

1 **Depletion of endomembrane reservoirs drives phagocytic appetite exhaustion**
2 **in macrophages**

3
4
5 Aaron Fountain^{#1,2}, Mélanie Mansat^{#2}, Tracy Lackraj², Maria C. Gimenez⁴, Serene Moussaoui^{3,4},
6 Maya Ezzo^{5,6}, Sierra Soffiatiuro^{1,2}, Elijah Urdaneta^{1,2}, Munira B. Verdawala², Karen Fung⁴,
7 Charlene Lancaster^{3,4}, Elliott Somerville², Boris Hinz^{5,6}, Mauricio R. Terebiznik^{3,4}, Roberto J.
8 Botelho^{1,2*}

9
10 ¹Graduate Program in Molecular Science and ²Department of Chemistry and Biology, Toronto
11 Metropolitan University, Toronto, Ontario, Canada

12 ³Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, Ontario,
13 Canada

14 ⁴Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario,
15 Canada

16 ⁵Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto,
17 Toronto, Ontario, Canada.

18 ⁶Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, Toronto,
19 Ontario, Canada Toronto, Ontario, Canada.

20
21 [#]Authors contributed equally to this work

22 *To whom correspondence should be sent to: rbotelho@torontomu.ca

23

24 Running title: Phagocytic appetite exhaustion

25

26 **Keywords:** organelles, phagocytosis, phagocytic limit, phagocytes, membrane depletion,
27 membrane remodelling

28

29 **Abbreviations:** AFM - Atomic Force Microscopy; BSA – Bovine serum albumin; *E. coli* -
30 *Escherichia coli*; DMEM – Dulbecco's Modified Eagle's Medium; FBS – Fetal Bovine Serum;
31 Fc γ R - Fc γ receptor; FLIM - Fluorescence Lifetime Imaging Microscopy; GADPH - Glyceraldehyde-3-
32 Phosphate Dehydrogenase; GFP - Green Fluorescent Protein; IgG - Immunoglobulin G; LAMP1 -
33 Lysosome-Associated Membrane Protein 1; mRFP1 - Monomeric Red Fluorescent Protein 1; PBS –
34 Phosphate-buffered Saline; PFA – paraformaldehyde; RAW cells – RAW 264.7 macrophages;
35 sRBC – sheep red blood cell; VAMP3 - Vesicle-Associated Membrane Protein 3

36 **Abstract**

37 During phagocytosis, a phagocytic cup grows via F-actin remodelling and localized secretion to entrap a
38 particle within a phagosome, which then fuses with endosomes and lysosomes to digest the particle,
39 followed by phagosome resolution. As spatially limited systems, phagocytes have a maximal phagocytic
40 capacity, at which point further uptake must be blunted. However, the processes responsible for
41 phagocytic appetite exhaustion as phagocytes reach their maximal phagocytic capacity are poorly defined.
42 We found that macrophages at their capacity have lower surface levels of Fc γ receptors but
43 overexpression of these receptors did not increase their capacity, suggesting that receptor levels are not
44 limiting. Instead, surface membrane in-folding, membrane tension, and cortical F-actin were all reduced
45 in exhausted macrophages. While this might contribute to appetite suppression, we also found that “free”
46 endosomes and lysosomes were severely depleted in exhausted macrophages. Consequently, focal
47 exocytosis at sites of externally bound particles was blunted. In comparison, macrophages recovered their

48 appetite if phagosome resolution was permitted. We propose that depletion of the endomembrane pools is
49 a major determinant of phagocytic fatigue as macrophages reach their phagocytic capacity.

50 **Summary statement:**

51 Macrophages that reach their maximal phagocytic capacity lose their appetite for further uptake.
52 This appetite exhaustion is driven partly by depletion of endosomes and lysosomes, preventing
53 growth of additional phagocytic cups.

54

55

56 **Introduction**

57 Phagocytic cells recognize and engulf a variety of particulates that include apoptotic and
58 senescent cells, host-derived cell debris, and potentially pathogenic bacteria, fungi, and protists.
59 These particulates are individually entrapped within a phagosome, an organelle that forms *de*
60 *novo* using the plasma membrane. Thus, in multicellular organisms, phagocytosis is necessary to
61 clear infections, for antigen processing and presentation, to remodel tissues during development,
62 and to maintain tissue homeostasis and functions (Arandjelovic and Ravichandran, 2015;
63 Flannagan et al., 2012; Fountain et al., 2021; Lancaster et al., 2019; Yin and Heit, 2021). After
64 formation, phagosomes follow a maturation program by fusing with endosomes and lysosomes
65 and thereby converting into highly degradative and acidic phagolysosomes. Phagosome
66 maturation is controlled by various GTPases and lipid signals that coordinate the spatio-temporal
67 sequence of membrane fusion and fission events (Fairn and Grinstein, 2012; Fountain et al.,
68 2021; Hampton and Dickerhof, 2023; Levin et al., 2016; Nguyen and Yates, 2021). The enclosed
69 particulate is thus digested, and its components recycled. After degradation, phagosomes

70 fragment into vesiculo-tubular compartments that recycle membranes and reform lysosomes –
71 this process is referred to as phagosome resolution (Fountain et al., 2021; Lancaster et al., 2021;
72 Levin et al., 2016; Levin-Konigsberg et al., 2019).

73 At first glance, the primary source of membrane used to form a phagosome is the plasma
74 membrane, which is shaped into a phagocytic cup via F-actin-driven protrusions (Flannagan et
75 al., 2012; Greenberg et al., 1990; Greenberg et al., 1991). Even before binding, plasma
76 membrane extensions probe the cellular environment for and capture potential prey for
77 phagocytosis (Flannagan et al., 2010). However, plasma membrane and actin remodelling do not
78 suffice to form phagocytic pseudopods; exocytosis of endomembranes is required (Masters et al.,
79 2013). For example, recycling endosomes, late endosomes, and Golgi-derived vesicles undergo
80 focal exocytosis at sites of engulfment (Bajno et al., 2000; D'Amico et al., 2021; Hanes et al.,
81 2017; Vashi et al., 2017; Vinet et al., 2008). For larger particles, this also entails secretion of
82 lysosomes (Czibener et al., 2006; Davis et al., 2020; Samie et al., 2013; Sun et al., 2020). Even
83 the endoplasmic reticulum was argued to supply membrane during phagocytosis (Gagnon et al.,
84 2002), though this observation is disputed (Touret et al., 2005). Regardless, the signals that drive
85 localized exocytosis are not well defined but may include increase in membrane tension, actin
86 depolymerization, phosphoinositide signaling, and/or calcium signaling (Bajno et al., 2000;
87 Braun et al., 2004; Czibener et al., 2006; D'Amico et al., 2021; Masters et al., 2013; Samie et al.,
88 2013; Sun et al., 2020). Overall, the incorporation of endomembranes onto phagocytic cups
89 offsets the internalization of plasma membrane during phagocytosis and may even enlarge the
90 phagocyte during phagocytosis (Cannon and Swanson, 1992; Cox et al., 1999; Di et al., 2003;
91 Holevinsky and Nelson, 1998). Taken together, phagocytes seem to consume plasma membrane
92 and/or endomembranes to engulf and internalize particles by phagocytosis.

93 As spatially limited systems, macrophages must have a maximal phagocytic capacity
94 (heretofore, *phagocytic capacity*), at which point their phagocytic appetite must become
95 exhausted (heretofore, *phagocytic exhaustion or fatigue*). While the mechanisms of phagocytic
96 exhaustion are poorly defined, Zent and Elliott provided an elegant road map to understand
97 possible mechanisms driving phagocytic exhaustion of phagocytes at their phagocytic capacity;
98 this included negative signaling, spatial hindrance, and availability of membrane reservoirs (Zent
99 and Elliott, 2017). However, their relative role in dictating phagocytic exhaustion may depend on
100 phagocyte, particle properties, and phagocytic signaling, and more. For example, membrane
101 availability was proposed to determine the maximum size of a particle that could be engulfed by
102 a macrophage (Cannon and Swanson, 1992) and that a membrane pool participates in
103 phagocytosis (Cannon and Swanson, 1992; Petty et al., 1981). In fact, we previously reported
104 that lysosome number is reduced after phagocytosis of microbeads and filamentous *Legionella*,
105 though we did not explore the fate of endosomes (Lancaster et al., 2021). In comparison, Fc γ
106 receptor (Fc γ R) levels were reduced in macrophages after extensive phagocytosis of tumour cells
107 opsonized with anti-CD20 antibodies (Pinney et al., 2020), suggesting that decreased receptor
108 levels may drive phagocytic exhaustion. Collectively, multiple mechanisms may regulate
109 phagocytic exhaustion in a manner dependent on phagocytic cell, receptor, and target type.

110 In this study, we investigated how macrophages exhaust their phagocytic appetite, chiefly
111 using IgG-coated 3 μ m beads and RAW macrophages. Under the observed conditions, surface
112 Fc γ R levels drop in exhausted macrophages, but their overexpression does not increase
113 phagocytic capacity suggesting that receptor levels are not a bottleneck. Moreover, cytoplasmic
114 crowding with phagosomes did not increase mechanical tension in macrophages at their maximal
115 phagocytic capacity; in fact, the plasma membrane appeared less tense and there was a reduction

116 in cortical F-actin. Interestingly, fatigued macrophages were devoid of plasma membrane
117 infolding and depleted of “free” endosomes and lysosomes, suggesting that a loss of membrane
118 reservoirs dictated phagocytic exhaustion in this context. Consistent with this, macrophages
119 recovered their phagocytic appetite upon phagosome resolution to recycle membranes.
120

121 **Results**

122 *Macrophages exhaust their phagocytic appetite*

123 Macrophages are spatially limited systems and must have a maximal phagocytic capacity at
124 which point macrophages should stop engulfing additional particles, i.e., their phagocytic
125 appetite is exhausted. Nonetheless, the mechanisms that enable macrophages to sense their
126 phagocytic capacity and accordingly curb their appetite are mostly uncharacterized (Cannon and
127 Swanson, 1992; Zent and Elliott, 2017). It is also not known if and how macrophages recover
128 their appetite after they reach their phagocytic capacity, which likely depends on particle
129 digestion.

130 To determine their phagocytic limit, we fed RAW264.7 (RAW) macrophages with excess
131 amounts of non-digestible IgG-opsonized 3 μ m beads over 4 h. After 120 min of phagocytosis,
132 the phagocytic capacity plateaued indicating that macrophages reached their phagocytic limit at
133 this point and could not engulf additional particles (Fig. 1A, B). We note that the absolute
134 number of phagosomes in RAW macrophages at capacity can vary between experiments and
135 may reflect differences in cell passage, serum lot, or IgG lot. To further ascertain this phagocytic
136 appetite exhaustion, we employed two waves of phagocytosis using different particles. In the
137 first round of phagocytosis, macrophages were kept unfed or presented with 3 μ m IgG-coated

138 beads or mRFP1-expressing *E. coli* for 2 h to approach their phagocytic capacity limit.
139 Macrophages were then challenged with a second phagocytic feeding with GFP-expressing *E.*
140 *coli* for 1 h (Fig. 1C). We observed that naïve macrophages engulfed ~12 GFP-*E. coli* per
141 macrophage (Fig. 1D, E). By contrast, macrophages that previously internalized IgG-beads or
142 mRFP1-*E. coli* to near capacity (first feeding) consumed significantly fewer GFP-*E. coli* on the
143 second feeding (Fig. 1D, 1E). This also indicates that phagocytic exhaustion occurs within 3 h of
144 uptake whether macrophages engulf digestible or indigestible particles. Thus, based on the
145 current experimental model, macrophages exhaust their phagocytic appetite after 2-3 h of
146 feeding. This phagocytic exhaustion was not due to macrophage damage or metabolic fatigue
147 since control and exhausted macrophages were indistinguishable when stained with Sytox Deep
148 Red, a vital indicator that labels cells if the membrane is damaged, or with Mitotracker red and
149 green, which respectively report on mitochondria membrane potential and mitochondrial number
150 (Sup. Fig. S1).

151
152 *Total and surface levels of Fc γ receptors remain unaltered in exhausted macrophages*
153 Various processes may drive macrophage phagocytic exhaustion, including depletion of
154 phagocytic receptors, which was observed during antibody-dependent phagocytosis of tumour
155 cells (Pinney et al., 2020). Since Fc γ RIIA (CD16A) and Fc γ RI (CD64) are thought to be the
156 main phagocytic receptors for IgG-coated particles in RAW macrophages (Hayes et al., 2016;
157 Willcocks et al., 2009), we measured their surface levels after phagocytosis of IgG-beads over 2
158 h. First, we observed a gradual decrease in anti-CD16A antibody fluorescence by microscopy
159 (Fig. 2A-B) and by flow cytometry (Fig. 2C, Sup. Fig. S2A), despite the total levels remaining
160 the same (Fig. 2E-G). We also observed a decrease in anti-CD64 fluorescence by flow cytometry

161 (Fig. 2C, Sup. Fig. S2B; we avoided microscopy of CD64 because indirect immunofluorescence
162 caused CD64 clustering). Yet, macrophages at capacity were often decorated by externally
163 bound beads (Fig. 2A, insets; Fig. 2H), which might sterically block anti-CD16A and anti-CD64
164 antibodies from accessing respective surface receptors.

165 To allay this concern, we fed RAW cells IgG-coated sheep red blood cells (sRBCs);
166 externally bound sRBCs can be lysed by hypoosmotic shock to form membrane ghosts that we
167 reasoned would permit antibody-receptor binding. Using flow cytometry, we still observed a
168 reduction in surface levels of CD16A and CD64 in macrophages that engulfed IgG-sRBCs to
169 capacity (Fig. 2D, Sup. Fig. S2C, S2D).

170 These observations imply that surface Fc γ R levels may be limiting and drive phagocytic
171 exhaustion as macrophages approach their phagocytic capacity. If so, over-expression Fc γ
172 receptors should increase the phagocytic capacity of macrophages. Nonetheless, over-expression
173 of Fc γ RIIA-GFP in RAW cells did not enhance their phagocytic load after 2 h of particle uptake
174 (Fig. 2H, I). Collectively, while surface Fc γ R levels may be lower in exhausted macrophages,
175 this does not seem to be a limiting factor that authorises phagocytic exhaustion as macrophages
176 approach their capacity, suggesting that other processes are at play.

177

178 *Cell volume and surface area of exhausted macrophages are not reduced*

179 Prior reports indicate that post-phagocytosis, macrophages lose their plasma membrane
180 infolding, and either retain or enlarge their cellular volume and surface area (Cannon and
181 Swanson, 1992; Petty et al., 1981). However, these studies may not have considered
182 macrophages at their maximal phagocytic load. Conceivably, a macrophage that embraces as
183 many particles as possible may suffer a reduction in surface area and/or volume as they consume

184 membrane to form phagosomes. In turn, such a reduction in cell size could then curb phagocytic
185 appetite due to physical constraints. We thus assessed membrane infolding and cell surface area
186 and volume in exhausted macrophages.

187 The macrophage membrane surface is enriched in membrane infolds, filopodia,
188 lamellipodia, and other extensions (Araki et al., 1996; Condon et al., 2018; Petty et al., 1981). To
189 resolve the extent of membrane infolding of the plasma membrane in resting and exhausted
190 macrophages, we turned to scanning electron microscopy. Indeed, resting macrophages were
191 remarkably enriched in membrane folds, sheets, and various forms of extensions (Fig. 3A, B). In
192 comparison, macrophages that engulfed 3- μ m beads for 15 min retained a complex, convoluted
193 membrane morphology with some beads appearing to “bulge out” from within (Fig. 3A).
194 However, macrophages at capacity displayed a striking “raspberry” morphology, with
195 internalized beads appearing to distend the macrophage surface, while the surface was divested
196 of membrane folds, being mostly smooth or “bald” (Fig. 3A, B, and D). This implies that
197 exhausted macrophages have depleted all their surface “give” to accommodate as many particles
198 as possible, an observation congruent with (Petty et al., 1981).

199 We then tested whether this corresponded to a decrease in cell volume and/or surface area
200 by decorating the plasma membrane with GFP-CAAX (Madugula and Lu, 2016). Using imaging
201 volumetrics of GFP-CAAX-expressing RAW macrophages, we observed that macrophages that
202 engulfed IgG-beads to capacity did not change their cell volume and surface area relative to
203 resting macrophages (Fig. 3E-G), but those that entrapped conidia increased their surface area
204 (Fig. 3H, I) and tended to become larger (Fig. 3J). This disparity between IgG-beads and yeast
205 conidia uptake may reflect biological differences or may be due to bead-induced light refraction.

206 Regardless, both models indicate that macrophages reach phagocytic capacity without sacrificing
207 their cellular volume and gross surface area.

208

209 *The plasma membrane of exhausted macrophages is not under increased tension and is divested*
210 *of cortical F-actin*

211 The loss of plasma membrane folds and “raspberry” morphology of exhausted macrophages
212 could indicate that the plasma membrane is under higher turgor pressure due to phagosome
213 crowding of the cytoplasm, which in turn, could thwart remodelling of the plasma membrane to
214 engulf additional particles. To appraise the plasma membrane tension, we used fluorescence
215 lifetime imaging microscopy (FLIM) of the Flipper[®] membrane probe which is sensitive to lipid
216 crowding, an indicator of tension and/or lipid composition (Chen et al., 2023). After the
217 respective treatment, macrophages were labelled with Flipper[®] and imaged live. Interestingly,
218 macrophages at capacity exhibited reduced lifetime of FLIPPER[®], which indicates lower lipid
219 crowding and potentially lower tension (Fig. 4A, B). By comparison, the lifetime of FLIPPER[®]
220 was higher on macrophages exposed to a hypotonic shock, indicating higher membrane tension
221 (Fig. 4A, B).

222 Given that lipid crowding is impacted by both membrane tension and lipid composition,
223 we next employed Atomic Force Microscopy (AFM) to better understand these observations.
224 Using Quantitative Imaging (QI), we could generate force-based images as shown in Fig. 4C,
225 which displayed areas of low tension (typically, plasma membrane over the nucleus) and regions
226 that were over 50 kPa (mapped onto beads and phagosomes protruding onto the plasma
227 membrane). While the AFM probe is fine enough to evade areas of the plasma membrane with
228 beads and protruding phagosomes, we opted to separately measure the tension of the plasma

229 membrane atop the nucleus and of the plasma membrane over other regions since the former was
230 mostly devoid of beads, while the latter may still be affected by proximal phagosomes and beads
231 (*i.e.*, the raspberry morphology in Fig. 3).

