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Abstract: 

Deciphering how nucleotides in genomes encode regulatory instructions and 

molecular machines is a long-standing goal in biology. DNA language models (LMs) 

implicitly capture functional elements and their organization from genomic sequences 

alone by modeling probabilities of each nucleotide given its sequence context. 

However, using DNA LMs for discovering functional genomic elements has been 

challenging due to the lack of interpretable methods. Here, we introduce nucleotide 

dependencies which quantify how nucleotide substitutions at one genomic position 

affect the probabilities of nucleotides at other positions. We generated genome-wide 

maps of pairwise nucleotide dependencies within kilobase ranges for animal, fungal, 

and bacterial species. We show that nucleotide dependencies indicate deleteriousness 

of human genetic variants more effectively than sequence alignment and DNA LM 

reconstruction. Regulatory elements appear as dense blocks in dependency maps, 

enabling the systematic identification of transcription factor binding sites as accurately 

as models trained on experimental binding data. Nucleotide dependencies also 

highlight bases in contact within RNA structures, including pseudoknots and tertiary 

structure contacts, with remarkable accuracy. This led to the discovery of four novel, 

experimentally validated RNA structures in Escherichia coli. Finally, using dependency 

maps, we reveal critical limitations of several DNA LM architectures and training 

sequence selection strategies by benchmarking and visual diagnosis. Altogether, 

nucleotide dependency analysis opens a new avenue for discovering and studying 

functional elements and their interactions in genomes. 
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Introduction 

The basic blueprint of every living organism is encoded in its genome. High-throughput 

sequencing techniques have made it possible to read the genome, however, interpretation - 

decoding the information present in the sequence and determining its biological meaning - 

remains a key challenge of modern genetics.  Sequence comparison across and within 

species is a well-established technique of genome interpretation 1, wherein purifying selection 

acting on sequence and the evolutionary relationships between genomes are leveraged to 

identify functional sequence elements. Sequence comparison not only leverages nucleotide-

level conservation, but also statistical dependencies between nucleotides. Specifically, if the 

presence of a particular nucleotide at one position is associated with the presence of a 

particular nucleotide at another position, this suggests that these nucleotides co-evolve and 

thus cooperate to encode a functional element. Methods employing this principle of covariation 

have enabled important discoveries, particularly in protein and RNA structure biology 2,3. 

However, measuring these dependencies so far essentially relied on sequence alignment at 

single base-pair resolution, which can only be computed for highly conserved regions of the 

genome.  

DNA language models (DNA LM) have recently been proposed as a technique to leverage 

sequence comparison without requiring alignments 4,5. A variety of DNA LMs have been 

developed, but one feature shared by all is that they are trained to predict nucleotides given 

their sequence context. This objective allows these models to capture evolutionary favored 

sequence elements and their arrangements directly from large collections of genomic 

sequences, without requiring additional experiments 4. 

We and others have recently analyzed the nucleotide predictions made by DNA LMs and 

shown that they carry biologically meaningful information 4–6. For example, we found that in-

vivo functional transcription factor binding motifs are generally better reconstructed by DNA 

LMs than non-functional copies of the same motif. Moreover, Benegas et al. found that DNA 

LMs predict genetic variants with phenotypic impact to be less likely than neutral variants. 

Several other studies have also demonstrated the value of DNA LMs to serve as so-called 

foundation models 4,7–15. In this line of research, the pre-trained DNA LMs are used as starting 

points for training supervised models aimed at predicting molecular phenotypes such as gene 

expression. In a number of cases, DNA LM-based predictors have been shown to outperform 

alternative approaches 16. These analyses indicate that DNA LMs intrinsically represent 

genomic functional elements. However, the foundation model paradigm employs DNA LMs as 

intermediate black boxes and does not reveal these elements.  

In this work, we leverage DNA LMs to provide a measure of dependencies between pairs of 

nucleotides. We systematically study the resulting nucleotide dependency maps to determine 

which genomic elements they encode and exploit them to characterize functional elements 

and their interactions. Furthermore, we show how nucleotide dependencies can be used to 

compare existing DNA LM and identify their shortcomings.  
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Results 

 

Nucleotide Dependency Maps  

Fig. 1. Probing nucleotide dependencies from DNA language models. A) DNA LMs are trained on 

genomes to predict nucleotides given their sequence context, assigning a probability to each one of 

A,C,G or T. B) We probe pairwise nucleotide dependencies from DNA LMs by quantifying how 

substituting a nucleotide at a query position affects predicted probabilities at a target position. C) 

Correlation between the absolute variant effect on gene expression, as measured using a saturation 

mutagenesis assay of nine human promoters (n = 8,635 variants), and the variant influence score, the 

reconstruction score (log-likelihood ratio of substituting the reference to the alternative nucleotide 

according to the DNA LM), and alignment-based conservation scores from PhyloP and PhastCons 

based on the 100-way, 447-way and 470-way alignment. DNA LM log ratio quantifies the reconstruction 

at a specific position (as depicted in A), while the variant influence score quantifies how each variant 

affects the predicted probabilities across all target nucleotides in a sequence (this study, as depicted in 

B). Error bars represent ±2 standard deviations, constructed using 100 bootstrap samples per promoter. 

D) Left. Annotated nucleotide dependency map for the S. cerevisiae arginine tRNA, tR(ACG)O. The 

grey heatmap (top) shows log-odds-ratios for all four nucleotides of a target (columns) when substituting 

the query nucleotide to each of the three alternatives (rows). This data is shown for the query being 
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nucleotide 1 of the tRNA (T) and target being nucleotide 72 (A). The DNA LM log-odds ratios are 

consistent with the fact that these two bases encode a Watson-Crick contact in the RNA fold. The 

maximum absolute log-odds ratio, which defines the dependency score between those two positions, 

is realized when substituting an A on the query and having a T at the target. The dependency map 

(blue-to-red heatmap) shows dependency scores for all queries (rows) and targets (columns) in this 

locus. The colored rectangles in the dependency map highlight anti-parallel dependencies belonging to 

each of the tRNA arms while the red square delineates a dependency between 2 bases in different 

loops of the tRNA contributing to its tertiary structure (red bases in the tertiary structure). The track 

above the dependency map displays the nucleotide reconstruction predicted by the DNA LM. Right. 

Annotated tertiary structure of tR(ACG)O17. 

 

 

DNA language models are trained to reconstruct nucleotides, thereby providing nucleotide 

probabilities given their surrounding sequence context (Fig 1A). In principle, success at 

reconstructing nucleotides requires detecting characteristic genomic features more likely to be 

found in the sequence context. For example, the probability of a particular nucleotide in the 

human genome to be a guanine strongly depends on whether it is intronic (~22%,21) or located 

at the third base of a start codon (~100%). To study the relationship between nucleotides and 

their context using DNA LMs, we use a technique analogous to in silico mutagenesis 

(explained in 22). Specifically, we mutate a nucleotide in the sequence context (query 

nucleotide) into all three possible alternatives and record the change in predicted probabilities 

at a target nucleotide in terms of odds ratios (Fig 1B, Methods). This procedure, which can be 

repeated for all possible query-target combinations, quantifies the extent to which the 

language model prediction of the target nucleotide depends on the query nucleotide, all else 

equal. 

We applied this general procedure to 14 DNA language models (STable1, Methods). Unless 

stated otherwise, we present results from our SpeciesLM DNA language models which were 

trained on regions 5’ of start codons in Fungi (SpeciesLM Fungi) and Metazoa (SpeciesLM 

Metazoa) (4, Methods). On select biological applications, we turn to other DNA language 

models. 

As a first assessment of the biological relevance of these dependencies, we sought to verify 

that single nucleotide variants of known functional importance have a greater impact on DNA-

LM predictions. As an aggregate score of query variant impact, we computed the average 

across all targets of the maximum absolute odds ratio over all possible alternative nucleotides 

at a target (Methods). We named this metric the variant influence score. In the ClinVar 

database 23, the influence score was significantly higher for non-coding pathogenic variants, 

which mostly comprised variants within or close to transcripts, than benign variants (Fig S1A, 

Fig S1F). This is despite using a DNA LM trained only on 2-kb regions 5’ of start codons, which 

only overlap a small fraction of all transcribed bases. Previous work on DNA LMs proposed to 

leverage reconstruction probabilities to prioritize functional variants, assuming that the less 

likely a variant is compared to the reference allele, the more deleterious it is 5,6 (Methods).  

