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‭Abstract‬
‭Chromosomal‬ ‭inversions‬ ‭contribute‬ ‭to‬ ‭adaptive‬ ‭speciation‬ ‭by‬ ‭linking‬ ‭co-adapted‬ ‭alleles.‬
‭Querying‬ ‭1,375‬ ‭genomes‬ ‭of‬ ‭the‬ ‭species-rich‬ ‭Malawi‬ ‭cichlid‬ ‭fish‬ ‭radiation,‬ ‭we‬ ‭discovered‬‭five‬
‭large‬ ‭inversions‬ ‭segregating‬ ‭in‬ ‭the‬ ‭benthic‬ ‭subradiation‬ ‭that‬ ‭each‬ ‭suppress‬ ‭recombination‬‭over‬
‭more‬ ‭than‬ ‭half‬ ‭a‬ ‭chromosome.‬ ‭Two‬ ‭inversions‬ ‭were‬ ‭transferred‬ ‭from‬ ‭deepwater‬ ‭pelagic‬
‭Diplotaxodon‬ ‭via‬ ‭admixture,‬ ‭while‬ ‭the‬ ‭others‬ ‭established‬ ‭early‬ ‭in‬ ‭the‬ ‭deep‬ ‭benthic‬ ‭clade.‬
‭Introgression‬‭of‬‭haplotypes‬‭from‬‭lineages‬‭inside‬‭and‬‭outside‬‭the‬‭Malawi‬‭radiation‬‭coincided‬‭with‬
‭bursts‬ ‭of‬ ‭species‬ ‭diversification.‬ ‭Inversions‬ ‭show‬ ‭evidence‬ ‭for‬ ‭transient‬ ‭sex‬ ‭linkage‬ ‭and‬ ‭a‬
‭striking‬ ‭excess‬ ‭of‬ ‭protein‬ ‭changing‬ ‭substitutions‬ ‭points‬ ‭towards‬ ‭selection‬ ‭on‬ ‭neuro-sensory,‬
‭physiological‬ ‭and‬ ‭reproductive‬ ‭genes.‬ ‭We‬ ‭conclude‬ ‭that‬ ‭repeated‬ ‭interplay‬ ‭between‬ ‭depth‬
‭adaptation‬‭and‬‭sex-specific‬‭selection‬‭on‬‭large‬‭inversions‬‭has‬‭been‬‭central‬‭to‬‭the‬‭evolution‬‭of‬‭this‬
‭iconic system.‬

‭Main‬
‭Understanding‬ ‭how‬ ‭biodiversity‬ ‭evolves‬ ‭is‬ ‭a‬ ‭fundamental‬ ‭question‬ ‭in‬ ‭biology.‬ ‭While‬ ‭some‬
‭evolutionary‬ ‭lineages‬‭remain‬‭virtually‬‭unchanged‬‭over‬‭hundreds‬‭of‬‭millions‬‭of‬‭years‬‭(‬‭1‬‭)‬‭,‬‭others‬
‭give‬ ‭rise‬ ‭to‬ ‭a‬ ‭great‬ ‭diversity‬ ‭of‬ ‭species‬ ‭over‬ ‭short‬ ‭evolutionary‬ ‭timescales‬ ‭(‬‭2‬‭)‬‭.‬ ‭Adaptive‬
‭radiations‬ ‭are‬ ‭particularly‬ ‭remarkable‬ ‭examples‬ ‭of‬ ‭explosive‬ ‭diversification,‬ ‭with‬ ‭many‬
‭ecologically,‬ ‭morphologically,‬ ‭and‬‭behaviourally‬‭differentiated‬‭species‬‭emerging‬‭rapidly‬‭from‬‭a‬
‭common‬ ‭ancestor.‬ ‭It‬ ‭is‬ ‭still‬ ‭not‬ ‭well‬ ‭understood‬ ‭how‬ ‭evolutionary‬ ‭lineages‬ ‭can‬ ‭produce‬ ‭such‬
‭bursts‬‭of‬‭organismal‬‭diversity,‬‭but‬‭recent‬‭insights‬‭from‬‭genome‬‭sequencing‬‭point‬‭to‬‭a‬‭widespread‬
‭contribution‬‭of‬‭“old”‬‭genetic‬‭variants‬‭(‬‭3‬‭)‬‭,‬‭often‬‭introduced‬‭into‬‭populations‬‭by‬‭hybridisation‬‭(‬‭4‬‭)‬‭,‬
‭and‬ ‭reused‬ ‭in‬ ‭new‬ ‭combinations‬ ‭that‬ ‭provide‬ ‭adaptation‬ ‭to‬ ‭novel‬ ‭ecological‬ ‭niches‬ ‭(‬‭5‬‭)‬‭.‬ ‭A‬
‭conundrum,‬ ‭however,‬ ‭is‬ ‭the‬ ‭role‬ ‭of‬ ‭meiotic‬ ‭recombination‬ ‭in‬ ‭this‬ ‭process.‬ ‭On‬ ‭the‬ ‭one‬ ‭hand,‬
‭recombination‬ ‭can‬ ‭create‬ ‭beneficial‬ ‭combinations‬ ‭of‬ ‭adaptive‬ ‭alleles‬ ‭(‬‭6‬‭)‬‭.‬ ‭On‬ ‭the‬ ‭other‬ ‭hand,‬
‭recombination‬ ‭can‬ ‭break‬ ‭adaptive‬ ‭combinations‬ ‭apart‬ ‭(‬‭7‬‭)‬‭,‬ ‭especially‬ ‭in‬ ‭the‬ ‭face‬ ‭of‬ ‭gene‬ ‭flow,‬
‭producing unfit intermediates‬‭(‬‭8‬‭)‬‭, and impeding speciation‬‭(‬‭9‬‭)‬‭.‬

‭Chromosomal‬ ‭inversions‬ ‭–‬ ‭stretches‬ ‭of‬ ‭DNA‬ ‭that‬ ‭are‬ ‭flipped‬ ‭in‬ ‭their‬ ‭orientation‬ ‭–‬ ‭provide‬ ‭a‬
‭mechanism‬ ‭to‬ ‭break‬ ‭the‬ ‭apparent‬ ‭deadlock‬ ‭between‬ ‭the‬ ‭beneficial‬ ‭and‬ ‭detrimental‬ ‭effects‬ ‭of‬
‭recombination‬ ‭on‬ ‭species‬ ‭diversification,‬ ‭by‬ ‭strongly‬ ‭suppressing‬ ‭recombination‬ ‭between‬ ‭the‬
‭inverted‬ ‭haplotype‬ ‭and‬ ‭its‬ ‭ancestral‬ ‭configuration‬ ‭(‬‭7‬‭,‬ ‭10‬‭,‬ ‭11‬‭)‬‭.‬ ‭Inverted‬ ‭haplotypes‬ ‭acting‬ ‭as‬
‭“supergenes”‬ ‭can‬ ‭link‬ ‭together‬ ‭adaptive‬ ‭alleles‬ ‭that‬ ‭confer‬ ‭a‬ ‭fitness‬ ‭advantage‬ ‭in‬ ‭a‬ ‭specific‬
‭environmental‬‭context‬‭or‬‭species‬‭background‬‭(‬‭12‬‭)‬‭.‬‭In‬‭recent‬‭years,‬‭inversions‬‭have‬‭increasingly‬
‭been‬‭found‬‭to‬‭contribute‬‭to‬‭adaptation‬‭(‬‭13‬‭,‬‭14‬‭)‬‭,‬‭genetic‬‭incompatibilities‬‭(‬‭15‬‭)‬‭,‬‭assortative‬‭mating‬
‭(‬‭16‬‭)‬‭,‬ ‭sexual‬ ‭dimorphism‬ ‭(‬‭17‬‭,‬ ‭18‬‭)‬‭,‬ ‭mating‬ ‭systems‬ ‭(‬‭19‬‭)‬‭,‬ ‭social‬ ‭organisation‬ ‭(‬‭20‬‭)‬‭,‬ ‭life-history‬
‭strategies‬ ‭(‬‭21‬‭)‬ ‭and‬ ‭other‬ ‭complex‬ ‭phenotypes‬ ‭(‬‭11‬‭)‬‭.‬ ‭Inversions‬ ‭are‬ ‭more‬ ‭common‬ ‭between‬
‭sympatric‬ ‭than‬‭allopatric‬‭sister‬‭species‬‭in‬‭fruit‬‭flies‬‭(‬‭22‬‭)‬‭,‬‭rodents‬‭(‬‭23‬‭)‬‭,‬‭and‬‭passerine‬‭birds‬‭(‬‭24‬‭)‬‭,‬

‭2‬

‭40‬

‭41‬

‭42‬

‭43‬

‭44‬

‭45‬

‭46‬

‭47‬

‭48‬

‭49‬

‭50‬

‭51‬

‭52‬

‭53‬

‭54‬

‭55‬

‭56‬

‭57‬

‭58‬

‭59‬

‭60‬

‭61‬

‭62‬

‭63‬

‭64‬

‭65‬

‭66‬

‭67‬

‭68‬

‭69‬

‭70‬

‭71‬

‭72‬

‭73‬

‭74‬

‭75‬

‭76‬

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 26, 2025. ; https://doi.org/10.1101/2024.07.28.605452doi: bioRxiv preprint 

https://paperpile.com/c/mGVGXK/4BPjd
https://paperpile.com/c/mGVGXK/nV3ZA
https://paperpile.com/c/mGVGXK/BEVbO
https://paperpile.com/c/mGVGXK/EjEMQ
https://paperpile.com/c/mGVGXK/ThhLy
https://paperpile.com/c/mGVGXK/5PmBx
https://paperpile.com/c/mGVGXK/uzwFL
https://paperpile.com/c/mGVGXK/0cTgv
https://paperpile.com/c/mGVGXK/hGNfM
https://paperpile.com/c/mGVGXK/uzwFL+M4Cd8+CSsDq
https://paperpile.com/c/mGVGXK/wOSH8
https://paperpile.com/c/mGVGXK/lcFB4+Vi21e
https://paperpile.com/c/mGVGXK/Tsbsp
https://paperpile.com/c/mGVGXK/tQIXW
https://paperpile.com/c/mGVGXK/QSMFe+GHTCO
https://paperpile.com/c/mGVGXK/8QC31
https://paperpile.com/c/mGVGXK/RqOOp
https://paperpile.com/c/mGVGXK/qHnsT
https://paperpile.com/c/mGVGXK/CSsDq
https://paperpile.com/c/mGVGXK/RP0wB
https://paperpile.com/c/mGVGXK/7YcnY
https://paperpile.com/c/mGVGXK/ocEdL
https://doi.org/10.1101/2024.07.28.605452
http://creativecommons.org/licenses/by-nc/4.0/


‭Preprint – Blumer et al.  Malawi Cichlid Inversions Version 2‬

‭pointing‬ ‭to‬ ‭their‬ ‭involvement‬‭in‬‭speciation‬‭with‬‭gene‬‭flow.‬‭However,‬‭despite‬‭their‬‭evolutionary‬
‭relevance‬ ‭in‬ ‭other‬ ‭systems,‬ ‭there‬ ‭is‬ ‭relatively‬ ‭little‬ ‭information‬ ‭on‬ ‭their‬ ‭role‬ ‭in‬ ‭shaping‬ ‭large‬
‭vertebrate adaptive radiations‬‭(‬‭25‬‭–‬‭28‬‭)‬‭.‬

‭With‬ ‭over‬ ‭800‬ ‭known‬ ‭extant‬ ‭species,‬ ‭Lake‬ ‭Malawi‬ ‭cichlids‬ ‭constitute‬ ‭the‬ ‭most‬ ‭species-rich‬
‭recent‬ ‭vertebrate‬ ‭adaptive‬ ‭radiation‬ ‭(‬‭29‬‭,‬ ‭30‬‭)‬‭.‬ ‭The‬ ‭radiation‬ ‭was‬ ‭able‬ ‭to‬ ‭unfold‬ ‭and‬ ‭generate‬
‭extraordinary‬‭morphological‬‭and‬‭ecological‬‭diversity,‬‭despite‬‭repeated‬‭hybridisation‬‭(‬‭31‬‭,‬‭32‬‭)‬‭and‬
‭conserved‬ ‭fertility‬ ‭across‬ ‭species‬ ‭(‬‭33‬‭)‬‭.‬ ‭Intriguingly,‬ ‭previous‬ ‭studies‬ ‭found‬ ‭broad‬ ‭genetic‬
‭association‬ ‭peaks‬ ‭for‬ ‭a‬ ‭behavioural‬ ‭phenotype‬ ‭important‬‭in‬‭assortative‬‭mating‬‭(‬‭34‬‭)‬‭in‬‭genomic‬
‭regions‬ ‭that‬ ‭showed‬ ‭suppressed‬ ‭recombination‬ ‭in‬ ‭crosses‬ ‭of‬ ‭Malawi‬ ‭cichlid‬ ‭species‬ ‭(‬‭35‬‭)‬‭.‬‭This‬
‭raises‬ ‭the‬ ‭question‬ ‭of‬ ‭whether‬ ‭recombination-suppressing‬ ‭mechanisms‬ ‭such‬ ‭as‬ ‭inversions‬
‭contributed to the adaptive diversification of Malawi cichlids.‬

