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Abstract 32 

The dominant organisms in modern oxic ecosystems rely on respiratory quinones with high redox 33 

potential (HPQs) for electron transport in aerobic respiration and photosynthesis. The diversification of 34 

quinones, from low redox potential in anaerobes to HPQs in aerobes, is assumed to have followed 35 

Earth’s surface oxygenation ~2.3 billion years ago. However, the evolutionary origins of HPQs remain 36 

unresolved. Here, we characterize the structure and biosynthetic pathway of a novel ancestral HPQ, 37 

methyl-plastoquinone, that is unique to bacteria of the phylum Nitrospirota. Methyl-plastoquinone is 38 

structurally related to the two previously known HPQs, plastoquinone from 39 

Cyanobacteriota/chloroplasts and ubiquinone from Pseudomonadota/mitochondria, respectively. We 40 

demonstrate a common origin of the three HPQ biosynthetic pathways that predates the emergence of 41 

Nitrospirota, Cyanobacteriota, and Pseudomonadota. An ancestral HPQ biosynthetic pathway evolved 42 

≥ 3.4 billion years ago in an extinct lineage and was laterally transferred to these three phyla ~2.5-3.2 43 

billion years ago. We show that Cyanobacteriota and Pseudomonadota were ancestrally aerobic and 44 

thus propose that aerobic metabolism using HPQs significantly predates Earth’s surface oxygenation. 45 

Two of the three HPQ pathways were later obtained by eukaryotes through endosymbiosis forming 46 

chloroplasts and mitochondria, enabling their rise to dominance in modern oxic ecosystems.  47 

 48 

Significance statement 49 

Oxygenic photosynthesis and aerobic respiration by bacteria and eukaryotes rely on respiratory 50 

quinones with high redox potential that facilitate membrane-bound electron transport. These quinones 51 

are integral to aerobic metabolism and therefore the evolution of aerobic metabolism and quinone 52 

biosynthesis must be intertwined. Only two types of high redox potential quinones have been described 53 

in bacteria and eukaryotes. Here, we describe the structure and biosynthetic pathway of a third type, 54 

methyl-plastoquinone, that is exclusive to bacteria of the phylum Nitrospirota. We then use 55 

phylogenetic analysis to show that the three high redox potential quinones have a single evolutionary 56 

origin and are much older than previously considered, predating the Great Oxygenation Event, when 57 

significant amounts of O2 first accumulated in the atmosphere.  58 
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Introduction 59 

The oxygenation of Earth’s surface environments following the emergence of oxygenic 60 

photosynthesis in ancestors of Cyanobacteriota enabled the metabolic and genetic diversification of life 61 

(1–4). The use of oxygen as a terminal electron acceptor, i.e., aerobic respiration, enabled a higher 62 

energy yield compared to anaerobic metabolisms and was a prerequisite for the emergence of 63 

eukaryotes (5, 6). However, it remains poorly resolved how and when the electron transport chain (ETC) 64 

used for aerobic respiration evolved. While geochemical evidence indicates iron oxidation by 65 

acidophilic bacteria must have evolved by the time oxygen accumulated in the atmosphere during the 66 

great oxygenation event (GOE; ~2.4-2.3 Ga) (3, 7–9), there is now considerable evidence for an ancient 67 

origin of dioxygen-utilizing and detoxifying enzymes as early as 3.1 Ga (10–13). Though these enzymes 68 

may not have participated in aerobic respiration (11, 14, 15), their widespread occurrence in bacteria 69 

suggests the availability of oxygen in physiologically significant quantities, at least in some niches, 70 

before the GOE. Studying the evolution of ETC components, such as oxygen reductases that use 71 

electrons derived from the ETC (16–21), can help elucidate the origins of aerobic metabolisms. 72 

However, the interpretation of oxygen reductase evolution has remained contentious (16–20, 22), and 73 

alternative roles of ancestral oxygen reductases in oxygen detoxification and nitric oxide reduction 74 

rather than aerobic respiration have been proposed (17). Exploring the evolution of other ETC 75 

components, such as respiratory quinones, may yield new insights into the evolution of ETCs and 76 

aerobic respiration. 77 

Strict anaerobes use ETCs and quinones with low redox potential (LPQs), while aerobes and 78 

facultative aerobes generally use high-potential quinones (HPQs) (23–25). HPQs require all parts of the 79 

