.
701 C. (2017). Root exudation patterns in a beech forest: Dependence on soil depth, root

702 morphology, and environment. *Soil Biology and Biochemistry*, 107, 188–197.
703 <https://doi.org/10.1016/j.soilbio.2017.01.006>

704 Van Schöll, L., Kuyper, T. W., Smits, M. M., Landeweert, R., Hoffland, E., & Breemen, N. V.
705 (2008). Rock-eating mycorrhizas: Their role in plant nutrition and biogeochemical cycles.
706 *Plant and Soil*, 303(1–2), 35–47. <https://doi.org/10.1007/s11104-007-9513-0>

707 Wang, Q., Xiao, J., Ding, J., Zou, T., Zhang, Z., Liu, Q., & Yin, H. (2021). Differences in root
708 exudate inputs and rhizosphere effects on soil N transformation between deciduous and
709 evergreen trees. *Plant and Soil*, 458(1–2), 277–289. [https://doi.org/10.1007/s11104-019-04156-0](https://doi.org/10.1007/s11104-019-
710 04156-0)

711 Weemstra, M., Freschet, G. T., Stokes, A., & Roumet, C. (2021). Patterns in intraspecific
712 variation in root traits are species-specific along an elevation gradient. *Functional
713 Ecology*, 35(2), 342–356. <https://doi.org/10.1111/1365-2435.13723>

714 Weemstra, M., Kuyper, T. W., Sterck, F. J., & Umaña, M. N. (2022). Incorporating belowground
715 traits: Avenues towards a whole-tree perspective on performance. *Oikos*.
716 <https://doi.org/10.1111/oik.08827>

717 Weemstra, M. and Valverde-Barrantes, O. J. 2022. Above- and below-ground trait responses to
718 environmental variation: the need to distinguish inter- and intraspecific variability. A
719 commentary on ‘Above and below-ground plant traits are not consistent in response to
720 drought and competition treatments.’ *Ann. Bot.*: mcac135. doi: 10.1093/aob/mcac135.

721 Weemstra, M., Mommer, L., Visser, E. J. W., Ruijven, J., Kuyper, T. W., Mohren, G. M. J., &
722 Sterck, F. J. (2016). Towards a multidimensional root trait framework: A tree root review.
723 *New Phytologist*, 211(4), 1159–1169. <https://doi.org/10.1111/nph.14003>

724 Weigelt, A., Mommer, L., Andraczek, K., Iversen, C. M., Bergmann, J., Bruelheide, H., Fan, Y.,
725 Freschet, G. T., Guerrero-Ramírez, N. R., Kattge, J., Kuyper, T. W., Laughlin, D. C.,
726 Meier, I. C., Plas, F., Poorter, H., Roumet, C., Ruijven, J., Sabatini, F. M., Semchenko, M.,
727 ... McCormack, M. L. (2021). An integrated framework of plant form and function: The
728 belowground perspective. *New Phytologist*, 232(1), 42–59.
729 <https://doi.org/10.1111/nph.17590>

730 Weigelt, A., Mommer, L., Andraczek, K., Iversen, C. M., Bergmann, J., Bruelheide, H., Freschet,
731 G. T., Guerrero-Ramírez, N. R., Kattge, J., Kuyper, T. W., Laughlin, D. C., Meier, I. C.,
732 Van Der Plas, F., Poorter, H., Roumet, C., Van Ruijven, J., Sabatini, F. M., Semchenko,
733 M., Sweeney, C. J., ... McCormack, M. L. (2023). The importance of trait selection in
734 ecology. *Nature*, 618(7967), E29–E30. <https://doi.org/10.1038/s41586-023-06148-8>

735 Wen, Z., Li, H., Shen, Q., Tang, X., Xiong, C., Li, H., Pang, J., Ryan, M. H., Lambers, H., &
736 Shen, J. (2019). Tradeoffs among root morphology, exudation and mycorrhizal symbioses
737 for phosphorus-acquisition strategies of 16 crop species. *New Phytologist*, 223(2), 882–
738 895. <https://doi.org/10.1111/nph.15833>

739 Wen, Z., White, P. J., Shen, J., & Lambers, H. (2022). Linking root exudation to belowground
740 economic traits for resource acquisition. *New Phytologist*, 233(4), 1620–1635.
741 <https://doi.org/10.1111/nph.17854>

742 Williams, A., Langridge, H., Straathof, A. L., Fox, G., Muhammadali, H., Hollywood, K. A., Xu,
743 Y., Goodacre, R., & de Vries, F. T. (2021). Comparing root exudate collection techniques:
744 An improved hybrid method. *Soil Biology and Biochemistry*, 161, 108391.
745 <https://doi.org/10.1016/j.soilbio.2021.108391>

