

1 **Protein degradation shapes developmental tempo in mouse and human neural
2 progenitors.**

3

4 Shota Nakanoh^{1*}, Despina Stamatakis^{2*}, Lorena Garcia-Perez², Chiara Azzi¹, Hayley L Carr¹,
5 Alexandra Pokhilko¹, Loukik Doshi¹, Giulia L M Boezio², Manuela Melchionda², Lu Yu¹,
6 Steven Howell², Mark Skehel², David Oxley¹, Simon Andrews¹, James Briscoe^{2#}, Teresa
7 Rayon^{1#}

8 ¹ The Babraham Institute, Cambridge, United Kingdom.

9 ² The Francis Crick Institute, London, United Kingdom.

10 * These authors contributed equally.

11 # Authors for correspondence: james.briscoe@crick.ac.uk; teresa.rayon@babraham.ac.uk

12

13 **ABSTRACT**

14 The pace of embryonic development differs markedly across mammalian species, yet the
15 molecular mechanisms underlying these tempo differences remain largely unknown. Here,
16 we systematically compared protein dynamics in mouse and human neural progenitors
17 (NPs) and examined how protein stability influences developmental timing. We find that
18 mouse NPs exhibit faster protein production and degradation than human NPs. Human NPs
19 display broadly increased protein half-lives, independent of cellular compartment or protein
20 function, and this difference persists in post-mitotic neurons. Consistent with this,
21 proteasomal activity is lower in human embryonic spinal cord and stem cell-derived neural
22 progenitors than mouse, correlating with reduced expression of proteasome-associated
23 proteins. Functionally, accelerating the degradation of the key transcriptional repressor IRX3
24 in mouse NPs speeds the activation of its target gene, providing causal evidence that protein
25 turnover modulates developmental tempo. These results reveal that species-specific
26 regulation of protein degradation shapes the timing of neural development and suggest that
27 evolutionary tuning of proteasomal activity contributes to differences in embryonic
28 developmental pace.

29

30 **INTRODUCTION**

31 The developmental mechanisms governing embryogenesis are remarkably conserved
32 across mammalian species, yet the pace at which these programmes unfold is species-
33 specific¹⁻³. These species differences in developmental timing are recapitulated *in vitro* using
34 stem cell models, which has allowed investigations into the mechanisms controlling tempo²⁻
35 ⁷. Previous work implicated protein metabolism, the balance of protein synthesis and
36 degradation, as an important contributor to developmental tempo^{4,5}. Specifically, reduced
37 rates of protein degradation corresponded to slower tempos in human neural progenitors
38 (NPs) compared to mouse. Similarly, the pace of the segmentation clock during the
39 elongation of the vertebrate axis correlates with the rate of protein turnover in a variety of
40 mammalian species⁸.

41

42 While these findings suggest protein turnover is crucial for tempo control, several questions
43 remain unresolved. The regulation of the production and degradation machineries and their
44 dynamics during development are poorly understood. More precisely, a systematic
45 characterization of the similarities and differences in protein production and half-lives
46 between species is lacking, and it remains to be determined whether overall abundance of
47 proteins in embryos differs between species due to species-specific protein turnover
48 dynamics, or compensatory mechanisms adjust protein synthesis rates to achieve equivalent

49 steady-state protein levels. Finally, whether manipulating the stability of individual proteins
50 affects the pace of development is unclear.

51

52 Here, we address these questions by quantifying protein production and degradation in
53 equivalent mouse and human NPs. Combining targeted protein labelling, high-resolution
54 quantitative mass spectrometry, proteasomal activity quantifications, and protein depletion
55 with self-labeling tags, we systematically identify species differences in protein production
56 and degradation rates and uncover the underlying mechanisms. Specifically, we elucidate
57 the relative contributions of active protein degradation and dilution via cell division to tempo
58 divergence. Importantly, we demonstrate for the first time that proteasomal activity is lower in
59 human embryonic spinal cords than in stage-matched mouse embryos. Furthermore, we
60 provide evidence to support a role for proteolytic degradation in dictating developmental
61 tempo by decreasing the stability of a key regulatory protein within the gene regulatory
62 network governing motor neuron formation in the neural tube.

63

64 Collectively, our work offers a comprehensive comparative analysis of protein dynamics
65 between two mammalian species. We report species-specific differences in protein
66 production and degradation rates and provide *in vivo* evidence that degradative machineries
67 are less active in human embryos than in mice. Our findings highlight the centrality of protein
68 degradation in controlling developmental tempo, and have broad implications for
69 understanding phenotypic diversity across evolution.

70

71 **RESULTS**

72 **SNAP Tagged OLIG2 demonstrates differences in protein turnover between mouse 73 and human neural progenitors**

74 The balance between protein synthesis and degradation (protein metabolism) determines
75 protein levels in cells. Having observed global differences in protein decay between mouse
76 and human neural progenitors (NPs)⁴, we set out to test if similar differences were observed
77 for specific proteins. To this end we focused on OLIG2, an essential transcription factor for
78 motor neuron differentiation^{9,10}. To obtain data on the turnover for OLIG2 in mouse and
79 human NPs, we tagged the C-terminus of endogenous OLIG2 in mouse and human
80 embryonic stem cells with a HA tag and a SNAP tag, a self-labelling protein tag that enables
81 the covalent labelling by substrates¹¹.

82

83 We confirmed that the differentiation dynamics of OLIG2::HA::SNAP (OLIG2-SNAP) targeted
84 cells followed the expected pattern for OLIG2 in mouse and human NPs, with OLIG2
85 increasing upon Retinoic Acid (RA) and Smoothened Agonist addition (SAG)⁴. We detected
86 OLIG2 positive cells at the expected days of differentiation, and there was a good correlation
87 between OLIG2 antibody and HA tag (Fig. S1a). This indicated that tagging does not affect
88 OLIG2 dynamics or function in mouse or human NPs. Next, we tested the specificity of the
89 SNAP fluorescent substrate SNAP 647-SiR. We incubated human NPs from day 4 or day 6
90 of differentiation with SNAP or HALO ligands conjugated to a 647 fluorophore. We detected
91 specific labelling with the SNAP 647-SiR ligand; the HALO-JF647 substrate did not cross-
92 react with the hOLIG2-SNAP line (Fig. S1b).

93

94 Having established ligand specificity, we then determined the half-life of OLIG2 in mouse
95 and human NPs. First, we cultured NPs for 1 hour in media containing SNAP 647- SiR
96 ligand. This was then replaced with media containing SNAP-ligands without 647 fluorophore

97 or SNAP-cell block, a cell permeable and non-fluorescent compound that blocks the
98 reactivity of the SNAP-tag. We observed similar trends in the decay of OLIG2 intensity in
99 human NPs at day 4 and day 6 of differentiation (Fig. S1c), suggesting similar protein decay
100 rates for OLIG2 during differentiation. Comparative SNAP pulse-chase analysis indicated the
101 OLIG2 half-life was ~1.4-fold longer in human compared to mouse (mOLIG2 $t_{1/2} = 2.31\text{h} \pm$
102 0.43; hOLIG2 $t_{1/2} = 3.21\text{h} \pm 0.30$) (Fig. 1a). These data corroborate an increased OLIG2
103 stability in human compared to mouse⁴.

104
105 We next determined OLIG2 production rates for mouse and human. SNAP ligands bind to
106 mature proteins (Fig. 1b). To distinguish between old OLIG2 and newly synthesized
107 molecules, we cultured mouse and human NPs with SNAP-cell block to obstruct all pre-
108 existing OLIG2 molecules present in cells. NPs were then switched into media containing
109 SNAP 647-ligand and samples collected at intervals over the following two hours (Fig. 1b,
110 1c). Quantifications of the mean intensities for the ligand at various time points indicated that
111 OLIG2 production rates in human NPs were slightly lower in comparison to mouse at 15 min
112 and 30 min (Fig. 1b). Given that intensity measurements will also be affected by protein
113 degradation, and OLIG2 degradation rates are different between mouse and human, we
114 calculated the slope of mouse and human incorporation as a proxy for OLIG2 production
115 rates up to 30 minutes. The accumulation of 647-SIR was ~2.05-fold steeper in mNPs than
116 in hNPs, raising the possibility of slower protein production rate in human cells (mOLIG2 =
117 $7.281\text{ a.u.}\cdot\text{min}^{-1} \pm 2.26$; hOLIG2 = $3.544\text{ a.u.}\cdot\text{min}^{-1} \pm 1.75$) (Fig. 1d).

118
119 **Higher protein production rate in mouse versus human neural progenitors**
120 Given the trend for higher OLIG2 production in mouse, we next set out to compare global
121 protein production rates in mouse and human NPs. We performed metabolic labelling of
122 nascent proteins by adding the methionine analog L-azidohomoalanine (AHA)¹² to media
123 and determined the rate of incorporation over one hour. We treated cells with AHA and
124 collected mouse and human NPs after 30, 60 or 90 minutes of treatment. The production
125 rate was ~2.3- fold higher in mouse compared to human NPs ($\text{mNP} = 0.03\text{ a.u.}\cdot\text{min}^{-1} \pm 0.005$;
126 $\text{hNP} = 0.014\text{ a.u.}\cdot\text{min}^{-1} \pm 0.003$) (Fig. 1e). To confirm higher production rates between
127 mouse and human NPs, we measured puromycin incorporation rates¹³. While both AHA and
128 puromycin incorporate in nascent polypeptides, puromycin blocks protein synthesis and
129 causes premature termination, with the resulting truncated polypeptides often failing to fold
130 properly^{14,15}. We treated mouse and human NPs with various concentrations of puromycin to
131 identify the lowest concentration that allowed sufficient labelling for quantification. Puromycin
132 concentrations of 0.1 $\mu\text{g/ml}$ were sufficient to detect nascent protein in mouse and human
133 NPs without triggering a stress response, as measured by levels of EIF2A phosphorylated at
134 Ser51¹⁶ (Fig. S1d-f). Side-by-side puromycin incorporation assays in mouse and human NPs
135 confirmed a significantly higher ~2.07-fold rate of protein production in mouse ($\text{mNP} = 0.045$
136 $\text{a.u.}\cdot\text{min}^{-1} \pm 0.004$; $\text{hNP} = 0.022\text{ a.u.}\cdot\text{min}^{-1} \pm 0.002$) (Fig. 1f). The puromycin results were
137 consistent with the measurements of AHA and confirmed that the rates of protein production
138 are higher in mouse NPs.

139
140 **Global proteomic differences associated to protein degradation in mouse and human**
141 **NPs**

142 Next, we asked if specific sets of proteins showed a greater species difference than others.
143 We performed data-independent acquisition mass spectrometry (DIA-MS) of mouse and
144 human NPs, and calculated protein copy number per cell using the 'proteomic ruler'

145 approach¹⁷ (see Methods) (Fig. S2a-e). We identified 5718 orthologous proteins between
146 mouse and human (Table S1), which we used for differential expression analysis. We found
147 1791 differentially expressed proteins with ≥ 2 -fold change and FDR ≤ 0.05 (Table S2): 997
148 proteins upregulated in human and 794 in mouse (Fig. 2a). The differentially expressed
149 proteins included lowly and highly abundant proteins (Fig. S2f).

150

151 Many of the differentially expressed proteins were related to the ubiquitin–proteasome
152 system and ubiquitination (Fig. 2d; Table S2), and many proteasomal subunits were more
153 abundant in mouse (Fig S2g, h). There were species-specific differences in subunits of the
154 PA28 proteasome regulatory particles, with human NPs having increased levels of PA28 $\alpha\beta$
155 (PSME1/E2), and mouse NPs containing higher PA28 γ /Psme3 levels (Fig. 2e). Both PA28 $\alpha\beta$
156 and PA28 γ particles have been shown to be less efficient than the 19S canonical regulatory
157 particle at activating the 20S proteolytic activity¹⁸, and could compete with one another for
158 binding to this 20S core. Proteasome-related proteins such as Ttc3, Psma3, Psmd5,
159 Psmd12; ubiquitin ligases Smurf1, Rnf34 and Cul7; F box protein Tbl1x; proteasome
160 accessory protein Ubqln1, Ubqln2, Ubr1, Psmd5, Ubr2, Psmd12, and Psmg3 and zinc finger
161 protein Zfand1 were upregulated in mouse NPs, supporting a potential increase in protein
162 degradation in mouse compared to human NPs. Proteins related to sumoylation (Ube2i,
163 Sumo2), and enzyme transferases (Prmt9, Nsd, Hcfc1) were detected as differentially
164 increased in mouse NPs as well (Fig. 2a). By contrast, the chaperones and regulatory
165 subunits PSMD10, NGLY1, PSMD4, TRIP12, and PPP1CC were significantly upregulated in
166 human NPs (Fig. 2c, d). The expression of deubiquitinases USP7, USP11, and ABRAHAS2,
167 implicated in the stabilization of proteins^{19,20}, were increased in human NPs.

168

169 To explore further the differences between mouse and human cells we performed pathway
170 enrichment analysis²¹ (Table S3). The pathways enriched in mouse were the anaphase-
171 promoting ubiquitination complex, a major E3 ubiquitin ligase complex with roles in the
172 control of cell cycle and neurogenesis²²⁻²⁴, the mitochondrial electron transport chain,
173 specifically complex III/ Ubiquinol-Cytochrome C Reductase, and enzymes of the TCA cycle
174 (e.g. isocitrate dehydrogenase subunits IDH3G and IDH3A) (Fig. 2b,c). The pathways
175 enriched in human NPs represented upregulation of cell-cell communication (e.g., NCAM1,
176 log2FC=6; PODXL), Ca²⁺ signalling, immunity and secretion (e.g., GSN, SRP14), as well as
177 Rho GTPase-mediated signal transduction (e.g., GNA13, GNA11). Specific human-
178 upregulated pathways included semaphorins, involved in the axonal development (e.g.,
179 DPYSL5 hydrolase and dihydropyrimidinase CRMP1), as well as sphingolipid metabolism
180 (e.g., SMPD4), involved in the neuronal development^{25,26}. The Pentose/Glucoronate
181 interconversion pathway was upregulated in human cells. Localized in the cytoplasm, this
182 pathway is a key route to carbohydrate synthesis. It also plays a central role in recycling
183 NADP to NADPH, a cellular reducing agent for reductive biosynthesis and protection against
184 oxidative stress²⁷.

185

186 Together, the comparison of the mouse and human proteome in NPs indicated selective
187 upregulation of proteins related to degradation and mitochondrial metabolism in the mouse.
188 Proteins overrepresented in human were associated with neural phenotypes, the
189 biosynthesis of carbohydrates, and the stabilization of the proteome.

190

191 **Systematic differences in the fold-change stability of protein orthologs**

192 Having established a genome-wide difference in protein turnover between mouse and
193 human NPs⁴, we proceeded to profile protein turnover in mouse and human to determine the
194 identity of specific proteins and pathways that exhibit similar or divergent protein dynamics
195 between species. We performed dynamic SILAC (Stable Isotope Labeling by Amino acids in
196 Cell culture) coupled to mass spectrometry in mouse and human NPs to estimate half-lives
197 of individual proteins at a proteome-wide scale²⁸. The labelling was centered on equivalent
198 time points in mouse and human NPs based on our previous stability analysis⁴, and the
199 collection of five time points per species was distributed according to the expected stability
200 differences between mouse and human. The media was switched to heavy lysine and
201 arginine isotopes 24 hours before day 2 in mouse. For human, we started labeling on day 4,
202 48 hours before human NPs reached the stage assayed (Fig. 3a). The samples were
203 analyzed by LC-MS/MS at each time-point, and the degradation rate constants for individual
204 proteins calculated (see Methods). We determined the half-lives of 4990 and 4640 proteins
205 in mouse and human, respectively (Fig. 3b, Table S5, S6). Their median half-lives were 18.2
206 hours and 27.9 hours, respectively. To obtain more detailed insight into protein features
207 associated with differences in stability in the mouse and human datasets, we performed
208 gene set enrichment analysis (GSEA) across all GO terms (Fig. S3a,b). Structural proteins
209 were enriched for long half-lives in both mouse and human, as expected. Furthermore,
210 proteins with metabolism- and translation-related functions, and proteins located in the
211 mitochondrial and ribosomes were more stable on average, especially in mouse (Table S7,
212 S8).

213
214 We further compared the half-lives of 3402 homologous proteins detected in both mouse
215 and human datasets (Fig. 3c, Table S9). Half-lives of human homologues were generally
216 longer than those of mouse homologues, showing a median fold difference of 1.48 (Fig. 3c),
217 consistent with the measurement for OLIG2 (Fig. 1a). To investigate whether specific
218 features of proteins determine their stabilities, we first split the 3402 homologous proteins
219 into quartiles based on their size (amino acid sequence length) or abundance (average total
220 expression level). Each quartile exhibited similar species-specific trends of half-lives and
221 interspecies fold differences despite their sizes (Fig. 3d; Fig. S3c,d). We observed a mild
222 correlation between protein abundance and half-lives, with more abundant proteins tending
223 to be more stable; however, the half-life fold differences between species were similar
224 irrespective of expression levels (Fig. 3e; Fig. S3e,f). These results indicated that the overall
225 differences in protein stability between mouse and human NPs are independent of protein
226 size and abundance.

