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Abstract.

While root exudation has the potential to affect soil biogeochemistry profoundly, the process is
rarely quantified in mature, field-grown trees. We measured rates of carbon (C) exudation in 11
trees species that exhibit divergent root traits, including gymnosperms and angiosperms that
associate with either arbuscular mycorrhizal (AM) or ectomycorrhizal (EcM) fungi. Our goal was
to explore how tree species, plant functional groups and root traits collectively influence exudation
patterns. Intraspecific variation in exudation rates was larger than interspecific variation, and
neither functional groups nor morphological traits alone could sufficiently explain variation in this
flux. EcM-associated gymnosperms exuded 2.4 times more C than EcM angiosperms and 1.5 times
more than AM gymnosperms. Exudation rates correlated positively with specific root length (SRL)
and specific root area (SRA), and were correlated with root tissue density and root diameter in
EcM-associated species. Mixed-effect models revealed that exudation rates were best determined
by a combination of phylogenetic group, tree-mycorrhizal type and SRA, though a large portion
of unexplained variation suggests that contemporary environmental and local edaphic conditions
are likely important. Collectively, our results reveal that exudation is a complex physiological
process governed by multiple factors and cannot be fully explained by functional groups or root
traits alone. Instead, a combined consideration of these factors and new experimental approaches
may be needed before exudation patterns can be linked to plant trait frameworks and incorporated
into large-scale models.
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Introduction

Global environmental changes are altering plant community composition, with poorly understood
impacts on belowground processes and biogeochemical cycling (Fei et al., 2017; Jo et al., 2019).
Root carbon (C) exudation is a physiological process that links aboveground-belowground
interactions (Bardgett, 2014; McCormack et al., 2017; Weemstra et al., 2022; Wen et al., 2022)
and, in many cases, mediates ecosystem responses to global change (Norby et al., 2024; Phillips
et al., 2011). Root exudates represent 5-20% of photosynthetically-fixed C (Chari et al., 2024),
and much of'this C fuels rhizosphere microbes that, in turn, determine soil organic matter dynamics
(Chari & Taylor, 2022) and nutrient availability (Brzostek et al., 2014; Finzi et al., 2015; Meier et
al., 2017; Yin et al., 2014). In this way, exudation rates affect ecosystem C balance through their
effects on both nutrient uptake/primary production and microbial decomposition. Given this role,
a deeper understanding of factors that mediate exudate fluxes should enhance our understanding
of the ecosystem effects of plant community change (Freschet et al., 2021; Jo et al., 2019;
McCormack et al., 2017).

Root traits impact many ecosystem processes (Bardgett, 2014), yet there is little consensus about
which traits, if any, align with exudation rates. Exudation rates have been reported to be associated
positively with both specific root length (SRL; Meier et al., 2020; Tiickmantel et al., 2017; Wang
et al., 2021) and negatively with root tissue density (RTD; Sun et al., 2017, 2021) - traits that
capture different dimensions of root economic space (RES; Bergmann et al., 2020; McCormack &
Iversen, 2019; Weemstra et al., 2016; Weigelt et al., 2021). In the RES, RTD and root N represent
a ‘conservation’ gradient (e.g., ‘fast’ vs. ‘slow’), whereby long-lived, tissue-dense roots (high RTD)
slowly provision N to hosts relative to fast-growing acquisitive roots with low RTD and high root
N (Bergmann et al., 2020; Weigelt et al., 2021). Orthogonal to this axis is the ‘collaboration’
gradient (e.g., ‘outsourcing’ vs. ‘do-it-yourself”) defined by SRL and root diameter (Bergmann et
al., 2020; McCormack & Iversen, 2019; Weemstra et al., 2016; Weigelt et al., 2021; Wen et al.,
2022; Yaffar et al., 2022). Here, large diameter roots with low SRL are colonized by mycorrhizal
fungi to a greater extent than thin, high SRL roots (Bergmann et al., 2020; Weigelt et al., 2021).
However, links between exudation and both axes of the RES remain unclear, indicating that the

relationship may depend on site factors (climate, soils and nutrient availability) and the traits of
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the species under consideration. As such, investigations of multiple tree species (with divergent

traits) growing in a common soil may help resolve this apparent paradox.

Tree species also exhibit varying degrees of plasticity in terms of their root traits (Weemstra &
Valverde-Barrantes, 2022), which could influence exudation dynamics. Traits like SRL and
branching intensity (BI) are associated with nutrient acquisition (Comas & Eissenstat, 2009), and

tend to be more plastic than traits linked to structural stability and longevity, such as RTD and root

suggesting that exudation rates may differ among tree species with divergent evolutionary histories
(e.g., angiosperms vs. gymnosperms) and distinct mycorrhizal associations (e.g., arbuscular vs.
ectomycorrhizal associations; AM vs. EcM). Moreover, if exudation patterns evolved as a means
for dealing with nutrient limitations, links between tree species’ evolutionary history, root traits
and exudation might be expected. Early gymnosperms had thick, dense, long-lived roots that
associated with ‘ancestral’ AM fungi (Brundrett, 2002; Comas et al., 2012). As greater water and
nutrient limitations emerged and selected for gymnosperms with highly-branched roots colonized
by fungi derived from saprotrophs (i.e., EcM fungi), high exudation rates may have represented
When angiosperms arose in the early Cretaceous, some species evolved thin diameter, highly
proliferative roots (Brundrett, 2002; Comas et al., 2012; Guo et al., 2008) whereas others - often
in nutrient-poor soils - developed EcM associations (Comas et al., 2012; Read & Perez-Moreno,
2003). Whether exudation rates relate to tree species’ belowground C allocation and nutrient
acquisition strategies is unknown, yet there are reasons to suspect that the evolutionary processes

that shape root trait syndromes and tree-mycorrhizal associations also affect exudation.