232 Interestingly, while we did not observe a significant change in the average Young's
233 Elastic Modulus over cytosolic regions relative to resting cells (Fig. 4D), there was a significant
234 drop in membrane tension over the nucleus in macrophages at phagocytic capacity relative to
235 resting cells (Fig. 4E). Together with the Flipper® data, we interpret these observations to mean
236 that the surface of exhausted macrophages is not under increased tension; if anything, tension is
237 reduced. Consistent with this notion, phalloidin fluorescence was abated in exhausted
238 macrophages relative to resting macrophages or those with only a few phagosomes (Fig. 4F; also
239 see Fig. 6). In comparison, macrophages treated with jasplakinolide to stabilize the actin cortex
240 displayed higher surface tension over the cytosolic and nuclear regions relative to resting cells
241 (Fig. 4D, E). Overall, we suggest that cytoplasmic crowding does not cause tension to prevent
242 further phagocytosis in macrophages at capacity.

243

244 *Free endosome and lysosome populations are depleted in exhausted macrophages*

245 Our evidence so far suggests that phagocytic appetite exhaustion in macrophages at capacity is
246 not likely due to cell shrinkage or cytoplasmic crowding leading to membrane distention. Given
247 that nascent phagosomes are born through local secretion of endosomes and lysosomes at the
248 nascent phagocytic cups (Bajno et al., 2000; Czibener et al., 2006; Lee et al., 2007; Samie et al.,
249 2013; Sun et al., 2020), we next postulated if depletion of membrane reservoirs could curb
250 appetite in macrophages at their phagocytic capacity. To test this hypothesis, we first quantified

251 free lysosomes and endosomes in naïve and exhausted macrophages by fluorescence microscopy,
252 electron microscopy, and membrane fractionation.

253 We previously showed by fluorescence imaging that “free” lysosomes were consumed
254 during phagosome maturation (Lancaster et al., 2021). We corroborate these observations here
255 via two approaches. First, we again estimated and observed that the number of LAMP1-labelled
256 puncta, which we define here as “free lysosomes”, declined in macrophages that engulfed long
257 filamentous *Legionella* (PFA-fixed) bacteria relative to resting cells (Fig. 5A, B). Secondly, to
258 distinctly assess the loss of “free” lysosomes in exhausted macrophages, we separated
259 phagosomes containing magnetic beads from the residual membrane pool after cell lysis and
260 quantified the relative LAMP1 signal to GADPH signal. As expected, LAMP1 was enriched in
261 the phagosomal fraction, while the mock phagocytosis sample had no LAMP1 (Fig. 5C-E).
262 Notably, we observed a significant loss of LAMP1 to GADPH in macrophages exhausted for
263 phagocytosis versus naïve macrophages (Fig. 5C-E), demonstrating that macrophages at
264 maximal phagocytic capacity are drained in their complement of “free” lysosomes.

265 We then evaluated whether exhausted macrophages were also depleted for
266 early/recycling endosomes by probing for VAMP3, a membrane intrinsic SNARE protein (Bajno
267 et al., 2000; Vinet et al., 2008). While phagosomes are expected to become lysosome-like during
268 maturation, and hence use up lysosomes, the early endosome-stage of phagosome maturation is
269 transient (Fountain et al., 2021; Vieira et al., 2003). Thus, *a priori*, one may anticipate that
270 macrophages reform and maintain a free endosome population even after phagocytic exhaustion.
271 Nevertheless, our data suggest that this is not the case. First, we observed a loss of free VAMP3-
272 labelled puncta by fluorescence microscopy in macrophages that engulfed IgG-coated beads to
273 capacity (Fig. 5F, G) or after engulfing long filamentous *Legionella* (Supplemental Fig. S3A,

274 qualitative analysis). Second, we revealed a large depletion of VAMP3 from the residual
275 membrane fraction relative to GAPDH in exhausted macrophages compared to naïve
276 macrophages. Instead, VAMP3 was mostly associated with the phagosomal fraction (Fig. 5H-J).
277 Consistent with depletion of endosomes and lysosomes in exhausted macrophages, we observed
278 a decline in endosome/lysosome-like organelles in macrophages that extensively engulfed yeast
279 conidia by transmission electron microscopy (Supplemental Fig. S3B, C). We also observed
280 depletion of “free” LAMP1 and VAMP3 in bone-marrow derived macrophages that engulfed
281 IgG-coated magnetic beads, showing that this is not specific to RAW macrophages
282 (Supplemental Fig. S3D-H). Since both lysosomes (LAMP1) and endosomes (VAMP3) were
283 depleted in exhausted macrophages, we tested if some phagosomes displayed a hybrid
284 endosome-lysosome maturation state by microscopy. However, as illustrated in Fig. 5K-L,
285 phagosomes did not exhibit increased co-localization of VAMP3 and LAMP1 in exhausted
286 macrophages vs. macrophages with a few phagosomes. This implies that phagosomes face a
287 maturation “traffic jam” in exhausted macrophages and that phagolysosomes must be resolved
288 for younger phagosomes to continue maturing.

289

290 *Exhausted macrophages cannot secrete endosomes to grow phagocytic cups*

291 We next postulated that exhausted macrophages would not secrete endosomes onto forming cups
292 due to endosome depletion, resulting in shallow phagocytic cups. Indeed, while naïve
293 macrophages readily accumulated VAMP3 on nascent phagocytic cups, exhausted macrophages
294 with externally bound particles were devoid of VAMP3 despite similar levels of total VAMP3-
295 mCherry between resting and exhausted macrophages (Fig. 6A-C). F-actin staining under these
296 externally bound particles was also feeble (Fig. 6A), and in fact, we observed reduced total F-

297 actin staining in exhausted macrophages (Fig. 6D), consistent with observations depicted in Fig.
298 4F. Moreover, relative to the resting counterparts, we also observed a dampening of total F-actin
299 staining in bone-marrow derived macrophages after engulfing IgG-coated beads or IgG-sRBCs
300 to capacity irrespective of biological sex of the mice (Sup. Fig. S4). Overall, our data indicate
301 that macrophages at their phagocytic limit are depleted of free endosomes and lysosomes,
302 entrapping these membranes as phagosomes. Without this membrane reservoir, we propose that
303 macrophages are unable to grow phagocytic cups and engulf additional particles, triggering
304 phagocytic exhaustion.

305

306 *Phagosome resolution recovers the macrophage phagocytic appetite*

307 Our observations suggests that deprivation of membrane reservoirs like endosomes and
308 lysosomes, which are needed for complete nascent phagosomes, drives phagocytic appetite
309 exhaustion of macrophages at capacity. We thus anticipated that phagosome resolution would
310 recover phagocytic appetite by reforming membrane reservoirs. To evaluate this, we again
311 employed two rounds of phagocytosis whereby macrophages either remained naïve, or were fed
312 digestible mRFP1-*E. coli*, or consumed indigestible IgG-coated beads that are incapable of
313 phagosome resolution. These macrophage populations were then chased for 0 h (no resolution)
314 or for 6 h to attempt phagosome resolution (Fig. 7A shows schematic). Macrophages engulfed a
315 high number of mRFP1-*E. coli* (Fig. 7B, C) and beads (Fig. 7B, D) during the first feeding. After
316 6 h chase, most mRPF1-*E. coli* phagosomes were digested (Fig. 7B, C), while macrophages
317 retained a similar number of beads, being non-digestible, after the first hour of engulfment or
318 after 6 h chase (Fig. 7B, D). After the specific chase time, macrophages were then served GFP-
319 *E. coli* for 1 h as a second feeding to measure their remaining appetite. We disclose the absolute

320 number (Fig. 7E) and normalized number of engulfed GFP-*E. coli* relative to mock phagocytosis
321 (Fig. 7F) to account for experimental variability and because the absolute number of phagosomes
322 in a macrophage at capacity can vary. As illustrated before, macrophages that previously
323 phagocytosed mRFP1-*E. coli* or beads and were allotted no chase period before the second
324 feeding (0 h), had diminished phagocytosis of GFP-*E. coli* relative to macrophages that were
325 kept naïve (Fig. 7B, E, F). In comparison, cells that were allocated 6 h to resolve mRFP1-*E. coli*
326 phagosomes recovered their appetite for GFP-*E. coli* and may even engulf more than naïve
327 macrophages (Fig. 7B, E, F). By contrast, macrophages that first engulfed beads displayed
328 similarly low levels of GFP-*E. coli* phagosomes whether they were given 0 h or 6 h to recover,
329 denoting that phagosome resolution is necessary for macrophages to recuperate their phagocytic
330 appetite (Fig. 7B, E, F). Moreover, the digestibility of and the rate of particle digestion may
331 affect the overall kinetics and dynamics of phagocytic exhaustion and recovery once phagosome
332 resolution ensues.

333 To further test if phagosome resolution is a prerequisite for macrophages to recover their
334 phagocytic appetite, we performed the two-phagocytic feeding assay in macrophages exposed to
335 ikarugamycin starting at 2 h after the first phagocytic feeding; ikarugamycin is a clathrin
336 inhibitor that arrests phagosome resolution (Lancaster et al., 2021). We note that the final
337 readout of this experiment (the number of GFP-*E. coli*) likely varies due to the compounding
338 heterogeneity caused by differences in the first phagocytic feeding, rates in phagosome
339 resolution and recycling, and the effect of clathrin inhibition of biosynthetic pathways (Duncan,
340 2022). We mitigated this by using two different time points for resolution (4 and 6 h) and
341 normalizing data. As before, we observed that macrophages that were fed consecutive rounds of
342 phagocytosis (no time for resolution) displayed reduced uptake of GFP-*E. coli* (Fig. 8A, B; first

343 two columns). In comparison, those macrophages that were given 6 h to resolve phagosomes
344 from the prior engulfment, recovered their phagocytic appetite (Fig. 8A, B, column 2 vs. column
345 8). Treatment of ikarugamycin alone for 4 or 6 h did reduce uptake (Fig. 8A, B, column 1 vs.
346 columns 5 and 9). However, we note that the combined effect of prior phagocytosis and 4 h of
347 ikarugamycin was significantly more inhibitory than 4 h of ikarugamycin alone (column 5 vs. 6)
348 and recovery of phagocytosis after 6 h of chase was blunted if cells were exposed to
349 ikarugamycin (columns 8 vs 10; columns 4 vs 6 at 4 h, trended but did not reach statistical
350 significance with $p \sim 0.1$). These observations suggest that phagosome resolution helps
351 macrophages recover their phagocytic appetite after phagocytic exhaustion. Since resolution
352 reforms lysosomes (Lancaster et al., 2021), we attribute this to recovery of membrane reservoirs.
353

354 *Evidence for multiple processes imparting phagocytic appetite exhaustion*

355 Our work mostly focused on using IgG-opsonized 3 μm beads or using *E. coli*. However, the
356 types of particles and engaged phagocytic receptor may lead to deviations from our observations
357 described above. In fact, below is evidence that phagocytic appetite exhaustion and recovery is
358 complex and subject to multiple mechanisms. To illustrate, if phagocytic exhaustion depended
359 solely on macrophages running out of membrane reservoirs, then one would expect that
360 macrophages would engulf the same total amount of membrane surface area of
361 particles/phagosomes. To test this, we fed IgG-opsonized 1.1, 3, or 6.1 μm diameter-beads to
362 macrophages until they reached capacity. Cells were then labelled with a cytosolic dye to better
363 define the phagosomes within cells by exclusion of the dye (Sup. Fig. S5A). We then estimated
364 the number of particles engulfed, which not surprisingly was greater for smaller particles than
365 larger ones (Sup. Fig S5B). However, when we calculated the total surface area and volume of

366 all these phagosomes, we observed a massive difference between 1.1 and 6.1 μm beads.
367 Macrophages that engulfed 6.1 μm beads could ingest ~500-1000x more surface area and
368 volume than macrophages that engulfed 1.1 μm beads (Sup. Fig S5C, D). Additionally, cells
369 that engulfed 6.1 μm beads appeared to enlarge in their volume as indicated by orthogonal views
370 of macrophages (Sup. Fig. S5A); while we refrain from ascribing actual values due to light
371 refraction by these large particles, these observations suggest that particle properties may impact
372 macrophage volume at capacity as described in Fig. 3. More intriguingly, this implies that
373 macrophages that engulfed 1.1 μm beads had more space and area available to them, but instead
374 they stopped engulfing these smaller beads before reaching that limit. Collectively, we submit
375 that other mechanisms exist that determine the phagocytic exhaustion other than depletion of
376 endomembranes and that their relative contribution may depend on particle properties such as
377 size.

378

379 **Discussion**

380 Over the years, we have learned many details about the processes required for phagocytosis and
381 phagosome maturation (Fountain et al., 2021; Freeman and Grinstein, 2014; Lancaster et al.,
382 2019; Richards and Endres, 2017). Surprisingly though, and while it is obvious that macrophages
383 must have a phagocytic capacity limit, there is a remarkable dearth of knowledge on the
384 mechanisms encoding this limit, an issue previously highlighted by Zent and Elliott (Zent and
385 Elliott, 2017). Like these authors, we posited that such mechanisms could include phagocytic
386 receptor depletion, negative feedback signaling, membrane depletion, and/or physical crowding
387 caused by the presence of many phagosomes. These mechanisms are non-mutually exclusive,
388 and their individual level of contribution may vary with the type of phagocytosis, phagocyte, and

389 target particle. Our data evince that membrane reservoir depletion is a major limiting factor of
390 phagocytic appetite in macrophages at capacity during Fc γ R-mediated phagocytosis using 3 μ m
391 beads.

392

393 *Surface levels of Fc γ receptors drop in exhausted macrophages, but does not appear to cause*
394 *phagocytic exhaustion*

395 Phagocytic receptors that engage ligands on target particles are entrapped within the phagosome
396 (Booth et al., 2002; Lin et al., 2016); this should lead to a reduction in receptor levels at the
397 surface as they are consumed with each nascent phagosome. In fact, Pinney *et al.* demonstrated
398 that Fc γ R levels dropped during antibody-dependent cell phagocytosis of tumour cells, leading to
399 “hypophagia”, *i.e.*, phagocytic exhaustion (Pinney et al., 2020). We also observed a significant
400 decline in surface levels of CD16A and CD64 using microscopy and flow cytometry in
401 macrophages fed IgG-coated 3 μ m beads to capacity. While we were concerned that externally
402 bound particles occluded access of staining antibodies to surface receptors, we still observed a
403 reduction in surface receptor staining in cells fed IgG-coated sRBCs even when the external
404 sRBCs were lysed into “loose” membrane ghosts, we do not think this is due to occlusion of
405 antibody binding to receptors. Despite these observations, we argue that Fc γ receptors levels do
406 not limit appetite as macrophages approach their capacity. If this was the case, macrophages
407 overexpressing Fc γ RIIa should have increased their phagocytic capacity, but they did not. Thus,
408 while surface levels of Fc γ receptors ostensibly drop in exhausted macrophages, we think this is
409 not a limiting factor for at least this phagocytic model. Additionally, receptor properties such as
410 receptor clustering, dynamics, and signaling capability may be different between resting and

411 exhausted macrophages (Freeman et al., 2018; Kern et al., 2021; Lin et al., 2016; Zhang et al.,
412 2010); this should be explored in future work.

413

414 *Exhausted macrophages do not shrink in their cell size but lose surface membrane folds*

415 Focal exocytosis of endosomes and lysosomes is proposed to help form phagocytic cups and
416 replace the plasma membrane consumed during phagocytosis, thus preventing the dwindling of
417 phagocyte size and surface area (Bajno et al., 2000; Lee et al., 2007; Samie et al., 2013).

418 However, to the best of our knowledge, it was not known if macrophages that engulfed to their
419 full capacity would maintain their size or shrink as they consumed to their maximal capacity. We
420 found that macrophages at capacity do not shrink – instead macrophages either retain their size,
421 as estimated when engulfing beads $< 3.1 \mu\text{m}$ in diameter, or increase their cell size when
422 macrophages engulf to capacity $6.1 \mu\text{m}$ beads or yeast conidia (Fig. 3 and Sup. Fig. S5).
423 Nevertheless, we perceived the surface membrane topology of exhausted macrophages to be
424 distinct from resting macrophages, lacking most membrane folds and extensions, which is
425 consistent with past observations using guinea pig macrophages (Petty et al., 1981). Thus, we
426 surmise that surface folds are consumed to accommodate phagosomes to capacity, but cells stop
427 short of reducing their size. Consistent with this, G β 4-deleted phagocytes had extensive
428 membrane ruffles compared to wild-type cells, which boosted their plasma membrane surface
429 area and their total phagocytic capacity (Winer et al., 2024).

430 Interestingly, when using $3 \mu\text{m}$ beads for phagocytosis, “full” macrophages displayed a
431 raspberry-like morphology because the packed phagosomes bulged out. We initially postulated
432 that this meant that the membrane was under tension, collapsing membrane folds like a “tense
433 balloon”. However, neither the membrane tension probe, FLIPPER®, nor AFM measurements

434 supported this notion. Instead, surface tension may be abated, driven partly by a drop in cortical
435 actin in exhausted macrophages. Such a phenomenon would not only collapse the surface
436 membrane folds but would also cause the plasma membrane to contour the underlying
437 phagosomes like a wet blanket, while only forming shallow phagocytic cups on remaining
438 externally bound particles. It will be interesting to understand the signals that disturb the cortical
439 actin, which may intersect with Rho-family GTPases and phosphoinositide signaling (Araki et
440 al., 1996; Botelho et al., 2000; Caron and Hall, 1998; Marshall et al., 2001).

441

442 *Membrane reservoir depletion is a key determinant of phagocytic exhaustion*

443 Phagocytosis is aided by local exocytosis of endosomes and lysosomes, depending on the size of
444 the particle (Bajno et al., 2000; Lee et al., 2007; Samie et al., 2013; Vinet et al., 2008).
445 Nevertheless, it was not known if macrophage exhaustion occurred before depletion of these
446 membrane reservoirs. We show here that macrophages at capacity suffer a large loss of “free”
447 lysosomes, which we previously observed (Lancaster et al., 2021). This was not surprising given
448 that phagolysosomes are the end stage of maturation, prior to resolution. Notwithstanding this,
449 early phagosome maturation is thought to be transient and thus, one would anticipate that
450 endosomes reform even as macrophages reach capacity; thus *a priori*, endosomes should not be
451 depleted in these macrophages. However, imaging and biochemical data show that a VAMP3-
452 labelled pool of endosomes is significantly tied up as phagosomes in exhausted macrophages.
453 This suggests that a major determinant of phagosome exhaustion is the depletion of internal
454 membrane pools and impaired exocytic delivery of membranes to form phagocytic cups. To
455 support this, phagosome resolution, which reforms lysosomes, was a prerequisite to recover

456 phagocytic appetite. Feeding indigestible beads or blocking phagosome resolution of digestible
457 cargo prevented macrophages from recovering their appetite.