ETC to operate at high redox potential (25–27) and confer no known benefit over LPQs under anaerobic 80 

conditions. However, under aerobic conditions HPQs are advantageous due to their decreased electron 81 

leakage to oxygen, thus reducing oxidative stress and minimizing free energy losses (26, 28). The 82 

occurrence of HPQs may represent a marker for high-potential ETCs and their evolution may be tied to 83 

the history of oxygenic photosynthesis and aerobic respiration. Within bacteria, HPQs have been found 84 

only in two phyla, oxygenic Cyanobacteriota (here used sensu stricto, including only Cyanophyceae) 85 
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and Pseudomonadota (formerly Proteobacteria, now comprising the classes Alpha-, Beta-, 86 

Gammaproteobacteria, Acidithiobacillia, and Hydrogenophilia) (29). The Cyanobacteriota and 87 

Pseudomonadota produce two distinct types of HPQs, plastoquinone (PQ) and ubiquinone (UQ), 88 

respectively (23, 24), which became the quinones of plastids (PQ) and mitochondria (UQ) through 89 

endosymbiosis during the early evolution of eukaryotes (24, 30). Yet, despite the dominance of HPQ-90 

utilizing organisms in Earth’s oxic environments today (31–36), the co-evolution of HPQs and Earth 91 

surface oxygenation remains largely unresolved (37). 92 

Recent progress in metagenomic coverage of uncultivated bacteria and isolation of novel lineages 93 

may help elucidate HPQ evolution through the discovery of new quinone structures and biosynthetic 94 

pathways in unstudied lineages of aerobic bacteria. Here, we describe the discovery of a third, novel 95 

type of HPQ, methyl-plastoquinone (mPQ). mPQ occurs only in aerobic members of the phylum 96 

Nitrospirota (formerly Nitrospirae), a metabolically diverse group of bacteria that perform essential 97 

transformations in the biogeochemical cycles of iron, nitrogen, and manganese. We characterize the 98 

biosynthetic pathway of mPQ using bioinformatic, genetic, and biochemical techniques and use these 99 

data to infer the evolutionary history of HPQs. Our study sheds new light on the evolutionary history 100 

of ETCs by revealing a single origin of the three HPQ biosynthetic pathways prior to the radiation of 101 

crown-group Cyanobacteriota, Nitrospirota, and Pseudomonadota, which evidently preceded the GOE. 102 

Results & Discussion 103 

Novel respiratory quinones in Nitrospirota 104 

Despite their widespread distribution and the important roles of Nitrospirota in biogeochemical 105 

cycles of iron, manganese, and nitrogen (38–42), many aspects of their chemotaxonomy and 106 

bioenergetics remain understudied. Genome-based bioenergetic models implicate the presence of ETCs 107 

in aerobic and anaerobic Nitrospirota (42–46), yet their corresponding respiratory quinones have not 108 

been studied. During screening of Nitrospirota genomes for lipid biosynthetic pathways (47), we 109 

observed that the genomes of aerobic Nitrospirota did not contain any of the characterized quinone 110 

biosynthesis pathways (24, 37). In contrast, genomes of anaerobic sulfur-reducing Nitrospirota, i.e., 111 

Thermodesulfovibrio species and some Nitrospirota metagenome-assembled genomes from anoxic 112 
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environments, contained the futalosine pathway (MKmqn, composed of mqn genes) for biosynthesis of 113 

the LPQ menaquinone (MK; Supplementary Datafile S1).  114 

To evaluate the presence of respiratory quinones, we analyzed lipid extracts of one anaerobic and 115 

eight aerobic species of Nitrospirota, covering all formally described genera (Thermodesulfovibrio, 116 

Leptospirillum, Nitrospira, and Candidatus Manganitrophus), using high-performance liquid 117 

chromatography coupled to high-resolution tandem mass spectrometry. MKs were detected only in the 118 

anaerobic species, Thermodesulfovibrio islandicus (Fig. 1a), and we did not find any of the previously 119 

known respiratory quinone types in the aerobic Nitrospirota. Instead, all eight studied aerobic 120 