746 Williams, A., Langridge, H., Straathof, A. L., Muhammadali, H., Hollywood, K. A., Goodacre, R.,
747 & De Vries, F. T. (2022). Root functional traits explain root exudation rate and

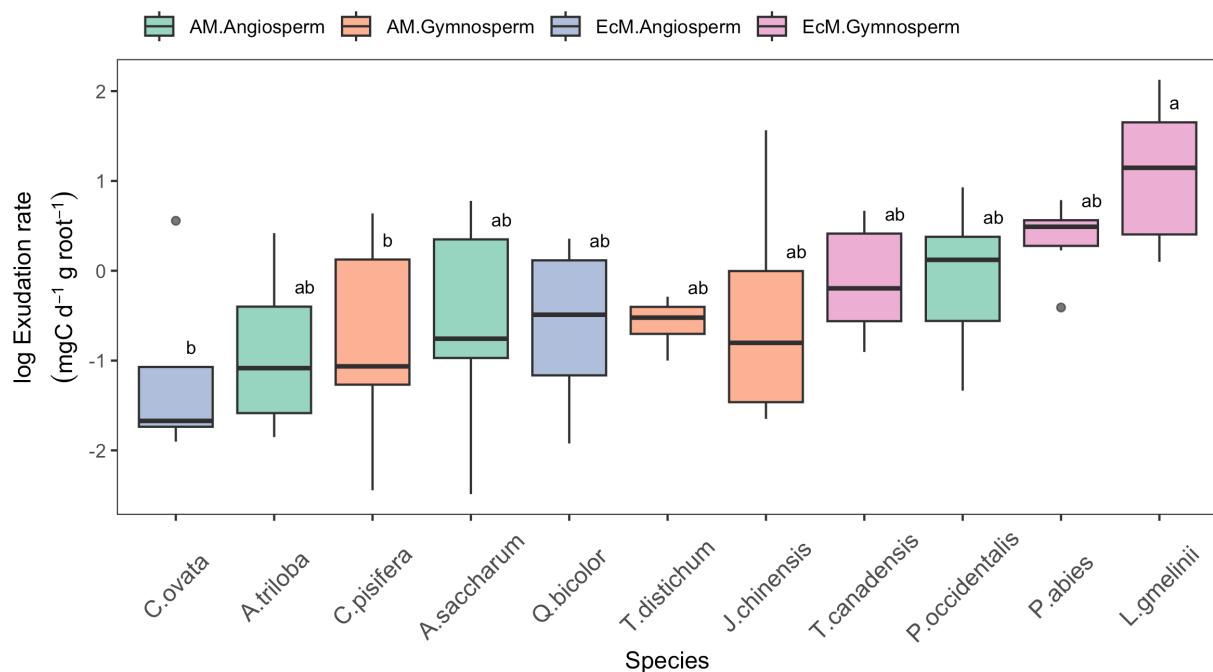
748 composition across a range of grassland species. *Journal of Ecology*, 110(1), 21–33.
749 <https://doi.org/10.1111/1365-2745.13630>

750 Yaffar, D., Cabugao, K. G., & Meier, I. C. (2022). Representing root physiological traits in the
751 root economic space framework. *New Phytologist*, 234(3), 773–775.
752 <https://doi.org/10.1111/nph.18070>

753 Yang, L., Wang, X., Mao, Z., Jiang, Z., Gao, Y., Chen, X., & Aubrey, D. P. (2020). Root
754 Exudation Rates Decrease with Increasing Latitude in Some Tree Species. *Forests*, 11(10),
755 1045. <https://doi.org/10.3390/f11101045>