458 Overall, we propose that depletion of endo-lysosomal membrane reservoirs is a major
459 determinant of phagocytic exhaustion. Of course, this process may not universally apply to all
460 forms of phagocytosis as suggested by a distinct total phagosomal volume and membrane area
461 occupied by macrophages that ingested 6 μ m, 3 μ m, or 1 μ m beads. For example, it is possible
462 that other sources of membrane like the Golgi apparatus and/or the endoplasmic reticulum
463 contribute to the maximal uptake of larger particles. Moreover, it is likely that additional,
464 concurrent mechanisms are at play such as a collapse of the actin cortex, possibly by negative
465 feedback signaling, and/or metabolic changes that could pause phagocytic appetite until particles
466 are digested. Future work will be required to understand the cortical actin collapse and whether
467 receptor dynamics and signaling play a major role in phagocytic exhaustion and recovery.

468

469 *Physiological processes that may lead to phagocytic capacity and appetite exhaustion.*

470 In our study, we challenged macrophages to continuously engulf particulates for 2-3 hours
471 leading to phagocytic exhaustion. A key question is whether there are analogous physiological
472 challenges that could lead to phagocytic exhaustion *in vivo*. To the best of our knowledge this
473 has not been deliberately investigated, but we anticipate that physiological challenges that could
474 lead to phagocytic exhaustion include localized bacterial infections, biofilms, incessant clearance
475 of senescent erythrocytes in the spleen by red pulp macrophages, tissue damage causing high
476 apoptotic load, and antibody-dependent cell-mediated cytotoxicity used to treat tumours. In fact,
477 Grandjean *et al.* observed macrophages eating multiple tumours cells after anti-CD20 injection
478 and Kwiencinski *et al.* saw dense *S. aureus* bacterial communities during skin infections that

479 may lead to phagocyte exhaustion (Grandjean et al., 2021; Kwiecinski et al., 2021). Additionally,
480 Kupffer macrophages exhibit phagocytic exhaustion (hypophagia) after engulfing B cells
481 decorated with anti-CD20 antibodies *in vivo*, though it is unclear if these cells had achieved
482 phagocytic maximal load (Pinney et al., 2020). Thus, whether phagocytes engulf to their
483 maximal theoretical capacity or manage to avoid this *in vivo* is a separate and interesting
484 question to study. For example, phagosomes containing degradable particles will undergo
485 resolution and flux fast enough to avoid attaining their theoretical maximal phagocytic capacity.
486 Thus, there is a need to explore phagocytic capacity limits and appetite exhaustion in *in vivo* with
487 methods like intravital imaging.

488

489

490 **Methods and Materials**

491 *Cell line culture and transfection*

492 RAW 264.7 murine macrophages (ATCC TIB-71; American Type Culture Collection, Manassas,
493 VA) were cultured at 37°C and 5% CO₂ in DMEM supplemented with 10% heat-inactivated
494 FBS (Wisent Inc., Saint-Jean-Baptiste, QC) and tested for *Mycoplasma* routinely. RAW cells
495 were passaged every 2-3 days by mechanically scraping the monolayer to dislodge the cells,
496 followed by pipetting up and down to break up clumps. RAW cells were discarded after 20
497 passages. Prior to experimentation, cells were seeded at 30% seeding density on methanol-
498 sterilized coverslips. RAW cells stably expressing Dectin-1 were used for phagocytosis of yeast.
499 These cells were kindly provided by Dr. Nicolas Touret (University of Alberta) and were
500 previously described (Lipinski et al., 2013). RAW^{Dectin1} cells were grown to full confluence in

501 Permanox dishes (Nalge Nunc International Rochester, NY) that were previously coated for 1 h
502 at room temperature with 6 mg/mL human fibronectin diluted in PBS (ThermoFisher Scientific).

503 Transfection of RAW cells with plasmid DNA was done with FuGENE HD (Promega).

504 Briefly, 3 μ L of FuGENE HD was mixed with 1 μ g of plasmid in serum-free DMEM for 15 min
505 at room temperature, for a final concentration of 6% v/v FuGENE HD and 20 μ g/mL of plasmid.

506 The plasmid:FuGENE solution was then diluted with DMEM complete media to a final
507 concentration of 1 μ g/mL of plasmid. RAW macrophages were transfected the day after seeding
508 for 24 h at 37°C and 5% CO₂, after which transfection reagents were removed with a PBS wash
509 and replaced with complete DMEM medium. Macrophages were then incubated at 37°C and 5%

510 CO₂ overnight before beginning phagocytosis assays. The plasmid encoding VAMP3-mCherry
511 was kindly provided by G. van der Bogaart (Radboud University Medical Center, Nijmegen,
512 Netherlands; Addgene #92423) and described (Verboogen et al., 2017). The plasmid encoding
513 EGFP-CAAX was kindly provided by Lei Lu (Nanyang Technological University, Singapore;
514 Addgene # 86056) and described in (Madugula and Lu, 2016). The plasmid expressing Fc γ RIIa-
515 GFP was obtained from the Grinstein lab (Booth et al., 2002).

516

517 *Primary macrophages and ethics statement*

518 Mice were used following institutional ethics requirements under the animal user permit
519 approved by the St. Michael's Hospital Animal Care Committee, which is certified by the
520 Canadian Council of Animal Care and the Ontario Ministry of Agriculture, Food, and Rural
521 Affairs. Briefly, mice were anesthetized with 5% isoflurane administered by inhalation, followed
522 by cervical dislocation before limb bone dissection to obtain bone marrow. No experiments were
523 performed on live animals.

524 Bone marrow-derived macrophages (BMDMs) were harvested from wild-type 7-9-week-
525 old male and female C57BL/6J mice (Charles River Canada, Montreal, QC) as previously
526 described (Hipolito et al., 2019; Weischenfeldt and Porse, 2008). Briefly, bone marrow was
527 isolated from femurs and tibias through perfusion with phosphate-buffered saline (PBS) using a
528 27G syringe. RBCs were lysed using a hypoosmotic treatment. For BMDMs, cells were plated
529 according to experimental requirements in DMEM supplemented with 10% fetal bovine serum,
530 20 ng/ml recombinant mouse macrophage colony-stimulating factor (Gibco, Burlington, ON),
531 and penicillin/streptomycin antibiotics. Media was changed every 2 days. Experiments were
532 conducted on days 7–9.

533

534 *Bacterial and fungal strains and growth*

535 *E. coli* DH5 α was transformed with the pBAD::mRFP1 plasmid, whichS was kindly provided by
536 Robert Campbell, Michael Davidson, and Roger Tsien (University of California at San Diego, La
537 Jolla, CA, USA, Addgene, plasmid # 54667) and described in (Campbell et al., 2002), or with
538 pZsGreen vector (catalog no. 632446; Takara Bio USA, Inc., Ann Arbor, MI). *E. coli* strains
539 were grown overnight at 37°C on Luria-Bertani (LB) agar plates, and colonies were subsequently
540 cultured overnight at 37°C in LB broth under agitation. Agar- and broth media were
541 supplemented with 100 μ g/ml ampicillin (BioShop Canada Inc., Burlington, ON). For *E. coli*
542 expressing ZsGreen, 1% D-glucose (BioShop) was also added to the LB plates and overnight
543 culture broth, but not the subculture broth, to suppress leaky expression of ZsGreen from the lac
544 operon. Otherwise, overnight *E. coli* cultures were sub-cultured at 1:100 dilution and grown at
545 37 °C until mid-log phase. At this point, 5 mM L-arabinose (BioShop) or 1 mM IPTG
546 (Millipore-Sigma, Burlington, ON) were added to respectively induce expression of mRFP1 and

547 ZsGreen expression for 2-3 h. After induction, *E. coli* was washed 3 times in PBS and then
548 immediately used live in phagocytic assays or fixed in 4% paraformaldehyde (PFA; Electron
549 Microscopy Sciences, Hatfield, PA) in PBS and stored for a few weeks.

550 Filamentous targets of *Legionella pneumophila* (*L. pneumophila*) were obtained as
551 previously described (Prashar et al., 2012; Prashar et al., 2013). Briefly, *L. pneumophila* Lp02
552 strain (mRP1-expressing *Legionella*) from glycerol stocks were streaked onto Buffered
553 Charcoal-Yeast Extract (BCYE) agar and grown at 37°C and 5% CO₂. After 72-96 h, colonies
554 were harvested and cultured by triplicate for 24 h at 37°C in Buffered Yeast Extract (BYE)
555 media at 100 rpm. Afterwards, bacteria cultures were diluted to an OD₆₀₀ of 0.05 and cultured for
556 another 16–18 h or until the cultures reached an OD₆₀₀ of 3.5–4.0 (Molofsky et al., 2005).
557 Cultures enriched in long filamentous bacteria (>100 µm) were centrifuged at 1000 xg for 15
558 min, washed twice with 1x PBS, and fixed at room temperature in 15 mL of 4% PFA for 20 min
559 on a rotator. Fixed mRFP-*Legionella* filamentous targets were stored in 4% PFA at 4°C until use.

560 The *Saccharomyces cerevisiae* (yeast) INVSc1 strain was grown as described by the
561 manufacturer (ThermoFisher Scientific). Overnight liquid cultures were harvested by
562 centrifugation at 1000 xg for 10 min, washed twice with PBS, and fixed at room temperature
563 with 4% PFA for 20 min. The fixed targets were stored at 4 °C until use. *Aspergillus fumigatus*
564 (UAMH 2978) was grown on potato dextrose agar incubated at 15°C for 7 days to generate
565 conidia, which were then collected in PBS + 0.05% Tween80, followed by centrifugation at
566 10,000 xg, washed twice with PBS, and fixed at room temperature with 4% PFA for 20 min. The
567 fixed targets were stored at 4 °C until use.

568

569

570 *Phagocytic Particle Preparation*

571 To prepare IgG-opsonized plain polystyrene beads, 1.1, 3, or 6.1 μ m beads (Bangs
572 Laboratories and Sigma-Aldrich) were opsonized with 4 mg/ml of human IgG (I8640 or I4506;
573 Sigma-Aldrich) for 1 h at room temperature. Beads were then washed and resuspended in PBS.
574 For the preparation of IgG-coated sheep red blood cells (sRBCs; Innovative Research, Novi,
575 MI), a stock solution was prepared at 1.92×10^6 sRBCs/ μ L in PBS. We then opsonized 96×10^7
576 sRBCs with 0.4 mg/mL anti-sheep RBCs (FisherScientific) in a total volume of 500 μ L PBS at
577 room temperature in a rotator. After 1 h, IgG-coated sRBC were washed 3 times in PBS (300 xg,
578 2 min), and stored at 4°C in PBS until use. After a week, the remaining opsonized sRBCs were
579 thrown away and a fresh stock solution was prepared.

580 *E. coli* bacteria were grown as above and given to macrophages unopsonized. PFA-fixed
581 mRFP-*Legionella* filaments were washed three times with PBS by centrifugation at 10,000 xg.
582 Then, bacterial filaments were opsonized by resuspending the bacterial pellet in a 4 mg/ml
583 solution of human IgG (Sigma-Aldrich) in PBS and allowing the sample to mix on a rotator
584 overnight at 4 °C. Opsonized *Legionella* were washed three times as described above and
585 resuspended in PBS.

586 For yeast targets, yeast cells were washed 3 times with PBS to remove residual PFA,
587 resuspended in culture media and presented to the macrophages at a ratio of 25:1 target/cell. The
588 cells were incubated at 37 °C for 2 h, after which they were processed for transmission electron
589 microscopy as described below. For the preparation of IgG-opsonized *Aspergillus fumigatus*
590 conidia fixed in 4% PFA, conidia were washed 3 times with PBS to remove residual PFA,
591 resuspended in culture media and presented to the macrophages at a ratio of 100:1 target/cell.

592 The cells were incubated at 37 °C for 2 h, after which they were processed for confocal
593 microscopy imaging.

594 For the preparation of opsonized magnetic beads, 3 µm COMPEL COOH modified
595 magnetic beads (Bangs Laboratories) were first crosslinked to bovine serum album (BSA). The
596 COMPEL beads were washed twice in activation buffer consisting of filter-sterilized 100 mM 4-
597 Morpholineethanesulfonic acid (MES) (Biobasic, Canada), pH 4.5, using a magnet to separate
598 beads out of suspension after each wash. Beads were then prepared as 1% w/v suspension in 100
599 mg/mL of filter sterilized 1-Ethyl-3-(3- α -dimethylaminopropyl)carbodiimide-HCl (EDAC;
600 E2247, Sigma-Aldrich) in activation buffer, and incubated for 15 min while rotating at room
601 temperature. The beads were then washed twice with Coupling buffer (filter sterilized 100 mM
602 MES, pH 7.4) and resuspended to 1% w/v in filter sterilized 2% w/v BSA solution in Coupling
603 buffer and incubated for 2 h while rotated at room temperature. Uncoupled or singly bound
604 EDAC was quenched by washing the beads twice with quenching solution (filter sterilized 100
605 mM MES, pH 7.4, containing 40 mM glycine and 1% w/v Normal goat serum), resuspended to
606 1% w/v in quenching solution, and incubated for 30 min while rotated at room temperature.
607 Beads were then washed twice with storage buffer consisting of PBS containing 1% w/v Normal
608 goat serum. To opsonize the beads with antibodies, the BSA-coupled magnetic beads were
609 suspended to 1% w/v in storage buffer containing 1:100 mouse anti-BSA antibody (Sigma,
610 B2901) and incubated on rotation for 60 min at room temperature. The beads were washed 3
611 times with storage buffer then resuspended to 2% w/v in storage buffer.

612

613 *Phagocytic assays*

614 Phagocytosis was accomplished with the following target to macrophage ratios that dependent on
615 the extent of phagosome completion and exhaustion: 20–400 *E. coli* rods per RAW cell; 10 3.87-
616 μ m beads per cell, and 25–100 1.1, 3.0, or 6.1 μ m beads per RAW cell; and 50 IgG-sRBCs per
617 macrophage. Target attachment was synchronized by spinning cells at 300 \times g for 5 min at 4°C,
618 followed by phagocytosis between 15-min to 3 hours at 37°C. Unbound targets were then
619 washed off with PBS. As required, cells were further incubated at 37°C for indicated times to
620 allow phagosome maturation before processing for microscopy, Western Blotting, or scanning
621 electron microscopy.

622 If live bacteria were presented to macrophages, 200 μ g/mL of gentamicin (Gibco) was
623 applied to the cells for 20 min post-phagocytosis and after washing unbound bacteria. For assays
624 using two rounds of phagocytosis, the procedure for both the first and second rounds of
625 phagocytosis was the same as described above, except the secondary phagocytic challenge was
626 done after the first round of phagocytosis at specified times. The secondary challenge was then
627 followed with no chase or 1-h chase to elicit further maturation before further processing for
628 microscopy or lysate preparation.

629 For the synchronized phagocytosis of mRFP-*Legionella* filamentous targets,
630 macrophages were cooled down to 15 °C for 10 min and subsequently challenged with
631 opsonized bacterial targets at a ratio of 150:1 target/cell. Afterwards, cells were centrifuged at 15
632 °C and 300 xg for 5 min and subsequently incubated for 15 min at 37 °C to favour bacteria
633 binding. Fresh medium was then given to cells and incubated for another 75 min at 37 °C. At the
634 end of the incubation period, cells were fixed with 4% PFA in PBS and further processed for
635 microscopy.

636 For phagocytosis of yeast and *A. fumigatus* conidia, macrophages were cooled down to
637 15 °C for 10 min and subsequently challenged with targets at ratios described in sections above.
638 Afterwards, cells were centrifuged at 15 °C and 300 xg for 5 min. Fresh medium was then given
639 to cells and incubated for 2 hr at 37 °C. At the end of the incubation period, cells were fixed
640 with 4% PFA in PBS and further processed for microscopy.

641

642 *Pharmacological inhibitors*

643 Inhibitors and vehicle controls (typically, dimethyl sulfoxide (BioShop)) were applied after
644 phagocytosis and maintained until fixation or the conclusion of the experiment. For clathrin
645 inhibitors, cells were incubated with 0.5–2.0 µg/ml ikarugamycin (Sigma-Aldrich) 40 min to 2 h
646 after the start of phagocytosis and continued for up to 4 additional hours.

647

648 *Fluorescent cell labelling and immunocytochemistry*

649 For cytoplasm labeling prior to phagocytosis, cells were washed with PBS then incubated with 5
650 µM Carboxy Fluorescein Succinimidyl Ester (CFSE, Invitrogen) in PBS for 15 min at 37°C.
651 CFSE solution was then removed and replaced with complete DMEM medium, incubated for 5
652 min, before removing the media and replacing with fresh complete DMEM.

653 For immunocytochemistry, cells were fixed at the conclusion of the experiment with 4%
654 PFA, followed by 100 mM glycine for 15 min to quench unreacted PFA. To identify
655 extracellular targets after phagocytosis, secondary anti-human IgG antibodies or anti-rabbit IgG
656 antibodies at 1:1000 dilution or rabbit anti-*E. coli* antibodies (Bio-Rad Laboratories) at 1:100
657 dilution in 2% BSA in PBS were applied to fixed, but non-permeabilized cells for 30 min. To

658 stain all particles, cells were then permeabilized with 0.1% Triton-X100 in PBS for 10 min,
659 followed by 30 min blocking with 2% BSA in PBS before antibody incubation.

660 For staining of surface CD16 by indirect immunofluorescence and for microscopy, after
661 fixation and blocking with 5% skim milk, cells were incubated with rabbit anti-CD16a/ CD16b
662 polyclonal antibody (1:1000, cat. # BS-6028R, ThermoFisher Scientific) for 1 h, then washed
663 with PBS and incubated for 1 h with a secondary donkey-anti rabbit antibodies conjugated to
664 DyLight 488nm (Novus Biologicals, Toronto, ON). Cells were then washed three times with
665 PBS and mounted using DAKO fluorescence mounting media (Agilent, Mississauga, ON).

666 For immunolabeling of endogenous LAMP1 proteins, cells were fixed in 4% PFA for
667 15□min at room temperature, permeabilized with methanol at -20°C for 10□min, followed by
668 30□min of blocking with 2.5% BSA diluted in PBS. Afterwards, cells were incubated with a
669 1:100 dilution of rat anti-mouse LAMP1 antibodies (clone 1D4B, Developmental Studies
670 Hybridoma Bank) for 1 h at 37 °C, washed three times with PBS, followed by incubation for
671 1□h at room temperature with 1:1000 fluorescently tagged secondary antibodies, and subjected
672 to another round of washes with PBS. Cells were mounted in Dako fluorescent mounting
673 medium (Agilent Technologies, Inc.).