Remarkably, this reconstruction-based metric showed a significantly lower performance than 

the influence score. However, the influence score did not outperform alignment-based scores, 

perhaps because criteria used for ClinVar to categorize variants as pathogenic include 

bioinformatics predictions which often integrate alignment-based conservation.  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 13, 2025. ; https://doi.org/10.1101/2024.07.27.605418doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.27.605418
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

To ensure a less biased comparison, we next focused on a dataset from a saturation 

mutagenesis experiment on nine selected human promoters (Fig 1C, 24). Here, the variant 

influence score correlated with variant effect on absolute gene expression fold-change, 

outperforming reconstruction, as well as alignment-based conservation scores 25–28. 

Furthermore, the variant influence score also outperformed reconstruction and alignment-

based conservation at distinguishing fine-mapped promoter eQTLs SNPs from matched 

controls, in both human and yeast (Fig S1B-E 18,20,29,30).  

Having shown that aggregate dependency strengths reflect overall functional importance, we 

next sought to study them down to the level of individual query-target pairs. For every query-

target pair, we considered the maximum effect a query nucleotide change has on the predicted 

odds of a target, yielding a 2D nucleotide dependency map (Methods). An example of such a 

map for the yeast arginine tRNA is given in Fig 1D. The structure of tRNAs is highly 

constrained, as they must fit into the translation sites of the ribosome. The entire secondary 

structure of the tRNA, which is defined by base pairing within the four arms of the tRNA clearly 

stands out with high dependencies. The dependency map also highlighted one of the tertiary 

structure contacts. Inspecting the underlying nucleotide predictions reveals that upon 

introducing single nucleotide substitutions in these pairs, the DNA-LM adapts its predictions 

according to Watson-Crick and, with a lesser preference, to wobble base-pairing (Fig 1D for 

one example). Remarkably, the RNA base-pairing rules were not a priori supplied to the model 

and thus were learned as a consequence of the reconstruction objective. Moreover, this 

structural information was captured without specifically focusing the training on tRNAs and in 

an alignment-free fashion.  

Nucleotide pairs have two dependencies depending on which nucleotide is the query. Scoring 

nucleotide pairs by the maximum of those two values yielded near-perfect secondary structure 

contact predictions across 172 S. cerevisiae tRNAs. We explored alternative metrics including 

gradient-based dependencies and using masking instead of nucleotide substitution on query 

which all showed lower predictive signal; a trend that was confirmed when further assessing 

the dependencies on cognate donor and acceptor splice sites (Supplementary fig S1G,H).     

In the following sections, we explore and categorize patterns found in nucleotide dependency 

maps, associate them to biological mechanisms, and exploit them to detect and characterize 

functional elements in the genome.  
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Blocks along the diagonal highlight regulatory sequence motif 

instances  

 

 

Fig. 2. Blocks along the diagonal of dependency maps highlight regulatory sequence motif 

instances. A) SpeciesLM Fungi nucleotide reconstructions (scaled by information content) and 

nucleotide dependency map for the SMT3 promoter (yeast). Transcription factor (TF) motifs and 

poly(dA:dT) are reconstructed with similar confidence whereas blocks appear only for TF motifs in the 
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dependency map. Ground truth motifs from http://www.yeastepigenome.org/. B) Examples of 

dependency blocks from human promoters. From top to bottom: Znf652 motif in the LDLR promoter, 

Nfy motif in the promoter of MTO1 and a Spdef motif in the ARID1B promoter. Ground truth motifs from 

Hocomoco v12 31. C) Top. Per nucleotide block-score for nucleotides in repeats and reported to be in a 

bound TF motif. Bottom. Per nucleotide information content of the DNA-LM reconstruction in repeats 

and reported to be in a bound TF motif. D) Receiver operating characteristic (ROC) curve comparing 

the ability of different metrics to classify whether a nucleotide is part of a bound TF motif or not. The 

dependency block score performs significantly better than using the LM nucleotide predictions and is 

as good as yeast expert position weight matrix (PWM) scanning. This is even though PWMs were 

derived from in-vitro and in-vivo binding assays and were used for the definition of the positive class, 

whereas the language model has never been exposed to binding data during training. E) Dependency 

map for an instance of the yeast Abf1 spaced motif, compared to the ground truth binding preference 

from YeTFaSCo 32. 

 

Within distances of a few tens of nucleotides, we noticed that sets of contiguous nucleotides 

often showed strong reciprocal dependencies, reflected as dense blocks along the diagonal. 

Many dense blocks occurred at transcription factor (TF) motif instances in promoters (Fig 2A, 

B). This was in striking contrast to other well reconstructed locations including repeats such 

as poly(dA:dT) stretches. Intuitively, all bases of a TF motif strongly depend on each other 

because mutations at any position could abolish or greatly reduce TF binding, thus effectively 

disrupting the function of the site as a whole. Therefore, we reasoned that TF motifs could be 

more accurately detected using DNA LMs by searching for dependency blocks, rather than 

using reconstruction as previously proposed 4.  

To find these dependency blocks we computed the first quartile of all query-target 

dependencies among consecutive 6 nucleotides (Methods). This quantile-based block score 

is more robust than the average to isolated strong interactions, privileging dense blocks. To 

benchmark the ability of the block score to serve as a binding-site detector, we leveraged the 

near-complete availability of TF binding data in S. cerevisiae along with TF binding nucleotide 

level preferences (position weight matrix, PWMs, 32). We considered the 1-kb regions 5’ of 

start codons and defined PWM matches occurring within 10 bp of an experimental binding 

peak as binding sites for 68 TFs 33.  

While reconstruction varied widely for binding site nucleotides and for repeat elements, the 

block score of binding site nucleotides was generally higher than for nucleotides in repeats 

(Fig 2C). Consistent with this observation, the block score discriminated binding site 

nucleotides significantly better than reconstruction (Fig 2D). As a comparison, phylogenetic 

conservation inferred from alignment of 7 Saccharomyces species had no discriminative 

power at this task (Fig 2D) 25.  

Moreover, the block score discriminated binding site nucleotides as effectively as PWM 

scanning. This result is remarkable since the block score was obtained in a completely 

unsupervised fashion using masked language modeling on genomic sequence alone, 

whereas the PWMs were not only derived from experimental data but also used to define the 

positive class. The true extent of this capability of DNA LMs is only apparent when inspecting 

the dependency map and not from the reconstructions. Thus, this analysis demonstrates both 

the ability of DNA LMs to detect regulatory elements as well as the utility of the dependency 

maps. 
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We note that not all motifs appear as complete blocks. S. cerevisiae Abf1, for example, is 

represented as two spaced and interacting blocks, correctly reflecting the dimeric binding 

preferences of this factor (Fig 2E). Thus, even within motifs, the dependency maps can serve 

to visualize the underlying functional relationships.  

 

Off-diagonal blocks highlight sequence element interactions 

 

Blocks in the dependency maps also occurred away from the diagonal, typically reflecting 

distal dependencies between sequence elements, as for example between the TATA box and 

initiator (INR) element of the promoter of GstO2 in Drosophila melanogaster (Fig. 3A), two 

sequence elements  involved in transcription preinitiation complex assembly, or between the 

donor site, the branch point and the acceptor site of the intron of ATG44 in S. cerevisiae (Fig. 

3B), which are the three major sequence determinants of splicing. The short length of yeast 

introns allowed us to perform a genome-wide assessment which showed that dependencies 

between donor and acceptor splice sites were higher than dependencies between donor and 

decoy acceptor-like sequences within the intron or background dependencies at matched 

distances (Fig. 3C). These results indicate that distal dependencies capture a range of 

functional relationships between sequence elements, including promoter and transcript 

architecture. 

