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Abstract

Neuroendocrine tumors (NETSs) occur primarily in the small intestine, lung and pancreas.
Due to their rarity compared to other malignancies in these organs, their complex biology
remains poorly understood, including their oncogenesis, tumor composition and the
intriguing phenomena of mixed neuroendocrine non-neuroendocrine neoplasms (MiNEN).
Here we profiled ten low-grade small intestine NET (SiNET) samples as well as one mixed
lung tumor by single-cell or single-nuclei RNA-seq. We find that SINETs are largely
separated into two distinct subtypes, in which the neuroendocrine cells upregulate
epithelial or neuronal markers, respectively. Surprisingly, in both subtypes the
neuroendocrine cells are largely non-proliferative while higher proliferation is observed in
multiple non-malignant cell types. Specifically, B and plasma cells are highly proliferative
in the epithelial-like SINET subtype, potentially reflecting the outcome of high Migration
Inhibitory Factor (MIF) expression in those tumors, which may constitute a relevant target.
Finally, our analysis of a mixed lung neuroendocrine tumor identifies a population of
putative progenitor cells that may give rise to both neuroendocrine and non-neuroendocrine
(squamous) cells, potentially explaining the origin of the mixed histology. Taken together,
our results provide important insights and hypotheses regarding the biology of
neuroendocrine neoplasms.
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Introduction

Neuroendocrine cells are present throughout the body and are thought to give rise to
neuroendocrine tumors (NETS) in multiple organs. Small intestine NETs (SINETS) have
the second highest incidence, after lung NETs [1]. Histopathological grading of SINET is
based on mitoses rate and on the Ki67 proliferation index, with low-grade comprising G1
and G2, and high-grade comprising G3. In addition, neuroendocrine carcinomas (NECs)
are included in the G3 category, and have poorly differentiated histopathological
appearance [2].

The majority of SINETs are low grade well-differentiated tumors, usually diagnosed at
advanced stages and often present with metastases and stage 1V tumor, highlighting their
high metastatic potential [3]. Interestingly, SINETs are often multifocal, with a common
finding of synchronous multiple primaries along the small intestine [4, 5]. Two recent
studies demonstrated that synchronous SINETs primaries within the same individual
usually do not share somatic alterations, indicating that they arise from different cell clones
[6, 7].

SINETSs are usually sporadic, with a surprisingly low mutational burden or recurrent
mutations, and show mainly chromosomal alterations [8-10]. The most frequent
chromosomal aberration found in SINETS is the loss of chromosome 18 as seen in 61-89%
of patients [11]. In a cohort of 180 SINETS, the most frequent mutation (found in 8% of
tumors) were heterozygous frameshift mutations of CDKN1B, encoding the p27 cyclin
regulator, suggesting a role of cell cycle deregulation in the progression of SINETSs [12].
Further studies reported heterogeneity of the CDKN1B mutations even among lesions of
the same patient [13]. Overall, there is a limited frequency and consistency of genetic
aberrations in SINETS, of which mechanisms of initiation and progression remain poorly
understood.

Another intriguing phenomenon with respect to the large group of neuroendocrine
neoplasms (NENS) is that they are sometimes accompanied by a carcinoma component,
resulting in “mixed” neuroendocrine non-neuroendocrine neoplasms (MiNEN) [14]. For a
NEN to be termed mixed, it is necessary for each component to comprise at least 30% of
the tumor, suggesting that many additional tumors may have both components but are not
recognized as MIiNEN. The origin of MiNENs remains unknown, and their complexity
hinders conventional treatment approaches.

In this study, we sought to investigate the molecular characteristics of SINETS to uncover
novel insights into their oncogenic transformation, the resulting tumor ecosystems, and
potential vulnerabilities. To this end, we applied single-cell transcriptomics to SINETSs a
well as to one MiNEN.
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Results
Single cell and single nuclei RNA-seq profiling of SINETS

To understand the tumor ecosystem of low-grade SINETS, we generated scCRNA-seq
profiles for ten primary tumor samples from eight patients using 10x Chromium (Table
S1). We profiled single cells from three fresh surgical samples (SINET1-3) and single
nuclei from the remaining seven frozen samples (SINET4-10). After initial quality controls,
we retained 29,198 cells from the ten samples (see Methods). For comparison, we also
profiled one fresh small intestine adenocarcinoma (SiAdeno) and included it in our
analyses.

