

1

2 **Loss function of tumor suppressor FRMD8 confers** 3 **resistance to tamoxifen therapy via a dual mechanism**

4

5 Weijie Wu^{1#}, Miao Yu^{1#}, Qianchen Li¹, Yiqian Zhao¹, Lei Zhang¹, Yi Sun¹, Zhenbin Wang¹,
6 Yuqing Gong¹, Wenjing Wang², Chenying Liu³, Jing Zhang¹, Yan Tang¹, Xiaojie Xu^{4*}, Xiaojing
7 Guo^{3*}; Jun Zhan^{1*}, Hongquan Zhang^{1*}

8 ¹Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology,
9 School of Basic Medical Sciences; Peking University International Cancer Institute; and State Key
10 Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191,
11 China.

12 ²Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University; State
13 Key Laboratory for Digestive Health; National Clinical Research Center for Digestive Diseases,
14 Beijing 100050, China.

15 ³Department of Breast Pathology and Lab; Tianjin Medical University Cancer Institute & Hospital;
16 National Clinical Research Center for Cancer; Key Laboratory of Breast Cancer Prevention and
17 Therapy of Ministry of Education of China, Tianjin Medical University; Tianjin's Clinical Research
18 Center for Cancer, Tianjin 300060, China.

19 ⁴Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing 100071, China.

20

21 # These two authors contributed equally to this study.

22 Running title: Loss of FRMD8 downregulates ER α level

23 Word number of texts: 7,239

24 Characters with space: 49,894

25

26 * Corresponding authors

27 Hongquan Zhang, Ph.D.; Professor
28 Peking University Health Science Center,
29 #38 Xue Yuan Road, Haidian District, Beijing 100191, China.

30 Tel: 008610-82802424, E-mail: Hongquan.Zhang@bjmu.edu.cn

31 Or

32 Jun Zhan, M.D. & Ph.D.; Associate Professor
33 Peking University Health Science Center,
34 #38 Xue Yuan Road, Haidian District, Beijing 100191, China.

35 E-mail: Zhanjun@bjmu.edu.cn

36 Or
37 Xiaojing Guo, M.D. & Ph.D.
38 Tianjin Medical University Cancer Institute & Hospital,
39 West Huanhu Road, Tianjin 300060, China.
40 E-mail: guoxiaojing@tjmuch.com
41 Or
42 Xiaojie Xu, M.D. & Ph.D.; Associate Professor
43 Department of Genetic Engineering, Beijing Institute of Biotechnology,
44 Beijing 100071, China.
45 E-mail: miraclexxj@126.com
46
47

48 **Impact Statement**

49 Tumor suppressive protein FRMD8 inhibits breast cancer progression by regulating
50 the level of ER α and has the possibility to be a potential target for overcoming
51 tamoxifen treatment resistance.

52

53 **Abstract**

54 Approximately 40% ER α -positive breast cancer patients suffer from therapeutic
55 resistance to tamoxifen. Although reduced ER α level is the major cause of tamoxifen
56 resistance, the underlying mechanisms remain elusive. Here, we report that FRMD8
57 raises the level of ER α at both transcriptional and post-translational layers. FRMD8
58 deficiency in *MMTV-Cre*⁺; *Frmd8*^{fl/fl}; *PyMT* mice accelerates mammary tumor growth
59 and loss of luminal phenotype, and confers tamoxifen resistance. Single-cell RNA
60 profiling reveals that *Frmd8* loss decreases the proportion of hormone-sensing
61 differentiated epithelial cells and downregulates the levels of ER α . Mechanically, on
62 one hand, loss of FRMD8 inhibits *ESR1* transcription via suppressing the expression of
63 FOXO3A, a transcription factor of *ESR1*. On the other hand, FRMD8 interacts both
64 with ER α and UBE3A, and disrupts the interaction of UBE3A with ER α , thereby
65 blocking UBE3A-mediated ER α degradation. In breast cancer patients, *FRMD8* gene
66 promoter is found hypermethylated and low level of FRMD8 predicts poor prognosis.
67 Therefore, FRMD8 is an important regulator of ER α and may control therapeutic
68 sensitivity to tamoxifen in ER α -positive breast cancer patients.

69

70

71 Keywords: FRMD8; Breast cancer; ER α ; Tamoxifen resistance; UBE3A

72

73 **Introduction**

74 Breast cancer is the most commonly diagnosed cancer worldwide(Sung et al., 2021)
75 and more than 70% of breast cancer are estrogen receptor α (ER α)-positive(Habara &
76 Shimada, 2022). Although endocrine therapy is the most common systemic treatment
77 for ER α -positive breast cancer in clinical practice, approximately 40% of patients still
78 develop primary or secondary resistance to endocrine therapy(Badia et al., 2007; Légaré
79 & Basik, 2016; Rondón-Lagos et al., 2016). Therefore, it is urgent and necessary to
80 explore the mechanisms of endocrine therapy resistance and search for new therapeutic
81 targets.

82 ER α is a ligand-activated transcription factor that is activated by oestrogen, and
83 promotes cell proliferation during breast cancer development (Harbeck et al., 2019).
84 Tamoxifen (TAM), a selective estrogen receptor antagonist, is the most widely used
85 medicine in endocrine therapy. Tamoxifen competes with estrogen to bind with ER α
86 and changes the conformation of ER α , thereby preventing the interaction between co-
87 activators and ER α and inhibiting activation of ER α (Katzenellenbogen et al., 2018).
88 Thus, the level of ER α is strongly correlated with reactivity and resistance of endocrine
89 therapy. Uncovering the mechanisms by which ER α expression is regulated is essential
90 for overcoming endocrine therapy resistance. Multiple transcription factors, such as
91 AP-2 γ , FOXO3, FOXM1, and GATA3, have been reported to bind to the promoter
92 region of *ESR1*, the gene encoding ER α , and participate in transcriptional regulation of
93 *ESR1*(Jia et al., 2019; Koš et al., 2001). In addition, post-translational modifications of
94 ER α , including phosphorylation, acetylation, and ubiquitination, also have effects on
95 subcellular localization, transcriptional activity, and stability of ER α (Rogatsky et al.,
96 1999; Williams et al., 2009; Zhou & Slingerland, 2014). However, the mechanisms
97 underlying the regulation of ER α expression are still not clear and require further
98 investigation.

99 FERM domain-containing proteins are widely involved in processes such as the
100 formation of macromolecular complexes, subcellular localization, functional activation,

101 and signal transduction, thereby regulating the occurrence and development of
102 tumors(Frame et al., 2010; Moleirinho et al., 2013; Zhan & Zhang, 2018). FRMD8, as
103 a member of FERM domain-containing proteins, has been reported to bind with iRhom
104 and enhance the stability of the iRhom/TACE complex on the cell surface, thereby
105 preventing iRhom/TACE degradation mediated by lysosomes. TACE is responsible for
106 cleaving and releasing TNF, and the absence of FRMD8 impairs the production of
107 TNF(Künzel et al., 2018; Oikonomidi et al., 2018). Additionally, FRMD8 expressions
108 in both microenvironment and tumor cells promote lung tumor growth(Badenes et al.,
109 2023). FRMD8 inhibits colon cancer growth by preventing cell cycle progression.
110 FRMD8 disrupts the interaction of CDK7 with CDK4, subsequently inhibiting CDK4
111 activation. Furthermore, FRMD8 competes with MDM2 to bind RB, thereby
112 attenuating MDM2-mediated RB degradation(Yu et al., 2023). However, the roles of
113 FRMD8 in breast tumorigenesis and progression need further exploration.

114 In this study, we found that loss of *Frmd8* in luminal epithelial cells of *MMTV-PyMT*
115 mice accelerates mammary tumor progression and luminal epithelial phenotype loss,
116 and confers tamoxifen resistance. Single-cell RNA profiling reveals that the number of
117 hormone-sensing differentiated cells is diminished and the level of ER α is decreased in
118 *Frmd8*-knocked-out mammary tumors. FRMD8 not only increases *ESR1* expression,
119 but also prevents ER α degradation by interrupting the interaction between ER α and E3
120 ligase UBE3A. Further, a low FRMD8 level predicts poor prognosis in human breast
121 cancer patients. Thus, we demonstrated that FRMD8 is an important ER α regulator and
122 a vital tumor suppressive protein in breast cancer growth and drug resistance.

123

124 **Results**

125 **Loss of *Frmd8* promotes mammary tumor growth and generates tamoxifen
126 resistance *in vivo***

127 To examine whether FRMD8 plays a role in breast tumorigenesis, we established
128 luminal epithelium-specific *Frmd8* knockout mice (*MMTV-Cre*⁺; *Frmd8*^{fl/fl}) (Fig. 1A
129 and 1B) and further generated a *Frmd8*-deletion breast cancer mouse model (*MMTV-*
130 *Cre*⁺; *Frmd8*^{fl/fl}; *PyMT*) by crossing *MMTV-Cre*⁺; *Frmd8*^{fl/fl} mice with *MMTV-PyMT*
131 (*PyMT*) mice, a widely used transgenic mouse model of mammary tumorigenesis (Fig.
132 1C, 1D, S1A and S1B). Compared with *MMTV-Cre*⁻; *Frmd8*^{fl/fl}; *PyMT* mice, *Frmd8*
133 depleted in mice significantly promotes mammary tumor development (Fig. 1E and 1F).
134 The total tumor weight (Fig. 1G) and number of tumors (Fig. 1H) were markedly higher
135 in *MMTV-Cre*⁺; *Frmd8*^{fl/fl}; *PyMT* mice than the control mice. Histological examination
136 of the breast tumors from *PyMT* mice using haematoxylin-eosin (H&E) staining
137 revealed that the luminal epithelium was poorly differentiated in *MMTV-Cre*⁺; *Frmd8*^{fl/fl};
138 *PyMT* mice tumors compared with the control mice (Fig. 1I). Furthermore,
139 immunohistochemical staining showed that the percentage of Ki67-positive cells was
140 significantly elevated in mammary tumors of *Frmd8*-depleted mice (Fig. 1J and 1K).
141 Consistently, 5-ethynyl-2'-deoxyuridine (EdU) incorporation assays demonstrated that
142 FRMD8 depletion promoted human breast cancer cell MCF7 and T47D proliferation
143 (Fig. S1C and S1D). These findings indicated that *Frmd8* deficiency in the luminal
144 epithelium accelerates mammary tumor growth in *MMTV-PyMT* mice and promotes
145 cell proliferation.

146 Since tamoxifen is commonly used for the treatment of ER α ⁺/HER2⁻ breast cancer,
147 we thus investigated whether loss of *Frmd8* affects sensitivity of mammary tumors to
148 tamoxifen treatment in mice. To this end, *MMTV-Cre*⁻; *Frmd8*^{fl/fl}; *PyMT* mice and
149 *MMTV-Cre*⁺; *Frmd8*^{fl/fl}; *PyMT* mice were injected intraperitoneally with tamoxifen or
150 corn oil as control every two days. The results showed that tamoxifen significantly
151 prevents mammary tumor progression in the control mice (Fig. 1L and 1M). However,

152 mammary tumors of *MMTV-Cre*⁺; *Frmd8*^{fl/fl}; *PyMT* mice showed no response to
153 tamoxifen treatment (Fig. 1L and 1M). Consistently, the total tumor weight (Fig. 1N)
154 and number of tumors (Fig. 1O) of *MMTV-Cre*⁻; *Frmd8*^{fl/fl}; *PyMT* mice were markedly
155 decreased after tamoxifen treatment, whereas there was no difference in *MMTV-Cre*⁺;
156 *Frmd8*^{fl/fl}; *PyMT* mice (Fig. 1N and 1O). Taken together, these findings demonstrated
157 that loss of *Frmd8* accelerates mammary tumor growth and generates resistance to
158 tamoxifen therapy in *Frmd8*-depleted mice.