There has been little consensus over whether exudation rates differ among tree species from
different functional groups (Brzostek et al., 2013; Liese et al., 2018; Wang et al., 2021). Exudation

could be greater in EcM trees (relative to AM trees) if exudation is a reflection of the C sink
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97  strength of roots, which is typically greater in EcM root systems (Hobbie, 2006). Alternatively, if

98 exudation rates reflect C allocation tradeoffs within the root system (e.g., C exuded by roots comes

99 at a cost to C used to support mycorrhizal fungi; Wen et al., 2019), one might expect higher
100  exudation in AM trees where the C costs of supporting AM hyphae are low relative to EcM
101  mycelium (Hawkins et al., 2023). To date, support for both hypotheses is apparent. In temperate
102  forests, EcM trees have been shown to exude more C than AM trees (Brzostek et al., 2013; Phillips
103 & Fahey, 2006; Yin et al., 2014), though this effect is not apparent in young trees (Liese et al.,
104  2018) and the opposite pattern has been reported in sub-tropical forests (Sun et al., 2021). Likewise,
105  deciduous trees have been shown to have higher exudation rates than evergreen trees in some
106  temperate forests (Sun, et al., 2017; Wang et al., 2021) but not others (Brzostek et al. 2013). In a
107 recent synthesis of dozens of studies, Chari et al. (2024) found no evidence of exudation
108  differences between angiosperms and gymnosperms or between AM and EcM trees. These mixed
109  findings highlight the need to investigate tree functional group effects on exudation at a common
110  site where other factors (climate, tree age, soil characteristics, etc.) can be controlled for.
111
112  Inthis study, we assessed the effects of tree species, functional groups, and root traits on exudation
113  rates in mature trees grown in monodominant plots in a common soil. Importantly, to disentangle
114  the effects of functional groups (e.g., AM and EcM vs. angiosperms and gymnosperms) from root
115 traits across the RES, we selected tree species from each functional group that spanned a range of
116  root trait space. Our objectives were to (1) characterize the extent to which exudation rates vary
117  among tree species and across functional groups, (2) determine which root traits in the RES, if any,
118  are closely related to exudation rates, and (3) build a framework for predicting exudation using
119  readily-measurable root traits and tree functional groups. We hypothesized that exudation rates
120  would differ among tree species and functional groups due to differences in root traits, leading to
121  the prediction that considering both root traits and functional groups would better predict exudation
122 rates (H1). Additionally, we hypothesized that exudation is linked to one or more axes of the RES
123 (H2): (a) congruent to the collaboration gradient (leading to the prediction that exudation correlates
124  positively with SRL or SRA) or (b) congruent to the conservation gradient (leading to the
125  prediction that exudation correlates negatively to RTD).
126
127  Materials and methods
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128

129  Site description

130  This study was conducted in monoculture plots at the Morton Arboretum, Lisle, Illinois (41.81N,
131  88.05W). The plots were established between 1922 and 1948 to test and study “all the timber trees
132 of the world which might come under consideration for reforestation purposes in this part of the
133 country” (Morton Arboretum Staff, 1929). Soils in the plots are poorly drained Alfisols that form
134  from a thin layer of loess (0.31 m) underlain by glacial till and Mollisols that formed from alluvium
135  (Soil Survey Staff, NRCS, USDA, 2024). The soil series in the plots are primarily Ozaukee silt
136  loams and Sawmill silty clay loam (Midgley & Sims, 2020). The area has a continental climate
137  with temperatures ranging from -6°C in January to 22°C in July and 800-1,000 mm mean annual
138  precipitation.

139

140  Eleven tree species were selected to capture the heterogeneity in root traits among species from
141  distinct functional groups: phylogenetic group (angiosperm vs. gymnosperm), tree-mycorrhizal
142  association (AM vs. EcM), and leaf habit (deciduous vs. evergreen). Within each group, species
143 were chosen based on mean SRL and root tissue N concentration (root N) - the traits that were
144  found to correlate positively with exudation rates in previous studies (Meier et al., 2020; Sun et
145  al., 2021; Wang et al., 2021). As such, selected eleven species spanned a wide range of SRL and
146  root N for each group, ensuring that all selected species captured diverse trait space (Table 1). This
147  allowed for minimizing phylogenetic covariations among traits while maximizing species trait
148  dissimilarities. Out of the eight combinations, only two combinations were absent: evergreen-AM-
149  angiosperms and evergreen-EcM-angiosperms (Table 1).

150

151  Root exudation rates

152 Fine-root exudates were collected during the growing season of 2022 (i.e., from May to July 2022)
153  wusing an in-situ culture-based cuvette system (Phillips et al., 2008). To mitigate the impact of
154  variable weather, sampling campaigns were conducted under sunny and clear conditions, to the
155  extent possible, and each plot was visited twice: once in late May/early June to collect exudates
156  from three individuals and once in late June/early July to collect exudates from 3-4 additional
157  individuals. The terminal roots were excavated carefully from the mineral topsoil below the

158 organic layer. The excavated root segments were examined to ensure that the fine-root system
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159  consisted of the first three branching orders with an intact absorptive function. Organic matter and
160  soil particles adhering to the root system were removed with DDI water with extreme caution while
161  keeping the roots moist with wet paper towels. In cases where the distal fine roots were damaged
162  or broken off, samples were discarded, and a new sample was prepared. The intact root systems
163  were placed in cuvettes (30mL syringe) filled with sterile, C-free glass beads (>1mm diameter).
164  The root systems with glass beads were flushed three times with C-free nutrient solution (0.5 mM
165 NH4NOs3, 0.1 mM KH2POy4, 0.2 mM K3S0O4, 0.15 mM MgS04, 0.3 mM CaCl,) to ensure the root
166  segments and glass beads were well-mixed and to remove any C adhering to the root surface. To
167  ensure the same amount of solution was added to the cuvettes, we added 15mL of nutrient trap
168  solution in the field using a bottle-top dispenser. The cuvette was covered in aluminum foil to
169 allow the root system to equilibrate with the cuvette environment. The same procedure was applied
170  to the control (i.e., no root) cuvette with the same glass beads and nutrient solution. The cuvettes
171  were placed at the exact excavated area and covered with soils and organic matter and incubated
172 for approximately 24 hrs.

173

174  After the one-day incubation period, the sampled roots with the cuvette were clipped with care and
175  brought to the laboratory for analysis. Within one hour of clipping, each cuvette was flushed with
176  15mL of the working nutrient solution three times to remove accumulated exudates in the cuvette.
177  All solutions were filtered immediately through a sterile 0.22 um syringe filter (Millex-GV 0.22um
178  PVDF 33mm Gamma Sterilized 50/Pk, Millipore Co., Billerica, MA) and refrigerated at 4°C until
179  analyses (<24 h). All samples were analyzed for non-particulate organic C on a TOC analyzer
180  (Shimadzu Scientific Instruments, Columbia, MD) within a day of sample collection. The total
181  mass-specific exudation rate was calculated with the total C captured from the trap solution minus
182  the total C flushed from the root-free control cuvettes divided by the dry root biomass and day (mg
183  C * groot! * day™).