674

675 *Viability and mitochondrial activity of exhausted macrophages*

676 To assess cell viability, cells were seeded onto an 18 mm glass coverslip and then subjected to
677 phagocytosis (100 targets per cell), mock treatment, or a 2 min treatment with hydrogen peroxide
678 (positive control). Cells were then washed with PBS and incubated with a 10,000x dilution of
679 SytoxTM Deep Red (ThermoFisher) diluted in serum-free DMEM for 15 min at 37°C, followed
680 by 3 washes with PBS, and then imaged live to score the number of Sytox-positive cells over

681 total cells. To determine the activity of mitochondria, control and exhausted macrophages were
682 labelled with 0.4 μ M MitoTracker Red (Thermofisher) and 0.2 μ M MitoTracker Green FM
683 (Thermofisher) in serum-free media for 30 min at 37°C. Cells were then imaged live and
684 analysed by Mander's co-localization. Briefly, we scored the proportion of active mitochondria
685 (MitoTracker Red) within the total mitochondria population (MitoTracker Green) by sampling
686 the Mander's co-localization of red in the green channel.

687

688 *Fluorescence microscopy*

689 Confocal images were acquired by a Quorum Diskover spinning-disk confocal microscope
690 system (Quorum Technologies, Inc.) equipped with an inverted fluorescence microscope (DMI8;
691 Leica) using either an Andor Zyla 4.2-megapixel scientific complementary metal-oxide-
692 semiconductor camera or an Andor iXON 897 EM-CCD camera (Oxford Instruments).
693 Alternatively, a Quorum Wave FX-X1 spinning-disk confocal microscope system (Quorum
694 Technologies, Inc.) was used equipped with an inverted fluorescence microscope (DMI6000B;
695 Leica Microsystems) using either a Hamamatsu ORCA-R2 camera (C10600-10B) or a
696 Hamamatsu ImagEM Enhanced EM charge-coupled device (CCD) camera (Hamamatsu
697 Corporation). Images were acquired using a 63 \times oil immersion objective (1.4 NA) or a 40 \times oil
698 immersion objective (1.3 NA). For live-cell imaging, coverslips were enclosed in a Leiden
699 chamber and immersed in DMEM supplemented with 10% FBS and mounted in a microscope-
700 mounted environmental chamber maintained at 37°C and 5% CO₂.

701

702 *Fluorescence Image Analysis*

703 Image processing and quantitative analysis were performed using Fiji (Schindelin et al., 2012) or
704 Volocity (Quorum). Image enhancements were completed without altering the quantitative
705 relationship between image elements. Figures were prepared with Adobe Illustrator (Adobe,
706 Lehi, UT).

707 For quantification of phagocytic index using beads, non-externally labelled beads were
708 counted and marked manually per macrophage. For *E. coli*, if images were a z-stack, these were
709 first collapsed using maximum intensity method to reconstruct a 2D image. Then phagosomes
710 were counted manually as above OR semi-manually as follows: a mask was first created to
711 remove *external E. coli*, then mRFP1 signal expressed by *E. coli* was thresholded, followed by
712 watershed to separate distinct bacteria. Particle count was then applied for objects over 10 pixel²
713 to exclude noise.

714 To quantify CD16A/B cell surface levels, z-stack images were collapsed using sum of
715 intensities method. Then fluorescence intensity values were acquired for all complete cells in a
716 field of view and normalized to control condition.

717 For the quantification of macrophage surface area and volume, image stacks of
718 macrophages ectopically expressing eGFP-CAAX were reconstructed in Volocity, then
719 processed to fill in holes within the 3D-reconstructed objects to assess total volume of the
720 objects. 3D-reconstructed objects were then thresholded by size, with cells being classified as
721 having a total volume > 100 μm^3 . Cells that were touching one another were separated manually
722 by encircling a cell with an ROI, then clipping the 3D-reconstructed object to within the ROI.

723 For the quantification of the number of free lysosomes in each cell, we used Volocity to
724 separate touching objects in the LAMP1 channel using an object size guide of 0.29 μm^3
725 (determined by assessing endosome and lysosome size in resting macrophages). LAMP1-

726 positive objects were considered free lysosomes if their volume was $>0.02 \mu\text{m}^3$ but $<5 \mu\text{m}^3$ and
727 they were not touching filament-containing phagolysosomes (applied a mask to the filament or
728 beads). For endosomes, phagosome-associated VAMP3-mCherry signal contouring or proximal
729 to beads was manually removed after background correction. Images were then thresholded to
730 create binary images of the samples, and the binary images were processed by object
731 segmentation using Fiji's Watershed function. Events above $0.038 \mu\text{m}^2$ were counted using Fiji's
732 Analyze Particles function. Large objects that were erroneously segmented were corrected by
733 subtracting the number of additional erroneous segments from the total particles detected. The
734 treatments were finally normalized to the no-phagocytosis group, which was considered to
735 contain 100% free lysosomes or endosomes.

736 To quantify VAMP3-mCherry and phalloidin-stained F-actin intensities in whole cell and
737 in nascent phagocytic cups, z-stacks were collapsed using the *sum slices* method to reconstruct a
738 2D image in FIJI. The total intensity for each protein was then extracted per cell. Then, a mask
739 was created using the external beads and applied to the different channels to measure the
740 fluorescence intensity on or proximal to the external beads.

741

742 *Flow cytometry and analysis*

743 To label external CD16 and CD64 in live cells for flow cytometry analysis, 900,000 RAW264.7
744 cells were seeded 18-24 hours before phagocytosis. Following phagocytic uptake with $3 \mu\text{m}$
745 beads or sRBCs, cells were suspended in blocking media consisting of RPMI 1640 Medium
746 (ATCC Modification, Gibco) supplemented with 10% FBS. Cells were blocked for 10 min on ice
747 then centrifuged at 300 xg for 5 min. The cell pellet was resuspended in $100 \mu\text{L}$ blocking media
748 containing anti-mouse CD16 antibodies conjugated to FITC (Cat #158008, BioLegend, CA) and

749 anti-mouse CD64 antibodies conjugated to PE/Cyanine7 (Cat # 139314, BioLegend) at 1:100
750 dilution. Cells were incubated for 30 min on ice in the dark. Propidium iodide (BioShop) was
751 added at 1:3000 dilution immediately before washing. Cells were washed twice by centrifugation
752 at 300 xg for 5 min then resuspending the cell pellet in HBSS (Gibco) supplemented with 2%
753 FBS. Samples were run on a Beckman Coulter CytoFLEX S flow cytometer, and analysis and
754 mean peak values were calculated using the CytExpert Software.

755

756 *Fluorescence Lifetime Imaging Microscopy (FLIM)*

757 To measure the plasma membrane tension, RAW macrophages were seeded in an open μ -slide
758 with a glass bottom (Ibidi, Fitchburg, WI, USA). Cells were challenged or not with IgG-
759 opsonized plain polystyrene beads as described above or treated for 10 min with a hypo-osmotic
760 media (15% phenol-red free DMEM, 85% milliQ water). Cells were then incubated with the
761 Flipper[®] membrane probe (Cytoskeleton, Denver, CO, USA; (Colom et al., 2018)) for 15 min
762 prior to live-cell imaging at 37°C and 5 % CO₂. Cells were maintained at 37°C and 5% CO₂
763 during imaging at the Advanced Optical Microscopy Facility (University Health Network,
764 Toronto, ON, Canada) under a super-resolution microscope Leica DMi8 (Leica TCS SP8 X
765 Scanner) equipped with a PicoHarp 300 TCSPC FLIM module. Cells were excited with a white
766 light laser pulsed at 80 MHz and observed with a 93x HC PL APO CS2 objective (1.3 NA,
767 Glycerol immersion). Leica Application Suite X (LAS X) v3.5.7 software was used for image
768 acquisition and SymPhoTime 64 v2.3 software for FLIM analysis following manufacturer's
769 guidelines for Flipper[®].

770

771 *Atomic Force Microscopy (AFM)*

772 To measure the Young's elastic modulus of the cell, AFM measurements were performed using a
773 JPK NanoWizard 4 AFM system (Bruker, Billerica, MA, USA). Cells were kept at 37°C using
774 the AFM BioCell and in phenol-red free media supplemented with 20 mM HEPES to maintain
775 pH levels at ambient CO₂. Quadratic pyramidal cantilever probes (MLCT-BIO, Bruker) with a
776 spring constant of 0.1 Nm⁻¹ and a resonating frequency of 38 kHz were used to perform
777 indentation force–distance measurements. All tips were calibrated in liquid with contact-based
778 and contact-free methods according to the manufacturer's instructions. Set point (2.4 nN), z-
779 length (2 μm), and extend speed (5 μm s⁻¹) were kept constant. Per each cell and condition,
780 measurements of the nucleus and the cytoplasm near or away from beads were performed, where
781 20 force curves per position were collected. To do this, 20 x 20 μm images were generated by
782 the conversion of probe deflection upon indentation into a z-length (height through quantitative
783 imaging (QI) Mode with the same settings previously described). QI mode is forced-based
784 imaging resulting in high-resolution mapping of samples; each pixel is associated with a force
785 curve. QI imaging permits one to define regions to measure or avoid measuring (e.g. beads for
786 example). Data were processed using JPK Data Processing Software (Bruker, USA) by fitting
787 the resulting force curves using an established Hertz model describing the deformation of two
788 perfectly homogenous surfaces. This is estimated by expressing the normal force F_n of the probe
789 with a radius of R as:
$$F_n = \frac{4}{3} \frac{ER^{1/2}}{(1-\nu^2)} \delta_n^{3/2}$$
 where δ_n is the indentation depth perpendicular to the
790 sample and ν is the Poisson's ratio of the sample (Fujii and Okajima, 2019). Mean values were
791 calculated from all processed measurements (excluding beads) and plotted as mean Young's
792 elastic modulus in kilopascals (kPa).

793

794 *Transmission and Scanning Electron Microscopy*

795 For scanning electron microscopy, samples were fixed in EM fixative (2.5% glutaraldehyde and
796 2.5% formaldehyde in 0.1 M sodium cacodylate buffer, pH 7.3) for at least 2 h. Fixed samples
797 were processed by SickKids Nanoscale Biomedical Imaging Facility (The Hospital for Sick
798 Children, Toronto, ON, Canada): samples were rinsed with 0.1 M sodium cacodylate buffer (0.1
799 M Sodium Cacodylate, pH 7.3, 0.2 M sucrose) and post-fixed with 1% osmium tetroxide for 1.5
800 h. After post-fixation treatment, samples were rinsed again with 0.1 M sodium cacodylate buffer
801 and dehydrated with a series of ethanol solutions of increasing ethanol percentage from 70-
802 100%. Samples were then dried with a CO₂ critical point dryer and coated with a thin layer of
803 gold by sputter coating. Samples were imaged on a Hitachi FlexSEM 1000 II Scanning Electron
804 Microscope (Hitachi High-Tech, Inc.) in secondary electron acquisition mode with electron
805 beam voltage set to 7.0 kV at SickKids Nanoscale Biomedical Imaging Facility (The Hospital for
806 Sick Children).

807 For transmission electron microscopy, samples were fixed in with 2.5% glutaraldehyde
808 and 2% PFA in 0.1 M sodium cacodylate buffer, pH 7.3 for 2 h at room temperature. Fixed
809 samples were processed by SickKids Nanoscale Biomedical Imaging Facility (The Hospital for
810 Sick Children). Briefly, samples were rinsed with 0.1 M sodium cacodylate buffer, post-fixed
811 with 1% osmium tetroxide and 1.25% potassium ferrocyanide in cacodylate buffer for 1.5 h at
812 room temperature. After post-fixation treatment, samples were rinsed again with 0.1 M sodium
813 cacodylate buffer, then rinsed twice with distilled water (dH₂O), and stained for 30 minutes in
814 4% uranyl acetate aqueous solution, followed by two additional dH₂O rinses. Samples were
815 dehydrated with increasing ethanol concentrations from 70-100% and infiltrated with Epon resin
816 (SPI-Pon 812 Embedding Kit, Structure Probe, Inc. West Chester) at 1:3, 1:1 and then 3:1
817 Epon:ethanol ratios for 1.5 h each, in sequence, followed by incubation in 100% Epon for 3 h.

818 For polymerization, the Permanox dishes were filled with 3 mL 100% Epon and placed in at 70
819 °C overnight. Samples were then separated from the dishes and 80 nm thin sections were cut and
820 placed on copper grids. Samples on grids were then stained with uranyl acetate and lead citrate
821 as described elsewhere (Tapia et al., 2012). Samples were imaged using a Hitachi H7500 TEM
822 Transmission Electron Microscope (Hitachi High-Tech, Inc.) with electron beam voltage set to
823 80kV, captured with Megaview II Camera (iTEM software) at the University of Toronto
824 Scarborough.

825

826 *Electron microscopy analysis*

827 For the quantification of SEM populations, cells were qualitatively classified into one of three
828 subpopulations of membrane ruffles. Cells that appeared to have large, sharp membrane sheets
829 and protrusions on their surface that extended well beyond the base surface of the cell were
830 classified as “High Ruffling”. Cells that appeared to have more shallow protrusions, such as
831 “veins” on the surface or shallow pits, that covered at least 50 percent of the visible cell surface
832 were classified as “Medium Ruffling”. Conversely, cells that displayed protrusions on less than
833 50 percent of their visible surface, or cells that displayed almost no protrusions, were classified
834 as “Low Ruffling”. For each sample, the percent of cells associated with each subpopulation was
835 calculated across all images in a sample.

836 We quantified endosome and lysosome-like organelles using ultrastructural classification
837 of late endosome, lysosome, and autophagic compartments was described here (Hess and Huber,
838 2021). Briefly, single 80 nm ultrathin sections were analyzed at low magnification and >ten
839 macrophages were assessed per condition, per trial. Only macrophages sectioned at a plane
840 through approximately the middle of the nucleus were chosen for further analysis. Single

841 membranous compartments that resembled endosomes and lysosomes as defined above were
842 identified throughout the whole cell section at a magnification of 5,000x, after which the total
843 cell bodies were imaged at 20,000x to allow for a better visualization of endosomes and
844 lysosomes.

845

846 *Cell Lysates and Membrane Fractionation*

847 Cell lysates were prepared post-experimental treatment by washing 3x with ice-cold PBS and
848 then incubating with 2x Laemmli Sample Buffer (0.5M Tris, pH 6.8, glycerol and 10% sodium
849 dodecyl sulfate (SDS)). Samples were then scraped to ensure full release from the substratum
850 and lysates passed through a 27-gauge needle ten times to break up genomic DNA. To each tube,
851 10% β -mercaptoethanol and 5% bromophenol blue was added. Finally, lysates were boiled at
852 65°C for 15 min.

853 For isolation of phagosomes containing magnetic beads, cells were first washed twice
854 with ice-cold PBS, then incubated in ice-cold homogenization buffer (250 mM sucrose, 10 mM
855 CaCl_2 , 1:50 protease inhibitor cocktail (P8340, Sigma) and PhosStop phosphatase inhibitor (1
856 tablet/10 mL; Roche, Mississauga, ON) for 5 min. While on ice, cells were dislodged from the
857 surface by scraping, then lysed by passing the cell suspension 20 times through a 27-gauge
858 needle. The lysate was then incubated for 5 min on ice. Magnetic phagosomes were separated
859 from the remaining lysate by magnetic attraction. Phagosomes were washed twice with PBS
860 containing 1% normal goat serum and supplemented with 1:50 protease inhibitor cocktail, using
861 the magnet to pull the beads out of suspension at the end of each wash. The magnetic
862 phagosomes were lysed with 2x Laemmli containing 10% β -mercaptoethanol for Western Blot

863 analysis. Laemmli buffer was added to the remaining cell lysates (left over after phagosome
864 pulldown) to a final 1x concentration.

865

866 *Sodium dodecyl sulphate (SDS)-polyacrylamide gel electrophoresis (PAGE) and Western*
867 *blotting*

868 Cell lysates and membrane fractions were resolved in home-made SDS-PAGE gels ranging from
869 8% to 18% acrylamide or using 4-20% gradient mini-PROTEAN TGX precast gels (BioRad,
870 Mississauga, ON). Electrophoresis was done in Tris-glycine running buffer (25 mM Tris-HCl,
871 250 mM glycine, 1% SDS). Proteins were then transferred onto polyvinylidene difluoride
872 membranes. Membranes were blocked with 5% BSA in Tris-buffered saline (TBS) containing
873 0.1% Tween-20 (TBS-T) for 1 h at room temperature, then incubated overnight at 4°C with the
874 following primary antibodies diluted in 1% BSA in TBS-T: 1:1000 rat anti-LAMP1 monoclonal
875 antibodies (clone number: 1D4B, Santa Cruz Biotechnology) or 1:1000 rabbit anti-LAMP1
876 monoclonal antibodies (clone number: C54H11, Cell Signalling Technology), 1:400 rabbit anti-
877 Cellubrevin/VAMP3 polyclonal antibodies (104103(SY), Synaptic Systems), 1:1000 rabbit anti-
878 CD16A/B polyclonal antibodies (BS-6028R, ThermoFisher Scientific), 1:1000 rabbit anti-
879 GAPDH antibodies (clone number: 14C10; Cell Signaling Technology). HRP-conjugated
880 donkey anti-rabbit or anti-rat antibodies (Bethyl Laboratories and Cell Signalling Technology)
881 were used at 1:10,000 in 1% BSA with TBS-T for 3 h at room temperature. Streptavidin-HRP
882 (Cat. 3999S, Cell Signaling Technology) was incubated at 1:1000 for 1 h. Membranes were
883 washed three times with TBS-T for 5 min each wash and developed with Clarity Western ECL
884 Substrate (Bio-Rad Laboratories) or Immobilon Crescendo Western HRP Substrate
885 (WBLUR0500, Millipore). Blot images were acquired using the ChemiDoc Imaging System

886 (Bio-Rad Laboratories) and analyzed by ImageLab (Bio-Rad Laboratories). The background was
887 automatically determined and subtracted from each band by the software, which employed a
888 rolling disk method with a disk size of 10 mm to determine the background intensities along the
889 lane. The background values corresponding to the positions of the bands were used to subtract
890 the background from the respective bands.

891

892 *Statistical Analysis*

893 Data are presented as the mean \pm SEM for experiments where a sample mean was acquired from
894 at least three independent experiments. For Western blotting, data is shown as mean \pm STD. The
895 number of cells assessed in each experiment is indicated within the figure legends. Statistical
896 analysis was performed using GraphPad Prism software (GraphPad Software, Inc.). Unless data
897 is normalized to a control, data were assumed to be normally distributed.