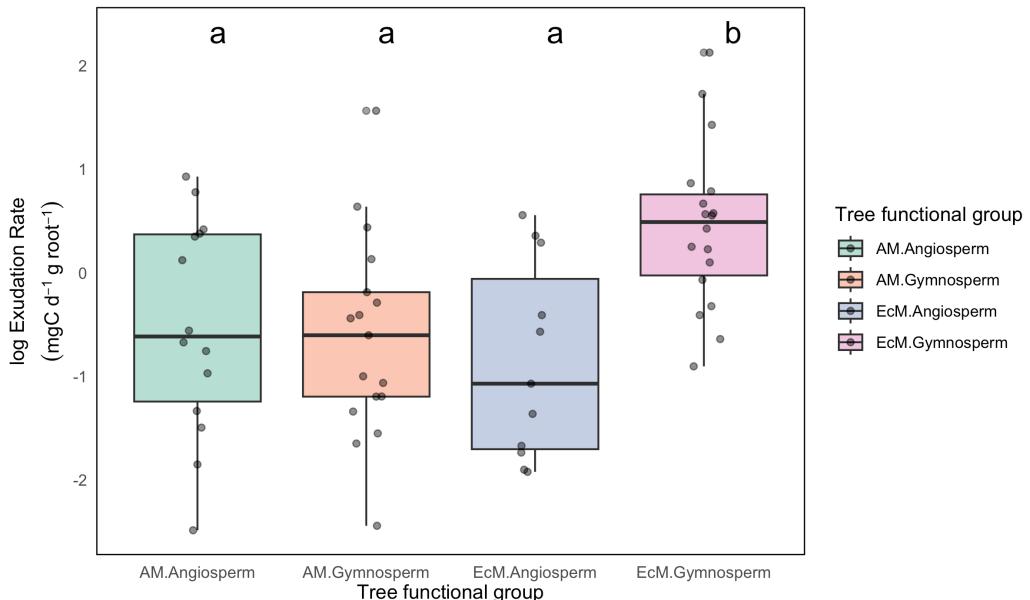
756 Yin, H., Li, Y., Xiao, J., Xu, Z., Cheng, X., & Liu, Q. (2013). Enhanced root exudation stimulates
757 soil nitrogen transformations in a subalpine coniferous forest under experimental
758 warming. *Global Change Biology*, 19(7), 2158–2167. <https://doi.org/10.1111/gcb.12161>

759 Yin, H., Wheeler, E., & Phillips, R. P. (2014). Root-induced changes in nutrient cycling in forests
760 depend on exudation rates. *Soil Biology and Biochemistry*, 78, 213–221.
761 <https://doi.org/10.1016/j.soilbio.2014.07.022>