We identified clusters of cells in each tumor and annotated them based on the expression
of known marker genes as neuroendocrine (NE) cells, and as tumor microenvironment cells
(TME) cells including T cells, B/plasma cells, macrophages, fibroblasts, endothelial cells,
epithelial cells and natural killer (NK) cells (Table S2). While NK cells were detected only
in one sample, the other six types of TME cells were each detected in multiple samples,
and these exactly correspond to the TME cell types that are commonly detected in SCRNA-
seq analyses of other cancer types [15]. The Clustering and marker expression of two
exemplary SINETSs are shown in Fig. 1A-D, and the remaining tumors are shown in Fig.
S1. Cell type proportions varied considerably between tumors (Fig. 1E). In five tumors NE
cells were the most frequent, while other tumors had the highest frequency of other cell
types, such as endothelial, fibroblast, epithelial or T cells. The unique composition of each
tumor sample likely reflects a combination of tumor-specific biology with spatial sampling
within the tumor. Technical effects (e.g. single cell analysis of fresh samples vs. frozen
single nuclei analysis of frozen samples) could also impact the capture of distinct cell types,
although we did not observe a clear pattern of such bias.
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Figure 1. Cellular composition of SINETs as determined by single cell and single nuclei
sequencing. (A,B) UMAP plots showing the diversity of single cells from SINET2 (A) and SINET5
(B), colored by their cluster assignment. (C,D) Cluster annotations (top bar) in SINET2 (C) and
SINETS5 (D) are supported by the expression of canonical cell type markers (rows). Also shown are
three cell cycle markers (bottom rows) (E) Cell type frequencies in each of the 10 SiINETS that we
profiled, along with one SiAdeno sample.
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Shared NE-specific genes define an SINET transcriptomic signature

We next focused on the NE cells and defined both their common and their variable
expression profiles across patients. To this end, we examined the eight samples (one per
patient) in which we identified NE cells. We first compared NE cells from each tumor to
non-NE cells from the same tumor and identified all genes that are highly upregulated in
NE cells. Twenty-six genes were consistently upregulated in NE cells from most tumors
(n>5) and hence were defined as common NE-specific genes (Fig. 2A).

The common NE-specific genes could potentially serve as a transcriptomic signature for
SINETSs. However, they may also include generic markers of NETs that are not unique to
SINETS. To examine the specificity of this signature, we examined their relative expression
in a bulk RNA-seq dataset that contains NETs of the small intestine, pancreas and rectum
[16]. Almost all signature genes were preferentially upregulated in NETs of the small
intestine compared to the other NETS, suggesting that they reflect an efficient SINET
signature (Fig. 2B, Table S3). The signature genes include known markers of SINET [17]
as well as of enterochromaffin cells [18], such as CHGA, CHGB, and TPH1. While some
of these markers are not unique to SINETS, the bulk RNA-seq data suggests that, at least
at the mRNA level, they are higher expressed in SINETS than in other NETSs. These genes
were most significantly enriched with gene-sets associated with neuroendocrine-related
functions such as exocytosis, Neurosecretory vesicle, and serotonergic synapse (all with
adjusted P < 0.001).

Heterogeneity of NE cells reveals two SINET subtypes

However, many more genes were found as upregulated in NE cells of only few of the
SINETS, and these were separated into tumor specific (n=1, see Fig. S2A) and subset-
specific (between 2 and 5 tumors). Subset-specific genes may help to uncover functionally
distinct subtypes of SINETs and therefore we investigated them further. These genes
exhibited nine distinct expression patterns across eight SINET samples from eight distinct
patients (Fig. 2C, Table S3). Notably, pattern #1, which was associated with the largest
number of genes (n=26), was highly expressed in three tumors that had low expression of
all other eight patterns. In contrast, the other five tumors highly expressed genes from
multiple patterns and had low expression of pattern #1 genes. This analysis highlighted a
division of the eight SINETS into two primary subtypes based on pattern #1 vs. all other
patterns. Notably, the same subtype division was clearly detected by clustering of the
SINETSs based on the global expression profiles of NE cells in each tumor (Fig. 2D).