898 For statistical testing between two conditions, a paired, two-tailed Student's t-test or a
899 Mann-Whitney test was used; if data was normalized, then a one-sample t-test was used. For
900 statistical analysis of data from multiple groups with one variable, we used a repeated-measures
901 one-way ANOVA coupled to a Tukey's or Dunnett's multiple comparisons test. If missing
902 values/unequal sample size existed between groups, a mixed-effects test was applied, followed
903 by a Dunnett's test. If comparing multiple groups and two parameters, then we used a repeated
904 measures two-way ANOVA coupled to Tukey's or Sidak's multiple comparisons test. Typically,
905 Greisser-Greenhouse correction was applied. Friedman's test was used if data were non-
906 parametric (*e.g.* control was normalized) followed by Dunn's post-hoc test. Typically, $p < 0.05$
907 was considered significant, but we opted to disclose actual p values.

908

909 **Acknowledgements**

910 We would like to thank the Electron Microscopy Facility at the Hospital for Sick Children in
911 Toronto, the Core Facility Imaging Centre at St. Michael's Hospital, the Imaging Facility
912 CAMiLoD at the University of Toronto, and the Centre for the Neurobiology of Stress (CNS) at
913 the University of Toronto Scarborough for their invaluable support and advice.

914

915 **Competing interests**

916 No competing interests are declared.

917

918 **Funding**

919 RJB is a recipient of a Canada Research Chair (#950-232333) with contributions from Toronto
920 Metropolitan University and Faculty of Science. The Canadian Institutes of Health Research
921 funded this research with awards to RJB and MT (PJT-183914) and BH ((#375597 and
922 #190081). The Canada Foundation for Innovation with contributions from Ontario Research
923 Fund and Toronto Metropolitan supported this work with John Evans Leadership Fund to RJB
924 (#32957 and #38151) and to BH (#36050 and #38861) and through an Innovation fund to BH
925 ('Fibrosis Network, #36349). MM is partially funded by a Faculty of Science Fellowship, AF
926 and ME by Ontario Graduate Scholarship, SM by a Natural Sciences and Engineering Council of
927 Canada Postgraduate Doctoral Scholarship, EU by a CIHR Canada Graduate Scholarship, KF by
928 a MITACS Accelerate Postdoctoral Fellowship, and CG by a UTSC Postdoctoral Fellowship.

929

930 **References**

931 **Araki, N., Johnson, M. T. and Swanson, J. A. (1996). A role for phosphoinositide 3-kinase in the**
932 **completion of macropinocytosis and phagocytosis by macrophages. *Journal of Cell***
933 ***Biology* **135**, 1249–1260.**

934 **Arandjelovic, S. and Ravichandran, K. S. (2015). Phagocytosis of apoptotic cells in homeostasis.**
935 ***Nature Immunology* **16**, 907–917.**

936 **Bajno, L., Peng, X. R., Schreiber, A. D., Moore, H. P., Trimble, W. S. and Grinstein, S. (2000).**
937 **Focal exocytosis of VAMP3-containing vesicles at sites of phagosome formation. *The***
938 ***Journal of cell biology* **149**, 697–706.**

939 **Booth, J. W., Kim, M. K., Jankowski, A., Schreiber, A. D. and Grinstein, S. (2002). Contrasting**
940 **requirements for ubiquitylation during Fc receptor-mediated endocytosis and**
941 **phagocytosis. *EMBO Journal* **21**, 251–258.**

942 **Botelho, R. J., Teruel, M., Dierckman, R., Anderson, R., Wells, A., York, J. D., Meyer, T. and**
943 **Grinstein, S. (2000). Localized biphasic changes in phosphatidylinositol-4,5-**
944 **bisphosphate at sites of phagocytosis. *Journal of Cell Biology* **151**, 1353–1367.**

945 **Braun, V., Fraisier, V., Raposo, G., Hurbain, I., Sibarita, J.-B., Chavrier, P., Galli, T. and**
946 **Niedergang, F. (2004). TI-VAMP/VAMP7 is required for optimal phagocytosis of**
947 **opsonised particles in macrophages. *The EMBO journal* **23**, 4166–76.**

948 **Campbell, R. E., Tour, O., Palmer, A. E., Steinbach, P. A., Baird, G. S., Zacharias, D. A. and**
949 **Tsien, R. Y. (2002). A monomeric red fluorescent protein. *Proc Natl Acad Sci U S A* **99**,**
950 **7877–7882.**

951 **Cannon, G. J. and Swanson, J. a (1992). The macrophage capacity for phagocytosis. *Journal of***
952 ***cell science* **101** (Pt 4), 907–913.**

953 **Caron, E. and Hall, a (1998). Identification of two distinct mechanisms of phagocytosis**
954 **controlled by different Rho GTPases. *Science (New York, N.Y.)* **282**, 1717–1721.**

955 **Chen, X.-X., Bayard, F., Gonzalez-Sanchis, N., Pamungkas, K. K. P., Sakai, N. and Matile, S.**
956 **(2023). Fluorescent Flippers: Small-Molecule Probes to Image Membrane Tension in**
957 **Living Systems. *Angewandte Chemie International Edition* **62**, e202217868.**

958 **Colom, A., Derivery, E., Soleimanpour, S., Tomba, C., Molin, M. D., Sakai, N., González-Gaitán,**
959 **M., Matile, S. and Roux, A. (2018). A fluorescent membrane tension probe. *Nat Chem***
960 ***10*, 1118–1125.**

961 **Condon, N. D., Heddleston, J. M., Chew, T.-L., Luo, L., McPherson, P. S., Ioannou, M. S.,**
962 **Hodgson, L., Stow, J. L. and Wall, A. A. (2018). Macropinosome formation by tent pole**
963 **ruffling in macrophages. *Journal of Cell Biology* **217**, 3873–3885.**

964 Cox, D., Tseng, C. C., Bjekic, G. and Greenberg, S. (1999). A requirement for
965 phosphatidylinositol 3-kinase in pseudopod extension. *J Biol Chem* **274**, 1240–1247.

966 Czibener, C., Sherer, N. M., Becker, S. M., Pypaert, M., Hui, E., Chapman, E. R., Mothes, W.
967 and Andrews, N. W. (2006). Ca²⁺ and synaptotagmin VII-dependent delivery of
968 lysosomal membrane to nascent phagosomes. *The Journal of cell biology* **174**, 997–
969 1007.

970 D'Amico, A. E., Wong, A. C., Zajd, C. M., Zhang, X., Murali, A., Trebak, M. and Lennartz, M. R.
971 (2021). PKC-ε regulates vesicle delivery and focal exocytosis for efficient IgG-mediated
972 phagocytosis. *J Cell Sci* **134**, jcs258886.

973 Davis, L. C., Morgan, A. J. and Galione, A. (2020). NAADP-regulated two-pore channels drive
974 phagocytosis through endo-lysosomal Ca²⁺ nanodomains, calcineurin and dynamin.
975 *EMBO J* **39**, e104058.

976 Di, A., Nelson, D. J., Bindokas, V., Brown, M. E., Libunao, F. and Palfrey, H. C. (2003). Dynamin
977 Regulates Focal Exocytosis in Phagocytosing Macrophages. *MBio* **14**, 2016–2028.

978 Duncan, M. C. (2022). New directions for the clathrin adaptor AP-1 in cell biology and human
979 disease. *Curr Opin Cell Biol* **76**, 102079.

980 Fairn, G. D. and Grinstein, S. (2012). How nascent phagosomes mature to become
981 phagolysosomes. *Trends in immunology* **33**, 397–405.

982 Flannagan, R. S., Harrison, R. E., Yip, C. M., Jaqaman, K. and Grinstein, S. (2010). Dynamic
983 macrophage “probing” is required for the efficient capture of phagocytic targets. *Journal
984 of Cell Biology* **191**, 1205–1218.

985 Flannagan, R. S., Jaumouillé, V. and Grinstein, S. (2012). The cell biology of phagocytosis.
986 *Annual review of pathology* **7**, 61–98.

987 Fountain, A., Inpanathan, S., Alves, P., Verdagala, M. B. and Botelho, R. J. (2021). Phagosome
988 maturation in macrophages: Eat, digest, adapt, and repeat. *Adv Biol Regul* **82**, 100832.

989 Freeman, S. A. and Grinstein, S. (2014). Phagocytosis: receptors, signal integration, and the
990 cytoskeleton. *Immunological reviews* **262**, 193–215.

991 Freeman, S. A., Vega, A., Riedl, M., Collins, R. F., Ostrowski, P. P., Woods, E. C., Bertozi, C. R.,
992 Tammi, M. I., Lidke, D. S., Johnson, P., et al. (2018). Transmembrane Pickets Connect
993 Cyto- and Pericellular Skeletons Forming Barriers to Receptor Engagement. *Cell* **172**,
994 305–317.e10.

995 Fujii, Y. and Okajima, T. (2019). Calibrating the Young's modulus of soft materials with surface
996 tilt angle measured by atomic force microscopy. *AIP Advances* **9**, 015028.

997 **Gagnon, E., Duclos, S., Rondeau, C., Chevet, E., Cameron, P. H., Steele-Mortimer, O.,**
998 **Paiement, J., Bergeron, J. J. M. and Desjardins, M.** (2002). Endoplasmic reticulum-
999 mediated phagocytosis is a mechanism of entry into macrophages. *Cell* **110**, 119–131.

1000 **Grandjean, C. L., Garcia, Z., Lemaître, F., Bréart, B. and Bousso, P.** (2021). Imaging the
1001 mechanisms of anti-CD20 therapy in vivo uncovers spatiotemporal bottlenecks in
1002 antibody-dependent phagocytosis. *Sci Adv* **7**, eabd6167.

1003 **Greenberg, S., Burridge, K. and Silverstein, S. C.** (1990). Colocalization of F-actin and talin
1004 during Fc receptor-mediated phagocytosis in mouse macrophages. *J Exp Med* **172**,
1005 1853–1856.

1006 **Greenberg, S., el Khoury, J., di Virgilio, F., Kaplan, E. M. and Silverstein, S. C.** (1991). Ca(2+)-
1007 independent F-actin assembly and disassembly during Fc receptor-mediated
1008 phagocytosis in mouse macrophages. *The Journal of cell biology* **113**, 757–67.

1009 **Hampton, M. B. and Dickerhof, N.** (2023). Inside the phagosome: A bacterial perspective.
1010 *Immunol Rev* **314**, 197–209.

1011 **Hanes, C. M., D'Amico, A. E., Ueyama, T., Wong, A. C., Zhang, X., Hynes, W. F., Barroso, M. M.,**
1012 **Cady, N. C., Trebak, M., Saito, N., et al.** (2017). Golgi-Associated Protein Kinase C-ε Is
1013 Delivered to Phagocytic Cups: Role of Phosphatidylinositol 4-Phosphate. *J Immunol* **199**,
1014 271–277.

1015 **Hayes, J. M., Wormald, M. R., Rudd, P. M. and Davey, G. P.** (2016). Fc gamma receptors:
1016 Glycobiology and therapeutic prospects. *Journal of Inflammation Research* **9**, 209–219.

1017 **Hess, M. W. and Huber, L. A.** (2021). Measuring lysosomal size and frequency by electron
1018 microscopy. *Methods Cell Biol* **164**, 47–61.

1019 **Hipolito, V. E. B., Diaz, J. A., Tandoc, K. V., Oertlin, C., Ristau, J., Chauhan, N., Saric, A.,**
1020 **McLaughlan, S., Larsson, O., Topisirovic, I., et al.** (2019). Enhanced translation expands
1021 the endo-lysosome size and promotes antigen presentation during phagocyte activation.
1022 *PLoS Biol* **17**, e3000535.

1023 **Holevinsky, K. O. and Nelson, D. J.** (1998). Membrane capacitance changes associated with
1024 particle uptake during phagocytosis in macrophages. *Biophysical Journal* **75**, 2577–2586.

1025 **Kern, N., Dong, R., Douglas, S. M., Vale, R. D. and Morrissey, M. A.** (2021). Tight nanoscale
1026 clustering of fcγ receptors using dna origami promotes phagocytosis. *eLife* **10**,.

1027 **Kwiecinski, J. M., Kratofil, R. M., Parlet, C. P., Surewaard, B. G. J., Kubes, P. and Horswill, A. R.**
1028 (2021). *Staphylococcus aureus* uses the ArlRS and MgrA cascade to regulate immune
1029 evasion during skin infection. *Cell Rep* **36**, 109462.

1030 **Lancaster, C. E., Ho, C. Y., Hipolito, V. E. B., Botelho, R. J. and Terebiznik, M. R. (2019).**
1031 Phagocytosis: What's on the menu? *Biochemistry and Cell Biology* **97**,.

1032 **Lancaster, C. E., Fountain, A., Dayam, R. M., Somerville, E., Sheth, J., Jacobelli, V., Somerville,**
1033 **A., Terebiznik, M. R. and Botelho, R. J. (2021).** Phagosome resolution regenerates
1034 lysosomes and maintains the degradative capacity in phagocytes. *Journal of Cell Biology*
1035 **220**,.

1036 **Lee, W. L., Mason, D., Schreiber, A. D. and Grinstein, S. (2007).** Quantitative Analysis of
1037 Membrane Remodeling at the Phagocytic Cup. *MBoC* **18**, 2883–2892.

1038 **Levin, R., Grinstein, S. and Canton, J. (2016).** The life cycle of phagosomes: formation,
1039 maturation, and resolution. *Immunological Reviews* **273**, 156–179.

1040 **Levin-Konigsberg, R., Montaño-Rendón, F., Keren-Kaplan, T., Li, R., Ego, B., Mylvaganam, S.,**
1041 **DiCiccio, J. E., Trimble, W. S., Bassik, M. C., Bonifacino, J. S., et al. (2019).**
1042 Phagolysosome resolution requires contacts with the endoplasmic reticulum and
1043 phosphatidylinositol-4-phosphate signalling. *Nature Cell Biology* **21**, 1234–1247.

1044 **Lin, J., Kurilova, S., Scott, B. L., Bosworth, E., Iverson, B. E., Bailey, E. M. and Hoppe, A. D.**
1045 (2016). TIRF imaging of Fc gamma receptor microclusters dynamics and signaling on
1046 macrophages during frustrated phagocytosis. *BMC Immunology* **17**, 5.

1047 **Lipinski, T., Fitieh, A., St. Pierre, J., Ostergaard, H. L., Bundle, D. R. and Touret, N. (2013).**
1048 Enhanced Immunogenicity of a Tricomponent Mannan Tetanus Toxoid Conjugate
1049 Vaccine Targeted to Dendritic Cells via Dectin-1 by Incorporating β -Glucan. *The Journal*
1050 *of Immunology* **190**, 4116–4128.

1051 **Madugula, V. and Lu, L. (2016).** A ternary complex comprising transportin1, Rab8 and the ciliary
1052 targeting signal directs proteins to ciliary membranes. *J Cell Sci* **129**, 3922–3934.

1053 **Marshall, J. G., Booth, J. W., Stambolic, V., Mak, T., Balla, T., Schreiber, A. D., Meyer, T. and**
1054 **Grinstein, S. (2001).** Restricted accumulation of phosphatidylinositol 3-kinase products
1055 in a plasmalemmal subdomain during Fc?? receptor-mediated phagocytosis. *Journal of*
1056 *Cell Biology* **153**, 1369–1380.

1057 **Masters, T. A., Pontes, B., Viasnoff, V., Li, Y. and Gauthier, N. C. (2013).** Plasma membrane
1058 tension orchestrates membrane trafficking, cytoskeletal remodeling, and biochemical
1059 signaling during phagocytosis. *Proceedings of the National Academy of Sciences of the*
1060 *United States of America* **110**, 11875–11880.

1061 **Molofsky, A. B., Shetron-Rama, L. M. and Swanson, M. S. (2005).** Components of the
1062 Legionella pneumophila Flagellar Regulon Contribute to Multiple Virulence Traits,
1063 Including Lysosome Avoidance and Macrophage Death. *Infection and Immunity* **73**,
1064 5720–5734.

1065 Nguyen, J. A. and Yates, R. M. (2021). Better Together: Current Insights Into Phagosome-
1066 Lysosome Fusion. *Front Immunol* **12**, 636078.

1067 Petty, H. R., Hafeman, D. G. and McConnell, H. M. (1981). Disappearance of macrophage
1068 surface folds after antibody-dependent phagocytosis. *Journal of Cell Biology* **89**, 223–
1069 229.

1070 Pinney, J. J., Rivera-Escalera, F., Chu, C. C., Whitehead, H. E., VanDerMeid, K., Nelson, A. M.,
1071 Barbeau, M. C., Zent, C. S. and Elliott, M. R. (2020). Macrophage hypophagia as a
1072 mechanism of innate immune exhaustion in mAb-induced cell clearance. *Blood*.

1073 Prashar, A., Bhatia, S., Tabatabaeiyazdi, Z., Duncan, C., Garduño, R. A., Tang, P., Low, D. E.,
1074 Guyard, C. and Terebiznik, M. R. (2012). Mechanism of invasion of lung epithelial cells
1075 by filamentous Legionella pneumophila. *Cell Microbiol* **14**, 1632–1655.

1076 Prashar, A., Bhatia, S., Gigliozzi, D., Martin, T., Duncan, C., Guyard, C. and Terebiznik, M. R.
1077 (2013). Filamentous morphology of bacteria delays the timing of phagosome
1078 morphogenesis in macrophages. *Journal of Cell Biology* **203**, 1081–1097.

1079 Richards, D. M. and Endres, R. G. (2017). How cells engulf: A review of theoretical approaches
1080 to phagocytosis. *Reports on Progress in Physics* **80**,

1081 Samie, M., Wang, X., Zhang, X., Goschka, A., Li, X., Cheng, X., Gregg, E., Azar, M., Zhuo, Y.,
1082 Garrity, A. G., et al. (2013). A TRP channel in the lysosome regulates large particle
1083 phagocytosis via focal exocytosis. *Dev Cell* **26**, 511–524.

1084 Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S.,
1085 Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source platform for
1086 biological-image analysis. *Nat Methods* **9**, 676–682.

1087 Sun, X., Xu, M., Cao, Q., Huang, P., Zhu, X. and Dong, X.-P. (2020). A lysosomal K⁺ channel
1088 regulates large particle phagocytosis by facilitating lysosome Ca²⁺ release. *Sci Rep* **10**,
1089 1038.

1090 Tapia, J. C., Kasthuri, N., Hayworth, K. J., Schalek, R., Lichtman, J. W., Smith, S. J. and
1091 Buchanan, J. (2012). High-contrast en bloc staining of neuronal tissue for field emission
1092 scanning electron microscopy. *Nat Protoc* **7**, 193–206.

1093 Touret, N., Paroutis, P., Terebiznik, M., Harrison, R. E., Trombetta, S., Pypaert, M., Chow, A.,
1094 Jiang, A., Shaw, J., Yip, C., et al. (2005). Quantitative and dynamic assessment of the
1095 contribution of the ER to phagosome formation. *Cell* **123**, 157–170.