227
228 To examine if differences in the subcellular localization of proteins affected half-life, we
229 analysed the dataset categorised by cellular compartments (see Methods). Proteins
230 assigned to the nucleus, cytoplasm, membrane or extracellular compartment showed similar
231 median half-lives in each species (Fig. 3f). Consequently, the observed stabilisation of the
232 human proteome compared to the mouse occurs in all cellular compartments. We then
233 categorised proteins based on their molecular functions by referring to GO terms (Fig. S3g).
234 Although most of the groups followed the overall trend, proteins classified as “Structural
235 molecule activity”, such as TUBB, RPL32 and LMNA, and “ATP-dependent activity”
236 appeared longer-lived, while the groups “Transcription regulator activity”, including
237 transcription factors like POU3F2, YAP1 and ZEB2, and “Molecular adaptor activity” were
238 short-lived in comparison with the overall median (Table S10). Nevertheless, the fold
239 difference in half-life between the species was preserved for the proteins. Together, the

240 results indicate that proteins in diverse biophysical properties, functional categories, and
241 subcellular locations have similar stability differences between mouse and human NPs.
242

243 Given that our earlier comparative proteomics analysis had indicated several differences in
244 the proteasome between the two species, we reasoned that the observed differences in
245 proteome half-lives could result from differences in the stability of specific proteasome
246 components, which together accounts for ~70% of the cellular protein degradation²⁹. We
247 grouped proteins associated with the proteasome into three categories: core proteasomal
248 components, proteasomal regulatory components, or proteasomal activators/inhibitors. The
249 classification was based on a curated list generated by the proteostasis consortium³⁰. We
250 then compared the median half-lives of these protein categories with the median proteome
251 half-life in mouse and human.

252 Core particles followed the median trend for mouse and human (Fig. S3h). By contrast,
253 regulatory particles were more stable than average in both species, especially in mice (Fig.
254 S3h). For proteins in the “activator/inhibitor” category, human proteins were less stable
255 relative to the human median, but this pattern was not observed in mouse (Fig. S3h, i). For
256 example, the half-life of human PSME3 was shorter than the human median, whereas
257 mouse Psme3 aligned with the mouse median (Fig. S3i). The increased degradation rate in
258 human PSME3 explains the significant enrichment of Psme3 in mouse in the global dataset
259 (Fig. 2e).

260 Similarly, the proteasome regulator Psmf1³¹ was less stable than the mouse median, but
261 human PSMF1 showed stability comparable to the human median. Global proteomic
262 quantification indicated that Psmf1 was expressed at low levels overall, but at higher levels
263 in human than in mouse (Fig. 2e), consistent with the measured dynamics.

264 Together, these results identify species-specific differences in the stability of proteasome
265 activators and inhibitors. They suggest that the differential availability of these regulators
266 could contribute to the differences in protein stability between mouse and human.
267

268 **A role for active protein degradation in mouse and human neural progenitors**

269 The faster cell cycle in mouse compared to human⁴ raised the possibility that the lower rate
270 of protein turnover in human NPs could arise from lower cell division rates resulting in a
271 lower rate of passive dilution. To test this, we set out to compare protein stability in non-
272 dividing cells by inducing the generation of post-mitotic neurons *in vitro* from mouse and
273 human NPs (Fig. 4a,b). Treatment with the gamma-secretase inhibitor Dibenzazepine
274 (DBZ), which inhibits the activation of Notch pathway, increased the production of TUBB3+
275 neurons at the expense of SOX2 expressing NPs³² (Fig. 4a, Fig. S4a, b). Measurements of
276 protein stability in these conditions by AHA pulse-chase labeling⁴ showed that the half-life in
277 mouse post-mitotic neurons was ~10h ($t_{1/2} = 11.45 \pm 1.8$ hours), and ~20h in human
278 neurons ($t_{1/2} = 22.93 \pm 4.58$ hours) (Fig. 4c,d, Fig. S4c). These rates were similar to those
279 measured in NPs (mouse NPs $t_{1/2} = 9.3h \pm 1.99$ hours; human NPs $t_{1/2} = 17.57h \pm 3.6$
280 hours). These results indicate that protein degradation is slower in human neurons than
281 mouse neurons and support the conclusion that active protein degradation mechanisms
282 drive differences in protein stability between mouse and human.
283

284 A role for active protein degradation in the species differences in protein turnover predicts
285 higher proteasome activity in mouse NPs than human NPs. This is supported by the global
286 and SILAC proteomic analyses that indicated differences associated with protein
287 degradation (Fig.2b, Fig. S3h, i). To test this directly, we used a fluorogenic assay to

288 measure chymotrypsin-like proteasomal activity^{33,34} in mouse and human NPs at equivalent
289 developmental stages, normalized to total protein amount (Fig. 4e). We observed 1.43-fold
290 higher activity in the mouse compared to human (Fig. 4f). A similar difference was also
291 observed in two different mouse and human embryonic stem cell lines (Fig. S4d). Moreover,
292 assays of proteasomal activity from *in vivo* samples of mouse and human developing spinal
293 cords indicate higher levels of proteasomal activity in mouse compared to human (Fig. 4g,
294 S4e). This is consistent with the idea that higher proteasomal activity in mouse spinal cord
295 progenitors compared to human contributes to the higher rate of protein degradation in
296 mouse.

297

298 To test if decreasing proteasomal activity leads to a delayed differentiation in mouse, we
299 treated mouse differentiations with low doses of the proteasome inhibitor Bortezomib (BTZ)
300 from the time of RA and SAG addition. Cells treated for 1 hour with 100nM of BTZ showed a
301 significant decrease of proteasomal activity but died within 24h. Cells treated with 5nM BTZ
302 survived for four days and showed decreased proteasomal activity, albeit less marked than
303 for 100nM BTZ (Fig. 4h). Nevertheless, there was a decrease in the percentage of NPs
304 (SOX2+) and neurons (TUBB3+) 72 - 96 hours after treatment suggesting deleterious effects
305 of prolonged treatment (Fig. S4f,g). This is possibly due to proteotoxic stress, and limited our
306 analysis on the pace of differentiation. The fraction of early neural progenitor markers
307 PAX6+ and OLIG2+ cells was unchanged upon 5nM BTZ treatment (Fig. S4h,i), but RNA
308 levels and protein intensities were higher for the two markers up to 72 hours after treatment
309 in the few surviving cells (Fig. 4i, S4j,k). In contrast, the expression of the late differentiation
310 markers *Tubb3* and *Nkx2.2* were decreased (Fig. 4i). This indicates a moderate stabilization
311 of early transcription factors within the gene regulatory network in response to reduced
312 protein degradation via proteasomal inhibition, accompanied by a slowdown of mouse motor
313 neuron differentiation.

314

315 **IRX3 depletion accelerates OLIG2 expression**

316 Although global proteasome inhibition suggested that an increased stabilization of the
317 proteome decelerates mouse motor neuron differentiation, the associated proteotoxic stress
318 limited the interpretation. Thus, we sought to test whether decreasing the stability of a
319 specific regulatory protein accelerated the tempo in NPs. We focused on IRX3, which is
320 expressed early in spinal cord development, prior to cells receiving sonic hedgehog
321 signaling, and represses OLIG2 and motor neuron progenitor formation^{9,35}. To this end we
322 generated an *Irx3::HA::HALO* mouse ESC line (*Irx3-HALO*) by inserting the HALO tag at the
323 C-terminus of the *Irx3* gene. An HA epitope was inserted as a linker between the *Irx3* coding
324 region and HaloTag³⁶.

325

326 We tested *Irx3-HALO* expression and functionality in spinal cord motor neuron
327 differentiation. We differentiated *Irx3-HALO* cells, and we exposed cells to RA only on day 3
328 to promote IRX3 expression (Fig. S5c). We then performed a pulse-chase experiment with
329 HALO-JF549 ligand (Fig. S5a). Cells were pulsed for 1h, ligand was then removed, and
330 samples collected 0h, 4h and 24h later. We observed decreasing levels of HALO-JF549
331 signal during the chase, while the level of IRX3 expression, assayed by HA
332 immunofluorescence, remained constant across the time course (Fig. S5b, c). This
333 confirmed that the *Irx3-HALO* line reproduces the expected expression pattern of IRX3 and
334 validates the use of the HA::HALO tag as a multimodal tag to track IRX3 levels and
335 dynamics of turnover.

336

337 The HALO tag allowed us to use a small molecule degrader, HaloPROTAC, to induce IRX3
338 degradation. HaloPROTAC binds covalently to the Halo tagged protein and recruits specific
339 E3 ligases, which promote ubiquitination of the protein and subsequent degradation by the
340 26S proteasome^{36,37} (Fig. 5a). To test whether HaloPROTAC decreased IRX3 protein
341 stability, IRX3 expression was induced by addition of RA for 24h as before, and cultured
342 thereafter in medium with RA and SAG. HaloPROTAC was added to the *Irx3*-HALO at the
343 time of RA addition. We collected samples at 0h, 12h, and 24h after HaloPROTAC treatment
344 as well as in a control *Irx3*-/- cell line. While IRX3 was detected across time points in the
345 untreated control condition (- PROTAC), IRX3 was reduced 24h after HaloPROTAC addition
346 (0h time point), and HA intensity was reduced almost to the levels found in the *Irx3*-/- line
347 48h after HaloPROTAC addition (Fig.S5d). These results confirm protein depletion of by
348 addition of HaloPROTAC.

349

350 We next tested how acute IRX3 degradation impacted the dynamics of OLIG2 expression, a
351 target of IRX3 repression^{10,38}. We cultured differentiating *Irx3*-HALO cells for 24h in RA to
352 induce *Irx3* in neural progenitors as above. Cells were then switched to media containing RA
353 and SAG either in the presence or absence of HaloPROTAC degrader. This culture regime
354 allowed the maximal expression of IRX3 prior to OLIG2 expression induced by SAG
355 induction. We assayed OLIG2 expression 12-48h after SAG and HaloPROTAC addition (Fig.
356 5b, c). In NPs that had not been exposed to HaloPROTAC, SAG-dependent repression of
357 IRX3 and induction of OLIG2 took more than 18h. By contrast, in cells treated with
358 HaloPROTAC, IRX3 was largely absent by 18h and an increase in the percentage of
359 OLIG2+ cells was apparent (Fig. 5d). Quantifications of the IRX3-;OLIG2+ population
360 revealed a higher proportion of OLIG2+ cells and lower variability in the HaloPROTAC
361 condition compared to control (Fig. 5d). Moreover, fewer cells co-expressed IRX3 and
362 OLIG2 with HaloPROTAC, indicating a more rapid transition from the IRX3+;OLIG2- to an
363 IRX3-;OLIG2+ state (Fig. S5e). Together, these results demonstrate that acute degradation
364 of the transcriptional repressor IRX3 accelerates the appearance of OLIG2 expressing
365 neural progenitor cells, providing evidence that increasing protein degradation can
366 accelerate the tempo of developmental gene regulatory networks.

367

368 DISCUSSION

369 Here we provide a systematic comparison of protein dynamics between mouse and human
370 neural progenitors. Through a combination of targeted protein labelling, quantitative mass
371 spectrometry, and genetic manipulation of endogenous proteins, we have characterised
372 protein production and degradation rates in equivalent mouse and human NPs. The data
373 provide insight into the mechanisms underlying the differences in developmental tempo
374 between these species.

375 Our findings show a ~1.5 fold-difference in the stability of homologous proteins between
376 mouse and human NPs. The trends we observe are consistent with previous assays that
377 measured the overall degradation rate of the proteome by global metabolic labeling³⁹⁻⁴³.
378 Alongside the differences in protein degradation rates between species, we find a ~2 fold-
379 difference in the rate of production between mouse and human NPs. The difference in
380 protein production rates between species suggests that overall protein metabolism
381 (production and turnover) is a primary driver of the observed tempo differences.

382 Protein synthesis and degradation rates are key determinants of overall protein
383 concentration and shape tissue-specific proteomes in adult cells⁴³⁻⁴⁵. Yet, their roles in

384 developmental systems, where cells simultaneously change size and growth rate, remain
385 poorly understood. Differences in protein translation and degradation rates between species
386 result in overall similar protein concentrations in human and mouse NPs as human cells are
387 of bigger size. Comparable protein densities in the two species have also been reported for
388 presomitic cells^{5,6}. These observations suggest that differentially expressed proteins involved
389 in basal biochemical kinetics may underlie the differences in developmental tempo between
390 mouse and human.

391

392 Our findings further support a role for active protein degradation in controlling developmental
393 tempo. Unbiased global proteomic analysis suggests an increased abundance of proteins
394 associated with degradative pathways and metabolic functions. Importantly, we found that
395 the differences in protein stability persist in post-mitotic neurons, indicating that active
396 degradation, rather than passive dilution through cell division, is a primary mechanism
397 driving the differences in species-specific protein turnover rates. The increased stability of
398 human proteins in NPs was observed across most cellular compartments and was
399 independent of amino acid sequence, protein size or abundance. At least part of this
400 differential protein degradation rates between mouse and human NPs can be explained by
401 differences in proteasomal activity. We observed ~1.5-fold higher chymotrypsin-like
402 proteasomal activity in mouse NPs compared to human NPs. Importantly, we also detected
403 ~1.73-fold higher activity in mouse embryonic spinal cord tissue relative to stage-matched
404 human *in vivo* samples, indicating the species difference in proteasome activity is also found
405 *in vivo*.

406

407 The species-specific differences in proteasomal activity may be regulated either by
408 differences in the abundance or activity of regulatory complexes and/or proteasome
409 particles, through the availability of proteasome targets, or through other post-translational
410 regulatory mechanisms. In line with this, our comparative proteomics identified a selective
411 upregulation of proteins related to degradation, with differences between the two species in
412 ubiquitin-proteasome pathway components that could have roles in each of these facets of
413 proteasomal regulation. For example, we identify differences in the abundance and stability
414 of regulatory particles of the PA28 $\alpha\beta$ and γ complexes. While the PA28 $\alpha\beta$ is thought to be
415 characteristic of the immune system, PA28 γ is expressed in all cell types. Also, PA28
416 complexes promote protein degradation in an ATP and ubiquitin-independent manner^{18,46-48}.
417 While there did not appear to be differences in the abundance of all core particle proteasome
418 subunits between species, quantifications of proteasomal abundance in their native
419 configurations as well as measurements of assembly rates will provide a better mechanistic
420 interpretation for the measured differences in proteasomal activity. In the future, dissecting
421 the functional outcomes of the different proteasomal regulatory complexes in mouse and
422 human NPs will be key to understand how homologous proteins are degraded at different
423 rates.

424

425 The importance of protein degradation in regulating developmental pace was tested by the
426 treatment of mouse NPs with low doses of a proteasome inhibitor. Whilst the differentiation
427 was strongly affected by the treatment, early motor neuron progenitor markers displayed
428 reduced intensity at early time points and persisted modestly beyond their expected
429 temporal window in surviving cells, whereas late differentiation markers were expressed at
430 lower levels. These findings suggest that decreased proteasomal activity slows

431 developmental tempo. However, because the proteotoxic effects of proteasome inhibition
432 limited the interpretation of these results, we also examined the effect of protein degradation
433 by the targeted manipulation of IRX3, a key transcriptional repressor in neural progenitor
434 pattern. Increasing the degradation rate of IRX3 using a HaloPROTAC system led to
435 accelerated expression of its target gene, OLIG2, and suggests an accelerated transition of
436 intermediate NPs to ventral motor neuron progenitors. This demonstrates that modulating
437 the stability of individual regulatory proteins can have a significant effect on gene expression
438 dynamics and cell fate transitions during development. Moreover, these experiments offer
439 proof-of-concept for the use of the HaloPROTAC system for targeted perturbation of
440 components of a gene regulatory network that could be broadly applied to dissect gene
441 regulatory mechanisms.

442

443 Consistent with our findings, Matsuda et al. report a pervasive ~1.5-fold slower rate of
444 protein degradation in presomitic mesoderm⁴⁹, and Swovick et al. describe differences in
445 protein turnover across twelve different mammalian species with divergent lifespan⁵⁰. The
446 conservation in different tissues of species-specific differences in protein degradation rates
447 suggests that this may be a fundamental mechanism for evolutionary adaptation of timing in
448 development and homeostasis. Our work measures differences in abundance and stability of
449 regulatory proteasomal subunits that may have a global impact on tempo. Future studies
450 investigating the molecular basis for the increased protein production and proteasomal
451 activity in mouse cells, as well as potential differences in other degradation pathways such
452 as the autophagy-lysosome system, will be important for fully understanding these species-
453 specific differences.