159

160 **Frmd8 knockout decreases the proportion of the hormone-sensing differentiated**
161 **epithelial cells**

162 To investigate the mechanism through which *Frmd8* loss promotes mammary tumor
163 growth and leads to tamoxifen resistance, we then performed single-cell RNA
164 sequencing (scRNA-seq) analysis. Mammary tumors from 4-month-old *MMTV-Cre*⁻;
165 *Frmd8*^{fl/fl}; *PyMT* and *MMTV-Cre*⁺; *Frmd8*^{fl/fl}; *PyMT* mice were harvested and analyzed
166 using the Chromium Single Cell 3' Reagent Kitsv3 (10 \times Genomics). Cells that passed
167 quality control (QC) filter totaled 24,320, of which 11,606 cells were from *MMTV-Cre*⁻;
168 *Frmd8*^{fl/fl}; *PyMT*, and 12,714 cells were from *MMTV-Cre*⁺; *Frmd8*^{fl/fl}; *PyMT* mice (Fig.
169 2A). After that, we profiled the three major cell lineages, including epithelial cells,
170 immune cells and stromal cells by the UMAP visualization (Fig. 2B). Their associated
171 top-expressed and canonical markers were shown in Figure S2A and S2B, respectively.
172 Based on the expression of known markers, a total of 12 clearly separated cell lineages
173 were finally identified (Fig. 2C and 2D). In particular, they were as follows: B cells
174 highly expressing *Cd19*, *Cd79a*, *Cd79b*; CD4⁺ T cells characterized with high *Cd3g*
175 and *Cd4* expression; CD8⁺ T cells highly expressing *Cd3g* and *Cd8a*; dendritic cells
176 (DCs) expressing *Cd74* and *Cd14*; endothelial cells specifically expressing the markers
177 *Pecam1* and *Emcn*; epithelial cells expressing *Epcam* and *Krt8*; fibroblast cells high
178 expressing *Colla1* and *Col3a1*; granulocyte cells specifically expressing the markers
179 *S100a9*; macrophage cells highly expressing *Cd14*, *Cd68* and *C1q*; monocyte cells

180 highly expressing *Cd14* and *Ccr2*; natural killer (NK) cells specifically expressing
181 *Nkg7* and *Ncr1* (Fig. S2C). The dot plots compared the proportion of cells expressing
182 cluster-specific markers and their scaled relative expression levels (Fig. S2D).

183 To further explore whether the proportions of epithelial cells in mammary tumors
184 were affected by *Frmd8* loss, we subset and re-identified four epithelial cell
185 clusters(Valdes-Mora et al., 2021), including alveolar progenitor (Avp), basal (Bsl),
186 hormone-sensing differentiated (Hsd) and luminal progenitor (Lp) epithelial cells (Fig.
187 2E). As expected, the epithelial cells were composed of luminal epithelial cells and
188 basal epithelial cells, which were consistent with the cellular characteristics of the
189 mammary glands. In contrast to control mice, the proportion of the Hsd epithelial cells
190 was significantly decreased in *MMTV-Cre*⁺; *Frmd8*^{fl/fl}; *PyMT* mice (Fig. 2F).

191 To define the tumor cells in the mouse mammary tumors, we applied inferCNV
192 algorithm to calculate the copy number variations (CNVs) of the single cells (Fig. 2G).
193 To this end, we analyzed CNV scores of epithelial subclusters, immune and stromal
194 cells, revealing immune cells with low CNV score (Fig. 2H). Given that Hsd epithelial
195 cells which specifically expressed *Esr1* and *Pgr* had lower CNV score than alveolar
196 progenitor (Avp), basal (Bsl) and luminal progenitor (Lp) epithelial cells, we defined
197 the low CNV score Hsd epithelial cells as normal cells (Fig. 2H and 2I). Furthermore,
198 we defined the high CNV score epithelial cells as tumor cells, and plotted the UMAP
199 visualization (Fig. 2J). The results also showed that the expression of *Frmd8* was
200 decreased in tumor cells compared with normal cells (Fig. 2K and S2E). In addition,
201 we observed that loss of *Frmd8* significantly decreased the expression of *Esr1* and *Pgr*
202 in normal cells of mammary tumors, and decreased expression of *Frmd8* in tumor cells
203 accompanied with low expression of *Esr1* and *Pgr* compared with normal cells (Fig.
204 2L and S2E). Taken together, these findings indicated that *Frmd8* depletion in *PyMT*
205 mice leads to decreases of the Hsd epithelial cells proportion and the expression of *Esr1*
206 and *Pgr*.

207

208 **FRMD8 promotion of *ESR1* expression is mediated by FOXO3A**

209 Given that scRNA-seq results suggested that loss of Frmd8 reduced the proportion of
210 Hsd epithelial cells and the expression of *Esr1* and *Pgr*, multiple immunofluorescence
211 staining analyses were then performed to examine the change of ER α and PR at the
212 protein levels *in situ* in mammary tumors of 4-month-old Frmd8-depleted mice.
213 Consistent with the scRNA-seq results, deficiency of Frmd8 dramatically decreased the
214 levels of ER α , PR and CK8, a marker of mammary luminal epithelium, in normal
215 tissues adjacent to tumors (Fig. 3A and 3B). *In situ* tissue flow cytometry analysis
216 demonstrated that in normal tissues adjacent to tumor of the control mice, the
217 proportion of ER α -positive cells among CK8 $^+$ cells were 45.49%, whereas this
218 proportion was just 9.28% in *MMTV-Cre* $^+$; *Frmd8* $^{fl/fl}$; *PyMT* mice (Fig. S3A). Similarly,
219 the proportion of PR-positive cells among CK8 $^+$ cells was also reduced in normal
220 tissues adjacent to tumor of *MMTV-Cre* $^+$; *Frmd8* $^{fl/fl}$; *PyMT* mice compared with the
221 control mice (Fig. S3B). FRMD8 $^{\text{high}}$ ER α $^{\text{high}}$ and FRMD8 $^{\text{high}}$ PR $^{\text{high}}$ cells were mainly
222 present in normal tissues adjacent to tumor of *MMTV-Cre* $^+$; *Frmd8* $^{fl/fl}$; *PyMT* mice,
223 whereas Frmd8 depletion led to FRMD8 $^{\text{low}}$ ER α $^{\text{low}}$ and FRMD8 $^{\text{low}}$ PR $^{\text{low}}$ cells markedly
224 increased (Fig. S3C and S3D). In mammary tumor tissues from both control mice and
225 *MMTV-Cre* $^+$; *Frmd8* $^{fl/fl}$; *PyMT* mice, the expressions of ER α and PR were almost
226 negative (Fig. 3A and 3B). Since the expression of ER α is loss with tumor progression,
227 to further clarify the regulation of Frmd8 on ER α , we performed immunohistochemistry
228 (IHC) staining of mammary glands of 7-week-old *PyMT* mice, which had no palpable
229 tumors. The results showed that Frmd8 depletion also markedly decreased the
230 expression of ER α in normal and atypical hyperplasia breast tissues (Fig. S3E). Taken
231 together, these data suggested that deficiency of FRMD8 downregulates the protein
232 levels of ER α and PR in mammary tissues of *MMTV-PyMT* mice, and accelerates the
233 loss of luminal phenotype in mammary gland.

234 It was known that the common endocrine treatment for non-metastatic breast cancer
235 relies on the expression of ER α (Waks & Winer, 2019) and our results demonstrated that

236 loss of Frmd8 promotes mammary tumor growth and confers tamoxifen resistance in
237 mice, we thus aim to further examine whether FRMD8 regulates ER α expression. To
238 this end, we transiently transfect Flag-FRMD8 vector or FRMD8 siRNA in human
239 breast cancer cells. Our results showed that FRMD8 overexpression drastically
240 increased the levels of ER α , while ER α expression was greatly downregulated when
241 FRMD8 was knocked down (Fig. 3C and 3D). Moreover, qRT-PCR results indicated
242 that depletion of FRMD8 significantly decreased the mRNA level of *ESR1* (Fig. 3E).

243 FOXO3A is a crucial transcription factor for ER α (Jia et al., 2019). To answer whether
244 FOXO3A is involved in the regulation of FRMD8 on ER α , we examined the expression
245 of FOXO3A after silencing FRMD8 through transfecting siRNA into MCF7 and T47D
246 cells. The results showed that FRMD8 silencing dramatically decreased the level of
247 FOXO3A (Fig. 3F). Consistently, overexpression of FRMD8 in MCF7 and T47D cells
248 markedly raised the level of FOXO3A (Fig. 3G). To examine whether FRMD8
249 promotes *ESR1* transcription through FOXO3A, HA-tagged FRMD8 as well as
250 FOXO3A siRNA were co-transfected into MCF7 cells. Although exogenous FRMD8
251 significantly upregulated ER α expression, depletion of endogenous FOXO3A greatly
252 reduced the effect of FRMD8 on ER α (Fig. 3H and 3I). Besides, chromatin
253 immunoprecipitation (ChIP)-qPCR was performed and revealed that depletion of
254 FRMD8 significantly decreased the occupancy of FOXO3A at the *ESR1* promoters (Fig.
255 3J). Altogether, these data indicated that FRMD8 promoted upregulation of *ESR1* is
256 mediated by FOXO3A (Fig. 3K).

257

258 **FRMD8 stabilizes ER α via prevention of its degradation**

259 Although our results suggest that FRMD8 depletion inhibits the mRNA level of *ESR1*,
260 unexpectedly, we also observed that decreased expression of FRMD8 led to a decreased
261 level of exogenous Flag-ER α (Fig. 4A). This result suggested that in addition to
262 inhibiting mRNA expression of ER α , FRMD8 may also regulate ER α protein
263 expression at the post-translational level. To this end, T47D cells were treated with

264 cycloheximide (CHX), a protein synthesis inhibitor. Depletion of FRMD8 greatly
265 increased the ER α turnover rate and the half-life of ER α decreased from 6 h to
266 approximately 2 h (Fig. 4B and 4C). Furthermore, MCF7 and T47D cells were treated
267 with MG132, a proteasome inhibitor, and chloroquine (CQ), a lysosome inhibitor, to
268 determine whether ER α degradation was mediated by the proteasome or the lysosome.
269 The results showed that the reduction of ER α levels by FRMD8 depletion was blocked
270 by treatment with MG132 but not CQ (Fig 4D). Altogether, these data suggested that
271 FRMD8 stabilizes ER α protein via a proteasome-mediated degradation pathway.

272

273 **FRMD8 inhibits ER α degradation by blocking UBE3A binding with ER α**

274 Given that FERM domain containing proteins play roles via regulating protein-protein
275 interaction, we wonder whether there is an interaction between FRMD8 and ER α . To
276 this end, co-immunoprecipitation (co-IP) assays were performed using Flag-FRMD8 in
277 MCF7 and T47D cells to examine the association of exogenous FRMD8 with
278 endogenous ER α . The results showed that FRMD8 interacts with ER α (Fig. 5A and 5B).
279 Importantly, an interaction between endogenous FRMD8 and endogenous ER α was
280 also observed in MCF7 cells (Fig. 5C). Furthermore, a glutathione S-transferase (GST)
281 pull-down assay using purified recombinant GST-FRMD8 and Flag-tagged ER α
282 proteins was also performed. The results indicated that FRMD8 interacts directly with
283 ER α *in vitro* (Fig. 5D). Taken together, these findings suggest that FRMD8 is a binding
284 partner of ER α in human cells.

285 The aforementioned findings demonstrated that FRMD8 prevents ER α degradation
286 via proteasome pathway. To explore the mechanism by which FRMD8 inhibits ER α
287 degradation, co-IP assay and mass spectrometry (MS) analysis were performed in
288 HEK293A cells transiently expressing Flag-FRMD8 (Table S1). We next searched for
289 the FRMD8-interacting proteins identified by MS matched with the known E3 ubiquitin
290 ligases of ER α . Interestingly, UBE3A, a ubiquitin ligase for ER α (Sun et al., 2012), is
291 the only matched protein that interacts with FRMD8 (Fig. 5E). We thus examined the

292 interaction between FRMD8 and UBE3A through co-IP. The results indicated an
293 interaction between FRMD8 and UBE3A (Fig. 5F and 5G). Further, we assumed that
294 FRMD8 may interfere with the interaction between ER α and UBE3A. To test this idea,
295 co-IP assays were performed in HEK293T and T47D cells. In both cell types, the level
296 of ER α ubiquitination and the interaction between ER α and UBE3A were markedly
297 increased by FRMD8 depletion (Fig. 5H and 5I). Intriguingly, FRMD8 depletion led to
298 a marked decrease of ER α expression, while depletion of UBE3A dramatically rescued
299 the effect of FRMD8 depletion (Fig. 5J and 5K). Taken together, these results strongly
300 demonstrated that FRMD8 binds to ER α and UBE3A, and prevents UBE3A interaction
301 with ER α , thereby blocking UBE3A-mediated ER α ubiquitination and degradation (Fig.
302 5L).