Nitrospirota contained a novel type of quinone, identified as methyl-plastoquinone (mPQ). The 121 

polyprenyl chain of mPQ varied in length and saturation depending on species (Fig. 1, Fig. S1, SI 122 

results). Mass spectrometric characterization of mPQ revealed fragmentation spectra analogous to PQ 123 

but with a dominant ion at m/z 165 instead of 151, indicative of a distinctive trimethyl-benzoquinone 124 

headgroup connected to the isoprenoid tail (Fig. 1, Fig. S1, Table S1). Stable isotope labeling 125 

experiments and nuclear magnetic resonance spectroscopy of mPQ confirmed the structural assignment 126 

of the headgroup (SI Results & Discussion; Fig. S2-4). Specifically, 1H-NMR spectra showed the 127 

absence of any proton linked to the C2 of the quinone moiety and 1H-NMR and 13C-NMR confirmed 128 

the presence of a third methyl group (Fig. S4; see SI Results & Discussion). mPQ is thus structurally 129 

related to both UQ (methylated at C2 of the benzoquinone) and PQ (methylated at C5 and C6).  130 

Characterization of the biosynthetic pathway of mPQ 131 

Based on the structure of mPQ, we hypothesized that its biosynthesis pathway might share 132 

characteristics with the UQ and PQ biosynthesis pathways. The PQ biosynthesis pathway of 133 

Cyanobaceriota has been partially resolved (48, 49) and contains several enzymes that are homologous 134 

to enzymes involved in the well-characterized bacterial UQ pathway (37, 50). In both pathways, the 135 

conversion of chorismate into 4-hydroxybenzoate (4-HBA) is mediated by a UbiC homolog and the 136 

subsequent prenylation, decarboxylation, and hydroxylation of 4-HBA involve the UbiA, UbiD/X, and 137 

UbiH homologs, respectively (Fig. 2a) (37). Specific to the UQ pathway, methylation at C2 is mediated 138 
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by UbiE (51). In the cyanobacteriotal PQ pathway, methylation at C5 and C6 has been proposed to be 139 

mediated by Sll0418 (PlqQ) (50, 52). 140 

Isotope labeling experiments further point to biochemical similarities between the HPQ 141 

biosynthesis pathways. Supplementation of cultures with ring-13C6-labeled substrates demonstrates that 142 

4-HBA is the ring precursor in Nitrospirota, similar to Cyanobacteriota and Pseudomonadota (Fig. S5, 143 

SI Discussion). Further, experiments with methyl-2H3 methionine indicate that all three methyl groups 144 

of mPQ (at C2, C5, and C6) are derived from methionine via SAM-dependent methyltransferases (Fig. 145 

S2). We used this information to find multiple, homologous candidate genes for the biosynthetic 146 

pathway of mPQ in genomes of Nitrospirota. We suggest a gene nomenclature for the mPQ pathway 147 

(mpq) analogous to that of the UQ pathway and extend this to the PQ pathway (plq; Fig. 2). We 148 

identified a four-gene cluster in Leptospirillum spp. (Fig. S6), encoding a ubiA family prenyltransferase 149 

(mpqA; LFE_2122), ubiC-like chorismate pyruvate lyase (mpqC; LFE_2123), a cobalamin-binding 150 

radical S-adenosyl methionine (SAM) methyltransferase (LFE_2124), and a ubiE-like 151 

methyltransferase (mpqE; LFE_2125). The genes are not co-localized in other Nitrospirota, but mpqA 152 

and mpqE homologs are found in all aerobic Nitrospirota, in addition to a ubiB-like kinase (mpqB). By 153 

contrast, homologs of mpqC, ubiD/X (mpqD/X) and plqQ (mpqQ) occur only in a subset of aerobic 154 

Nitrospirota (Table S2). No clear ubiH homologs were identified. Consequently, aerobic Nitrospirota 155 

contain a mosaic pathway for mPQ biosynthesis composed of well-conserved (mpqA, mpqB, mpqE) 156 

and alternative genes (mpqC, mpqD/X, mpqQ).  157 

Due to the lack of suitable genetic systems in Nitrospirota, we verified the mPQ candidate genes 158 

by assessing their functions in heterologous complementation assays using Escherichia coli mutants 159 

deficient in defined steps of UQ biosynthesis. When expressed in the E. coli ΔubiC mutant, the mpqC 160 

from L. ferrooxidans, Ca. N. nitrificans, and Ca. M. noduliformans restored UQ biosynthesis up to 161 

wild-type levels (Fig. 2b). Likewise, the mpqA homologs from L. ferrooxidans, N. moscoviensis, and 162 

Ca. M. noduliformans restored UQ biosynthesis in an E. coli ΔubiA mutant (Fig. 2, S7). Similarly, we 163 

observed recovery of UQ levels in E. coli ΔubiD and ΔubiX mutants upon expression of mpqD/X from 164 