454

455 While much attention for the basis of interspecies differences has focused on the regulatory
456 logic of gene networks through gene duplication or de novo acquisition of enhancers^{2,51,52},
457 our results emphasise that post-translational processes, particularly protein metabolism, play
458 a crucial role in shaping the temporal dynamics of development. Modulating protein stability
459 could offer a flexible and precise method for globally controlling developmental tempo,
460 without requiring extensive changes to gene regulatory networks or protein sequences in
461 individual developmental processes. Whether differences in protein production and
462 degradation rates also account for heterochronic changes in developmental pace, such as
463 those associated with the expansion of the primate cortex or the protracted maturation of
464 cortical neurons remains to be determined^{3,52,53}. Our work highlights the importance of
465 considering post-translational regulation when studying developmental systems and
466 evolutionary divergence between species. Little is known about the mechanisms that drive
467 and maintain the homeostasis of proteins (proteostasis) across species and how they affect
468 gene regulatory programs in development. Exploring proteostasis in different evolutionary
469 contexts could provide insight into the constraints and selective pressures shaping
470 developmental timing across species.

471

472 In conclusion, our study provides a comparison of protein dynamics between mouse and
473 human NPs, revealing that differential protein degradation appears to be a key driver of
474 species-specific developmental timing. These findings raise questions about the molecular
475 mechanisms underlying evolutionary changes in developmental tempo and the potential role
476 of proteostasis in other aspects of phenotypic diversity between species. Future studies
477 exploring how protein production and degradation are controlled globally and its impact
478 across developmental processes in diverse organisms will be essential for deepening our

479 understanding of the molecular basis of evolutionary change. Understanding these
480 mechanisms will not only contribute to our knowledge of evolutionary and developmental
481 biology but may also inform strategies for manipulating cellular timing in contexts such as
482 stem cell differentiation, regenerative medicine, and homeostasis.

483

484 MATERIALS AND METHODS

485 Cell culture and neural progenitor differentiation

486 The use of human ESCs was carried out in accordance with approvals from the UK Stem
487 Cell Bank Steering Committee (SCSC14-18 to J.B. and SCSC21-46 to T.R.). All cell lines
488 used in this study were confirmed to be mycoplasma negative.

489 WA09/H9 ESC line (WiCell), and OLIG2::HA::SNAP H9 ESC lines were routinely cultured in
490 Essential 8 medium (Thermo Fisher A1517001) or StemFlex medium (Thermo Fisher
491 A3349401) on 0.5 μ g/cm² laminin-coated plates (Thermo Fisher A29249) or 0.5 μ g/cm² of
492 Vitronectin (Thermo Fisher A14700), and split using Versene (Gibco 15040066).

493

494 Mouse ESCs (HM1, OLIG2::HA::SNAP and IRX3::HA::HALO mouse ESC line) were
495 propagated on mitotically inactivated mouse embryonic fibroblasts (feeders) in DMEM
496 knockout medium supplemented with 1000U/ml ESGRO-LIF (ESG117 Sigma Aldrich), 10%
497 cell-culture validated fetal bovine serum, penicillin/streptomycin, 2 mM L-glutamine (GIBCO)
498 or on 0.1% gelatine in ES medium supplemented with LIF/2i, consisting of 1 μ M PD0325901
499 and 3 μ M CHIR99021P (Stem Cell Institute).

500

501 Mouse and human NP differentiation was performed following Rayon et al.⁴. For cells grown
502 on ES medium with LIF/2i, 2i was removed at the split prior to differentiation. The γ -
503 secretase inhibitor DBZ was used in experiments to fully differentiate neurons. Cells were
504 treated with 10 ng/uL DBZ (Tocris Biosciences Cat. No. 4489) for 72h starting at day 2 for
505 mouse and day 5 in human. The proteasome inhibitor bortezomib (R&D, 7282) was used in
506 experiments to stabilize the proteome starting at day 0 after RA and SAG addition at the
507 indicated concentrations. Samples were collected at the indicated time points and processed
508 for intracellular flow cytometry (see below). Medium was changed daily.

509

510 For IRX3::HA:: HALO mESC differentiation, N2B27 was supplemented with 100 nM RA
511 (R2625 Sigma Aldrich) for neural induction at day 0 and supplemented with RA and 500 nM
512 SAG (5666660 Calbiochem) thereafter. To achieve IRX3 depletion, from day 1 onwards, cells
513 were treated with 1 mM HaloPROTAC3 (Promega GA3110) or DMSO as control. Samples
514 were collected after 12h, 18h, 24h, 33h, 42h, 48h of HaloPROTAC or DMSO treatment and
515 processed for intracellular flow cytometry (see below). Medium was changed daily.

516

517 Generation of mouse and human ESC lines by CRISPR

518 All transgenic cell lines were generated by CRISPR-Cas9-mediated homologous
519 recombination, as in Gouti et al. 2017⁵⁴ and Rayon et al. 2020⁴. Briefly, 2 \times 10⁶ cells were
520 electroporated with 2 μ g of each plasmid using program A23 of Nucleofector II (Amaxa) and
521 mouse stem cell Nucleofector kit (Lonza DPH-1001) or human stem cell Nucleofector I kit
522 (Lonza VPH-5012). For selection, colonies were first treated with 0.5 mg/ml Puromycin
523 (Sigma P9620) for 2 days followed by 50 μ g/ml Geneticin (Thermo Fisher 10131027)
524 selection. Individual colonies were picked and replated to allow expansion and a second
525 round of Geneticin selection. Correct integration of the T2A-HA-SNAPTag transgene was
526 verified using long-range PCRs and Sanger sequencing.

527

528 Generation of the pNTKV-HA-HaloTag and pNTKV-HA-SnapTag vectors

529 The coding sequence for the HaloTag was extracted by 2-step PCR amplification with
530 Phusion High-Fidelity DNA Polymerase (NEB, M0530) from the pFC27A HaloTag CMV-neo
531 Flexi vector (Promega, G842A), while, at the same time, the coding sequence for the HA
532 epitope (tatccctatgacgtccggactatgca) and two stop codons were introduced as part of the 5'
533 primer used for the amplification process.

534 For the HA-SnapTag cell line, the coding sequence for the SnapTag was extracted equally
535 by PCR amplification from the pSNAPf commercialvector (NEB, N9183S), while the HA
536 coding sequence and two stop codons were introduced as part of the 5' primer.

537 The resulting purified DNA elements were separately cloned, by restriction digestion and
538 inserted with in-Fusion cloning into the pNTKV-T2A-mKate vector⁵⁵.

539

540 Generation of Olig2::HA::SNAP mouse and human ESC lines by CRISPR

541 For CRISPR-Cas9-mediated homologous recombination, short guide RNA (sgRNA)
542 sequences (mouse: CGGCCAGGGGGTGCCTCC, human: CTGTCGCCAGAACGCGC)
543 were cloned into pSpCas9(BB)-2A-Puro (Addgene pX459 plasmid no. 62988). As donor
544 vector, the HA-SnapTag cassette was inserted at the 3' end of the Olig2 open reading frame,
545 using 2.83-Kb upstream and 5.04-Kb downstream arms for mouse and 2.78-Kb upstream
546 and 1.98-Kb downstream homology arms for human.

547

548 Generation of mouse Irx3::HA::HALO ESC line

549 For CRISPR-Cas9-mediated homologous recombination, short guide RNA (sgRNA)
550 sequence: ATGGTTGAAAAGTTAAGACG was cloned into pSpCas9(BB)-2A-Puro (Addgene
551 pX459 plasmid no. 62988). As donor vector, the HA-HaloTag cassette was inserted at the 3'
552 end of the Irx3 open reading frame, using 2.32-Kb upstream and 0.34-Kb downstream
553 homology arms.

554

555 Generation of mouse Irx3 knockout line

556 For CRISPR-Cas9-mediated non-homologous end joining to generate loss of function by
557 frameshift two short guide RNA (sgRNA) sequences: TCTCTACCCACCCGAACGCC and
558 GGATGTACTGGTATCCGAGC were cloned into pSpCas9(BB)-2A-Puro (Addgene pX459
559 plasmid no. 62988).

560

561 **SNAP/HALO labelling for pulse or pulse-chase experiments**

562 For OLIG2:HA::SNAP experiments, mouse and human ESCs were differentiated to NP day
563 2 and day 6, respectively, as described above. To estimate OLIG2 degradation rates,
564 OLIG2::HA::SNAP cells were incubated for one hour in RA and SAG medium containing 100
565 nM SNAP-Cell 647-SiR ligand (NEB S9102S). After two PBS washes, cells were incubated
566 in RA and SAG medium containing 1 μ M SNAP-Cell Block (NEB S9106S) or 100nM SNAP-
567 Cell TMR-Star ligand (NEB S9105S) for the indicated chase periods. To estimate OLIG2
568 production rates, cells were incubated for one hour in RA and SAG medium containing
569 SNAP-Cell Block ligand. After two PBS washes, cells were incubated in RA and SAG
570 medium containing SNAP 647-SiR ligand for the indicated chase periods.

571 For IRX3::HA::SNAP mouse pulse-chase experiments, cells were labeled for 1h in medium
572 supplemented with 100nM Janelia Fluor HaloTag Ligand (549, Promega GA111) at day 0 on
573 RA as described above. After two PBS washes, cells were incubated in RA and SAG
574 medium for the indicated chase periods.

575 After SNAP/HALO ligand treatments, cells were washed once or twice with PBS for
576 degradation or production measurements, respectively, and processed for intracellular flow
577 cytometry or imaging. At least 3 biological replicates per species per time point from
578 independent experiments were used. For OLIG2 protein dynamics, geometrical mean was
579 measured on OLIG2 positive and negative populations. Half-life estimation was based on the
580 non-linear model fitting in GraphPad Prism version 10.0.0 for MacOS using values
581 normalized by samples not treated with SNAP-cell 647-SiR ligand. Error intervals reported
582 correspond with 95% confidence intervals. Images were analysed in FIJI.
583

584 **Intracellular Flow Cytometry**

585 Cells were dissociated with 0.5ml accutase (GIBCO) and fixed in 4% paraformaldehyde in
586 PBS for 5min. For stainings, 0.5 - 1x10⁶ cells were used. Cells were incubated overnight with
587 an antibody mix on PBST with 1% BSA at 4°C. The following day, and when HA (Cell
588 Signaling C29F4, 1:1000) or OLIG2 (R&D AF2418, 1:800) primary antibody were used, cells
589 were pelleted and incubated with donkey anti goat/rabbit Alexa Fluor secondary antibodies
590 (1:1000) at room temperature for 1h. Cells were resuspended in 0.5 mL PBS and filtered for
591 data acquisition on LSR Fortessa or Biorad ZE5 and MacsQuant Analysers. For OLIG2
592 measurements, 10,000 ~ 50,000 total events were recorded. For other experiments 10,000
593 events gated on SOX2 were recorded. Analysis was performed using FlowJo software. The
594 following fluorophore-conjugated antibodies were used: SOX2-V450 (BD 561610, 1:100),
595 TUBB3-AF488 (BioLegend 801203, 1:100), TUBB3-AF647 (BioLegend 560394, 1:100),
596 PAX6-647 (BD Biosciences 562249, 1:100).
597

598 **Global protein production measurements**

599 AHA uptake experiment

600 Experiments were performed on differentiated neural progenitors (mouse day 2 and human
601 day 6), as described above. The experiments were performed in the presence of methionine
602 as we reasoned that methionine deprivation might trigger a reduction in protein production
603 and impact protein translation. Spent medium was replaced by 1 mM AHA in differentiation
604 medium supplemented with RA and SAG at 0h timepoint. Samples were collected at the
605 indicated timepoints for intracellular staining with Click It Cell Reaction buffer kit (Invitrogen
606 C10269) and Alkyne Alexa Fluor 488 (Invitrogen A10267) followed by SOX2-V450.
607

608 Puromycin uptake experiment

609 We tested a range of puromycin concentrations and timepoints to identify conditions that do
610 not trigger integrated stress response to the neural progenitors. 0.1 mg/ml puromycin for up
611 to 2 hours gave sufficient staining intensity without inducing a cell stress response.
612 Puromycin was applied to the differentiating NPs in differentiation medium supplemented
613 with RA and SAG at 0h timepoint. Samples were collected at the indicated timepoints for
614 intracellular staining with anti-puromycin Alexa Fluor 488 (EDM Millipore MABE343-AF488)
615 and SOX2-V450 conjugated antibodies.
616

617 **Global proteomics**

618 Sample prep

619 Cells were treated with accutase to detach from cell culture plate, washed with PBS, counted
620 and centrifuged. Cell pellets were frozen in an ethanol/dry ice bath and stored in -80°C until
621 ready to process. Protein extracts were prepared with lysis buffer containing: 50mMTris pH8,
622 1% SDS, complete protease inhibitors (one tablet per 3.5 ml buffer, ROCHE 05056489001)

623 and benzonase (250 U/ml, Pierce 88701). Protein concentration was determined using the
624 BCA assay according to manufacturer's instructions (Pierce 23227). To prepare peptides
625 100 µg of proteins per sample were acetone precipitated, washed twice with 80% acetone
626 and solubilised in 100 mM Hepes pH 8 at 1 mg/ml protein concentration. To reduce disulfide
627 bonds and alkylate free cysteine residues samples were treated with 10 mM DTT for 30 min
628 followed by 20 mM Iodoacetamide for 30 min, followed again by 10 mM DTT for 30 min.
629 Proteins were digested with LysC (1 µg LysC per 100 µg of proteins) overnight (O/N)
630 followed by Trypsin (1.33 µg Trypsin per 100 µg of proteins) O/N. Samples were stored at -
631 80°C until ready to proceed with mass spec.

632

633 Data Independent Acquisition (DIA) analysis on timsTOF Pro2

634 Peptides were analysed using an Evosep One LC system (EvoSep) coupled to a timsTOF
635 Pro 2 mass spectrometer (Bruker Daltonik GmbH) using a commercial 150-mm analytical
636 column (EV1113 ENDURANCE COLUMN, Evosep Biosystems) and an integrated Captive
637 Spray Emitter (IonOpticks). Buffer A was 0.1% formic acid in water, Buffer B was 0.1%
638 formic acid in acetonitrile. Data was collected using diaPASEF with 1 MS frame and 9
639 diaPASEF frames per cycle with an accumulation and ramp time of 100 ms, for a total cycle
640 time of 1.07 seconds. The diaPASEF frames were separated into 3 ion mobility windows, in
641 total covering the 400 – 1000 m/z mass range with 25 m/z-wide windows between an ion
642 mobility range of 0.64–1.4 Vs/cm². The collision energy was ramped linearly over the ion
643 mobility range, with 20 eV applied at 0.6 Vs/cm² to 59 eV at 1.6 Vs/cm².

644

645 DIA Data Processing and Analysis

646 Data were analyzed using DIA-NN (version 1.8) with all settings as default except we
647 omitted normalisation. Specifically, a maximum of one tryptic missed cleavage was allowed,
648 with fixed modifications of N-term methionine excision and carbamidomethylation of cysteine
649 residues. No variable modifications were selected. A *Homo sapiens* and a *Mus musculus*
650 UniProt database was used for the analysis of the relevant samples. A default threshold of
651 1% false discovery rate was used at both the peptide and protein level. At least two unique
652 peptides were required to identify a protein. The library-free mode of DIA-NN was used to
653 generate precursor and fragment ions *in silico* from the UniProt database. Additionally, the
654 programme generates a library of decoy precursors (negative controls). Retention time
655 alignment was performed using endogenous and iRT peptides, and peak scores were
656 calculated by comparison of peak properties between observed and reference spectra.

657

658 Data Analysis

659 The data were analysed in three samples (biological replicates) derived from three bulked
660 samples of mouse or human NPs. Each sample was run three times on the mass-spec
661 (three technical replicates). Protein copy numbers per cell were estimated using the
662 proteomic ruler method¹⁷, and 1:1 homologs between mouse and human were retained for
663 downstream analysis. The table with homologs was extracted from ensemble using
664 BioMart⁵⁶ and then manually curated to include missing gene names (Table S4). The
665 proteins that were identified in at least 2 samples in each group (human or mouse) were
666 used for downstream analysis. To reduce potential technical biases between mouse and
667 human samples, we performed a global correction of protein abundances by dividing them to
668 the size factors of the samples (total copy number of each sample per the mean of all
669 samples). The average copy number between the non-zero technical replicates were used
670 for differential expression, with zeros being replaced by medians intensities in each group

671 (human and mouse). The abundances were transformed to log2 scale and differential
672 expression was performed with R package limma⁵⁷, using empirical Bayes method for 2
673 group comparison with standard t-test of the eb.fit function output⁵⁸. The differentially
674 expressed proteins (DEPs) were chosen based on the criteria of ≥ 2 fold change (FC) and
675 the false discovery rate (FDR) adjusted P values for multiple-hypothesis testing with the
676 Benjamini–Hochberg method FDR ≤ 0.05 .

677 The pathway enrichment analysis was performed separately on mouse- or human-
678 upregulated DEPs. We used David functional enrichment analysis²¹ with annotations from
679 GO:BP, GO:MF, GO:CC, KEGG and Reactome databases. The background was
680 represented by orthologous human or mouse proteins identified in mouse or human
681 samples, respectively (Table S1). The DAVID functional annotation clustering was used to
682 group similar and redundant terms and the top representative terms of each cluster were
683 combined for plotting.