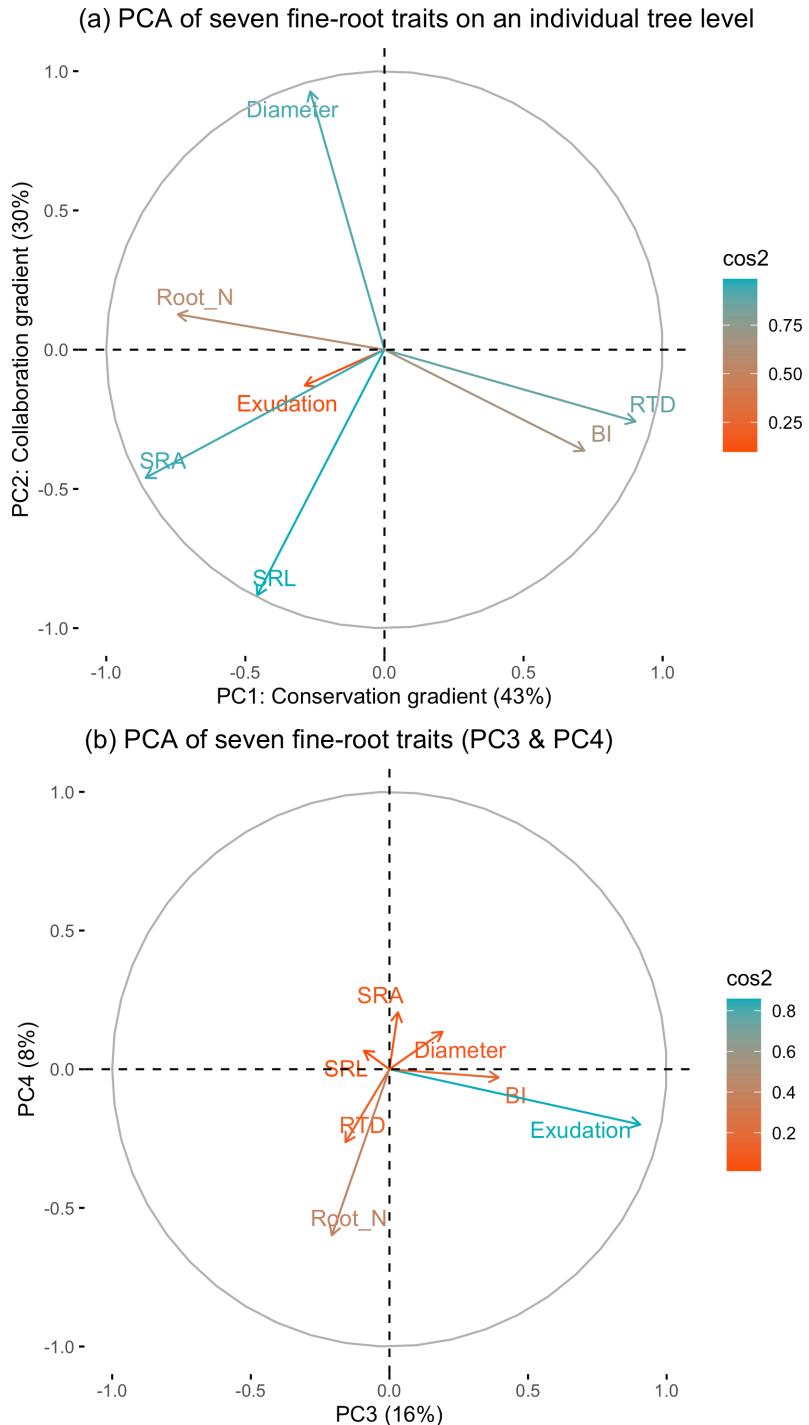

762 Yin, S., Wang, C., Lv, C., & Zhou, Z. (2023). Short-term responses of root traits and carbon
763 exudation to drought in a *Larix gmelinii* plantation. *Plant and Soil*, 484(1–2), 393–405.
764 <https://doi.org/10.1007/s11104-022-05800-y>

765 Zhang, Z., Qiao, M., Li, D., Yin, H., & Liu, Q. (2016). Do warming-induced changes in quantity
766 and stoichiometry of root exudation promote soil N transformations via stimulation of soil
767 nitrifiers, denitrifiers and ammonifiers? *European Journal of Soil Biology*, 74, 60–68.
768 <https://doi.org/10.1016/j.ejsobi.2016.03.007>