184

185  Root morphological and chemical traits

186  Roots originally placed in the cuvette were carefully collected from the cuvette, washed, and stored
187  at4°C until processing. Fine-root morphology was analyzed for all the fine roots with a transparent
188  flat-bed scanner and the WinRHIZO program (Regent Instruments, Quebec, QC, Canada). Scans
189  were collected at a resolution of 600 dpi. All root samples were dried at 65°C for at least 48 h, and
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190  the dried root biomass was used for root trait calculations. Specific root length (SRL, in m g! : the
191  length of the fine roots divided by the corresponding root dry weight), specific root area (SRA, in
192 cm? g!: the area of the fine roots divided by the corresponding root dry weight), root tissue density
193 (RTD, in g cm? : root dry weight divided by root volume), root branching intensity (BI, in the
194  number of tips per total fine-root length), and root diameter (diameter, in cm) were calculated from
195  WinRHIZO. Root N concentration (per dry weight) was measured independently in the lab using
196  an elemental combustion system (Costech Analytical Technologies).

197

198  Statistical analyses

199  We used an analysis of variance (ANOVA), mixed linear models, and variance partitioning to
200  characterize the extent to which root exudation rates vary among tree species and across functional
201  groups. To test for differences in exudation rates among tree species, we conducted pairwise
202  comparisons after an ANOVA using a Tukey’s Honest Significant Difference (HSD) test. To test
203  for differences in exudation rates among tree functional groups, we built a mixed linear model with
204  mycorrhizal type, phylogeny, and their interaction as fixed effects and species-plot as a random
205  effect using restricted maximum likelihood (‘Ime4::lmer’ via REML). To evaluate the significance
206  of each nested group in the model after accounting for all other groups, Type III ANOVA with
207  Satterthwaite's Method using the ‘Ime4::anova’ was performed to summarize the results of each
208 model. To control the likelihood of false positives in all linear mixed effects models, adjusted p-
209  values from BH Correction (Benjamini-Hochberg) test were performed using the p.adjust function.
210  To quantify the contributions of inter- vs. intraspecific variation to exudation rates in mixed effects
211  models, a variation partitioning analysis was performed using the ‘VEGAN::varpart’. To show co-
212 variations among root traits, a pairwise trait relationships between exudation rates and root traits
213 were also performed using Pearson’s correlations at the individual tree level using ‘corr.test’
214  function. Root traits and exudation rates were natural-log-transformed prior to analyses to meet
215  model assumptions of residual normality and homogeneity of variance.

216

217  To assess how and the extent to which root exudation rates are associated with root trait
218  coordination, we used principal components analysis (PCA) (Weigelt et al., 2023) and Redundancy
219  Analysis (RDA). To examine how exudation rates aligns with major dimensions in the PCA, we

220 created an ordination of RTD, root N, SRL, Diameter, SRA, and BI along with exudation rates
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221  using princomp () with standardized PCA. To examine the significance of linear relationships
222  between exudation rates and the first four axes, we created a PCA without exudation rates and
223 preformed Pearson’s product-moment correlation test between PCs and exudation using cor.test
224  function. To select the best predicting root trait or subset of predictors, we built a PCA with four
225  core variables (RTD, root N, SRL, and Diameter) and evaluated the relationship between root
226  exudation rates as a trait and the traits that comprise the PCA. We used RDA models for PCs to
227  explain exudation using ‘VEGAN:rda’ and selected the best predicting trait using
228  ‘VEGAN::ordistep’ with both forward and backward stepwise model selection.

229

230  To identify the functional groups and root traits that collectively best predict exudation rates, we
231  used a stepwise model selection approach using linear mixed-effects models by ‘Ime4::lmer’ via
232 REML. The fixed effects included six root traits (RTD, root N, SRL, Diameter, SRA, and BI) along
233 with mycorrhizal type or phylogenetic group. Monodominant plot identity (i.e., species-plot) was
234 treated as a random effect. Model selection was based on improvements in Akaike Information
235  Criterion (AIC) and likelihood ratio tests comparing full and reduced models. Building on the best-
236  performing model, we further tested interactions between traits and functional groups (e.g.,
237  Exudation ~ Trait x Functional Group). We examined the explanatory power of each model by
238  calculating marginal (R?m) and conditional (R?c) R-squared values, where R?m represents variance
239  explained by fixed effects and R?c includes both fixed and random effects (Nakagawa & Schielzeth,
240  2013). Model assumptions for selected models were verified via checks for residual normality,
241  homoscedasticity, and unbiasedness. All statistical analyses were performed using R v.3.5.3 (R
242 Core Team, 2017).

243

244  Results

245

246  Hypothesis 1: Exudation differences among species and functional groups

247

248  Variation in exudation rates among tree species and functional groups

249  We found partial support for H1, as species explained 22% of the total variation in exudation rates
250  in our model (Adj. R? = 0.22; p = 0.01). While not all species differed in their exudation rates
251  (ANOVA using Tukey’s HSD test), Larix gmelinii exhibited significantly higher rates of root
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252  exudation compared to Chamaecyparis pisifera (p=0.03) and Carya ovata (p<0.01) (Fig. 1a; Table
253 2). The mean exudation rate of L. gmelinii (3.82 mgC groor! * day™!) was more than twice that of
254  the second-highest species, Picea abies (1.52 mgC groot' * day™!) (Fig. 1a: Table 2).

255

256  We also found a significant interaction between mycorrhizal type and phylogenetic group in
257  exudation rates (Chisq =9.27, Adj. p <0.01; Table 3). On average, EcM gymnosperms exuded 2.4
258 times more C than EcM angiosperms and 1.5 times more C than AM gymnosperms (Fig. 1b).
259  Despite these notable differences, tree mycorrhizal type, phylogenetic group, and leaf habit alone
260 did not significantly explain variation in exudation (Chisq < 0.98, Adj. p > 0.48; Table 3).
261  Additionally, we did not detect a significant interaction between mycorrhizal association and leaf
262  habit (Chisq = 1.90, Adj. p =0.34; Table 3).