‭Here‬‭we‬‭show‬‭that‬‭five‬‭large‬‭inversions‬‭segregate‬‭across‬‭and‬‭within‬‭many‬‭species‬‭and‬‭groups‬‭in‬
‭the‬ ‭Lake‬ ‭Malawi‬ ‭radiation,‬ ‭and‬ ‭systematically‬ ‭investigate‬ ‭their‬ ‭evolutionary‬ ‭histories‬ ‭and‬
‭functions.‬ ‭By‬ ‭suppressing‬ ‭recombination,‬ ‭large‬ ‭chromosomal‬ ‭inversions‬ ‭can‬ ‭cause‬ ‭affected‬
‭genomic‬‭regions‬‭to‬‭show‬‭evolutionary‬‭histories‬‭consistently‬‭distinct‬‭from‬‭the‬‭rest‬‭of‬‭the‬‭genome‬
‭(‬‭36‬‭,‬ ‭37‬‭)‬‭.‬ ‭To‬ ‭detect‬‭regional‬‭deviations‬‭from‬‭the‬‭genome‬‭wide‬‭evolutionary‬‭history‬‭we‬‭obtained‬
‭whole‬ ‭gen‬‭ome‬ ‭sequencing‬ ‭(WGS)‬ ‭data‬ ‭from‬ ‭1,375‬ ‭individuals‬ ‭of‬ ‭240‬ ‭Malawi‬ ‭cichlid‬ ‭species‬
‭(table‬ ‭S‬‭1‬‭),‬ ‭detected‬ ‭84‬ ‭milli‬‭on‬ ‭single‬ ‭nucleotide‬ ‭polymorphisms‬ ‭(SNPs),‬ ‭and‬ ‭first‬ ‭inferred‬
‭genome-wide‬ ‭relationship‬ ‭patterns‬ ‭as‬ ‭a‬ ‭backbone‬ ‭(Fig. ‬‭1‬‭,‬ ‭fig.‬‭S‬‭1‬‭)‬‭(see‬‭materials‬‭and‬‭methods).‬
‭Previous‬‭work‬‭suggested‬‭that‬‭the‬‭Malawi‬‭radiation‬‭evolved‬‭through‬‭serial‬‭diversification‬‭of‬‭three‬
‭subradiations‬ ‭from‬ ‭a‬‭riverine-like‬‭ancestor‬‭(‬‭31‬‭)‬‭:‬‭1.‬‭A‬‭pelagic‬‭grouping‬‭of‬‭the‬‭mostly‬‭mid-water‬
‭Rhamphochromis‬‭and‬‭mostly‬‭deep-living‬‭Diplotaxodon‬‭;‬‭2.‬‭an‬‭ecologically‬‭and‬‭morphologically‬
‭highly‬ ‭diverse‬ ‭benthic‬ ‭subradiation‬ ‭consisting‬ ‭of‬ ‭three‬ ‭subgroups‬ ‭–‬ ‭deep‬ ‭benthics‬‭,‬ ‭shallow‬
‭benthics‬‭,‬ ‭and‬ ‭semi‬ ‭open-water‬ ‭utaka‬‭;‬ ‭and‬ ‭3.‬ ‭the‬ ‭predominantly‬ ‭rock-dwelling‬ ‭mbuna‬‭.‬ ‭The‬
‭generalist-like‬ ‭stem‬ ‭lineage‬ ‭is‬ ‭represented‬ ‭today‬ ‭by‬ ‭the‬ ‭Malawi‬ ‭cichlid‬ ‭species‬ ‭Astatotilapia‬
‭calliptera‬ ‭(which‬ ‭provided‬ ‭the‬ ‭reference‬ ‭genome‬ ‭for‬ ‭the‬ ‭present‬ ‭study)‬ ‭(‬‭31‬‭,‬ ‭38‬‭)‬‭.‬ ‭Phylogenetic‬
‭inference‬‭on‬‭our‬‭larger‬‭dataset‬‭confirms‬‭these‬‭major‬‭groupings‬‭and‬‭supports‬‭the‬‭branching‬‭order‬
‭(Fig. ‬‭1‬‭).‬

‭Large inversions suppress recombination‬
‭We‬ ‭identified‬‭extensive‬‭genomic‬‭outlier‬‭regions‬‭consistent‬‭with‬‭polymorphic‬‭inversions‬‭on‬‭five‬
‭chromosomes‬ ‭(2,‬ ‭9,‬ ‭10,‬ ‭11‬ ‭and‬ ‭13),‬ ‭each‬ ‭spanning‬ ‭more‬ ‭than‬‭half‬‭a‬‭chromosome‬‭(between‬‭17‬
‭and‬‭23 Mbp),‬‭using‬‭a‬‭clustering‬‭approach‬‭on‬‭our‬‭SNP‬‭data‬‭set‬‭(Fig. ‬‭2‬‭A,‬‭top‬‭panel,‬‭figs.‬‭S‬‭2‬‭,‬‭S‬‭3‬‭)‬
‭(see‬‭materials‬‭and‬‭methods).‬‭A‬‭windowed‬‭principal‬‭component‬‭(PC)‬‭analysis‬‭(‬‭37‬‭,‬‭39‬‭)‬‭of‬‭genetic‬
‭variation‬ ‭revealed‬ ‭that‬‭these‬‭regions‬‭showed‬‭relationships‬‭among‬‭species‬‭of‬‭the‬‭diverse‬‭benthic‬
‭clades‬ ‭of‬ ‭Malawi‬ ‭cichlids‬ ‭which‬ ‭were‬ ‭dramatically‬ ‭different‬ ‭from‬ ‭the‬ ‭rest‬ ‭of‬ ‭the‬ ‭genome‬
‭(Fig. ‬‭2‬‭A,‬‭bottom‬‭panel,‬‭fig.‬‭S‬‭4‬‭).‬‭While‬‭in‬‭the‬‭rest‬‭of‬‭the‬‭genome‬‭PC1‬‭tended‬‭to‬‭separate‬‭the‬‭three‬
‭benthic‬ ‭subclades,‬ ‭in‬ ‭the‬ ‭focal‬ ‭regions‬ ‭three‬ ‭distinct‬ ‭clusters‬ ‭emerged‬ ‭that‬ ‭separated‬ ‭different‬
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‭groups‬ ‭of‬ ‭individuals‬ ‭and‬‭explained‬‭a‬‭much‬‭higher‬‭proportion‬‭of‬‭the‬‭genetic‬‭variance‬‭(fig.‬‭S‬‭5‬‭).‬
‭Individuals‬‭in‬‭the‬‭intermediate‬‭cluster‬‭showed‬‭strongly‬‭increased‬‭heterozygosity‬‭as‬‭expected‬‭for‬
‭the‬ ‭heterozygous‬ ‭state‬ ‭of‬ ‭two‬ ‭divergent‬ ‭haplotypes‬ ‭(fig.‬ ‭S‬‭6‬‭).‬ ‭An‬ ‭exception‬ ‭to‬ ‭this‬ ‭was‬
‭chromosome‬‭9,‬‭where‬‭only‬‭two‬‭clusters‬‭(one‬‭with‬‭increased‬‭heterozygosity)‬‭emerged,‬‭consistent‬
‭with‬ ‭the‬ ‭absence‬ ‭of‬ ‭one‬ ‭homozygous‬ ‭state.‬ ‭Overall,‬ ‭with‬ ‭double‬ ‭crossover‬ ‭events‬ ‭in‬‭only‬‭two‬
‭deep‬ ‭benthic‬ ‭individuals,‬ ‭the‬ ‭clustering‬ ‭was‬ ‭consistent‬ ‭with‬ ‭nearly‬ ‭complete‬ ‭recombination‬
‭suppression‬‭between‬‭inverted‬‭and‬‭non-inverted‬‭haplotypes‬‭(fig.‬‭S‬‭7‬‭)‬‭as‬‭observed‬‭in‬‭other‬‭systems‬
‭(‬‭22‬‭,‬‭37‬‭,‬‭40‬‭)‬‭.‬

‭Using‬ ‭a‬ ‭combination‬ ‭of‬ ‭cytogenetics‬ ‭with‬ ‭long‬ ‭and‬ ‭linked‬ ‭read‬ ‭sequencing‬ ‭and‬ ‭de‬ ‭novo‬
‭chromosome-level‬ ‭assembly‬ ‭of‬ ‭all‬ ‭five‬ ‭major‬ ‭clades‬ ‭of‬ ‭Malawi‬‭cichlids‬‭allowed‬‭us‬‭to‬‭confirm‬
‭and‬‭characterise‬‭inversions‬‭in‬‭the‬‭regions‬‭on‬‭chromosomes‬‭2,‬‭9,‬‭11‬‭and‬‭13‬‭(but‬‭not‬‭chromosome‬
‭10‬ ‭due‬‭to‬‭the‬‭lack‬‭of‬‭appropriate‬‭samples,‬‭see‬‭materials‬‭and‬‭methods)‬‭(Fig. ‬‭2‬‭B-C,‬‭table S‬‭4‬‭,‬‭fig.‬
‭S‬‭8‬‭to‬‭S‬‭19‬‭)‬‭and‬‭revealed‬‭additional‬‭smaller‬‭inversions‬‭that‬‭went‬‭undetected‬‭in‬‭the‬‭SNP‬‭analysis,‬
‭including:‬‭(1)‬‭a‬‭small‬‭inversion‬‭nested‬‭inside‬‭the‬‭large‬‭inversion‬‭on‬‭chromosome‬‭2,‬‭located‬‭next‬
‭to‬‭the‬‭centromere‬‭(text‬‭S‬‭1‬‭,‬‭fig.‬‭S‬‭15‬‭and‬‭(2)‬‭two‬‭adjacent‬‭inversions‬‭on‬‭chromosome‬‭20‬‭(text‬‭S‬‭1‬‭,‬
‭fig. S‬‭16‬‭).‬

‭To‬‭confirm‬‭the‬‭suppression‬‭of‬‭recombination‬‭between‬‭inverted‬‭and‬‭non-inverted‬‭haplotypes,‬‭we‬
‭performed‬ ‭an‬ ‭interspecific‬ ‭cross‬ ‭between‬ ‭A. calliptera‬ ‭and‬ ‭Au. stuartgranti‬ ‭and‬‭whole‬‭genome‬
‭sequenced‬‭290‬‭individuals‬‭up‬‭to‬‭generation‬‭F3‬‭(table S‬‭5‬‭).‬‭The‬‭absence‬‭of‬‭switching‬‭between‬‭the‬
‭inversion-state‬‭clusters‬‭on‬‭chromosomes‬‭9‬‭and‬‭11‬‭on‬‭genomic‬‭PC1‬‭axis‬‭in‬‭F2‬‭and‬‭F3‬‭individuals‬
‭confirmed‬ ‭that‬ ‭recombination‬ ‭was‬ ‭fully‬ ‭suppressed‬ ‭in‬ ‭inversion‬ ‭regions‬ ‭of‬ ‭heterozygous‬ ‭F1s‬
‭(Fig. ‬‭2‬‭E).‬ ‭Segregation‬ ‭ratios‬ ‭in‬ ‭F2s‬ ‭were‬ ‭Mendelian,‬ ‭except‬ ‭for‬ ‭the‬ ‭chromosome 11‬ ‭inversion‬
‭which‬ ‭had‬ ‭a‬ ‭moderate‬ ‭deficiency‬ ‭of‬ ‭homozygotes‬ ‭for‬ ‭the‬ ‭A. calliptera‬ ‭haplotype‬ ‭(genotype‬
‭proportions 20:66:43; χ‬‭2‬ ‭test on Mendelian ratios‬‭p=0.016).‬
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‭Fig. ‬‭1‬‭:‬ ‭Study‬ ‭system‬ ‭and‬ ‭prevalence‬ ‭of‬ ‭five‬ ‭large‬ ‭inversions.‬ ‭Consensus‬‭phylogeny‬‭of‬‭Malawi‬‭cichlid‬‭species‬
‭used‬ ‭in‬ ‭this‬‭study‬‭(data S‬‭1‬‭)‬‭with‬‭inversion‬‭frequency‬‭based‬‭on‬‭WGS‬‭and‬‭PCR-typing‬‭(see‬‭materials‬‭and‬‭methods)‬
‭shown‬‭in‬‭rings‬‭around‬‭the‬‭phylogeny‬‭(the‬‭same‬‭colours‬‭are‬‭used‬‭throughout‬‭the‬‭article).‬‭The‬‭benthic‬‭subradiation‬‭is‬
‭expanded‬‭to‬‭show‬‭the‬‭phylogenetic‬‭position‬‭of‬‭each‬‭species‬‭and‬‭to‬‭highlight‬‭subclades‬‭that‬‭we‬‭refer‬‭to‬‭in‬‭the‬‭main‬
‭text‬ ‭(‬‭Shallow‬ ‭rocky‬ ‭Aulonocara‬‭,‬ ‭Shallow‬ ‭Lethrinops‬‭,‬ ‭Eukambuzi‬‭).‬ ‭Note‬ ‭that‬ ‭utaka‬ ‭are‬ ‭not‬ ‭monophyletic‬ ‭in‬ ‭this‬
‭phylogeny.‬ ‭Non-‬‭benthic‬ ‭groups‬ ‭of‬ ‭Malawi‬ ‭cichlids‬ ‭(i.e.,‬ ‭the‬ ‭pelagic‬ ‭subradiations‬ ‭of‬ ‭Rhamphochromis‬ ‭and‬
‭Diplotaxodon‬‭,‬ ‭the‬ ‭subradiation‬ ‭of‬ ‭predominantly‬ ‭rock-dwelling‬ ‭mbuna‬‭,‬ ‭and‬ ‭Astatotilapia‬ ‭calliptera‬ ‭–‬ ‭a‬ ‭species‬
‭distributed‬ ‭in‬ ‭rivers‬ ‭and‬ ‭margins‬ ‭around‬ ‭the‬ ‭lake‬ ‭that‬ ‭shares‬ ‭its‬ ‭putatively‬ ‭ancestral‬ ‭characteristics‬ ‭and‬ ‭genus‬
‭assignment‬ ‭with‬ ‭riverine‬ ‭haplochromines‬ ‭outside‬ ‭of‬ ‭the‬ ‭radiation)‬ ‭are‬ ‭each‬ ‭represented‬ ‭by‬ ‭a‬ ‭single‬ ‭grey‬ ‭triangle‬
‭approximately‬ ‭reflecting‬ ‭species‬ ‭richness‬ ‭relative‬ ‭to‬ ‭each‬ ‭other.‬ ‭Dashed‬ ‭lines‬ ‭indicate‬ ‭branches‬ ‭with‬ ‭unstable‬
‭placement.‬ ‭See‬ ‭data S‬‭1‬ ‭and‬ ‭S‬‭2‬ ‭for‬ ‭full‬ ‭phylogenies‬ ‭with‬ ‭branch‬ ‭lengths‬ ‭and‬ ‭support‬ ‭values.‬ ‭Annotations‬‭next‬‭to‬
‭species/clade‬ ‭names‬ ‭provide‬ ‭the‬ ‭numbers‬ ‭of‬ ‭sequenced/inversion-genotyped‬ ‭samples‬ ‭(additional‬ ‭samples‬ ‭which‬
‭were‬‭inversion-genotyped‬‭with‬‭PCR‬‭are‬‭indicated‬‭as‬‭+‬‭n‬‭in‬‭the‬‭annotation).‬‭Two‬‭taxa‬‭are‬‭annotated‬‭with ‘‬‭+‬‭’‬‭to‬‭denote‬
‭polyphyletic‬ ‭groups:‬ ‭Otopharynx‬ ‭argyrosoma‬ ‭contains‬ ‭a‬ ‭single‬ ‭Cyrtocara‬ ‭moorii‬ ‭individual‬ ‭and‬ ‭Ctenopharynx‬
‭intermedius‬ ‭contains‬ ‭two‬ ‭Ctenopharynx‬ ‭pictus‬ ‭individuals. Full‬ ‭species‬ ‭names‬ ‭are‬ ‭given‬‭in‬‭table‬‭S‬‭3‬‭and‬‭inversion‬
‭frequencies‬‭by‬‭species‬‭in‬‭table‬‭S‬‭2‬‭.‬‭Species‬‭names‬‭for‬‭representative‬‭photographs‬‭are‬‭given‬‭in‬‭fig.‬‭S‬‭1‬‭.‬‭Tree‬‭files‬‭are‬
‭given in data S‬‭1‬‭and S‬‭2‬‭. Species subject to further‬‭experimental investigation (see text) are highlighted in bold.‬
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‭Inversions segregate within‬‭benthic‬‭subradiation‬
‭Next,‬ ‭we‬ ‭investigated‬ ‭the‬ ‭distribution‬ ‭of‬ ‭inversion‬ ‭states‬ ‭across‬ ‭the‬ ‭phylogeny‬ ‭based‬ ‭on‬ ‭a‬
‭multi-step‬ ‭PC‬ ‭approach‬ ‭to‬ ‭infer‬ ‭inversion‬ ‭genotypes‬ ‭for‬ ‭all‬ ‭1,375‬ ‭sequenced‬ ‭individuals‬
‭(“WGS-typing”)‬ ‭(Fig.‬‭ ‬‭1‬‭,‬ ‭tables‬ ‭S‬‭7‬ ‭and‬ ‭S‬‭8‬‭;‬ ‭fig.‬ ‭S‬‭20‬ ‭and‬ ‭fig.‬ ‭S‬‭21‬‭),‬ ‭denoting‬ ‭as‬‭non-inverted‬‭or‬
‭ancestral‬ ‭the‬ ‭orientation‬ ‭of‬ ‭the‬ ‭outgroup‬ ‭species‬ ‭Pundamilia nyererei‬ ‭(fig.‬ ‭S‬‭22‬‭)‬ ‭and‬
‭Oreochromis niloticus‬ ‭(fig.‬ ‭S‬‭23‬‭).‬ ‭To‬ ‭further‬ ‭increase‬ ‭the‬ ‭number‬ ‭of‬ ‭genotyped‬ ‭individuals,‬‭we‬
‭identified‬‭TE‬‭insertions‬‭highly‬‭correlated‬‭with‬‭inversio‬‭n‬‭state‬‭and‬‭PCR-typed‬‭these‬‭insertions‬‭in‬
‭an‬ ‭additional‬ ‭401‬ ‭individuals‬‭(see‬‭materials‬‭and‬‭methods,‬‭fig.‬‭S‬‭24‬‭,‬‭tables‬‭S‬‭9‬‭to‬‭S‬‭11‬‭).‬‭Together,‬
‭these‬‭analyses‬‭revealed‬‭that‬‭all‬‭specim‬‭ens‬‭of‬‭the‬‭mbuna‬‭and‬‭Rhamphochromis‬‭subradiations‬‭and‬
‭A. calliptera‬ ‭were‬ ‭fixed‬ ‭for‬ ‭the‬ ‭non-inverted,‬ ‭ancestral‬ ‭orientation‬ ‭for‬‭all‬‭five‬‭large‬‭inversions.‬
‭All‬ ‭Diplotaxodon‬ ‭specimens‬ ‭also‬ ‭lacked‬ ‭the‬ ‭inversions‬ ‭on‬ ‭chromosomes‬ ‭2,‬ ‭10‬ ‭and‬ ‭13‬ ‭but‬
‭localized‬ ‭closer‬ ‭towards‬ ‭the‬ ‭cluster‬ ‭of‬ ‭inverted‬‭haplotypes‬‭than‬‭other‬‭non-‬‭benthic‬‭clades‬‭in‬‭the‬
‭PCA-based‬ ‭typing‬ ‭of‬ ‭the‬ ‭chromosome‬ ‭9‬ ‭and‬ ‭11‬ ‭inversions.‬ ‭In‬ ‭our‬ ‭de‬ ‭novo‬ ‭assembly‬ ‭for‬
‭D. limnothrissa‬ ‭both‬ ‭inversions‬ ‭are‬ ‭present‬ ‭(figs.‬ ‭S‬‭10‬‭,‬ ‭S‬‭25‬‭),‬ ‭suggesting‬ ‭that‬ ‭Diplotaxodon‬ ‭are‬
‭fixed for the inverted chromosome 9 and 11 haplotypes.‬

