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ABSTRACT

During the progression from epithelial neoplasms to invasive carcinoma, cells are subjected to
prolonged confinement. However, the response of cancer cells to such mild yet sustained
compressive pressure during the initial stages of tumor invasion remain poorly understood. Here,
using a spontaneous crowding model to recapitulate the progressive compressive stress caused by
cell proliferation, we demonstrated that prolonged crowding alone is sufficient to induce the
acquisition of an invasive phenotype and associated gene expression patterns in cancer cells. This
invasiveness persisted even after cells were removed from the crowded environment, a phenomenon
mediated by mechanomemory. By combining genetic manipulations, mechanical modeling, and
biophysical measurements, we revealed that the disaggregation of membrane domains—driven by a
nanoscale smooth-corrugated topography transition of plasma membranes induced by Laplace
pressure under crowded conditions—is essential for initiating cancer cell invasion. Inhibiting
membrane domains disaggregation through membrane-to-cortex-attachment effectively suppresses
cancer cell invasion in both cellular crowding models and mouse xenograft models. This study
underscores the critical role of tissue-scale mechanics in regulating the biophysics of

mechanosensitive membrane domains during the early stages of tumor invasion.
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INTRODUCTION

Mechanical force modulates embryonic development, influences tissue homeostasis, and contributes
to the development of many diseases including cancer'-. The primary tumor microenvironment
(TME) 1is characterized by a diverse array of harsh mechanical cues, including increased matrix
stiffness and solid stress*. Due to cell growth and surrounding pressures, solid stress is the force
transmitted through the elastic solid phase of the tissue and can generate tensile stress and
compressive stress®. During the development from epithelial neoplasms to invasive carcinoma,
uncontrolled growth and proliferation of cancer cells pushes and displaces the surrounding normal
tissue, which in turn constrains tumor expansion and results in crowded tissues and generates
compressive mechanical stress within solid tumor and surrounding extracellular matrix (ECM)¢%.

Recent studies in mouse models of skin tumor reveal that constraining forces from overlying
suprabasal cancer cells and underlying ECM shape tissue architecture and affect tumor invasion®!°.
Strong confinement has been shown to drive a fast amoeboid migration in mesenchymal cells and
embryonic progenitor cells'"!2. The cell nucleus is able to sense constraining forces and responds to
them by switching to a rapid migratory phenotypic state that enables cancer cells to squeeze out from
compressive conditions'*!4, Strong confinement during cell invasion also causes nuclear deformation,
which results in localized nuclear envelope rupture and DNA damage, and promotes invasive
phenotype of MCF10DCIS.com cells!®. At present, experimental methods used to study the invasion
of cancer cells in response to physical confinement mainly subject cells to transient and strong force
by in vitro compression device or microfabricated duct-on-a-chip which mimicked the invasive
process per se of cancer cells through a narrow channel'>'®. However, the mechanical adaptability of
cancer cells to the mild and prolonged compression under crowded conditions and their function in
the initiation of tumor invasion remain unclear.

Emerging evidence has revealed the ability of cells to remember the mechanical stimuli after the

9917

cessation of force, which is termed “mechanomemory”'’. Mechanomemory has been studied in

mesenchymal stem cells and epithelial cells, mostly with high matrix stiffness as a physical stimulus.
However, the investigation of cell mechanomemory in the cancer field is currently in its infancy'®1°,

Whether prolonged exposure to compressive stress in the crowded TME could imprint this

mechanomemory in cancer cells has not been studied.
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In this study, we found that prolonged crowding initiates invasion with mechanomemory in cancer
cells by using a spontaneous crowding model composed of a freely growing monoclonal cell sheet.
Combining genetic manipulations, biophysical measurements, and mechanical modeling, we
revealed that the disaggregation of membrane domains sensitive to prolonged crowding drives cancer
cell invasiveness. Membrane domains disaggregation is induced by a nanoscale smooth-corrugated
topography transition (nSCTT) of plasma membranes under Laplace pressure. Finally, we
demonstrated that enhancing the aggregation of membrane domains by suppressing the nSCTT
through membrane-to-cortex-attachment (MCA) inhibits cancer cell invasiveness in cellular

crowding models and mouse xenograft models.
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RESULTS
Prolonged crowding initiates cancer cell invasion

To investigate the role of prolonged crowding in tumor invasion, we employed a spontaneous
crowding model?® using HeLa cells, which were allowed to freely grow as a monoclonal cell sheet
for 14 days (Fig. 1a). According to our previous study, this cell sheet spontaneously developed a
progressive crowding gradient radiating from the central region to the periphery driven by interfacial
shear stress between the cell sheet and the ECM?!. The extent of crowding was quantified using a
metric termed “crowding strain”, calculated as (4o — A.) /Ao, where Ap represents the nuclear area of
cells in sparse culture, and A, denotes the nuclear area of cells within the cell sheet (Fig. 1b). Based
on crowding strain values, the cell sheet was segmented into two regions: an uncrowded region
(crowding strain ranging from -0.3 to 0) and a crowded region (crowding strain from 0 to 0.3) (Fig.
I¢). Using this model, cells in the crowded region were subjected to long-term compressive stress
induced by prolonged crowding for 7-14 days. Transwell invasion assays revealed that crowded cells
exhibited significantly enhanced invasiveness compared to uncrowded cells (Fig. 1d and e). These
findings were corroborated in other cancer cell lines, including MC38 (a murine colorectal cancer
cell line) and A431 (a human skin cancer cell line) (Fig. 1d and e). Furthermore, time-lapse imaging
of NLS-GFP" HeLa cell sheets demonstrated that cell invasiveness originated predominantly from
crowded regions (Fig. Sla and b), providing direct evidence that prolonged crowding initiates cancer
cell invasion.

Given that the invasion process is known to require degradation of the surrounding ECM?2, we
next investigated whether prolonged crowding influences ECM degradation. To this end, we utilized
Cy5-conjugated gelatin hydrogels coated on culture dishes. Vertical cross-sectional (XZ-plane)
imaging revealed that the thickness of the ECM gradually decreased with increasing crowding strain
(Fig. Slc and d), demonstrating that prolonged crowding enhances the capacity of HeLa cells to
degrade the ECM. Furthermore, immunofluorescence staining of cortactin, an actin-bundling protein
enriched in invadopodia of tumor cells?*?*, showed that the number of invadopodia per cell
progressively increased with higher crowding strain in HeLa cells cultured on matrigel-coated
culture dishes (Fig. Sle and f). Taken together, these results suggest that prolonged crowding is

sufficient to drive the initiation of cancer cell invasion.
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Prolonged crowding-initiated cancer cell invasion is retained via mechanomemory

Recent studies have demonstrated the ability of matrix stiffness to imprint mechanomemory onto the
cells after cessation of a force?2. We next investigated whether cells exposed to prolonged
crowding retain their invasive properties after leaving crowded regions. Hela cells were first
cultured under crowded or uncrowded conditions for varying durations (priming time). These primed
cells were then transferred to sparse culture conditions (crowding strain = 0) for different periods
(memory time) before being subjected to invasion assays, such as Transwell assay (Fig. 1f). Cells
primed in crowded cultures for 3 and 5 days exhibited significantly elevated invasiveness compared
to those primed for 1 and 2 days (Fig. 1g and h). Furthermore, cells primed for 5 days displayed
greater invasiveness than those primed for 3 days (Fig. 1h), indicating a priming-time-dependent
mechanomemory that governs the retention of invasiveness.

We next investigated the duration of crowding-induced mechanomemory by priming cells for 5
days in crowded or uncrowded cultures, followed by transfer to sparse culture for 1, 2, 3, or 7 days
(Fig. 1i). Transwell invasion assays revealed that crowded cells retained significantly higher
invasiveness compared to uncrowded cells after 1 and 2 days of sparse culture (Fig. 11 and j). To
further explore the relationship between priming duration and mechanomemory, we extended the
priming time in crowded cultures up to 20 days. Transwell assays demonstrated that the duration of
mechanomemory increased with priming time, with cells primed for 20 days retaining enhanced
invasiveness even after 7 days in sparse culture (Fig. 1k). This retention of invasiveness via
mechanomemory was consistently observed in A431 cells (Fig. S2). Additionally, crowding-primed
cells (5 days) exhibited a significantly higher number of invadopodia per cell compared to
uncrowded cells after 1, 2, and 3 days in sparse culture (Fig. 11 and m). Notably, mechanomemory
was also evident in the ECM degradation ability of crowding-primed cells (Fig. In and o). Together,
these results demonstrate that prolonged crowding not only initiates cancer cell invasion but also
imprints a duration-dependent mechanomemory, sustaining the invasive phenotype even after the
removal of crowding stress.

To further characterize gene expression regulated by prolonged crowding, we performed RNA

sequencing of crowding-primed cells (20 days) followed by sparse culture for varying durations (0, 1,
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3, or 10 days). We identified 1,990 up-regulated and 1,408 down-regulated genes that were
significantly altered in crowded cells compared to uncrowded cells without a sparse culture step (Fig.
Ip). Among these, genes involved in ECM degradation, such as MMP28, MMP14, ADAMY, and
ADAMI10%, as well as RAB5A, as a micro-invasive marker, were upregulated in crowded cells
compared to uncrowded cells (Fig. 1q). These findings align with the enhanced invasiveness
observed in crowded cells.