303

304 **FRMD8 promoter is methylated and low FRMD8 level predicts poor prognosis in**
305 **breast cancer patients**

306 Given that *Frmd8* prevents mammary tumor growth and inhibits tumor cell
307 proliferation in mice (Fig. 1), we would like to investigate whether the expression of
308 FRMD8 is downregulated in mammary tumors. ScRNA-seq results demonstrated that
309 the level of *Frmd8* in normal Hsd epithelial cells was significantly higher than other
310 tumor cells in the mammary tumors from *PyMT* mice (Fig. 6A). To further verify the
311 expression of FRMD8 in human breast cancer cell lines, whole cell lysates from normal
312 mammary epithelial cells and various subtypes of breast cancer cell lines were
313 subjected to Western blot analysis. Results showed that FRMD8 expression was lower
314 in claudin-low breast cancer cell lines compared with normal mammary epithelial cell
315 line or ER α -positive cell lines (Fig. 6B).

316 Hypermethylation of tumor suppressor genes is one of the major causes for
317 tumorigenesis. Therefore, we investigated whether the promoter region of FRMD8 is
318 hypermethylated in breast cancer patients. An analysis based on TCGA database
319 showed that the *FRMD8* promoter was highly methylated in primary breast tumors (Fig.

320 6C). Subsequently, breast cancer cells were treated with the DNA methyltransferase
321 inhibitor 5-aza-2-deoxycytidine (5-Aza-dC). The results showed that 5-Aza-dC
322 treatment significantly upregulated both mRNA and protein levels of FRMD8 in
323 claudin-low but not luminal breast cancer cell lines (Fig. 6D, 6E and S4A), which was
324 consistent with the lower expression of FRMD8 in claudin-low breast cancer cell lines
325 (Fig. 6A). These findings demonstrated that *FRMD8* gene promoter is hypermethylated,
326 which could be the reason for the reduced FRMD8 expression in triple-negative breast
327 cancer cells.

328 To further investigate the clinical significance of FRMD8 in breast cancer patients,
329 we performed immunohistochemical staining of FRMD8 in a tissue microarray of
330 breast cancer patients and evaluated the level of FRMD8 (Fig. 6F). The results
331 suggested that patients with lower level of FRMD8 showed poor overall survival
332 ($p=0.0409$) (Fig. 6G). Moreover, we also found that a decreased FRMD8 level was
333 associated with poor recurrence free survival in breast cancer patients according to
334 Kaplan-Meier Plotter analysis (Fig. 6H, 6J, S4B and S4C). Collectively, these data
335 indicated that the promoter of *FRMD8* is hypermethylated, and the low FRMD8 level
336 predicts poor prognosis of breast cancer patients.

337

338 **Discussion**

339 In this study, we found that FRMD8 plays a tumor suppressive role in breast cancer
340 progression. We demonstrated that loss of FRMD8 promotes mammary tumor growth,
341 accelerates the loss of mammary luminal phenotype, and confers tamoxifen resistance
342 via downregulating ER α level. FRMD8 depletion not only suppresses transcription of
343 *ESR1* through decreasing the level of FOXO3A, but also promotes the E3 ligase
344 UBE3A binding with ER α to disrupts ER α protein stability. Moreover, the promoter of
345 *FRMD8* is hypermethylated and a decreased FRMD8 level predicts poor outcomes in
346 breast cancer patients (Fig. 7).

347 As a FERM-domain containing protein, FRMD8 is necessary for releasing of TNF

348 and EGFR ligands(Künzel et al., 2018; Oikonomidi et al., 2018). FRMD8 regulates
349 lung cancer cell growth by regulating tumor microenvironment(Badenes et al., 2023).
350 Frmd8-deficient mice are defective in intestinal epithelial barrier repair function and
351 deletion of Frmd8 promotes colorectal tumorigenesis induced by azoxymethane/
352 dextran sodium sulfate in mice(Badenes et al., 2023; Yu et al., 2023). FRMD8 acts as a
353 scaffold protein, inhibiting CDK4 activation mediated by CDK7 and preventing
354 MDM2-mediated RB degradation(Yu et al., 2023). In this study, our results suggested
355 that FRMD8 inhibits mammary tumor progression in *MMTV-PyMT* mice. Besides,
356 FRMD8 also acts as a scaffold molecule, which interacts simultaneously with ER α and
357 UBE3A, and renders UBE3A unable to bind with ER α , thus stabilizing ER α .

358 In *MMTV-PyMT* mice, early-stage mammary tumors express ER α and PR, but these
359 receptors are gradually lost as the tumor progresses (Lapidus et al., 1998). Our scRNA-
360 seq results revealed that mammary tumor epithelial cells in *MMTV-PyMT* mice fall into
361 four clusters, with only Hsd epithelial cells showing ER α and PR expression.
362 Additionally, Hsd epithelial cells exhibited the lowest CNV score, indicating a closer
363 resemblance to normal epithelial cells. The loss of Frmd8 reduced the proportion of
364 Hsd epithelial cells and led to a downregulation of ER α and PR expression, implying
365 that Frmd8 deficiency promotes the loss of luminal features in the mammary gland and
366 accelerates mammary tumor progression.

367 In this study, we identified that loss of FRMD8 inhibiting *ESR1* expression through
368 downregulating the level of FOXO3A. FOXO3A locates in nucleus and blocks cell
369 cycle progression via activating the cell cycle blocking protein p27^{KIP1} (Seoane et al.,
370 2004). In addition, FOXO3A contributes to cell death through a Fas ligand-dependent
371 mechanism(Seoane et al., 2004). Phosphorylated FOXO3A mediated by AKT binds to
372 14-3-3 protein and remains in the cytoplasm, resulting in loss of activity(Arden, 2004).
373 Thus, FRMD8 may also be involved in the regulation of cell cycle or apoptosis in an
374 ER α -independent manner by regulating FOXO3A. Furthermore, FOXO3A is closely
375 associated with the stemness of breast cancer cells. FOXO3A suppresses breast cancer

376 stem cell properties and tumorigenicity via inhibition of FOXM1/SOX2 signaling(Liu
377 et al., 2020; Yan et al., 2017), suggesting that FRMD8 may have an effect on breast
378 cancer stem cells. However, the mechanisms by which FRMD8 promotes FOXO3A
379 expression remain unclear and need to be further investigated.

380 The proportion of luminal subtype is increasing in new cases of breast cancer(Waks
381 & Winer, 2019). Tamoxifen therapy is one of the most important systemic treatment for
382 ER α ⁺/HER2⁻ subtype breast cancer patients(Waks & Winer, 2019). Unfortunately,
383 primary or secondary tamoxifen resistance occurs in about 40% of patients treated with
384 tamoxifen therapy, and tamoxifen resistance often leads to the development of
385 resistance to other selective estrogen receptor modulators(Badia et al., 2007; Légaré &
386 Basik, 2016; Rondón-Lagos et al., 2016). As a regulator of ER α , FRMD8 may be a
387 therapeutic target for rescue tamoxifen resistance.

388 In summary, we identified FRMD8 as a prognostic marker in breast cancer. FRMD8
389 regulates ER α level through a dual mechanism. Loss of FRMD8 inhibits *ESR1*
390 transcription via downregulating FOXO3A expression. FRMD8 also stabilizes ER α
391 protein by preventing UBE3A from binding to ER α . Deficiency of FRMD8 promotes
392 mammary luminal features loss and confers tamoxifen resistance. Our findings
393 indicated that targeting *FRMD8* promoter methylation may provide a novel therapeutic
394 approach for reversing tamoxifen resistance.

395

396 **Materials and Methods**

397 **Mice**

398 Both *Frmd8* floxed mice and *MMTV-PyMT* mice were purchased from Shanghai Model
399 Organisms Center Inc (SMOC). *MMTV-Cre*⁺ mice were from the Nanjing Biomedical
400 Research Institute of Nanjing University.

401 *Frmd8* floxed (*Frmd8*^{fl/fl}) mice were crossed with *MMTV-Cre*⁺; *PyMT* transgenic
402 mice to generate *Frmd8* heterozygous (*MMTV-Cre*⁺; *Frmd8*^{fl/wt}; *PyMT*) mice. *MMTV-*
403 *Cre*⁺; *Frmd8*^{fl/wt}; *PyMT* mice were further backcrossed with *Frmd8*^{fl/fl} mice to obtain
404 littermate *MMTV-Cre*⁻; *Frmd8*^{fl/fl}; *PyMT* and *MMTV-Cre*⁺; *Frmd8*^{fl/fl}; *PyMT* mice.

405 Mice were housed in a pathogen-free animal facility at Laboratory Animal Center of
406 Peking University Health Science Center with a 12 h light/dark cycle, constant
407 temperature and humidity, and fed standard rodent chow and water ad libitum. All
408 animal experiments were approved by the Peking University Biomedical Ethics
409 Committee and the approval number is BCJB0104. Genomic DNA extracted from
410 mouse tail biopsies was subjected to standard genotyping PCR using the primers
411 specified in Table S3. The reaction conditions were: 5 minutes at 94°C; 35 cycles of 30
412 s at 94°C, 30 s at 56°C and 1 minute at 72°C; followed by 5 minutes at 72°C and hold
413 at 4°C.

414

415 **Tamoxifen treatment**

416 7-week-old female mice were given intraperitoneal injections of either corn oil or
417 tamoxifen (50 mg/kg) every two days. Tumor formation was assessed every two days,
418 and the time point at which the tumor first became palpable was recorded as the tumor-
419 free survival time. At the end of the treatment, mice were euthanized and the total
420 number of tumors were counted. Tumors were measured using calipers, and tumor
421 volume was calculated using the formula: $V = (\text{length} \times \text{width} \times \text{height} \times 0.5) \text{ mm}^3$.
422 Tumors were subsequently fixed in 4% paraformaldehyde (PFA) and housed in
423 individual cassettes for paraffin embedding. 5 μm sections were stained for

424 hematoxylin-eosin (H&E) or immunohistochemistry.

425

426 **Antibodies and reagents**

427 Antibodies against ER α (#8644), Ubiquitin (#3936) and PR (#8757) were purchased
428 from Cell Signaling Technology. Antibodies specific for ER α (#ab32063), CK8
429 (#ab53280), FOXO3A (#ab109629), UBE3A (#ab272168) and HER2 (#ab134182)
430 were from Abcam. Anti-PR (#YM3348) antibody was from Immunoway. Anti-FRMD8
431 (#HPA002861) antibody was from Atlas Antibodies. Anti-Flag (#F3165) antibody was
432 from Sigma-Aldrich. Antibodies against GAPDH (#AC002) was purchased from
433 ABclonal Technology. Anti-Actin (#sc-58673) antibodies was from Santa Cruz
434 Biotechnology. Antibodies specific for β -tubulin (#TA-10) was from Zhong Shan Jin
435 Qiao (ZSGB-Bio).

436 MG132 (#S2619) was purchased from Selleck. Chloroquine (CQ, #C6628),
437 cycloheximide (#C7698) and 5-aza-2-deoxycytidine (5-Aza-dC; #A3656) were
438 purchased from Sigma-Aldrich. Tamoxifen (#HY-13757A) and estradiol (E2, #HY-
439 B0141) were purchased from MedChemExpress.

440

441 **Plasmids**

442 The recombinant vectors encoding human FRMD8 and ER α were constructed by PCR-
443 based amplification, and then subcloned into the p3 \times Flag-CMVTM-10 expression vector.
444 The GST-tagged FRMD8 expression plasmid was generated by inserting PCR-
445 amplified fragments into pGEX-4T-1 vector. All constructs were confirmed by DNA
446 sequencing.