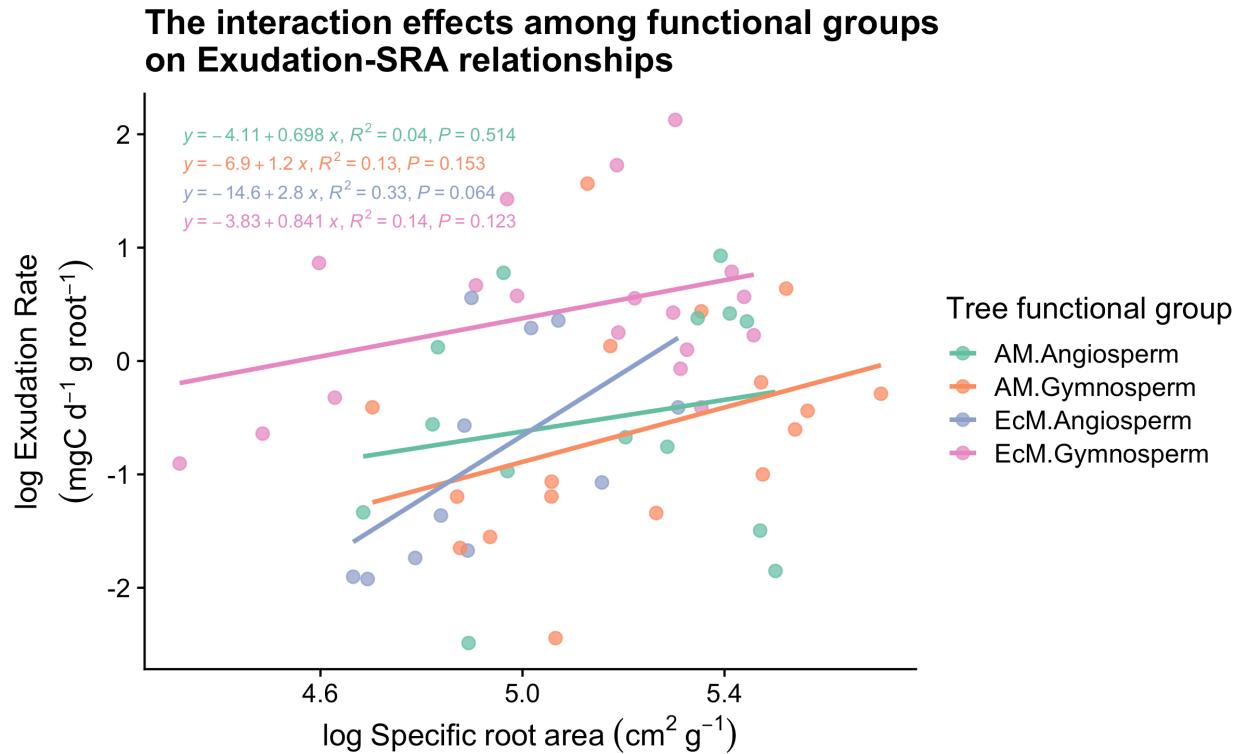
769


770 **Figures and tables**

(a) Mass-specific exudation rate for 11 species

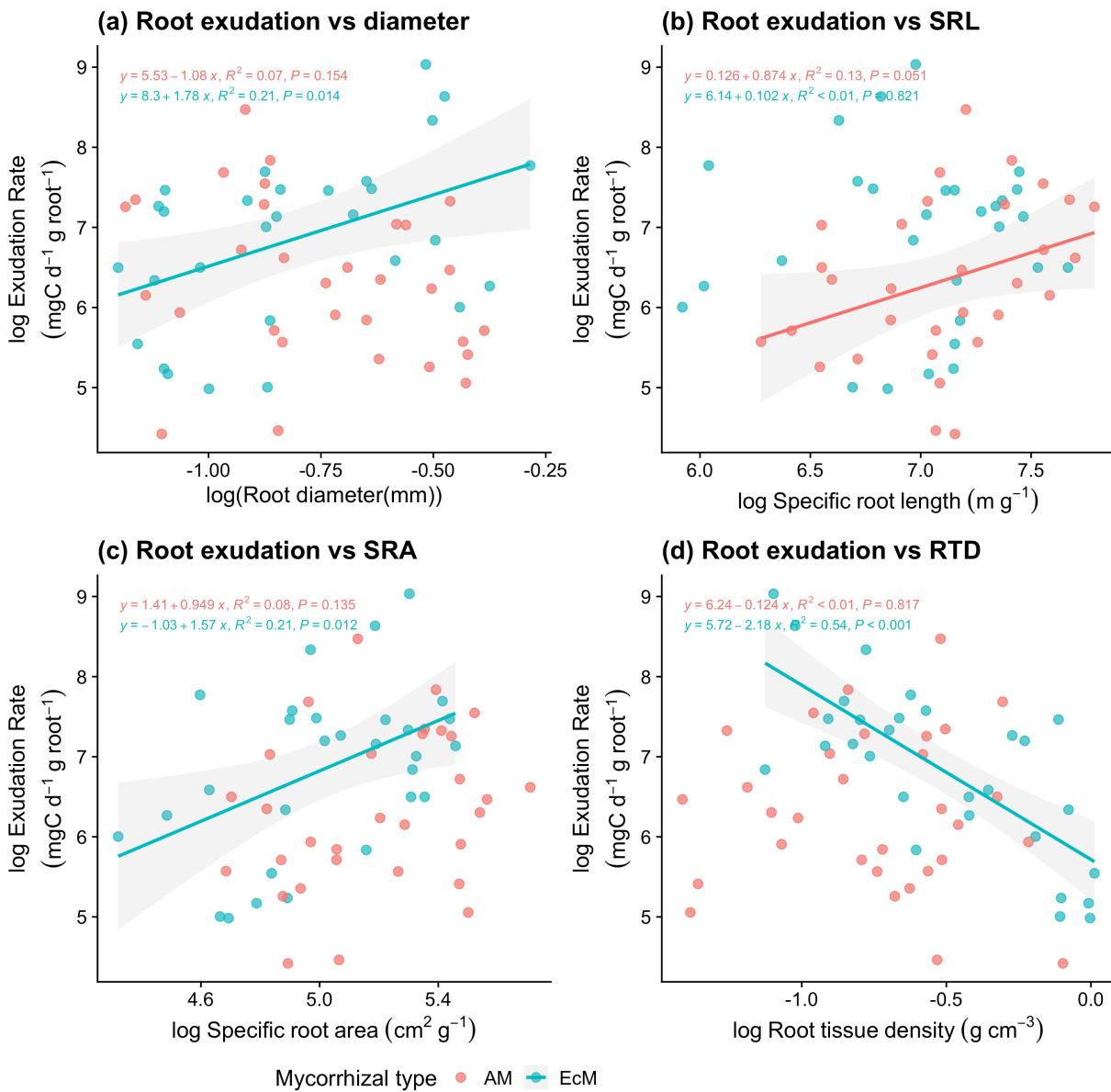

771

(b) Mass-specific exudation rate: Myco+Phylo



772

773 Fig 1) Boxplot of root exudation variation among: (a) 11 tree species and (b) combinations of mycorrhizal
 774 type (AM vs. EcM) and phylogenetic group (Angiosperm vs. gymnosperm) at The Morton Arboretum,
 775 Lisle, IL, USA. The central box in each boxplot represents the median and the interquartile range. The
 776 whiskers extend to the minimum and maximum value. In (a), different lowercase letters denote significant
 777 differences, as determined by a post hoc TukeyHSD test. In (b), different lowercase letters denote
 778 significant differences (Linear mixed model fit by REML; Std β = 9.6, $p=0.03$). Closed circles denote
 779 outliers.