Additionally, we detected significantly elevated levels of epithelial-mesenchymal transition
(EMT)-inducing transcription factors, including SNAIL and ZEBI, in crowded cells (Fig. 1q),
indicating a transition towards a more mesenchymal-like state. Notably, the increased expression
levels of MMP14, MMP28, and SNAIL in crowded cells were sustained for at least 3 days in sparse
cultures (Fig. Ir), consistent with the retention of mechanomemory. These results demonstrate that
prolonged crowding enhances the expression of genes associated with invasiveness and retains these
expression patterns through mechanomemory. Collectively, these findings establish that prolonged
crowding not only initiates cancer cell invasion but also imprints a mechanical memory that sustains

the invasive phenotype even after the removal of crowding stress.

Prolonged crowding initiates cancer cell invasion by disrupting the aggregation of membrane

domains

To elucidate the mechanism underlying the invasion initiated by prolonged crowding, we further
analyzed RNA-seq data and correlated gene expression changes with memory time using mFuzz.
Our analysis identified 187 genes in Cluster 2 whose expression trends correlated with memory time,
showing a recovery in crowded cells after 1, 3, and 10 days of sparse culture compared to uncrowded
cells (Fig. S3). Gene Ontology (GO) cellular component enrichment analysis of Cluster 2 genes
revealed that most were associated with the cell membrane or membrane domains (Fig. 2a). Previous
studies have established that plasma membranes contain numerous lipid microdomains enriched in
cholesterol and sphingolipids®®?°. These microdomains, termed lipid rafts, include subtypes such as
flotillin-rich planar lipid rafts and caveolin-rich caveolae?®. Lipid rafts play critical roles in various

physiological and pathological processes by aggregating into larger platforms that regulate signaling
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regulation?®3°, To experimentally assess whether membrane domains are affected by prolonged
crowding, we monitored the abundance of membrane domains in the cellular crowding model using
Cy5-conjugated cholera toxin subunit B (CTxB), which specifically binds to ganglioside GM1, a
common ganglioside enriched in membrane domains?!. Fluorescence imaging revealed that the
extent of CTxB-labeled membrane domains at the apical plasma membrane was significantly
reduced in crowded cells compared to uncrowded cells (Fig. 2b and c). Specifically, both the
fluorescence intensity of CTxB and the number of CTxB clusters at the apical plasma membrane per
cell exhibited a crowding-strain-dependent reduction when the crowding strain exceeded 0 (Fig.
2d-f). Further, immunofluorescence staining against Flotillin-1, Caveolin-1, and Cavin-1 also
showed significant crowding-strain-dependent decreases in signal intensity (Fig. 2g-j and Fig. S4).
These results demonstrate that the aggregation of membrane domains at the apical plasma membrane
in cancer cells is disrupted by prolonged crowding.

To investigate whether the disrupted aggregation of membrane domains contributes to initiation of
cancer cell invasion under prolonged crowding, we modulated membrane domains by enriching or
depleting membrane cholesterol content. This was achieved through the addition of exogenous
cholesterol or methyl-B-cyclodextrin (MBPCD)??, respectively, in the cellular crowding model.
Transwell invasion assays revealed that cholesterol enrichment significantly inhibited cell invasion
compared to the control group, whereas cholesterol depletion by MBCD significantly enhanced the
invasiveness in crowded cells (Fig. 2k, 1). Notably, both exogenous cholesterol addition and MBCD
treatment reduced the difference in invasiveness between crowded and uncrowded cells (Fig. 21).
Furthermore, exogenous cholesterol addition decreased the number of invadopodia per cell, while
MBCD treatment increased it, effectively eliminating the difference between crowded and
uncrowded cells (Fig. 2m, n). These findings collectively demonstrate that prolonged crowding
initiates cancer cell invasion by disrupting the aggregation of membrane domains.

Extensive studies have established a strong link between carcinoma invasion and the loss of
epithelial integrity, particularly through the disruption of cell-cell contacts®’. Cholesterol-rich
membrane domains at apical junctions are known to be essential for tight junction formation®*. In our
study, using an antibody against claudin-1, a key component of tight junction®’, we observed a
progressive decline in tight junction integrity as crowding strain increased in the cellular crowding

model (Fig. 20, p). Furthermore, the fluorescence intensity of CTxB, which labels membrane
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domains, showed a positively correlated with Claudin-1 intensity (Fig. 20, p). These results indicate
that prolonged crowding initiates cancer cell invasion by disrupting epithelial integrity, a process
mediated by the disaggregation of membrane domains.

Numerous studies have shown that PI3K/AKT and MAPK/ERK pathways are associated with
tumor progression such as invasion and display activating genetic alterations in more than 40% of
primary tumors*¢-3%. Next, we wondered whether these pathways participate in tumor invasion
initiated by prolonged crowding. Immunofluorescence staining revealed that the phosphorylation of
Akt and ERK was significantly upregulated in crowded cells versus uncrowded cells, implying that
prolonged crowding activated these signaling pathways (Fig. 2qg-t). Together, these findings
demonstrate that the activation of Akt and ERK , triggered by prolonged crowding, is implicated in

the the initiation of cancer cell invasion.

Prolonged crowding triggers a nanoscale smooth-corrugated topography transition of plasma

membranes

Given that membrane domain availability is regulated by lipid metabolism, we next evaluated the
levels of cholesterol and GM1 ganglioside in cells exposed to prolonged crowding?®*!. However,
fluorescent filipin III staining revealed no significant differences in free cholesterol levels between
uncrowded cells and crowded cells (Fig. S5a, b). Similarly, immunofluorescence staining using an
antibody against GM1 ganglioside indicated that its levels at the apical plasma membrane remained
unchanged under different crowding strains (Fig. S5c¢, d). These findings suggest that prolonged
crowding does not significantly alter the levels of main components of membrane domains.

Recent studies reported that the topographic configuration of cellular membranes plays a critical
role in regulating membrane domains®®. To further investigate the mechanism underlying the
disaggregation of membrane domains, we first analyzed the topology of plasma membranes. In the
cellular crowding model, we observed significant deformation of plasma membranes in crowded
cells compared to uncrowded cells (Fig. 3a and b). Furthermore, the intensity of CTxB-labeled
membrane domains at the apical plasma membrane progressively decreased as membrane curvature

increased (Fig. 3c). We further examined plasma membrane topology in a subcutaneous nude mouse
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xenograft model using EYFP-mem® HeLa cells. This revealed pronounced plasma membrane
deformation in cells within micro-invasive foci exposed to crowding (Fig. 3d-f). Consistent plasma
membrane deformation was also observed in human skin cancer tissue (Fig. 3g, h), as well as in
cervical and breast cancer tissues (Fig. S6). These results demonstrate that severe plasma membrane
deformation, associated with membrane domain disaggregation, occurs in cells exposed to crowded
conditions.

To further assess the effects of prolonged crowding on membrane deformation, we analyzed the
surface topography of plasma membranes in EYFP-mem® HeLa cells subjected to prolonged
crowding. 3D confocal imaging revealed that the apical plasma membrane of crowded cells exhibited
enhanced nanoscale protrusions, in contrast to the much smoother topography observed in
uncrowded cells (Fig. 31, j). This indicates a nanoscale topography transition of plasma membranes
from a smooth to a corrugated state, induced by prolonged crowding. To further characterize this
transition, we employed scanning electron microscopy (SEM), transmission electron microscopy
(TEM), and atomic force microscopy (AFM). SEM and TEM imaging confirmed an enrichment of
nanoscale protrusions at the apical plasma membrane in crowded cells compared to uncrowded cells
(Fig. 3k-m). AFM analysis demonstrated that the average roughness (Ra), root mean square
roughness (Rq), and cellular height were all significantly increased in crowded cells (Fig. 3n, o and
Fig. S7a, b). Notably, consistent with the memory retention of invasiveness in cells primed by
prolonged crowding, cells primed in crowding culture for 5 days retained elevated cell protrusions
(e.g., filopodia) even after 3 days of sparse culture, compared to uncrowded cells (Fig. 3p-r). Taken
together, these results demonstrate that prolonged crowding triggers a nanoscale smooth-corrugated
topography transition (nSCTT) in plasma membranes, providing a mechanistic basis for the

disaggregation of membrane domains and invasion initiation.

Prolonged crowding increases Laplace pressure to disrupt the aggregation of membrane

domains

To investigate the mechanism underlying the nSCTT of plasma membranes triggered by prolonged

crowding, we next measured the tension of plasma membranes, which is known to remodel
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membrane topography by controlling the assembly of curvature-generating proteins*’. By analyzing
the lifetime of a live-cell fluorescent membrane tension probe, Flipper-TR*!, we found that the
tension of the apical plasma membrane in cells exposed to prolonged crowding was significantly
reduced compared to that in uncrowded cells (Fig. 4a, b). Plasma membrane tension is known to
depend on the contractility of cortical actin*?. By fluorescence resonance energy transfer
(FRET)-based biosensors®, we further analyzed the activity of Rho GTPases, which are master
regulators of actomyosin structure and dynamics**. We observed that the activity of RhoA at the
apical side was significantly decreased in crowded cells, while the activity of Racl was significantly
increased (Fig. 4c, d). Given that RhoA promotes the assembly of stress fibers*> and Racl mediates
branched actin polymerization®, these results suggest that prolonged crowding affects membrane
tension and cytoskeleton assembly.

To evaluate whether the organization of cortical actin was regulated by prolonged crowding, we
performed 3D confocal imaging of cortical actin. We found that the height of apical F-actin was
significantly increased in crowded cells compared to uncrowded cells (Fig. 4e, f and Fig. S7c¢, d).
Furthermore, the orientation of actin fibers was altered by prolonged crowding, with fibers in
crowded cells exhibiting a more vertical orientation (> 70°related to the base plane), whereas fibers
in uncrowded cells were primarily parallel (< 20°) (Fig. 4g). These results suggest that prolonged
crowding triggers the remodeling of both plasma membrane and cortical actin.