The first subtype (SINETs 1, 2 and 9) was associated with upregulation of 129 genes,
including the epithelial markers EPCAM and KRT8 (Table S4). While this subtype
included the two fresh samples (SINETs 1 and 2) it also included one frozen sample
(SINET9) and therefore is unlikely to reflect technical confounders. The second subtype
(SINETs 4, 5, 7, 8 and 10) was associated with upregulation of 73 genes, including
neuronal-related genes such as NAV3, RYR2, CACNA1A/B, KCNIP1. This led us to
speculate that even though both subtypes express the neuroendocrine markers described
above (i.e. common genes), the first subtype may have higher overall similarity to epithelial
cells compared to the second subtype, which might have more neuronal features.
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To examine this possibility, we evaluated the expression of other cell type signatures across
NE cells from the two SINET subtypes (Fig. 2E). Signatures of multiple epithelial cell
types from the small intestine or from the lung, including those of enteroendocrine cells,
were expressed more highly in subtype 1 than in subtype 2 SINETSs. Nevertheless, the
expression of such epithelial signatures was considerably lower in NE cells from subtype
1 tumors than in bona-fide epithelial cells such as the non-malignant epithelial cells
identified in SINET6 or the malignant cells in the SiAdeno tumor. Thus, epithelial
signatures are upregulated in subtype 1 tumors but not at the same level as in bona-fide
epithelial cells. Conversely, signatures of neuronal cell types had the opposite expression
pattern — highest in subtype 2 SINETS, intermediate in subtype 1 SINETs and lowest in
bona-fide epithelial cells. Based on these results we renamed subtypes 1 and 2 as the
epithelial-like and neuronal-like SINET subtypes.
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Figure 2. SINETS broadly classify into two major subtypes (A) Bar plot showing the number of upregulated
genes against a common threshold, number of genes (y-axis) vs number of tumors (x-axis). (B) Heat map
showing a list of 25 representative genes that define SINET signature of our SCRNA seq cohort used to cluster
NET samples from a bulk-seq dataset [16]. Type of NET is color coded on the top panel, with P-NET and RE-
NET referring to pancreatic and rectal NETs. (C) Heatmap representing clustering of SINET samples in our
cohort based on genes that were differentially expressed and shared between 2-5 samples, showing two major
variable gene programs (D) Correlation heat map between the NET samples. (E) Heatmap showing average
expression of epithelial and neuronal gene-sets (rows) in the neuroendocrine and epithelial cells from our SINET
samples (columns). Epithelial gene-sets include signatures of multiple cell types from the small intestine [18],
and neuronal gene-sets include three clusters of neurons [36]. (F) Heatmap of the SINET dominated cluster from
the bulk dataset [16] was subjected to differential expression analysis using the same set of genes as (C).

To validate the existence of these two SINET subtypes, we turned to analyze an external
bulk RNA-seq dataset of SINETs [16]. The signal of NE cells is diluted in bulk RNA-seq
due to the profiling of entire tumor samples, and especially given the wide diversity of cell
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type compositions that we observe in single cell analysis (see Fig. 1E). However, we
wondered whether we would still be able to detect the two subtypes when directly
analyzing the subset-specific genes defined above. Indeed, the 81 SINET bulk profiles
could be separated into the epithelial-like and neuronal-like subtypes based on expression
of pattern #1 genes vs. the genes of the other patterns (Fig. 2F). Moreover, the proportion
of the two subtypes (20% vs. 80%) were comparable to those seen in our single cell cohort
(30% vs. 70%). This analysis supports the generality of the two SINET subtypes and their
independence from the potential confounding effects of fresh vs. frozen samples in our
data, that do not affect the bulk RNA-seq dataset.

Heterogeneity in the SINET tumor microenvironment

Next, we examined the diversity of cellular states within each non-NE cell type of the
tumor microenvironment (TME). For each cell type, we analyzed the diversity within each
tumor, searching for distinguishable subpopulations of cells, their occurrence across
tumors and their potential functional implications (see Fig. 3). Below we briefly describe
the three most notable cases of diversity within cell-type that we observed.

Among fibroblasts, we found the highest diversity in SINET8, with three distinguishable
subpopulations (Fig. 3A). To understand their differences, we both conducted a differential
expression analysis (Fig. 3B) and compared their profiles to recently described fibroblast
signatures [15] (Fig. 3C). This analysis indicated that cluster 1 resembles other cancer-
associated fibroblasts (CAFs), while cluster 2 and 3 are distinguished by specific
expression profiles. Cluster 3 cells were primarily distinguished by expression of MHC-11
genes and are thus consistent with previous observations of antigen-presenting CAFs [19].
Cluster 2 cells upregulate several programs of pericytes and myofibroblasts, but are further
distinguished by upregulation of four ABC-transporters (ABCA6, ABCA8, ABCA9 and
ABCA10). To our knowledge, such consistent upregulation of multiple ABC transporters
was not observed in previous analysis of CAF heterogeneity [20, 21]. Yet, in our data,
upregulation of ABC transporters was also detected in a subset of CAFs from SiINET3 and
SINET5 (Fig. S3A-D). These results suggest a unique feature of CAFs in a subset of
SINETS, possibly due to the unique microenvironment of SINETS.

Among endothelial cells, we found two highly distinct subpopulations in SINET5 (Fig.
3D-E). Comparison to pan-cancer endothelial signatures mapped the smaller
subpopulation to the Endo2 poorly described signature that was detected primarily in lung
and skin tumors [15] (Fig. 3F). Similar subpopulations of endothelial cells were also
detected in SINET2, highlighting the Endo2 signature as a recurrent pattern of subsets of
SINET endothelial cells (Fig. S3E-F).
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Figure 3. Heterogeneity in the SINET tumor microenvironment. For each of three non-malignant cell types, the
diversity of that cell type is shown in one exemplary tumor: fibroblast heterogeneity in SINET8 is shown in (A-C),
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Among B cells, two distinct populations were found in SINET2 (Fig. 3G). Differential
expression showed that the small B cell subpopulation is distinguished by upregulation of
many cell cycle genes including canonical markers (MKI67, TOP2A, CDK1), reflecting
proliferating B cells (Fig. 3H-1). Moreover, we noticed that, among all SINET2 cells, the
canonical cell cycle markers are expressed in B cells more than in all other cell types,
including the malignant NE cells (Fig. 1C). This observation prompted us to turn our
attention to cell cycle patterns across all cell types within the SINETS.