782 Fig 2) Standardized principal components analysis (PCA) of six fine-root functional traits and exudation
783 rates on an individual tree level. 'cos2' values indicate that the quality of the representation of the variable
784 on that principal component as a cos2 value close to 1 indicates that the variable is very well represented
785 by the PC(s) in question. (a) PCA generated by six core root functional traits. PC1 and PC2 likely
786 correspond to conservation and collaboration gradient respectively (Bergmann et al., 2020). (b) Two
787 additional axes (PC 3 & 4) from the PCA.

788
789 Fig 3) Interaction effects of tree functional groups on the relationship between log-transformed specific
790 root area (SRA) and mass-specific exudation rates. The model depicts the interaction effects described in
791 the best-predicting model selected by a stepwise model selection approach: Exudation ~ SRA +
792 myco.type:phylogeny + (1|species) (Table 4). Linear regression lines are shown for each group
793 combination defined by mycorrhizal association (AM or EcM) and phylogeny (Angiosperm or
794 Gymnosperm). Each equation displays the linear fit, R^2 , and p -value. Among groups, EcM Angiosperms
795 showed the steepest positive relationship between SRA and exudation rates ($R^2 = 0.33, P = 0.064$), while
796 other groups exhibited weaker or non-significant trends. This interaction reflects differential trait-based
797 exudation patterns across mycorrhizal and phylogenetic strategies.

Correlation of root exudation with four root Traits

798
799
800
801
802

Fig 4) Linear relationships of log-transformed root exudation with (a) root diameter, (b) SRL, (c) SRA, and (d) RTD measured at The Morton Arboretum, Lisle, IL, USA. The fitted lines indicate statistically significant relationships of root exudation with root traits ($p < 0.1$) that are nested with AM and EcM mycorrhizal association.

Table 1) List of eleven tree species in monodominant forestry plots at The Morton Arboretum (Lisle, IL, USA); All species are ≥ 70 years old except *Asimina triloba*

Species	Soil series	Soil order	Mycorrhizal type	Phylogenetic group	Leaf habit	Clade
<i>Acer saccharum</i>	Ozaukee	Alfisol	AM	Angiosperm	Deciduous	Rosids
<i>Asimina triloba</i>	Ozaukee	Alfisol	AM	Angiosperm	Deciduous	Magnoliids
<i>Platanus occidentalis</i>	Ashkum	Mollisol	AM	Angiosperm	Deciduous	Eudicots
<i>Chamaecyparis pisifera</i>	Ozaukee	Alfisol	AM	Gymnosperm	Evergreen	Gymnosperms
<i>Juniperus chinensis</i>	Ozaukee	Alfisol	AM	Gymnosperm	Evergreen	Gymnosperms
<i>Taxodium distichum</i>	Sawmill	Mollisol	AM	Gymnosperm	Deciduous	Gymnosperms
<i>Carya ovata</i>	Ozaukee	Alfisol	EcM	Angiosperm	Deciduous	Rosids
<i>Quercus bicolor</i>	Sawmill	Mollisol	EcM	Angiosperm	Deciduous	Rosids
<i>Larix gmelinii</i>	Ozaukee	Alfisol	EcM	Gymnosperm	Deciduous	Gymnosperms
<i>Picea abies</i>	Ozaukee	Alfisol	EcM	Gymnosperm	Evergreen	Gymnosperms
<i>Tsuga canadensis</i>	Ozaukee	Alfisol	EcM	Gymnosperm	Evergreen	Gymnosperms

Note: AM, arbuscular mycorrhizal type; EcM, ectomycorrhizal type

Table 2) The species-specific means \pm SDs of six core root traits at The Morton Arboretum, Lisle, IL, USA. n denotes the number of tree individuals sampled. Exudation: mass-specific exudation rate.