1096 Vashi, N., Andrabi, S. B. A., Ghanwat, S., Suar, M. and Kumar, D. (2017). Ca²⁺-dependent Focal
1097 Exocytosis of Golgi-derived Vesicles Helps Phagocytic Uptake in Macrophages. *J Biol
1098 Chem* **292**, 5144–5165.

1099 **Verboogen, D. R. J., González Mancha, N., Ter Beest, M. and van den Bogaart, G.** (2017).
1100 Fluorescence Lifetime Imaging Microscopy reveals rerouting of SNARE trafficking driving
1101 dendritic cell activation. *Elife* **6**, e23525.

1102 **Vieira, O. V., Bucci, C., Harrison, R. E., Trimble, W. S., Lanzetti, L., Gruenberg, J., Schreiber, A.**
1103 **D., Stahl, P. D. and Grinstein, S.** (2003). Modulation of Rab5 and Rab7 recruitment to
1104 phagosomes by phosphatidylinositol 3-kinase. *Molecular and cellular biology* **23**, 2501–
1105 14.

1106 **Vinet, A. F., Fukuda, M. and Descoteaux, A.** (2008). The exocytosis regulator synaptotagmin V
1107 controls phagocytosis in macrophages. *J Immunol* **181**, 5289–5295.

1108 **Weischenfeldt, J. and Porse, B.** (2008). Bone marrow-derived macrophages (BMM): Isolation
1109 and applications. *Cold Spring Harbor Protocols* **3**, pdb.prot5080.

1110 **Willcocks, L. C., Smith, K. G. C. and Clatworthy, M. R.** (2009). Low-affinity Fcγ receptors,
1111 autoimmunity and infection. *Expert Reviews in Molecular Medicine* **11**,

1112 **Winer, B. Y., Settle, A. H., Yakimov, A. M., Jeronimo, C., Lazarov, T., Tipping, M., Saoi, M.,**
1113 **Sawh, A., Sepp, A.-L. L., Galiano, M., et al.** (2024). Plasma membrane abundance
1114 dictates phagocytic capacity and functional cross-talk in myeloid cells. *Science*
1115 *Immunology* **9**, eadl2388.

1116 **Yin, C. and Heit, B.** (2021). Cellular Responses to the Efferocytosis of Apoptotic Cells. *Frontiers*
1117 *in Immunology* **12**,

1118 **Zent, C. S. and Elliott, M. R.** (2017). Maxed out macs: physiologic cell clearance as a function of
1119 macrophage phagocytic capacity. *The FEBS Journal* **284**, 1021–1039.

1120 **Zhang, Y., Hoppe, A. D. and Swanson, J. A.** (2010). Coordination of Fc receptor signaling
1121 regulates cellular commitment to phagocytosis. *Proceedings of the National Academy of*
1122 *Sciences of the United States of America* **107**, 19332–19337.

1123
1124 **Figure Legends**

1125 **Figure 1: Macrophages curb their phagocytic appetite after two hours of engulfment. A.**
1126 RAW macrophages were allowed to engulf IgG-opsonized 3 μm beads for 0 to 240 minutes (15,
1127 120, and 240 min shown). External particles were immunolabeled after fixation with anti-human
1128 IgG secondary antibodies (magenta). **B.** Number of internalized beads per cell as described in A.
1129 Data is shown as mean ± SEM from 3 independent replicates, where 200-300 cells per condition

1130 per experiment were quantified. Sample means were compared against the 240 min timepoint. **C.**
1131 Schematic of sequential phagocytic feeding assays to test loss of phagocytic appetite in
1132 macrophages. Macrophages were subjected to a first phagocytic feeding for 2 h (mock, IgG-
1133 beads, mRFP1-*E. coli*), followed by an immediate second feeding with GFP-*E. coli* for 1 h. **D.**
1134 RAW cells were pre-fed mRFP1-*E. coli* (shown as cyan in Merge channel), or IgG-beads, or
1135 were mock fed, followed by a second round of phagocytosis using GFP-*E. coli* as described in C.
1136 Magenta indicates external particles. For A and D, dashed lines delineate cell boundaries. Scale
1137 bar: 10 μ m **E.** Number of GFP-*E. coli* engulfed by RAW cells as described in D. Data are shown
1138 as mean \pm SEM from 3 independent replicates, where 100-200 cells per condition per experiment
1139 were quantified. For B and E, data was tested using a repeated-measures one-way ANOVA and
1140 Dunnett's post-hoc test, where p-values are shown.

1141

1142 **Figure 2: Surface Fc γ receptor levels are reduced in exhausted macrophages, but this does**
1143 **not drive appetite exhaustion.** **A.** RAW cells were fed IgG-coated 3 μ m beads for the indicated
1144 times, followed by fixation, and staining with anti-CD16A. Cells were imaged along the z-axis
1145 and reconstructed by summing the fluorescence intensity. Scale bar = 10 μ m. Inset shows
1146 corresponding bright field showing beads. **B:** Normalized CD16A mean fluorescence intensity of
1147 reconstructed z-stacks per cell from n=5-7 independent experiments from 50-100 cells per
1148 experiment per condition. **C, D:** RAW cells were fed IgG-coated beads (C) or IgG-coated sRBCs
1149 (D) for indicated times and then processed for flow cytometry to stain against CD16A or CD64.
1150 Shown is the mean fluorescence for each receptor normalized to resting cells (0 min;
1151 Supplemental Figure S2 shows representative flow cytometry distribution). **E-G.** Western
1152 blotting of whole cell lysates of macrophages fed IgG-beads for indicated times (E) and the

1153 quantification of bottom bottom (F) and top (G) CD16A bands relative to GADPH. **H.** RAW
1154 cells were mock transfected or transfected with plasmids encoding eGFP or Fc γ RIIA-GFP
1155 (green) and then allowed to phagocytose 3 μ m IgG-beads for 2 h, followed by fixation and
1156 staining of external beads (magenta). Scale bar = 10 μ m. **I.** Number of internalized beads per cell
1157 from n=3 independent experiments, counting 50-100 cells per condition per experiment. B: Data
1158 was quantified by Kruskal-Wallis and Dunn's post-hoc test. C, D: Repeated-measures two-way
1159 ANOVA followed by Tukey's post-hoc test. F, G: Data were analysed by Friedmann's test,
1160 followed by Dunn's post-hoc test. I. Data was analysed by One-way ANOVA and Tukey's post-
1161 hoc test. All p values shown.

1162

1163 **Figure 3: Macrophages become devoid of plasma membrane infolding but do not shrink**
1164 **after phagocytic exhaustion. A.** Representative images acquired by SEM of the plasma
1165 membrane ultrastructure of macrophages after 0, 15, or 120 min of phagocytosis of IgG-
1166 opsonized beads; left panel: resting macrophages have a high degree of membrane ruffling (High
1167 Ruffle) with many large membrane sheets and protrusions emanating from the cell surface,
1168 creating valleys and pits on the cell surface; middle panel: macrophages that engulfed a few
1169 particles have reduced, but visible membrane ruffling (Medium Ruffle) across at least 50% of the
1170 apical surface of the cell; right panel: macrophages at phagocytic capacity are mostly devoid of
1171 membrane ruffles (Low Ruffle) with most being extremely shallow. Instead, cells appear as a
1172 "raspberry" due to engulfed beads protruding from the cytosol-out. Scale bar: 10 μ m. **B, C, and**
1173 **D.** Quantification of percent cell population exhibiting high (B), medium (C), or low (D) degree
1174 of ruffling as described in A. Data represented as mean \pm SEM of 3 independent experiments and
1175 from 25-35 cells per replicate per condition. Sample means were analyzed using repeated

1176 measures One-way ANOVA and Dunnett's post-hoc test by comparing to resting cells. **E, H.**
1177 Macrophages were transfected to express eGFP-CAAX, a plasma membrane marker prior to
1178 phagocytosis. Macrophages were then given no particles or allowed to engulf IgG-opsonized
1179 beads (E) or yeast conidia (H) for 2 hours. Images of resting cells (left) and cells containing at
1180 least 5 internalized beads or conidia (right) were volumetrically reconstructed from image stacks
1181 of EGFP-CAAX fluorescence. Grid lines represent 4.7 μm intervals. **F, G, I, and J.**
1182 Quantification of surface area (F, G), and volume (I, J) of 15-25 cells per sample as described in
1183 *E* and *H*. Data represented as mean \pm SEM of 3 independent replicates. White circles represent
1184 individual cells, while coloured circles are sample means, which were compared using a paired,
1185 two-tailed Student's t-test.

1186

1187 **Figure 4: The plasma membrane of exhausted macrophages is not under increased tension.**
1188 **A.** RAW macrophages were allowed to engulf IgG-opsonized 3 μm beads for 0, 15 min or 2 h, or
1189 treated with a hypo-osmotic medium. The cells were then labeled with the Flipper[®] membrane
1190 tension probe and the fluorescence lifetime τ_1 was assessed. Brightfield and fluorescence time
1191 are shown, where lifetime is pseudo-coloured according to the colour palette scale. **B.**
1192 Quantification of the fluorescence lifetime τ_1 described in A. Data are the mean \pm SEM from at
1193 least 5 independent replicates and based on 10-30 cells per condition per experiment. Sample
1194 means were compared using mixed-effect one-way ANOVA and Dunnett's post-hoc test. p-
1195 values are shown. **C.** RAW macrophages engulfed IgG-opsonized 3 μm beads for 0, 15 min or 2
1196 hours, or were treated with 1 μM jasplakinolide for 1 h. Illustrative images of cells generated by
1197 QI mode shows spatial tension in kPa as indicated by the pseudo-colour palette scale. Intense
1198 white signal are beads on the cell. Coloured dashed squares represent areas of measurements,

1199 excluding beads. **D, E.** Quantification of the cellular Young's elastic modulus in kilopascals
1200 (kPa) over the cytoplasmic area (D) and over nuclear region (E). Data are shown as mean \pm SEM
1201 from at least 3-5 independent replicates with the exact repeats represented as individual data
1202 points. Per experiment and per condition, 4-6 cells were evaluated at two nuclear positions and
1203 four cytosolic positions, each generating 20 curves per position. Data were compared by mixed-
1204 effect one-way ANOVA and Dunnett's post-hoc test with p-values disclosed. **F.** Quantification
1205 of whole phalloidin fluorescence intensity normalized to resting macrophages. Data are shown as
1206 mean \pm SEM from N=3 independent experiments using >40 cells per experiment per treatment.
1207 Data was analysed by Friedman test and Dunn's post-hoc test. p values are disclosed.

1208

1209 **Figure 5: "Free" lysosomes and endosomes are depleted in macrophages at phagocytic
1210 capacity. A.** Reconstructed micrographs of LAMP1 staining (grayscale) in resting and
1211 macrophages that engulfed filamentous *Legionella* (red). Phagosome-associated LAMP1 was
1212 defined as LAMP1 that colocalized onto and to the periphery of *Legionella*. Dashed lines
1213 contours the cell. Free lysosomes were interpreted as LAMP1 puncta not proximal to
1214 phagosomes. Scale bar = 10 μ m. **B.** Quantification of LAMP1-puncta per cell as described in A.
1215 **C, H.** Macrophages were given no particles (Mock phagocytosis, lanes 1-4) or allowed to engulf
1216 BSA- anti-BSA-opsonized magnetic beads (Magnetic beads, lanes 5-8) for 2 h, followed by 1 h
1217 incubation to elicit maturation. Phagosomes were then magnetically isolated and analyzed with
1218 Western Blot. LAMP1 (C) and VAMP3 (H) abundance were probed as a proxy for lysosome and
1219 endosome content, respectively. GAPDH was used as a loading control in whole cell lysates
1220 (WCL). Post-magnetic lysate (PML) is content remaining in lysate after magnetic separation;
1221 Wash fractions (W); Magnetic phagosome fraction is represented by M. **D, I:** Quantification of

1222 percent LAMP1 (D) and VAMP3 (I) remaining in lysate after magnetic separation. Percent
1223 remaining protein is defined as the percent ratio of GAPDH-normalized protein content in the
1224 PML fraction (lanes 2 and 6 for mock phagocytosis and magnetic beads, respectively) to
1225 GAPDH-normalized protein content in the WCL fraction (lanes 1 and 5 for mock phagocytosis
1226 and magnetic beads, respectively). **E, J:** Analysis in C and H, respectively, but normalized to
1227 mock phagocytosis to account for experimental variation in absolute values. Data represented as
1228 mean \pm STD of N=4 independent experiments. Sample means were compared using two-tailed,
1229 paired Student's t-test. *: p<0.05; **: p<0.01 (D, I) or one sample t and Wilcoxon test (E, J). **F.**
1230 Macrophages were transfected to express VAMP3-GFP (magenta) and then were given no
1231 particles (resting) or allowed to engulf IgG-opsonized beads for 2 h. Cytosol was demarcated
1232 with CFSE staining (green). Phagosome-associated VAMP3 was defined as VAMP3 that
1233 colocalized to the phagosome periphery as defined by black void in CFSE resulting from the
1234 bead contour. Free endosomes were interpreted as small, VAMP3 puncta not proximal to
1235 phagosomes. Scale bar = 10 μ m. **G.** Quantification of VAMP3-puncta per cell as described in E.
1236 Data represented as mean \pm SEM of N=3 independent experiments using 24-40 individual cells
1237 per condition per replicate. Data was analysed two-tailed, paired Student's t-test. **K.** RAW
1238 macrophages expressing VAMP3-mCherry (magenta) engulfed IgG-opsonized 3 μ m beads for
1239 15 min, with or without 60 min chase, or for 120 min. LAMP1 was immunolabeled after fixation
1240 (green). Scale bar = 10 μ m. **L.** Manders' Coefficient of VAMP3-mCherry on LAMP1
1241 phagosomes. Data represented as mean \pm SEM of N=3 independent experiments using 30-50
1242 individual cells per condition per replicate. Data was analyzed using repeated-measures one-way
1243 ANOVA and Dunnett's post-hoc test. p-values are shown.

1244

1245 **Figure 6: Localized exocytosis onto phagocytic cups fails in exhausted macrophages.**

1246 **A.** RAW macrophages overexpressing mCherry-VAMP3 (magenta) engulfed IgG-opsonized 3
1247 μm beads for 0, 15 min or 2 h. Cells were then fixed and labelled for F-actin (green) and external
1248 beads (white). Inserts are magnifications of bound external beads (dashed boxes). Scale bar, 10
1249 μm . **B.** Quantification of the ratio of fluorescence intensity of VAMP3 on phagocytic cups
1250 relative to total VAMP3 fluorescence of that cell as shown in A. Data are mean \pm SEM from 4
1251 independent experiments with 75-150 cells per condition per replicate examined. Sample means
1252 were compared using two-tailed, paired Student's t-test. **C, D.** Total fluorescence intensity of
1253 VAMP3 (C) and F-actin (D) per cell. Data are shown as mean \pm SEM from at least 4 (C) or 3 (D)
1254 independent replicates. Sample means were compared using repeated measures, one-way
1255 ANOVA & Dunnett's post-hoc test. p-values are shown.

1256

1257 **Figure 7: Phagosome resolution is required to restore phagocytic appetite. A.** Schematic
1258 showing our strategy to test if phagosome resolution recovers appetite post phagocytic
1259 exhaustion. Briefly, macrophages were fed a first round of phagocytosis with IgG-beads,
1260 mRFP1-*E. coli*, or no particles (mock), followed by either no chase (no resolution) or 6 h to
1261 allow phagosome resolution, before being allowed to engulf GFP-*E. coli* for 1 h (second
1262 feeding). **B.** Using the strategy described in A, shown are images of RAW cells that engulfed
1263 GFP-*E. coli* (second feeding; green) after mock phagocytosis, or engulfment of *E. coli*-mRFP1
1264 (cyan), or IgG-beads (grayscale) with no chase (0 h) or phagosome resolution (6 h). Magenta
1265 indicates external particles and dashed lines delineate cell boundaries. Scale bar: 10 μm . **C, D.**
1266 Quantification of mRFP1-labeled *E. coli* (C) or IgG-beads (D) at the conclusion of the first
1267 phagocytic feeding (0 h) or after phagosome resolution (6 h); phagosomes with bacteria, but not

1268 with beads, were resolved after 6 h. Data was analysed by a paired, two-tailed Student's t-test. **E**,
1269 **F**. Quantification of phagosomes with GFP-*E. coli* (second feeding) in macrophages that were
1270 mock-fed, or engulfed mRFP1-*E. coli*, or IgG-beads with no resolution time (0 h) or after 6 h
1271 post-initial feeding. Data represented as mean \pm SEM from N=4 independent trials, with each
1272 sample and experiment based on 120-300 cells. For E, data was analysed by repeated-measures,
1273 two-way ANOVA and Tukey's post-hoc test. For F, data was tested with repeated-measures,
1274 two-way ANOVA and Dunnett's Multiple Comparison test. p-values are disclosed.

1275

1276 **Figure 8: Inhibition of phagosome resolution with clathrin inhibitors impairs appetite**
1277 **recovery post-phagocytic exhaustion. A.** Micrographs of RAW cells that engulfed GFP-*E. coli*
1278 (second feeding; green) after mock phagocytosis or engulfment of *E.coli*-mRFP1 (cyan) for 2 h,
1279 followed by resolution (0 h chase), or 4 h (or 6 h, not shown) with and without 10 μ M
1280 ikarugamycin, which was added at 2 h post-phagocytosis to allow phagosome maturation but
1281 interfere with phagosome resolution. External particles were immunolabeled with anti-*E. coli*
1282 antibodies (magenta). Dashed lines indicate cell boundaries. Scale bar: 10 μ m. **B.** Normalized
1283 number of GFP-*E. coli* engulfed per macrophage. Treatment groups and chase periods are as
1284 described in A. Data are shown as normalized mean (to mock first feeding, vehicle, and no
1285 resolution) \pm SEM from N=5 independent experiments, where 100-200 cells were counted per
1286 condition per experiment. Data were compared by repeated-measures two-way ANOVA and
1287 Tukey's post-hoc test. P values for statistically significant ($p<0.05$) comparisons shown.
1288 Specifically, there is a drop in phagocytosis after first feed (column 1 vs. column 2). This is
1289 recovered after 6 h of resolution (column 2 vs. column 8) but inhibited if ikarugamycin is
1290 included (column 8 vs. column 10). Ikarugamycin alone does reduce phagocytosis (column 1 vs.

1291 columns 5 and 9), but ikarugamycin combined with prior phagocytosis has stronger inhibitory
1292 effect than ikarugamycin alone at 4 h of resolution (column 5 and 6).