447

448 **Cell culture**

449 Human embryonic kidney cell lines HEK293T and HEK293A and human breast cancer
450 cell lines MCF7, BT-20, MDA-MB-231 and SUM159 were cultured in Dulbecco's
451 Modified Eagle Medium (DMEM). Human breast cancer cell lines T47D and BT-549

452 were cultured in RPMI 1640 medium. All media were supplemented with 10% fetal
453 bovine serum, 100 U/ml penicillin and 0.1 mg/ml streptomycin. Medium for culturing
454 T47D was supplemented with 0.2 U/ml insulin. Human breast cancer cell line MCF10A
455 was cultured in DMEM/F12 medium supplemented with 10% horse serum, 100 U/ml
456 penicillin and 0.1 mg/ml streptomycin, 20 ng/ml epidermal growth factor, 0.5 µg/ml
457 hydrocortisone, 10 µg/ml insulin and 100 ng/ml cholera toxin. All cell lines were
458 maintained in a humidified atmosphere at 37°C with 5% CO₂ and passaged using 0.25%
459 trypsin containing 0.02% EDTA for dissociation at 80% confluence.

460

461 **Plasmid and specific siRNA transfection**

462 For transient transfection, cells at 50%-60% confluence were transfected with plasmids
463 via polyethylenimine (PEI; Polyscience, #24765). For RNA interference experiments,
464 cells at 60-70% confluence were transfected with siRNA using Lipo8000 (Beyotime, #
465 C0533). The specific sequences of siRNA are listed in Table S2.

466

467 **Extraction of proteins and immunoblotting**

468 Cells or tissues were lysed using RIPA buffer (1×PBS, pH 7.4, 0.5% sodium
469 deoxycholate, 1% NP-40, and 0.1% SDS) complemented with an EDTA-free cocktail
470 of protease inhibitors (Roche). This was followed by centrifugation at 12,000 rpm for
471 over 15 minutes at a temperature of 4°C to collect the supernatant. Protein
472 concentrations were ascertained using a bicinchoninic acid (BCA) protein assay kit
473 (Applygen, #P1511). Protein samples underwent electrophoresis via SDS-PAGE and
474 were then transferred to a polyvinylidene fluoride (PVDF) membrane employing
475 conventional methods. The membranes were treated with 5% non-fat milk for one hour,
476 then incubated with primary antibodies at 4°C overnight, and subsequently exposed to
477 HRP-conjugated goat anti-mouse or rabbit IgG secondary antibodies for one hour at
478 4°C. The bound antibodies were visualized using the EZ-ECL Chemiluminescence
479 Detection Kit for HRP (Biological Industries, # 20-500-1000) through

480 ChampChemiTM (SageCreation).

481

482 **Chromatin immunoprecipitation**

483 The chromatin immunoprecipitation (ChIP) assay was performed according to the
484 manufacturer's instructions of Sonication ChIP Kit (ABclonal, #RK20258). The
485 purified DNA was analyzed by quantitative reverse transcription PCR (qRT-PCR). All
486 primers are shown in Table S2.

487

488 **Immunoprecipitation**

489 IgG, serving as controls, or indicated antibodies were added to pre-cleared lysates and
490 allowed to incubate overnight at 4°C with sustained rocking. Following this, lysates
491 were subjected to a 4-hour incubation with 35-50 µl of either protein A or protein G
492 Sepharose beads (Santa Cruz Biotechnology) at 4°C. Subsequently, the Sepharose
493 beads were washed thrice with RIPA buffer and heated in SDS-loading buffer at 99°C
494 for 10 minutes. The immunoprecipitation results were assessed via immunoblotting.

495

496 **Mass spectrometry analysis**

497 Flag-FRMD8 and empty vector were transiently transfected in HEK293A cells using
498 PEI, and cell lysates were harvested after 48 h. The cell lysates were pre-cleared and
499 then incubated with pre-washed anti-Flag M2 agarose beads (Yeasen, #20584ES08)
500 overnight at 4°C. Beads were washed three times with PBS. Protein samples were then
501 eluted by boiling with sodium dodecyl sulfate (SDS)-loading buffer at 99°C for 10 min.
502 Ten percent of the samples were saved for immunoblotting. The other 90% of samples
503 were separated by SDS-PAGE, visualized by colloidal coomassie blue staining,
504 destained and subjected to mass spectrometry (MS) analysis.

505 For MS analysis, the protein in the gel was subjected to trypsin digestion. In the LC-
506 MS/MS analysis, the digested products were separated using a 120-minute gradient
507 elution at a flow rate of 0.300 µL/min, utilizing the Thermo Ultimate 3000 nano-UPLC

508 system directly interfaced with the Thermo Fusion LUMOS mass spectrometer. The
509 analytical column used was an Acclaim PepMap RSLC (75 μ m ID, 250 mm length,
510 C18). Mobile phase A consisted of 0.1% formic acid, while mobile phase B was 100%
511 acetonitrile with 0.1% formic acid. The Fusion LUMOS mass spectrometer operated in
512 data-dependent acquisition mode, employing Xcalibur 4.1.50 software. It started with
513 a single full-scan mass spectrum in the Orbitrap (375-1500 m/z, 60,000 resolution),
514 followed by data-dependent MS/MS scans. The MS/MS spectra from each LC-MS/MS
515 run were analyzed against the selected database using Proteome Discovery software
516 (version 2.4).

517

518 **Recombinant protein expression and GST pull-down assay**

519 For the expression of Glutathione S-transferase (GST) fusion proteins, GST-tagged
520 recombinant vectors were transfected into *Escherichia coli* Rosetta (DE3) cells. Upon
521 the cell culture attaining an OD₆₀₀ between 0.6 and 0.8, the cells were subjected to
522 overnight incubation with 1 mM isopropyl- β -D-thiogalactopyranoside (IPTG; Sigma,
523 #92320) at 20°C. For the purification of GST fusion proteins, cells were collected and
524 sonicated.

525 For GST-pull down assays, HEK293T cells were transfected and subsequently lysed
526 on ice for over 15 minutes. Purified GST or GST fusion proteins were anchored onto
527 Glutathione Sepharose 4B beads (Pharmacia Biotech). These beads were then further
528 incubated with cellular extract at 4°C for an extended period of over 4 hours, followed
529 by washes with ice-cold PBS for three times. The process concluded with Western blot
530 analysis.

531

532 **RNA extraction and qRT-PCR**

533 Total RNA was isolated using Trizol reagent (Invitrogen) as per the manufacturer's
534 guidelines. 1 μ g of the isolated RNA was converted to cDNA using HiScript II Q RT
535 SuperMix for qPCR (+gDNA wiper) (Vazyme). Quantitative real-time PCR, carried out

536 in triplicate, was used to assess relative mRNA levels and was standardized to *GAPDH*
537 expression. The cDNA products were amplified using the LightCycler 96 (Roche)
538 platform, and data were subsequently analyzed through LightCycler 96 (Roche) along
539 with GraphPad Prism 7.0 software. All relevant primers are listed in Table S2.

540

541 **Histology and immunohistochemistry staining**

542 Tissues were preserved in 4% paraformaldehyde, embedded in paraffin, and then sliced
543 into 5 μ m sections prior to staining. Following deparaffinization and rehydration, these
544 sections were subject to H&E staining for structural examination.
545 Immunohistochemistry staining was executed using the streptavidin-biotin-peroxidase
546 complex method, with subsequent detection of 3'3'-diaminobenzidine (DAB) as guided
547 by the manufacturer's instructions (Dako, Agilent pathology solutions). Observations
548 and imaging were performed using an Olympus BX51 microscope coupled with an
549 Olympus DP73 CCD photography system.

550

551 **Tumor tissue microarray (TMA) immunohistochemistry analysis**

552 Human breast carcinoma TMA (HBre-Duc140Sur-01) was purchased from Shanghai
553 Biochip. Immunohistochemistry staining for FRMD8 in TMA was performed as
554 described above. The stained microarrays were evaluated by a pathologist blind to
555 cancer outcomes. Based on histological evaluations, staining reactivity was categorized
556 into four levels: absence of reactivity (score=0), weak reactivity (score=1), moderate
557 reactivity (score=2), and intense reactivity (score=3 or 4).

558

559 **Multiple immunohistochemistry staining and analysis**

560 Multicolor immunohistochemistry was conducted using the TissueGnostics Multiple
561 IHC Assay Kit (TissueGnostics, TGFP550) on mammary tumors from mice. Tumors
562 were preserved in 4% paraformaldehyde, embedded in paraffin, and then sliced into 5
563 μ m sections prior to staining. The sections were then deparaffinized and hydrated,

564 followed by antigen retrieval in a Tris-EDTA buffer via microwave. Slides underwent
565 treatment with 3% H₂O₂ at ambient temperature to eliminate endogenous peroxidase
566 activity. For iterative rounds of cyclic staining, slides were treated with blocking
567 solution, then incubated with the primary antibody either overnight at 4°C or for 2 hours
568 at 37°C, and subsequently with HRP-linked secondary antibody at 37°C for 30 minutes.
569 Signal was enhanced using Tyramide Signal Amplification (TSA) reagents. Antigen
570 retrieval buffer was applied once more, and the aforementioned steps were repeated for
571 additional staining. Lastly, DAPI was used for 10 minutes to stain nuclei. Tissue images
572 were captured using the tissue faxs platform (TissueGnostics).

573 Immunofluorescence image quantification was carried out via StrataQuest v7.0.158
574 software (TissueGnostics). Cells were identified based on DAPI staining, and the
575 expression levels of Frmd8, ERα, PR, and CK8 were calculated by the software,
576 measuring fluorescence intensity and area to enumerate positively-stained cells. The
577 threshold for identifying positive cells was set by inspecting cell recognition on the
578 original image using the View Backward Data function.

579

580 **EdU (5-ethynyl-2'-deoxyuridine) incorporation assay**

581 The EdU incorporation assay was performed according to the manufacturer's
582 instructions of BeyoClick™ EdU Cell Proliferation Kit with Alexa Fluor 488
583 (Beyotime Biotechnology, #C0071) for cell proliferation.

584

585 **Single-cell RNA sequence (scRNA-seq)**

586 Single-cell RNA sequencing libraries were meticulously prepared utilizing the
587 Chromium Single Cell 3' Reagent Kits v3 according to the protocols recommended by
588 10× Genomics. Briefly, an initial quantity of approximately 1×10⁵ cells, which had
589 been sorted through fluorescence-activated cell sorting (FACS), underwent a triple
590 wash process in DPBS containing 0.04% BSA. These cells were subsequently
591 resuspended to a final concentration of 700 to 1,200 cells/μl, with a minimum viability

592 threshold of 85%. During the library preparation process, cells were encapsulated
593 within droplets to facilitate a precise targeted recovery rate. After the reverse
594 transcription phase, the generated emulsions were disrupted, and the barcoded cDNA
595 was isolated using Dynabeads technology. This was followed by PCR amplification to
596 enrich the cDNA pool. The amplified cDNA served as the template for constructing the
597 3' gene expression libraries. Specifically, for this construction phase, 50 ng of the
598 amplified cDNA was fragmented and subjected to end repair. This material was then
599 subjected to a double-size selection process using SPRIselect beads. The prepared
600 libraries were sequenced on NovaSeq system provided by Illumina, generating 150 bp
601 paired-end reads.

602

603 **Single-cell RNA sequence original data process**

604 Prior to commencing the analysis, cellular data underwent a stringent filtering process.
605 Cells with unique molecular identifier (UMI) counts below 30,000 and those exhibiting
606 gene counts within the range of 200 to 5,000 were excluded. Additionally, cells
607 displaying a mitochondrial content exceeding 20% were also removed from further
608 analysis. Following this preprocessing step, the Seurat package (version 2.3) was
609 employed for both dimensionality reduction and cluster identification. The
610 normalization and scaling of gene expression data were accomplished using the
611 NormalizeData and ScaleData functions, respectively. Subsequently, the
612 FindVariableFeatures function facilitated the selection of the 2,000 genes
613 demonstrating the most significant variation for principal component analysis (PCA).
614 Cluster identification was achieved through the FindClusters function, which
615 partitioned the genes into distinct groups. To mitigate batch effects across samples, the
616 Harmony package was utilized. The refined dataset was then visualized in a two-
617 dimensional space employing Uniform Manifold Approximation and Projection
618 (UMAP) techniques, thereby providing insightful representations of the underlying
619 cellular heterogeneity.