Previous studies have indicated that membrane-to-cortex attachment (MCA) and cell protrusions
(such as blebs) are regulated by the Laplace pressure, the pressure difference across plasma
membranes?’. As a key regulator of cell shape and volume, Laplace pressure influences various
cellular processes, including cell migration, proliferation, necrosis, apoptosis, material transportation,
and signal transduction*’. To investigate the biophysical mechanism underlying the nSCTT of plasma
membranes induced by prolonged crowding, we analyzed Laplace pressure in cells exposed to
different crowding strains using a previously reported micro pressure system*®. We found that
Laplace pressure in crowded cells was significantly higher than in uncrowded cells (Fig. 4h and 1).

To further explore the potential impacts of Laplace pressure and membrane tension on the
nanoscale topography of plasma membranes, we performed Monte Carlo (MC) simulations of a
membrane-cortical actin system (Fig. 4j and Fig. S8). In this MC model, plasma membranes are

represented as a fluctuating elastic surface, while cortical actin is modeled as a uniform square mesh
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framework. The plasma membranes are discretized into square lattices, with each lattice capable of
accommodating a transmembrane protein. These transmembrane proteins (linker proteins) connect

the plasma membranes to the cortical actin via a harmonic potential**>°, The resulting snapshots, as

shown in Fig. 4k, clearly demonstrate that increased Laplace pressure AP and decreased membrane

tension T contribute to pronounced bulges and large deformations of the plasma membrane. To
quantify these observations, we analyzed the relative roughness <L of the cell membrane as a

function of both Laplace pressure and membrane tension. The rescaled roughness oL increased
with higher Laplace pressure and lower membrane tension (Fig. 41). These modeling results, in
conjunction with our cellular crowding experiments, provide compelling evidence that the nanoscale
topography of plasma membranes is precisely regulated by the interplay between Laplace pressure
and membrane tension.

In our MC model, we observed that the detachment of membrane from the cortical actin is

regulated in response to changes in Laplace pressure AP and membrane tension 7 . Specifically, at

a fixed value of 7 , when the applied AP exceeds a critical threshold, the proportion ? of linker

proteins bound to the cortical actin abruptly drops to zero, indicating complete detachment of the cell

membrane from the cortical actin. A similar behavior is observed when 7 is reduced to a critical
value at fixed 27 (Fig. 4m). Additionally, increasing the density of linker proteins (Cp) significantly

reduces membrane roughness under constant AP and T (Fig. 4n), underscoring the essential role

of MCA in the regulation of the nanoscale topography of plasma membranes through the interplay of
Laplace pressure and membrane tension. In summary, these findings suggest that the nSCTT of
plasma membranes arises from the membrane-to-cortex detachment, driven by an increase in
Laplace pressure and a decrease in membrane tension. This mechanism highlights the critical
influence of mechanical forces and molecular interactions in shaping membrane morphology.

To further explore the regulation of membrane domain aggregation by Laplace pressure and
membrane tension, we incorporated membrane domains into our computational model. These
domains exhibit short-range attractive interactions and undergo dynamic fission and merging

processes. The distribution of membrane domains is significantly influenced by changes in Laplace
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pressure AP and membrane tension 7 . At small 2P , membrane domains tend to coalesce into a

single large domain. However, as Laplace pressure increases, this single domain separates into
multiple smaller domains (Fig. 40). To quantitatively analyze the spatial distribution of membrane
domains, we calculated the pair distribution function g(r), where a higher g(r) value indicates a

greater probability of finding two membrane domains at a distance r. As shown in Fig. 4p, an

increase in AP results in a larger initial spike in g (r) (where (g(r)>1), suggesting that elevated
Laplace pressure reduces the propensity for membrane domain aggregation. Conversely, an increase
in membrane tension also leads to a larger initial spike of g(r), indicating that higher membrane
tension promotes the aggregation of membrane domains (Fig. 4p). Next, we explored the influence
of linker proteins on membrane domain aggregation within our MC simulations. Our analysis
indicated that augmenting the density of linker protein C, enhances the aggregation of membrane
domains (Fig. 4q). These results underscore that the aggregation of membrane domains is disrupted
by increased Laplace pressure and membrane tension under conditions of prolonged crowding.

To elucidate the mechanism governing the regulation of lipid membrane domain aggregation by
Laplace pressure and membrane tension, we estimated the bending energy of the multicomponent
membrane using a discretized Helfrich Hamiltonian’!. At low raft-raft contact energy U , the

membrane domains are uniformly distributed across the cell membrane. As U increases, these
domains tend to coalesce into a single, larger domain. The change in bending energy AE, rises

with the increasing raft-raft contact energy U , suggesting that the aggregation of membrane

domains is energetically unfavorable (Fig. 4r). This analysis of bending energy reveals that both
elevated Laplace pressure and reduced membrane tension increase the energy change AL, | thereby

raising the energetic cost for membrane domain aggregation.

To further investigate the effects of membrane curvature on the aggregation of membrane domains,
we conducted ps-scale coarse-grained (CG) molecular dynamics (MD) simulations of
three-component vesicles (DPPC: 50%; DUPC: 30%; CHOL: 20%) with two different radii (10 nm
and 20 nm) using the Martini CG model>?3. As illustrated in the system snapshots and normalized
lateral contacts of DUPC lipids (Fig. 4s and t), DPPC/DUPC/CHOL vesicles underwent pronounced

aggregation of membrane domains in both vesicle sizes. However, the larger vesicles (r = 20 nm),
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characterized by reduced membrane curvature, displayed significantly enhanced aggregation of
membrane domains. These results suggest that the local nanoscale topography with higher membrane
curvature inhibits the aggregation of membrane domains. Collectively, these findings highlight that
the aggregation of membrane domains is disrupted under prolonged crowding condition through a

complex interplay of mechanical forces and molecular interactions.

Suppressing the pressure-sensation of membrane domains inhibits tumor invasion

To empirically validate the predictions from our simulations, we investigated the distribution of
ERM proteins (ezrin, radixin, and moesin), which are known to mediate MCA by linking plasma
membranes to cortical actin®*3, in the cellular crowding model. Immunofluorescence staining with
an antibody specific to phosphorylated ERM (pERM), the active membrane- and actin-bound form
of ERM, revealed a progressive reduction in pERM levels at the apical membrane as crowding strain
increased (Fig. 5a and b). Furthermore, this reduction in apical pERM levels in crowded cells
persisted for 3 days after transitioning to sparse culture conditions (Fig. 5c and d). These findings
demonstrate that prolonged crowding leads to a sustained decrease in activated ERM levels,
indicating a form of mechanomemory in cancer cells.

Our simulation results revealed that enhanced MCA confers resistance against the nSCTT of
plasma membranes and prevents the disaggregation of membrane domains under prolonged
crowding conditions (Fig. 4n and q). To experimentally validate this prediction, we employed a
Lyn-FRB and Ezrinas-FKBP activation system*?, which incorporates a constitutively active F-actin
binding domain of Ezrin (EzrinadT567D). Following rapamycin treatment, EzrinadT567D was
efficiently recruited to the membrane, leading to a significant increase in cortical actin density (Fig.
Se, and Fig. S9a-c). Acute reinforcement of MCA through recruitment of FKBP-EzrinawdT567D to
plasma membranes resulted in a marked reduction in both membrane protrusions and apical F-actin
height in crowded cells (Fig. 5f-g, and Fig. S9d-e). Furthermore, enhanced MCA via
FKBP-Ezrinand TS67D activation significantly increased the aggregation of membrane domains, as
evidenced by both fluorescence intensity and the number of CTxB clusters in crowded cells treated

with rapamycin compared to untreated cells (Fig. 5h-k). These results demonstrate that the
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aggregation of membrane domains, disrupted by prolonged crowding, can be rescued by inhibiting
the nSCTT of plasma membranes through the enhancement of MCA.

Next, we investigated whether experimentally enhancing MCA could suppress the invasion driven
by prolonged crowding in the cellular crowding model. Transwell invasion assays revealed that
enhancing MCA through FKBP-EzrinabdT567D activation significantly inhibited the invasion of
cancer cells exposed to prolonged crowding (Fig. 51 and m). Immunofluorescence staining of
cortactin at the basal membrane demonstrated that the number of invadopodia per cell in crowded
cells was markedly reduced by FKBP-EzrinabdT567D activation compared to control cells (Fig. 5n-p).
Furthermore, FKBP-Ezrina,dT567D activation also suppressed ECM degradation, as evidenced by
experiments using Cy5-conjugated gelatin hydrogels (Fig. 5g-s). These results suggest that
enhancing membrane domain aggregation by strengthening MCA efficiently rescues the prolonged
crowding-driven invasiveness.

To evaluate whether enhancing MCA could suppress tumor invasion in vivo, we established a
subcutaneous mouse xenograft model using FKBP-mCherry" or FKBP-EzrinadT567D-mCherry™
HeLa cells. At one-week post-cancer cell inoculation, the mice were treated with rapamycin (Fig. 6a).
Consistent with the in vitro data (Fig. S9a), F-actin was recruited to the cell membrane in
FKBP-EzrinabdT567D-mCherry* xenografts after two weeks of rapamycin administration, contrasting
with  FKBP-mCherry* xenografts (Fig. 6b). Immunofluorescence analysis using anti-sodium
potassium ATPase (Na*/K* ATPase) antibody for membrane labeling revealed a significant reduction
in the fractal dimension of plasma membranes in crowded cells of FKBP-EzrinadT567D-mCherry”
xenografts compared to FKBP-mCherry" xenografts (Fig. 6¢). Furthermore, elevated levels of
membrane  domain  markers  (Caveolin-1 and  Flotillin-1)  were  detected in
FKBP-EzrinabdT567D-mCherry* cells compared to FKBP-mCherry™* cells (Fig. 6d-g). These findings
demonstrate that enhanced MCA effectively suppresses the nSCTT of plasma membranes and
mitigates membrane domain disaggregation in crowded cancer cells within xenografts.