Proliferation of NE and immune cells in SINETs

Most SINETSs are low-grade tumors with a low mitotic index, but the exact identity of
proliferating cells in SINET is unknown. We used previously defined signatures of the cell
cycle to identify all cycling cells. Notably, as we and others demonstrated previously [15,
22, 23], cell cycle involves the consistent upregulation of dozens of canonical genes and
therefore the cycling cells can be robustly detected by scRNA-seq along with their phase
along the cell cycle (Fig. S4).

Surprisingly, extremely few cycling cells were observed among the malignant NE cells
(0.246% on average) (Fig. 4A). This fraction is considerably lower than what we detect in
other cancers types [22], and as an extreme example from the same dataset, in the SiAdeno
sample we find ~13% of cycling epithelial cells using the same method (Fig. S4). Notably,
the fraction of SINET cycling cells was lower for NE cells than for all other cell types
identified in the SINET ecosystem (Fig. 4A,; see also Fig. 1C,D). Relatively high fractions
of cycling cells (>10%) were found only in epithelial or in B/plasma cells. Epithelial cells
were only detected in two tumors, and of those only in one tumor they had a high fraction
of cycling cells. In contrast, B/plasma cells were detected more commonly — in eight
tumors —and in three of those they had a high fraction of cycling cells. The other cell types
all had low-to-intermediate fractions of cycling cells across all SINETS, but even those
fractions were consistently higher than for the NE cells.

Thus, at least in our SINET cohort, proliferation is associated with the tumor
microenvironment rather than with the NE cells. Notably, both the low proliferation of NE
cells and the higher proliferation of immune cells (especially B/plasma cells, but also T
cells and macrophages) were consistently observed in both fresh samples analyzed by
single cell RNA-seq (SINET1 and 2) and frozen samples analyzed by single nuclei RNA-
seq (SINET1 and 2) and therefore are independent of platform and the potential biases in
capture of specific cell types. This result raises intriguing questions regarding the manner
by which SINETSs grow, and the meaning of their mitotic index (see Discussion).

Next, to ensure that this result is not unique to our cohort we reanalyzed bulk RNA-seq
data of 81 SINET samples [16]. We reasoned that if NE cells are a major source of
proliferation, then cell cycle signatures should correlate with the expression of NE marker
genes across bulk SINET samples. Similarly, if other cell types, such as B cells or T cells,
are more proliferative than the NE cells, then their markers should correlate with the cell
cycle signature. As expected from the single cell analysis, we found that cell cycle
signature significantly correlates positively with B cell markers, and to a more limited
degree with T cell markers, but not with NE markers (Fig. 4B), supporting the broader
relevance of our results.
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Figure 4. Cell cycle analysis reveals proliferating B cells in SINETS. (A) Bars show the percentage of cycling cells (y-
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expression of MIF in each SINET cell type, for each of the two SINET subtypes.
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B cell proliferation and MIF upregulation in the epithelial-like SINET subtype

One potential explanation for the high proliferation of B cells is that our SINET samples
may have included germinal centers (GC), in which B cells are expected to proliferate. To
assess this possibility, we scored the B cells for a previously defined GC signature [24].
While two tumors with high B cell proliferation also had high GC scores, this was not the
case for the third tumor (Fig. S5). Thus, inclusion of GCs may partially explain the unusual
proliferation of B cells.

An alternative possibility is that B cells proliferate in response to particular signals in the
SINET microenvironment, for example, due to factors secreted by other cells. The
proliferation of B/plasma cells was high only in three of the SINETs and was absent or low
in five other SINETs (Fig. 4A). Intriguingly, all of the epithelial-like SINETs had high
B/plasma cell proliferation and all of the neuronal-like SINETs (in which B/plasma cells
were detected) had low proliferation of those cells. This perfect agreement with SINET
subtypes suggests that the unique features of the epithelial-like subtype may drive the
proliferation of B/plasma cells. To identify such features, we defined the differential
expression between the two subtypes for each cell type (Table S4).

This analysis highlighted Macrophage Migration Inhibitory Factor (MIF) as a prominent
marker of the epithelial-like subtype that could potentially drive the proliferation of
B/plasma cells. First, MIF was one of the top markers of the epithelial-like subtype in our
analysis of NE cells (Fig. 2C), and a closer inspection reveals an extreme degree of
differential expression, with almost no detected reads in the neuronal-like subtype and a
consistently high expression in the epithelial-like subtype (Fig. 4C). Second, upregulation
of MIF in the epithelial-like subtype was also detected all other cell types, although the
effect was strongest in NE cells (Fig. 4C). Such consistent upregulation across six different
cell types is not seen for any other genes, highlighting the unique upregulation of MIF in
the ecosystem of the epithelial SINETS, and supporting its potential causal effect in driving
other phenotypes such as B/plasma cell proliferation. Third, MIF is an important cytokine
that binds CD74 and was previously shown to regulate B cell proliferation by multiple
studies [25, 26].