620

621 **Chromosomal copy-number variations estimation**

622 The estimation of chromosomal copy-number variations (CNVs) was conducted
623 utilizing the ‘inferCNV’ R package. A diverse reference panel comprised of B cells, T
624 cells, NK cells, macrophages and other immune cells facilitated this analysis.
625 Quantification of CNV scores for each subcluster was achieved by aggregating the
626 CNV levels observed across the constituent cells.

627

628 **Quantification and statistical analysis**

629 Statistical comparisons were performed using unpaired two-tailed Student’s t tests,
630 Mann Whitney test, one-way ANOVA or two-way ANOVA. Statistical analyses were
631 performed using GraphPad Prism 9.0 software (GraphPad Software, La Jolla, CA,
632 USA). Data are presented as mean \pm the standard error of the mean (SEM). Statistical
633 significance was defined as $p < 0.05$.

634

635 **Data Availability**

636 The accession number for the scRNA-seq data reported in this paper is Gene Expression
637 Omnibus (GEO): GSE244582.

638

639 **Conflict of Interest Statement**

640 The authors have no potential conflicts of interest.

641

642 **Acknowledgments**

643 This study was supported by grants from the Ministry of Science and Technology of
644 China 2022YFA1104003 and 2021YFC2501000; National Natural Science Foundation
645 of China grants 82172972, 82230094, 81972616, 81972609 and 81772840; Peking
646 University Medicine Sailing Program for Young Scholars' Scientific & Technological
647 Innovation BMU2024YFJHPY004; the Fundamental Research Funds for the Central
648 Universities; Postdoctoral Fellowship Program of CPSF GZC20230159. We would like
649 to thank TissueGnostics Asia Pacific Limited for their technical support on multiple
650 immunohistochemistry staining.

651

652 **Corresponding Authors**

653 Correspondence to Hongquan Zhang or Jun Zhan.

654

655 References

656 Arden, K. C. (2004). FoxO: linking new signaling pathways. *Mol Cell*, 14(4), 416-
657 418. [https://doi.org/10.1016/s1097-2765\(04\)00213-8](https://doi.org/10.1016/s1097-2765(04)00213-8)

658 Badenes, M., Burbridge, E., Oikonomidi, I., Amin, A., de Carvalho, É., Kosack, L.,
659 Mariano, C., Domingos, P., Faísca, P., & Adrain, C. (2023). The ADAM17 sheddase
660 complex regulator iTAP/Frmd8 modulates inflammation and tumor growth. *Life
661 Science Alliance*, 6(4). <https://doi.org/10.26508/lsa.202201644>

662 Badia, E., Oliva, J., Balaguer, P., & Cavaillès, V. (2007). Tamoxifen resistance and
663 epigenetic modifications in breast cancer cell lines [Review]. *Current Medicinal
664 Chemistry*, 14(28), 3035-3043. <https://doi.org/10.2174/092986707782794023>

665 Frame, M. C., Patel, H., Serrels, B., Lietha, D., & Eck, M. J. (2010). The FERM
666 domain: organizing the structure and function of FAK. *Nat Rev Mol Cell Biol*, 11(11),
667 802-814. <https://doi.org/10.1038/nrm2996>

668 Habara, M., & Shimada, M. (2022). Estrogen receptor alpha revised: Expression,
669 structure, function, and stability. *Bioessays*, 44(12), e2200148.
670 <https://doi.org/10.1002/bies.202200148>

671 Harbeck, N., Penault-Llorca, F., Cortes, J., Gnant, M., Houssami, N., Poortmans, P.,
672 Ruddy, K., Tsang, J., & Cardoso, F. (2019). Breast cancer. *Nat Rev Dis Primers*, 5(1),
673 66. <https://doi.org/10.1038/s41572-019-0111-2>

674 Jia, X., Li, C., Li, L., Liu, X., Zhou, L., Zhang, W., Ni, S., Lu, Y., Chen, L., Jeong, L.
675 S., Yu, J., Zhang, Y., Zhang, J., He, S., Hu, X., Sun, H., Yu, K., Liu, G., Zhao, H.,...Shao,
676 Z. M. (2019). Neddylation Inactivation Facilitates FOXO3a Nuclear Export to Suppress
677 Estrogen Receptor Transcription and Improve Fulvestrant Sensitivity. *Clin Cancer Res*,
678 25(12), 3658-3672. <https://doi.org/10.1158/1078-0432.Ccr-18-2434>

679 Katzenellenbogen, J. A., Mayne, C. G., Katzenellenbogen, B. S., Greene, G. L., &
680 Chandrarlapaty, S. (2018). Structural underpinnings of oestrogen receptor mutations in
681 endocrine therapy resistance. *Nature Reviews Cancer*, 18(6), 377-388.
682 <https://doi.org/10.1038/s41568-018-0001-z>

683 Koš, M., Reid, G., Denger, S., & Gannon, F. (2001). Minireview: Genomic
684 Organization of the Human ER α Gene Promoter Region. *Molecular Endocrinology*,
685 15(12), 2057-2063. <https://doi.org/10.1210/mend.15.12.0731>

686 Künzel, U., Grieve, A. G., Meng, Y., Sieber, B., Cowley, S. A., & Freeman, M. (2018).
687 FRMD8 promotes inflammatory and growth factor signalling by stabilising the
688 iRhom/ADAM17 sheddase complex. *eLife*, 7, e35012.
689 <https://doi.org/10.7554/eLife.35012>

690 Lapidus, R. G., Nass, S. J., & Davidson, N. E. (1998). The loss of estrogen and
691 progesterone receptor gene expression in human breast cancer. *J Mammary Gland Biol
692 Neoplasia*, 3(1), 85-94. <https://doi.org/10.1023/a:1018778403001>

693 Légaré, S., & Basik, M. (2016). Minireview: The link between ER α corepressors and
694 histone deacetylases in tamoxifen resistance in breast cancer [Review]. *Molecular
695 Endocrinology*, 30(9), 965-976. <https://doi.org/10.1210/me.2016-1072>

696 Liu, H., Song, Y., Qiu, H., Liu, Y., Luo, K., Yi, Y., Jiang, G., Lu, M., Zhang, Z., Yin,
697 J., Zeng, S., Chen, X., Deng, M., Jia, X., Gu, Y., Chen, D., Zheng, G., & He, Z. (2020).
698 Downregulation of FOXO3a by DNMT1 promotes breast cancer stem cell properties
699 and tumorigenesis. *Cell Death & Differentiation*, 27(3), 966-983.
700 <https://doi.org/10.1038/s41418-019-0389-3>

701 Moleirinho, S., Tilston-Lunel, A., Angus, L., Gunn-Moore, F., & Reynolds, P. A.
702 (2013). The expanding family of FERM proteins. *Biochem J*, 452(2), 183-193.
703 <https://doi.org/10.1042/BJ20121642>

704 Oikonomidi, I., Burbridge, E., Cavadas, M., Sullivan, G., Collis, B., Naegele, H.,
705 Clancy, D., Brezinova, J., Hu, T., Bileck, A., Gerner, C., Bolado, A., von Kriegsheim,
706 A., Martin, S. J., Steinberg, F., Strisovsky, K., & Adrain, C. (2018). iTAP, a novel iRhom
707 interactor, controls TNF secretion by policing the stability of iRhom/TACE. *eLife*, 7,
708 e35032. <https://doi.org/10.7554/eLife.35032>

709 Rogatsky, I., Trowbridge, J. M., & Garabedian, M. J. (1999). Potentiation of Human
710 Estrogen Receptor α Transcriptional Activation through Phosphorylation of Serines 104
711 and 106 by the Cyclin A-CDK2 Complex*. *Journal of Biological Chemistry*, 274(32),
712 22296-22302. <https://doi.org/https://doi.org/10.1074/jbc.274.32.22296>

713 Rondón-Lagos, M., Villegas, V. E., Rangel, N., Sánchez, M. C., & Zaphiropoulos, P.
714 G. (2016). Tamoxifen resistance: Emerging molecular targets [Review]. *International
715 Journal of Molecular Sciences*, 17(8), Article 1357.
716 <https://doi.org/10.3390/ijms17081357>

717 Seoane, J., Le, H.-V., Shen, L., Anderson, S. A., & Massagué, J. (2004). Integration
718 of Smad and Forkhead Pathways in the Control of Neuroepithelial and Glioblastoma
719 Cell Proliferation. *Cell*, 117(2), 211-223. [https://doi.org/https://doi.org/10.1016/S0092-8674\(04\)00298-3](https://doi.org/https://doi.org/10.1016/S0092-
720 8674(04)00298-3)

721 Sun, J., Zhou, W., Kaliappan, K., Nawaz, Z., & Slingerland, J. M. (2012). ER α
722 phosphorylation at Y537 by Src triggers E6-AP-ER α binding, ER α ubiquitylation,
723 promoter occupancy, and target gene expression. *Mol Endocrinol*, 26(9), 1567-1577.
724 <https://doi.org/10.1210/me.2012-1140>

725 Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., &
726 Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence
727 and Mortality Worldwide for 36 Cancers in 185 Countries. *CA: A Cancer Journal for
728 Clinicians*, 71(3), 209-249. <https://doi.org/https://doi.org/10.3322/caac.21660>

729 Valdes-Mora, F., Salomon, R., Gloss, B. S., Law, A. M. K., Venhuizen, J., Castillo,
730 L., Murphy, K. J., Magenau, A., Papanicolaou, M., Rodriguez de la Fuente, L., Roden,
731 D. L., Colino-Sanguino, Y., Kikhtyak, Z., Farbehi, N., Conway, J. R. W., Sikta, N.,
732 Oakes, S. R., Cox, T. R., O'Donoghue, S. I.,...Gallego-Ortega, D. (2021). Single-cell
733 transcriptomics reveals involution mimicry during the specification of the basal breast
734 cancer subtype. *Cell Rep*, 35(2), 108945. <https://doi.org/10.1016/j.celrep.2021.108945>

735 Waks, A. G., & Winer, E. P. (2019). Breast Cancer Treatment: A Review. *Jama*,
736 321(3), 288-300. <https://doi.org/10.1001/jama.2018.19323>