684

685 **Dynamic SILAC**

686 Cell Culture and Stable Isotope Labeling

687 Mouse and human ESCs were differentiated as described above until 1st and 4th day of RA
688 and SAG addition, respectively. Then, cells were collected as 0h time point, or continued the
689 differentiation in media containing heavy arginine and lysine until collected after 3h, 8h, 24h
690 and 48h for mouse NPs, or after 6h, 24h, 48h and 96h for human NPs in three biological
691 replicates. For the “heavy” condition, DMEM/F12 and Neurobasal were replaced by SILAC
692 DMEM/F12 and SILAC Neural Basal (AthenaES 0423 and 0428) supplemented with
693 methionine and leucine. L-arginine hydrochloride (13C6, 15N4) and L-lysine hydrochloride
694 (13C6, 15N2) (Cambridge Isotope Laboratories CNLM-539-H and CNLM-291-H) were
695 dissolved in PBS and kept at -80°C and were used at the final concentrations of 0.549 mM
696 and 0.648 mM, respectively, based on the concentrations in the original medium. Medium
697 change intervals, seeding densities, coating methods and supplements of inhibitors and
698 growth factors followed the differentiation protocols described above.

699

700 Sample prep

701 The cell pellets were lysed in 5% SDS/100mM triethylammonium bicarbonate buffer (Sigma
702 TEAB) by probe sonication and heating. Protein concentration was measured by Pierce BCA
703 Assay. 40 μ g proteins per sample were taken, reduced by tris(2-carboxyethyl)phosphine
704 hydrochloride solution (Sigma) and alkylated by iodoacetamide (Sigma) then purified by
705 acetone precipitation. Proteins were digested with trypsin (0.8 μ g; Sequence modified,
706 Promega) overnight at 30°C in 50 mM ammonium bicarbonate.

707

708 Data Independent Acquisition (DIA) analysis on Orbitrap Eclipse Tribrid

709 The LC-MS/MS analysis was on the Orbitrap Eclipse Tribrid mass spectrometer coupled with
710 a U3000 RSLCnano system (both from ThermoFisher Scientific) using DIA mode. 200 ng
711 peptides were first loaded to the trap column (100 μ m i.d. x 5 cm) and then separated on an
712 analytical column (75 μ m id x 50 cm) using a 120-min gradient from 2 - 30%
713 acetonitrile/0.1% formic acid at a flow rate of 300 nl/min. Both trap column and analytical
714 column were packed in-house with C18 (3 μ m, ReproSil C18AQ, Dr. Maisch). MS1 scans
715 were acquired from m/z 390 - 865 using a resolution setting at 120,000, AGC at 400,000 and
716 maximum injection time at 50 msec. MS/MS scans were acquired in the Orbitrap in DIA
717 mode, where the precursor mass range was set at m/z 400 – 855 with isolation windows of

718 16 m/z and 1 m/z overlap. The scan range was set at m/z 200 – 1800, with a resolution at
719 30,000, maximum injection time at 54 msec, and relative HCD collision energy at 30.

720

721 Data Analysis

722 DIA raw files were analysed using Spectronaut version 18.0 using the spectral library-free
723 directDIA approach, searching against a human or mouse UniProtKB-proteome database
724 (version June 2022). The Pulsar search settings were: Trypsin (specific) with maximum 2-
725 missed cleavage sites; peptide length from 7 to 52; Carbamidomethyl (C) as fixed
726 modification; toggle N-terminal M is true; Oxidation (M) and Acetyl (Protein N-terminus) as
727 variable modifications. FDRs at PSM, peptide and protein level were all set to 0.01.
728 Quantitation was based on peak areas from MS2 data, with channel 1 set for light (label-
729 free), and channel 2 set for heavy peptides (Arg(10) and Lys(8)). All other settings were
730 default.

731

732 Data were processed in R (v4.4.1) and RStudio (v2023.06.0+421) and mouse and human
733 datasets were processed in parallel. The fraction of light (channel 1) compared to heavy
734 (channel 2) chain was calculated for each replicate at each time point (L/(L+H)). Starting
735 from 8127 and 8509 detected proteins from mouse and human NPs, respectively. Quality
736 check filters were applied to remove proteins that had missing data, <0.85 fraction light at
737 the 0h timepoint, <1000 total expression level over all timepoints, or unstable total
738 expression levels across the timepoints. Instability in expression levels was defined as
739 differences in total expression across the timepoints (Kruskal Wallis p<0.01).

740 Fraction of light was transformed to a log2 scale, and a linear model was fitted for each
741 protein across the time points using all three replicates, with the y-intercept constrained to 0.
742 Those with R² >0.85 and sigma <0.7 were kept, and the slope of the model was used to
743 calculate protein half-life using the following equation: $t_{1/2} = \frac{\log_2(0.5)}{\text{slope}}$

744 Gene set enrichment analysis on the half-lives was conducted using GSEAPreranked
745 [v4.3.3.]^{59,60} to identify GO:BP, GP:MF, and GO:CC terms enriched in short or long half-lives.
746 Terms were deemed significant if they had a False Discovery Rate (FDR) less than 5%
747 (q<0.05). Revigo⁶¹ was used to collapse similar terms, and those with a dispensability score
748 <0.5 were retained. Terms with fewer than 25 proteins in the dataset or that had greater than
749 80% overlapping genes with a term with larger normalised effect size (NES) were removed.

750

751 Homologs between mouse and human were extracted from Ensembl v112 using
752 BioMart^{56,62}, and those with 1:1 homologs were retained. Gene homologs that matched to
753 multiple Uniprot IDs were removed. Half-life fold difference between mouse and human was
754 calculated (human/mouse) to visualise differences in half-life between the species (Table
755 S9).

756

757 To group the proteins by GO terms, at least one of the homologous proteins annotated with
758 descendant terms of following were counted: CC: cytoplasm (GO:0005737), nucleus
759 (GO:0005634), membrane (GO:0016020) and extracellular region (GO:0005576); MF:
760 catalytic activity (GO:0003824), structural molecule activity (GO:0005198), transporter
761 activity (GO:0005215), binding (GO:0005488), molecular adaptor activity (GO:0060090),
762 molecular function regulator activity (GO:0098772), transcription regulator activity
763 (GO:0140110). ATP-dependent activity (GO:0140657); For MF, only the terms with more
764 than 100 proteins were shown, and terms with complete overlap were excluded (Table S10).

765

766 **Proteome stability measurements in neurons**

767 AHA pulse and chase experiments were performed as in Rayon et. al 2020⁴. Cells were
768 starved by replacing complete differentiation medium with methionine-free medium for 30
769 min. Next, 100mM AHA was added to the methionine-free medium for 1h. To measure
770 protein stability, AHA pulse was removed by washing the cells once with PBS and growing
771 the cells on complete differentiation medium for the course of the experiment. On the
772 indicated days of differentiation and at specific time points after AHA removal, cells were
773 processed for intracellular flow cytometry.

774 AHA-incorporated proteins were labeled using Click-iT™ Cell Reaction Buffer Kit (Thermo
775 Fisher Scientific C10269) on a volume of 150 μ l per sample reaction. Estimations of global
776 proteome stability were calculated as in Rayon et al. 2020⁴. Briefly, estimations of proteome
777 stability were obtained by normalizing each individual replicate using an initial exponential fit
778 $y(t) = B + C \cdot \exp(kt)$ to determine the baseline B and initial fluorescence intensity C,
779 allowing a comparison of all the replicates together. Exponential fits of the bootstraps of the
780 normalized ensemble were used to construct confidence intervals of the degradation rates.
781 Error intervals reported correspond with 95% confidence intervals. At least 2 biological
782 replicates in technical duplicates per species per time point from independent experiments
783 were used.

784

785 **Proteasome activity measurements**

786 Mouse and human NPs were washed with PBS once, and then scraped in proteasome
787 assay buffer (50 mM Tris-HCl, pH7.5, 5 mM MgCl₂, 0.5 mM EDTA and 10% Glycerol). Then,
788 lysate was homogenized by passing through 27-gauge needles ten times. For the embryo
789 extracts mouse and human embryos were dissected in cold PBS to isolate branchial to
790 lumbar spinal cords which were subsequently homogenised in proteasome assay buffer by
791 passing through 27-gauge needles ten times. Lysate was centrifuged at 10,000 x g for 10
792 min at 4°C and supernatant was aliquoted for storage at -80°C. 20 μ g of total proteins per
793 well of 96-well plate or 8ug of total protein per well of 384 well plate with black walls
794 (Greiner, 655090 or 781090) were diluted in the proteasome assay buffer containing 2 mM
795 ATP (Thermo Fisher Scientific), 1 mM dithiothreitol (Sigma) and 0.333 mg/ml Z-GGL-AMC
796 (Cambridge Bioscience). Fluorescence was measured by PHERA star or Ensight plate
797 reader (360 nm excitation, 430 nm emission, BMG Labtech or Perkin Elmer) every 2 min for
798 60 cycles at 37°C. Kinetic slopes were measured for the stable 60 min. Protein amount was
799 estimated by BCA assay as in Vilchez et al. 2012³³.

800 All animal procedures were carried out in accordance with the Animal (Scientific Procedures)
801 Act 1986 under the Home Office project license PP8527846.
802 Human embryonic material (4-6 weeks of gestation) was obtained from the MRC/Wellcome-
803 Trust (grant #006237/1) funded Human Developmental Biology Resource (HDBR57,
804 <http://www.hdbr.org>) with appropriate maternal written consent and approval from the
805 London Fulham Research Ethics Committee (23/LO/0312) and the Newcastle and North
806 Tyneside NHS Health Authority Joint Ethics Committee (23/NE/0135). HDBR is regulated by
807 the UK Human Tissue Authority (HTA; www.hta.gov.uk) and operates in accordance with the
808 relevant HTA Codes of Practice. This work was part of project no. 200804 registered with the
809 HDBR.

810 **Data and code availability**

811 Scripts to analyse global and SILAC proteomics are both found at
812 https://github.com/POTsnake2/Nakanoh-Stamataki_2024.
813 Global proteomics datasets have been deposited to the PRIDE database⁶³ with
814 the project accession identifier: PXD054152.
815

816 **REFERENCES**

- 817 1. Ebisuya, M. & Briscoe, J. What does time mean in development? *Dev. Camb. Engl.* **145**,
818 dev164368 (2018).
- 819 2. Rayon, T. Cell time: How cells control developmental timetables. *Sci. Adv.* **9**, eadh1849
820 (2023).
- 821 3. Wallace, J. L. & Pollen, A. A. Human neuronal maturation comes of age: cellular
822 mechanisms and species differences. *Nat. Rev. Neurosci.* **25**, 7–29 (2024).
- 823 4. Rayon, T. *et al.* Species-specific pace of development is associated with differences in
824 protein stability. *Science* **369**, eaba7667 (2020).
- 825 5. Matsuda, M. *et al.* Species-specific segmentation clock periods are due to differential
826 biochemical reaction speeds. *Science* **369**, 1450–1455 (2020).
- 827 6. Diaz-Cuadros, M. *et al.* Metabolic regulation of species-specific developmental rates.
828 *Nature* **613**, 550–557 (2023).
- 829 7. Iwata, R., Casimir, P. & Vanderhaeghen, P. Mitochondrial dynamics in postmitotic cells
830 regulate neurogenesis. *Science* **369**, 858–862 (2020).
- 831 8. Lázaro, J. *et al.* A stem cell zoo uncovers intracellular scaling of developmental tempo
832 across mammals. *Cell Stem Cell* **30**, 938–949.e7 (2023).
- 833 9. Novitch, B. G., Chen, A. I. & Jessell, T. M. Coordinate regulation of motor neuron
834 subtype identity and pan-neuronal properties by the bHLH repressor Olig2. *Neuron* **31**,
835 773–789 (2001).
- 836 10. Frith, T. J. R., Briscoe, J. & Boezio, G. L. M. Chapter Five - From signalling to form: the
837 coordination of neural tube patterning. in *Current Topics in Developmental Biology* (ed.
838 Mallo, M.) vol. 159 168–231 (Academic Press, 2024).
- 839 11. Gautier, A. *et al.* An Engineered Protein Tag for Multiprotein Labeling in Living Cells.
840 *Chem. Biol.* **15**, 128–136 (2008).
- 841 12. Dieterich, D. C., Link, A. J., Graumann, J., Tirrell, D. A. & Schuman, E. M. Selective
842 identification of newly synthesized proteins in mammalian cells using bioorthogonal
843 noncanonical amino acid tagging (BONCAT). *Proc. Natl. Acad. Sci. U. S. A.* **103**, 9482–
844 9487 (2006).
- 845 13. Schmidt, E. K., Clavarino, G., Ceppi, M. & Pierre, P. SUnSET, a nonradioactive method
846 to monitor protein synthesis. *Nat. Methods* **6**, 275–277 (2009).
- 847 14. Marciano, R., Leprivier, G. & Rotblat, B. Puromycin labeling does not allow protein
848 synthesis to be measured in energy-starved cells. *Cell Death Dis.* **9**, 1–3 (2018).
- 849 15. Aviner, R. The science of puromycin: From studies of ribosome function to applications
850 in biotechnology. *Comput. Struct. Biotechnol. J.* **18**, 1074–1083 (2020).
- 851 16. Pakos-Zebrucka, K. *et al.* The integrated stress response. *EMBO Rep.* **17**, 1374–1395
852 (2016).
- 853 17. Wiśniewski, J. R., Hein, M. Y., Cox, J. & Mann, M. A “Proteomic Ruler” for Protein Copy
854 Number and Concentration Estimation without Spike-in Standards. *Mol. Cell. Proteomics
855 MCP* **13**, 3497 (2014).
- 856 18. Mao, I., Liu, J., Li, X. & Luo, H. REGy, a proteasome activator and beyond? *Cell. Mol.
857 Life Sci.* **65**, 3971 (2008).

858 19. Clague, M. J., Coulson, J. M. & Urbé, S. Cellular functions of the DUBs. *J. Cell Sci.* **125**,
859 277–286 (2012).

860 20. Raule, M. *et al.* PA28 $\alpha\beta$ Reduces Size and Increases Hydrophilicity of 20S
861 Immunoproteasome Peptide Products. *Chem. Biol.* **21**, 470–480 (2014).

862 21. Sherman, B. T. *et al.* DAVID: a web server for functional enrichment analysis and
863 functional annotation of gene lists (2021 update). *Nucleic Acids Res.* **50**, W216–W221
864 (2022).

865 22. Peters, J.-M. The anaphase promoting complex/cyclosome: a machine designed to
866 destroy. *Nat. Rev. Mol. Cell Biol.* **7**, 644–656 (2006).

867 23. Ferguson, C. J. *et al.* APC7 mediates ubiquitin signaling in constitutive heterochromatin
868 in the developing mammalian brain. *Mol. Cell* **82**, 90-105.e13 (2022).

869 24. Huang, J. & Bonni, A. A decade of the anaphase-promoting complex in the nervous
870 system. *Genes Dev.* **30**, 622–638 (2016).

871 25. Inskeep, K. A., Crase, B. & Stottmann, R. W. SMPD4 mediated sphingolipid metabolism
872 regulates brain and primary cilia development. *bioRxiv* 2023.12.15.571873 (2023)
873 doi:10.1101/2023.12.15.571873.

874 26. Koncina, E., Roth, L., Gonthier, B. & Bagnard, D. Role of Semaphorins during Axon
875 Growth and Guidance. in *Madame Curie Bioscience Database [Internet]* (Landes
876 Bioscience, 2013).

877 27. Kovářová, J. & Barrett, M. P. The Pentose Phosphate Pathway in Parasitic
878 Trypanosomatids. *Trends Parasitol.* **32**, 622–634 (2016).

879 28. Doherty, M. K., Hammond, D. E., Clague, M. J., Gaskell, S. J. & Beynon, R. J. Turnover
880 of the Human Proteome: Determination of Protein Intracellular Stability by Dynamic
881 SILAC. doi:10.1021/pr800641v.

882 29. Collins, G. A. & Goldberg, A. L. The Logic of the 26S Proteasome. *Cell* **169**, 792–806
883 (2017).

884 30. Consortium, T. P. *et al.* A Comprehensive Enumeration of the Human Proteostasis
885 Network. 1. Components of Translation, Protein Folding, and Organelle-Specific
886 Systems. Preprint at <https://doi.org/10.1101/2022.08.30.505920> (2022).

887 31. Minis, A. *et al.* The proteasome regulator PI31 is required for protein homeostasis,
888 synapse maintenance, and neuronal survival in mice. *Proc. Natl. Acad. Sci. U. S. A.* **116**,
889 24639–24650 (2019).

890 32. Delás, M. J. *et al.* Developmental cell fate choice in neural tube progenitors employs two
891 distinct cis-regulatory strategies. *Dev. Cell* **58**, 3-17.e8 (2023).

892 33. Vilchez, D. *et al.* Increased proteasome activity in human embryonic stem cells is
893 regulated by PSMD11. *Nature* **489**, 304–308 (2012).

894 34. Gaczynska, M. & Osmulski, P. A. Characterization of noncompetitive regulators of
895 proteasome activity. *Methods Enzymol.* **398**, 425–438 (2005).

896 35. Chen, J. A. *et al.* Mir-17-3p controls spinal neural progenitor patterning by regulating
897 Olig2/Irx3 cross-repressive loop. *Neuron* **69**, 721–735 (2011).