Going a step further, we asked whether the maps could also reflect changes in transcript 

structure due to interindividual variation. To this end, we leveraged aberrant splicing events 

associated with rare variants from 621 human individuals (GTEx, 34) and SpliceBERT, a 

language model trained on vertebrate RNA sequences 14. The gene TRPC6 provides an 

example where one individual harbors a rare genetic variant disrupting a canonical donor 

splice site. In this individual, a cryptic intronic donor splice site is used instead, resulting in an 

aberrant, shorter, intron (Fig. 3D). Consistent with the effect of this variant on transcript 

structure, the canonical donor strongly interacts in the dependency map with both ends of the 

aberrant intron, namely the canonical acceptor and the cryptic donor (Fig. 3D). Across all 

1,811 rare-variant associated aberrant splicing events amenable to this analysis, 

dependencies between the variant position and the ends of the corresponding outlier intron 

were higher than between nucleotides at matched distances (Fig. 3E). These results held for 

either end of the outlier intron and all location categories of the variant (Fig. 3E). In summary, 

these observations show that dependency maps capture splicing rules and can be indicative 

of transcript structure alterations resulting from genetic variants. 
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Fig. 3 Off-diagonal blocks highlight sequence element interactions.  A) Dependency map 

extracted from the SpeciesLM Metazoa in the promoter of the Drosophila melanogaster gene GstO2. 

On top is the reconstruction (scaled by the information content) from the LM highlighting the TATA box 

and initiator (INR) element motifs. High dependencies can be spotted at their intersection in the 

dependency map, reflecting their functional interaction. B) Dependency map for the intron of the yeast 

gene ATG44 together with exonic flanking regions of 8 nucleotides. The top and right tracks correspond 

to the nucleotide reconstruction (scaled by the information content) which highlight the donor and 

branch point motifs. Off-diagonal dependencies can be spotted in the intersection between these motifs 
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and the acceptor, indicating their interdependence. C) Average dependency between donor and 

acceptor nucleotides; donor and acceptor-like decoy nucleotides (AG dinucleotides within the intron 

not part of an annotated 3’ intron end); donor and random nucleotide pairs matching donor-acceptor 

distances. D) Exon elongation variant in a human individual on an intron of gene TRPC6. Top. Sashimi 

plots for an individual without the variant (upper track) and an individual with the variant (lower tracks) 

indicating differential splicing (number of RNA-seq reads supporting each splice junction) resulting from 

a variant inducing exon elongation. Bottom. Dependency map obtained from SpliceBERT showing a 

dependency between the canonical and alternative donor, indicating that a substitution in the canonical 

donor site induces a change in predicted probability for the alternative donor position shown in the 

Sashimi plots. E) For each variant location with respect to the splice site each boxplot shows: the 

average dependency between a variant position and its reported outlier junction donor or acceptor and 

average dependencies for nucleotides at distances matching the spacing between the variant and the 

outlier donor or acceptor. All comparisons between dependencies for donor and acceptor and 

dependencies at matched distances were significant (one-sided Wilcoxon rank-sum test, all P-values 

< 10-12). 

 

Nucleotide dependencies reveal RNA secondary and tertiary 

structure contacts 

 

Besides blocks, we also frequently noticed anti-parallel diagonals, i.e. distal stretches of 

consecutive nucleotides that depend on each other one-to-one in reverse order as in the case 

of the four arms of the yeast arginine tRNA described above (Fig. 1D). Using a simple 

convolutional filter, we systematically called regions with anti-parallel elements across the 

genomes of different fungi (Methods, Fig. S4A). Dependencies in anti-parallel diagonals were 

typically consistent with Watson-Crick or wobble base pairing (Fig. S4B), indicative that they 

captured helical stems, which are RNA structural elements that play a major role in 

determining RNA folding. Moreover, anti-parallel diagonals with the strongest dependencies 

were found among highly structured RNAs such as tRNAs and rRNAs (Fig. S4C, Methods). 

Hence, these findings suggest that detecting antiparallel diagonals in nucleotide dependency 

maps could be instrumental in inferring RNA structures. 

To evaluate the potential of dependency maps for capturing RNA structures more broadly, we 

used RiNALMo, a language model trained on 36 million non-coding RNA sequences from a 

wide variety of species 36. As simple contact prediction scores, we retained the largest of the 

two dependency map entries for each pair of nucleotides. Despite these scores not being 

informed by prior structural data, they were strongly predictive of secondary structure contacts, 

with areas under the ROC curve typically exceeding 0.9 for most RNA families (using the 

Archive ll database 37, Fig. 4A). 

Originally, the authors of RiNALMo trained this language model as an intermediate step to 

train a supervised model specialized for predicting RNA secondary structures. Secondary 

structures are simplified planar representations of the topology of a single possible 3D folding 

of an RNA sequence. While informative, secondary structures miss important contacts 

occurring in the 3D fold. We noticed that some of the apparent false positive predictions of our 

dependency-map approach corresponded to tertiary structure contacts which were absent 

from the predictions of the supervised RiNALMo model. For instance, in the case of the 
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Archaeoglobus fulgidus isoleucine tRNA, the dependency maps showed 6 base pairs with 

dependencies as strong as secondary-structure contact dependencies (dependency>6). 

These base pairs included 6 out of the 8 known contacts found in the tertiary structure that do 

not involve Watson-crick or wobble interactions, and therefore, are absent from the secondary 

structure. RiNALMo’s supervised model, whose task is to predict secondary structures, 

correctly captures the secondary structure contacts but not the remaining contacts found in 

the tertiary structure (Fig. 4B). This finding is interesting because the secondary structure of 

RNA, on its own, usually does not provide enough information to determine its 3D structure. 

Additional tertiary interactions offer useful spatial constraints that help in inferring the fold.  

To systematically evaluate the added value of dependency maps to capture tertiary structure 

contacts we analyzed the database CompaRNA 38, which is based on available RNA 

structures from PDB. We found that 50% of the pairs with a dependency score larger than 

13.5 and not predicted to be in secondary structure by Rinalmo’s supervised model were 

annotated as contacts (Fig 4C). CompaRNA annotates whether a nucleotide pair belongs to 

canonical or non-canonical base-pairing, with canonical base-pairing being cis Watson-Crick 

or wobble (G-U), which are the only contacts present in secondary structures. Across the 

entire database, non-canonical base pairs were well captured by the dependency maps (Fig. 

4D, AUC 0.8). In contrast, this information was largely lost by the supervised model RINALMo 

trained on top of the language model (Fig 4D, AUC = 0.64, P < 10-4, permutation test). These 

results indicate that dependency maps can become a helpful tool for RNA structure inference 

by providing candidate contacts not captured by secondary structure contact predictors.  
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Fig 4. Dependency maps reveal known and novel RNA structures and highlight tertiary contacts 

A) Area under the receiver operating characteristic curve (AUROC) for the classification of RNA 

structure contact pairs from the ArchiveII dataset spanning 9 different RNA families. B) Archaeoglobus 

fulgidus tRNA(Ile2) (PDB structure 3AMU) dependency map (left), ground-truth contacts (center), 

contacts predicted by the fine-tuned RiNALMo (right). C) Ratio of correctly retrieved contacts (Precision) 

not predicted by the supervised RiNALMo (predicted probability<0.5) for each dependency value 

threshold. D) ROC curve for the classification of non-canonical structure contacts across the 

CompaRNA dataset showing that dependency maps capture non-Watson-Crick and tertiary structure 

contacts which are lost on the supervised RiNALMo. E) Left. Bacillus subtilis RnaseP secondary 
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structure highlighting pseudoknot contacts. Right. Corresponding dependency map showing anti-

parallel dependencies belonging to RNA structure stems and the annotated pseudoknot contacts. The 

structure was taken from the RFAM database 39 with identification number RF00011. F) Tryptophan 

operon leader dependency map together with annotation and representation of the secondary structure 

stems belonging to sequence domains 2, 3 and 4. G) Left. Dependency map computed with RiNALMo 

of a region including 200 bp upstream of the gene FkpB. Right. DMS-MaPseq derived secondary 

structure together with reactivities per nucleotide. The DMS-MaPseq data are consistent with the 

dependency map. The main structural features are highlighted by boxes. Each stem-loop is identified 

starting with “H”, and the pseudoknot with “PK”. This structure was undescribed so far.  