Next, we investigated the invasive growth patterns in xenografts with or without strengthening
MCA. Hematoxylin and eosin (H&E) staining demonstrated that FKBP-mCherry® xenografts
exhibited deeper invasion into the muscle layer (Fig. 6h and 1i). In contrast,
FKBP-EzrinabdT567D-mCherry®  xenografts displayed well-defined pushing tumor borders,

effectively segregating cancer cells from the adjacent muscle layer with only minor focal invasions
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(Fig. 6h). Immunofluorescence staining for RABSA further reveled that the invasive edge of tumors
in FKBP-EzrinandT567D-mCherry” xenografts exhibited reduced invasiveness compared to
FKBP-mCherry* xenografts (Fig. 6j and k). Additionally, the inhibitory effect of MCA enhancement
on tumor invasion was confirmed by comparing FKBP-EzrinadT567D-mCherry” HelLa cell
xenografts with and without rapamycin treatment (Fig. S10). Taken together, these results
demonstrate that preventing membrane domain disaggregation through MCA enhancement

effectively suppresses cancer cell invasiveness in vivo.
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DISCUSSION

Growing in confined spaces, cancer cells push and stretch solid components of the surrounding tissue
and thus experience situations of crowding®. Recent studies have shown that crowding triggers cell
extrusion and induces cell migration during embryonic development and tumor progression®*->°, Here,
using a spontaneous crowding model composed of a freely growing monoclonal cell sheet, we found
that prolonged crowding drives cancer cell invasiveness with memory retention by triggering a
nanoscale topography transition of plasma membranes from a smooth to a corrugated state.
Combining mechanical modeling, genetic manipulations, and biophysical measurements, we further
found that the prolonged crowding-triggered nSCTT of plasma membranes disrupts the aggregation
of membrane domains to drive tumor invasion (Fig. 6l).

Plasma membranes of cancer cells exhibit complex and irregular shapes. Analyses using fractal
geometry are already used to efficiently estimate the geometrical shapes observed during tumor
progression and for ascertaining correlations with pathological processes®’. For example, skin cancer
can be modeled by calculating fractals to evaluate the invasiveness of cancer cells®’. The fractal
dimension of AFM maps is analyzed for three stages of progression towards cervical cancer, from
normal through immortal to malignant cells®!. Here, we identified that prolonged crowding increases
the Laplace pressure and decreases membrane tension, which induces nanoscale protrusions at the
apical plasma membrane of cancer cells. The aggregation of membrane domains suppressed by the
nSCTT of plasma membranes disrupts epithelial integrity and drives cancer cell invasiveness.

Although controversies about the composition, properties, and even the existence of membrane
domains remain unresolved®, previous studies have demonstrated that most transmembrane proteins
are found in membrane domains to serve as signaling platforms or connect cortical actin for
controlling cell behaviors®. Recent observations of model membranes reported that macroscopic
membrane domains exist in membrane regions with nanoscale smooth topography3°. Another study
has shown that pharmacological disruption of rafts using MBCD decreases CD44 retention inside
membrane domains and promotes CD44 interaction with ezrin to drive cell migration®. In addition,
oncogenic mutants of RAS proteins (encoded by HRAS, KRAS, NRAS) are localized to the inner
leaflet of the plasma membranes, and the assembly of RAS nanoscale clusters is known to depend on

the interactions between plasma membrane lipids and RAS molecules®>. In light of our findings,
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RAS activation may be driven by the aggregation of membrane domains in cells experiencing the
nSCTT of plasma membranes triggered by prolonged crowding.

As a transmembrane pressure of cells, the Laplace pressure which is the difference between
intracellular and extracellular pressures can rapidly reprogram cell shape and regulate cell

migration*7-67

. Membrane tension, which arises from the combined contributions of osmotic pressure,
in-plane tension, and cytoskeletal forces, remodel membrane topology and influence cellular
function®’. In tumor environments, the mechanical characteristics of crowding lead to changes in
both the Laplace pressure and membrane tension of cancer cells. These cells' behavior regulation in
crowded environments maybe mediated by mechanosensitive ion transporters and channels affected
by Laplace pressure and membrane tension®®®. Our findings demonstrate that the nanoscale
smooth-corrugated topography transition of plasma membranes induced by crowding can
significantly enhance cancer cell invasiveness.

Our experiments demonstrated that plasma membranes exhibit a configuration of nanoscale
topography that is consistent with cortical actin protrusion. Recent studies have reported that tumor
cells migrate through crowded environments via large bleb protrusion controlled by actin filament at
the cell front to break apart ECM’%7!, ERM proteins, which tether the membrane to cortical actin of
cells, restrict local membrane protrusions and inhibit cancer cell migration*?. This is consistent with
our experimental findings showing that enhancing membrane-to-cortex attachment by
FKBP-EzrinabdT567D significantly inhibits the prolonged crowding-induced nSCTT of plasma
membranes and the invasiveness of cancer cells.

The geometrical irregularity of tumor boundaries has been implicated in the development and
progression of cancers such as skin, breast, and lung cancer®®’>73, The application of fractal
geometry for analyzing the surface of human cervical and breast cancer cells has shown considerable
promise for estimating cancer stages®!#’5, Abnormal changes in the shape of the plasma membranes,
including bending and protrusion, promote the migration and invasion of cancer cells’®*. Our
experiments and modeling results demonstrate that prolonged crowding drives cancer cell
invasiveness by triggering a nSCTT of plasma membranes. Inhibiting the nSCTT by enhancing MCA
effectively suppresses cancer cell invasiveness induced by prolonged crowding. Our findings provide
clues for potential clinical strategies targeting the nanoscale topography of plasma membranes for

preventing carcinoma invasion. In particular, given the essential roles of ERM proteins in regulating
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crowding-driven invasiveness, it will be interesting to further explore if certain small molecules or
gene-targeting entities could be identified to suppress ERM dephosphorylation and thus reinforce
MCA when delivered to the tumor tissues. These new agents may hinder the progression of tumors
toward a more malignant stage by normalizing the plasma membrane topography of cancer cells

subjected to prolonged crowding.
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METHODS

Mouse lines

SPF male BALB/c nude mice aged 3-4 weeks and weighing 16-18 g were purchased from Vital
River Laboratory Animal Technology Co., Ltd. Mice were bred and reared in the animal facility of
Tsinghua University at 22 °C with a 12-hour light/dark cycle (lighting time 7:00-19:00). Food and
water are freely available. All animal studies were conducted under the guidance of the Animal Care
and Utilization Committee (IACUC) of Tsinghua University. According to the National Institutes of
Health "Animal Ethical Use Guidelines", the experimental procedure has been approved by the
Laboratory Animal Care and Use Management Committee of Tsinghua University and the Beijing

Municipal Science and Technology Commission (SYXK-2019-0044).

Human tissues

Samples of human breast cancer, skin cancer, and cervical cancer (paraffin sections) were obtained
from patients who had undergone surgery at the Dezhou Second People’s Hospital. The cases were
classified according to the World Health Organization classification criteria of the tumors. The
samples were collected with patient consent, following approval by the Institutional Committee for

the Welfare of Human Subjects.

Maintenance of cell lines

HeLa, A431, and MC38 cells were cultured in Dulbecco’s modified eagle medium (DMEM) medium
(containing 4.5 g/L glucose, L-glutamine and sodium pyruvate) supplemented with 10% fetal bovine
serum (FBS; Life technologies, CA, USA), and 100 IU/mg penicillin-streptomycin (Life
technologies, CA, USA), and 1% (v/v) non-essential amino acids (NEAA; Life technologies, CA,
USA).

Plasmid construction and transfection

Cells were transiently transfected with plasmid DNA (pEF1-Lifeact-mCherry, pEYFP-membrane,
pTriEx4-Racl1-2G and pTriEx-RhoA-2G) using Lipofectamine 2000 (PN: 11668030, Invitrogen),

according to the manufacturer’s protocol. pTriEx4-Racl-2G and pTriEx-RhoA-2G were a gift
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RhoA-2G-control were constructed by deleting the coding sequence of acceptor Venus.
CIl-mCitrine-FKBP-EZRabd(t567D), pCAG-Lynl1-FRB and YFP-FKBP were a gift from Tobias
Meyer (Addgene plasmid no. 155227, 155228, and 20175).
pLV[Exp]-Puro-CMV>mCherry/FKBP-EZRabd(t567d), pLV[Exp]-Puro-CMV>mCherry/FKBP and
pLV[Exp]-Puro-EF1A>Lyn-FRB-HA were constructed by VectorBuilder.

Drug treatments

Pharmacological inhibitors and chemical compounds were used at the following concentrations: 100
uM Cholesterol (Merck, #57-88-5), 100 uM MPBCD (membrane domains inhibitor; Merck,
#128446-36-6). Rapamycin (MCE, #53123-88-9). Rapamycin was dissolved in DMSO for treatment
in cells (5 uM) and dissolved in 5.2% polyethylene glycol and 5.2%Tween-80 for treatment in mice
(2.0 mg/kg).