‭Among‬‭the‬‭benthic‬‭clades,‬‭the‬‭five‬‭inversions‬‭showed‬‭strikingly‬‭different‬‭frequencies‬‭across‬‭the‬
‭species:‬‭for‬‭chromosomes‬‭2,‬‭10,‬‭and‬‭13,‬‭the‬‭inverted‬‭state‬‭was‬‭fixed‬‭or‬‭at‬‭high‬‭frequency‬‭in‬‭most‬
‭deep‬ ‭benthic‬ ‭species,‬ ‭but‬ ‭almost‬ ‭absent‬ ‭among‬ ‭shallow‬ ‭benthic‬ ‭species‬ ‭and‬ ‭utaka‬‭.‬ ‭For‬
‭chromosomes‬‭9‬‭and‬‭11,‬‭the‬‭inverted‬‭states‬‭were‬‭fixed‬‭in‬‭most‬‭benthics‬‭,‬‭with‬‭the‬‭major‬‭exception‬
‭of‬‭a‬‭large‬‭monophyletic‬‭subclade‬‭of‬‭shallow‬‭benthics‬‭in‬‭which‬‭chromosome‬‭11‬‭was‬‭mostly‬‭fixed‬
‭for‬‭the‬‭ancestral‬‭non-inverted‬‭state‬‭and‬‭chromosome‬‭9‬‭mostly‬‭polymorphic.‬‭We‬‭will‬‭refer‬‭to‬‭this‬
‭group‬ ‭as‬ ‭“‬‭eukambuzi‬‭”,‬ ‭inspired‬ ‭by‬ ‭the‬ ‭local‬‭name‬‭“Kambuzi”‬‭for‬‭some‬‭members‬‭of‬‭this‬‭group‬
‭(Fig. ‬‭1‬‭).‬ ‭In‬ ‭summary,‬ ‭the‬ ‭distribution‬ ‭of‬ ‭inversion‬ ‭frequencies‬ ‭is‬ ‭consistent‬ ‭with‬ ‭a‬ ‭scenario‬ ‭in‬
‭which‬ ‭inversions‬ ‭on‬ ‭chromosomes‬ ‭2,‬ ‭10,‬ ‭and‬ ‭13‬ ‭rose‬‭to‬‭high‬‭frequencies‬‭in‬‭an‬‭ancestor‬‭of‬‭the‬
‭deep‬ ‭benthic‬ ‭lineage,‬ ‭while‬ ‭the‬ ‭inversions‬‭on‬‭chromosomes‬‭9‬‭and‬‭11‬‭rose‬‭to‬‭high‬‭frequency‬‭in‬
‭the‬ ‭ancestors‬ ‭of‬ ‭two‬ ‭non-sister‬ ‭groups‬ ‭–‬ ‭pelagic‬ ‭Diplotaxodon‬ ‭and‬ ‭benthics‬ ‭–‬ ‭but‬ ‭with‬ ‭one‬
‭monophyletic‬ ‭subgroup‬ ‭of‬ ‭the‬ ‭benthics‬ ‭(‬‭eukambuzi‬‭)‬ ‭retaining‬ ‭or‬ ‭re-gaining‬ ‭the‬ ‭non-inverted‬
‭ancestral state.‬
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‭Fig. ‬‭2‬‭:‬‭Characterisation‬‭of‬‭inversions.‬‭(‬‭A‬‭)‬‭(Top‬‭panel):‬‭Identification‬‭of‬‭genomic‬‭regions‬‭from‬‭clusters‬‭of‬‭aberrant‬
‭phylogenetic‬‭patterns‬‭(see‬‭materials‬‭and‬‭methods).‬‭(Bottom‬‭panel):‬‭First‬‭genetic‬‭principal‬‭component‬‭in‬‭overlapping‬
‭1 Mbp‬‭windows‬‭along‬‭chromosomes,‬‭using‬‭the‬‭same‬‭colours‬‭for‬‭the‬‭benthic‬‭subclades‬‭as‬‭in‬‭Fig. ‬‭1‬‭.‬‭Outlier‬‭regions‬
‭from‬‭the‬‭top‬‭panel‬‭are‬‭highlighted‬‭and‬‭colour-labelled.‬‭Centromeric‬‭satellite‬‭regions‬‭(for‬‭inference‬‭see‬‭materials‬‭and‬
‭methods,‬ ‭text‬ ‭S‬‭1‬‭,‬ ‭fig.‬ ‭S‬‭17‬‭,‬ ‭table S‬‭6‬‭)‬ ‭are‬ ‭indicated‬ ‭as‬ ‭black‬ ‭rectangles‬ ‭on‬ ‭top‬ ‭of‬ ‭the‬ ‭X‬ ‭axis.‬ ‭(‬‭B‬‭) Representative‬
‭photographs‬‭of‬‭the‬‭species‬‭used‬‭in‬‭panels‬‭C-D:‬‭Astatotilapia‬‭calliptera‬‭,‬‭a‬‭lineage‬‭of‬‭the‬‭Malawi‬‭radiation‬‭distinct‬‭from‬
‭benthics‬ ‭from‬ ‭which‬ ‭the‬ ‭reference‬ ‭genome‬ ‭was‬ ‭produced,‬ ‭and‬ ‭Aulonocara‬ ‭stuartgranti‬‭,‬‭a‬‭species‬‭that‬‭genetically‬
‭belongs‬ ‭to‬ ‭the‬ ‭deep‬ ‭benthic‬ ‭group,‬ ‭but‬ ‭lives‬ ‭in‬ ‭shallow‬‭rocky‬‭habitats‬‭(clade‬‭Shallow‬‭rocky‬‭Aulonocara‬‭in‬‭Fig.‬‭1).‬
‭According‬ ‭to‬ ‭WGS-typing,‬ ‭the‬ ‭species‬ ‭are‬ ‭expected‬ ‭to‬ ‭show‬ ‭opposite‬ ‭orientations‬ ‭for‬ ‭the‬ ‭chromosome‬ ‭9‬ ‭and‬‭11‬
‭inversions.‬‭(‬‭C‬‭) Fluorescence‬‭in‬‭situ‬‭hybridisation‬‭(FISH)‬‭of‬‭markers‬‭on‬‭chromosome‬‭11‬‭left‬‭and‬‭right‬‭of‬‭the‬‭putative‬
‭inversion‬‭breakpoints‬‭show‬‭the‬‭expected‬‭non-inverted‬‭orientation‬‭(upper‬‭panel)‬‭in‬‭A.‬‭calliptera‬‭.‬‭In‬‭Au. stuartgranti‬‭we‬
‭see‬‭a‬‭double‬‭inversion‬‭(lower‬‭panel;‬‭see‬‭fig.‬‭S‬‭8‬‭for‬‭FISH‬‭of‬‭chromosome‬‭9).‬‭(‬‭D‬‭) Whole‬‭genome‬‭alignment‬‭of‬‭an‬‭ONT‬
‭duplex‬ ‭long-read‬‭assembly‬‭of‬‭Au.‬‭stuartgranti‬‭to‬‭the‬‭A. calliptera‬‭reference‬‭assembly‬‭(which‬‭was‬‭re-scaffolded‬‭with‬
‭chromosome‬ ‭conformation‬ ‭capture‬ ‭(Hi-C)‬ ‭data,‬ ‭see‬ ‭materials‬ ‭and‬ ‭methods)‬ ‭confirms‬ ‭the‬ ‭double‬ ‭inversion‬ ‭on‬
‭chromosome‬‭11‬‭(for‬‭other‬‭chromosomes‬‭see‬‭fig.‬‭S‬‭9‬‭).‬‭(‬‭E)‬‭Top:‬‭Windowed‬‭PC1‬‭values‬‭of‬‭whole‬‭genome‬‭sequenced‬
‭founders‬ ‭and‬ ‭progeny‬ ‭of‬ ‭an‬ ‭interspecific‬ ‭cross.‬ ‭Among‬ ‭290‬ ‭F2‬ ‭and‬ ‭F3‬ ‭individuals‬ ‭no‬ ‭crossing-over‬ ‭events‬ ‭were‬
‭observed‬ ‭in‬ ‭the‬ ‭inversion‬ ‭regions‬ ‭of‬ ‭chromosomes‬ ‭9‬ ‭(bottom‬ ‭left)‬ ‭and‬ ‭chromosome‬ ‭11‬ ‭(bottom‬ ‭right),‬ ‭while‬
‭recombination was frequent in the flanking regions and on other chromosomes.‬
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‭Origins and introgression patterns of the inversions‬
‭To‬ ‭better‬ ‭understand‬ ‭the‬ ‭evolutionary‬ ‭histories‬ ‭in‬ ‭inversion‬ ‭regions,‬ ‭we‬ ‭estimated‬ ‭genetic‬
‭divergence‬‭times‬‭between‬‭Malawi‬‭cichlid‬‭species‬‭for‬‭the‬‭five‬‭inversion‬‭regions‬‭(both‬‭the‬‭inverted‬
‭and‬ ‭non-inverted‬ ‭haplotypes)‬ ‭as‬ ‭well‬ ‭as‬ ‭for‬ ‭the‬ ‭remaining‬ ‭non-inverted‬‭regions‬‭of‬‭the‬‭genome‬
‭(Fig. ‬‭3‬‭A,‬ ‭fig.‬ ‭S‬‭26‬‭).‬ ‭Surprisingly,‬ ‭we‬ ‭found‬ ‭that,‬ ‭outside‬ ‭the‬ ‭inversions,‬ ‭benthics‬ ‭were‬ ‭least‬
‭divergent‬‭from‬‭Diplotaxodon‬‭and‬‭A.‬‭calliptera‬‭(top‬‭row‬‭in‬‭Fig. ‬‭3‬‭A),‬‭a‬‭pattern‬‭that‬‭is‬‭inconsistent‬
‭with‬ ‭the‬ ‭inferred‬‭phylogenetic‬‭position‬‭of‬‭benthics‬‭as‬‭a‬‭sister‬‭group‬‭to‬‭mbuna‬‭and‬‭A.‬‭calliptera‬
‭(e.g.‬‭ref.‬‭(‬‭31‬‭)‬‭,‬‭Fig. ‬‭1‬‭,‬‭data S‬‭2‬‭),‬‭but‬‭rather‬‭suggests‬‭that‬‭benthics‬‭arose‬‭through‬‭admixture‬‭between‬
‭the‬ ‭Diplotaxodon‬ ‭and‬ ‭A.‬ ‭calliptera‬ ‭lineages‬ ‭after‬ ‭their‬ ‭respective‬ ‭splits‬‭from‬‭Rhamphochromis‬
‭and‬ ‭mbuna‬ ‭(Fig.‬ ‭3‬‭B,‬ ‭see‬ ‭text‬ ‭S‬‭2‬ ‭for‬ ‭more‬ ‭detailed‬ ‭discussion).‬ ‭Such‬ ‭a‬ ‭hybrid‬ ‭benthic‬ ‭origin‬
‭model‬‭also‬‭provides‬‭a‬‭parsimonious‬‭explanation‬‭for‬‭the‬‭sharing‬‭of‬‭the‬‭chromosome‬‭9,‬‭11‬‭and‬‭20‬
‭inversions‬ ‭between‬ ‭all‬ ‭Diplotaxodon‬‭and‬‭most‬‭benthics‬‭(figs.‬‭S‬‭9‬‭to‬‭S‬‭12‬‭)‬‭(as‬‭indicated‬‭by‬‭Ⓐ‬‭in‬
‭Fig. ‬‭3‬‭B)‬ ‭and‬ ‭explains‬ ‭the‬ ‭general‬ ‭strong‬ ‭affinity‬ ‭of‬ ‭all‬ ‭inverted‬ ‭haplotypes‬ ‭to‬ ‭Diplotaxodon‬
‭(Fig. ‬‭3‬‭A, right panels).‬