898 36. Los, G. V. *et al.* HaloTag: A novel protein labeling technology for cell imaging and protein
899 analysis. *ACS Chem. Biol.* **3**, 373–382 (2008).

900 37. Buckley, D. L. *et al.* HaloPROTACs: Use of Small Molecule PROTACs to Induce
901 Degradation of HaloTag Fusion Proteins. *ACS Chem. Biol.* **10**, 1831–1837 (2015).

902 38. Novitch, B. G., Wichterle, H., Jessell, T. M. & Sockanathan, S. A requirement for retinoic
903 acid-mediated transcriptional activation in ventral neural patterning and motor neuron
904 specification. *Neuron* **40**, 81–95 (2003).

905 39. Swovick, K. *et al.* Cross-species Comparison of Proteome Turnover Kinetics. *Mol. Cell. Proteomics* **17**, 580–591 (2018).

906 40. Harasimov, K. *et al.* The maintenance of oocytes in the mammalian ovary involves extreme protein longevity. *Nat. Cell Biol.* **26**, 1124–1138 (2024).

907 41. Dörrbaum, A. R., Alvarez-Castelao, B., Nassim-Assir, B., Langer, J. D. & Schuman, E. M. Proteome dynamics during homeostatic scaling in cultured neurons. *eLife* **9**, e52939 (2020).

908 42. Dörrbaum, A. R., Kochen, L., Langer, J. D. & Schuman, E. M. Local and global influences on protein turnover in neurons and glia. *eLife* **7**, e34202 (2018).

909 43. Schwahnhäusser, B. *et al.* Global quantification of mammalian gene expression control. *Nature* **473**, 337–42 (2011).

910 44. Kristensen, A. R., Gsponer, J. & Foster, L. J. Protein synthesis rate is the predominant regulator of protein expression during differentiation. *Mol. Syst. Biol.* **9**, 689 (2013).

911 45. Leduc, A., Zheng, S., Saxena, P. & Slavov, N. Impact of protein degradation and cell growth on mammalian proteomes. 2025.02.10.637566 Preprint at <https://doi.org/10.1101/2025.02.10.637566> (2025).

912 46. Rechsteiner, M. & Hill, C. P. Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors. *Trends Cell Biol.* **15**, 27–33 (2005).

913 47. Stadtmueller, B. M. & Hill, C. P. Proteasome Activators. *Mol. Cell* **41**, 8–19 (2011).

914 48. Lee, H. J. *et al.* Cold temperature extends longevity and prevents disease-related protein aggregation through PA28γ-induced proteasomes. *Nat. Aging* 1–21 (2023) doi:10.1038/s43587-023-00383-4.

915 49. Matsuda, M., Hammaren, H. M., Lazaro, J., Savitski, M. M. & Ebisuya, M. Systematic analysis of protein stability associated with species-specific developmental tempo. *bioRxiv* 2024.06.07.597977 (2024) doi:10.1101/2024.06.07.597977.

916 50. Swovick, K. *et al.* Interspecies Differences in Proteome Turnover Kinetics Are Correlated With Life Spans and Energetic Demands. *Mol. Cell. Proteomics* **20**, 100041 (2021).

917 51. Pollen, A. A., Kilik, U., Lowe, C. B. & Camp, J. G. Human-specific genetics: new tools to explore the molecular and cellular basis of human evolution. *Nat. Rev. Genet.* 1–25 (2023) doi:10.1038/s41576-022-00568-4.

918 52. Iwata, R. & Vanderhaeghen, P. Metabolic mechanisms of species-specific developmental tempo. *Dev. Cell* **59**, 1628–1639 (2024).

919 53. Espinós, A., Fernández-Ortuño, E., Negri, E. & Borrell, V. Evolution of genetic mechanisms regulating cortical neurogenesis. *Dev. Neurobiol.* **82**, 428–453 (2022).

920 54. Gouti, M. *et al.* A Gene Regulatory Network Balances Neural and Mesoderm Specification during Vertebrate Trunk Development. *Dev. Cell* **41**, 243–261.e7 (2017).

921 55. Sagner, A. *et al.* Olig2 and Hes regulatory dynamics during motor neuron differentiation revealed by single cell transcriptomics. *PLOS Biol.* **16**, e2003127 (2018).

922 56. Smedley, D. *et al.* BioMart – biological queries made easy. *BMC Genomics* **10**, 22 (2009).

923 57. Ritchie, M. E. *et al.* limma powers differential expression analyses for RNA-sequencing and microarray studies. *Nucleic Acids Res.* **43**, e47 (2015).

924 58. Kammers, K., Cole, R. N., Tiengwe, C. & Ruczinski, I. Detecting Significant Changes in Protein Abundance. *EuPA Open Proteomics* **7**, 11–19 (2015).

925 59. Subramanian, A. *et al.* Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. *Proc. Natl. Acad. Sci.* **102**, 15545–15550 (2005).

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952 60. Mootha, V. K. *et al.* PGC-1 α -responsive genes involved in oxidative phosphorylation are
953 coordinately downregulated in human diabetes. *Nat. Genet.* **34**, 267–273 (2003).

954 61. Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO Summarizes and Visualizes
955 Long Lists of Gene Ontology Terms. *PLOS ONE* **6**, e21800 (2011).

956 62. Harrison, P. W. *et al.* Ensembl 2024. *Nucleic Acids Res.* **52**, D891–D899 (2024).

957 63. Martens, L. *et al.* PRIDE: the proteomics identifications database. *Proteomics* **5**, 3537–
958 3545 (2005).

959 **FIGURE LEGENDS**

960 **Figure 1. Dynamics of protein production and degradation in mouse and human**
961 **neural progenitors**

962 (a) OLIG2-SNAP pulse and chase experiments in mouse (orange) and human (blue) NPs. Curves and shaded areas show exponential fit and 95% confidence intervals, respectively (bottom); (mouse n=3, human t_{0h} n=5; t_{3h} n=1; t_{4h}=4; t_{6h} n=5; t_{8h} n=4; t_{24h} n=5).

963 (b) OLIG2-SNAP production measurements in mouse and human NPs. Geometric mean \pm standard deviation of SNAP 647-SiR ligand incorporation at the indicated time points in mouse and human NPs (n=3).

964 (c) Representative flow cytometry analysis of 647-SiR ligand incorporation in mouse and human NPs for OLIG2-SNAP production measurements.

965 (d) Quantification of OLIG2-SNAP production at the indicated time points in mouse and human NPs. Values correspond to the normalized intensity corrected to 0 minutes, and lines represent a simple linear regression interpolation with 95% confidence intervals. Estimated slopes: mOLIG2 = 7.281 \pm 2.26 a.u. \cdot min $^{-1}$; hOLIG2 = 3.544 \pm 1.75 a.u. \cdot min $^{-1}$. P-value corresponds to an Analysis of Covariance (ANCOVA) test (n=3).

966 (e) Quantification of AHA incorporation at the indicated time points in mouse and human NPs, normalized to the initial value at 30 minutes. Dots correspond to the geometric mean intensity, and lines represent a simple linear regression interpolation with 95% confidence intervals. Estimated slopes: mNP 0.030 \pm 0.0023 a.u. \cdot min $^{-1}$; hNPs 0.015 \pm 0.0016 a.u. \cdot min $^{-1}$. Data are shown as n = 4, with at least two technical replicates per experiment. P-value corresponds to ANCOVA test.

967 (f) Quantification of puromycin (0.1 μ g/ml) incorporation at the indicated time points in mouse and human NPs normalized to the initial value at 30 minutes. Dots correspond to the geometric mean intensity, and lines represent a simple linear regression interpolation with 95% confidence intervals. Estimated slopes: mNP 0.046 \pm 0.0019 a.u. \cdot min $^{-1}$; hNPs 0.022 \pm 0.001 a.u. \cdot min $^{-1}$. Data are shown as n = 4, with at least two technical replicates per experiment. P-value corresponds to ANCOVA test.

968
969 **Figure S1. Assessment of SNAP-Tag suitability to determine protein dynamics**

970 (a) Representative FACS plot showing co-expression of OLIG2 and HA tag in OLIG2-SNAP mouse and human NPs.

971 (b) Representative flow cytometry analysis of 647-SiR ligand incorporation in pulse-chase experiments of human NPs at the indicated days of differentiation with HALO ligands as controls.

972 (c) Representative flow cytometry analysis of 647-SiR ligand incorporation on day 6 (blue) in human NPs pulse-chase experiment.

973 (d) Geometric mean \pm standard deviation of fluorescent intensity of conjugated puromycin antibody in mouse NPs treated with the indicated concentrations of puromycin (n=2).

974 (e) Geometric mean \pm standard deviation of fluorescent intensity of conjugated puromycin antibody in human NPs treated with the indicated concentrations of puromycin (n=2).

1001 (f) Quantitation of phospho-EIF2A in mouse and human NPs treated or without puromycin at
1002 the indicated time points after puromycin incorporation. Data represent mean \pm standard
1003 deviation (n=2 for 15, 90,120min and n=4 for 30, 60min - two experiments with different
1004 timepoints).

1005

1006 **Figure 2. Global proteomic differences in mouse and human neural progenitors**

1007 (a) Volcano plots showing 1791 Differentially Expressed Proteins (DEPs) with ≥ 2 FC and
1008 FDR ≤ 0.05 in at least 2 biological replicates. DEPs enriched in mouse or human are
1009 depicted in orange (794) and blue (997), respectively. The full list of DEPs is presented in
1010 Table S2.

1011 (b) Bubble plot depicting the top pathways identified in pathway analysis with DAVID (Table
1012 S3). The pathways enriched amongst human- or mouse-upregulated DEPs are shown in
1013 blue and orange, respectively. Bubble sizes indicate the number of DEPs in each pathway.
1014 The axes show the fold enrichment of each term compared to the background, and -log of P
1015 value from a Fisher's test.

1016 (c) Heatmap of the normalized scaled intensities of DEPs assigned to Gene Ontology
1017 categories (DAVID) in mouse and human NPs. Each pathway is color coded and ordered by
1018 p value.

1019 (d) Abundance of proteins associated to the ubiquitin-proteasome pathway in mouse and
1020 human NPs. DEPs are highlighted in darker color and labeled.

1021 (e) Mean abundance of DEPs associated with the ubiquitin-proteasome pathway in mouse
1022 and human NPs.

1023

1024 **Figure S2. Quality control and differential expression of human and mouse proteins**
1025 **identified by DIA-MS in NPs**

1026 (a, b) Percentage of SOX2 (a) and TUBB3 (b) positive cells in mouse and human NP
1027 differentiations. Data represent mean \pm standard deviation (mouse n=7, human n=4).

1028 (c) Principal Component Analysis plot of the mouse and human NPs used for differential
1029 protein expression. Each point represents a replicate ran in triplicate for DIA-MS.

1030 (d) MA plot displaying the logged intensity ratio (M) versus the mean logged intensities (A) of
1031 changes in protein abundances of the mouse and human NPs. The log2 of fold changes in
1032 mean human/mouse protein abundance is shown against log10 of the averaged protein
1033 abundance. Red dots indicate differentially expressed proteins.

1034 (e) Boxplots of the normalised values per technical replicate for the DIA-MS in mouse and
1035 human NPs. Each biological replicate was run in triplicate for DIA-MS.

1036 (f) Mean abundance of DEPs in mouse and human NPs across the replicates. Proteins
1037 mentioned in the main text and shown on the volcano plot are labeled.

1038 (g) Mean abundance of core particles of the proteasome in mouse and human NPs as
1039 determined by DIA-MS. Data represent mean \pm standard deviation (n=3, in triplicates).

1040 (h) Mean abundance of regulatory particle subunits of the proteasome in mouse and human
1041 NPs as determined by DIA-MS. Data represent mean \pm standard deviation (n=3, in
1042 triplicates).

1043

1044 **Figure 3. Dynamic SILAC proteomics identifies global differences in protein stability**

1045 (a) Schematic of dynamic SILAC combined with quantitative proteomics.

1046 (b) Violin plot showing the estimated half-lives of mouse and human proteins in NPs. Median
1047 half-lives for the mouse and human datasets are indicated. Quartile lines in the violin plots
1048 are the 25th, 50th (median) and 75th percentiles.□

1049 (c) Violin plot illustrating the fold change in half-lives between human and mouse proteins
1050 (left), and dot plot showing the half-lives of 3402 homologous proteins in mouse and human
1051 (right). The blue line represents a 1:1 relationship, indicating identical half-lives in both
1052 species. The red line marks the median fold-difference in half-life between human and
1053 mouse proteins. Violin plot as in (b).
1054 (d) Half-life measurements of homologous proteins divided into quartiles based on protein
1055 size (amino acid sequence length), from smallest to largest. Orange and blue box plots
1056 represent the values for mouse and human proteins, respectively. Grey box plots indicate
1057 the fold difference in half-lives in human versus mouse. Box-plot: Centre line is the median;
1058 box represents upper and lower quartiles; whiskers are 1.5x interquartile range from the
1059 upper and lower quartiles; dots are outliers.
1060 (e) Quartiles of measured half-lives homologous proteins partitioned according to protein
1061 abundance (average total expression level), from low to high. Orange and blue box plots
1062 correspond to mouse and human values selected for partitioning, respectively. Grey box
1063 plots indicate the fold difference in half-lives in human versus mouse. Box-plot as (d).
1064 (f) Half-lives of homologous proteins associated with four GO terms in cellular component.
1065 Dashed lines indicate median half-lives of mouse and human homologues. Box-plot as in
1066 (d).
1067

1068 **Figure S3. Additional data analysis of the SILAC dataset**

1069 (a, b) Bubble plot showing top enriched GO terms in mouse (a) and human (b) half-lives
1070 from GSEA Preranked analysis. Positive normalized enrichment scores (NES) indicate the
1071 enrichment in long-lived proteins, and negative NES values indicate enrichment in short-
1072 lived proteins. Size of the points depict size of the GO term, colour indicates -log10 p-value.
1073 (c) Human to mouse fold difference in half-lives in human homologous proteins partitioned in
1074 quartiles according to protein size in human, from small to large. Box-plot: Centre line is the
1075 median; box represents upper and lower quartiles; whiskers are 1.5x interquartile range from
1076 the upper and lower quartiles; dots are outliers.
1077 (d) Dot plot showing amino acid sequence length of mouse to human homologues.
1078 (e) Quartiles of measured half-lives in human homologous proteins partitioned according to
1079 abundance of human proteins, from low to high. Box-plot as in (c).
1080 (f) Dot plot showing average total expression levels of mouse and human homologues.
1081 (g) Half-lives of mouse (orange) and human (blue) homologous proteins associated with 8
1082 GO molecular function terms. Box-plot as in (c).
1083 (h) Median fraction of light over time for proteins related to proteasomal categories in the
1084 mouse and human datasets. 14 core proteasomal subunits, 16 regulatory subunits, and 5
1085 proteasomal activators and inhibitors were taken into account. Line and shadowed areas
1086 show best linear fit with 95% confidence intervals. Dashed lines represent median protein
1087 half-lives.
1088 (i) Fraction of light over time for activators and inhibitors of the proteasome in the mouse and
1089 human NP SILAC datasets. Line and shadowed areas show best linear fit with 95%
1090 confidence intervals. Dashed lines represent median protein half-lives (n=3).
1091

1092 **Figure 4. Proteasomal activity is higher in mouse neural progenitors**

1093 (a, b) Schema of the experimental design for neuronal differentiation from ESCs. A Notch
1094 inhibitor (10mM DBZ, gamma secretase inhibitor) was added to increase the differentiation
1095 of NPs into post-mitotic neurons. In mouse, treatment was administered from day 2 to day 4
1096 of the differentiation. On day 4, AHA pulse and chase experiments were performed to

1097 measure protein stability in progenitors and differentiated neurons in mouse (a). Similarly,
1098 human NPs were treated for 48 hours with the Notch inhibitor and protein stability measured
1099 after treatment starting at day 4 (b).
1100 (c) Normalized intensity of AHA levels in mouse and human NPs (mouse, orange; human, blue)
1101 and post-mitotic neurons (mouse, red; human, dark blue) across timepoints. Curves
1102 and shadowed areas show best exponential fit with 95% confidence intervals; (mouse n = 2,
1103 human n = 2 in duplicates).
1104 (d) Half-live estimation of the proteome in mouse and human neural progenitors (mouse,
1105 orange; human, blue) and post-mitotic neurons (mouse, red; human, dark blue) for datasets
1106 in (c). Quartile lines in the violin plots are the 25th, 50th (median) and 75th
1107 percentiles. Statistical significance (*) corresponds with < 5% of overlap between the
1108 distributions of parameter estimations (mouse n = 2, human n = 2 in duplicates).
1109 (e) Fluorescence intensity measurements of the chymotrypsin-like enzymatic activity of the
1110 proteasome using a fluorescent peptide substrate. A line connects the mean values at the
1111 measured timepoints, and the shaded areas represent the standard deviation (n=4).
1112 (f) Proteasomal activity measured as the slope of fluorescence increase from substrate
1113 digestion in (e) in mouse and human NPs. Data are presented as mean \pm standard
1114 deviation; p-value is from unpaired t-test (n=4).
1115 (g) Slopes of fluorescence increase from the digested substrate as the proxy of proteasomal
1116 activity in spinal cords of mouse and human embryos. Mouse embryonic day (E) 12.5 and
1117 13.5; Human stages span Carnegie Stages (CS) 17-21. Data are presented as mean \pm
1118 standard deviation; p-value is from unpaired two-tailed Welch t-test (mouse n = 10. E12.5 (4)
1119 and E13.5 (6); human n = 5. CS17 = 1, CS18 = 1, CS20 =2, CS21=1).
1120 (h) Schema of the experimental design for Bortezomib (BTZ) treatment on mouse neural
1121 differentiations from ESCs, and measurements of proteasomal activity at the indicated
1122 timings and concentrations. Data are presented as mean \pm standard deviation; p-value is
1123 from paired t-test (n=3 in duplicates).
1124 (i) RT-qPCR analysis of *Pax6*, *Olig2*, *Nkx2.2* and *Tubb3* expression in mouse neural
1125 differentiations treated with Bortezomib (+BTZ) compared to controls (-BTZ). Data represent
1126 mean \pm standard error of the mean; two-way ANOVA followed by with Sidak's multiple
1127 comparisons test. Reported P-values correspond to the ANOVA results, while asterisks
1128 indicate statistical significance from the post hoc test (n = 4).
1129