Subcutaneous mouse xenograft model

The mouse xenograft model was established by subcutaneous inoculation of 5 X 10° HeLa cells into
the suprascapular region of 6-week-old nude mice (10 per group). When tumors reached 100-200
mm® after 1 week, mice were randomly assigned to receive intraperitoneal injection of vehicle
(0.25 % polyethylene glycol, 0.25 % tween 80) or rapamycin (2 mg/kg) every other day. Tumors
were measured weekly using calipers and volume was calculated as (Iength X width?)/2. Mice were
euthanized after 2 weeks of treatment, and tumors were excised and fixed with 4%

paraformaldehyde.
Immunofluorescence and histological analysis

Cells grown on glass bottom or confocal dishes were fixed with 4% paraformaldehyde,
permeabilized with 0.1% Triton X-100 for 5 min. Cells were incubated with primary antibodies at
the optimal concentrations (according to the manufacturer’s instructions) at 4 °C overnight.
Following three washes with PBS, samples were incubated with the appropriate secondary antibodies:
488/568/633 immunoglobulin G (IgG; H+L) and/or Alexa Fluor 568/647 phalloidin (Invitrogen) for

1 h at room temperature. Samples were again washed three times with PBS and mounted with
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4',6-diamidino-2-phenylindole (DAPI, Invitrogen) for 10 min at room temperature. Confocal images
were taken on the Leica microscope. Experiments were replicated at least three times. Acquisition of
fluorescent images was carried out using a Leica TCS SP8 AOBS Confocal laser-scanning
microscope equipped with a 10X, 40X, or 63 X objective (Leica, Germany).

Prior to embedding in paraffin, mouse tissues were fixed in 4% paraformaldehyde in PBS and
dehydrated. For histological analysis, 6 um sections were cut and stained with Hematoxylin and
Eosin. For immunofluorescence analysis, 6 pm sections were incubated for 20 min in 10 mM sodium
citrate buffer, pH 6.0 at 90 °C to retrieve antigens on paraffin-embedded tissue samples. After 1 h
incubation in 5% fetal calf serum, sections were incubated overnight with diluted primary antibodies,
washed and further incubated for 2 h at room temperature with appropriate secondary antibodies.
Nuclei were stained with DAPI for 10 min at room temperature. Confocal images were obtained
using Leica microscope equipped with a 10X, 40 X, or 63 X objective. Experiments were replicated

at least three times.

Cholera toxin subunit B (CTxB) staining

HeLa cells were grown on 35 mm confocal dishes and cultured for 14 days. The cells were then
rinsed with cold Hank’s balanced salt solution (HBSS)+0.5% BSA and incubated with 0.5 pg/mL
CFTM 488A or 633 conjugated CT-B in cold HBSS+0.5% BSA and incubated at 4°C for 30 minutes
in the dark. Cells were washed five times with cold HBSS+0.5% BSA and fixed in 4%
paraformaldehyde in PBS for 15 minutes at room temperature. Nuclei were stained with DAPI for 10

min at room temperature.

Transwell invasion and migration assays

For the Transwell invasion assay, briefly, 5-10 cells in 200 uL 10% FBS DMEM were reseeded into
the upper chamber of a 24-well Transwell of 8 pm pore size (Corning Inc., Corning, NY, USA) with
coated-Matrigel (BD Bioscience, San Jose, CA, USA), and 600 pL. medium with 10% FBS was
loaded into the well below. After culture for 14 days, the upper chamber was replaced with
serum-free medium and later incubated at 37 °C for 48 h. Transwell insert membranes were fixed

with 4% paraformaldehyde and stained with DAPI. For the Transwell migration assay, all procedures
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were similar but without the incubation of Matrigel. The percentage of migrating and invading cells
through the filter was imaged under a Leica SP8 Confocal microscope, and measured using the

ImagelJ software.

GelMA degradation assay

Gelatin-Cy5 and Gelatin-FITC methacryloyl (GelMA, EFL-GM-90, China), lithium phenyl-2, 4,
6-trimethylbenzoylphosphinate (LAP), and a blue light source (3 W, 405 nm) were purchased from
Engineering for Life, Suzhou, China. GeIMA was dissolved in PBS at 30% (w/v) containing 0.25%
(w/v) LAP. The mixture was transferred to a glass slide and exposed to blue light irradiation for 90 s
to crosslink the GeIMA. Then the prepared hydrogels were rinsed with PBS three times, and then
a single cell was seeded on hydrogels in 24-well plates and cultured for 14 days. Cells were fixed
with 4% paraformaldehyde at room temperature for 15 min and washed three times with PBS. The
sample was incubated in 0.1% Triton X-100 for 10 min. Subsequently, the samples were stained for

actin with phalloidin for 60 min and stained for nuclei with DAPI for 10 min.

RNA seq analysis

HeLa cells were primed for 20 days in crowding or uncrowding culture, followed by exposure to
sparse culture for different times (0, 1, 3, or 10 days). The samples were collected and sent to the
Beijing Genomics Institute (BGI, China) for RNA sequencing performed on the BGISEQ-500
platform. The data was analyzed using Dr. Tom system multi-omics interactive system (BGI, China).
Q-value was obtained by false discovery rate (FDR) correction of the P-value. Differentially
expressed genes (DEGs) (Q<0.05, [log2FC|>1) were analyzed by DEseq2 software. Volcano plot
visualization of gene expression patterns was performed using R and results with Q < 0.05 were

considered statistically significant.

Atomic force microscopy (AFM)

HeLa cells were grown on 35 mm confocal dishes and cultured for 14 days. Cell samples were fixed
with 4% paraformaldehyde, after washing cells with PBS to remove potential impurities on the cell

surface, and then kept in PBS. AFM experiment was performed in PBS buffer solution at room
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temperature in PeakForce Tapping mode by scanning probe microscope Asylum MFP-3D-SA
(Asylum Research, USA). A PeakForce qp-BioAC probe (nominal spring constant 0.06-0.18 N/m,
Nanosensors, Neuchatel, Switzerland) was used to image the cell surface. The scanning parameters
were as follows: scan size of 30 um, scan rate of 0.1 Hz, set point of 162.21 mV, integral gain of
611.37, drive amplitude of 2 V. All images were taken at a resolution of 256x256 pixels. The scan
area depended on the size of the HeLa cell and ranged from 30x30~50%50 um?. Image processing

and data analysis were performed by the Asylum MFP-3D-SA software.
Focused ion beam and scanning electron microscopy

The fixation of micropatterned HeLa cells was performed at room temperature for 15 minutes using
a 2.5% v/v glutaraldehyde (Electron Microscopy Sciences) solution in PB buffer. After washing the
samples three times with PB buffer, the samples were osmicated with 1% osmium tetroxide/1.5%
potassium ferricyanide in distilled water for 30 minutes. The samples were then washed three times
with distilled water and then dehydrated through a graded ethanol series. After dehydration, samples
were infiltrated with Pon 812 Resin (SPI) by incubating the samples in a diluted series of ethanol-
Pon 812 ata 1:1, 1:2, and 1:3 ratio for 1 hour for each, followed by overnight in pure resin. The pure
resin was changed once in the first hour, then the samples were incubated in an oven at 60 °C for 48
hours. 70 nm sections were cut by ultramicrotome (Leica EM UC7) and stained with uranyl acetate
(UA) and lead citrate, then imaged by TEM. To visualize the cell surface, the resin covering the cell
was removed using acetone, and the cells filled with resin were polymerized at 60 °C for 48 hours.
10nm gold was coated before imaged by SEM. After that, resin was re-applied, and 70 nm Cross

section of the cells were cut for TEM imaging.
Laplace pressure calculation

Laplace pressure measurements were conducted using the 900A micro pressure system (WPI) based
on the servo-null method, following the manufacturer's instructions. A microelectrode was created
from a glass capillary (0.75 mm inner diameter/1.0 mm outer diameter) using a micropipette puller
(PC-100, Narishige). The one-stage pull mode was employed with the following settings: Heat 50V,

Weights: 250 g. Before the measurement, the microelectrode was calibrated using the calibration
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chamber and pressure source. The microelectrode was filled with a 1M NaCl solution, while the
calibration chamber contained a 0.IM NaCl solution. To perform the measurements, the
microelectrode was mounted to a piezo-driven xyz micromanipulator (SN-PCZ-50R, WPI) located in
an environmental chamber (37 °C, 5% CO2). A four-channel AD converter was used to record the
pressure signal. The microelectrode tip was inserted into the cells at a 45-degree angle and then
slightly retracted to release compression on the cells. This position was maintained for at least 10

seconds, and the Laplace pressure was determined as the average pressure during this this period.

Membrane tension measurements

Cell membrane tension was measured using Flipper-TR fluorescent tension probe (SC020,
Cytoskeleton, Inc.). HeLa cells were cultured on the gelatin-coated 35 mm confocal dishes for 14
days until the cell sheet was formed. Cells were then treated with 1 mM Flipper-TR at 37 °C for 15
minutes to achieve appropriate labeling prior to imaging. The fluorescence lifetime of Flipper-TR
was measured by using an Olympus fluorescence lifetime imaging microscope (FLIM, FV-1200,
Japan). Excitation was performed using a pulsed 488-nm laser operating at 40 MHz, and the
emission signal was collected through a 550-650-nm bandpass filter using a HyD SMD detector.
Lifetimes of Flipper-TR were extracted from FLIM images using SymPhoTime 64 software
(PicoQuant).