1293

1294 **Supplemental Figure S1: Exhausted macrophages are viable and have active mitochondria**
1295 **relative to naïve macrophages.** RAW cells were exhausted with either PFA-fixed *E. coli*-
1296 mRFP1 or -iRFP1, or 3 µm polystyrene beads. **A.** Control and exhausted macrophages were
1297 stained with Sytox™ Deep Red staining. Cells were also treated with 4% hydrogen peroxide for
1298 2 min as a positive control. Dashed lines exemplify cell boundaries. Scale bar: 10 µm. **B.**
1299 Percentage of cells with Sytox™ Deep Red nuclear staining from treatments in A. Data are
1300 shown as means ± SEM from N = 3 independent experiments, where at least 250 cells were
1301 assessed per condition per experiment. **C.** Micrographs of RAW cells after mock phagocytosis or
1302 2 h phagocytosis with PFA-fixed *E. coli*-iRFP (blue pseudocolour) or 3 µm polystyrene beads.
1303 MitoTracker Red accumulation in mitochondria indicates active mitochondria while MitoTracker
1304 Green stains the whole mitochondria population. Dashed lines exemplify cell boundaries. Scale
1305 bar: 5 µm. **D.** Proportion of active mitochondria stained as described in C. Data are mean ± SEM
1306 of 30 cells from N=3 independent experiments. Data were compared by repeated-measures one-
1307 way ANOVA and Dunnett's post-hoc test, p values are shown.

1308

1309 **Supplemental Figure S2: Representative flow cytometry plots of CD16A and CD64 in**
1310 **macrophages before and after phagocytic exhaustion.** RAW macrophages were fed IgG-
1311 beads (A, B) or IgG-coated sRBCs (C, D) for 0 (black trace), 15 (green trace), or 120 min
1312 (magenta trace). After phagocytosis, external sRBCs were lysed with hypotonic shock.
1313 Unpermeabilized cells were then stained with co-stained FITC-labelled anti-CD16A (A, C) or

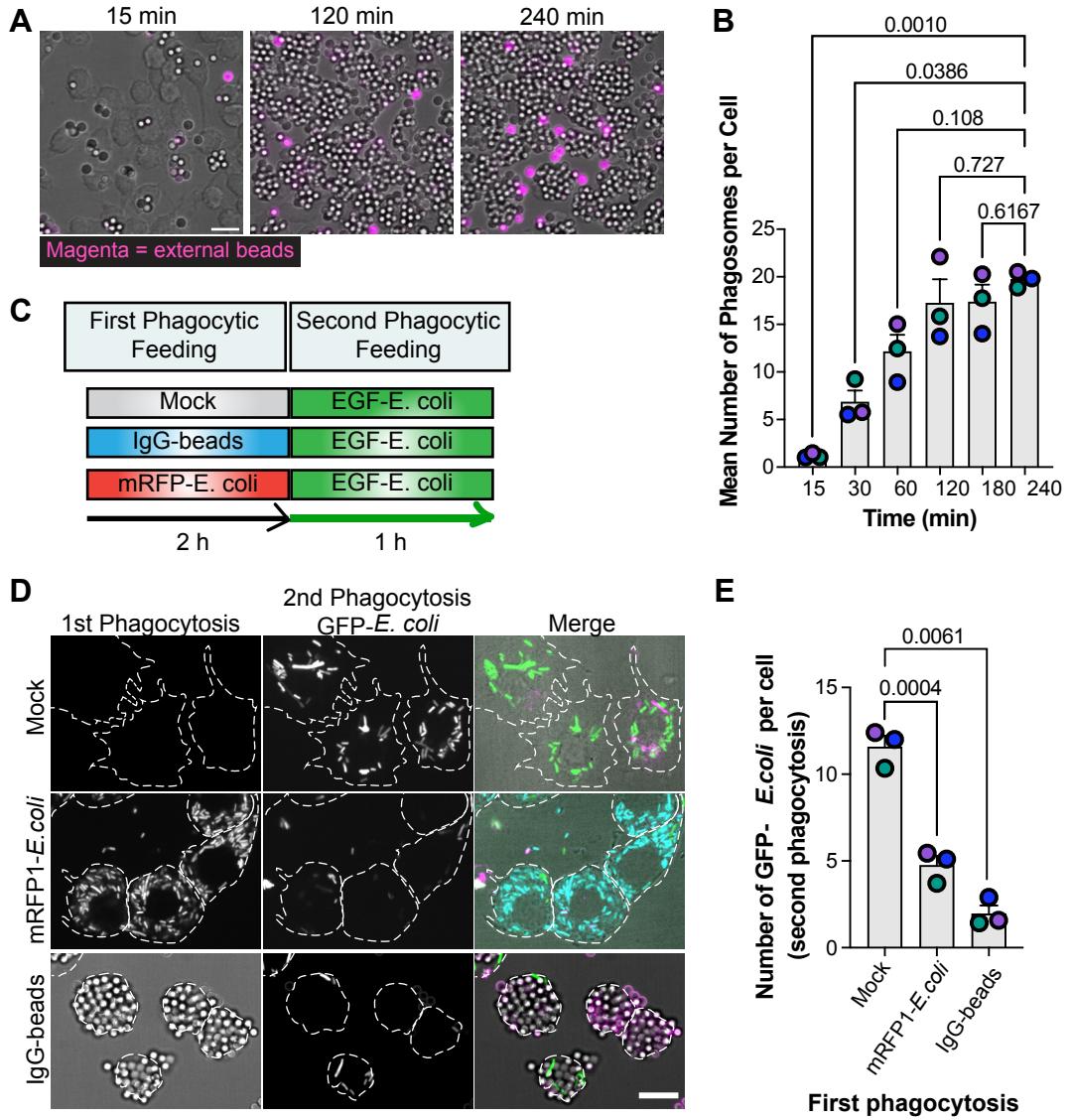
1314 PC7-labelled anti-CD64 (B, D). Surface fluorescence was quantified by flow cytometry as per
1315 Methods. Quantification is shown in Figure 2.

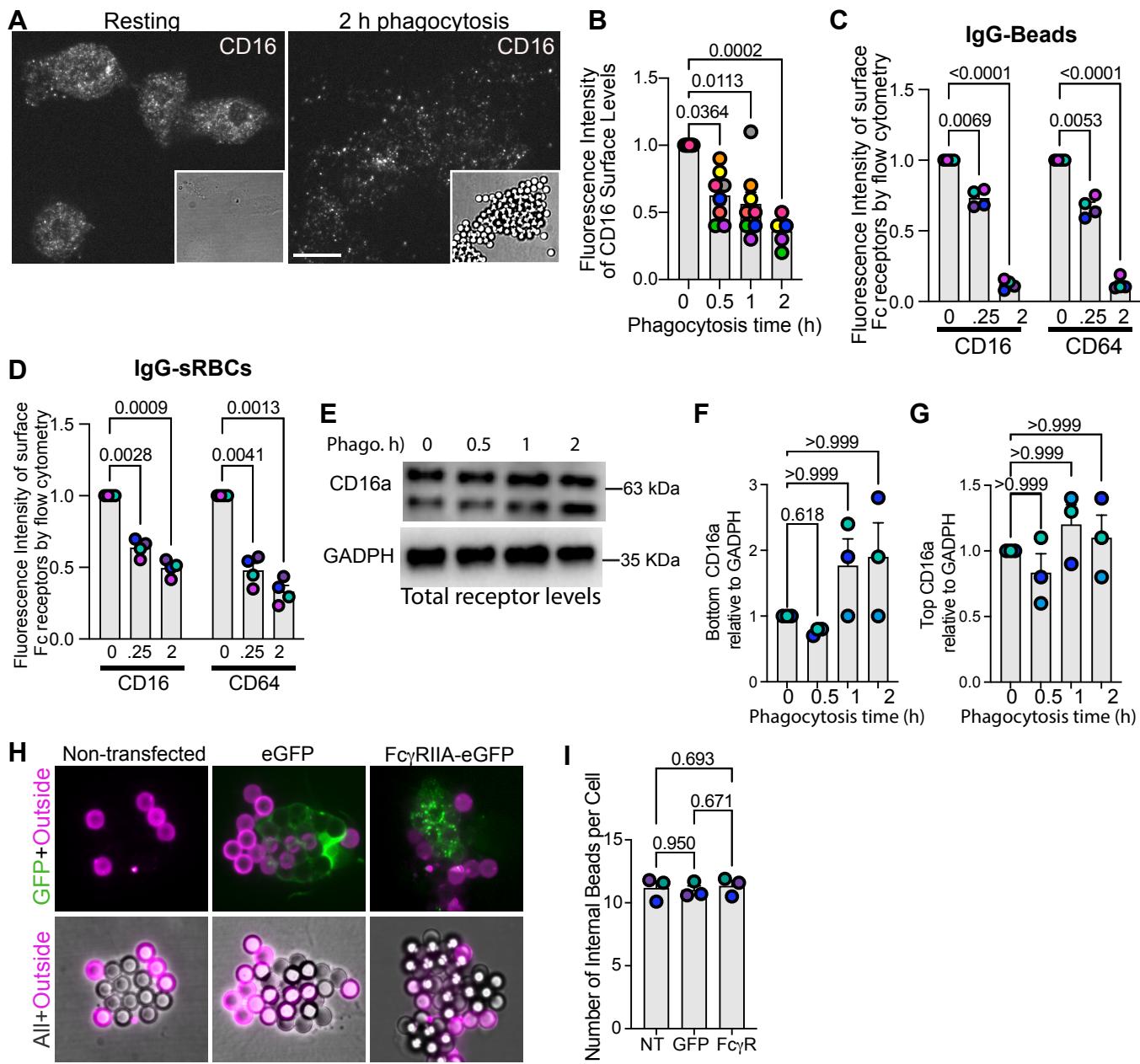
1316

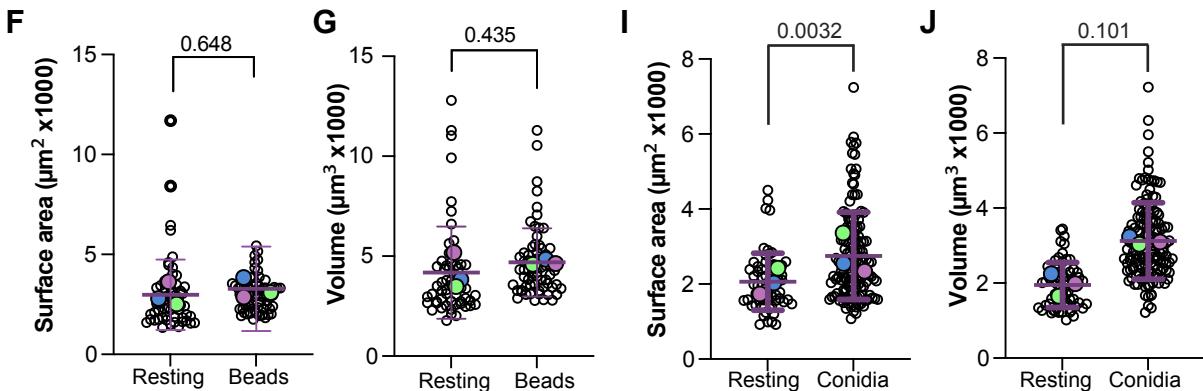
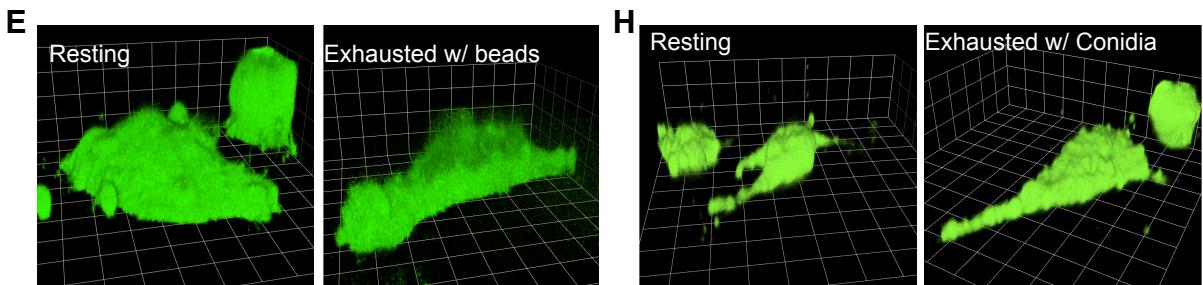
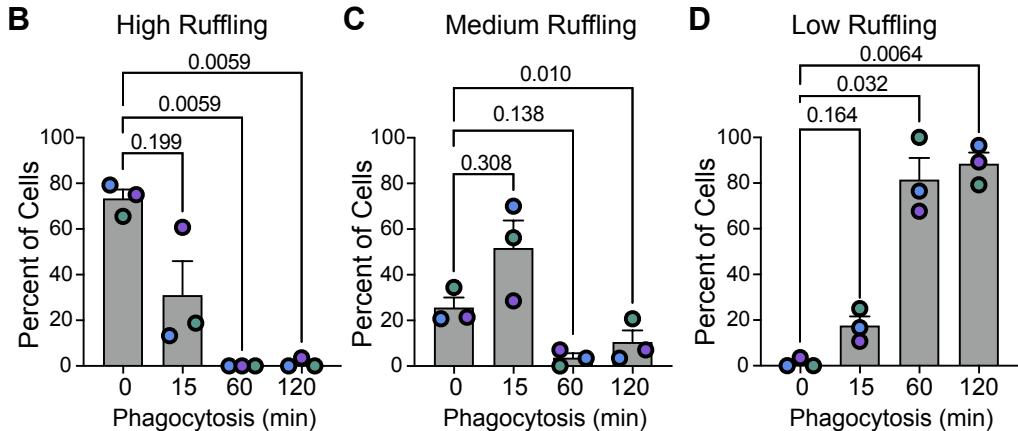
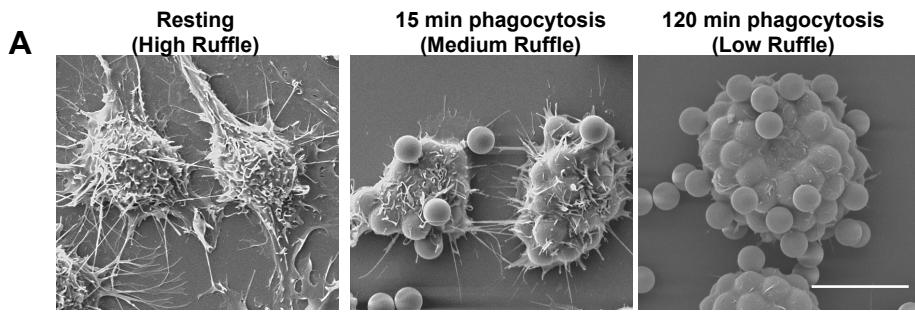
1317 **Supplemental Figure S3: Reduction in endo-lysosomal like organelles in exhausted RAW**
1318 **and primary macrophages.** **A.** Naïve RAW cells expressing VAMP3-mCherry (top) or after
1319 engulfing filamentous *Legionella* (grayscale). Dashed lines show the outline of macrophages.
1320 Scale bar = 10 μ m. **B.** Representative electron micrographs of naïve RAW^{Dectin1} macrophages
1321 (left) or after 2 h of phagocytosis of yeast (darker structures within macrophages). Yellow arrows
1322 indicate organelles that resemble endosomes/lysosomes/autophagosomes. Scale bar = 500 nm. **C.**
1323 Number of endosome-lysosome-like structures per macrophage. Each data point is the number of
1324 yeast visible in an 80 nm ultrathin section, with 41 and 26 resting and exhausted macrophages
1325 scrutinized from N=2 experiments (blue dots from experiment 1, pink from experiment 2). **D:**
1326 BMDMs from male (squares) and female (circles) mice were given no particles (Mock
1327 phagocytosis, lanes 1-3) or allowed to engulf IgG-opsonized magnetic beads (Magnetic beads,
1328 lanes 4-6) for 2 h. Phagosomes were then magnetically isolated and analyzed with Western Blot.
1329 LAMP1 and VAMP3 abundance were probed as a proxy for lysosome and endosome content,
1330 respectively. GAPDH was used as a loading control in whole cell lysates (WCL) and post-
1331 magnetic fraction (PML) is content remaining in lysate after magnetic separation; Magnetic
1332 phagosome fraction is represented by M. **E, G:** Quantification of percent LAMP1 (E) and
1333 VAMP3 (G) remaining in lysate after magnetic separation. Percent remaining protein is defined
1334 as the percent ratio of GAPDH-normalized protein content in the PML fraction (lanes 2 and 5 for
1335 mock phagocytosis and magnetic beads, respectively) to GAPDH-normalized protein content in
1336 the WCL fraction (lanes 1 and 4 for mock phagocytosis and magnetic beads, respectively). **F, H:**

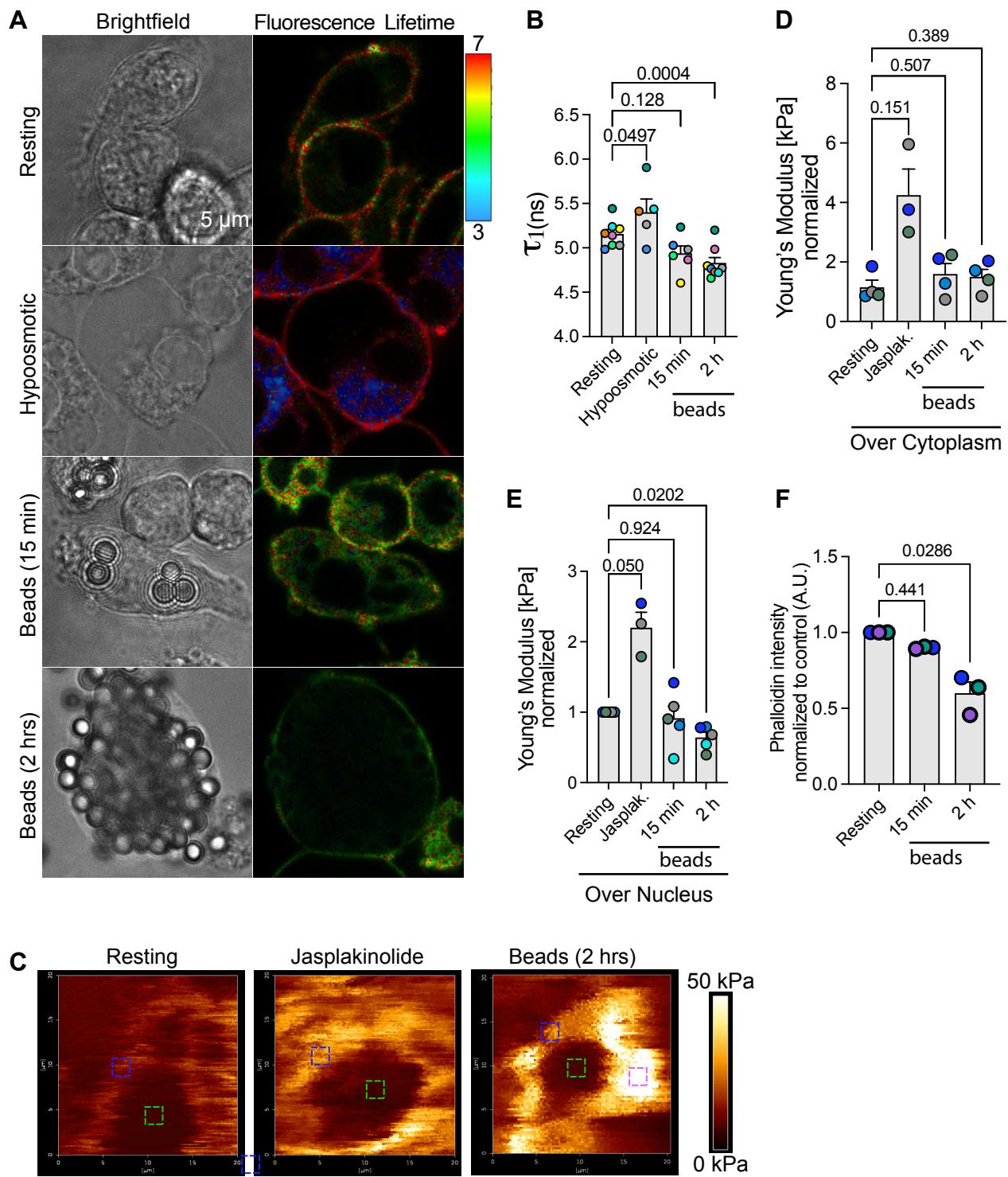
1337 Analysis in E and G, respectively, but normalized to mock phagocytosis to account for
1338 experimental variation in absolute values. Data represented as mean \pm STD of N=3 independent
1339 experiments. Sample means were compared using two-tailed, paired Student's t-test. *: p<0.05;
1340 **: p<0.01 (E, H) or with the one sample t-test (F, I).