‭The‬ ‭origins‬ ‭of‬ ‭non-inverted‬ ‭benthic‬ ‭haplotypes‬ ‭appear‬ ‭to‬ ‭be‬ ‭more‬ ‭diverse.‬ ‭The‬ ‭non-inverted‬
‭benthic‬‭chromosome‬‭11‬‭haplotype‬‭is‬‭closest‬‭to‬‭A.‬‭calliptera‬‭(Fig. ‬‭3‬‭A,‬‭row‬‭3),‬‭as‬‭expected‬‭if‬‭this‬
‭haplotype‬ ‭was‬ ‭contributed‬ ‭from‬ ‭A.‬ ‭calliptera‬ ‭in‬ ‭the‬ ‭original‬ ‭founding‬ ‭of‬ ‭benthics‬‭.‬ ‭However,‬
‭previously‬ ‭inferred‬ ‭signals‬ ‭of‬ ‭gene‬ ‭flow‬ ‭between‬ ‭shallow‬‭benthics‬‭and‬‭A.‬‭calliptera‬‭relative‬‭to‬
‭deep‬ ‭benthics‬ ‭(31)‬ ‭and‬ ‭the‬ ‭relatively‬ ‭low‬ ‭heterozygosity‬ ‭of‬ ‭this‬ ‭haplotype‬ ‭(fig.‬‭S‬‭27‬‭),‬‭which‬‭is‬
‭mostly‬ ‭present‬ ‭among‬ ‭eukambuzi‬‭,‬ ‭could‬ ‭alternatively‬ ‭point‬ ‭to‬ ‭its‬ ‭later‬ ‭introgression‬ ‭from‬
‭A. calliptera‬‭(event Ⓒ in Fig. ‬‭3‬‭B).‬

‭For‬ ‭chromosome‬ ‭9,‬ ‭benthics‬ ‭are‬ ‭almost‬ ‭fixed‬ ‭for‬ ‭the‬ ‭inversion‬ ‭with‬ ‭only‬ ‭some‬ ‭individuals,‬
‭mainly‬ ‭eukambuzi‬‭,‬ ‭being‬ ‭heterozygous.‬ ‭However,‬ ‭it‬ ‭is‬ ‭striking‬ ‭that‬‭the‬‭non-inverted‬‭haplotype‬
‭found‬ ‭in‬ ‭benthics‬ ‭is‬ ‭much‬ ‭more‬‭divergent‬‭from‬‭the‬‭rest‬‭of‬‭the‬‭Malawi‬‭radiation‬‭than‬‭any‬‭other‬
‭inversion‬ ‭haplotype‬ ‭and‬ ‭the‬ ‭rest‬‭of‬‭the‬‭benthic‬‭genome‬‭(Fig. ‬‭3‬‭A,‬‭row‬‭2).‬‭To‬‭follow‬‭this‬‭up,‬‭we‬
‭produced‬ ‭a‬ ‭second‬ ‭SNP‬ ‭callset‬ ‭including‬ ‭a‬ ‭wide‬ ‭variety‬ ‭of‬ ‭related‬ ‭African‬ ‭cichlid‬ ‭species‬
‭(“haplochromines”)‬‭and‬‭computed‬‭A‬‭BBA-BABA‬‭tests‬‭(‬‭32‬‭,‬‭41‬‭)‬‭(text‬‭S‬‭2‬‭,‬‭fig.‬‭S‬‭28‬‭,‬‭tables S‬‭12‬‭and‬
‭ S‬‭13‬‭,‬ ‭materials‬ ‭and‬ ‭methods).‬ ‭This‬ ‭revealed‬ ‭strong‬ ‭excess‬ ‭allele‬ ‭sharing‬ ‭of‬ ‭the‬ ‭non-inverted‬
‭benthic‬ ‭chromosome‬ ‭9‬ ‭haplotype‬ ‭with‬ ‭Pseudocrenilabrus‬ ‭philander‬‭,‬ ‭one‬ ‭of‬ ‭the‬ ‭few‬ ‭outgroup‬
‭species‬‭present‬‭today‬‭in‬‭the‬‭catchment‬‭of‬‭Lake‬‭Malawi‬‭(D = 0.45,‬‭block-jackknifing‬‭z-score‬‭6.5;‬
‭FWER‬‭corrected‬‭p‬‭=‬‭4×10‬‭-9‬‭).‬‭We‬‭conclude‬‭from‬‭this‬‭that‬‭the‬‭chromosome‬‭9‬‭non-inverted‬‭benthic‬
‭haplotype‬‭is‬‭not‬‭closely‬‭related‬‭to‬‭other‬‭Malawi‬‭haplotypes,‬‭but‬‭instead‬‭arrived‬‭in‬‭an‬‭ancestor‬‭of‬
‭eukambuzi‬‭through‬‭admixture‬‭with‬‭a‬‭lineage‬‭containing‬‭Pseudocrenilabrus‬‭-like‬‭genetic‬‭material‬
‭(Ⓑ  in Fig. ‬‭3‬‭B).‬

‭The‬ ‭remaining‬ ‭inversions‬ ‭on‬‭chromosomes‬‭2,‬‭10‬‭and‬‭13‬‭are‬‭all‬‭common‬‭among‬‭deep‬‭benthics‬‭,‬
‭and‬‭rare‬‭or‬‭absent‬‭among‬‭shallow‬‭benthics‬‭and‬‭utaka‬‭,‬‭suggesting‬‭that‬‭they‬‭rose‬‭to‬‭high‬‭frequency‬
‭early‬ ‭in‬ ‭the‬ ‭deep‬ ‭benthic‬ ‭lineage‬ ‭(Fig. ‬‭3‬‭B).‬ ‭This‬ ‭is‬ ‭also‬ ‭consistent‬ ‭with‬ ‭the‬ ‭phylogenetic‬
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‭relationships‬‭within‬‭the‬‭inversion‬‭regions‬‭(figs.‬‭S‬‭29‬‭to‬‭S‬‭33‬‭),‬‭which‬‭suggest‬‭that‬‭the‬‭few‬‭cases‬‭of‬
‭deep‬ ‭benthics‬ ‭with‬ ‭non-inverted‬ ‭states‬ ‭and‬ ‭shallow‬ ‭benthics‬ ‭with‬ ‭inverted‬ ‭states‬ ‭are‬ ‭due‬ ‭to‬ ‭a‬
‭limited‬ ‭number‬ ‭of‬ ‭later‬ ‭gene‬ ‭flow‬ ‭events,‬ ‭the‬ ‭most‬ ‭consequential‬ ‭of‬ ‭which‬ ‭are‬ ‭indicated‬ ‭in‬
‭Fig. ‬‭3‬‭B‬ ‭(events‬ ‭Ⓓ-Ⓕ)‬ ‭(see‬ ‭text‬ ‭S‬‭2‬ ‭and‬ ‭fig.‬ ‭S‬‭34‬ ‭for‬ ‭a‬ ‭more‬ ‭comprehensive‬ ‭analysis).‬‭Most‬‭of‬
‭these‬‭events‬‭transmitted‬‭more‬‭than‬‭one‬‭inversion‬‭haplotype‬‭and‬‭also‬‭genetic‬‭material‬‭outside‬‭the‬
‭inversion regions (Fig. ‬‭3‬‭C)‬‭(‬‭41‬‭)‬‭.‬

‭While‬‭there‬‭is‬‭evidence‬‭for‬‭each‬‭of‬‭the‬‭admixture‬‭and‬‭introgression‬‭events‬‭described‬‭in‬‭Fig. ‬‭3‬‭B‬
‭and‬ ‭fig.‬ ‭S‬‭34‬‭,‬ ‭other‬ ‭more‬ ‭complex‬ ‭scenarios‬ ‭are‬ ‭also‬ ‭possible.‬ ‭Furthermore,‬ ‭additional‬ ‭minor‬
‭introgression‬ ‭events‬ ‭and/or‬ ‭incomplete‬ ‭lineage‬ ‭sorting‬ ‭(ILS)‬ ‭are‬ ‭required‬ ‭to‬ ‭explain‬ ‭the‬ ‭final‬
‭patterns‬ ‭of‬ ‭occurrence‬ ‭of‬ ‭the‬ ‭inversions.‬ ‭However,‬ ‭the‬ ‭alternative‬ ‭hypothesis‬ ‭of‬ ‭random‬
‭segregation‬ ‭through‬ ‭incomplete‬ ‭lineage‬ ‭sorting‬ ‭giving‬ ‭rise‬ ‭to‬ ‭the‬ ‭observed‬ ‭patterns‬ ‭is‬ ‭not‬
‭supported.‬ ‭First,‬ ‭inference‬ ‭based‬ ‭on‬ ‭coalescent‬ ‭calculations‬ ‭yields‬ ‭a‬ ‭probability‬‭of‬‭only‬‭0.02%‬
‭for‬‭retaining‬‭shared‬‭polymorphism‬‭among‬‭deep‬‭and‬‭shallow‬‭benthics‬‭at‬‭three‬‭inversions‬‭through‬
‭ILS‬ ‭(materials‬‭and‬‭methods)‬‭(‬‭28‬‭)‬‭.‬‭Second,‬‭an‬‭ABBA-BABA‬‭analysis‬‭confirmed‬‭that‬‭signatures‬
‭of‬‭introgression‬‭outside‬‭of‬‭inversions‬‭were‬‭much‬‭more‬‭common‬‭when‬‭deep‬‭benthic‬‭and‬‭shallow‬
‭benthic‬ ‭species‬ ‭shared‬ ‭their‬‭inversion‬‭state,‬‭compared‬‭to‬‭cases‬‭where‬‭they‬‭differed‬‭in‬‭inversion‬
‭state (Fig.‬‭3‬‭C), a pattern that is not expected under‬‭ILS.‬