Species (plot)	n	Exudation rate (mg C g _{root} ⁻¹ * day ⁻¹)	Specific root length (SRL (cm g ⁻¹))	Root diameter (Diameter (mm))	Root tissue density (RTD (g cm ⁻³))	N concentration (root N (%))	Specific root area (SRA (cm ² g ⁻¹))	Branching intensity (BI (Tips cm ⁻¹))	
<i>Acer saccharum</i>	5	0.91 \pm 0.87	1636.36 \pm 529.41	0.34 \pm 0.03	0.73 \pm 0.14	1.23 \pm 0.09	169.90 \pm 42.69	3.19 \pm 0.50	
<i>Asimina triloba</i>	4	0.60 \pm 0.63	1110.21 \pm 104.32	0.64 \pm 0.02	0.29 \pm 0.05	2.91 \pm 0.23	222.05 \pm 28.12	0.72 \pm 0.06	
<i>Platanus occidentalis</i>	5	1.19 \pm 0.88	1045.53 \pm 540.38	0.52 \pm 0.10	0.52 \pm 0.07	1.74 \pm 0.23	157.53 \pm 52.86	2.95 \pm 0.53	
<i>Chamaecyparis pisifera</i>	7	0.75 \pm 0.71	1528.93 \pm 460.45	0.42 \pm 0.06	0.51 \pm 0.09	1.87 \pm 0.18	195.13 \pm 39.51	2.18 \pm 0.56	
<i>Juniperus chinensis</i>	6	1.22 \pm 1.78	863.63 \pm 273.33	0.55 \pm 0.09	0.54 \pm 0.11	1.39 \pm 0.11	142.73 \pm 25.23	2.40 \pm 0.90	
<i>Taxodium distichum</i>	4	0.58 \pm 0.16	1696.22 \pm 374.94	0.51 \pm 0.08	0.31 \pm 0.04	1.89 \pm 0.26	264.06 \pm 26.82	2.02 \pm 0.42	
<i>Carya ovata</i>	5	0.52 \pm 0.69	1160.74 \pm 209.51	0.37 \pm 0.05	0.85 \pm 0.17	1.25 \pm 0.26	133.43 \pm 25.23	5.32 \pm 1.15	
<i>Quercus bicolor</i>	6	0.73 \pm 0.54	1439.00 \pm 397.30	0.33 \pm 0.02	0.86 \pm 0.14	1.29 \pm 0.14	146.67 \pm 32.44	5.63 \pm 0.48	
<i>Larix gmelinii</i>	6	3.82 \pm 2.83	975.76 \pm 384.57	0.58 \pm 0.11	0.43 \pm 0.07	1.48 \pm 0.12	167.97 \pm 40.13	3.68 \pm 0.60	
<i>Picea abies</i>	6	1.52 \pm 0.52	1639.29 \pm 220.22	0.42 \pm 0.04	0.45 \pm 0.05	2.01 \pm 0.13	214.35 \pm 19.09	4.44 \pm 0.66	
805	<i>Tsuga canadensis</i>	6	1.05 \pm 0.66	689.36 \pm 276.65	0.59 \pm 0.07	0.60 \pm 0.17	1.24 \pm 0.42	125.24 \pm 46.82	4.16 \pm 0.63

Table 3) Type III Analysis of Variance Table for predicting root traits of 11 tree species in The Morton Arboretum (n =60) using a linear mixed model (dependent variables~myco x phylo x leaf + (1|species)). The species were nested in mycorrhizal types, phylogenetic groups and leaf habit. p-values (P<0.1) are highlighted in bold. The significance of fixed effects in the model was tested by Type III ANOVA with Wald chisquare tests. All measurements were log-transformed to ensure normality and improve homogeneity of variance.

Fixed Effect	Mass-specific Exudation rate			Root diameter (mm)			Specific root length (m g ⁻¹)			Specific root area (cm ² g ⁻¹)		
	Chisq	Pr(>Chisq)	Adjusted p	Chisq	Pr(>Chisq)	Adjusted p	Chisq	Pr(>Chisq)	Adjusted p	Chisq	Pr(>Chisq)	Adjusted p
Mycorrhizal type (myco)	0.98	0.32	0.48	4.37	0.04	0.11	0.08	0.77	0.77	2.44	0.12	0.16
Phylogenetic group (phylo)	0.02	0.88	0.92	0.08	0.78	0.78	1.15	0.28	0.34	3.92	0.048	0.10
Leaf habit (leaf)	0.01	0.92	0.92	0.09	0.77	0.78	1.45	0.23	0.34	4.83	0.028	0.08
myco:phylo	9.27	0.002	0.007	2.58	0.11	0.22	2.22	0.14	0.34	0.66	0.42	0.42
myco:leaf	1.90	0.169	0.337	0.09	0.77	0.78	1.27	0.26	0.34	2.26	0.13	0.16
% of the total variance explained by random effect (Species plot)	> 0.1%			55.2% (p<0.001)			33.3% (p<0.001)			26% (p<0.01)		