Ca. M. noduliformans (mpqD/X do not occur in Nitrospira and Leptospirillum spp.; Fig. 2). Expression 165 
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of the plqQ homolog (mpqQ) from N. inopinata in an E. coli ΔubiIF mutant yielded PQ8 and mPQ8 166 

(Fig. S8b-g). The ΔubiIFE strain, in which the E. coli ubiE gene was additionally deleted, showed a 167 

strong increase in the amount of PQ8 and the disappearance of mPQ8 (Fig. 2e, S8b-g). Finally, 168 

expression of mpqE from L. ferrooxidans, N. moscoviensis, and Ca. M. noduliformans in the ΔubiIFE 169 

strain led to the accumulation of mPQ8 (Fig. 2e, S8c). 170 

Based on these heterologous expression and isotope labeling experiments, we reconstructed a 171 

tentative mPQ biosynthetic pathway that shares homology with the UQ and PQ pathways (Fig. 2). The 172 

ring precursor 4-HBA is generated from chorismate by MpqC and alternative enzymes, followed by 173 

prenylation of 4-HBA by MpqA and decarboxylation by MpqD/X. The following hydroxylation step at 174 

C1 is unresolved, but observations from Pseudomonadota indicate that a large diversity of 175 

benzoquinone C1 hydroxylases exist in nature (37, 53–55). Finally, methylations are introduced at C5 176 

and C6 by MpqQ and at C2 by MpqE.  177 

Distribution and function of mPQ 178 

Analysis of mPQ biosynthesis proteins in a representative selection of high- and medium-quality 179 

genomes and metagenome-assembled genomes revealed that mPQ is present in all aerobic lineages of 180 

Nitrospirota (n=85), but not found outside this phylum (n=482). A few early-branching lineages of 181 

Nitrospirota, which are anaerobes using the MKmqn pathway, are devoid of mPQ biosynthesis proteins 182 

(Fig. 3). Since mPQ is the only respiratory quinone detected in aerobic Nitrospirota, it is likely involved 183 

in the ETC used for aerobic respiration (42–44), and the structural similarity between mPQ and UQ/PQ 184 

suggests that mPQ has a high redox potential. Since Nitrospirota grow slowly and to low cell densities, 185 

mPQ could not be isolated in quantities required for redox potential measurements. We therefore 186 

calculated the redox potential of mPQ, UQ, and PQ using density functional theory (56). For a given 187 

biologically relevant prenyl chain length, the calculated redox potential of mPQ (E0(Q/H2Q) = 517±8 188 

mV) is lower than that of PQ (551±8 mV) but higher than that of UQ (480±8 mV; Table S3). 189 

Furthermore, all HPQs are described by significantly higher calculated redox potentials than the LPQ 190 

MK (364±8 mV), confirming the validity of our computational approach. Calculations for simple 1,4-191 

benzoquinones indicate that redox potentials decrease by ~50 mV per methyl or methoxy group, with 192 
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methoxy additions having the larger effect, which explains the higher potential of mPQ (trimethyl) 193 

relative to UQ (dimethoxy, methyl). These functional group combinations may reflect redox tuning of 194 

HPQs to specific components of the ETC in Cyanobacteriota, Nitrospirota, and Pseudomonadota. Due 195 

to the tight coupling of redox potentials of quinones to other ETC components (e.g., iron sulfur clusters 196 

of Rieske proteins and b-hemes in Rieske/cytb complexes) (27), we infer that aerobic Nitrospirota have 197 

high potential ETCs. Indeed, we find that Rieske proteins of aerobic Nitrospirota contain the ‘SY’ motif 198 

(Table S4) characteristic for Rieske/cytochrome b complexes adapted to interact with HPQs in high 199 

potential ETCs (57). High potential ETCs would be advantageous for minimizing ROS generation and 200 

maximizing proton motive force (27) in the low energy-yielding chemoautotrophic metabolisms of 201 

aerobic Nitrospirota. Since the use of HPQs requires adaptation of the entire ETC to higher redox 202 

potential (27), such a decisive step may have been linked to a major event, such as Earth’s surface 203 

oxygenation (25, 27, 58).  204 

Ancient origin of high-potential quinones 205 

The biochemical similarity of the HPQ biosynthesis pathways suggests a common ancestry. The 206 

mPQ biosynthesis proteins of Nitrospirota are most closely related to homologs from the UQ and PQ 207 

pathways of Cyanobacteriota and Pseudomonadota, which is unexpected given the phylogenetic 208 

distance between these phyla (Fig. 3). Specifically, the phylogenies of the key prenyltransferases and 209 

decarboxylases exhibit a consistent tree topology, with HPQ proteins being monophyletic relative to 210 

homologous proteins of the LPQ biosynthesis pathways (Fig. 4; see SI for expanded discussion). HPQ 211 

homologs from Pseudomonadota and Nitrospirota branch as sister lineages with respect to 212 