1130 **Figure S4. Differences in protein stability between mouse and human neural cells**

1131 (a, b) Quantifications of the proportion of neural progenitors (SOX2+) and post-mitotic
1132 neurons (TUBB3+) after treatment compared to controls in mouse (a) and human (b)
1133 differentiations. Data represent mean \pm standard deviation (mouse n=2, human n=2 in
1134 duplicates).
1135 (c) Representative flow cytometry analysis of AHA incorporation in pulse-chase experiments
1136 of mouse and human NPs and neurons at the indicated time points.
1137 (d) Proteasomal activity measured as the slope of fluorescence increase from substrate
1138 digestion in mouse and human NPs, derived from two mESC lines. Data are presented as
1139 mean \pm standard deviation (n = 6). Statistical analysis was performed using ordinary one-
1140 way ANOVA.
1141 (e) Proteasomal activity measured as the slope of fluorescence increase from substrate
1142 digestion in mouse and human embryonic developing spinal cords. Mouse samples are
1143 separated across stages. Data are presented as mean \pm standard deviation (E12.5 (n = 4);

1144 E13.5 (n = 6); human n = 5. CS17 = 1, CS18 = 1, CS20 =2, CS21=1); Statistical analysis
1145 was performed using Brown-Forsythe ANOVA to account for unequal sample sizes.
1146 (f-i) Quantifications of the proportion of neural progenitors (SOX2+), post-mitotic neurons
1147 (TUBB3+) and early neural progenitor markers (PAX6+, OLIG2+) treated with Bortezomib
1148 (5nM BTZ) compared to controls in mouse differentiations. Data represent mean \pm standard
1149 deviation (n=3).
1150 (j, k) Representative flow cytometry analysis (j) and geometric intensity (k) for PAX6+ and
1151 OLIG2+ neural progenitors treated with Bortezomib (5nM BTZ) compared to controls in
1152 mouse differentiations. Data represent mean \pm standard deviation (n=3).
1153

1154 **Figure 5. HALO-PROTAC addition depletes IRX3 and increases the proportion of**
1155 **OLIG2 expressing neural progenitors.**

1156 (a) Schematics of HaloPROTAC targeted degradation and treatment regimes. HaloPROTAC
1157 covalently binds to HALO and induces the 26S proteasomal degradation of IRX3-HALO
1158 through the recruitment of the von Hippel-Lindau (VHL) E3 ubiquitin ligase.
1159 (b) Representative FACS plots of OLIG2 expression measured in SOX2 expressing mouse
1160 NPs in controls (DMSO, turquoise) and PROTAC (+PROTAC, violet) treated samples at 12h
1161 and 18h post addition.
1162 (c) Percentage of total OLIG2 positive mouse NPs at 0h, 12h and 18h post SAG addition in
1163 controls and PROTAC treated samples. Data lines represent biological replicates; p-value is
1164 from paired sample t-test (0h n=5; 12h n=2; 18h n=3).
1165 (d) Percentage of IRX3+;OLIG2- and OLIG2+;IRX3--NPs during differentiation in DMSO or
1166 with PROTAC samples. A line connects the mean values (dots), and the shaded areas
1167 represent the standard deviation. Two-way ANOVA followed by with Sidak's multiple
1168 comparisons test. Reported P-values correspond to the ANOVA results, while asterisks
1169 indicate statistical significance from the post hoc test (n =5 except 12h n=2 and 18h n=3).
1170

1171 **Figure S5. Characterization of the IRX3-HALO mESC line.**

1172 (a) Diagram of pulse-chase treatment for IRX3::HALO ligand. 100nM of HALO JF549 ligand
1173 was added for 1h. Media was then replaced, and mNPs collected at the indicated time
1174 points.
1175 (b) Confocal images of IRX3 detection and decay from the pulse-chase experiments. IRX3 is
1176 detected with an antibody against the HA tag in blue throughout the time course, while the
1177 fully labelled IRX3 with the HALO JF549 ligand (magenta) at 0h shows the decay of IRX3
1178 protein at 4h and 24h post-labelling (n=2). Scale bar 25 μ m.
1179 (c) Schema indicating medium conditions in the pulse-chase labelling experiment and
1180 representative flow cytometry histograms of IRX3 expression and decay from the pulse-
1181 chase experiments. The histogram on the top corresponds to total IRX3 levels detected with
1182 an HA antibody. The lower panel corresponds to the decay of IRX3-JF549 labeled proteins
1183 at 4h and 24h post-labelling (n=2).
1184 (d) Validation of IRX3 depletion by HALO PROTAC as compared to an IRX3^{KO} cell line.
1185 Representative histograms of IRX3 expression and depletion over time upon PROTAC
1186 addition (n=2).
1187 (e) Representative contour plots of IRX3 depletion in 12h and 18h time courses. X-axis
1188 represents OLIG2 intensity and y-axis IRX3 intensity. Numbers in each quadrant indicate
1189 percentage of NPs quantified in DMSO (turquoise) or PROTAC (violet) conditions.
1190

1191 **ACKNOWLEDGEMENTS**

1192 We thank Miki Ebisuya for productive discussions. Rahul Samant, Ian McGough, and all
1193 members of the Briscoe lab and Rayon lab for advice and feedback. We are grateful to
1194 David Vilchez for advice and sharing the proteasome activity protocol. Thanks to Florence
1195 Wood for performing some experiments on the regimes of treatment for the IRX3-HALO line.
1196 We thank the Babraham Institute Facilities in particular the Flow Facility, Mass Spec and
1197 Bioinformatics as well as Stores, BICS, and Tech Services. The latter were instrumental
1198 when setting up the lab. We thank the Crick Science Technology Platforms for their
1199 expertise and assistance, particularly the Genomics, the Flow Cytometry, and the
1200 Proteomics STPs.

1201

1202 **AUTHOR CONTRIBUTIONS**

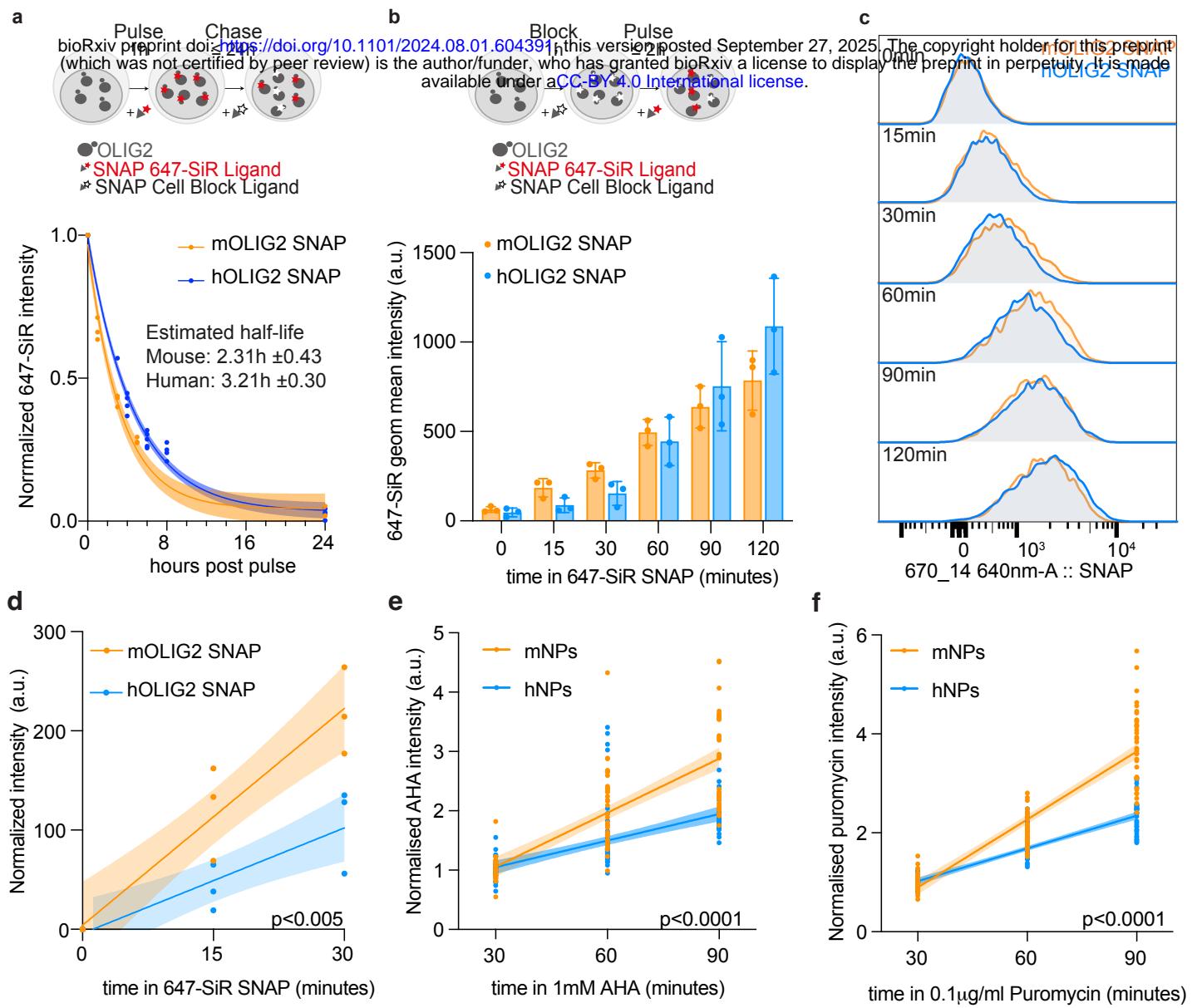
1203 T.R. and J.B. conceived the project, interpreted the data, and wrote the manuscript with
1204 input from all authors. T.R., S.N. and D.S., designed and performed experiments and data
1205 analysis. L.G.P. generated and characterized the OLIG2-SNAP and IRX3-HALO mESCs
1206 lines and designed, performed and analyzed experiments. C.A. designed and performed
1207 experiments and data analysis of IRX3-HALO mESCs. A.P. performed statistical analysis of
1208 global proteomics. L.D. performed experiments and data analysis of proteasome inhibition
1209 experiments. G.L.M.B prepared human embryo samples. M.M prepared mouse
1210 samples. S.H and M.S performed global DIA mass spec. L.Y and D.O performed SILAC
1211 mass spec analysis. H.C. and S.A. performed bioinformatic analysis of the SILAC datasets.

1212

1213 **FUNDING**

1214 Work in JB laboratory was supported by the Francis Crick Institute which receives its core
1215 funding from Cancer Research UK (CC001051), the UK Medical Research Council
1216 (CC001051), and Wellcome (CC001051); by the European Research Council under
1217 European Union (EU) Horizon 2020 research and innovation program grant 742138; and by
1218 UK Human Developmental Biology Initiative (Wellcome, 215116_Z_18_Z). Work in the
1219 laboratory of TR is supported by the Babraham Institute's BBSRC Institute Strategic
1220 Programmes Grant (ISPG) [BB/Y006909/1]; the Engineering and Physical Sciences
1221 Research Council [EP/X021521/1]; the Babraham Institute's BBSRC Core Capability Grant
1222 (CCG) [BB/CCG2210/1], and the Institute Development Grant [BB/IDG2210/1].