 

 

These findings prompted us to investigate further the potential of dependency maps in 

addressing the major challenges of secondary structure prediction. Among these, the 

prediction of pseudoknots still constitutes a largely unsolved problem in RNA computational 

biology. Pseudoknots are important non-secondary structure elements forming when base-

pairs are not nested, such as when bases in a loop pair with a single-stranded region 

elsewhere on the RNA. We observed high dependencies between bases of documented 

contacts implied by pseudoknots. One striking example is shown in the 396 nt-long RNaseP 

RNA (Fig 4E, and Fig S4D for another example in a riboswitch), in which not only the stems 

but also the pseudoknot are reflected with strong antiparallel diagonals. These contacts were 

supported by co-varying bases in a sequence alignment, indicating that the structure has been 

conserved since a common ancestor sequence in present-time species.  

An RNA’s secondary structure represents the topology of a single conformation. However, an 

RNA sequence can adopt alternative RNA folds to exert its functions. We found that 

dependency maps can capture alternative structures. For instance, the dependency maps of 

the tryptophan leader sequence in the bacterium E. coli (Fig. 4F), a structured region for which 

tryptophan abundance regulates the switch between terminator and antiterminator 

conformations 40, captures the two alternative folds, with the domain 3 being involved in anti-

parallel diagonals with both domain 2 and domain 4 40.  

To assess the capacity of dependency maps to derive novel predictions, we performed in-cell 

chemical probing of E. coli with dimethyl sulfate followed by high-throughput mutational 

profiling analysis (DMS-MaPseq), a transcriptome-wide assay probing adenines and cytosines 

not engaged in Watson–Crick base-pairing 41. E. coli is well-suited to perform such studies 

due to the functional importance and prevalence of structured RNAs in bacteria and because 

sufficient sequencing depth can be obtained to have sensitive transcriptome-wide probing. We 

computed dependency maps for all non-coding regions upstream of the start codon spanning 

500 nucleotides, as they are known to harbor different structures with roles in translation and 

transcription regulation 42. We selected dependency maps indicating the presence of at least 

2 stem loops and not belonging to an annotated structure, revealing 4 previously unreported 

secondary structures corroborated by experimental data from DMS-MaPseq and validated by 

covariation analysis (Fig. 4G and Fig. S4G). Notably, as covariation analysis typically requires 

a high-quality sequence alignment and, optionally, a predicted RNA structure, the ability of 

nucleotide dependencies to capture – in an alignment-free and unsupervised fashion – 

functionally-relevant RNA structural contacts, underscores their predictive power.  
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Altogether, these results show that dependency-map analysis can overcome the typical 

challenges associated with RNA structure prediction, capturing both secondary and tertiary 

structure contacts, pseudoknots, and alternative structures of functionally-relevant RNAs.      

 

DNA LMs capture forward and inverted duplications without 

memorization 

 

Analogous to antiparallel diagonals, we also frequently observed parallel diagonals in the 

dependency maps, as seen in the promoter of YNR064C in S. cerevisiae (Fig 5A). In this 

example, the sequence is a tandem repeat of two adjacent identical sequences of length 16. 

The parallel diagonal reflects that in the context of the tandem repeat, it is the identity of the 

n-th nucleotide that is predictive of the n-th nucleotide in the other repeat. This parallel diagonal 

pattern within the tandem repeat contrasts with the previously mentioned block pattern within 

regulatory sequence motifs (see TATA box, Fig. 5A) for which all nucleotides depend on each 

other. 

To study general properties of parallel diagonals, we first systematically scored dependencies 

for exhibiting a parallel diagonal pattern across the S. cerevisiae genome (Methods). The 

parallel diagonals with the strongest average dependencies were enriched for duplicated 

sequences (Fig. S5A). These observations suggested that the DNA language model did not 

memorize the sequence of the individual repeated elements but modeled the duplication itself. 

To test this hypothesis, we generated artificial sequences that include repeats of different 

lengths and spacing. As shown in Fig. 5B for two repeat lengths of 100 nucleotides spaced as 

far as 800 nucleotides from each other, the DNA LM reconstructed the randomly generated 

repeated sequences correctly with high confidence and showed the one-to-one nucleotide 

dependencies as parallel diagonals. Since the randomly generated sequences were not part 

of the natural training sequences, this observation shows that the DNA LM has learned the 

duplication operation. The capacity for identifying duplications strengthened with repeated 

element length, whereby the average dependencies within parallel diagonals longer than 7 

nucleotides was significantly higher than background dependencies (Fig 5C).  

Similarly, the DNA LM captured duplicated sequences in the reverse complement orientation 

(Fig 5C, using antiparallel dependencies). Since, as shown above, antiparallel diagonals 

reflect stems in RNA structures, we asked whether the DNA LM captured RNA stems as 

specific cases of reverse complement duplications. We tested this hypothesis by focusing on 

all 70 unique tRNA sequences of S. cerevisiae. For each tRNA, we generated 100 random 

sequences of matched length and nucleotide composition in which we inserted at non-

overlapping locations an arbitrary sequence and its reverse complement (Methods). As for the 

same-strand duplications, the DNA LM captured the reverse-complement relationships with 

dependencies increasing with repeated element length (Fig 5D). However, the S. cerevisiae 

tRNA arms contain stems with short stretches of base-pairing spanning between 2 and 7 

nucleotides. For these short lengths, the average dependencies on simulated reverse-

complement sequences do not exceed twice the background dependencies and are 

substantially weaker than the average dependencies observed for the endogenous tRNA 

sequences (Fig 5D). This shows that the DNA LM does not rely only on reverse 
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complementarity alone to link bases in contact and must leverage the broader context of the 

tRNA sequence. This property is important for functional contact predictions because 

randomly occurring short reverse complement sequences are pervasive (Fig 5D) and could 

lead to an overwhelming number of false positives. 

 

 

 

Fig. 5. DNA LMs capture forward and inverted duplications without memorization. 

A) Dependency map from the SpeciesLM Fungi in the promoter of YNR064C which contains a TATA 

box motif and duplicated sequences highlighted as red boxes on top of the reconstruction. While the 

TATA box appears as a block-like dependency pattern, the repeat shows a parallel dependency linking 

each duplicated nucleotide. B) Dependency map and nucleotide reconstruction for a 1kb random 

sequence containing an inserted artificially generated random duplicated sequence of 100b. Despite 

the repeated sequences being spaced 800 bp apart, the DNA LM highlights the parallel dependency 

linking each nucleotide. C)  Average dependency between artificially inserted repeat elements against 

their length for forward and inverted duplicates together (error bars: 95% confidence interval computed 

across 100 samples). D) Top. Average dependency against inverted repeat length for tRNA length 

sequences (Black colored dots). The red colored dots indicate the average dependency within anti-
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parallel dependencies in tRNA stems. Error bars indicate 95% confidence intervals. Bottom. Average 

number of inverted repeats expected to get by chance for each repeat length. 

 

 

Dependency strength depends on genomic distance 

 

We next investigated global properties on the distribution of dependencies, independently of 

specific patterns. To this end, we focused on S. cerevisiae as a model system. Nucleotide 

dependencies followed a power-law relationship with respect to distance to the query 

nucleotide, decaying by about 78% per 10-fold distance increase (Fig. 6A). We did not find 

substantial variations in the decay rate across various types of genomic regions (Fig. 6B). 

However, dependency maps in mitochondrial DNA showed a higher scaling constant than 

dependency maps from nuclear DNA regions, reflecting that dependencies were in general 

1.64x stronger in the mitochondrial than in the nuclear genome (Fig 6B). Browsing 

dependency maps of mitochondria revealed regions of very rich and intricate dependencies 

whose biological interpretation needs further investigations (Fig. 6C for a representative 

example). Investigating deviations to the general power-law trend revealed higher 

dependencies at 3-nucleotide spacing, perhaps as a consequence of the high content of 

coding sequences in yeast. Nucleosome positioning also appeared to influence dependency 

distributions, with stronger dependencies than expected by the power law at distances 

corresponding to nucleosome position periodicity on both investigated yeast species S. 

cerevisiae (164 bp) and S. pombe (152 bp, fig 6D) 43. Altogether, these analyses showcase 

that nucleotide dependency maps offer a new avenue to study general constraints on genomic 

sequences. 
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Fig 6. Dependencies relate to distance in a species and region-specific way and reveal 

periodicities intrinsic to the genome. A) Nucleotide dependencies computed from the SpeciesLM 

Fungi against distance to the query nucleotide taken from dependency maps across the yeast genome. 