263

264  Exudation rates exhibited over twice the variability of most root traits with a coefficient of
265  variation (CV%) of 119% compared to lower variability across root traits (Table S1). This higher
266  CV% corresponded to a high intraspecific variation (i.e., 77%) (Fig. S9; Table S3). Most root traits
267 had CV%s below 40%, except for BI at 44% (Table S1), suggesting morphological traits are
268  generally more conservative (i.e., less plastic) than exudation. High interspecific variation was
269  observed in most root traits (RTD, root N, root diameter, and BI), whereas ‘composite’ and
270  ‘acquisitive’ root traits such as SRL and SRA showed high intraspecific variability (>50%) and
271  intermediate CV%s (38% and 30%, respectively) (Fig S9; Table S3). Together, unlike most root
272 traits, exudation rates in our study can only be partially explained by species.

273

274  Hypothesis 2: Exudation and the root economic space (RES)

275

276  The first two principal axes of the PCA generated with seven core root traits (RTD, root N, SRL,
277  Diameter, SRA, BI, and exudation rates) explained 73% of the total variation in root traits (Fig.
278  2a; Table S5). The axis generated by RTD-root N was closely mapped onto PC1 reflecting the
279  conservation gradient, while the axis generated by SRL-Diameter was loaded closely onto PC2
280 representing the collaboration gradient (Bergmann et al., 2020; Fig. 2a). The first five PCs
281 demonstrated eigenvalues exceeding those predicted by random chance (as determined by Broken

282  Stick analysis; Fig. S6), indicating that these axes accounted for more variance than would be
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283  expected under random conditions. In addition, the first three PCs showed eigenvalues greater than
284 1.0, indicating the significant contribution of three PCs to the ordination (Table S5; Tabachnik &
285  Fidell, 1996).

286

287 Redundancy analysis (RDA) with permutation tests indicated that exudation rates were not
288  significantly associated with variation along PC1 and PC2, which were generated with six root
289 traits excluding exudation rates (p>0.15; Fig. S7). However, exudation rates were significantly
290  correlated with PC3 (R*=0.08, p=0.03) and PC4 (R?=0.10, p=0.02), while the two PCs accounted
291  for 10% and 6% of the total variation, respectively (Fig. S7). PC3 and PC4 together explained a
292  greater proportion of variance in exudation (exudation ~ PC3 + PC4; R?=0.18, p=0.004). Notably,
293  stepwise model selection based on RDA of the PCA derived from four core root traits (SRL—
294  Diameter, RTD—Root N; Fig. S4) identified RTD as the only significant predictor of exudation
295 (AIC = 3.56, F = 5.05, p=0.015). These results suggest that exudation likely correlates with the
296  conservation gradient, but also suggest that root exudation is more strongly associated with trait
297  variation captured by more than just the first two principal components in the RES.

298

299  The effects of tree functional groups on trait-exudation relationships

300

301 Mixed-effect model predictions

302  Consistent with the prediction derived from the first hypothesis, incorporating both root traits and
303 tree functional groups enhanced model predictions of exudation. As such, the best-performing
304 mixed-effects model included SRA and the interaction term between the phylogenetic group and
305 mycorrhizal types (exudation~ SRA + mycorrhizal-type:phylogeny + (1|species); R%c = 0.36;
306 p<0.01; Fig. 3; Table 4). That is, tree species with higher SRA - indicative of more acquisitive root
307  strategies - exhibited significantly higher exudation rates (Std p = 1.13 + 0.39, Adj. p=0.013; Fig.
308 3; Table 4). However, the interaction between mycorrhizal-type and phylogeny modified this
309 relationship: compared to the baseline group (EcM-Gymnosperms), all other combinations (AM-
310 Angiosperms, EcM-Angiosperms, and AM-Gymnosperms) showed significantly lower exudation
311 rates (Adj. p=0.01; Fig. 1b). A larger model that additionally included root N also significantly
312  predicted exudation rates (p<0.01; Table S4), albeit with a slightly reduced fit. These results
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313  supported our second hypothesis, suggesting that exudation rates might be influenced by both
314  acquisitive and conservative root traits, as captured by variation in SRA and root N.

315

316  Exudation-trait correlations in mixed effects models

317 Linear mixed effects models that included significant effects of mycorrhizal association on
318 exudation provide partial support for exudation as both an acquisitive resource exploitation
319 strategy and a physiological process governed by C allocation tradeoffs. Across all species,
320 variation in SRL, and SRA, and partly in root diameter, significantly accounted for variation in
321 root exudation (Fig. 4; Table 4). The negative relationship of exudation with RTD and positive
322  relationship with root diameter were modulated by mycorrhizal association (Fig. 4; Table 4), while
323  phylogenetic group showed little effects on trait-exudation relationships (Table S2).

324

325  Specifically, high SRL and SRA were positively correlated with exudation rates across species
326  (SRL: Std B = 1.5, Adj. p<0.001; SRA: Std B = 1.8, Adj. p=0.03; Table 4). Unlike SRA, this
327  positive relationship between exudation and SRL appeared stronger among AM trees, as indicated
328 by a marginally significant linear relationship in a simple linear model nested in mycorrhizal
329  association (R* = 0.13, p=0.051; Fig 4b). The marginally significant interaction term (SRL x
330 Mpycorrhizal Type, Std = -1.09, Adj. p=0.11; Table 4) suggests that EcM association may
331 modulate this relationship, potentially exhibiting a weaker or even negative association between
332  SRL and exudation compared to AM trees. However, further study is needed to confirm these
333 effects, especially since the relationship was not detected in the bi-variate analysis (Pearson’s
334  correlation ‘r’; Fig S1).

335

336  While no trend between exudation and RTD across species was detectable, RTD and exudation
337  showed a significant interaction (Std B = -2.0, Adj. p=0.001, Table 4), showing that in ECM trees,
338 increasing RTD was associated with a large decrease in exudation rates (Fig. 4d), with this
339 relationship being more pronounced in gymnosperms (Table 3; Fig 1b). Exudation generally
340  decreased with root diameter across species with marginal significance (Std p =-1.5, Adj. p=0.06;
341  Fig. 4a; Table 4). Notably, EcM trees exhibited higher exudation rates than AM trees after
342  controlling for diameter (Std = 2.9, adjusted p=0.01; Fig 4a; Table 4), leading to a significant

343 interaction between tree mycorrhizal association and diameter. Together, exploitative root traits
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344  such as SRA and SRL associated positively with exudation across species while EcM association
345  significantly influenced the relationships of exudation with RTD, SRA and root diameter.