‭Inversion divergence between deep and shallow-living lineages‬

‭All‬ ‭five‬ ‭inverted‬ ‭states‬ ‭are‬ ‭found‬ ‭at‬ ‭higher‬ ‭frequencies‬ ‭in‬ ‭deepwater-living‬ ‭species‬ ‭(fig.‬ ‭S‬‭35‬‭,‬
‭table S‬‭14‬‭).‬ ‭The‬ ‭corresponding‬ ‭regions‬ ‭show‬ ‭increased‬ ‭relative‬ ‭divergence‬ ‭and‬ ‭reduced‬
‭cross-coalescence‬ ‭rates‬ ‭(a‬ ‭measure‬ ‭of‬ ‭genetic‬ ‭exchange)‬ ‭compared‬ ‭to‬ ‭the‬ ‭rest‬ ‭of‬ ‭the‬ ‭genome,‬
‭and,‬ ‭for‬ ‭chromosomes‬ ‭2,‬ ‭10‬ ‭and‬ ‭13,‬ ‭also‬ ‭disproportionally‬ ‭high‬ ‭effect‬ ‭sizes‬ ‭in‬ ‭a‬
‭population-structure-corrected‬ ‭genome-wide‬ ‭association‬ ‭study‬ ‭between‬ ‭deep‬ ‭and‬ ‭shallow‬
‭benthics‬ ‭(materials‬ ‭and‬‭methods,‬‭Fig. ‬‭3‬‭A,‬‭figs.‬‭S‬‭36‬‭to‬‭S‬‭40‬‭).‬‭Further,‬‭the‬‭inversion‬‭transmission‬
‭events‬‭inferred‬‭above‬‭(Fig. ‬‭3‬‭B,‬‭fig.‬‭S‬‭34‬‭)‬‭were‬‭often‬‭such‬‭that‬‭species‬‭living‬‭at‬‭depth‬‭atypical‬‭for‬
‭their‬ ‭clade‬ ‭(e.g.,‬ ‭shallow-living‬ ‭rocky‬ ‭Aulonocara‬ ‭of‬ ‭the‬ ‭deep‬ ‭benthic‬ ‭clade‬ ‭and‬ ‭deep-living‬
‭shallow‬ ‭benthic‬ ‭species‬ ‭like‬ ‭Trematocranus‬ ‭sp.‬ ‭‘Cape‬ ‭Maclear’)‬ ‭had‬ ‭received‬ ‭the‬ ‭inversion‬
‭haplotypes‬‭of‬‭species‬‭living‬‭at‬‭similar‬‭depths‬‭(fig.‬‭S‬‭35‬‭).‬‭Together,‬‭these‬‭observations‬‭support‬‭the‬
‭hypothesis that inversion haplotypes contributed to divergence along a depth gradient.‬
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‭Fig. ‬‭3‬‭: Evolutionary history scenario of inversion‬‭haplotypes. (A‬‭) Density plots of pairwise sequence‬‭divergence‬
‭translated into divergence (coalescence) times assuming a mutation rate of 3×10‬‭-9‬‭ bp per generation‬‭(‬‭31‬‭)‬‭.‬‭The top‬
‭panels show results for the genome outside the five large inversions, comparing all major clades against‬‭shallow‬
‭benthics‬‭(left) and‬‭deep benthics‬‭(right). Panels‬‭below the top row show divergence in inversion regions for the‬
‭non-inverted (left) and inverted (right)‬‭benthic‬‭haplotypes.‬‭(‬‭B‬‭) A simplified model for the evolutionary history‬‭of the‬
‭Malawi cichlid radiation, which includes several inversion haplotype transmission events. Vertical grey connections‬
‭indicate major gene flow events. Letter-labelled arrows indicate transfer of inversion-region haplotypes. For further‬
‭events see fig. S‬‭34‬‭. Lineages in which re-introgressed‬‭inversion region haplotypes of ancestral orientation apparently‬
‭play a Y-like role in sex determination (see Fig.‬‭5‬‭and main text) are indicated by 🅈. (‬‭C‬‭) Evidence‬‭for transfer of‬
‭inversion haplotypes through introgressive hybridisation. Histograms of ABBA-BABA statistics‬‭D(P1, P2, P3,‬
‭Outgroup)‬‭calculated outside the inversions. For the‬‭different panels, we selected those ABBA-BABA tests for which‬
‭the inverted state of the respective chromosome is present in one of the two more closely related species P1 and P2‬
‭but absent in the other and ordered them such that P2 shared the inversion state (presence/absence) with P3. In‬
‭such a configuration, significantly positive values are suggestive of gene flow outside of inversions between the‬
‭species sharing inversion states, while significantly negative values suggest gene flow between species not sharing‬
‭inversion states. Under the null hypothesis of no inversion introgression, the statistic would be symmetric around‬
‭zero.‬
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‭Pervasive signatures of adaptation on inversion haplotypes‬
‭Next,‬ ‭we‬ ‭investigated‬ ‭whether‬ ‭the‬ ‭evolution‬ ‭of‬ ‭inversion‬ ‭haplotypes‬ ‭was‬ ‭driven‬ ‭by‬ ‭adaptive‬
‭processes‬‭and‬‭could‬‭potentially‬‭constitute‬‭“supergenes”‬‭of‬‭co-adapted‬‭alleles.‬‭To‬‭identify‬‭genetic‬
‭variants‬ ‭relevant‬ ‭for‬ ‭the‬ ‭early‬ ‭evolution‬ ‭of‬ ‭inversion‬ ‭haplotypes,‬ ‭we‬ ‭computed‬ ‭correlation‬
‭coefficients‬‭and‬‭significance‬‭scores‬‭(-log‬‭10‬ ‭p-value)‬‭between‬‭SNP‬‭and‬‭inversion‬‭genotypes‬‭(figs.‬
‭S‬‭41‬ ‭and‬ ‭S‬‭42‬‭),‬ ‭where‬ ‭positive‬ ‭correlation‬ ‭coefficients‬ ‭correspond‬ ‭to‬ ‭derived‬ ‭SNP‬ ‭alleles‬ ‭on‬
‭inverted‬‭haplotypes‬‭and‬‭negative‬‭coefficients‬‭to‬‭derived‬‭SNP‬‭alleles‬‭on‬‭non-inverted‬‭haplotypes.‬
‭We‬ ‭expected‬ ‭the‬ ‭most‬ ‭highly‬ ‭inversion‬ ‭correlated‬‭SNPs‬‭(“ICS”)‬‭to‬‭contain‬‭variants‬‭relevant‬‭in‬
‭early inversion evolution.‬

‭ICS‬‭were‬‭much‬‭more‬‭likely‬‭to‬‭be‬‭located‬‭in‬‭protein‬‭coding‬‭regions‬‭compared‬‭to‬‭other‬‭(non-ICS)‬
‭SNPs‬ ‭on‬ ‭all‬ ‭five‬ ‭chromosomes‬ ‭(Fig. ‬‭4‬‭A)‬ ‭and‬ ‭showed‬ ‭a‬ ‭strong‬ ‭excess‬ ‭of‬ ‭non-synonymous‬
‭divergence‬ ‭in‬ ‭McDonald–Kreitman‬ ‭type‬ ‭tests‬ ‭(fig.‬‭S‬‭43‬‭),‬‭indicating‬‭that‬‭positive‬‭and/or‬‭relaxed‬
‭purifying‬ ‭selection‬ ‭contributed‬ ‭to‬ ‭inversion‬ ‭haplotype‬ ‭divergence.‬ ‭To‬ ‭confirm‬ ‭that‬ ‭there‬‭was‬‭a‬
‭component‬‭of‬‭positive‬‭selection,‬‭and‬‭not‬‭just‬‭drift‬‭due‬‭to‬‭relaxed‬‭purifying‬‭selection‬‭as‬‭expected‬
‭when‬ ‭a‬ ‭single‬ ‭haplotype‬ ‭rapidly‬ ‭raises‬‭in‬‭frequency‬‭(‬‭42‬‭)‬‭,‬‭we‬‭calculated‬‭the‬‭normalised‬‭ratio‬‭of‬
‭non-synonymous‬‭to‬‭synonymous‬‭mutations‬‭(dN/dS).‬‭While‬‭dN/dS‬‭ratios‬‭can‬‭approach‬‭1.0‬‭when‬
‭selection‬ ‭is‬ ‭ineffective‬ ‭(complete‬ ‭relaxation‬ ‭of‬ ‭selection),‬ ‭values‬ ‭larger‬ ‭than‬ ‭1.0‬ ‭are‬ ‭only‬
‭consistent‬ ‭with‬ ‭adaptive‬ ‭evolution‬ ‭(text‬ ‭S‬‭2‬‭)‬ ‭(‬‭43‬‭)‬‭.‬ ‭We‬ ‭found‬ ‭that‬ ‭dN/dS‬ ‭ratios‬ ‭increased‬ ‭with‬
‭increasing‬ ‭inversion‬ ‭correlation,‬ ‭with‬ ‭highly‬ ‭positive‬ ‭ICS‬ ‭showing‬ ‭dN/dS‬ ‭≥‬ ‭1‬ ‭for‬ ‭all‬ ‭five‬
‭chromosomes‬ ‭(Fig. ‬‭4‬‭B,‬ ‭table‬ ‭S‬‭15‬‭).‬ ‭We‬ ‭confirmed‬ ‭with‬ ‭evolutionary‬ ‭simulations‬ ‭that‬ ‭such‬ ‭a‬
‭pattern‬ ‭is‬ ‭only‬ ‭expected‬ ‭in‬ ‭the‬ ‭presence‬ ‭of‬ ‭substantial‬ ‭numbers‬ ‭of‬ ‭positively‬ ‭selected‬ ‭variants‬
‭(text‬ ‭S‬‭2‬‭,‬ ‭figs.‬ ‭S‬‭44‬ ‭and‬ ‭S‬‭45‬‭).‬ ‭Therefore,‬ ‭we‬ ‭conclude‬ ‭that‬ ‭widespread‬ ‭adaptive‬ ‭evolution‬
‭contributed‬ ‭to‬ ‭diversification‬ ‭between‬ ‭ancestral‬ ‭and‬ ‭inverted‬ ‭haplotypes‬ ‭on‬ ‭all‬ ‭five‬
‭chromosomes.‬

‭Interestingly,‬‭despite‬‭their‬‭general‬‭high‬‭differentiation,‬‭for‬‭many‬‭ICS‬‭both‬‭alleles‬‭were‬‭present‬‭in‬
‭at‬ ‭least‬‭one‬‭copy‬‭on‬‭both‬‭inverted‬‭and‬‭non-inverted‬‭haplotypes‬‭(37-72%‬‭of‬‭ICS,‬‭table‬‭S‬‭16‬‭).‬‭As‬
‭expected,‬ ‭this‬ ‭pattern‬ ‭of‬ ‭shared‬ ‭polymorphism‬ ‭across‬ ‭inversion‬ ‭orientations‬ ‭is‬ ‭even‬ ‭more‬
‭apparent‬‭for‬‭other‬‭(non-ICS)‬‭common‬‭variants‬‭(table‬‭S‬‭16‬‭)‬‭and‬‭suggests‬‭that‬‭despite‬‭their‬‭excess‬
‭divergence,‬ ‭recombination‬ ‭between‬ ‭inversion‬ ‭region‬ ‭haplotypes‬ ‭is‬ ‭not‬ ‭uncommon‬ ‭at‬
‭evolutionary‬ ‭timescales,‬ ‭potentially‬ ‭providing‬ ‭a‬ ‭mechanism‬ ‭to‬ ‭concentrate‬ ‭adaptive‬ ‭alleles‬ ‭on‬
‭such haplotypes.‬
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‭Fig. ‬‭4‬‭:‬ ‭Adaptive‬ ‭evolution‬ ‭of‬ ‭inversion‬ ‭haplotypes.‬ ‭(‬‭A‬‭)‬ ‭Proportion‬ ‭of‬ ‭exonic‬ ‭SNPs,‬ ‭grouped‬ ‭by‬ ‭inversion‬
‭correlation‬ ‭coefficient‬ ‭intervals,‬ ‭relative‬ ‭to‬ ‭all‬ ‭SNPs‬ ‭within‬ ‭the‬ ‭same‬ ‭interval.‬ ‭A‬ ‭positive‬ ‭correlation‬ ‭coefficient‬
‭corresponds‬ ‭to‬ ‭the‬ ‭derived‬ ‭SNP‬ ‭allele‬‭being‬‭more‬‭common‬‭on‬‭the‬‭inverted‬‭haplotype,‬‭while‬‭a‬‭negative‬‭coefficient‬
‭corresponds‬‭to‬‭the‬‭derived‬‭SNP‬‭allele‬‭being‬‭more‬‭common‬‭on‬‭the‬‭non-inverted‬‭haplotype‬‭(ancestral‬‭orientation).‬‭(‬‭B‬‭)‬
‭dN/dS‬‭measured‬‭for‬‭SNPs‬‭as‬‭a‬‭function‬‭of‬‭inversion‬‭genotype‬‭correlation‬‭(see‬‭materials‬‭and‬‭methods).‬‭(‬‭C‬‭)‬‭Excess‬‭of‬
‭genes‬‭containing‬‭non-synonymous‬‭highly‬‭inversion‬‭correlated‬‭SNPs‬‭(nsICS)‬‭among‬‭all‬‭genes‬‭highly‬‭expressed‬‭in‬‭the‬
‭main‬ ‭sensory‬ ‭(green)‬ ‭and‬ ‭nervous‬ ‭system‬ ‭(blue).‬ ‭Expression‬ ‭data‬ ‭is‬ ‭based‬ ‭on‬ ‭the‬‭single-cell‬‭expression‬‭atlas‬‭of‬
‭developing‬ ‭zebrafish‬ ‭Daniocell‬ ‭(‬‭44‬‭)‬‭.‬ ‭The‬ ‭tissues‬ ‭were‬ ‭grouped‬ ‭into‬ ‭the‬ ‭functional‬ ‭categories:‬ ‭vision‬ ‭(eye),‬
‭mechanoreception‬ ‭(lateral‬ ‭line,‬ ‭ear),‬ ‭chemoreception‬ ‭(taste,‬ ‭olfaction),‬ ‭and‬ ‭nervous‬ ‭system‬ ‭(neural).‬ ‭(‬‭D)‬
‭Non-synonymous‬ ‭SNPs‬ ‭(grey‬ ‭dots;‬ ‭if‬ ‭ICS:‬ ‭empty‬ ‭dots)‬ ‭and‬ ‭averaged‬ ‭ICS‬ ‭scores‬ ‭in‬ ‭100‬ ‭SNP‬ ‭rolling‬ ‭windows‬
‭(markers‬ ‭colour-coded‬ ‭according‬ ‭to‬ ‭inversion)‬ ‭on‬‭the‬‭five‬‭inversion‬‭chromosomes.‬‭We‬‭annotated‬‭nsICS‬‭located‬‭in‬
‭genes‬ ‭with‬ ‭high‬ ‭expression‬ ‭in‬ ‭zebrafish‬ ‭tissue‬ ‭groups‬ ‭related‬ ‭to‬ ‭sensory‬ ‭perception‬ ‭(same‬ ‭as‬ ‭in‬ ‭(C)).‬ ‭nsICS‬ ‭in‬
‭candidate‬‭genes‬‭discussed‬‭in‬‭the‬‭main‬‭text‬‭are‬‭annotated‬‭with‬‭arrows‬‭(if‬‭several‬‭were‬‭located‬‭in‬‭the‬‭same‬‭gene,‬‭the‬
‭highest nsICS is annotated) and color-coded by functional category (table S‬‭24‬‭).‬
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‭Inversions contribute to sensory and physiological adaptation‬
‭To‬‭study‬‭functional‬‭roles‬‭of‬‭genes‬‭involved‬‭in‬‭inversion‬‭adaptations,‬‭we‬‭first‬‭analyzed‬‭expression‬
‭of‬ ‭the‬ ‭315‬ ‭genes‬ ‭from‬ ‭inversion‬ ‭regions‬ ‭with‬ ‭non-synonymous‬ ‭ICS‬ ‭(nsICS)‬ ‭in‬ ‭a‬ ‭multi-tissue‬
‭single-cell‬ ‭gene‬ ‭expression‬ ‭atlas‬ ‭of‬ ‭the‬ ‭zebrafish‬ ‭model‬ ‭(Daniocell‬‭database‬‭(‬‭44‬‭)‬‭,‬‭text‬‭S‬‭3‬‭).‬‭We‬
‭found‬ ‭that‬ ‭individual‬ ‭inversions‬ ‭showed‬ ‭elevated‬ ‭expression‬ ‭in‬ ‭tissues‬ ‭related‬ ‭to‬ ‭vision,‬
‭mechanoreception,‬‭and‬‭the‬‭nervous‬‭system‬‭(FDR-corrected‬‭p‬‭=‬‭2×10‬‭-4‬‭,‬‭0.02,‬‭0.04,‬‭respectively)‬
‭(Fig‬‭4‬‭C,‬‭figs.‬‭S‬‭46‬‭and‬‭S‬‭47‬‭,‬‭tables‬‭S‬‭17‬‭to‬‭S‬‭20‬‭).‬‭As‬‭most‬‭of‬‭the‬‭associations‬‭were‬‭related‬‭to‬‭neural‬
‭and‬‭sensory‬‭tissues,‬‭we‬‭checked‬‭for‬‭overrepresentation‬‭of‬‭all‬‭neural‬‭and‬‭sensory‬‭tissues‬‭across‬‭all‬
‭five‬‭inversions,‬‭and‬‭found‬‭them‬‭to‬‭be‬‭significant‬‭(FDR-corrected‬‭p‬‭=‬‭6×10‬‭-4‬‭,‬‭fig.‬‭S‬‭48‬‭,‬‭tables‬‭S‬‭21‬
‭and‬ ‭S‬‭22‬‭).‬ ‭We‬ ‭additionally‬ ‭tested‬ ‭for‬ ‭gene‬ ‭ontology‬ ‭(GO)‬ ‭enrichment‬ ‭of‬ ‭genes‬ ‭near‬ ‭ICS‬ ‭(see‬
‭materials‬ ‭and‬ ‭methods)‬ ‭and‬ ‭found‬ ‭sensory‬ ‭system-related‬ ‭categories‬ ‭in‬ ‭all‬ ‭five‬ ‭inversions‬
‭(‬‭table S‬‭23‬‭).‬‭Finally,‬‭we‬‭found‬‭vascular‬‭system-related‬‭categories‬‭functionally‬‭linked‬‭to‬‭responses‬
‭to‬ ‭hypoxia‬ ‭stress‬ ‭to‬ ‭be‬ ‭enriched‬ ‭in‬ ‭three‬ ‭inversions.‬ ‭All‬ ‭these‬ ‭findings‬ ‭are‬ ‭consistent‬ ‭with‬
‭adaptations‬‭related‬‭to‬‭changes‬‭in‬‭light,‬‭oxygen,‬‭and‬‭hydrostatic‬‭pressure‬‭along‬‭a‬‭depth‬‭gradient,‬
‭as observed in many aquatic organisms‬‭(‬‭45‬‭–‬‭47‬‭)‬‭including‬‭cichlids‬‭(‬‭31‬‭,‬‭48‬‭,‬‭49‬‭)‬‭.‬