1341

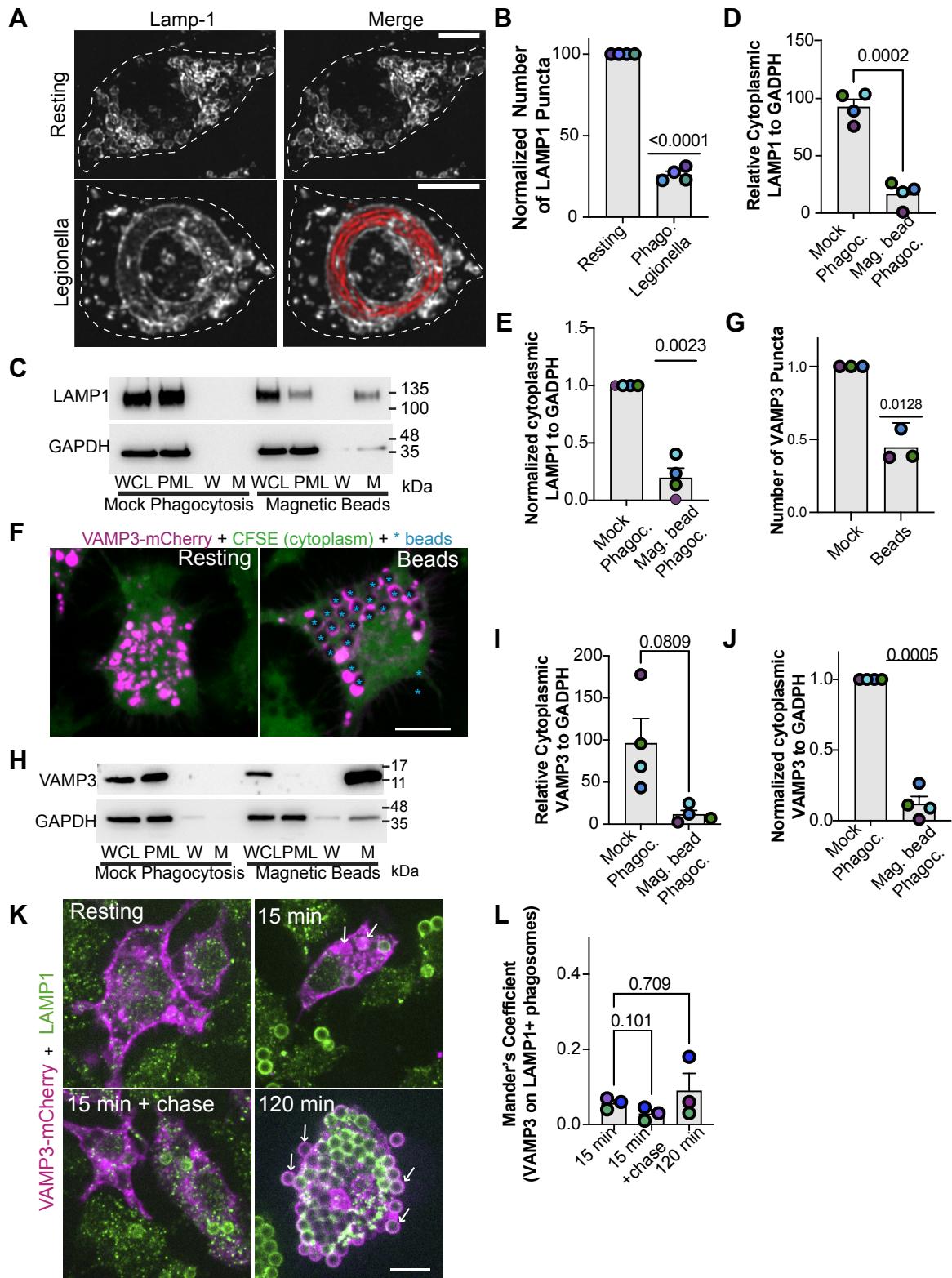

1342 **Supplemental Figure S4: Cortical F-actin is abated in exhausted primary macrophages. A,**
1343 **C:** BMDMs derived from male and female mice were fed IgG-coated 3 μ m beads (A) or IgG-
1344 opsonized sRBCs (C) for 0, 15, or 120 min and then fixed and stained with phalloidin (magenta,
1345 F-actin) and DAPI (nuclei, cyan). sRBCs were also stained with anti-rabbit antibodies (C,
1346 grayscale). Scale bar = 10 μ m. **B, D:** F-actin levels based on normalized phalloidin fluorescence
1347 from z-stacks collapsed by sum-intensity per cell from N=5 independent experiments using 10
1348 images (3-8 cells per image) per sex per condition per experiment. Circle and square icons
1349 respectively represent means acquired from female and male mice. Data are represented as mean
1350 \pm SEM and were analysed by the Friedman test (B) or Kruskal-Wallis test (D, difference is due
1351 to a missing sample for the 15-min condition) and Dunn's post-hoc test; p-values are indicated.

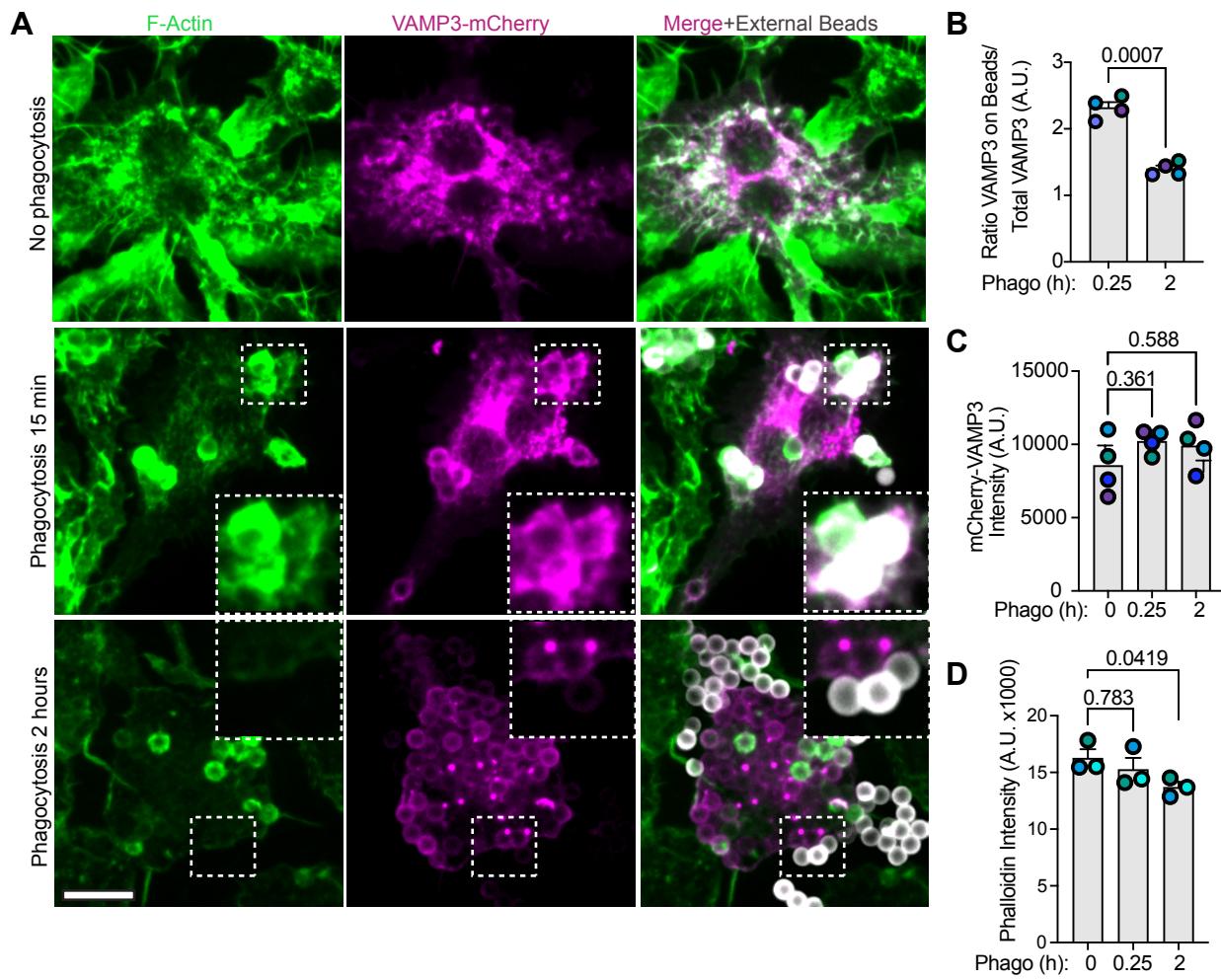

1352

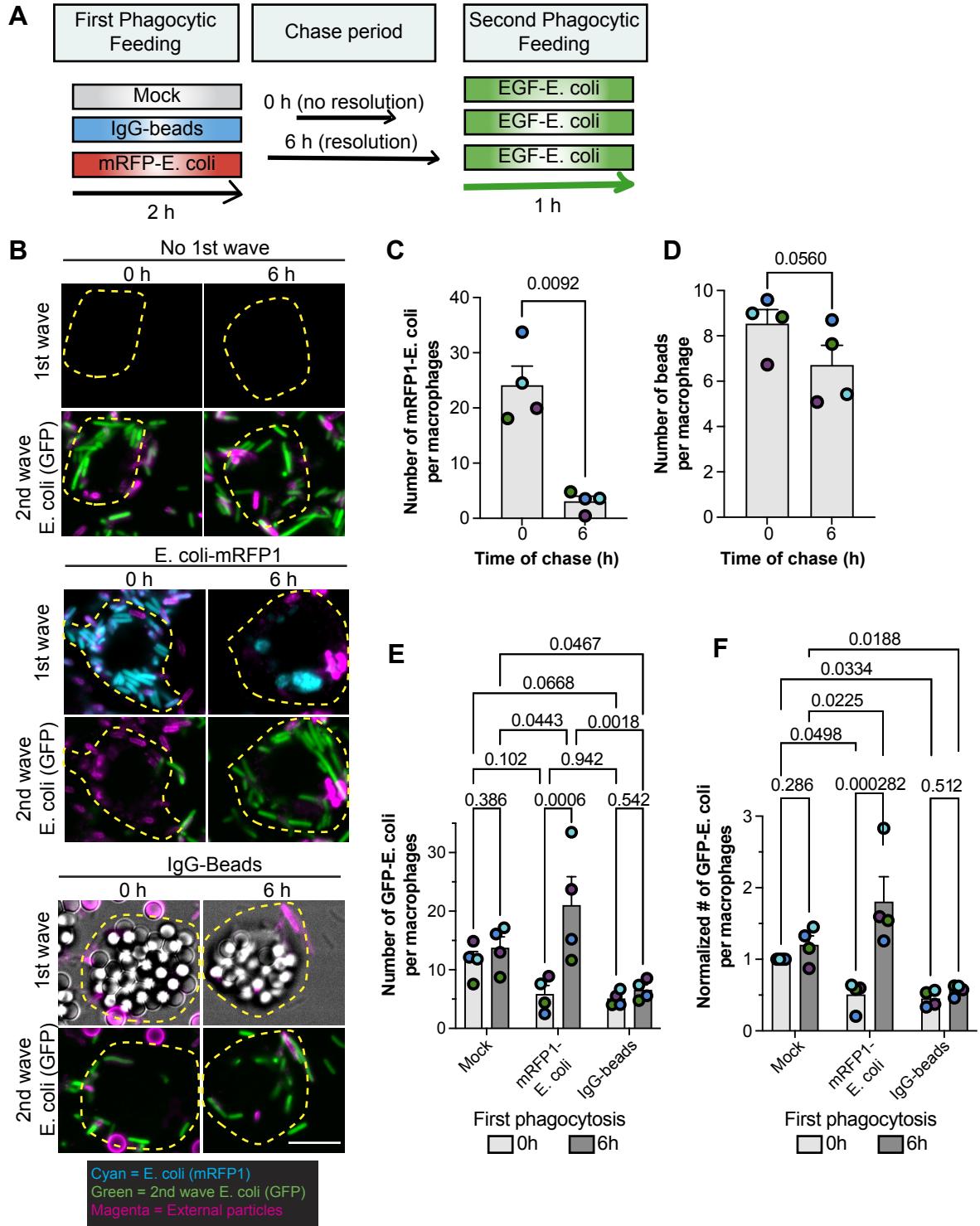




1353 **Supplemental Figure S5: Particle size may affect the mechanism of phagocytic exhaustion.**
1354 **A.** Representative orthogonal confocal planes of RAW macrophages at rest or after 3 h of
1355 engulfing 1.1 or 6.15 μ m IgG-coated beads. Z-stacks were acquired from top to bottom of cells.
1356 Shown at the X-Y plane is a slice near the site of cell attachment to the coverslip. YZ and XZ
1357 orthogonal views are shown corresponding to the yellow lines. Scale bar = 10 μ m. **B.** Estimated
1358 number of beads in macrophages after 3 h of phagocytosis. **C, D.** Total surface area (C) and total
1359 volume (D) of all phagosomes in cells at capacity. This was estimated based on the total


1360 phagosomes in *A* and the radius of each bead using surface area and volume formula for a
1361 sphere. Data are shown as the mean \pm SEM of N=3 independent experiments based on 30 cells
1362 per condition per experiment. Sample means were statistically tested by repeated measures one-
1363 way ANOVA and the post-hoc Tukey's test. p values are disclosed.

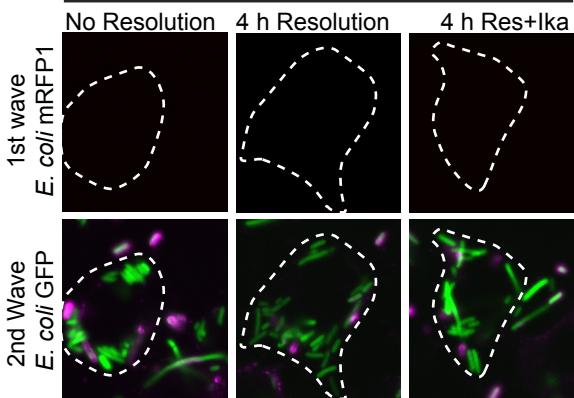
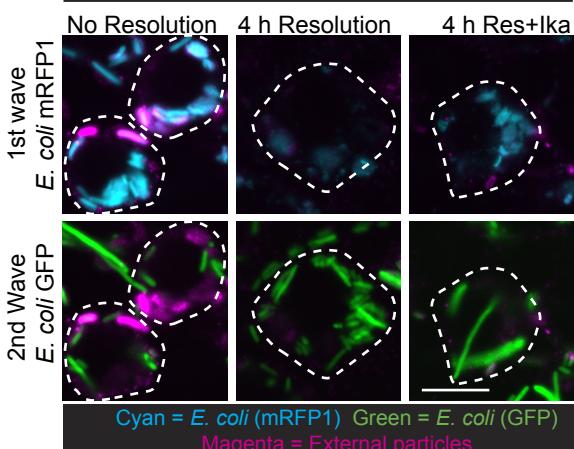
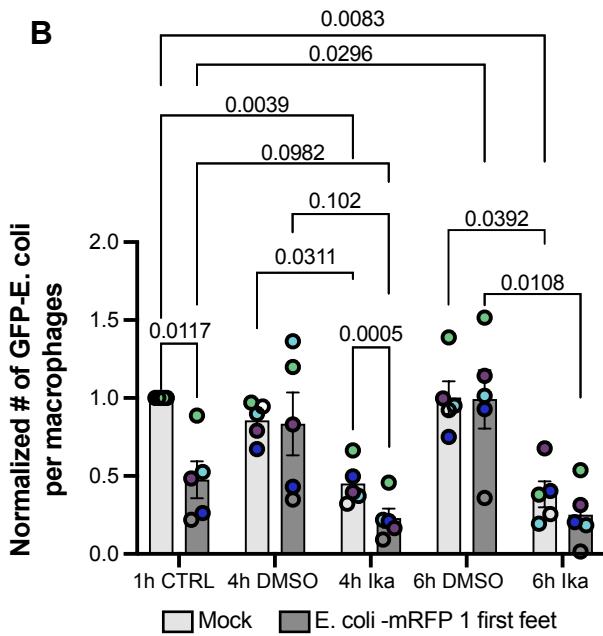
1364






Fountain et al., Figure 4

Fountain et al., Figure 5




Fountain et al., Figure 6

Fountain et al., Figure 7

A

1st feeding: None

1st feeding: *E. coli* mRFP1**B**

Fountain et al., Figure 8