346

347  Discussion

348

349  Our study aimed to identify key drivers of mass-specific root exudation in mature field-grown
350 trees. We hypothesized that exudation rates would differ among tree species and functional groups
351  (H1). Further, we hypothesized that exudation rates would be associated with at least one of the
352  axes of the RES (H2): along the collaboration gradient of the RES owing to exudation’s functional
353  role as a nutrient acquisition strategy and/or along the conservation gradient of the RES owing to
354  exudation’s role as a competing sink for C (e.g., root tissue construction costs). We found partial
355 support for HI, as exudation rates varied partly among tree species, and EcM gymnosperms
356  exhibited greater exudation rates than other tree functional groups. In partial support of our second
357 hypothesis, exudation rates correlated positively with SRL and SRA (across all species) and in
358 EcM trees, correlated with conserved traits such as root diameter and RTD. However, while
359  exudation rates were loaded weakly onto the 'fast' side of the conservative gradient in the RES,
360 exudation was not correlated with the first two axes. Rather, exudation was better predicted by
361 independent third and fourth (i.e., non-RES) axes. Finally, we found that the best model to predict
362  exudation rates across all 11 species contained SRA (with a significant correlation with SRL)
363  coupled with a strong influence from mycorrhizal type on phylogeny. Collectively, our study
364 indicates that root exudation is a complex physiological process and cannot be fully explained by
365  species identity or root traits alone. Instead, a combined consideration of these factors offers a
366  more accurate prediction of fine-root physiological functioning.

367

368  Tree functional groups partially account for variation in exudation

369 EcM gymnosperms generally had the highest exudation rates (two-fold higher than other groups),
370  though the reasons remain elusive. High exudation rates have been reported for other EcM
371  gymnosperms in temperate forests (Abramoff & Finzi, 2016; Brunn et al., 2022; Jiang et al., 2021;
372 Yang et al., 2020; Zhang et al., 2016) and under controlled conditions (Sell et al., 2022; Yin et al.,
373 2013). One of the highest exuders in our study, Larix gmelinii, has been reported to have elevated
374  exudation rates in a boreal forest as well (Yin et al., 2023). Although the influence of EcM
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375  associations on root traits is well documented, their differential impacts on root traits and exudation
376  between angiosperms and gymnosperms remain unclear.

377

378  Three potential mechanisms driving this pattern include tradeoffs between C allocation to EcM
379  fungi and root exudates, leakiness of highly colonized gymnosperm roots, and high exudation rates
380 of EcM fungi themselves. First, EcM gymnosperms might allocate more C to the rhizosphere and
381 lesser to their mycorrhizal partners. For instance, a global synthesis by Hawkins et al. (2023)
382  reported that C allocation to EcM mycelium biomass was ~2.5 times greater in broad-leaved trees
383  (mostly angiosperms) than needle-leaf trees (mostly gymnosperms). However, the Hawkins et al.
384  (2023) synthesis did not account for biome differences, suggesting that reports of lesser C
385 allocation to mycelium in EcM gymnosperms may have been confounded by climate (e.g., if boreal
386  forest needle-leaf trees were compared to temperate/tropical forest broad-leafed trees). In fact,
387 some of the most striking examples of prodigious EcM mycelium come from studies of EcM
388  gymnosperms like Pinus spp. (Anderson & Cairney, 2007), and EcM gymnosperms tend to possess
389  short, thick roots (Fig S8) that are well-colonized by mycorrhizal fungi (Cheng et al., 2016; Comas
390 & Eissenstat, 2009; Ma et al., 2018). As such, a second factor that could explain greater exudation
391  in EcM gymnosperms is mycorrhizal-root leakiness. Little is known about whether the mycorrhizal
392  roots of EcM gymnosperms differ from those of EcM angiosperms in leakiness (Farrar et al., 2003).
393  Ifthe magnitude of leakiness is determined by the strength of the C sink - as described by the “hole
394  in the pipe model” for nitrous oxide gas in Firestone and Davidson (1989) - greater exudation in
395  EcM gymnosperms would result from greater C allocation to mycelium. Finally, while EcM fungi
396 are a sink for plant-derived C (Prescott et al., 2020), they too can exude organic C (e.g., oxalic
397  acid), resulting in an additional source of C in the cuvettes (Ahonen-Jonnarth et al., 2000; Sun et
398 al, 1999; Van Scholl et al., 2008). Further studies are required to elucidate the mechanisms that
399  drive high exudation rates of EcM gymnosperms.

400

401  The relationships between exudation and root traits that comprise the RES

402  Exudation rates were aligned weakly with the fast side of the ‘conservation’ gradient defined by
403 RTD and root N in the RES while also showing a strong association with SRA (Sun et al., 2021).
404  These results suggest that exudation may be linked to acquisitive root traits (e.g., high SRA and
405 root N) to optimize soil resource uptake (Hypothesis 2a; Eissenstat, 1991; Eissenstat & Yanai,
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406  1997; Lv et al., 2023; Weemstra et al., 2016). These patterns may also reflect a crucial root-soil
407  process where rapid exudation increases soil N availability (Meier et al., 2017), thereby enhancing
408 root metabolic activity characterized by low RTD and high root N (Sun et al., 2021; Wen et al.,
409  2022). We also found that RTD was the single significant predictor for exudation in the RES,
410 partially supporting the prediction that exudation could correlate with root traits related to the
411  conservation gradient reflecting structural stability, longevity, and metabolic activity such as RTD
412  and root N (Hypothesis 2b). The observed significant relationships of exudation with RTD (from
413  RDA analysis) and SRA (from mixed-effects models) likely result from the interplay of root area,

415 & Makita, 2020; Farrar et al., 2003; Jones et al., 2009; Lv et al., 2023; Sun et al., 2021). Since

414  tissue permeability, and diffusion strength - all of which can influence exudation rates (Akatsuki

416  higher RTD often is association with reduced root leakiness and metabolic activity (Farrar et al.,
417  2003), roots with less dense tissues, high root N, and larger surface areas are more likely to exude
418  C. Consistent with our findings, recent studies in cool-temperate and subtropical forests have also
419 reported significant relationships of exudation rates with RTD (-), root N (+), and SRA (+), but not
420 SRL (Akatsuki & Makita, 2020; Sun et al., 2021).