Putative progenitors in mixed tumors

Apart from our focus on SINET, we were intrigued by the phenomena of MIiNEN and
aimed to profile such tumors by single cell RNA-seq. Due to their rarity and the difficulty
of recognizing mixed tumors prior to their surgery, we were so far able to profile only one
such tumor. This tumor was a Large Cell Neuroendocrine Carcinoma of the lung (LCNEC),
mixed with a squamous cell carcinoma. While this tumor is highly different from SiNETS,
we believe that this N-of-1 case study is of interest and raises important questions that
might also be of relevance for SINET and other NENs and hence we describe its analysis
below.

We profiled the fresh LCNEC tumor sample by sScRNA-seq using the 10x Chromium. Cells
were first classified as malignant or non-malignant, based on inference of copy-number
aberrations, as described previously [27] (Fig. 5A). Clustering of the non-malignant cells
and annotation of the clusters based on standard markers separated them into fibroblasts,
endothelial cells, macrophages, T cells and B cells (Fig. 5B).
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We found extensive diversity among the malignant cells, which highlighted several
subpopulations of cells (Fig. 5B-C). These include the two malignant components expected
based on the classification as a mixed tumor — neuroendocrine cells (e.g. expressing CHGB
and SSTR2) and epithelial squamous cells (e.g. expressing KRT5 and KRT8). The
epithelial cells further varied in their expression of a program that we previously termed
“epithelial senescence” [28], which was indeed associated with lack of proliferation (Fig.
5D). Interestingly, we also found additional subpopulations of malignant cells with
intermediate expression levels of both the neuroendocrine genes and the squamous genes
(Fig. 5E). The “intermediate” cells included two clusters that we termed undifferentiated
and progenitors, since they were distinguished by expression of developmental and
stemness-related regulators (Fig. 5C). These include the homeobox transcription factors
PBX1 and PROX1 [29, 30], The RNA-binding protein MSI2 [31], the WNT-related TCF4
[32, 33], and the NOTCH-related transcription factor HES6 [34] (Table S5). All four
malignant populations were highly proliferative, except for the subset of squamous cells
that express the epithelial senescence program (Fig. 5D). The progenitor cluster, with
intermediate expression of the two lineage programs and upregulation of stemness factors,
is consistent with the possibility that stem/progenitor cells may give rise to the two
differentiated components that constitute the mixed phenotype. Additional MiNENs would
need to be profiled at single cell resolution to explore the generality of this observation.

|
gl &
i
G1S

|

=
N
o

L
4
Progenitor

Inferred CNA
log2 ratio]
1

| Neuroendo.

1
{ o
|
1

-1

Senescence Epi

c Epithelial Progenitor Undifferentiated Neuroendo.

SPRR1B
S100A8
= LoN2

Expression

Cells
d e
Cancer cells: —
@ Epithel ool
® Neuroendocrine
@ Progenitor/Cycling
Unresolved
@
8 40|
£ o
3
3 ]
2 a
Non-cancer cells: 9
B cells °
@ Tecells 20| £
® Macrophages @
® Endothel g_
® Fibroblasts a
%\ S
L 8 ol o i
I A
A A g 5 i
-25 0 25 50 R & P :
t-SNE dim1 « N Neuroendocrine score


https://doi.org/10.1101/2024.07.29.605642
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.29.605642; this version posted April 8, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figure 5. A putative progenitor population in mixed LCNEC. (A) Copy number variation (CNV) profiles inferred from
ScCRNA-seq data for all cells from the LCNEC sample. Malignant and non-malignant cells are annotated based on their CNV
profiles, using the same color codes as in next panels. (B) tSNE plot showing the diversity of single cells from the mixed lung
tumor, colored by their clustering. (C) Heatmap shows relative expression of differentially expressed genes (rows), separated by
horizontal lines into programs that distinguish between the four populations of cells detected in the LCNEC sample. Also included
are two cell cycle programs (G1/S and G2/M). Columns correspond to malignant cells, separated into the four populations by
vertical lines and as indicted by color at the top. Selected genes are labeled for each program. (D) Bars show the percentage of
cycling cells in each malignant cluster. (E) Malignant cells scored against an epithelial vs. neuroendocrine programs (gene set),
colored by their assignment into four populations.