Cyanobacteriota. Other proteins of the HPQ pathways (chorismate-pyruvate lyase, decarboxylase co-213 

factor) generally support this topology, although with lower branch support (Fig. S19-20). These 214 

patterns suggest a single, shared origin of the universal core of HPQ biosynthesis in bacteria. 215 

The distribution of LPQs, HPQs and their associated biosynthetic genes in Bacteria suggests that 216 

HPQ biosynthesis is conserved in all known lineages of Cyanobacteriota, Pseudomonadota, and 217 

aerobic Nitrospirota (Fig. 3, S11-13; see SI for expanded discussion). Conversely, HPQs are not found 218 

in anaerobic Nitrospirota, nor in the sister phyla of Cyanobacteriota, Nitrospirota, or Pseudomonadota, 219 
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all of which produce LPQs via the MKmqn pathway (Fig. 3; Table S5). Given that Cyanobacteriota, 220 

Nitrospirota, and Pseudomonadota are paraphyletic, vertical inheritance of HPQ pathways from a 221 

common ancestor is unlikely. Instead, HPQ occurrence and protein phylogenies indicate that an 222 

ancestral HPQ pathway was laterally acquired by stem-group Cyanobacteriota, Pseudomonadota, and 223 

aerobic Nitrospirota from an unknown or extinct donor lineage.  224 

The ancestral HPQ pathway later diversified through changes to the C2, C5, and C6 substituents. 225 

Specifically, C2 methyltransferases are present in all LPQ and HPQ biosynthesis pathways except PQ. 226 

LPQ and HPQ C2 methyltransferases form sister clades (Fig. 4b) and C2 methyltransferases may thus 227 

be as old as the divergence between LPQ and HPQ pathways. Consequently, it is likely that the ancestral 228 

HPQ pathway contained a C2 methyltransferase that was lost prior to the radiation of crown group 229 

Cyanobacteriota (Fig. 4c). Lack of C2 methylation increases the redox potential of PQ (Table S3) and 230 

is essential for the functioning of the oxygen-evolving photosystem II (62). Loss of C2-methylation was 231 

likely linked to the evolution of oxygenic photosynthesis and therefore did not occur in 232 

Pseudomonadota and Nitrospirota. The evolution of the C5/C6 functional groups is less constrained. 233 

The C5/C6 methyltransferases of the PQ/mPQ pathways are poorly conserved in Nitrospirota and 234 

Cyanobacteriota, but at least one subgroup of Nitrospirota laterally acquired a C5/C6 methyltransferase 235 

from Cyanobacteriota (Fig. 4b; see SI discussion). C5/C6 methylation requires a single enzyme, 236 

whereas methoxylation to yield UQ requires at least two enzymes that are specific to Pseudomonadota 237 

(37, 55). Thus, the most parsimonious explanation is that the ancestral HPQ was methylated at C5/C6 238 

in addition to C2, i.e., identical to mPQ, and that methoxylation evolved later (Fig. 4c). 239 

It has been proposed that LPQs were present in the last universal common ancestor or evolved 240 

shortly thereafter, given their nearly universal presence in Archaea and Bacteria (72). Of the two LPQ 241 

biosynthetic pathways, the MKmqn pathway is considered ancestral to basal Archaea and Bacteria, 242 

whereas the MKmen pathway was laterally transferred from Bacteria to a subset of Archaea (72). 243 

Homologous proteins suggest that the LPQ and HPQ biosynthetic pathways are evolutionarily related. 244 

The HPQ pathways share five homologs with the MKmqn pathway (prenyltransferase, two-component 245 

decarboxylase, C2 methyltransferase, kinase) and two with the alternative MKmen pathway 246 
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(prenyltransferase, C2 methyltransferase) (37). Our analysis shows that the MKmqn homologs from 247 