Linear regression fit (black line) marks the power-law relationship between dependency and distance. 

B) Power-law decay rate in percentage decrease in dependency per 10-fold distance increase (left) 

and scaling constant (right) for different genomic regions (see Methods for exact category definitions). 

C) Example of a dependency map for the mitochondrial region 1kb 5’ of gene Q0017. D) Median of the 

residuals of the fitted power law against distance to the query nucleotide for yeasts S. pombe and S. 

cerevisae. The colors highlight the difference in dependency between targets distanced from the query 

by multiples of 3 nucleotides. The dashed blue lines show the nucleosome periodicity values reported 

for S. cerevisiae (164bp) and S. pombe (152bp) 43 and coincide with the highest deviations from the 

fitted power law, indicating that dependencies reveal and are constrained by nucleosome periodicity.  

Dependency maps uncover shortcomings in DNA LM model 

designs and training data selection 

 

Current DNA LMs differ both in terms of model architecture and in terms of the sequence data 

they were trained on. As of writing, there is no consensus about the advantages and 

disadvantages of these different approaches. Such comparisons are difficult to perform since 

DNA LMs are extremely large and complex models, often employed as intermediate black 
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boxes for training further models on top. We set out to use nucleotide dependencies, which 

can be computed for any DNA LM, as a general tool for visualizing and getting insights into 

existing DNA LMs.   

Human tRNAs are suitable loci for performing such comparative diagnoses because several 

models have been trained on human genomes only and because tRNAs entail well-

established and highly conserved distal functional dependencies. We observed that some 

modeling choices introduce artifacts in the dependency maps. For example, models belonging 

to the Nucleotide Transformer family 9 do not reconstruct at the single base level but instead 

predict non-overlapping spans of 6 nucleotides. This produces artificial dependency blocks 

along the diagonal, which do not represent motif instances but arise because nucleotides of 

the same span are generally more dependent (Fig 7A). Nevertheless, these models are 

capable of learning dependencies at the single base-level, such as evident for some tRNA 

stem contacts in the human tRNA-Arg-TCT-4-1 (Fig. 7A). 

Equally, some models do not consider bidirectional context when making their predictions, but 

instead are designed to predict the next nucleotide given only its 5’ context. Evo is an example 

of such a so-called autoregressive model 8. This creates an artifact at the beginning of genomic 

elements such as the tRNA, which likely arises because the model cannot deduce the element 

until it has seen sufficiently many tokens inside of it (Fig 7A). At the cost of doubling the runtime, 

however, this problem can be mitigated by running the model both on the forward and reverse 

strand and taking the maximum dependency within a pair of nucleotides. Nevertheless, more 

appropriate measures of nucleotide dependencies for autoregressive models need to be 

developed such that the full right and left sequence context is considered.  

Much starker differences are observed when comparing models trained on different types of 

sequences. Specifically, we found that models trained only on the human genome, regardless 

of architecture, parameter count, or whether within-species variation was included, did not 

learn the human tRNA structure to any meaningful degree (Fig 7B). By contrast, models 

trained on multiple species succeeded in at least learning aspects of human tRNA structure, 

regardless of architecture and whether the training data included any human genomes. To 

further investigate this point, we evaluated the performance of DNA LMs from the Nucleotide 

Transformer family, which all exhibit very similar architectures, on the human promoter 

saturation mutagenesis assay 24 (Fig 7C) and ClinVar 23 (SFig 7A). We again found that the 

multispecies versions of these models performed significantly better than the human-only ones, 

including models trained on thousands of different human genomes (Fig 7C). We conclude 

that infrequent genomic elements, even if they are highly conserved, generally require a 

multispecies approach to be learned.  
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Fig. 7. Dependency maps to compare DNA LMs and diagnose their shortcomings. A) The top left 

map shows the ground truth tRNA secondary structure contacts taken from GtRNAdb (tRNA-Arg-TCT-

4-1). Red indicates contact while blue indicates no contact. The remaining maps show the dependency 

maps for different DNA language models revealing modeling artifacts and performance differences.   

For instance, Nucleotide Transformer v2 9 captures only a few of the structural interactions. The 6-by-6 

blocks around the diagonal reveal an artifact of NTv2 non-overlapping 6-mer tokenization. Evo 8 shows 

artifacts when encountering the start of genomic elements (see upper left corner and lower-right corner). 

Computing the maximum across the upper and lower diagonal can mitigate the artifact. B) Comparing 

the AUROC achieved when dependency maps, as computed using different models, are used to predict 

secondary structure contacts of human tRNAs without fine-tuning. Models differ in terms of architecture 

and training data. Multispecies models strongly outperform those trained only on the human genome, 

even if the multispecies models have never seen human (or even metazoan) DNA. C) Comparing the 

correlation of the variant influence score, calculated using different Nucleotide Transformer models, 

with the measured absolute log fold change variant effect (compare Fig 1C). Multispecies models 

perform significantly better than those trained only on human sequences, even for models of the 1000G 

type which were exclusively trained across 3,202 diverse human genomes. 
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Discussion 

In conclusion, we introduced nucleotide dependencies which quantify how nucleotide 

substitutions at one genomic position affect the likelihood of nucleotides at another position. 

This new metric, which can now be defined and computed thanks to the advent of DNA 

language models, appears as a general and effective approach to identifying functionally 

related nucleotides. Nucleotide dependency maps reveal functional elements across a wide 

range of biological processes including transcriptional, post-transcriptional regulatory 

elements, their interactions, and RNA folding. Therefore, this new metric has implications 

across multiple areas of computational and genome biology. 

In the context of DNA LMs trained on multiple species, dependency relates to sequence 

conservation, a major indicator of functional importance leveraging purifying selection among 

homologous sequences, i.e. descending from a common ancestor sequence. In practice, 

sequence alignment is first used to identify homologous sequences; conservation is then 

estimated from the aligned nucleotide frequencies adjusted for phylogenetic drift and 

mutational biases. This approach limits the definition of conservation to alignable sequences. 

In contrast, DNA language models can more flexibly borrow information across sequences 

with similar contexts, allowing them to capture recurrent patterns such as transcription factor 

binding site motifs and their functional arrangements that can have arisen independently on 

non-homologous sequences. So far, alternative metrics proposed to substitute alignment-

based conservation using DNA language models leverage reconstruction probability 5,6, based 

on the concept that unlikely sequences are more deleterious. We showed that the influence 

of a nucleotide’s identity on predicting others is a more effective indicator of deleteriousness 

and could outperform alignment-based conservation. However, we note that neither genetic 

drift nor mutational biases are controlled for in the dependency scores and may undermine 

their performance. Future research at the intersection of DNA language modeling and 

population genetics is needed to address these issues. 

We have shown that dependency maps provide a promising novel entry point to unravel the 

regulatory code. Regulatory elements, such as transcription factor binding sites, manifest as 

dense blocks in dependency maps. We show in yeast that applying a simple image processing 

technique on dependency maps identified these sites with an accuracy comparable to models 

that required experimental binding data to be trained. This finding is important for unraveling 

regulatory elements for which experimental binding data are scarce, notably for post-

transcriptional regulation and non-model species. Future work could address the limitations of 

the initial approach we proposed by allowing various sizes to the blocks or explicitly modeling 

the motifs underlying the blocks by exploiting the full base-level dependencies for each pair of 

positions. Beyond identification of regulatory elements, we have shown nucleotide 

dependencies highlight functional interactions between sequence elements in splicing and 

promoters. Further work could leverage nucleotide dependencies to derive functional 

relationships between regulatory elements to understand the sequence context in which they 

operate.  