Discussion

ScCRNA-seq is a promising approach to improve our understanding of SINET biology, and
in particular their composition and diversity. A recent study described sSCRNA-seq analysis
of NETs but only had samples from two SINET patients and had enrichment of immune
cells with a limited amount of NE cells [35]. Here, we profiled at single cell resolution ten
SINET samples from eight patients and focused our analysis primarily on the NE cells.
While low-grade SINETSs are known to have a low mitotic index, any cancer is driven by
cell proliferation such that malignant cells are expected to have higher cell cycle activity
than non-malignant cells. Surprisingly, this does not seem to be the case in our analysis of
SINETSs, where malignant cells appear to be less proliferative than multiple types of non-
malignant cells. In such cases, it is conceivable that pathological evaluation of tumor
proliferation (Ki67 counts) may be confounded by non-malignant cycling cells and
therefore inflated. But a more fundamental question is how could those tumors initiate and
progress when the NE cells appear to be largely non-proliferative?

We can envision multiple potential answers although further studies are needed to resolve
these possibilities. First, since growth is determined by the balance between cellular
proliferation, death and migration, SINETs may still grow despite their very low
proliferation through abnormally low death or abnormal patterns of migration. We are not
aware of any evidence in support of this possibility but cannot exclude it. Second,
proliferation of NE cells may be inhibited by prior treatments with Somatostatin analogues.
Third, proliferation may be spatially or temporally restricted. Accordingly, higher
proliferation may occur only in particular niches or at a particular time of tumor
progression. This possibility could be examined in future work using spatial omics.

A related possibility is that proliferation may be restricted to a hidden stem/progenitor
population that we have not captured, either because it is rare or because it may be sensitive
to our experimental workflows. Such proliferative stem/progenitor cells were described in
other cancer types and are consistent with the cancer stem cell hypothesis. For example,
we previously described the cellular hierarchy of oligodendroglioma, in which
proliferation is restricted to cells resembling neural progenitor, while the tumor is
dominated by more differentiated cells resembling oligodendrocytes and astrocytes [27].
A second, and more relevant example, is presented here with the N-of-1 analysis of a mixed
LCNEC. In this case, high proliferation is seen across all malignant components, but the
mere presence of a proliferative stem/progenitor population suggests that bipotent
progenitors may explain the diversity within mixed LCNECs and possibly even the wider
phenomena of MiNENSs. The existence and the properties of such bipotent progenitors in
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MiINENs would require further validation by future studies, yet it is tempting to speculate
that such progenitors may also exist in other neuroendocrine tumors (e.g. SINETS).

SINETs deviate from classical oncogenesis not only by their low malignant cell
proliferation, but also by their paucity of mutations and apparent driver events.
Accordingly, previous work proposed that SINET may be driven by epigenetic aberrations
in NE cells or by effects of the TME. Our observation of minimal proliferation in NE cells
supports the latter possibility of TME oncogenic effects. In particular, SINETs of the
epithelial-like subtype are associated with extremely high levels of MIF, an important and
pleiotropic cytokine that may influence the TME in multiple important ways and possibly
create a unique inflammatory TME. One potential effect that we observe is high
proliferation of B or plasma cells. Notably, the three SINETSs of the epithelial-like subtype
are not associated with higher numbers of B/plasma cells compared to other SINETS, but
rather only with increased cell cycle of B/plasma cells, suggesting that their proliferation
is balanced by high death. The implications of high B/plasma cell turnover, and of other
downstream effects of high MIF expression, are unclear, but raise the possibility that MIF-
CD74 interaction may constitute a relevant target for the epithelial-like SINET subtype.
Notably, MIF-CD74 inhibitors have already been developed and initially tested for the
treatment of solid tumors [36-38].

In summary, single cell profiling of SINETS revealed two distinct subtypes that differ in
NE profiles and in the proliferation of B-cells, possibly justifying different therapeutic
strategies (e.g. MIF inhibition). The two subtypes share a minimal proliferation of NE cells,
which raises questions about the initiation and growth of SINETSs and the potential role of
TME cells, in line with the limited mutations observed in SINETSs. Our analysis of a mixed
tumor further suggests the potential presence of bipotent progenitors that may account for
mixed phenotypes. Taken together, these results improve our understanding of
neuroendocrine neoplasms while highlighting their complex biology.
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Methods

Human samples

The study was approved by the Instituntional Helsinkee Committee at Sheba Medical
Center (SMC-18-5674). For tissue preparation for Immunohistochemistry, flash frozen
SINETSs were stored at —80°C until cutting. Blocks were prepared in OCT followed by
freezing and sectioning. Frozen tissue was sectioned using a —20°C temperature on a
cryostat (Leica CM3050 S) onto microscopic slides (Thermo, Superfrost Plus).