Fluorescence resonance energy transfer (FRET)

HeLa cells were cultured on the gelatin-coated 35 mm confocal dishes for 14 days and transfected
with genetically encoded biosensors expressing Racl-2G-control, Racl-2G, RhoA-2G, or
RhoA-2G-control. After 48 hours, acquisition of fluorescent images and FRET experiments were
carried out using an Olympus FV-1200 Confocal laser-scanning microscope. Argon laser lines of 458
nm and 514 nm were used to excite mTFP1 and mVenus fluorophores, which represent the donor and
the acceptor, respectively. For proper image recording, a HyD SMD detector was employed by
gating a spectral acquisition window of 486-502 nm for the donor and 524-600 nm for the acceptor.
FRET analysis was performed using SymPhoTime 64 software (PicoQuant) and FRET efficiency

was calculated: 1-tdonor, Racl or Rhoa-2G /tdonor, Racl or Rhoa-2G-control.
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Molecular dynamics (MD) simulations

In this work, CHARMM-GUI webserver>?, Martini coarse-grained force field*> and GROMACS
software’® (version 2019.6) were used to perform all MD simulations to capture the phase separation
processes of three-component lipid vesicles with different radii (10 nm and 20 nm).
1,2-dipalmitoyl-sn-glycero-3-phosphocholine  (DPPC),1,2-dilinoleoyl-sn-glycero-3-phosphocholine
(DUPC), and cholesterol (CHOL) with the molar ratio of 5:3:2 was adapted to construct the lipid
vesicles for studying the kinetics of model membrane domains’”’®. For all simulations, a standard 1.2
nm cutoff was applied for van der Waals interactions, and the LJ potential was shifted to zero
smoothly from 0.9 to 1.2 nm to reduce the cutoff noise. For columbic potential, a 1.2 nm cutoff was
used for short-range electrostatic interactions, with a smooth shift to zero from 0 to 1.2 nm. The
neighbor list for nonbonded interactions was updated every 10 steps with a cut-off of 1.2 nm.
Periodic boundary conditions were applied in all three dimensions. All simulations were run for 5 ps
with the time step of 20 fs under the isothermal-isobaric (NPT) ensemble. Snapshots and movies

were rendered by VMD”.
Monte carlo (MC) simulations

We employ the Monte Carlo (MC) method to investigate the response of a discretized membrane,
containing membrane domains and interacting with cortical actin via transmembrane proteins, to the
pressure and membrane tension. The system Hamiltonian consists of membrane elastic energy,
protein-cytoskeleton binding energy, as well as raft-raft contact energy. The system configuration
evolves through three types of trial moves including vertical displacements of membrane patches,
lateral translations of proteins, and lateral shifts of raft patches. These trial moves are accepted or not
according to the Metropolis algorithm. We perform simulations with membrane size up to 500 nm x
500 nm, and all parameters used in the simulations are sourced from exiting literatures. For a more

detailed description, see our Supplementary Materials.
Quantification and statistical analysis

Statistical analyses for all experiments were performed using Prism (GraphPad) v5.02. Statistical

data are presented as median or mean == SEM or SD. Statistical tests used and p values are specified
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in the figure legends. Samples in most cases were defined as the number of cells counted/examined
across multiple different fields of view on the same dish/slide, and represent data from a single
sample within a single experiment, which are representative of at least three additional independently

conducted experiments.
Reporting summary

Further information on research design is available in the Nature Research Reporting Summary

linked to this paper.

Data availability

All RNA-sequencing data from this study have been deposited in the Gene Expression Omnibus
(https://www.ncbi.nlm.nih.gov/geo/) under accession code GSE281770. All other data in
the manuscript, supplementary materials, source data and custom code are available from the

corresponding author upon reasonable request. Source data are provided with this paper.
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Figure 1. Prolonged crowding initiates cancer cell invasion with mechanomemory. (a)
Schematic diagram of prolonged crowding-induced cell invasiveness model. (b) Quantitation of the
individual cell nucleus area as crowding strain along the lines in the panel. Scale bar: 200 pm. (c¢)
The statistical analysis of crowding strain per cell along the panel lines (b). The cell sheet was
segmented into crowding (crowding strain from 0 to 0.3) and uncrowding (crowding strain from -0.3
to 0). (d) Transwell matrigel invasion assay of a growing monoclonal HeLa, MC38, and A431 cell
sheets after culture for 14 days. Representative DAPI images of cells that accumulated on the top
(uninvaded) and bottom (invaded) surface of the insert membranes. Scale bar: 200 um. (e) The ratio
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of invaded cells in uncrowded and crowded Hel.a, MC38, and A431 cells. (f) Schematic illustration
of the experimental procedure to test the invasion of HeLa cells after priming time for uncrowding
and crowding culture and memory time for sparse culture. (g) Transwell matrigel invasion assay of
HeLa cells after experiencing uncrowding and crowding for 1, 2, 3, 5 days (priming time),
subsequently collected and transferred to transwell chamber for 48 hrs. Representative DAPI images
of cells that accumulated on the top and bottom surface of the insert membranes. Scale bar: 100 pum.
(h) The ratio of invaded cells in uncrowded and crowded HeLa cells in panel (g). (i) HeLa cells were
grown dishes in crowding or uncrowding culture for 5 days, transferred to new dishes for 1, 2, 3, 7
days (memory time), subsequently collected and transferred to transwell chamber for 48 hrs.
Representative DAPI images of cells that accumulated on the top and bottom surface of the insert
membranes. Scale bar: 100 um. (j) The ratio of invaded cells in uncrowded and crowded HeLa cells
in panel (i). (k) The correlation graph between priming time and memory time in cell culture for
invasion analysis. (I) HeLa cells were grown dishes in crowding or uncrowding culture for 5 days,
transferred to matrigel-coated dishes for 1, 2, 3, 7 days. Representative XY slice image of cortactin
distribution at the basal membrane in uncrowding/crowding groups. Scale bar: 10 pm. (m)
Quantification of invadopodia number per cell with corresponding memory time. (n) HeLa cells
were grown dishes in crowding or uncrowding culture for 5 days, transferred to Cy5-conjugated
gelatin hydrogels for 1, 2, 3, 7 days. Representative XY slice image of F-actin staining in
uncrowding/crowding groups. Scale bar: 20 pm. (o) Quantification of correlation between
Cy5-conjugated gelatin thickness underneath cells and its memory time. (p) The volcano plot shows
deferentially expressed genes between uncrowding and crowding. Each dot represents a gene; genes
in red are up, genes in blue are down-regulated. (q) Boxplots showing mRNA expression data for
MMPI14, MMP28, ADAMY9, ADAM10, RAB5A, ZEBI, and SNAIL in uncrowded and crowded HeLa
cells as determined by RNA seq data respectively. (r) Relative expression of MMPI14, MMP28,
ADAMY, ADAMI10, RAB5A, ZEBI, and SNAIL in HeLa cells after experiencing uncrowding or
crowding for 0, 1, 3, 10 days (memory time). Schematic images (c, f) were created with
BioRender.com. Data are presented as mean = SEM; *p < 0.05, **p < 0.01, ***p < 0.005, not
significant (n.s.); two-tailed unpaired t-test.
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Figure 2. Prolonged crowding promotes cancer cell invasiveness by disrupting the aggregation
of membrane domains. (a) The Gene Ontology (GO) cellular components enriched by Metascape
from RNA sequencing data. (b) Representative XY confocal images for CTxB staining in uncrowded
and crowded HeLa cells. Scale bar: 50 um. (¢) Reconstructed XZ confocal images for CTxB staining
at the apical membrane of uncrowded and crowded HeLa cells. Scale bar: 5 um. (d) Quantitation of
correlation between CTxB fluorescence intensity per cell and its crowding strain. (e) Representative
XY confocal images for CTxB staining at the apical membrane of uncrowded and crowded HelLa
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cells. Scale bar: 2 um. (f) Quantitation of correlation between the number and size of CTxB clusters
per cell and its crowding strain. (g) Representative XY confocal images showing immunostaining for
Caveolin-1 at the apical membrane of uncrowded and crowded HeLa cells. Scale bar: 2 um. (h)
Quantitation of correlation between the number of Caveolin-1 clusters per cell and its crowding
strain. (i) Representative XY confocal images showing immunostaining for Flotillin-1 at the apical
membrane of uncrowded and crowded HeLa cells. Scale bar: 2 um. (j) Quantitation of correlation
between the number of Flotillin-1 clusters per cell and its crowding strain. (k) Representative XY
slice images of cholesterol- and MBCD-treated HeLa cell sheets by Transwell invasion assay. Scale
bar: 100 um. (I) Quantification of invaded cell number in panel (k). (m) Representative XY slice
images showing immunostaining for cortactin in uncrowded and crowded cells treated with
cholesterol and MBCD. Scale bar: 10 um. (n) Quantification of invadopodia density per cell in panel
(m). (o) Reconstructed XZ confocal images showing the localization of CTxB and Claudin-1 in the
regions with different crowding strain. Size bars: 20 um. (p) Quantitation of correlation between
Claudin-1 fluorescence intensity and CTxB fluorescence intensity in differently crowded cells. (q)
Representative XY confocal images showing immunostaining for ERK and p-ERK in uncrowded
and crowded HeLa cells. Scale bar: 2 um. (r) Quantification of fluorescence intensity of ERK and
p-ERK per cell in panel (q). (s) Representative XY confocal images showing immunostaining for
Akt and p-Akt in uncrowded and crowded HeLa cells. Scale bar: 20 um. (t) Quantification of
fluorescence intensity of Akt and p-Akt per cell in panel (s). Data are presented as *p < 0.05, ***p <
0.005; two-tailed unpaired t-test.
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Figure 3. Prolonged crowding triggers a nSCTT of plasma membranes. (a) Reconstructed XZ
confocal images showing CTxB level and membrane curvature using Imagel and plugin Kappa in
uncrowded and crowded HeLa cells expressing pEYFP-mem. Scale bar: 20 pm. (b) Quantitation of
membrane curvature in uncrowded and crowded HeLa cells in panel (a). (¢) Quantitation of
correlation between CTxB fluorescence intensity and membrane curvature in panel (a). (d)
Schematic diagram of subcutaneous nude mouse xenograft model using EYFP-mem+ HelLa cells.
After 3 weeks of tumor growth, mouse tissues were harvested and tumor architectures were analyzed
for the indicated parameters. (e) Representative XY slice image of pEYFP-mem from bulk and
invasive edge of nude mouse xenografts. Scale bar: 10 um. (f) Quantitation of correlation between
fractal dimension per cell from bulk and invasive edge of nude mouse xenografts. (g) Representative
XY slice image of sodium potassium ATPase in the uncrowded and crowded regions of human skin
cancer tissues. Scale bar: 10 um. (h) Quantitation of correlation between fractal dimension and
crowding strain per cell in human skin cancer tissues. (i) Confocal 3D reconstruction of the apical
membrane of uncrowded and crowded HelLa cells expressing pEYFP-mem. Scale bar: 10 um. (j)
Quantitation of membrane height in uncrowded and crowded HeLa cells. (k) Scanning electron
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microscopy (SEM) images of plasma membranes in uncrowded and crowded HeLa cells. Scale bar:
10 and 5 pm. (1) Transmission Electron Microscope (TEM) images of apical plasma membranes
revealing the presence of membrane bending in the range of 100 - 500 nm. Scale bar: 5 pum. (m)
Quantification of line edge roughness in uncrowded and crowded HeLa cells (1). (n) The topographic
images of HeLa cells by AFM showing the height distribution of the membrane with the size of 30
um X 30 um. For uncrowded cells, the surface of membrane was relatively flat. More protruding
structures were observed in crowded cells. (0) Average roughness (Ra) of the apical plasma
membrane was analyzed from 3 X3 um frame ultrastructure images by AFM. (p) Representative XY
slice image of cortactin distribution in HeLa cells after uncrowding/crowding culture for 5 days and
sparse culture for 1,2,3,7 days. Scale bar: 10 um. (q, r) Quantification of filopodia density and length
per cell with corresponding memory time in panel (p). Data are presented as mean & SEM; *p < 0.05,
**p < 0.01, ***p < 0.005; two-tailed unpaired t-test.
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Figure 4. Prolonged crowding triggers nSCTT and disrupts membrane domains by increasing
Laplace pressure. (a) Representative FLIM images of Flipper-TR lifetime values to analyze
membrane tension in uncrowded and crowded cells. Color scale from 0 to 6 ns. Scale bars: 10 pum.
(b) Quantification of the average lifetime of Flipper-TR from full images. Data are presented as
boxplot. (¢) FRET analysis of uncrowded and crowded HeLa cells expressing the RhoA or Racl
biosensor. Representative confocal images of over-expressed cells before photobleaching (acceptor
pre) are shown. Representative FLIM images of photobleaching in uncrowded and crowded cells are
shown. Color scale represents the range of FRET efficiency. Scale bar: 10 pm. (d) Quantitation of
the fluorescence increase (% FRET efficiency) of RhoA and Racl upon photobleaching in
uncrowded and crowded cells. Data are presented as boxplot. (e) Confocal 3D reconstruction of the
apical side of uncrowded and crowded HeLa cells stained for F-actin. Scale bar: 10 pm. (f)
Quantification of the average height of F-actin from the apical side in uncrowded and crowded cells.
(g) Actin angle distribution data for cells experiencing uncrowding and crowding displayed as a rose
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plot in which the absolute value of the angles was compared. (h) Quantifying Laplace pressure in
uncrowded and crowded HeLa cells using a micro-pressure probe. The baseline reading is close to
zero when the microelectrode is not in contact with the cells. A transient pressure spike is recorded
as the tip of the microelectrode penetrates the membrane. This is followed by a stable reading for
about 5-10 s, before some potential leaks occur, which may cause a gradual drop in the reading with
time. Scale bar: 10 um. (i) Quantification of the Laplace pressure of cells experiencing uncrowding
and crowding. (j) Schematic diagram representing how the increased Laplace pressure controls the
protrusions of plasma membranes due to the cellular squeeze of each other. (k) Snapshot from Monte
Carlo simulations of nanoscale topography of plasma membranes with different membrane