‭Among‬ ‭the‬‭83‬‭genes‬‭with‬‭two‬‭or‬‭more‬‭nsICS‬‭were‬‭strong‬‭candidate‬‭genes‬‭for‬‭depth‬‭adaptation‬
‭(tables‬ ‭S‬‭24‬ ‭and‬ ‭S‬‭25‬‭),‬ ‭including‬ ‭genes‬ ‭involved‬ ‭in‬ ‭signal‬ ‭transduction‬ ‭in‬ ‭photoreceptor‬ ‭cells‬
‭(‬‭arr3a,‬ ‭gucy2d,‬ ‭pou6f2‬‭),‬ ‭otolith‬ ‭tethering‬ ‭(‬‭tecta‬‭),‬‭sound‬‭perception‬‭(‬‭myo7ab‬‭),‬‭kidney‬‭function‬
‭and‬ ‭blood‬ ‭pressure‬ ‭regulation‬ ‭(‬‭urad‬‭)‬ ‭and‬ ‭a‬ ‭master‬‭regulator‬‭of‬‭vasoconstriction‬‭(‬‭agt‬‭)‬‭(Fig. ‬‭4‬‭D,‬
‭text‬ ‭S‬‭4‬‭,‬‭table S‬‭24‬‭).‬‭Interestingly,‬‭some‬‭genes‬‭showed‬‭a‬‭close‬‭similarity‬‭between‬‭the‬‭amino‬‭acid‬
‭sequence‬ ‭coded‬ ‭by‬ ‭the‬ ‭inverted‬ ‭haplotype‬ ‭and‬ ‭that‬ ‭of‬ ‭Diplotaxodon‬‭,‬ ‭even‬ ‭when‬ ‭the‬ ‭relevant‬
‭inversion‬‭was‬‭not‬‭present‬‭in‬‭Diplotaxodon‬‭(e.g.,‬‭arr3a‬‭on‬‭chromosome‬‭10,‬‭see‬‭also‬‭Malinsky‬‭et‬
‭al.‬ ‭(‬‭31‬‭)‬‭)‬ ‭(‬‭fig.‬ ‭S‬‭49‬‭),‬ ‭which‬ ‭is‬ ‭consistent‬ ‭with‬ ‭a‬ ‭hybrid‬ ‭ancestry‬ ‭of‬ ‭benthics‬ ‭and‬ ‭subsequent‬
‭differential‬ ‭selection‬ ‭between‬ ‭recombination-suppressed‬ ‭inversion‬ ‭haplotypes.‬ ‭Intriguingly,‬
‭several genes harbour both positive and negative ICS, as expected under diversifying selection.‬

‭Consistent‬ ‭with‬ ‭their‬ ‭enrichment‬ ‭among‬ ‭sensory‬ ‭and‬‭neural‬‭tissues,‬‭we‬‭also‬‭found‬‭nsICS‬‭to‬‭be‬
‭significantly‬ ‭overrepresented‬ ‭among‬ ‭neuroreceptor‬ ‭genes‬ ‭that‬ ‭have‬ ‭been‬ ‭previously‬ ‭associated‬
‭with‬ ‭social‬ ‭(glutamate)‬ ‭and‬ ‭affiliative‬ ‭(oxytocin‬ ‭and‬ ‭arginine‬ ‭vasopressin/vasotocin,‬ ‭opioid‬
‭receptors,‬ ‭dopamine,‬ ‭serotonin)‬ ‭behaviour‬ ‭(‬‭50‬‭)‬‭(6‬‭out‬‭of‬‭the‬‭46‬‭candidate‬‭genes,‬‭Fisher’s‬‭exact‬
‭test‬ ‭p=0.0011)‬ ‭(table‬ ‭S‬‭26‬‭).‬ ‭These‬ ‭are‬ ‭three‬ ‭glutamate‬ ‭receptors‬ ‭(‬‭gria3a‬ ‭and‬ ‭gria4b‬ ‭on‬
‭chromosome‬ ‭10,‬ ‭grik3‬‭,‬ ‭on‬ ‭chromosome‬ ‭11),‬ ‭one‬ ‭opioid‬ ‭receptor‬ ‭(‬‭oprd1b‬‭on‬‭chromosome‬‭11),‬
‭one‬ ‭dopamine‬ ‭receptor‬ ‭(‬‭drd2l‬ ‭on‬ ‭chromosome‬ ‭11),‬ ‭and‬ ‭one‬ ‭serotonin‬ ‭receptor‬ ‭(‬‭htr7a‬ ‭on‬
‭chromosome 13) (fig. S‬‭49‬‭)‬‭.‬

‭It‬ ‭is‬ ‭notable‬ ‭that‬ ‭the‬ ‭identified‬ ‭neurotransmitters‬ ‭are‬ ‭not‬ ‭only‬ ‭associated‬ ‭with‬ ‭fish‬ ‭social‬
‭behaviour‬ ‭in‬ ‭general,‬ ‭but‬ ‭have‬ ‭been‬ ‭specifically‬ ‭associated‬ ‭with‬ ‭bower‬ ‭building‬ ‭behaviour‬ ‭in‬
‭Malawi‬‭cichlids‬‭(‬‭51‬‭)‬‭,‬‭a‬‭behavioural‬‭phenotype‬‭important‬‭for‬‭assortative‬‭mating‬‭(‬‭52‬‭)‬‭,‬‭which‬‭has‬
‭previously‬ ‭been‬ ‭linked‬ ‭to‬ ‭the‬ ‭existence‬ ‭of‬ ‭supergenes‬ ‭(‬‭50‬‭)‬ ‭and‬ ‭associated‬ ‭with‬ ‭genetic‬
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‭divergence‬‭peaks‬‭inside‬‭our‬‭chromosome‬‭2‬‭and‬‭11‬‭inversion‬‭regions‬‭(‬‭34‬‭)‬‭.‬‭Following‬‭this‬‭up,‬‭we‬
‭found‬‭no‬‭significant‬‭correlation‬‭between‬‭bower‬‭type‬‭and‬‭the‬‭presence‬‭of‬‭the‬‭five‬‭inversions‬‭when‬
‭accounting‬ ‭for‬ ‭phylogeny‬ ‭(materials‬ ‭and‬ ‭methods;‬ ‭fig.‬ ‭S‬‭50‬‭,‬ ‭table‬ ‭S‬‭27‬‭;‬ ‭but‬ ‭see‬ ‭text‬ ‭S‬‭1‬‭),‬
‭suggesting that previously detected associations might be due to phylogenetic confounding.‬

‭Overall,‬‭our‬‭selection‬‭analyses‬‭suggest‬‭that‬‭widespread‬‭functional‬‭divergence‬‭in‬‭genes‬‭related‬‭to‬
‭sensory,‬ ‭vascular,‬ ‭and‬ ‭nervous‬ ‭systems‬ ‭occurred‬ ‭during‬ ‭the‬ ‭early‬ ‭evolution‬ ‭of‬ ‭inversion‬
‭haplotypes.‬

‭Inversions contribute to sex determination‬
‭Considering‬ ‭segregation‬ ‭patterns‬ ‭of‬ ‭inversion‬ ‭genotypes‬ ‭within‬‭species,‬‭we‬‭observed‬‭a‬‭notable‬
‭excess‬‭of‬‭inversion‬‭heterozygotes‬‭for‬‭chromosomes‬‭9,‬‭10,‬‭and‬‭11‬‭(deviation‬‭from‬‭within-species‬
‭Hardy-Weinberg-equilibrium,‬ ‭HWE,‬ ‭p‬ ‭<‬ ‭10‬‭-4‬‭,‬ ‭0.0048,‬ ‭and‬ ‭0.0133,‬ ‭respectively).‬ ‭This‬ ‭pattern‬
‭was‬ ‭most‬ ‭extreme‬ ‭for‬ ‭chromosome‬ ‭9,‬ ‭for‬ ‭which‬ ‭despite‬ ‭the‬ ‭presence‬ ‭of‬ ‭77‬ ‭heterozygous‬
‭individuals‬ ‭across‬ ‭twelve‬ ‭species,‬ ‭not‬ ‭a‬ ‭single‬ ‭homozygous‬ ‭ancestral‬ ‭(non-inverted)‬ ‭state‬ ‭was‬
‭present in any‬‭benthic‬‭.‬

‭Since‬ ‭inversions‬ ‭are‬ ‭a‬ ‭common‬ ‭feature‬ ‭in‬ ‭the‬ ‭evolution‬ ‭of‬ ‭suppressed‬ ‭recombination‬ ‭on‬ ‭sex‬
‭chromosomes‬‭(‬‭53‬‭,‬‭54‬‭)‬‭,‬‭we‬‭hypothesized‬‭that‬‭the‬‭observed‬‭excess‬‭of‬‭heterozygotes‬‭could‬‭be‬‭due‬
‭to‬ ‭sex-linked‬ ‭inheritance‬ ‭(fig.‬ ‭S‬‭51‬‭).‬ ‭In‬ ‭the‬ ‭two‬ ‭species‬ ‭for‬ ‭which‬ ‭we‬ ‭had‬
‭gonad-examination-based‬ ‭sex‬ ‭assignment,‬ ‭we‬ ‭found‬ ‭a‬ ‭perfect‬ ‭correlation‬ ‭of‬ ‭sex‬ ‭with‬
‭chromosome‬ ‭11‬‭inversion‬‭state‬‭in‬‭Copadichromis‬‭chrysonotus‬‭(Fig. ‬‭5‬‭A,‬‭B;‬‭n=28,‬‭Fisher's‬‭exact‬
‭test‬‭p-value = 4.7×10‬‭-8‬‭),‬‭while‬‭the‬‭other‬‭species,‬‭Copadichromis‬‭mloto,‬‭was‬‭not‬‭variable‬‭for‬‭any‬
‭inversion.‬ ‭We‬ ‭further‬ ‭confirmed‬ ‭a‬‭significant‬‭chromosome‬‭11‬‭inversion–sex‬‭association‬‭among‬
‭107‬ ‭laboratory-bred‬ ‭individuals‬ ‭from‬ ‭11‬ ‭broods‬ ‭of‬ ‭three‬ ‭species‬ ‭(Fig. ‬‭5‬‭C-E).‬ ‭Notably,‬ ‭in‬ ‭a‬
‭second‬ ‭laboratory‬ ‭population‬ ‭of‬‭one‬‭of‬‭these‬‭species‬‭(‬‭O.‬‭tetrastigma‬‭)‬‭with‬‭different‬‭geographic‬
‭origin,‬‭the‬‭chromosome‬‭11‬‭inversion‬‭was‬‭fixed‬‭for‬‭the‬‭inverted‬‭state,‬‭but‬‭there‬‭was‬‭a‬‭correlation‬
‭of‬ ‭sex‬ ‭with‬ ‭the‬ ‭chromosome‬ ‭9‬ ‭inversion‬ ‭state‬ ‭(Fig. ‬‭5‬‭E).‬ ‭This‬ ‭is‬ ‭consistent‬ ‭with‬ ‭previous‬
‭observations‬ ‭of‬ ‭multiple‬ ‭sex‬ ‭determination‬ ‭systems‬ ‭acting‬ ‭even‬ ‭within‬ ‭single‬ ‭Malawi‬ ‭cichlid‬
‭species‬ ‭(‬‭55‬‭,‬ ‭56‬‭)‬‭.‬ ‭In‬‭each‬‭case‬‭where‬‭there‬‭was‬‭an‬‭association,‬‭males‬‭tended‬‭to‬‭be‬‭heterozygous‬
‭and‬ ‭females‬ ‭homozygous‬ ‭for‬ ‭the‬ ‭respective‬ ‭inverted‬ ‭state‬ ‭as‬ ‭expected‬ ‭for‬ ‭XY-like‬ ‭sex‬
‭determination systems.‬