Tumor dissociation and library preparation
Fresh tumors were collected directly from the operating room at the time of surgery.
Tumors were washed in ice-cold HBSS, minced using a pair of Noyes spring scissors (Fine
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Science Tools) and then enzymatically dissociated using a tumor dissociation kit (Miltenyi
Biotec) in a GentleMACS Octo-dissociator on low speed settings (Filbin et al., 2018; Patel
et al., 2014; Tirosh et al., 2016b). Single cell suspension was obtained by passing
dissociated slurry through a 60-100 micron cell strainer (Miltenyi) and the filtrate was
subjected to RBC removal using a RBC lysis buffer (Roche). Dead cell removal (Miltenyi)
was performed on cell suspension following manufacturer’s protocol and cells were
assessed for viability and density. 5 pl of Trypan blue (Thermo Fisher Scientific) was
mixed with 5 pl of the sample and loaded onto chip disposable automated hemocytometer
(Countess I1). Cell concentration was adjusted such that a total of 8000-10,000 cells were
loaded onto each channel of the 10x Genomics Single-Cell Chromium Controller.

For frozen tumors, a similar dissociation procedure was performed with the following
modifications. Nuclei isolation was achieved using either ST-based buffers as done before
(Slyper et al) or by EZ-lysis method (Sigma). Briefly, tissue samples were cut into pieces
<0.5 cm using spring noyes scissors and then homogenized in ice-cold buffer (ST based or
EZ lysis) using a glass Dounce tissue grinder (Sigma). Nuclei were centrifuged at 500g,
with low acceleration/deceleration for 5 min at 4 °C, washed with 5 ml ice-cold ST/EZ lysis
buffer and incubated on ice for 5 min. A suspension buffer containing PBS, BSA and
RNAse inhibitor was used to wash and resuspend the nuclei pellet. Nuclei suspension was
filtered through a 40 um cell strainer (Miltenyi) and counted. A final concentration of
1,000 nuclei per pl was used for loading on a 10x channel with a target of 10,000 nuclei
per channel in the 10x controller.

The Chromium Next GEM Single Cell 3" GEM, Library & Gel Bead Kit v3.1, Chromium
Single Cell 3" Feature Barcode Library Kit, Chromium Next GEM Chip G, and 10x
Chromium Controller (10x Genomics) was used for generation of libraries of fresh
tumors/single cells and the Chromium Next GEM Single 5° GEM was used for frozen
tumors/single-nuclei.

As per the standardized protocol of creating 10x libraries, single cells, reagents and single
gel beads containing barcoded oligonucleotides were emulsified and encapsulated into
nanoliter-sized droplets followed by reverse transcription (RT). Following manufacturer’s
recommendations RT samples were subjected to cDNA amplification, fragmentation,
adapter and sample index attachment. Libraries from two 10x channels were pooled
together and sequenced on one lane of an Illumina NovaSeq-6000, using an sp-100 kit or
4 were pooled together on two lanes with an S1-100 kit, with paired end reads as follows:
read 1, 26 nt; read 2, 55 nt; index 1, 8 nt; index 2, O nt.

Sample Normalization, Filtering and annotations

Four samples (SiAdeno, SiNETs 1-3) underwent single nuclei sequencing, while the
remaining samples (SINETs 4-10 and the LCNEC sample) were subjected to scRNA-seq.
To facilitate comparative analysis, we converted counts of unique molecular identifier
(UMI) counts to transcripts per million (TPM) values, which were divided by 10 since the
actual complexity of cells is assumed to be in the realm of ~100,000 transcripts and not 1
million as implied by the TPM measures. The resulting values were added 1 and log2-
transformed. Finally, to derive relative expression we centered the value of each gene in
each tumor, except in analysis where we were interested in absolute expression levels.
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To ensure data quality, we excluded low-quality cells based on the number of detected
genes. For the nuclei-seq platform, we used a threshold of 1000 detected genes, while for
the scRNA-seq platform, we used a threshold of 700 in order to retain lymphocytes that
tend to have low numbers of detected genes. Additionally, we performed most analysis
with a filtered set of genes, retaining only the genes in which the logged row-means per
gene across all cells passed 4.5. After filtering, the number of cells analyzed per sample
ranged from 287 to 10,802.

For further downstream analyses we have avoided the use of integration methods as we
believe that they tend to distort the data and decrease tumor-specific signals. Instead, we
primarily analyzed one tumor at a time and never directly compared cell profiles across
distinct tumors but only compared the differences between subpopulations in a given
tumor; specifically, as described below, we normalized the expression of NE cells by
subtracting the expression of reference non-NE cells from the same tumor as a method to
decrease batch effects.

Neuroendocrine cell signatures and their classification

To identify NE-specific genes, we performed a differential expression analysis between
NE cells and a reference group consisting of Macrophages, Fibroblasts, and Endothelial
cells. For each sample, we sampled 50 NE cells along with 50 cells from the reference
group. Differentially expressed (DE) genes were defined as those with fold change greater
than 8 and a p-value lower than 0.05. False discovery rate (FDR) correction was applied to
the p-values of individual genes to account for multiple comparisons. In samples that had
insufficient reference cells (SINET7 and SINET8), we sampled the reference cells from a
different sample that exhibited the highest correlation with the given sample. Samples that
did not contain NE cells (SINET3 and SiAdeno) or had too few NE cells (SINET6), based
on a defined threshold of 100 cells, were excluded from this analysis. Accordingly, SINET9
was included in the analysis due to its high absolute number of profiled cells (130) which
resulted in a sufficient count of NE cells, despite having a relatively small fraction of NE
cells.