421

422  The alignment of exudation within the RES suggests that exudation may function as an alternative
423  soil resource exploitation strategy (Sun et al., 2021; Wen et al., 2022), modulated by the interplay
424  between mycorrhizal associations (Brzostek et al., 2013) and root traits under phylogenetic
425  constraints (Williams et al., 2022). However, exudation rates were not associated with the first two
426  PC axes, and additional PC axes (PC3 and PC4; Fig. 2b) were needed to explain variation in
427  exudation. This suggests that exudation may be more strongly associated with traits not considered
428  or other factors. The RES simplifies trait space by collapsing trait variation into ‘collaboration’
429 and ‘conservation’ gradients (Bergmann et al., 2020), yet other dimensions of plant trait variation
430 (e.g., plant height and rooting depth) were found to exist (Weigelt et al., 2021). Whether exudation
431  aligns with this third axis of plant variation is unknown (Freschet et al., 2021; McCormack et al.,
432 2017; Weemstra et al., 2022) or links to other unmeasured processes (e.g., C assimilation and
433  allocation) is not well-understood, but this would be a fruitful line of inquiry in future studies.
434

435  Trait-to-exudation relationships constrained by functional group interactions
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436  Exudation rates were significantly linked to acquisitive root traits such as high SRA, high SRL,
437  low RTD, while their variability was strongly influenced by EcM association, root morphology,
438 and C construction costs. Notably, the model that included the interaction between mycorrhizal
439  association and phylogenetic lineage in predicting exudation—SRA relationships outperformed all
440  others (Table 4). These findings collectively suggest that exudation may be linked to acquisitive
441  strategies (e.g., high SRL and SRA, narrow diameters, and low RTD) that favor foraging efficiency
442  under the control of both mycorrhizal association and evolutionary history (Hypothesis 2a;
443  Eissenstat, 1991; Eissenstat & Yanai, 1997; Lv et al., 2023; Weemstra et al., 2016).

444

445  Interestingly, we observed that EcM association influenced the relationship between exudation and
446  diameter, where exudation rates increased with root diameter. This trend was predominantly driven
447 by EcM gymnosperms, which exhibited short, thick roots (Fig. S8) and high exudation rates (Fig.
448  1b) - highlighting their reliance on symbiotic partners for nutrient acquisition. However, a previous
449  study measuring exudation rates of EcM gymnosperms (Pinus and Larix spp.) found a significant
450 negative relationship between exudation rates and root diameter (Akatsuki & Makita, 2020). These
451  divergent results suggest that while the associations with EcM do broadly affect plant exudation
452  rates, the direction of those relationships likely depends on several factors, including species
453  identity, trait variations and methodological differences (Williams et al., 2021). For example,
454  Akatsuki & Makita (2020) used a glass-fiber filter method that targeted smaller root segments (<
455  3rd order), potentially_capturing_higher mass-specific_exudation_rates_than _the cuvette-base

456  methods_of Phillips et al. (2008). This suggests that EcM gymnosperms exude root carbon mostly

457  from lower-order roots and that our cuvette-base methods may underestimate mass-specific
458  exudation rates owing to inclusion of larger root segments (Akatsuki & Makita, 2020). Together,
459  this highlights the complexity of trait-to-exudation relationships and the need for further studies to
460 uncover generalizable patterns across diverse ecosystems.

461

462  Unlike EcM trees, which exhibit differences in some root traits across phylogenies, AM association
463  did not significantly predict most root traits and trait-exudation relationships in our study (Fig. S8)
464  (Akatsuki & Makita, 2020). Instead, AM angiosperms demonstrated greater within-group

465  variability, including exudation rates (Fig. S8), suggesting a flexible, ‘do-it-yourself” resource

466  acquisition strategy with high plasticity (Bergmann et al., 2020). Together, these findings indicate
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467  that elevated exudation rates can result from (1) the interplay of EcM-associated root traits and
468  phylogenetic constraints or (2) enhanced intraspecific variability in acquisitive root traits, allowing
469  for efficient soil resource exploitation with moderate exudation rates.

470

471  Challenges and opportunities

472  Exudation rates for mature, field-grown trees are rare, as all methods used to measure exudation
473  introduce some artifacts; our study is no exception. While the root cuvette method of Phillips et al.
474  (2008) has been used in dozens of forest studies (Chari et al., 2024), important methodological
475  questions remain about how to minimize damage to root systems before placement into cuvettes,
476  how to normalize the rates measured in different scales, the chemistry and sterility of the trapping
477  solution, the duration of the equilibrium period, the duration of the collection period, and the
478  contribution of mycorrhizal fungi to the total exudates (Oburger & Jones, 2018). Moreover, the
479  high degree of spatio-temporal variation in exudation (Jacoby et al., 2017; Jiang et al., 2021; Yang
480 et al., 2020) affects how many samples are needed to draw inferences about species-specific
481  patterns and trait-exudation correlations. While we attempted to minimize variability by selecting
482  tree species grown in a common soil, applying the same methodology to all trees, etc., the
483  substantial amount of variability in exudation within species suggests that this flux may be better
484  linked to dynamic physiological processes such as C assimilation and allocation than to (relatively)
485  static morphological traits.