Archaea and Bacteria form sister groups to the HPQ proteins, whereas the two homologs of the MKmen 248 

pathway are more distantly related to both HPQ and MKmqn proteins (Fig. 4, S14-16, and SI discussion). 249 

This topology suggests that contrary to previous conclusions (73), the HPQ pathways did not descend 250 

directly from extant MK pathways.  251 

Instead, the HPQ and MK pathways likely evolved from an ancestral quinone biosynthesis pathway 252 

that, like all extant pathways, used a chorismate derivative as precursor. In the case of HPQ, this 253 

precursor is prenylated in the second step, whereas prenylation is a late step in MK biosynthesis. The 254 

specificity of prenyltransferase for its quinone substrate (74) combined with early prenylation in the 255 

HPQ pathways may have facilitated evolutionary divergence of the HPQ and MK pathways. Existing 256 

machinery from the ancestral quinone biosynthesis pathway such as decarboxylase, C2 257 

methyltransferase, and kinase were then co-opted by these new pathways. The deep phylogenetic 258 

divergence between HPQ and LPQ proteins (Fig. S14-16) suggests that the ancestral HPQ pathway 259 

could have emerged before the radiation of Bacteria and Archaea (72) 4.1-3.4 Ga ago in an extinct 260 

lineage coeval to the evolution of the extant LPQ pathways (Fig. 4c-d). Such an early origin of HPQs 261 

is not necessarily linked to aerobic respiration or oxygenic photosynthesis using high-potential ETCs. 262 

Instead, ancestral HPQs could have been involved in different functions, such as oxygen detoxification 263 

or a primordial form of high-potential photosynthesis (75, 76), and only later adopted into high-potential 264 

ETCs used for oxygenic photosynthesis and respiration using oxygen or other high-potential electron 265 

acceptors, such as nitric oxide (17, 77).  266 

Early evolution of aerobic metabolism 267 

The association of HPQ biosynthesis with oxygenic photosynthesis and aerobic respiration in 268 

extant bacteria suggests that these traits became inseparably linked during evolution. The phylogeny of 269 

HPQ biosynthesis proteins therefore allows dating the origin of aerobic metabolisms using HPQs 270 

relative to Earth’s oxygenation. Oxygen first accumulated permanently in the atmosphere during the 271 

GOE (7) but geochemical tracers suggest oxygen was locally present during the late Archean (63, 64, 272 

78). The likely presence of oxygen during the Archean aligns with the diversification of electron 273 
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transport pathways, oxygenases, oxidoreductases, and antioxidant enzymes around 3.3-2.9 Ga (10–13, 274 

79), i.e., long before the GOE. Alternative proposals place the emergence of crown group 275 

Cyanobacteriota, oxygenic photosynthesis, and aerobic respiration coeval to, or after, the GOE (4, 70, 276 

80). Regardless of whether oxygenic photosynthesis emerged during the Archean or was coeval to the 277 

GOE, the phylogenetic split between HPQ and LPQ proteins and the presence of the MKmqn pathway 278 

in the non-photosynthetic sister lineages (Vampirovibrionophyceae, “Candidatus Margulisbacteria”, 279 

“Candidatus Sericytochromatia”; Fig. 3, 4; Table S5; SI discussion) together indicate that the HPQ 280 

pathway in Cyanobacteriota originated from lateral transfer after their divergence from these sister 281 

lineages. Because PQ is central to the functioning of photosystem II in all extant oxygenic 282 

photosynthesizers (24, 81), emergence of PQ biosynthesis was likely tied to the evolution of oxygenic 283 

photosynthesis and thus may have existed before the radiation of crown group Cyanobacteriota. This 284 

supports earlier proposals that the extant oxygenic photosynthetic machinery originated in a lineage that 285 

diverged from the non-photosynthetic sister lineages (80, 82) but pre-dated the radiation of crown group 286 

Cyanobacteriota (76). Collectively, these constraints indicate that HPQs are at least as old as oxygenic 287 

photosynthesis by Cyanobacteriota and therefore predate the GOE.  288 

Aerobic metabolism preceding the GOE is supported by the near-universal occurrence of aerobic 289 

respiration in crown group Cyanobacteriota and Pseudomonadota. All basal clades of Cyanobacteriota 290 

and Pseudomonadota possess HPQs and are capable of aerobic respiration, with only few late-291 

branching Pseudomonadota being obligate anaerobes (Fig. 3, S10, S12-13). Molecular clocks calibrated 292 

using cyanobacteriotal fossils place the last common ancestor of crown group Cyanobacteriota and the 293 

emergence of basal, aerobic Pseudomonadota (Magnetococcia) around 2.5-3.2 Ga (10, 12, 66–68, 83), 294 

whereas aerobic Nitrospirota may have emerged shortly after the GOE (66, 71). HPQs were thus likely 295 

used for aerobic respiration by the time of the radiation of extant Cyanobacteriota and 296 