1223


1224 **COMPETING INTERESTS**

1225 The authors declare no competing or financial interests.

1226

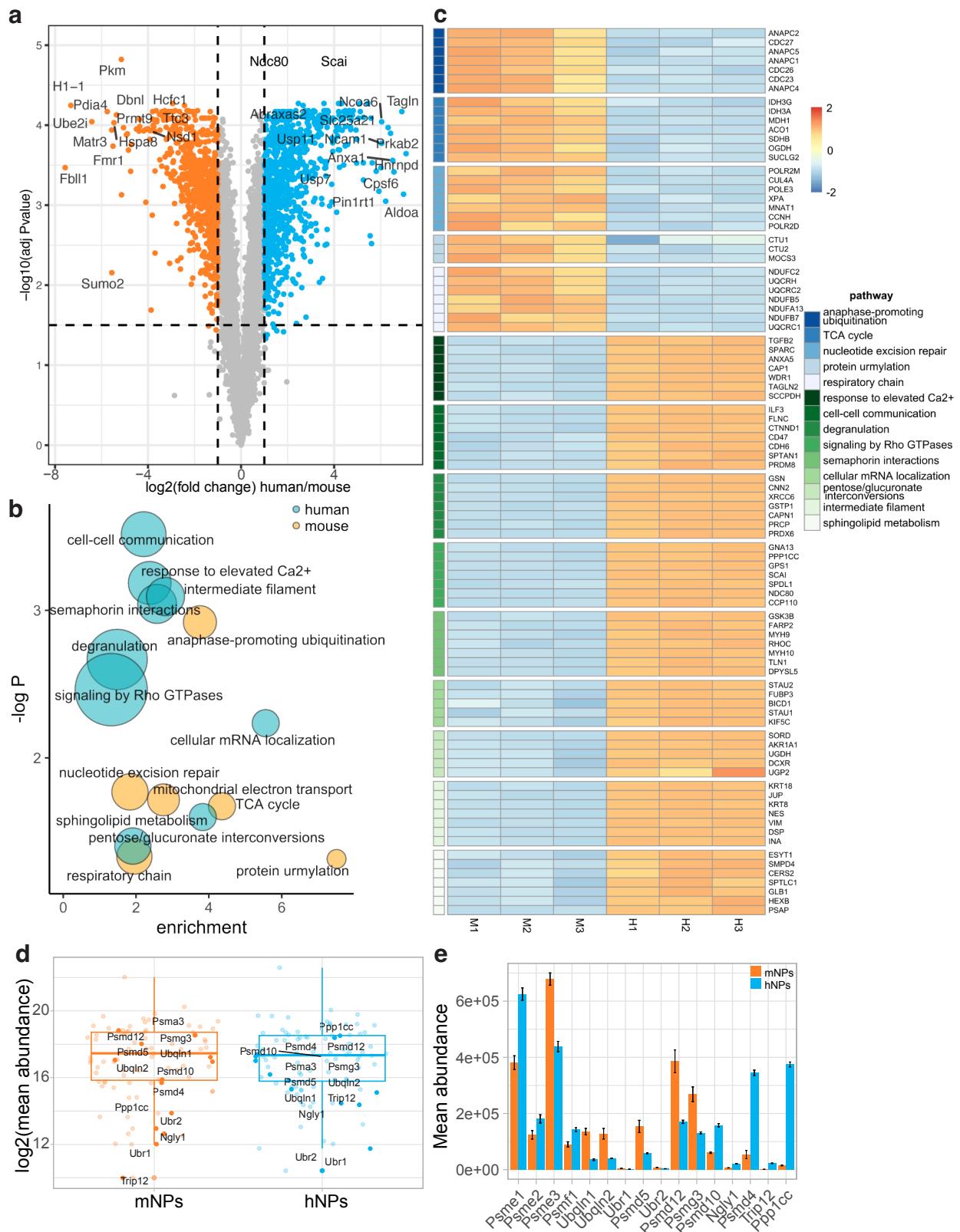

1227

Figure 1

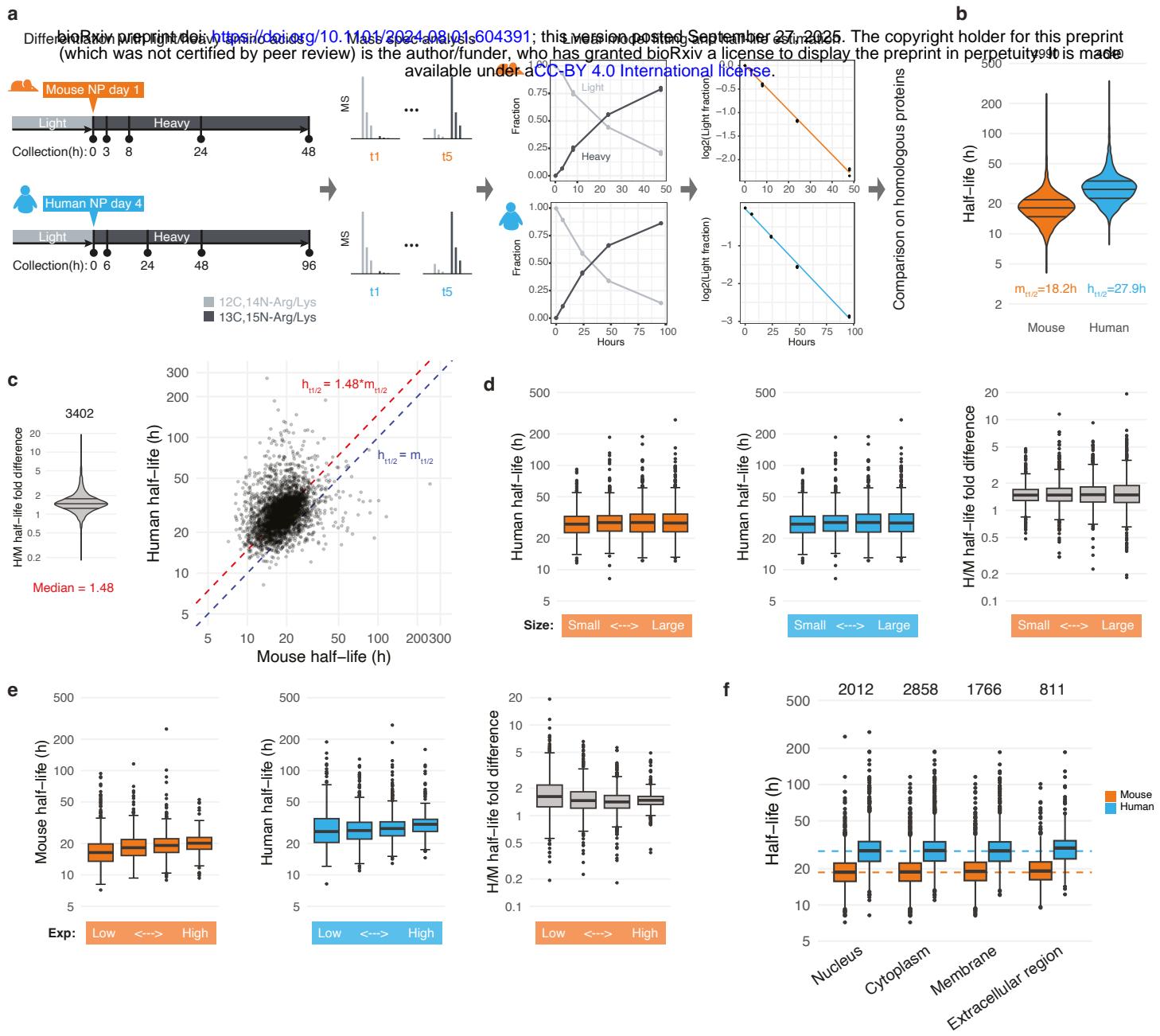
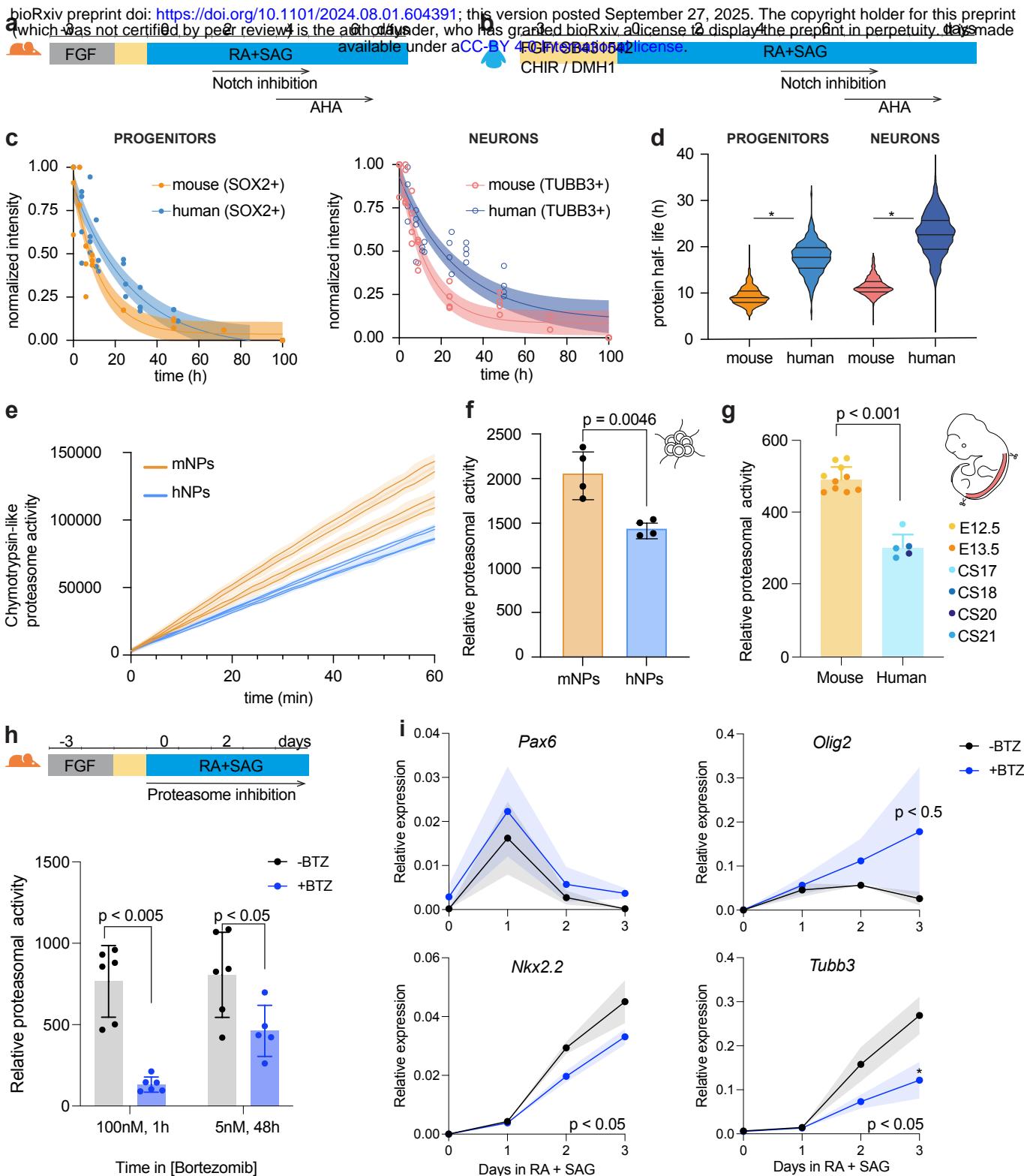
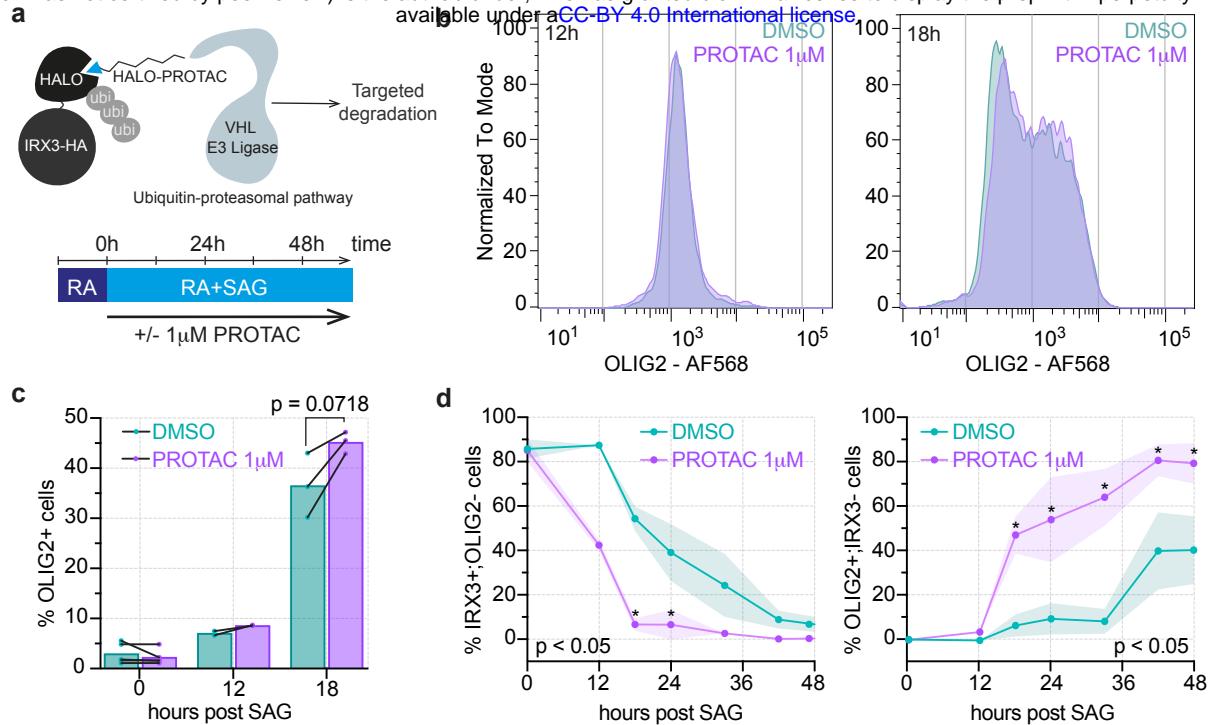


Figure 2


bioRxiv preprint doi: <https://doi.org/10.1101/2024.08.01.604391>; this version posted September 27, 2025. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.


Figure 3

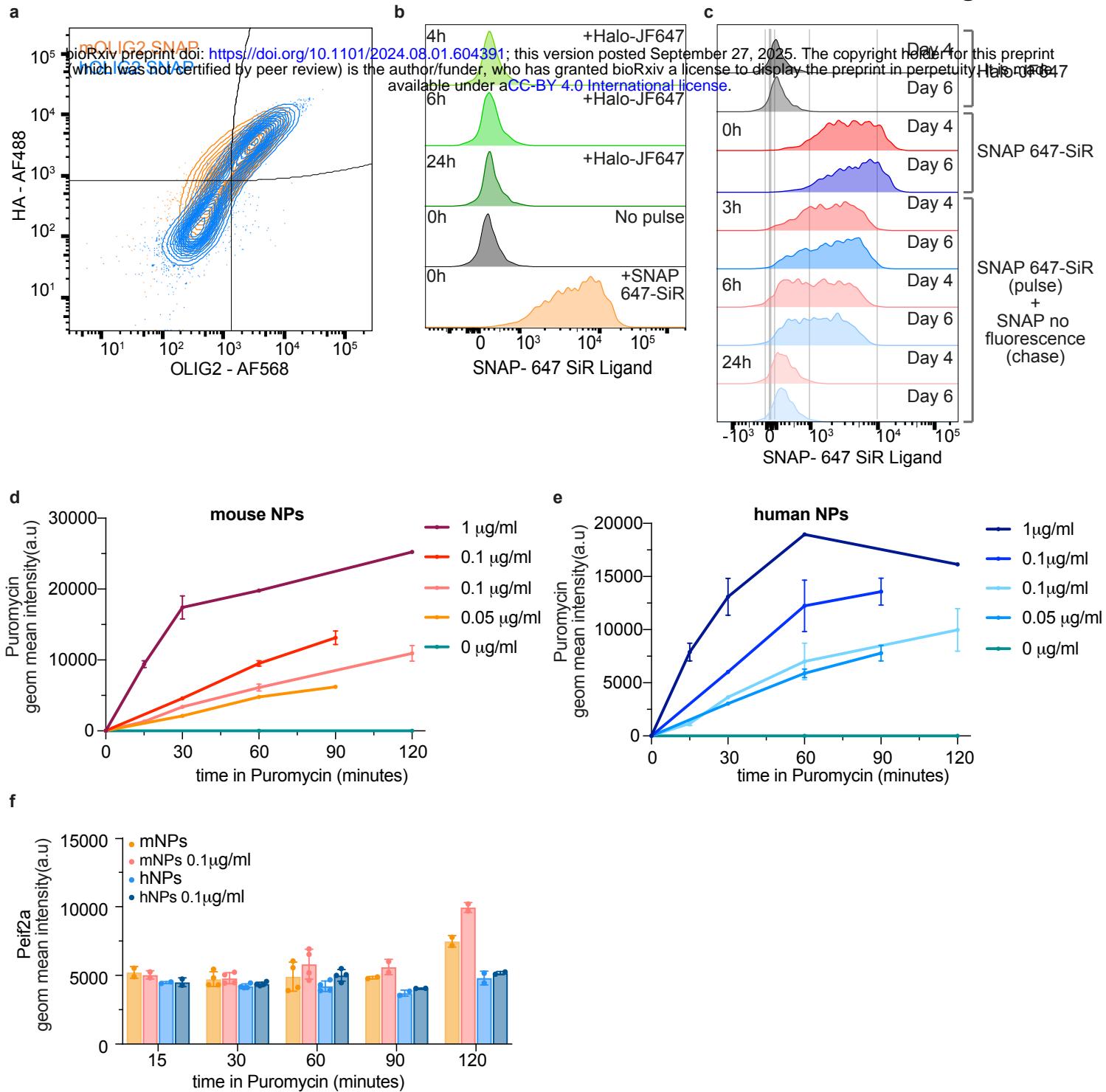

Figure 4

Figure 5

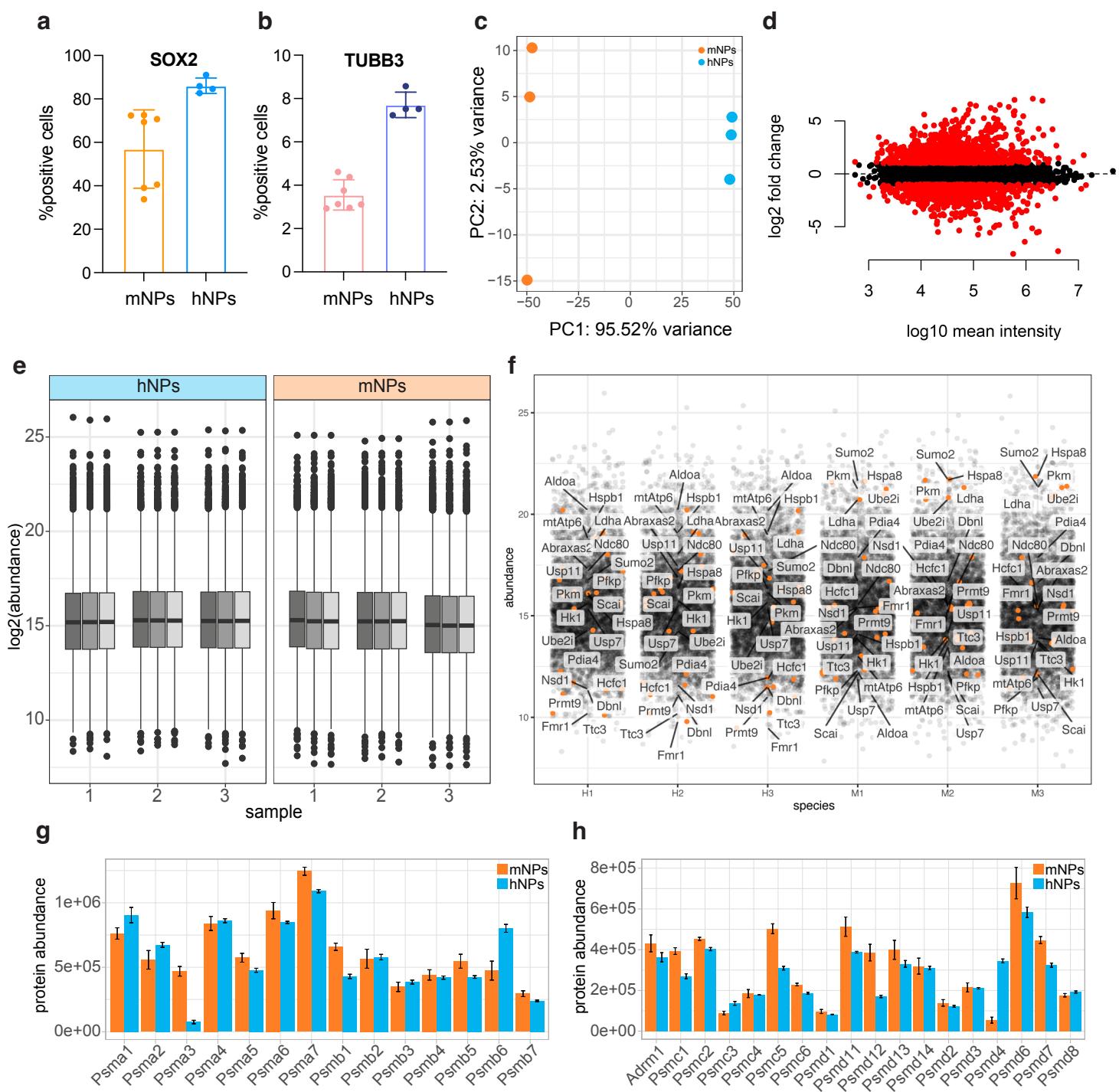
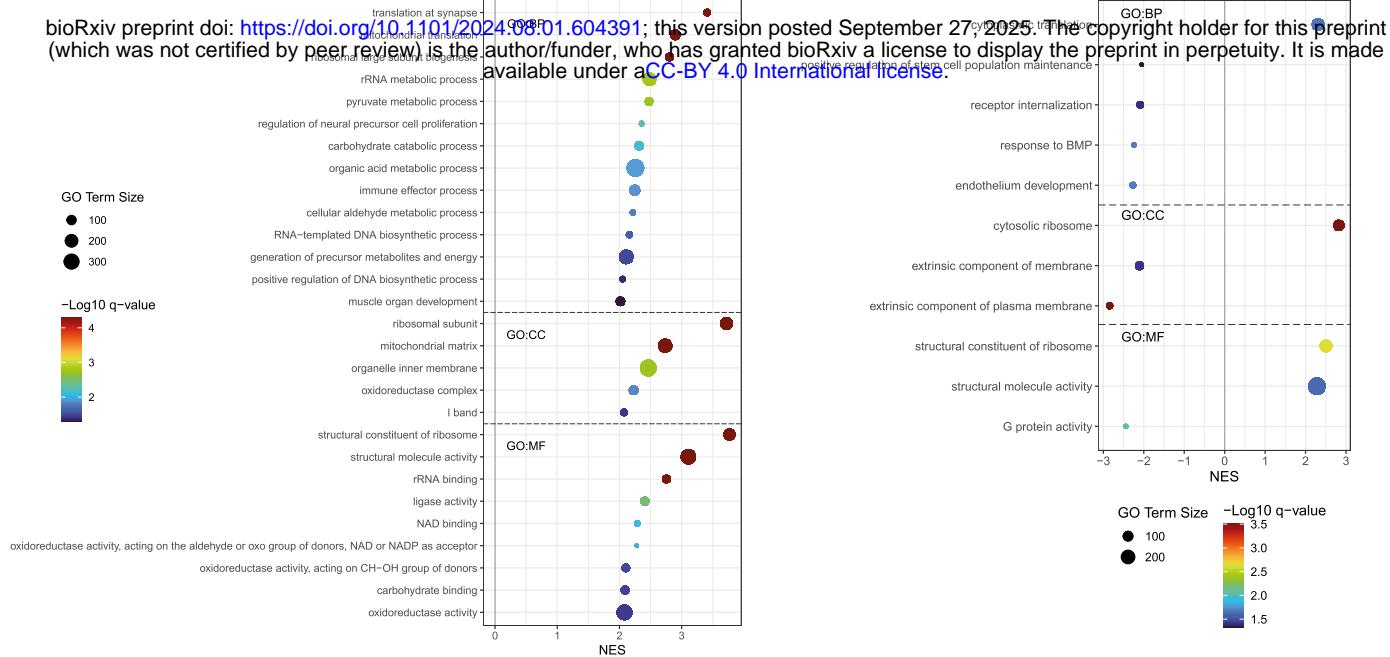