Dependency maps reflect bases in contacts in RNA folds remarkably well, a significant finding 

given the limited ground truth data in RNA structural biology. Our entirely unsupervised 

approach notably overcomes limitations of secondary structure inference yielding information 

on both canonical and non-canonical contacts, pseudoknots, and alternative folding. We 

validated several novel RNA structural predictions in E. coli experimentally. Analyzing 
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nucleotide dependencies within RNA structure sequences is related to covariation analysis 

which identifies compensating substitutions between pairs of positions on an alignment as 

evidence for evolutionary conserved contacts. The dependency map approach alleviates the 

need for alignments, which are rarely unique and for which ambiguities, even by a single-

nucleotide shift, affect the covariation statistics. However, it relies on the DNA language model 

to have been trained on enough homologous sequences of the RNA of interest to have 

captured these evolutionary footprints. In this respect, future work could investigate the 

influence on the choice of species, sequences, and model design.     

Although DNA language models have hundreds of millions or billions of parameters their 

evaluations are often based on high-level aggregate statistics, such as area under the roc 

curve and R², assessing the performance on downstream tasks of further models that build on 

them. These evaluations conflate the contributions of DNA LMs as foundational models with 

those of the downstream supervised models and provide narrow, unidimensional 

assessments. Nucleotide dependencies offer a richer approach for visualizing the functional 

relationships uncovered by DNA LMs and enable benchmarking the DNA LMs themselves. 

We revealed critical limitations in current model architectures and single-species training 

practices, paving the way for more effective and generalizable DNA language models. 

Across scientific fields, visualization tools allow researchers to make new observations and 

novel hypotheses. A non-quantifiable contribution of dependency maps, but perhaps not the 

least, might be to allow visualizing selective constraints on sequence in a novel way.  

 

Methods 

SpeciesLM Training 

For SpeciesLM Metazoa, we obtained metazoan genomes comprising 494 different species 

from the Ensembl 110 database 44. For each annotated protein-coding gene, we extracted 

2,000 bases 5’ to the start codon and trained a species aware masked language model on 

this region. We followed the training and tokenization procedure outlined in Species-aware 

DNA LMs 4, but kept the batch size at 2304 at increased input sequence length, resulting in 

about twice as many tokens seen during training as SpeciesLM Fungi 5’. We used rotary 

positional encoding to inject positional information into the Transformer blocks.  

For SpeciesLM Fungi, we deviated from the above recipe by tokenizing each base of the 

sequences from Karollus et al. 4 separately (single nucleotide, 1-mer tokenization) and using 

learned absolute positional encodings. To stabilize training, we increased dropout in the MLP 

layers of the transformer to 0.2 and set it to 0.1 for attention dropout. 

Overall, we improved training efficiency by fusing biases of the linear layers, the MLP in the 

transformer and the optimizer using Nvidia Apex. We used FlashAttention2 45 to train all 

models. 
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Nucleotide Dependencies and variant influence score 

We define the dependency between a variant nucleotide  𝑘𝑎𝑙𝑡  at position 𝑖  and a target 

position 𝑗 as  

 

where 𝑘 is one of the 4 possible nucleotides A,C,G or T; 𝑛𝑖  and 𝑛𝑗  are the nucleotides at 

position 𝑖  and 𝑗  respectively; 𝑘𝑟𝑒𝑓  is the nucleotide in the reference, non-altered input 

sequence. The odds estimates are computed from the predictions of a DNA language model 

under consideration. For this computation, none of the nucleotides (including the target 

nucleotide) is masked.  

The variant influence score 𝑒𝑖,𝑘
 

𝑎𝑙𝑡
, for a sequence of 𝑁 nucleotides is defined by averaging 

the dependencies on a variant nucleotide at position 𝑖 across all positions  𝑗 = 1, . . . , 𝑁 such 

that 𝑗 ≠ 𝑖 . 

A nucleotide dependency  𝑒𝑖,𝑗
  between a query position 𝑖  and a target position 𝑗  on a 

sequence of 𝑁 nucleotides is given by: 

 

 

We compute dependencies for all 𝑖 , 𝑗  pairs such that 𝑖 ≠ 𝑗 , i.e. we do not consider self-

dependencies.  

In autoregressive models, a query variant cannot directly affect the prediction of a target 

position located 5‘ of the query. Thus, to get the lower triangular matrix of the dependency 

map, we run the model also on the reverse strand.  

In the SpeciesLM Metazoa, which predicts nucleotides as overlapping 6-mers, the procedure 

needs to be adapted to yield one prediction per target nucleotide. This is achieved by first 

computing for each of the six 6-mers that overlap the target nucleotide of interest which 

probability it implies for this target nucleotide, as previously described 4. We then average 

these six probabilities to receive one probability. 

For the Nucleotide Transformer models, which predict only non-overlapping 6-mers, we use a 

similar approach. Consider the case of predicting the probability of observing nucleotide 𝑛 at 

position 𝑖 of the sequence. In the tokenized sequence, this nucleotide has position 𝑝 in the kth 

6-mer where: 
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The model predicts a distribution over all 46 possible 6-mers at position 𝑘. We first discard all 

predictions corresponding to 6-mers which contain a nucleotide that differs from the reference 

sequence at any location other than 𝑝 - which leaves only four 6-mers. We renormalize so that 

the predicted probability of these remaining 6-mers sums to one. We then record the 

(renormalized) probability of the 6-mer which has the desired nucleotide 𝑛 at position 𝑝.  

Apart from extracting nucleotide level probabilities with the above-mentioned method, we have 

also experimented computing the probability for a nucleotide at position 𝑖 as the sum of all k-

mers containing that nucleotide at that position. Evaluation of nucleotide dependencies within 

tRNAs revealed a worse performance with this method.  

Variant impact benchmarks 

As our metric of variant impact, we used the variant influence score. This average is computed 

over the full receptive field of the model for the SpeciesLM. For Nucleotide Transformer 

models, we only average over the central 2 kb, so as to facilitate comparisons. Nevertheless, 

we provide the full sequence context this model has been trained for.  

As a point of comparison, we also computed a variant effect score based on the DNA-LM 

reconstruction at the query variant. Specifically, this score is the log-ratio between the 

predicted probability of the variant nucleotide and the predicted probability of the reference 

nucleotide 5,6. 

Lastly, we downloaded conservation scores (PhyloP and PhastCons) for Human and S. 

cerevisiae from UCSC 25–28,46. For human, these include the conservation scores based on the 

100-way, 447-way and 470-way alignment.  

Promoter saturation mutagenesis 

Promoter saturation mutagenesis data mapped to hg38 data was kindly provided by Vikram 

Agarwal. Following Avsec et al. 30, we excluded the FOXE1 promoter due to the low 

replicability of the measurements, leaving nine promoters and comprising 8,635 variants. 

Variants were then intersected with the human gene 5‘ regions (i.e. the regions 2 kb 5’ of 

annotated start codons). Then the variant influence score was calculated for each variant 

measured in the assay from the LM dependencies for these regions. The variant influence 

score was then correlated with the absolute value of the measured log2fold change in 

expression. This correlation was computed per promoter and then averaged over promoters. 

To determine confidence intervals, we performed 100 bootstrap samples per promoter and 

recomputed the correlation for each bootstrap sample. The confidence interval was defined 

by adding/subtracting two standard deviations of the average correlation.  

eQTL variants 

For human eQTL, we downloaded SUSIE 18 fine-mapped GTEx eQTL data from EBI. We then 

intersected this data with the human gene 5‘ regions. This procedure, by design, enriches for 

promoter eQTL. Similar to Avsec et al. 30, we considered every eQTL variant with a posterior 

inclusion probability higher than 0.9 as putative causal and we considered any eQTL variant 

with posterior inclusion probability lower than 0.01 as putative non-causal. We only considered 

putative noncausal eQTL intersecting regions which also include at least one causal eQTL. 
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This procedure gave 2,958 eQTL variants, of which 1631 were classified as putative causal. 

Then the influence score for each variant was computed from the nucleotide dependencies on 

these regions. We ranked variants according to the influence score. Confidence intervals were 

computed using bootstrapping as before.  

For yeast eQTL, we downloaded the results of an MPRA study assessing candidate cis-eQTL 

variants 20. Following this study, we classify any eQTL variant with FDR < 0.05 in the MPRA 

assay as causal and we classify any eQTL with (unadjusted) P-value > 0.2 as non-causal. 