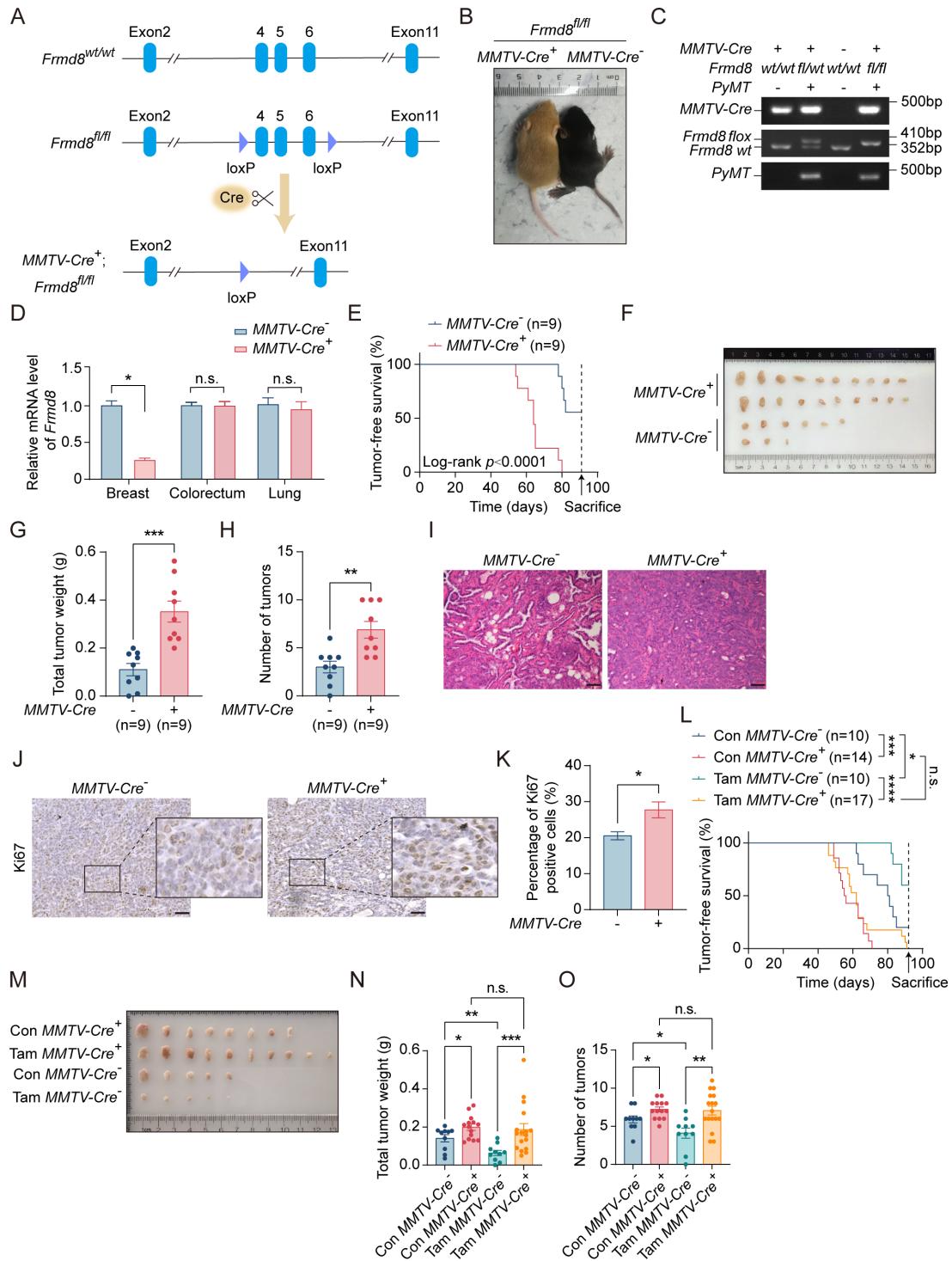
737 Williams, C. C., Basu, A., El-Ghabawwy, A., Carrier, L. M., Smith, C. L., & Rowan,

738 B. G. (2009). Identification of four novel phosphorylation sites in estrogen receptor α :
739 impact on receptor-dependent gene expression and phosphorylation by protein kinase
740 CK2. *BMC Biochemistry*, 10(1), 36. <https://doi.org/10.1186/1471-2091-10-36>

741 Yan, H., Li, Q., Wu, J., Hu, W., Jiang, J., Shi, L., Yang, X., Zhu, D., Ji, M., & Wu, C.
742 (2017). MiR-629 promotes human pancreatic cancer progression by targeting FOXO3.
743 *Cell Death & Disease*, 8(10), e3154-e3154. <https://doi.org/10.1038/cddis.2017.525>

744 Yu, M., Wu, W. J., Sun, Y., Yan, H. Y., Zhang, L., Wang, Z. B., Gong, Y. Q., Wang,
745 T. Z., Li, Q. C., Song, J. G., Wang, M. Y., Zhang, J., Tang, Y., Zhan, J., & Zhang, H. Q.
746 (2023). FRMD8 targets both CDK4 activation and RB degradation to suppress colon
747 cancer growth. *Cell Reports*, 42(8), 112886. <https://doi.org/ARTN 112886>
748 10.1016/j.celrep.2023.112886

749 Zhan, J., & Zhang, H. (2018). Kindlins: Roles in development and cancer progression.
750 *Int J Biochem Cell Biol*, 98, 93-103. <https://doi.org/10.1016/j.biocel.2018.03.008>

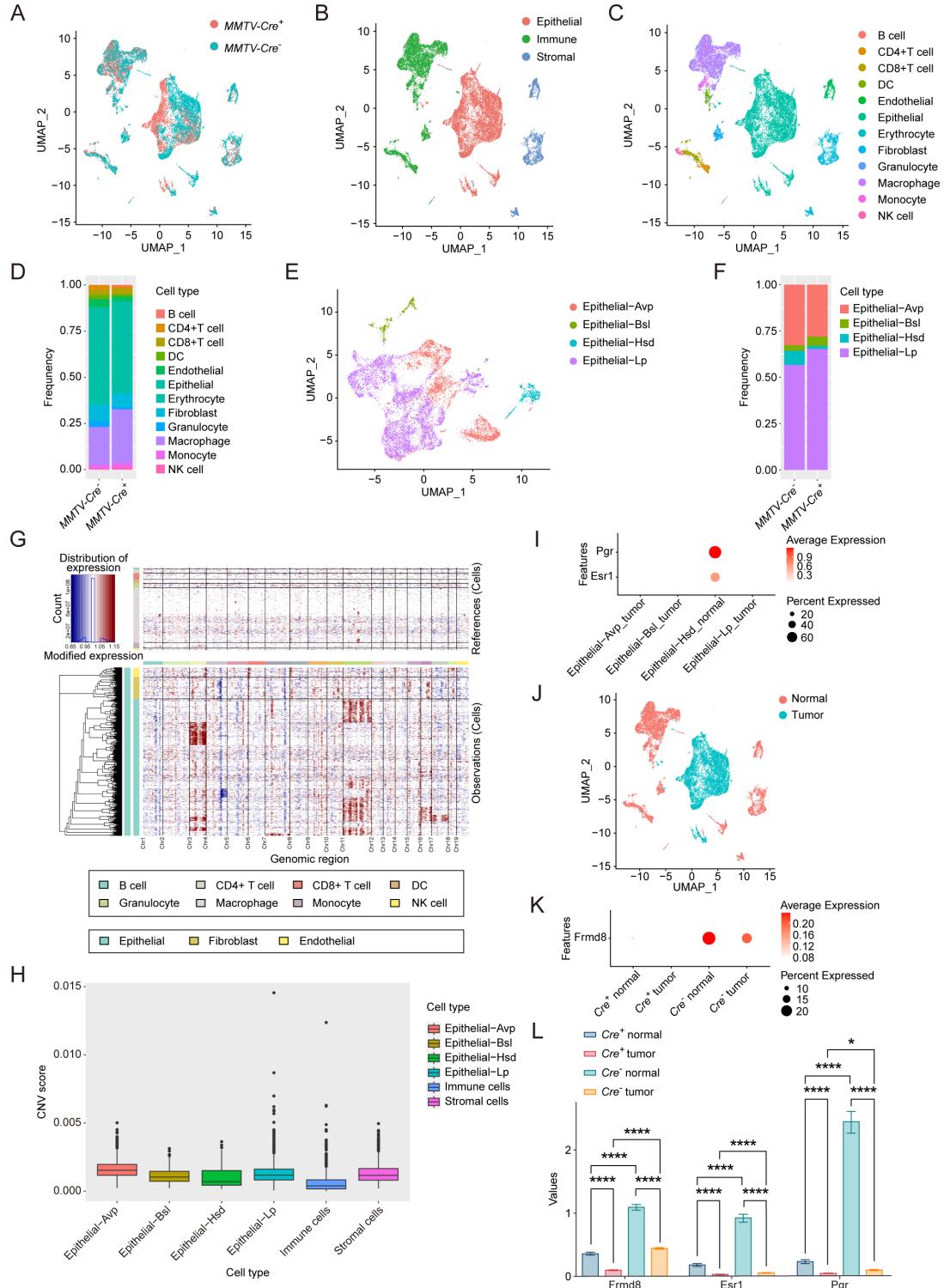

751 Zhou, W., & Slingerland, J. M. (2014). Links between oestrogen receptor activation
752 and proteolysis: relevance to hormone-regulated cancer therapy. *Nature Reviews
753 Cancer*, 14(1), 26-38. <https://doi.org/10.1038/nrc3622>

754

755

756

Figure Legends

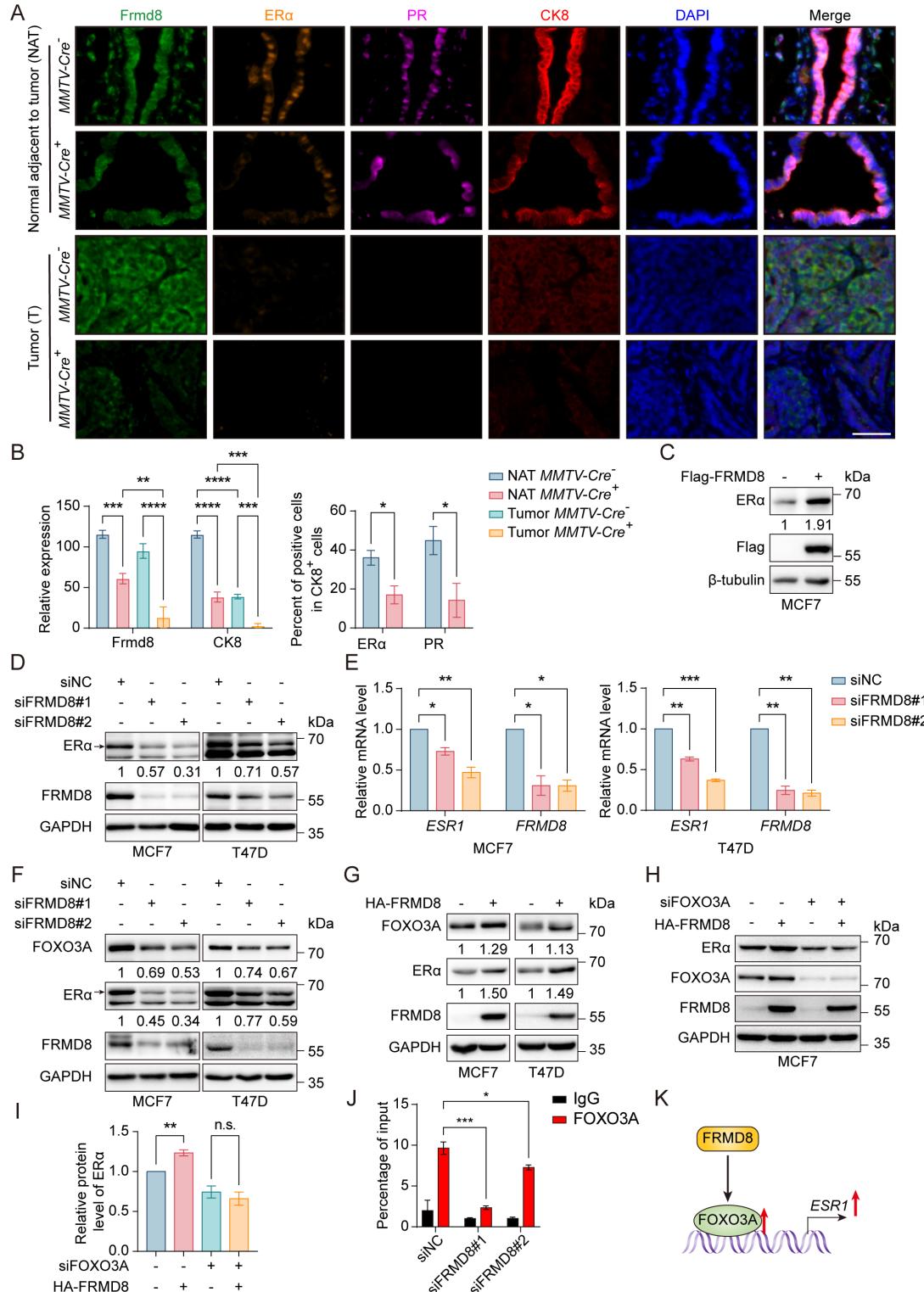


757

758 **Figure 1. Loss of *Frmd8* promotes mammary tumor growth and generates**
759 **tamoxifen resistance *in vivo***