Figure S1


Figure S2

bioRxiv preprint doi: <https://doi.org/10.1101/2024.08.01.604391>; this version posted September 27, 2025. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

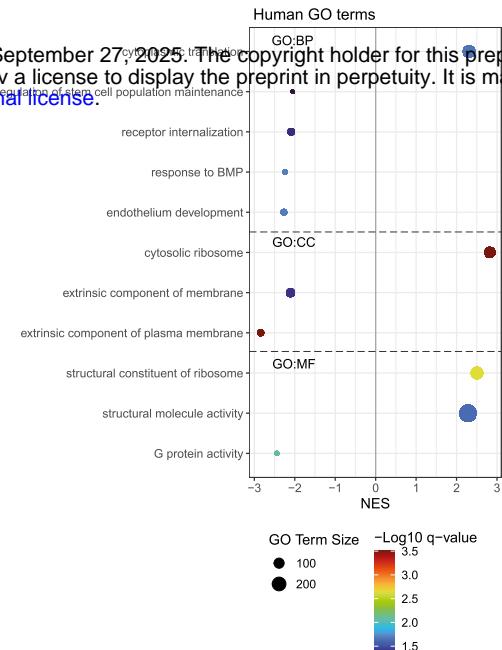
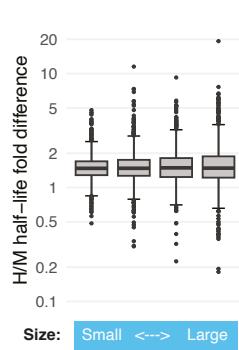
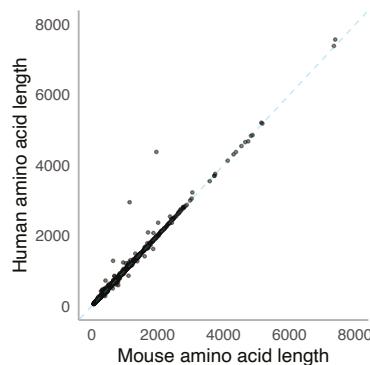
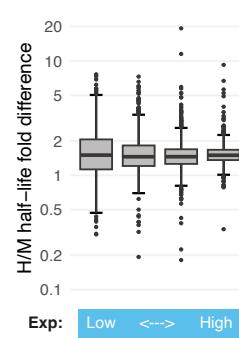
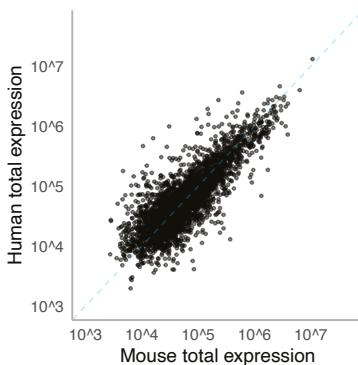


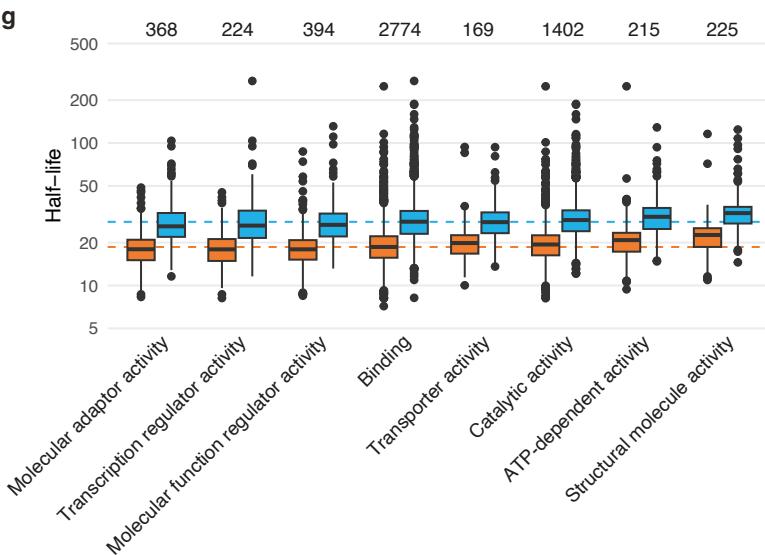
Figure S3

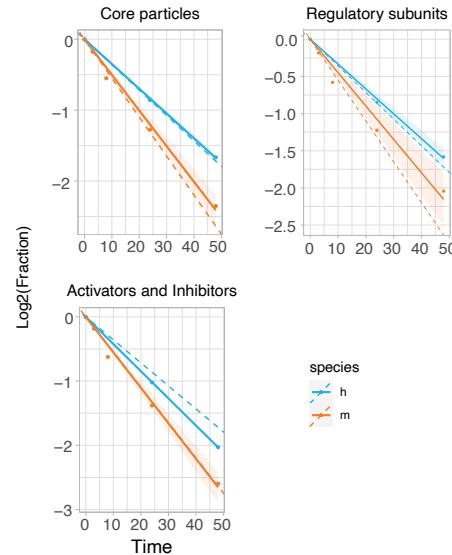

a


b


c


d


e


f

g

h

i

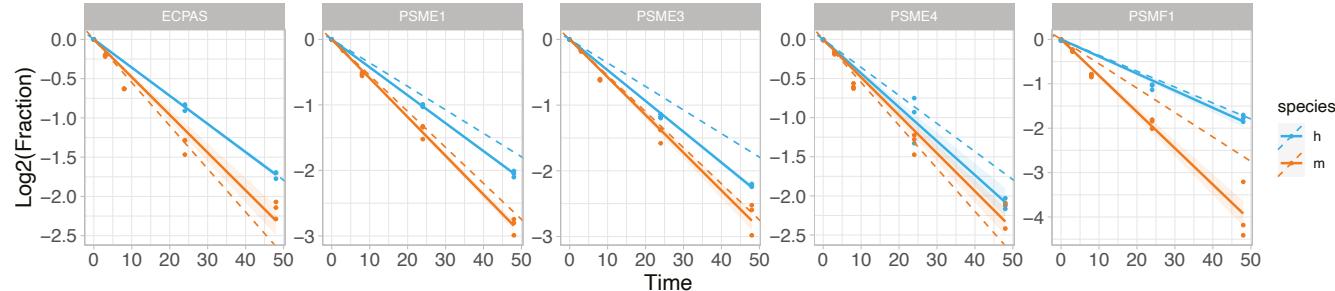
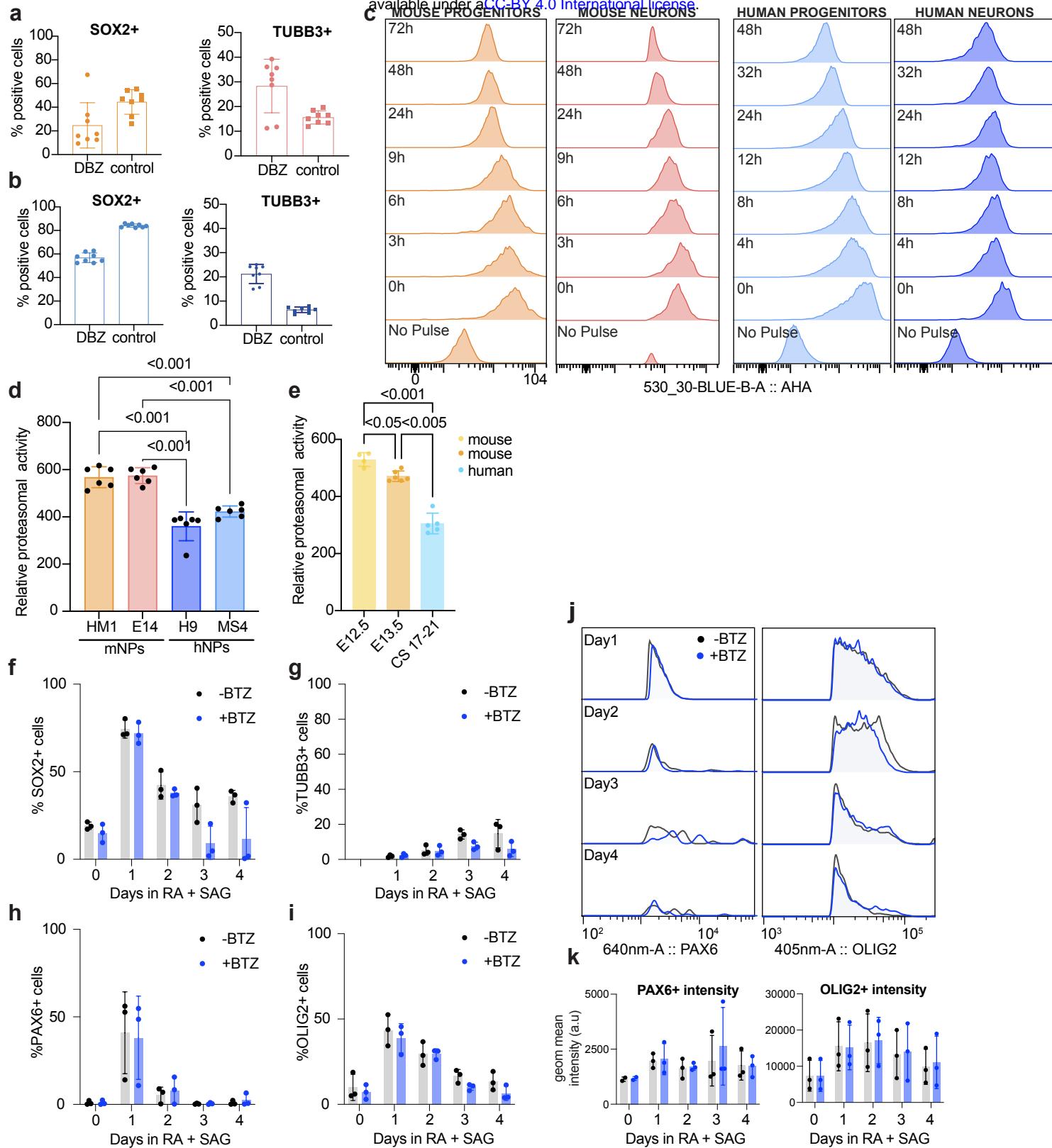
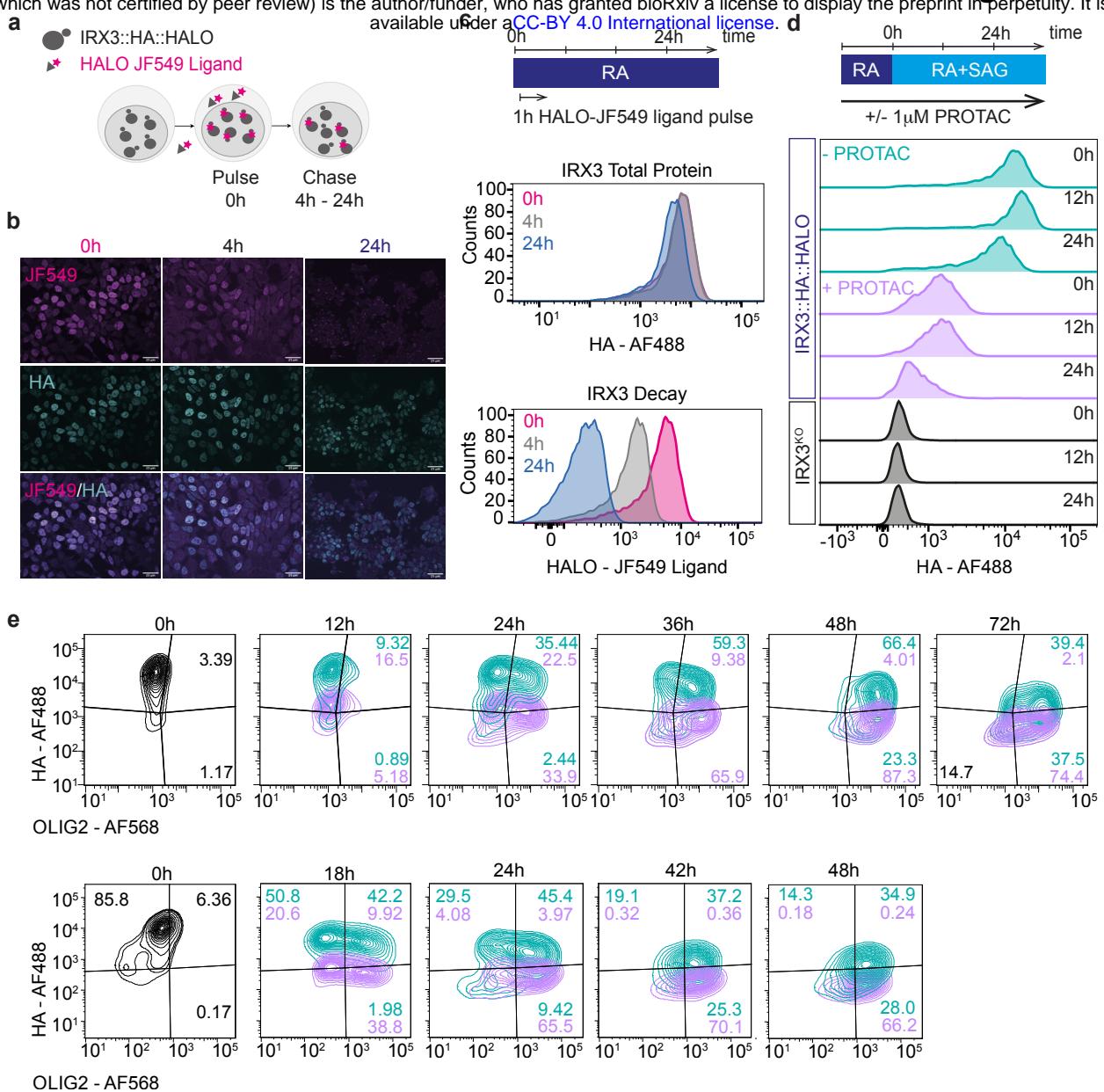




Figure S4

bioRxiv preprint doi: <https://doi.org/10.1101/2024.08.01.604391>; this version posted September 27, 2025. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Figure S5