This yielded 3,056 eQTL variants of which 379 were classified as causal. These eQTL variants 

were then intersected with yeast gene 5‘ regions and influence scores were computed from 

the SpeciesLM Fungi dependency maps. Confidence intervals were computed using 

bootstrapping as before. 

Clinvar 

We used ClinVar version 2023_07_17 23, previously downloaded from 

https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/ . We considered non-coding any variant 

in the categories ‘intron_variant’, ‘5_prime_UTR_variant’, ‘splice_acceptor_variant’, 

‘splice_donor_variant’, ‘3_prime_UTR_variant’, ‘non_coding_transcript_variant’, 

‘genic_upstream_transcript_variant’ and ‘genic_downstream_transcript_variant’. Following 

Cheng et al. 47, we considered as pathogenic any variant classified as pathogenic or likely 

pathogenic and as benign any variant classified as benign or likely benign. We excluded 

variants with fewer than one review stars. This resulted in 385,572 variants, of which 22,313 

were classified as pathogenic. 

As most ClinVar variants fall outside the 5‘ regions of genes, we chose not to intersect with 

these regions. Instead, we computed the dependency map centered on the variant of interest. 

Confidence intervals were computed using bootstrapping as before. 

Alternative dependency metrics 

All benchmarks on alternative dependency metrics were performed on the SpeciesLM Fungi.  

Gradient-based 

We computed the gradient of the prediction for each nucleotide at position 𝑖 with respect to 

each nucleotide at position 𝑗 yielding a 4x4 matrix. To achieve this, we first replaced the 

tokenization layer with a one-hot encoding and a linear layer, which maps the one-hot encoded 

nucleotides to their respective token embeddings. We then propagated gradients from each 

target nucleotide prediction to each one-hot encoded input nucleotide. As a metric of 

nucleotide dependency we then used the maximum absolute value across the 4x4 matrix of 

each 𝑖, 𝑗 position. 

Mask-based 

Masked-based dependencies are computed as: 
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where [MASK] stands for the mask token, 𝑘 belongs to one of the 4 possible nucleotides A,C,G 

or T; 𝑛𝑖 and 𝑛𝑗 are the nucleotides at position 𝑖 and 𝑗 respectively; 𝑘𝑟𝑒𝑓 is the nucleotide in the 

reference, non-altered input sequence.  

S. cerevisiae tRNA structure benchmark 

S. cerevisiae genome assembly version R64-1-1 and annotation version R64-1-1.53 were 

downloaded from EnsemblFungi 44. The S. cerevisiae tRNA secondary structures were 

downloaded from GtRNAdb 48. We considered only the tRNAs overlapping the 1-kb 5’ regions 

to any yeast start codon, yielding 172 tRNA sequences. Subsequently, dependency maps on 

tRNAs were processed by taking the maximum between 𝑒𝑖,𝑗
  and 𝑒𝑗,𝑖

  which symmetrizes the 

dependency map and achieves one unique score per pair of positions in the tRNA sequence. 

We then used this score to predict whether a pair belonged to a secondary structure contact. 

Assessment of donor-acceptor dependencies in S. cerevisiae 

We extracted intron sequences by selecting the regions within annotated gene intervals that 

lie between exon annotations. This resulted in 380 sequences. We then retained only introns 

bounded by canonical splice site dinucleotides GT and AG, yielding 272 sequences. We then 

computed the average dependency between every donor and acceptor nucleotides within the 

intron as a measure of dependency between the donor and acceptor sites. We designed two 

negative sets for a given intron. For the negative set “Decoy acceptor” we compute the 

average dependency between donor nucleotides and each AG dinucleotide within the intron 

that does not include the acceptor site. For the negative set “Matched distance” we sampled 

four random dependencies between nucleotides that were as distant from each other as the 

donor was from the acceptor, without including the donor or acceptor themselves.  

TF motif mapping 

We downloaded FIMO PWM scan results from http://www.yeastss.org 49 and Chip-Exo 

transcription factor binding peaks from http://www.yeastepigenome.org 33. We then extracted 

all Chip-Exo peaks for the available PWMs. We excluded PWM matches for which no Chip-

Exo data for the corresponding factor was available. This procedure yielded data for 68 TFs. 

We annotated every nucleotide within 1 kb 5’ of a start codon as part of a binding TF motif if it 

is (1) part of a PWM match with P-value < 0.01 and (2) this PWM match is within 10 bases of 

a Chip-Exo peak of the corresponding transcription factor. We defined the positive class in 

this way to ensure that we capture nucleotides relevant for determining binding (i.e. motif) 

rather than all nucleotides close to a Chip-Exo peak regardless of their function in binding. 

This gave 92,117 binding nucleotides out of 6,538,427 overall. We designated a nucleotide as 

repeat if it was masked by RepeatMasker. We extracted this information from the soft-masked 

GTF provided by Ensembl 44.  
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Dependencies in rare-variant-associated aberrant splicing  

We computed dependency maps for all rare single nucleotide variants associated with splicing 

outliers in GTEx 29 as described previously 34. Since the input length of SpliceBert 14 is limited 

to 1,024 bp, the complete set of variant outlier pairs (N = 18,371) was filtered such that the 

variant and associated outlier junction were located within a 800 bp window (N = 1,811) and 

100 bp of sequence was added from the maximum and minimum positions of the variant and 

outlier junction splice sites. For each variant location we extracted the average value of the 

dependency map at the intersection of variant and outlier donor dinucleotide or variant and 

outlier acceptor dinucleotide. This variant effect score was compared against a background 

score. This background score was computed as the mean over all dependencies that were as 

distant from each other as the variant was from the outlier donor (matched distance) or the 

outlier acceptor. The scores were filtered for a minimum distance of 5 bp between the variant 

and splicing dinucleotide to filter values near the diagonal corresponding to self interactions. 

Variant categories were annotated with the Ensembl Variant Effect Predictor (VEP) 50. For 

each variant, the most severe VEP annotation was considered. For the ‘Exon’ category, the 

following VEP categories were grouped together: synonymous_variant, missense_variant, 

stop_lost, stop_gained.     

Genome-wide search for parallel and anti-parallel dependencies 

We scanned dependency maps for parallel and anti-parallel dependencies using 5x5 

convolutional filters. We constructed the anti-parallel filter by populating the anti-diagonal of a 

zero-filled 5x5 matrix with ones, and for the parallel filter, by populating the diagonal with ones. 

We then centered each filter by subtracting the mean value from each position to ensure that 

a convolution on a uniform 5x5 region yields a result of zero. We applied these filters to 

dependency maps from SpeciesLM Fungi (both filters) and RiNALMo (anti-parallel filter only) 
4,36.  

 

Search for parallel and anti-parallel dependencies in Fungi using the 

SpeciesLM Fungi 

For the SpeciesLM Fungi we have computed dependency maps spanning 1 kb 5’ of each 

annotated start codon on a set of representative fungi species including Agaricus bisporus, 

Candida albicans, Debaryomyces hansenii, Kluyveromyces lactis, Neurospora crassa, 

Saccharomyces cerevisiae, Schizosaccharomyces pombe and Yarrowia lipolytica. The 

genomes and annotation files for each species were downloaded from EnsemblFungi release 

53 with accession numbers: GCA_000300555.1,  GCA000182965v3, GCA_000006445.2, 

GCA000002515.1, GCA_000182925.2, GCA_003046715.1, GCA_000002945.2 and 

GCA_000002525.1 respectively.  

All regions annotated as 'five_prime_utr', 'three_prime_utr', 'intron', 'CDS', 

'pseudogene_with_CDS' and other regions (ex. non-annotated introns) inside an annotated 

gene interval were categorized as Protein coding gene.  All regions annotated as ‘tRNA’, 

'tRNA_pseudogene', 'rRNA', 'snRNA', 'ribozyme’, 'SRP_RNA', 'snoRNA', 'RNase_P_RNA', 

'RNase_MRP_RNA' were categorized as Structured RNA. Finally, all regions annotated as 
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‘'transposable_element', 'pseudogene' as well as regions without any annotation were 

considered as intergenic.  

Search for anti-parallel dependencies and RNA structure in E. coli using 

RiNALMo 

For RiNALMo we computed dependency maps for regions 100, 200 and 500 bp before each 

annotated start codon in Escherichia coli str. K-12 substr. MG1655 whose genome and 

annotation were downloaded from GenBank 51 with accession number U00096.3.  