tension 7 :z'az/ic and Laplace pressure AﬁzApa3(KkBT )_1/2 . () The rescaled roughness

& =& (K/ kT )1/2 / a as a function of membrane tension and Laplace pressure. (m) The ratio of linker

proteins ¢ that bound to the cortical actin as a function of Laplace pressure and membrane tension. (n)

The rescaled roughness as a function of the density of linker proteins C, that bound to cortical actin.
(0) Snapshot from Monte Carlo simulations for aggregation of membrane domains for different
membrane tension and Laplace pressure as indicated in each figure. (p) Pair distribution function g (r)
of membrane domains as a function of the distance r for different membrane tension and Laplace
pressure as indicated in this figure. (q) The probability of cluster size for membrane domains with
different density of linker proteins Cp that bound to cortical actin. (r) The changes of bending energy
as a function of the raft-raft contact energy. (s) Snapshots of DPPC (red) / DUPC (green) / CHOL
(yellow) liposomes with different inner radius at 0 and 5 ps. Scale bar: 4 nm. (t) Time evolution of
normalized lateral contacts of DUPC lipids for different systems. Data are presented as *p < 0.05,
*#%p < 0.005; two-tailed unpaired t-test.
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Figure 5. Suppressing the pressure-sensation of membrane domains inhibits crowding-initiated
cancer cell invasiveness. (a) Reconstructed XZ confocal images of pERM localization at the apical
side in uncrowded and crowded HeLa cells. Scale bar: 20 um. (b) Quantification of pERM
fluorescence intensity per cell with corresponding crowding strain. (¢) Reconstructed XZ confocal
images of pERM localization at the apical side of HeLa cells after uncrowding/crowding culture for
5 days and sparse culture for 1, 2, 3, 7, 10 days. Scale bar: 20 um. (d) Quantification of pERM
fluorescence intensity with corresponding memory time from uncrowded and crowded groups. (e)
Schematic diagram for a FKBP-EzrinabdT567D construct to acutely increase cortical actin by
recruitment of the EzrinabdT567D to the plasma membranes after rapamycin treatment. (f) Confocal
3D reconstruction of the apical membrane of FKBP-EzrinabdT567D-mCherry+; EYFP-mem+ HeLa
cells treated with rapamycin or vehicle. Scale bar: 10 um. (g) Quantification of the average height of
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membrane from the apical side in control and rapamycin treated cells. (h) Reconstructed XZ
confocal images showing CTxB fluorescence intensity in FKBP-EzrinabdT567D-mCherry+ HeLa
cell sheets treated with rapamycin or vehicle. Scale bar: 10 pm. (i) Quantitation of CTxB
fluorescence intensity in uncrowded and crowded cells treated with rapamycin or vehicle. (j)
Representative XY confocal images of CTxB staining at the apical membrane of
FKBP-EzrinabdT567D-mCherry+ HeLa cell sheets treated with rapamycin or vehicle. Scale bar: 5
um. (k) Quantitation of the number of CTxB cluster per cell treated with rapamycin or vehicle. (1)
Transwell matrigel invasion assay of FKBP-EzrinabdT567D-mCherry+ HeLa cell sheets after
treatment with rapamycin or vehicle. Representative DAPI images of cells that accumulated on the
top (uninvaded) and bottom (invaded) surface of the insert membranes. Scale bar: 100 pm. (m) Ratio
of invaded cells in FKBP-EzrinabdT567D-mCherry+ HeLa cell sheets treated with rapamycin or
vehicle in panel (I). (n) Representative XY slice image of cortactin and F-actin staining in
FKBP-Ezrinabd T567D-mCherry+ HelLa cell sheets treated with rapamycin or vehicle. Scale bar: 10
um. (o) Schematic diagram of lateral and basal cross-sections in HeLa cell sheets. (p) Quantification
of invadopodia density per cell in control and rapamycin groups in panel (n). (q)
FKBP-EzrinabdT567D-mCherry+ HeLa cells were plated on FITC-conjugated gelatin hydrogels.
Representative XY and XZ slice images of gelatin-FITC and EzrinabdT567D-mCherry in cell sheets
after rapamycin treatment. Scale bar: 10 um. (r, s) Quantification of Cy5-conjugated gelatin
fluorescence intensity and thickness in uncrowded and crowded cells treated with rapamycin or
vehicle in panel (q). Data are presented as *p < 0.05, **p < 0.01, ***p < 0.005; two-tailed unpaired
t-test.
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Figure 6 Suppressing the pressure-sensation of membrane domains inhibits tumor invasion
in a mouse xenograft model. (a) Schematic diagram of subcutaneous nude mouse xenograft
model using FKBP-EzrinapgTS67D and FKBP (Control) over-expressed HeLa cells. After 1 week
of tumor growth, mice were treated with rapamycin via i.p. three times per week. Tissues were
harvested and tumor architectures were analyzed for the indicated parameters. (b) Representative
XY slice images of sodium potassium ATPase and mCherry in mouse xenograft treated with
rapamycin. Scale bar: 5 pm. (¢) Quantitation of fractal dimension of HeLa cells expressed
FKBP-EzringpT567D and FKBP in mouse xenografts. (d) Immunofluorescence analysis of
Caveolin-1 in mouse xenografts treated with rapamycin. Scale bar: 10 um. (e) Quantification of
Caveolin-1 fluorescence intensity of tumor cells in panel (d). (f) Inmunofluorescence analysis of
Flotillin-1 in mouse xenografts treated with rapamycin. Scale bar: 10 pm. (g) Quantification of
Flotillin-1 fluorescence intensity of tumor cells in panel (f). (h) Representative images of HE
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staining in mouse xenografts treated with rapamycin. scale bar: 100 um. (i) Invasion pattern of
mouse xenografts in panel (h). Invasion was classified as “clear” (distinct border between muscle
and tumor), “clear>focal” (more clear borders than areas with focal invasions), “focal>clear”
(more focal invasions than clear borders), or “invasive” (no clear borders). Percentages of each
category are given. Only samples with sufficient surrounding muscle tissue were evaluated. (j)
Immunofluorescence analysis of RABSA and mCherry in mouse xenografts treated with
rapamycin, scale bar: 20 um. (k) Quantification of RABSA fluorescence intensity in the invasive
edge of tumor in mouse xenografts. (I) Schematic diagram of pressure-sensing membrane
domains triggered by prolonged crowding driving cancer cell invasiveness. The supported
membrane consists of non-membrane domains containing unsaturated phospholipids and lipid
membrane domains by association of sphingolipid and cholesterol molecules. Under uncrowded
conditions, aggregated membrane domains reside in nanoscale smooth topography, maintaining a
flat plasma membrane sustained by membrane-to-cortex attachment. In contrast, under prolonged
crowding conditions, membrane domains become disaggregated are confined to regions with
nanoscale corrugated topography with plasma membrane protrusions. This transition in
membrane domain organization and topography is critical for driving cancer cell invasiveness.
Schematic images (a, 1) were created with BioRender.com Data are presented as ***p < 0.005;
two-tailed unpaired t-test.
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SUPPLEMENTAL FIGURES
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Fig. S1. Prolonged crowding drives cancer cell invasiveness. (a) Transwell matrigel invasion
assay in a growing monoclonal NLS-GFP* HeLa cell sheets captured for 7, 9, 11, 13 days after
seeding. Representative DAPI images of cells that accumulated on the top and bottom surface of