486

487  Conclusion

488

489  We revealed that root exudation was positively associated with acquisitive root traits (SRL and
490 SRA), while exudation-trait relationships were modulated by mycorrhizal association and
491  phylogenetic lineage. EcM trees appeared to influence trait—exudation relationships, especially for
492  RTD and root diameter, with these effects being more pronounced in gymnosperms. As such,
493  constraining trait-exudation relationships with tree functional groups did improve model
494  predictability. Importantly, we demonstrate that root exudation may be a complex physiological
495  process that cannot be explained by species identity, functional groups or individual root traits
496  alone. High intraspecific variation in root exudation (unlike stable morphological traits) likely

497  contributed to the weaker alignment of exudation with the RES. Instead, exudation was linked to
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498  additional functional axes beyond the first two axes in the RES. Given the emerging interest in
499 including root physiological traits into the RES (which is based mostly on morphological and
500 chemical traits), our findings suggest that incorporating such dynamic processes into the RES may
501 pose significant challenges and require to identify additional drivers of such dynamics other than
502 root traits. As more mechanistic studies are developed (e.g. tracking exudate responses to tree
503  girdling or nutrient solution culture alterations) and methods for capturing exudates are improved,
504  our ability to understand the role and function of exudates in the environment should come into
505  greater focus.
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770  Figures and tables

(a) Mass-specific exudation rate for 11 species
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773 Fig 1) Boxplot of root exudation variation among: (a) 11 tree species and (b) combinations of mycorrhizal
774  type (AM vs. EcM) and phylogenetic group (Angiosperm vs. gymnosperm) at The Morton Arboretum,
775  Lisle, IL, USA. The central box in each boxplot represents the median and the interquartile range. The
776  whiskers extend to the minimum and maximum value. In (a), different lowercase letters denote significant
777  differences, as determined by a post hoc TukeyHSD test. In (b), different lowercase letters denote

778  significant differences (Linear mixed model fit by REML; Std f = 9.6, p=0.03). Closed circles denote
779  outliers.
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(a) PCA of seven fine-root traits on an individual tree level
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782  Fig 2) Standardized principal components analysis (PCA) of six fine-root functional traits and exudation
783  rates on an individual tree level. 'cos2’ values indicate that the quality of the representation of the variable
784  on that principal component as a cos2 value close to 1 indicates that the variable is very well represented
785 by the PC(s) in question. (a) PCA generated by six core root functional traits. PC1 and PC2 likely

786  correspond to conservation and collaboration gradient respectively (Bergmann et al., 2020). (b) Two

787  additional axes (PC 3 & 4) from the PCA.
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The interaction effects among functional groups
on Exudation-SRA relationships
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Fig 3) Interaction effects of tree functional groups on the relationship between log-transformed specific
root area (SRA) and mass-specific exudation rates. The model depicts the interaction effects described in
the best-predicting model selected by a stepwise model selection approach: Exudation ~ SRA +
myco.type:phylogeny + (1|species) (Table 4). Linear regression lines are shown for each group
combination defined by mycorrhizal association (AM or EcM) and phylogeny (Angiosperm or
Gymnosperm). Each equation displays the linear fit, R% and p-value. Among groups, EcM Angiosperms
showed the steepest positive relationship between SRA and exudation rates (R? = 0.33, P = 0.064), while
other groups exhibited weaker or non-significant trends. This interaction reflects differential trait-based
exudation patterns across mycorrhizal and phylogenetic strategies.
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Correlation of root exudation with four root Traits
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798
799  Fig4) Linear relationships of log-transformed root exudation with (a) root diameter, (b) SRL, (c) SRA,

800 and (d) RTD measured at The Morton Arboretum, Lisle, IL, USA. The fitted lines indicate statistically
801  significant relationships of root exudation with root traits (p<0.1) that are nested with AM and EcM
802  mycorrhizal association.
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Table 1) List of eleven tree species in monodominant forestry plots at The Morton Arboretum (Lisle, IL, USA);

All species are >70 years old except Asimina triloba

Mycorrhizal Phylogenetic
Species Soil series Soil order type group Leaf habit Clade
Acer saccharum Ozaukee Alfisol AM Angiosperm Deciduous Rosids
Asimina triloba Ozaukee Alfisol AM Angiosperm Deciduous Magnoliids

Platanus occidentalis Ashkum Mollisol AM Angiosperm Deciduous Eudicots
Chamaecyparis pisifera Ozaukee Alfisol AM Gymnosperm Evergreen Gymnosperms
Juniperus chinensis Ozaukee Alfisol AM Gymnosperm Evergreen Gymnosperms
Taxodium distichum Sawmill Mollisol AM Gymnosperm Deciduous Gymnosperms

Carya ovata Ozaukee Alfisol EcM Angiosperm Deciduous Rosids

Quercus bicolor Sawmill Mollisol EcM Angiosperm Deciduous Rosids
Larix gmelinii Ozaukee Alfisol EcM Gymnosperm Deciduous Gymnosperms
Picea abies Ozaukee Alfisol EcM Gymnosperm Evergreen Gymnosperms
Tsuga canadensis Ozaukee Alfisol EcM Gymnosperm Evergreen Gymnosperms

804 Note: AM, arbuscular mycorrhizal type; EcM, ectomycorrhizal type
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Table 2) The species-specific means + SDs of six core root traits at The Morton Arboretum, Lisle, IL, USA. n denotes the number of tree individuals sampled. Exudation: mass-

specific exudation rate.

. Exudation rate Specific root length Root diameter Root tissue density N concentration Specificroot area  Branching intensity
Species (plot) (Mg C g oo *day’)  (SRL (cmg)) (Diameter (mm)) (RTD (g em™ ) (root N (%)) (SRA (em’ g')) (BI (Tips cm™)
Acer saccharum 0.91 +0.87 1636.36 + 529.41 0.34+0.03 0.73+0.14 1.23+0.09 169.90 + 42.69 3.19+0.50
Asimina triloba 0.60 + 0.63 1110.21 +104.32 0.64 +0.02 0.29 +0.05 2.91+0.23 222.05 +28.12 0.72 + 0.06
Platanus occidentalis 1.19 £ 0.88 1045.53 + 540.38 0.52+0.10 0.52 +0.07 1.74 + 0.23 157.53 + 52.86 2.95+0.53
Chamaecyparis pisifer. 0.75+0.71 1528.93 + 460.45 0.42 +0.06 0.51+0.09 1.87+0.18 195.13 £ 39.51 2.18+0.56
Juniperus chinensis 1.22+1.78 863.63 +273.33 0.55+0.09 0.54+0.11 1.39+£0.11 142.73 +25.23 2.40 £ 0.90
Taxodium distichum 0.58 £ 0.16 1696.22 + 374.94 0.51+0.08 0.31+0.04 1.89 +0.26 264.06 + 26.82 2.02+0.42
Carya ovata 0.52 £ 0.69 1160.74 +209.51 0.37 +0.05 0.85+0.17 1.25+0.26 133.43 £25.23 532+ 1.15
Quercus bicolor 0.73 £ 0.54 1439.00 + 397.30 0.33+£0.02 0.86+0.14 1.29+0.14 146.67 + 32.44 5.63+0.48
Larix gmelinii 3.82+2.83 975.76 + 384.57 0.58+0.11 0.43 £ 0.07 1.48+0.12 167.97 + 40.13 3.68 + 0.60
Picea abies 1.52+0.52 1639.29 + 220.22 0.42 +0.04 0.45 +0.05 2.01+0.13 214.35+19.09 4.44 + 0.66
Tsuga canadensis 1.05 + 0.66 689.36 + 276.65 0.59 £ 0.07 0.60 + 0.17 1.24+0.42 125.24 + 46.82 4.16 £ 0.63
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Table 3) Type III Analysis of Variance Table for predicting root traits of 11 tree species in The Morton Arboretum (n =60) using a linear mixed model (dependent variables~myco x phylo x leaf + (1|species)). The
species were nested in mycorrhizal types, phylogenetic groups and leaf habit. p-values (P<0.1) are highlighted in bold. The significance of fixed effects in the model was tested by Type III ANOVA with Wald
chisquare tests. All measurements were log-transformed to ensure normality and improve homogeneity of variance.