As candidates for novel RNA structure we first filtered positions whose convolution value is 

greater or equal to 25 to select only high value anti-parallel dependencies, resulting in a filtered 

convolved dependency map. Next, we counted the unique number of anti-diagonals potentially 

belonging to one stem by extracting the unique 𝑖 + 𝑗 non-zero positions supported by at least 

three non-zero values.  

As candidates for novel structure we selected maps suggesting the existence of at least two 

potential stems.  

RNA secondary structure benchmarking 

We downloaded the database of secondary structures Archive II 37, which includes 3,865 

curated RNA structures across nine families (5S rRNA, SRP RNA, tRNA, tmRNA, RNase P 

RNA, Group I Intron, 16S rRNA, telomerase RNA, 23S rRNA). For each structure, we 

generated the dependency map with the pretrained RiNALMo and retained the largest of the 

two dependency map entries for each pair of nucleotides (maximum of 𝑖, 𝑗 and 𝑗, 𝑖 ). The area 

under the ROC curve was computed for each structure against the Archive II secondary 

structure annotations.  

Benchmarking of canonical and non-canonical RNA contacts  

We downloaded the database of RNA structures CompaRNA 38, which is a compilation of RNA 

contacts based on 201 available RNA structures in the Protein Data Bank by RNAView 52. 

Contacts are classified either as "standard" or "extended". While the first includes only 

canonical AU, GC and wobble GU pairs in the cis Watson-Crick/Watson-Crick conformation 
53, the latter calls all interacting bases regardless of their conformation, including non-

canonical or tertiary contacts. Out of the 201 structures, 196 had a length below the maximum 

input length of RiNALMo (1,022 nt). For each structure, we generated the dependency map 

with the pretrained RiNALMo, and retained the largest of the two dependency map entries for 

each pair of nucleotides. Similarly, the same structures were also evaluated with the fine-tuned 

RiNALMo model version rinalmo_giga_ss_bprna_ft resulting in a predicted value per pair of 

nucleotides. To evaluate their performance on predicting non-canonical contacts, we excluded 

all canonical contacts and computed the area under the ROC curve of all remaining positions 

of all structures. Significance between ROC AUCs was determined by bootstrapping over 

10,000 permutations. 
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DMS-MaPseq analysis of E. coli cells 

Escherichia coli TOP10 cells were grown in LB broth at 37°C with shaking until OD600 = 0.5, 

after which dimethyl sulfate (DMS, Sigma Aldrich, cat. D186309), prediluted 1:4 in ethanol, 

was added to a final concentration of 200 mM. Bacteria were incubated for 2 minutes at 37°C, 

and reaction was quenched by addition of 0.5 M final DTT. Bacteria were pelleted by 

centrifugation at 17,000g for 1 minute at 4°C, after which they were resuspended in Cell pellets 

were resuspended in 12.5 μl Resuspension Buffer [20 mM Tris-HCl pH 8.0; 80 mM NaCl; 10 

mM EDTA pH 8.0], supplemented with 100 μg/mL final Lysozyme (cat. L6876, Merck) and 20 

U SUPERase•In™ RNase Inhibitor (cat. A2696, ThermoFisher Scientific), by vortexing. After 

1 minute, 12.5 μl Lysis Buffer [0.5% Tween-20; 0.4% Sodium deoxycholate; 2 M NaCl; 10 mM 

EDTA] were added, and samples were incubated at room temperature for 2 additional minutes. 

1 mL TRIzol™ Reagent (cat. 15596018, ThermoFisher Scientific) was then added, and RNA 

extracted as per manufacturer instructions. rRNA depletion was performed on 1 μg total RNA 

using the RiboCop for Bacteria kit (cat. 126, Lexogen). DMS-MaPseq library preparation was 

performed as previously described 41. After sequencing, reads were aligned to the E. coli str. 

K-12 substr. MG1655 genome (GenBank: U00096.3), using the rf-map module of the RNA 

Framework 54 and Bowtie2 55. Count of DMS-induced mutations and coverage and reactivity 

normalization were performed using the rf-count-genome and rf-norm modules of the RNA 

Framework. Experimentally-informed structure modeling was performed using the rf-fold 

module of the RNA Framework and ViennaRNA v2.5.1 56. 

RNA structure covariation analysis 

Covariation analysis was performed using the cm-builder pipeline  

(https://github.com/dincarnato/labtools) and a non-redundant database of 7,598 

representative archaeal and bacterial genomes (and associated plasmids, when present) from 

RefSeq 57. 

Evaluation of artificial forward and inverted duplications 

We generated random sequences of 100 nucleotides by sampling from regions 1 kb 5’ of the 

start codon in S. cerevisiae to ensure a representative GC content and shuffling the sequences 

to destroy potential functional elements. Additionally, we created 100 unique duplicated 

sequences, ranging from 2 to 20 nucleotides in length, by randomly sampling each nucleotide 

with equal probability. Each duplicated sequence was then inserted into a uniquely generated 

100-nucleotide sequence at a random distance from each other, ensuring no overlaps 

occurred. We used the SpeciesLM Fungi to generate dependency maps for each sequence. 

We then computed average dependencies by taking the mean of the dependencies between 

nucleotides and their duplicates; this involved averaging across a parallel diagonal for forward 

duplications and an anti-parallel diagonal for inverted duplications. 

For tRNA-sized sequences, we followed a similar method but generated each sequence by 

shuffling each unique tRNA sequence in S. cerevisiae once. We computed the average 

number of inverted duplications by averaging the occurrences of duplicated sequences of 

specific lengths across 10,000 shuffled versions of each tRNA sequence. 
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Genome-wide analysis of dependencies distribution 

Using the SpeciesLM Fungi we computed dependency maps across the genomes of S. 

cerevisiae and S. pombe. Since the SpeciesLM Fungi was pre-trained on sequences of 1,003 

nucleotides including the start codon at the end, we discarded dependencies involving the 3 

last nucleotides of each sequence yielding dependencies for 1,000 nucleotides. Genome-wide 

dependency maps of 1-kb span were obtained with a tiling approach. Along each chromosome, 

we computed 1-kb square dependency maps every 500 bp and averaged overlapping entries.  

To ensure the same number of targets are computed before and after a specific query 

nucleotide, we considered dependencies involving nucleotides at most 500 positions away 

from each other. For each map we sampled 1,000 dependencies. Due to limitations in 

numerical precision we considered only dependencies larger than 0.001. 

To compute the power law coefficients, a linear regression was fitted to predict the logarithm 

of the dependency from the logarithm of its corresponding distance in nucleotides. The scaling 

coefficient was then obtained by exponentiating the fitted intercept of the linear regression, 

and the decay rate was obtained directly from the fitted slope. The scaling coefficient and 

decay rate were computed for different regions in the genome: Nuclear - involving all 

dependencies belonging to nuclear DNA; Mitochondria - involving all dependencies within 

mitochondrial DNA; Structured RNA - belonging to the annotations ‘tRNA’, 

'tRNA_pseudogene', 'rRNA', 'snRNA', 'ribozyme’, 'SRP_RNA', 'snoRNA', 'RNase_P_RNA' or 

'RNase_MRP_RNA'; Protein-coding gene - belonging to the annotations 'five_prime_utr', 

'three_prime_utr', 'CDS' or 'pseudogene_with_CDS'; Intron - belonging to the regions inside 

an annotated gene interval but not to exons; and Intergenic - belonging to all regions annotated 

as ‘'transposable_element', 'pseudogene' as well as regions without any annotation.  

Model Comparison 

All other models used were downloaded from Huggingface or from their publicly available 

repositories. Human tRNA sequences were downloaded from GtRNAdb 48. Exact duplicate 

sequences were removed, leaving 266 tRNAs.  

 

Data and code availability 

Data and SpeciesLM model weights are available at 

https://zenodo.org/doi/10.5281/zenodo.12982536. Code is available at 

https://github.com/gagneurlab/dependencies_DNALM. Raw DMS-MaPseq data has been 

deposited to the Gene Expression Omnibus database (GEO), under accession GSE271937. 
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