‭To‬ ‭further‬ ‭examine‬ ‭the‬ ‭extent‬ ‭of‬ ‭sex-linkage‬ ‭of‬ ‭inversions,‬ ‭we‬ ‭pooled‬ ‭data‬ ‭for‬ ‭each‬ ‭inversion‬
‭across‬ ‭species‬ ‭with‬ ‭at‬ ‭least‬ ‭one‬ ‭heterozygous‬ ‭sample‬ ‭(table‬ ‭S‬‭28‬‭).‬ ‭This‬ ‭revealed‬ ‭that,‬ ‭while‬
‭females‬ ‭tended‬ ‭to‬ ‭be‬ ‭homozygous‬ ‭for‬ ‭the‬ ‭inverted‬ ‭state,‬ ‭there‬ ‭was‬ ‭a‬ ‭significant‬‭association‬‭of‬
‭male‬‭sex‬‭with‬‭the‬‭heterozygous‬‭state‬‭for‬‭chromosomes‬‭9,‬‭10,‬‭and‬‭11‬‭(Fisher’s‬‭exact‬‭test‬‭p-value‬
‭=‬‭3.7×10‬‭-11‬‭,‬‭0.014,‬‭and‬‭5.3×10‬‭-11‬‭,‬‭respectively)‬‭(Fig. ‬‭5‬‭F,‬‭table‬‭S‬‭28‬‭)‬‭consistent‬‭with‬‭a‬‭widespread‬
‭role‬ ‭of‬ ‭the‬ ‭inversions‬ ‭in‬ ‭sex‬ ‭determination.‬ ‭That‬ ‭said,‬ ‭many‬ ‭species‬ ‭were‬‭not‬‭polymorphic‬‭for‬
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‭inversions‬ ‭and‬ ‭even‬‭within‬‭polymorphic‬‭species‬‭associations‬‭were‬‭usually‬‭not‬‭perfect‬‭(data‬‭S‬‭3‬‭)‬
‭suggesting‬ ‭additional‬ ‭genetic‬ ‭or‬ ‭environmental‬ ‭effects‬ ‭contributing‬ ‭to‬ ‭sex‬ ‭determination‬ ‭and‬ ‭a‬
‭rapid turnover of sex-linked function.‬

‭Given‬ ‭that‬ ‭the‬ ‭evolution‬ ‭of‬ ‭sex-determining‬ ‭regions‬‭often‬‭involves‬‭changes‬‭in‬‭gene‬‭expression‬
‭between‬ ‭male‬ ‭and‬ ‭female‬ ‭haplotypes,‬ ‭we‬ ‭obtained‬ ‭transcriptomic‬ ‭data‬ ‭of‬ ‭five‬ ‭tissues‬‭(muscle,‬
‭liver,‬ ‭brain,‬ ‭gills,‬ ‭gonads)‬ ‭for‬ ‭11‬ ‭males‬ ‭of‬ ‭C.‬ ‭chrysonotus‬‭,‬ ‭the‬ ‭species‬ ‭in‬ ‭which‬ ‭males‬ ‭were‬
‭heterozygous‬ ‭for‬ ‭the‬ ‭chromosome‬ ‭11‬‭inversion‬‭while‬‭females‬‭were‬‭fixed‬‭for‬‭the‬‭inverted‬‭state,‬
‭and‬‭investigated‬‭allele‬‭specific‬‭expression‬‭(ASE).‬‭Among‬‭genes‬‭with‬‭significant‬‭ASE‬‭(fig.‬‭S‬‭52‬‭,‬
‭text‬ ‭S‬‭3‬‭)‬ ‭there‬ ‭was‬ ‭a‬ ‭moderate‬ ‭bias‬ ‭towards‬ ‭lower‬ ‭expression‬ ‭of‬ ‭the‬ ‭Y-like‬ ‭non-inverted‬
‭haplotype,‬‭a‬‭pattern‬‭seen‬‭in‬‭many‬‭organisms‬‭(‬‭57‬‭)‬‭.‬‭Further,‬‭lacking‬‭access‬‭to‬‭appropriate‬‭female‬
‭samples,‬‭we‬‭obtained‬‭equivalent‬‭data‬‭for‬‭eleven‬‭male‬‭C.‬‭mloto‬‭,‬‭the‬‭congeneric‬‭species‬‭fixed‬‭for‬
‭the‬‭derived‬‭chromosome‬‭11‬‭inversion‬‭state,‬‭to‬‭perform‬‭differential‬‭gene‬‭expression‬‭(DE)‬‭analysis‬
‭between‬‭the‬‭two‬‭inversion‬‭states‬‭(fig.‬‭S‬‭53‬‭).‬‭Several‬‭of‬‭the‬‭significant‬‭ASE‬‭and‬‭DE‬‭genes‬‭(FDR‬‭<‬
‭0.05)‬ ‭were‬ ‭implicated‬ ‭in‬ ‭sex‬ ‭determination,‬ ‭sex‬ ‭specific‬ ‭expression‬ ‭or‬‭gonad‬‭function‬‭in‬‭other‬
‭(fish)‬ ‭species‬ ‭(‬‭table S‬‭24‬‭)‬ ‭and‬ ‭ICS‬ ‭were‬ ‭significantly‬ ‭overrepresented‬ ‭among‬ ‭genes‬ ‭with‬
‭significant‬ ‭allele‬ ‭specific‬ ‭expression‬ ‭(Fisher's‬ ‭exact‬ ‭test‬ ‭p‬ ‭=‬ ‭1.6×10‬‭-7‬‭).‬ ‭Furthermore,‬ ‭we‬ ‭found‬
‭candidate‬‭genes‬‭related‬‭to‬‭sex‬‭and‬‭reproduction‬‭among‬‭the‬‭strongest‬‭candidate‬‭genes‬‭for‬‭adaptive‬
‭evolution (i.e., those with the largest number nsICS)‬‭(Fig. ‬‭4‬‭D; text S‬‭3‬‭)‬‭.‬

‭It‬ ‭is‬ ‭notable‬ ‭that‬ ‭for‬ ‭each‬ ‭of‬ ‭the‬ ‭three‬ ‭inversions‬ ‭with‬ ‭evidence‬ ‭for‬ ‭sex-linkage,‬ ‭the‬ ‭Y-like,‬
‭non-inverted‬ ‭haplotype‬ ‭arrived‬ ‭in‬ ‭the‬ ‭affected‬ ‭benthics‬ ‭through‬ ‭introgression‬ ‭events,‬ ‭affecting‬
‭mainly‬‭eukambuzi,‬‭other‬‭shallow‬‭benthics/utaka‬‭,‬‭and‬‭deep‬‭benthics,‬‭for‬‭chromosomes‬‭9,‬‭11,‬‭and‬
‭10,‬‭respectively‬‭(events‬‭Ⓑ,‬‭Ⓒ,‬‭and‬‭Ⓔ‬‭in‬‭Fig. ‬‭3‬‭B).‬‭For‬‭chromosome‬‭9,‬‭this‬‭is‬‭further‬‭supported-‬
‭by‬ ‭results‬ ‭from‬ ‭a‬ ‭lab‬ ‭based‬ ‭hybrid‬ ‭cross‬ ‭between‬ ‭females‬ ‭of‬ ‭A.‬ ‭calliptera‬ ‭and‬ ‭males‬ ‭of‬ ‭the‬
‭eukambuzi‬ ‭Protomelas‬ ‭taeniolatus,‬ ‭which‬ ‭showed‬ ‭a‬ ‭QTL‬ ‭peak‬ ‭for‬ ‭sex‬ ‭in‬ ‭the‬ ‭chromosome‬ ‭9‬
‭inversion‬ ‭region‬ ‭(‬‭58‬‭)‬‭.‬ ‭This‬ ‭is‬ ‭consistent‬ ‭with‬ ‭a‬ ‭dominant‬ ‭male-determining‬ ‭function‬ ‭of‬ ‭the‬
‭non-inverted‬‭benthic‬‭haplotype‬‭(with‬‭origin‬‭external‬‭to‬‭the‬‭Malawi‬‭radiation),‬‭even‬‭when‬‭paired‬
‭with an‬‭A. calliptera‬‭haplotype of the same orientation.‬

‭To‬ ‭further‬ ‭investigate‬ ‭the‬ ‭generality‬ ‭of‬ ‭the‬ ‭role‬ ‭of‬ ‭inversions‬ ‭in‬ ‭sex‬ ‭determination‬ ‭of‬
‭haplochromine‬ ‭cichlids,‬ ‭we‬ ‭applied‬ ‭our‬ ‭SNP-based‬ ‭inversion‬ ‭detection‬ ‭approach‬ ‭to‬ ‭publicly‬
‭available‬‭sequencing‬‭data‬‭for‬‭the‬‭Lake‬‭Victoria‬‭adaptive‬‭radiation‬‭(‬‭59‬‭)‬‭.‬‭The‬‭results‬‭suggest‬‭that‬
‭the‬ ‭sex-linked‬ ‭regions‬ ‭identified‬ ‭by‬ ‭Feller‬ ‭et‬ ‭al.‬ ‭(‬‭58‬‭)‬ ‭on‬ ‭chromosomes‬ ‭9‬ ‭and‬ ‭23‬ ‭are‬ ‭in‬ ‭fact‬
‭chromosomal‬ ‭inversions‬ ‭(the‬ ‭one‬ ‭on‬ ‭chromosome‬ ‭9‬ ‭being‬ ‭distinct‬ ‭from‬ ‭the‬ ‭one‬ ‭present‬ ‭in‬
‭Malawi)‬‭(figs.‬‭S‬‭22‬‭and‬‭S‬‭54‬‭),‬‭pointing‬‭to‬‭a‬‭wider‬‭relevance‬‭of‬‭chromosomal‬‭inversions‬‭in‬‭cichlid‬
‭sex determination.‬
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‭Fig. ‬‭5‬‭:‬ ‭Sex‬ ‭association‬ ‭of‬ ‭inversions.‬ ‭(‬‭A‬‭) Windowed‬ ‭PC‬ ‭analysis‬ ‭along‬ ‭chromosome‬ ‭11‬ ‭demonstrates‬ ‭perfect‬
‭association‬ ‭of‬ ‭inversion‬ ‭genotype‬ ‭with‬ ‭sex‬ ‭in‬ ‭our‬ ‭sample‬ ‭of‬ ‭28‬ ‭wild-caught‬ ‭Copadichromis‬‭chrysonotus‬‭.‬‭(‬‭B‬‭)‬‭SNP‬
‭heterozygosity‬‭among‬‭our‬‭sample‬‭of‬‭wild-caught‬‭male‬‭and‬‭female‬‭C. chrysonotus‬‭,‬‭measured‬‭as‬‭number‬‭of‬‭het‬‭SNPs‬
‭per‬ ‭10 kbp.‬ ‭(‬‭C‬‭-‬‭E‬‭)‬ ‭Sex-inversion‬ ‭associations‬ ‭in‬‭lab-raised‬‭populations.‬‭Per‬‭population,‬‭the‬‭number‬‭of‬‭females‬‭and‬
‭males‬ ‭is‬ ‭given‬ ‭(separated‬ ‭by‬ ‭‘|’)‬ ‭and‬ ‭asterisks‬ ‭denote‬ ‭significance‬ ‭levels‬ ‭of‬ ‭Fisher’s‬ ‭exact‬ ‭tests‬ ‭of‬ ‭inversion‬
‭genotype–sex‬ ‭correlation‬ ‭(*: p < 0.05,‬ ‭***: p < 0.001).‬ ‭Inversion‬ ‭genotype‬ ‭per‬ ‭sex‬ ‭(confirmed‬ ‭through‬ ‭gonad‬
‭examination)‬‭in‬‭lab-raised‬‭broods‬‭of‬‭(‬‭C‬‭)‬‭C. chrysonotus‬‭from‬‭Lake‬‭Malombe‬‭(p < 0.001,‬‭left)‬‭and‬‭from‬‭Lake‬‭Malawi‬
‭(p = 0.048,‬ ‭right),‬ ‭(‬‭D‬‭)‬ ‭Lethrinops‬‭chilingali‬‭from‬‭satellite‬‭lake‬‭Chilingali‬‭(p < 0.001)‬‭(‬‭E‬‭),‬‭Otopharynx tetrastigma‬ ‭from‬
‭Lake‬‭Malombe‬‭at‬‭the‬‭outflow‬‭of‬‭Lake‬‭Malawi‬‭(p < 0.001,‬‭left)‬‭and‬‭from‬‭the‬‭northern‬‭part‬‭of‬‭Lake‬‭Malawi‬‭(p = 0.049,‬
‭right).‬ ‭(‬‭F‬‭) Proportions‬ ‭of‬ ‭homozygous/heterozygous‬ ‭inversion‬ ‭genotypes‬ ‭in‬ ‭males‬ ‭and‬ ‭females‬ ‭of‬ ‭species‬ ‭with‬
‭heterozygotes‬ ‭present,‬ ‭according‬ ‭to‬ ‭WGS‬ ‭and‬ ‭PCR‬ ‭typing‬ ‭of‬ ‭809‬ ‭samples‬ ‭(67‬ ‭species).‬ ‭Asterisks‬ ‭denote‬
‭significance levels of Fisher’s exact tests of inversion genotype–sex correlation (*: p < 0.05, ***: p < 0.001).‬
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‭Discussion‬
‭In‬ ‭this‬ ‭article‬ ‭we‬ ‭identify‬ ‭large‬ ‭chromosomal‬ ‭inversions‬ ‭present‬ ‭in‬ ‭the‬ ‭Lake‬ ‭Malawi‬ ‭cichlid‬
‭radiation‬ ‭and‬ ‭present‬ ‭evidence‬ ‭that‬ ‭their‬ ‭evolutionary‬ ‭history‬ ‭was‬ ‭shaped‬ ‭by‬ ‭introgression,‬
‭ecological‬ ‭adaptation,‬ ‭and‬‭the‬‭turnover‬‭of‬‭sex‬‭determination‬‭systems.‬‭Our‬‭results‬‭are‬‭consistent‬
‭with‬ ‭a‬ ‭recent‬ ‭preprint‬ ‭that‬ ‭independently‬ ‭identified‬ ‭the‬ ‭inversions‬ ‭described‬ ‭here‬ ‭and‬ ‭their‬
‭sex-linkage‬‭based‬‭on‬‭optical‬‭mapping‬‭and‬‭chromosome-level‬‭de‬‭novo‬‭assemblies‬‭(‬‭60‬‭)‬‭.‬‭Given‬‭the‬
‭evolutionarily‬‭independent‬‭presence‬‭of‬‭sex-linked‬‭inversions‬‭in‬‭Lake‬‭Victoria‬‭cichlids‬‭(‬‭fig.‬‭S‬‭54‬‭),‬
‭which‬‭are‬‭potentially‬‭also‬‭involved‬‭in‬‭adaptive‬‭introgression‬‭(‬‭59‬‭)‬‭,‬‭and‬‭large‬‭scale‬‭differences‬‭in‬
‭male/female‬ ‭DNA‬ ‭sequence‬ ‭in‬ ‭Lake‬ ‭Tanganyika‬ ‭cichlids‬ ‭(‬‭61‬‭)‬‭,‬ ‭we‬ ‭suggest‬ ‭that‬ ‭such‬
‭rearrangements may be a common feature of adaptive radiation in cichlids.‬