We classified the DE genes into three groups: Common genes, Subset-specific genes, and
Sample-specific genes. Common genes were defined as those differentially expressed in at
least 6 samples, Subset-specific genes were those differentially expressed in 2-5 samples,
and Sample-specific genes were differentially expressed only in one sample.

Clustering of Subset-specific NE genes into nine patterns

We divided the subset-specific NE genes based on their expression pattern across the 8
tumors that contained enough NE cells. To this end, we first considered all potential binary
patterns, in which a gene is considered as either expressed (1) or not expressed (0) in each
tumor. This defined 2® = 256 theoretical patterns. Next, for each gene, we calculated the
correlation between its relative expression across the eight samples, and each of the 256
binary patterns; the gene was then assigned to the pattern with highest correlation. This
uncovered 9 patterns that were each assigned to >5 genes (Fig.2C, Table S3).
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Cell Cycle Analysis

To investigate the cell cycle dynamics within the dataset, we utilized a canonical cell cycle
gene-set [27]. Each cell in every sample was scored based on the expression of these cell
cycle genes. To identify cycling cells, we established a threshold based on the distribution
of scores within each sample. We chose a relatively lenient threshold (log2 fold change of
1.5), and further verified that our main claims are qualitatively maintained when using a
more strict threshold of 2-fold. In particular, NE cells had an extremely low fraction of
cycling cells (0.127%), while B and plasma cells had a high fraction of cycling cells in
epithelial-like SINETs (32.25%) but not in Neuronal-like SiNETs (0.178%).

Within Cell-Type analysis

In each tumor, we examined clusters that were annotated as the same cell type but were not
grouped together in the initial clustering analysis. For each such pair of clusters, we defined
differential expression (with fold change greater than 3 and p-value lower than 0.05) and
analyzed the expression of previously defined meta-programs associated with the
corresponding cell type. FDR correction was applied to the p-values of individual genes to
account for multiple comparisons.

Comparing Gene Expression between SINET Subtypes across Cell Types

We performed a comparative gene expression analysis, examining epithelial-like and
neuronal-like subtypes of SINETs. The significance threshold for gene selection was
established at an uncorrected p-value < 0.05. Due to the limited sample size, we did not
apply an FDR correction but added a second strict criterion of fold change > 4.
Additionally, we extended this analysis to bulk data, where each sample was assigned to
the subtype for which the signature score was higher.

Cell cycle correlations with cell type signatures in bulk SINET samples

From GSE98894, we used the 81 SINET samples. Counts were converted to TPM, and
log2-transformed with an offset of 1. We then averaged the marker genes of Epithelial, T
cells, B cells, NE cells and cell cycle to create scores of their expression. Few outlier
samples with very low NE score were excluded from further analysis. Finally, we
calculated Pearson correlation between the cell-type scores and cell cycle score.
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Subtypes and proliferation patterns of small intestine neuroendocrine tumors revealed by
single cell RNA sequencing
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Figure S1. Cellular composition of SINETS as determined by single cell and single nuclei
sequencing. (A-1) UMAP plots showing the diversity of single cells from each sample, colored by their
clustering.
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Figure S2. Specific upregulated genes expressed in neuroendocrine cells per siNET sample.
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Figure S3. Heterogeneity in the SINET tumor microenvironment. For each of three non-malignant
cell types, the diversity of that cell type is shown in one exemplary tumor: fibroblast heterogeneity in
SINET3 is shown in (A, B), fibroblast cell heterogeneity in SINETS5 is shown in (C, D), and endothelial
heterogeneity in SINET2 is shown in (E, F). For each cell type, panels depict types of analyses. The first
panel (A, C, E) is a UMAP plot of the respective tumor, where only the respective cell type is colored,
and distinct colors highlight the clusters of that cell type. The second panel (B, D) shows differential
expression analysis between the first two clusters using a heatmap, with labeling of selected genes. The
third panel (F) shows clustering of cells from that cell type (columns) based on their relative expression
of previously defined [18] signatures of diversity in that cell type (rows); the top panel shows assignment
of cells to clusters.
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Figure S4. Heat map illustrating the expression of G1/S and G2/M genes across various cell types in
the Epithelial-like Subtype (A), Neuronal-like Subtype (B) and the siAdeno sample (C). The
annotated cell types include Epithelial cells, Macrophages, T cells, and Fibroblasts that were sampled for
illustrative purposes.
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Figure S5. Scatter plot illustrating the percentage of cycling B/Plasma cells and the correlation

between the germinal center signature and cycling B/Plasma cells signature. In SINET1 and SINET2
we observe high correlation between cell cycle and GC score, but not in SINET9.
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