760 (A) A diagram of the *Frmd8* targeted alleles. Exons 4, 5 and 6 are flanked by loxp sites.
761 (B) Distinguishing the genotype of littermate mice by mice coat color. Yellow
762 represents *MMTV-Cre*⁺; *Frmd8*^{fl/fl}; *PyMT* genotype and black represents *MMTV-Cre*⁻;
763 *Frmd8*^{fl/fl}; *PyMT* genotype. (C) Representative PCR genotyping of mouse tail DNA. (D)
764 Relative mRNA level of *Frmd8* in 7-week-old mammary glands from *PyMT* mice was
765 analyzed by qRT-PCR. *Gapdh* was used as an internal reference. **p*<0.05 by unpaired
766 Student's t-test. (E) Kaplan-Meier plot showing the appearance of palpable tumors in
767 *MMTV-Cre*⁻; *Frmd8*^{fl/fl}; *PyMT* (n=9) and *MMTV-Cre*⁺; *Frmd8*^{fl/fl}; *PyMT* (n=9) mice
768 (Log-rank test). (F) Representative images of tumors from *MMTV-Cre*⁻; *Frmd8*^{fl/fl};
769 *PyMT* and *MMTV-Cre*⁺; *Frmd8*^{fl/fl}; *PyMT* mice. (G-H) Total tumor weight (G) and
770 number of tumors (H) per mice were measured. ***p*<0.01, ****p*<0.001 by unpaired
771 Student's t-test. (I) Representative H&E staining of tumors from *MMTV-Cre*⁻; *Frmd8*^{fl/fl};
772 *PyMT* and *MMTV-Cre*⁺; *Frmd8*^{fl/fl}; *PyMT* mice. Scale bar, 50 μ m. (J)
773 Immunohistochemistry (IHC) staining for Ki67 expression in mammary tumors from
774 *PyMT* mice. The black boxes represent the magnified typical staining of the original
775 images. Scale bar, 50 μ m. (K) Quantification of Ki67-positive cell percentage in (J).
776 **p*<0.05 by unpaired Student's t-test. (L) Kaplan-Meier plot showing the appearance of
777 palpable tumors in *MMTV-Cre*⁻; *Frmd8*^{fl/fl}; *PyMT* and *MMTV-Cre*⁺; *Frmd8*^{fl/fl}; *PyMT*
778 mice, with or without tamoxifen treatment (Log-rank test, **p*<0.05, ****p*<0.001,
779 *****p*<0.0001). (M) Representative images of tumors from *MMTV-Cre*⁻; *Frmd8*^{fl/fl};
780 *PyMT* and *MMTV-Cre*⁺; *Frmd8*^{fl/fl}; *PyMT* mice, with or without tamoxifen treatment.
781 (N-O) Total tumor weight (N) and number of tumors (O) per mice from (L) were
782 measured. **p*<0.05, ***p*<0.01, ****p*<0.001 by unpaired Student's t-test or Mann
783 Whitney test.

784

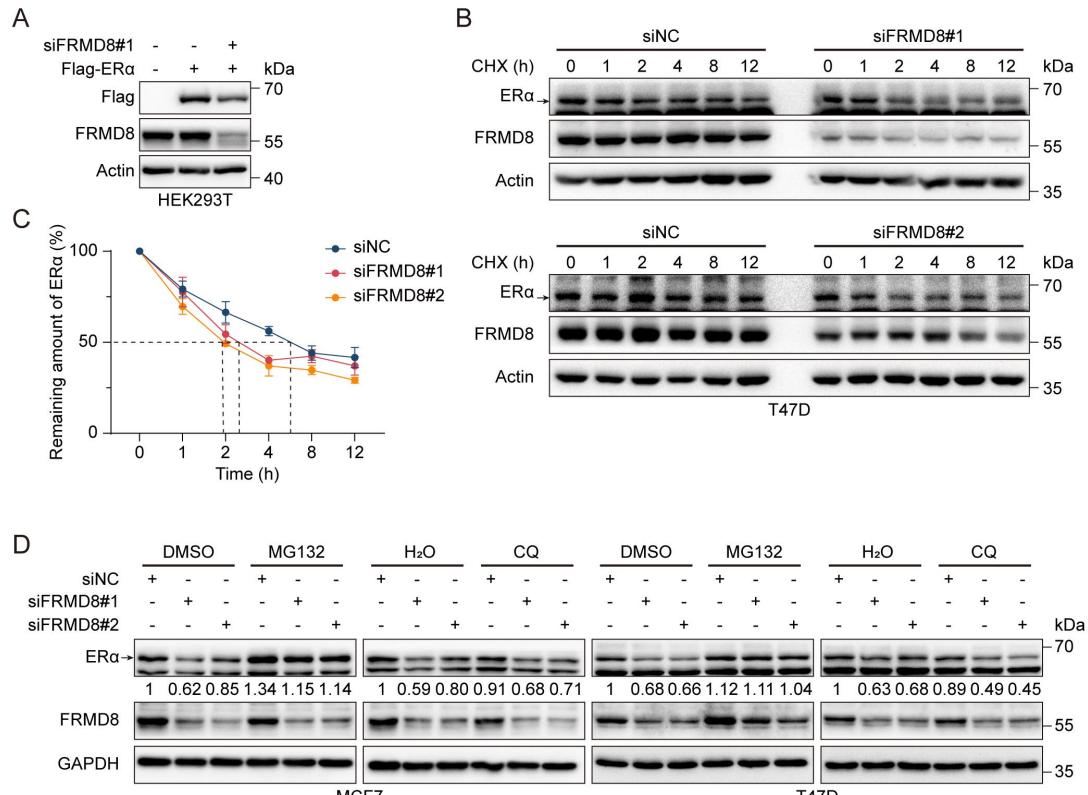


785

786 **Figure 2. Frmd8 knockout decreases the proportion of the hormone-sensing**
 787 **differentiated epithelial cells**

788 (A) T-SNE plot showing the distribution of cells from *MMTV-Cre*⁻; *Frmd8*^{fl/fl}; *PyMT*
 789 and *MMTV-Cre*⁺; *Frmd8*^{fl/fl}; *PyMT* mice. (B) T-SNE plot showing the distribution of

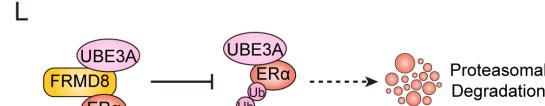
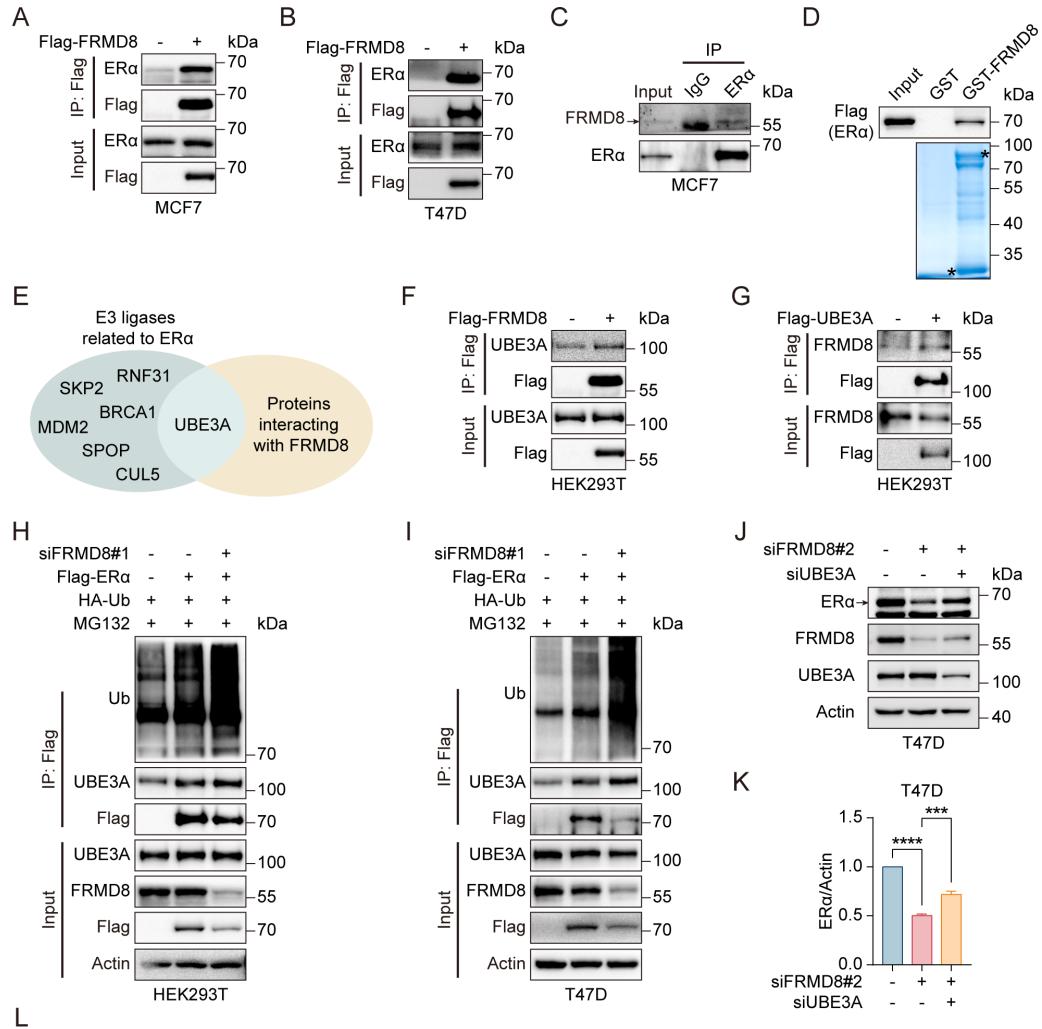
790 epithelial, immune and stromal cells. (C-D) T-SNE plot showing the distribution of
791 main cell linages (C) and their relative percentage (D). (E-F) T-SNE plot showing the
792 distribution of epithelial cell linages (E) and their relative percentage (F). (G) Heatmap
793 showing distinct features of each cell lineages. Rows, genes. Columns, cells. The color
794 key from blue to red indicates low to high gene expression. (H) Boxplot showing CNV
795 score of main cell linages. (I) Dot plot showing the expression of *Esr1* and *Pgr* in
796 epithelial cell linages. (J) T-SNE plot showing the distribution of normal cells and tumor
797 cells. (K) Dot plot showing the expression of *Frmd8* in normal and tumor cells from
798 *MMTV-Cre*⁻; *Frmd8*^{f/f}; *PyMT* and *MMTV-Cre*⁺; *Frmd8*^{f/f}; *PyMT* mice. (L) Statistical
799 analysis of *Frmd8*, *Esr1* and *Pgr* expression in normal and tumor cells from *MMTV-*
800 *Cre*⁻; *Frmd8*^{f/f}; *PyMT* and *MMTV-Cre*⁺; *Frmd8*^{f/f}; *PyMT* mice. **p*<0.05,
801 *****p*<0.0001 by Mann-Whitney test.
802