Fixed Effect

Mass-specific Exudation rate

Root diameter (mm)

Specific root length (m g™")

Specific root area (cm2 gh)

Chisq Pr(>Chisq)  Adjusted p Chisq Pr(>Chisq)  Adjusted p Chisq Pr(>Chisq)  Adjusted p Chisq Pr(>Chisq)  Adjusted p
Mycorrhizal type (myco) 0.98 0.32 0.48 4.37 0.04 0.11 0.08 0.77 0.77 2.44 0.12 0.16
Phylogenetic group (phylo) 0.02 0.88 0.92 0.08 0.78 0.78 1.15 0.28 0.34 3.92 0.048 0.10
Leaf habit (leaf) 0.01 0.92 0.92 0.09 0.77 0.78 1.45 0.23 0.34 4.83 0.028 0.08
myco:phylo 9.27 0.002 0.007 2.58 0.11 0.22 222 0.14 0.34 0.66 0.42 0.42
myco:leaf 1.90 0.169 0.337 0.09 0.77 0.78 1.27 0.26 0.34 2.26 0.13 0.16

% of the total variance explained by
random effect (Species plot)

>0.1%

55.2% (p<0.001)

33.3% (p<0.001)

26% (p<0.01)

Root tissue density (g om’® )

Root N concentration (%)

Branching intensity (cm’ 1)

Fixed Effect Chisq Pr(>Chisq)  Adjusted p Chisq Pr(>Chisq)  Adjusted p Chisq Pr(>Chisq)  Adjusted p
Mycorrhizal type (myco) 9.42 0.0021 0.006 3.23 0.072 0.22 10.82 0.0010 0.0057
Phylogenetic group (phylo) 3.69 0.055 0.082 0.01 0.91 0.91 0.02 0.89 0.92
Leaf habit (leaf) 4.52 0.034 0.067 0.30 0.58 0.87 0.05 0.82 0.92
myco:phylo 0.42 0.52 0.52 0.13 0.72 0.87 0.59 0.442 0.88
myco:leaf 1.05 0.30 0.37 0.20 0.65 0.87 0.01 0.922 0.92

% of the total variance explained by
random effect (Species plot)

45.5% (p<0.001)

55.4% (p<0.001)

74% (p<0.001)

Note. Numerator Degrees of Freedom = 1; Denominator Degrees of Freedom =60. Mass-specific exudation rate (mgC*d'l*g root™)
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Table 4) Mixed effects models for the effects of mycorrhizal type on exudation-to-trait relationships. The
model considered root traits x mycorrhizal type + (1|species.plot) to predict exudation rates. 'species.plot'
represents species-specific monodominant plots at The Morton Arboretum, Lisle, IL. The best model
(exudation ~ SRA + Mycorrhizal type:Phylogeny) is selected via a stepwise reduction approach using mixed
models. The other models are ordered from the lowest AIC values. The numbers in the table represent
coefficients estimate (Std ) and standard error (Std SE) in brackets. Adjusted p-values were calculated using
the Benjamini-Hochberg (BH) correction for multiple testing. Bold value indicates statistical significance of
Adjusted p-values less than 0.05. Significance levels of Adjusted p-values: *p<0.05; **p<0.01; ***p<0.001.
The comprehensive table for the effects of phylogeny on trait-exudation relationships is in Table S2.

Model to predict exudation rates Significant Fixed effect term

Std B (Std SE)  Adjusted p

- AIC values -R’m & R?%c

SRA + Mycorrhizal type : Phylogeny  (Intercept) -5.2936 (1.99)* 0.013

Best model selected with AIC =164.8 SRA 1.13 (0.39)** 0.013
AM : Angiosperm -1.05 (0.33)* 0.013
EcM : Angiosperm -1.13 (0.35)* 0.013
AM : Gymnosperm -1.23 (0.33)** 0.013

-R’m=0.34; R’c=0.36

RTD * Mycorrhizal type RTD : EcM -2.05 (0.64)** 0.008
- AIC=163.2 - R’m = 0.24; R%c= 0.44
SRA * Mycorrhizal type SRA 1.76 (0.64)* 0.023
- AIC=169.3 - R’m = 0.33; R’c= 0.33
SRL * Mycorrhizal type SRL 1.54 (0.45)** 0.005
- AIC=170.7 -R’m=0.19; R%c= 0.43
Diameter (mm) * Mycorrhizal type ECM 2.91 (0.90)* 0.016
- AIC=173.0 Diameter : ECM 3.09 (1.09)* 0.027

-R’m=0.10; R%=0.27

Note) Insignificant models (i.e., Root N * Mycorrhizal type; Bl * Mycorrhizal type) and fixed effect terms
are not reported in this table. See Table S2 for comprehensive results that include the effects from phylogeny
on trait-exudation relationships. All measured variables were log-transformed to ensure normality of data.
(Intercept) represents baseline exudation rate (AM reference). R?m, Marginal R*; R?c, Conditional R?, RTD.
R?m represents variance explained by fixed effects only, whereas R2c indicates variance explained by both
fixed and random effects. Root Tissue Density (g/cm3); SRA, Specific Root Area (mz/g); Specific Root
Length (cm/g); Diameter, root mean diameter (mm); Root N, Root N Concentration (%); BI, Branching
Intensity (cm").
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