the insert membranes. Scale bar: 200 um. (b) The ratio of invaded NLS-GFP* HeLa cells was
analyzed in panel (a). (¢) HeLa cells were plated on Cy5-conjugated gelatin hydrogels for a
growing monoclonal cell sheet. F-actin was stained with phalloidin. Scale bar: 50 pm. (d)
Quantification of correlation between Cy5-conjugated gelatin thickness underneath cells and its
crowding strain in panel (c). (e) Representative XY slice images of cortactin and F-actin staining
in uncrowded and crowded cells. Scale bar: 10 pm. (f) Quantification of correlation between
invadopodia density per cell and corresponding crowding strain in panel (e).
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1112 Fig. S2. Prolonged crowding drives A431 cell invasiveness with memory retention. (a)
1113 Transwell matrigel invasion assay of A431 cells after uncrowding/crowding culture for 5 days
1114  and sparse culture for 0 and 3 days. Representative DAPI images of cells that accumulated on the
1115  top and bottom surface of the insert membranes. Scale bar: 50 um. (b) The ratio of invaded cells
1116  in uncrowded and crowded A431 cells in panel (a). Data are presented as mean = SEM; ***p <
1117 0.005; two-tailed unpaired t-test.
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Fig. S3. Identification of gene expression clusters in cells cultured under crowded or
uncrowded conditions. Cells were primed for 20 days in crowding or uncrowding culture,
followed by exposure to sparse culture for different times (0, 1, 3, or 10 days). 34,520 genes were
clustered using mFuZz into significant discrete clusters.
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1129  Fig. S4. The aggregation of Cavin-1 clusters at the apical membrane of crowded and
1130  uncrowded cells. (a) Representative XY confocal images showing immunostaining for Cavin-1
1131  at the apical membrane of uncrowded and crowded HeLa cells. Scale bar: 2 um. (b) Quantitation
1132 of correlation between the number of Cavin-1 clusters per cell and its crowding strain.
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1135 Fig. S5. Prolonged crowding does not affect the levels of main components within
1136 membrane doamins in cancer cells. (a) Representative XY confocal images showing filipin
1137  staining of cholesterol in different crowding regions of monoclonal HeLa cell sheet. Scale bar: 20
1138 um. (b) Quantitation of filipin fluorescence intensity in low and high crowding HeLa cells. (¢)
1139  Representative XY confocal images showing immunostaining for GMI in different crowding
1140  regions of monoclonal HeLa cell sheet. Scale bar: 20 um. (d) Quantitation of GM1 fluorescence
1141  intensity in uncrowded and crowded HelLa cells. Data are presented as mean = SEM. Data are
1142 presented as n.s., not significant; two-tailed unpaired t test.
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1151  Fig. S6. Prolonged crowding triggers a nSCTT of plasma membranes in human tumor
1152  tissues. (a) Representative XY slice image of sodium potassium ATPase in the bulk and invasive
1153 edge of cervical cancer tissues. Scale bar: 10 um. (b) Quantitation of correlation between fractal
1154  dimension per cell and its crowding strain in panel (a). (¢) Representative XY slice image of
1155  sodium potassium ATPase in the bulk and invasive edge of breast cancer tissues. Scale bar: 10
1156  um. (d) Quantitation of correlation between fractal dimension per cell and its crowding strain in
1157  panel (¢). Data are presented as mean = SEM; ***p < (0.005; two-tailed unpaired t-test.
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1163

1164  Fig. S7. Prolonged crowding triggers membrane protrusions and cortical actin remodeling.
1165  (a) Root-mean-squared roughness (Rq), and (b) height distribution were analyzed from 3 X3 um
1166  frame ultrastructure images of HeLa cells by AFM. (¢) Confocal 3D reconstruction of F-actin at
1167  the apical membrane of uncrowded and crowded A431 cells. Scale bar: 10 um. (d) Quantification
1168  of the average height of F-actin in uncrowded and crowded A431 cells in panel (c). Data are
1169  presented as mean =+ SEM; *p < 0.05, ***p < 0.005; two-tailed unpaired t-test.
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1172 Fig. S8.
1173

1174

1175

1176

1177  Fig. S8. Snapshot from Monte Carlo (MC) simulations of membrane-cortical actin system.
1178  Membranes are shown in blue, cortical actin in gray, membrane domains in red. Linker proteins
1179  are indicated by square patches in yellow. The membrane-cortical actin bonds were modeled as
1180  Hookean springs.
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1184
1185
1186  Fig. S9. Cortical actin remodeling in crowded cells is suppressed by enhancing MCA. (a)
1187  Immunofluorescence analysis of EzrinapdT567D in FKBP-Ezrina,dT567D* Hela cells treated with
1188  rapamycin or vehicle. Scale bar: 10 um. (b) Quantification of EzrinawgT567D intensity plasma
1189  membranes/cytoplasm ratio in panel (a). (¢) Quantification of F-actin intensity plasma
1190  membranes/cytoplasm ratio in panel (a). (d) Confocal 3D reconstruction of F-actin at the apical
1191  membrane of FKBP-Ezrin,pT567D" HelLa cells treated with rapamycin or vehicle. Scale bar: 10
1192 pm. (e) Quantification of the average height of F-actin in panel (d). Data are presented as mean =+
1193 SEM; ***p < 0.005; two-tailed unpaired t-test.
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Fig. S10. Inhibiting the nSCTT of plasma membranes suppresses cancer cell invasiveness.
(a) Schematic diagram of subcutaneous nude mouse xenograft model using
FKBP-EzrinapgT567D* HeLa cells. After 1 week of tumor growth, mice were treated with
rapamycin or vehicle via ip. three times per week. Tissues were harvested and tumor
architectures were analyzed for the indicated parameters. (b) Immunofluorescence analysis of
Ezring,dT567D in mouse xenografts treated with rapamycin or vehicle. Scale bar: 10 pm. (¢)
Quantification of EzringgT567D distribution in tumor cells of mouse xenografts. (d)
Representative XY slice image of sodium potassium ATPase and EzrinapgT567D in mouse
xenografts treated with rapamycin or vehicle. Scale bar: 5 um. (e) Quantitation of fractal
dimension per cell in panel (d). (f) Immunofluorescence analysis of Caveolin-1 in mouse
xenografts treated with rapamycin or vehicle above. Scale bar: 10 um. (g) Quantification of
Caveolin-1 fluorescence intensity in panel (f). (h) Immunofluorescence analysis of Flotillin-1 in
mouse xenografts treated with rapamycin or vehicle above. Scale bar: 10 pm. (i) Quantification
of Flotillin-1 fluorescence intensity in panel (h). (j) Representative images of HE staining in
mouse xenografts treated with rapamycin or vehicle. Overview images, scale bar: 200 um,;
Detailed images, scale bar: 50 um. (k) Invasion pattern of mouse subcutaneous xenografts treated
with rapamycin or vehicle. The invasion was classified as “clear”, “clear>focal”, “focal>clear”,
or “invasive”. Percentages of each category are given. Only samples with sufficient surrounding
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1218  muscle tissue were evaluated. Schematic image (a) was created with BioRender.com. Data are
1219 presented as mean £ SEM; ***p < (0.005; two-tailed unpaired t-test.
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