Fixed Effect	Root tissue density (g cm ⁻³)			Root N concentration (%)			Branching intensity (cm ⁻¹)		
	Chisq	Pr(>Chisq)	Adjusted p	Chisq	Pr(>Chisq)	Adjusted p	Chisq	Pr(>Chisq)	Adjusted p
Mycorrhizal type (myco)	9.42	0.0021	0.006	3.23	0.072	0.22	10.82	0.0010	0.0057
Phylogenetic group (phylo)	3.69	0.055	0.082	0.01	0.91	0.91	0.02	0.89	0.92
Leaf habit (leaf)	4.52	0.034	0.067	0.30	0.58	0.87	0.05	0.82	0.92
myco:phylo	0.42	0.52	0.52	0.13	0.72	0.87	0.59	0.442	0.88
myco:leaf	1.05	0.30	0.37	0.20	0.65	0.87	0.01	0.922	0.92
% of the total variance explained by random effect (Species plot)	45.5% (p<0.001)			55.4% (p<0.001)			74% (p<0.001)		

Note. Numerator Degrees of Freedom = 1; Denominator Degrees of Freedom =60. Mass-specific exudation rate (mgC*d⁻¹*g root⁻¹)

Table 4) Mixed effects models for the effects of mycorrhizal type on exudation-to-trait relationships. The model considered root traits \times mycorrhizal type + (1|species.plot) to predict exudation rates. 'species.plot' represents species-specific monodominant plots at The Morton Arboretum, Lisle, IL. The best model (exudation \sim SRA + Mycorrhizal type:Phylogeny) is selected via a stepwise reduction approach using mixed models. The other models are ordered from the lowest AIC values. The numbers in the table represent coefficients estimate (Std β) and standard error (Std SE) in brackets. Adjusted p-values were calculated using the Benjamini-Hochberg (BH) correction for multiple testing. Bold value indicates statistical significance of Adjusted p-values less than 0.05. Significance levels of Adjusted p-values: * $p<0.05$; ** $p<0.01$; *** $p<0.001$. The comprehensive table for the effects of phylogeny on trait-exudation relationships is in Table S2.

Model to predict exudation rates - AIC values	Significant Fixed effect term - R^2_m & R^2_c	Std β (Std SE)	Adjusted p
SRA + Mycorrhizal type : Phylogeny - AIC = 164.8	(Intercept)	-5.2936 (1.99)*	0.013
Best model selected with AIC = 164.8	SRA	1.13 (0.39)**	0.013
	AM : Angiosperm	-1.05 (0.33)*	0.013
	EcM : Angiosperm	-1.13 (0.35)*	0.013
	AM : Gymnosperm	-1.23 (0.33)**	0.013
	$- R^2_m = 0.34; R^2_c = 0.36$		
RTD * Mycorrhizal type - AIC=163.2	RTD : EcM	-2.05 (0.64)**	0.008
	$- R^2_m = 0.24; R^2_c = 0.44$		
SRA * Mycorrhizal type - AIC=169.3	SRA	1.76 (0.64)*	0.023
	$- R^2_m = 0.33; R^2_c = 0.33$		
SRL * Mycorrhizal type - AIC=170.7	SRL	1.54 (0.45)**	0.005
	$- R^2_m = 0.19; R^2_c = 0.43$		
Diameter (mm) * Mycorrhizal type - AIC=173.0	ECM	2.91 (0.90)*	0.016
	Diameter : ECM	3.09 (1.09)*	0.027
	$- R^2_m = 0.10; R^2_c = 0.27$		

Note) Insignificant models (i.e., Root N * Mycorrhizal type; BI * Mycorrhizal type) and fixed effect terms are not reported in this table. See Table S2 for comprehensive results that include the effects from phylogeny on trait-exudation relationships. All measured variables were log-transformed to ensure normality of data. (Intercept) represents baseline exudation rate (AM reference). R^2_m , Marginal R^2 ; R^2_c , Conditional R^2 , RTD. R^2_m represents variance explained by fixed effects only, whereas R^2_c indicates variance explained by both fixed and random effects. Root Tissue Density (g/cm^3); SRA, Specific Root Area (m^2/g); Specific Root Length (cm/g); Diameter, root mean diameter (mm); Root N, Root N Concentration (%); BI, Branching Intensity (cm^{-1}).