803

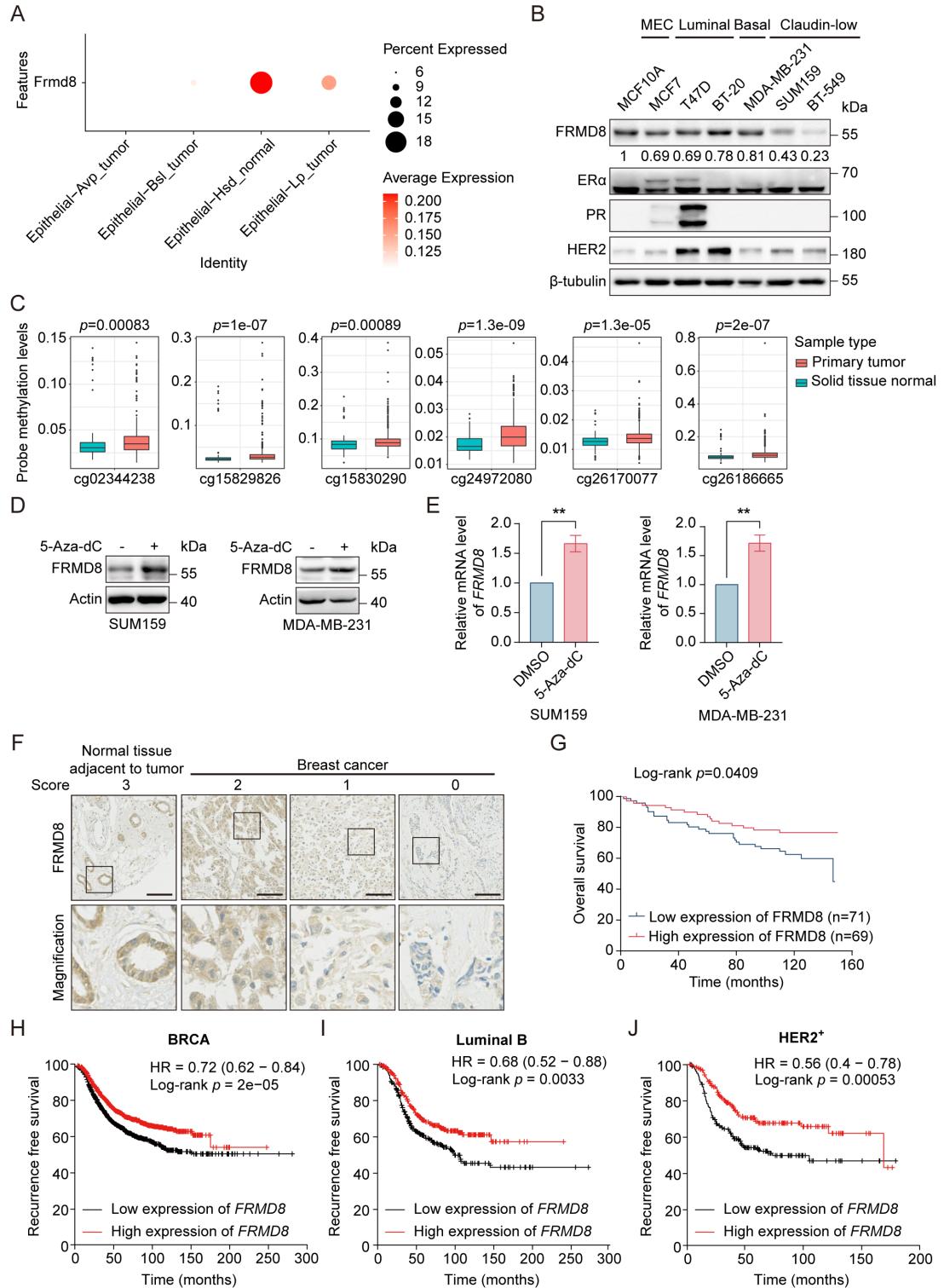
804 **Figure 3. FRMD8 promotion of ESR1 expression is mediated by FOXO3A**

805 (A) Representative multiplex immunofluorescence images of tumor tissues and tissues
806 adjacent to tumor from *MMTV-Cre*⁻; *Frmd8*^{f/f}; *PyMT* and *MMTV-Cre*⁺; *Frmd8*^{f/f};
807 *PyMT* mice. Scale bar, 50 μ m. (B) Qualification of Frmd8 and CK8 expression (left



808 panel) and ER α and PR-positive cell percentage in CK8 $^+$ cells (right panel) in (A).
809 * $p<0.05$, ** $p<0.01$, *** $p<0.001$, **** $p<0.0001$ by one-way ANOVA (left panel) or
810 unpaired Student's t-test (right panel). (C) Lysates from MCF7 cells transiently
811 transfected with Flag or Flag-FRMD8 were immunoblotted. (D) Lysates from MCF7
812 and T47D cells transiently transfected with control or FRMD8 siRNA were
813 immunoblotted. In this and subsequent figures, specific bands are marked with an arrow.
814 (E) Relative mRNA levels of *ESR1* and *FRMD8* from MCF7 and T47D cells transiently
815 transfected with control or FRMD8 siRNA were analyzed by qRT-PCR. *GAPDH* was
816 used as an internal reference. * $p<0.05$, ** $p<0.01$, *** $p<0.001$ by one-way ANOVA.
817 (F) Lysates from MCF7 and T47D cells transiently transfected with control or FRMD8
818 siRNA were immunoblotted. (G) Lysates from MCF7 and T47D cells transiently
819 transfected with HA or HA-FRMD8 were immunoblotted. (H-I) Lysates of MCF7 cells
820 co-transfected with HA-FRMD8 and FOXO3A siRNA as indicated were
821 immunoblotted (H). ER α protein levels were quantified by normalizing to the intensity
822 of the GAPDH band (I). ** $p<0.01$ by unpaired Student's t-test. (J) Lysates of T47D
823 cells transfected with control or FRMD8 siRNA were subjected to anti-FOXO3A ChIP-
824 qPCR. * $p<0.05$, *** $p<0.001$ by one-way ANOVA. (K) Working model for FRMD8
825 promotes *ESR1* transcription via upregulating FOXO3A expression.
826

827

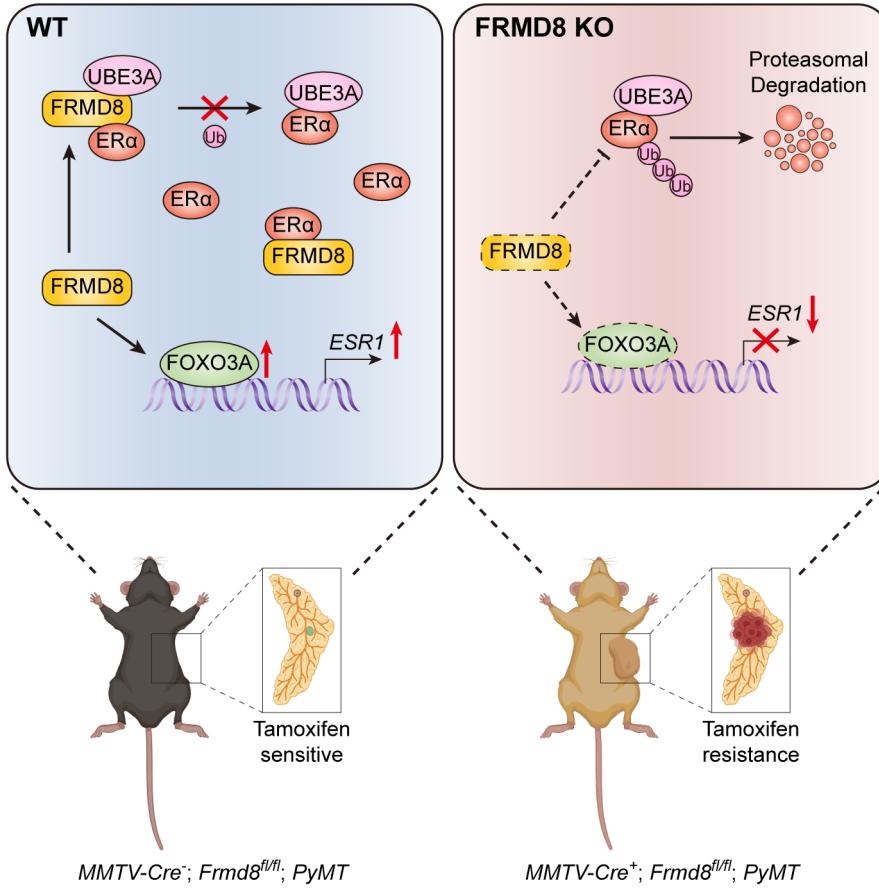
Figure 4. FRMD8 stabilizes ER α via prevention of its degradation


829 (A) Lysates of HEK293T cells co-transfected with Flag-ER α and FRMD8 siRNA as
830 indicated were immunoblotted. (B-C) Lysates from T47D cells transiently transfected
831 with control or FRMD8 siRNA were subjected to immunoblotting. Cells were treated
832 with 100 μ g/ml CHX for the indicated times (B). ER α protein levels were quantified by
833 normalizing to the intensity of the Actin band (C). (D) Immunoblot analysis of ER α in
834 MCF7 (D) and T47D (E) cells transiently transfected with control or FRMD8 siRNA.
835 The cells were treated with MG132 (25 μ M) or chloroquine (50 μ M) for 6 h.

838 **Figure 5. FRMD8 inhibits ERα degradation by blocking UBE3A binding with ERα**

839 (A-B) Lysates of MCF7 (A) and T47D (B) cells transfected with Flag or Flag-FRMD8
840 were anti-Flag immunoprecipitated and immunoblotted for ERα and Flag. (C) Lysates
841 from MCF7 cells were immunoprecipitated with IgG or anti-ERα, then immunoblotted
842 for FRMD8 and ERα. (D) HEK293T cells were transiently transfected with Flag-ERα.
843 ERα proteins in HEK293T whole cell lysates (WCL) pulled down by GST or GST-
844 FRMD8 recombinant proteins were subjected to Western blot. Asterisks indicate
845 proteins at the expected molecular weight. (E) Venn diagram showing overlap of E3
846 ligases related to ERα and proteins interacting with FRMD8. (F) Lysates of HEK293T
847 cells transfected with Flag or Flag-UBE3A were anti-Flag immunoprecipitated and

848 immunoblotted. (G) Lysates of HEK293T cells transfected with Flag or Flag-UBE3A
849 were anti-Flag immunoprecipitated and immunoblotted. (H-I) HEK293T (H) and T47D
850 (I) cells were co-transfected with Flag-ER α , HA-Ub and FRMD8 siRNA as indicated.
851 Cells were treated with MG132 (25 μ M) for 6 h. WCL were immunoprecipitated with
852 anti-Flag and then immunoblotted for ubiquitinated ER α . (J-K) Lysates of T47D cells
853 co-transfected with FRMD8 and UBE3A siRNA as indicated were immunoblotted (J).
854 ER α protein levels were quantified by normalizing to the intensity of the Actin band
855 (K). *** p <0.001, **** p <0.0001 by one-way ANOVA. (L) Working model for FRMD8
856 disrupts the interaction between ER α and UBE3A, and protects ER α from UBE3A-
857 mediated degradation.
858



859

860 **Figure 6. FRMD8 promoter is methylated and low FRMD8 level predicts poor**
 861 **prognosis in breast cancer patients**

862 (A) Dot plot showing the expression of *Frmd8* in epithelial cell lines from *PyMT*
 863 mice. (B) Lysates from human mammary epithelial cell (MEC) and breast cancer cells

864 were subjected to immunoblotting. (C) Methylation of *FRMD8* promoter region in
865 breast cancer according to the University of California Santa Cruz (UCSC) database
866 (<http://xena.ucsc.edu/>). (D) SUM159 and MDA-MB-231 cells were treated with 5-Aza-
867 dC (10 μ M) for 48 h. Protein expression of *FRMD8* was examined by Western blot. (E)
868 SUM159 and MDA-MB-231 cells were treated with 5-Aza-dC (10 μ M) for 48 h.
869 *FRMD8* mRNA levels was examined by quantitative reverse transcription PCR (qRT-
870 PCR) *GAPDH* was used as an internal reference. ** p <0.01 by unpaired Student's t-test.
871 (F) IHC analysis of *FRMD8* expression in human breast carcinoma TMA was
872 performed. Representative examples (scale bar, 100 μ m) of normal tissue adjacent to
873 tumor and breast cancer with different levels of *FRMD8* expression are shown, with
874 the magnification of selected areas inserted. (G) Kaplan-Meier analysis for the overall
875 survival of breast cancer patients according to *FRMD8* expression (Log-rank test). (H-
876 J) Recurrence free survival of breast cancer patients according to *FRMD8* expression
877 were analyzed according to Kaplan-Meier plotter (<http://kmplot.com/analysis/>).
878

879

880 **Figure 7. A working model shows that loss of FRMD8 promotes mammary tumor**
881 **progression and confers tamoxifen resistance by downregulating ERα expression**
882 **at both transcriptional and post-translational levels.**