‭Chromosomal‬ ‭inversions‬ ‭have‬ ‭been‬ ‭implicated‬‭in‬‭adaptation,‬‭sex‬‭determination,‬‭and‬‭speciation‬
‭in‬‭many‬‭systems,‬‭especially‬‭in‬‭the‬‭context‬‭of‬‭adaptive‬‭divergence‬‭with‬‭gene‬‭flow‬‭(‬‭7‬‭,‬‭11‬‭,‬‭15‬‭–‬‭22‬‭,‬
‭28‬‭)‬ ‭likely‬ ‭because‬ ‭of‬ ‭their‬ ‭ability‬ ‭to‬ ‭lock‬ ‭together‬ ‭adaptive‬ ‭alleles‬ ‭(‬‭7‬‭)‬‭.‬ ‭The‬ ‭chromosomal‬
‭inversions‬‭we‬‭identified‬‭in‬‭Malawi‬‭cichlids‬‭were‬‭involved‬‭in‬‭gene‬‭flow‬‭events‬‭at‬‭different‬‭stages‬
‭of‬ ‭the‬‭radiation,‬‭most‬‭prominently‬‭a‬‭founding‬‭admixture‬‭event‬‭of‬‭the‬‭species‬‭rich‬‭benthic‬‭clade‬
‭and‬ ‭introgression‬ ‭from‬ ‭a‬ ‭distantly‬ ‭related‬ ‭lineage‬‭outside‬‭the‬‭Malawi‬‭radiation‬‭(chromosome‬‭9‬
‭inversion).‬ ‭These‬ ‭events‬ ‭coincide‬ ‭with‬ ‭bursts‬ ‭of‬ ‭eco-morphological‬ ‭diversification‬ ‭of‬ ‭the‬
‭resulting‬ ‭lineages.‬ ‭In‬ ‭the‬ ‭latter‬ ‭case,‬ ‭this‬ ‭concerns‬ ‭the‬ ‭eukambuzi‬‭,‬ ‭which‬ ‭show‬ ‭exceptional‬
‭diversity in eco-morphology, body patterning, and colouration‬‭(‬‭30‬‭)‬‭.‬

‭We‬‭found‬‭evidence‬‭for‬‭inversion‬‭transmission‬‭between‬‭deep‬‭and‬‭shallow‬‭benthic‬‭species‬‭caught‬
‭at‬ ‭similar‬ ‭depths‬ ‭(fig.‬ ‭S‬‭35‬‭).‬ ‭At‬ ‭the‬ ‭same‬ ‭time,‬ ‭when‬ ‭not‬ ‭introgressed,‬ ‭inversions‬ ‭seemingly‬
‭helped‬ ‭to‬ ‭suppress‬‭gene‬‭flow‬‭and‬‭thereby‬‭contributed‬‭to‬‭adaptive‬‭divergence.‬‭However,‬‭despite‬
‭their‬ ‭excess‬ ‭divergence‬ ‭compared‬ ‭to‬ ‭the‬ ‭rest‬ ‭of‬ ‭the‬ ‭genome‬ ‭and‬ ‭the‬ ‭complete‬ ‭recombination‬
‭suppression‬ ‭we‬ ‭observed‬ ‭in‬ ‭a‬ ‭cross‬ ‭(Fig.‬ ‭2‬‭E),‬ ‭most‬ ‭common‬ ‭genetic‬ ‭polymorphism‬ ‭is‬ ‭shared‬
‭across‬ ‭orientations‬ ‭suggesting‬ ‭that‬ ‭inversions‬ ‭are‬ ‭a‬ ‭barrier‬ ‭to‬ ‭genetic‬ ‭exchange‬ ‭rather‬ ‭than‬
‭completely‬ ‭suppressing‬ ‭it.‬ ‭On‬ ‭the‬ ‭one‬ ‭hand,‬ ‭this‬ ‭facilitates‬ ‭the‬ ‭purging‬ ‭of‬ ‭genetic‬‭load,‬‭which‬
‭often‬ ‭hinders‬ ‭the‬ ‭spread‬ ‭of‬ ‭inversions‬ ‭(‬‭62‬‭)‬‭,‬ ‭while‬ ‭on‬ ‭the‬ ‭other‬ ‭hand,‬ ‭it‬ ‭provides‬ ‭an‬ ‭additional‬
‭mechanism for the creation of combinatorial diversity‬‭(‬‭5‬‭)‬‭.‬

‭The‬ ‭genetic‬ ‭variants‬ ‭most‬ ‭differentiated‬ ‭between‬ ‭inverted‬ ‭and‬ ‭non-inverted‬ ‭haplotypes‬ ‭(ICS)‬
‭show‬‭a‬‭strong‬‭relative‬‭excess‬‭of‬‭amino‬‭acid‬‭changing‬‭mutations,‬‭as‬‭expected‬‭only‬‭under‬‭adaptive‬
‭evolution‬ ‭at‬ ‭many‬ ‭loci‬ ‭(text‬ ‭S‬‭3‬‭).‬ ‭These‬ ‭mutations‬ ‭showed‬ ‭enrichment‬ ‭in‬ ‭genes‬ ‭related‬ ‭to‬ ‭and‬
‭expressed‬ ‭in‬ ‭tissues‬ ‭involved‬ ‭in‬ ‭sensory‬ ‭and‬ ‭behavioural‬‭functions.‬‭This‬‭m‬‭akes‬‭sense,‬‭because‬
‭sensory‬ ‭systems‬ ‭mediate‬ ‭sound‬ ‭perception,‬ ‭mechanoreception‬ ‭and‬ ‭vision,‬ ‭essential‬ ‭for‬
‭navigation‬‭and‬‭feeding‬‭in‬‭fishes‬‭(‬‭63‬‭)‬‭,‬‭making‬‭them‬‭important‬‭targets‬‭of‬‭ecological‬‭adaptation‬‭to‬
‭differing‬ ‭underwater‬ ‭environments‬ ‭(‬‭64‬‭)‬‭.‬ ‭Although‬ ‭further‬ ‭experiments‬ ‭–‬ ‭most‬ ‭promisingly‬
‭within‬ ‭species‬‭polymorphic‬‭for‬‭inversions‬‭–‬‭will‬‭be‬‭necessary‬‭to‬‭dissect‬‭the‬‭precise‬‭phenotypes‬
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‭of‬‭the‬‭adaptive‬‭alleles‬‭within‬‭inversion‬‭regions,‬‭our‬‭results‬‭point‬‭towards‬‭widespread,‬‭multigenic‬
‭adaptation along a depth gradient which is a frequent axis of differentiation in fishes‬‭(‬‭65‬‭,‬‭66‬‭)‬‭.‬

‭We‬‭found‬‭evidence‬‭for‬‭XY-like‬‭sex‬‭linkage‬‭of‬‭the‬‭inversions‬‭on‬‭chromosomes‬‭9,‬‭10,‬‭and‬‭11,‬‭in‬
‭which‬ ‭introgressed‬ ‭haplotypes‬ ‭of‬ ‭ancestral‬ ‭orientation‬ ‭act‬ ‭as‬ ‭Y‬ ‭chromosomes‬ ‭in‬ ‭some‬ ‭extant‬
‭species,‬ ‭with‬ ‭inversion-region‬ ‭genes‬ ‭related‬‭to‬‭sex‬‭and‬‭reproduction‬‭being‬‭under‬‭allele‬‭specific‬
‭expression‬‭in‬‭XY‬‭males‬‭and‬‭showing‬‭signatures‬‭of‬‭selection.‬‭Consistent‬‭with‬‭the‬‭highly‬‭dynamic‬
‭nature‬‭of‬‭sex‬‭determination‬‭in‬‭many‬‭fishes‬‭(‬‭67‬‭)‬‭and‬‭specifically‬‭cichlids‬‭(‬‭58‬‭,‬‭61‬‭,‬‭68‬‭)‬‭,‬‭our‬‭results‬
‭point‬ ‭to‬ ‭a‬ ‭relatively‬ ‭easy‬ ‭recruitment‬ ‭of‬ ‭sex‬ ‭determination‬ ‭loci‬ ‭(SDLs),‬ ‭possibly‬ ‭as‬ ‭a‬ ‭direct‬
‭consequence‬ ‭of‬ ‭introgression‬ ‭of‬ ‭relatively‬ ‭divergent‬ ‭haplotypes‬ ‭affecting‬ ‭a‬ ‭sex‬ ‭determination‬
‭threshold,‬ ‭or‬ ‭due‬ ‭to‬ ‭heterozygote‬ ‭advantage‬ ‭of‬ ‭introgressed‬ ‭inversions‬ ‭selecting‬ ‭for‬ ‭the‬
‭recruitment of SDLs‬‭(‬‭69‬‭)‬‭.‬

‭Sexual‬‭selection‬‭has‬‭been‬‭identified‬‭as‬‭a‬‭major‬‭predictor‬‭of‬‭successful‬‭radiation‬‭in‬‭cichlids‬‭(‬‭70‬‭)‬‭,‬
‭and‬ ‭assortative‬ ‭mating‬ ‭is‬ ‭a‬ ‭main‬ ‭driver‬ ‭of‬ ‭cichlid‬ ‭reproductive‬ ‭isolation‬ ‭(‬‭71‬‭)‬‭.‬ ‭Both‬ ‭of‬ ‭these‬
‭processes‬‭rely‬‭heavily‬‭on‬‭the‬‭same‬‭sensory‬‭systems‬‭(e.g.,‬‭vision‬‭(‬‭71‬‭)‬‭,‬‭olfaction‬‭(‬‭72‬‭)‬‭,‬‭and‬‭hearing‬
‭(‬‭73‬‭)‬‭)‬ ‭that‬‭are‬‭also‬‭relevant‬‭for‬‭adaptation‬‭to‬‭depth‬‭and‬‭feeding‬‭niches,‬‭and‬‭that‬‭we‬‭identified‬‭as‬
‭candidates‬‭for‬‭adaptive‬‭evolution.‬‭Assortative‬‭mating‬‭and‬‭the‬‭evolution‬‭of‬‭sex‬‭linked‬‭regions‬‭are‬
‭both‬ ‭forms‬ ‭of‬ ‭sex-specific‬ ‭selection‬ ‭(‬‭74‬‭)‬‭.‬ ‭Although‬ ‭the‬ ‭interplay‬ ‭between‬ ‭these‬ ‭forms‬ ‭of‬
‭selection‬‭is‬‭not‬‭well‬‭understood,‬‭it‬‭can‬‭give‬‭rise‬‭to‬‭synergistic‬‭evolutionary‬‭dynamics,‬‭potentially‬
‭mediated by sexually antagonistic selection‬‭(‬‭75‬‭,‬‭76‬‭)‬‭.‬

‭While‬ ‭our‬ ‭analysis‬ ‭focused‬ ‭on‬ ‭genetic‬ ‭variants‬ ‭nearly‬ ‭fixed‬ ‭between‬ ‭inversion‬ ‭haplotypes,‬‭we‬
‭expect‬ ‭that‬ ‭additional‬ ‭variants‬ ‭specific‬ ‭to‬ ‭particular‬ ‭species‬ ‭groups‬ ‭will‬ ‭prove‬ ‭important‬ ‭for‬
‭further‬ ‭diversification.‬‭Furthermore,‬‭alongside‬‭the‬‭inversions‬‭that‬‭identify‬‭admixture‬‭events,‬‭we‬
‭also‬ ‭see‬ ‭a‬ ‭signal‬ ‭of‬ ‭introgressed‬ ‭material‬ ‭in‬ ‭the‬ ‭rest‬ ‭of‬ ‭the‬ ‭genome,‬ ‭providing‬ ‭a‬ ‭potential‬
‭substrate‬ ‭for‬ ‭further‬ ‭selection‬ ‭and‬ ‭adaptation.‬ ‭Indeed,‬ ‭while‬ ‭we‬ ‭focussed‬ ‭on‬ ‭large‬ ‭inversions‬
‭segregating‬ ‭across‬ ‭many‬ ‭species,‬ ‭there‬ ‭are‬ ‭expected‬ ‭to‬ ‭be‬ ‭many‬ ‭more‬ ‭inversions‬ ‭and‬ ‭other‬
‭structural‬ ‭genetic‬ ‭variants‬ ‭that‬ ‭are‬ ‭smaller‬ ‭or‬ ‭have‬ ‭a‬ ‭more‬ ‭limited‬ ‭taxonomic‬ ‭distribution,‬ ‭as‬
‭suggested‬‭by‬‭our‬‭whole‬‭genome‬‭alignments‬‭and‬‭in‬‭Talbi‬‭et‬‭al.‬‭2024‬‭(‬‭77‬‭)‬‭.‬‭Surely,‬‭more‬‭structural‬
‭variants with relevance in adaptive diversification are to be found in future studies.‬

‭In‬ ‭conclusion,‬ ‭the‬ ‭haplotypes‬ ‭of‬ ‭five‬ ‭chromosomal‬ ‭scale‬ ‭inversions‬ ‭in‬ ‭the‬ ‭Malawi‬ ‭cichlid‬
‭adaptive‬ ‭radiation‬ ‭show‬ ‭supergene-like‬ ‭signs‬ ‭of‬ ‭adaptive‬ ‭evolution‬ ‭and‬ ‭repeated‬ ‭introgression‬
‭associated‬‭with‬‭speciation.‬‭Together‬‭with‬‭the‬‭repeated‬‭transient‬‭sex-linked‬‭nature‬‭of‬‭introgressed‬
‭haplotypes,‬ ‭this‬ ‭provides‬ ‭a‬ ‭substrate‬ ‭for‬ ‭rich‬ ‭evolutionary‬ ‭dynamics‬ ‭around‬ ‭the‬ ‭interactions‬
‭between natural, sexual, and sexually antagonistic selection.‬
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