Pseudomonadota. Given the constraint that HPQs must have been present in stem-group 297 

Cyanobacteriota and Pseudomonadota, the minimum age of extant HPQs is between 2.5-3.2 Ga, 298 

whereas the ancestral HPQ pathway may be as old as crown-group Bacteria (3.4-4.1 Ga; Fig. 4d). We 299 

therefore suggest that aerobic respiration with high potential ETCs may have originated up to 800 Ma 300 
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before oxygen permanently accumulated in the atmosphere during the GOE. Microbial mats could have 301 

provided a niche for chemoautotrophs and heterotrophs consuming oxygen provided by 302 

Cyanobacteriota directly (32), preventing escape to the atmosphere.  303 

In modern ecosystems, some aerobic bacteria continue to use LPQ- rather than HPQ-dependent 304 

ETCs for aerobic respiration (23). In the presence of O2, reduced HPQs are relatively stable but reduced 305 

LPQs are rapidly autoxidized, resulting in the loss of reducing equivalents to O2 (26, 84). Further, 306 

aerobic respiration with LPQs leads to increased formation of deleterious reactive oxygen species (28, 307 

85), requiring energy to be expended on the mitigation of cellular damage, thereby decreasing growth 308 

rates (28, 86). Finally, the use of LPQs instead of HPQs for proton pumping by complex I is less 309 

efficient (87, 88). Given these drawbacks, one might question why all aerobes have not switched from 310 

LPQs to HPQs to use oxygen without these disadvantages. The evolution of HPQs was a complex 311 

process closely tied to the evolution of the ETC itself, demanding not only the acquisition of a dedicated 312 

pathway for quinone biosynthesis, but also an upshift in redox potential of all other ETC components, 313 

including hemes and iron-sulfur clusters (27). These complex requirements may explain why the 314 

evolution of HPQ was successful only once and lateral transfers were rare. Distinct redox-tuning then 315 

led to the extant diversity of HPQ structures and biosynthetic pathways in Cyanobacteriota, 316 

Pseudomonadota, and Nitrospirota. Two of the three HPQ pathways were later obtained by eukaryotes, 317 

UQ via incorporation of an alphaproteobacterium as the mitochondrion and PQ via incorporation of a 318 

cyanobacterium as the chloroplast (58, 89) (Fig. 4d), while mPQ remained exclusively bacterial. 319 

Through their high potential ETCs, these lineages were able to rise to dominance in modern oxic 320 

ecosystems (32–36), as evidenced by the prevalence of HPQs in modern oxic environments (31, 90).  321 

Material & Methods 322 

Detailed methods can be found in the SI Appendix. Cultures were grown in standard media with or 323 

without 13C-isotope-labeled compounds and harvested as described in the SI Appendix. Quinones were 324 

isolated using solvent extraction and chromatography and structurally characterized using high-325 

performance chromatography coupled to high resolution tandem mass spectrometry or using nuclear 326 

magnetic resonance spectroscopy. Candidate genes and their phylogenies were identified using standard 327 
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genomic and phylogenetic techniques and verified using heterologous complementation in E. coli 328 

mutants.  329 
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 568 

Figure legends 569 

Fig. 1. Novel quinones detected in aerobic Nitrospirota. a-d, Chromatograms showing presence of a distinct 570 
quinone type (methyl-plastoquinone, mPQ) in aerobic Nitrospirota (Nitrospira marina, Leptospirillum 571 
ferrooxidans, Ca. Manganitrophus noduliformans) and canonical menaquinones (MK) in the anaerobic 572 
Nitrospirota species Thermodesulfovibrio islandicus. Ubiquinone (UQ8:8) in the Ca. Manganitrophus-Ramlibacter 573 
co-culture derives from Ramlibacter (see Fig. S1). e-g, High resolution mass spectrometric characterization of 574 
mPQ9:9 and PQ9:9 showing similar fragmentation patterns but suggesting the presence of a trimethyl-benzoquinone 575 
moiety in mPQ9:9 (see Fig. S1); structure and fragmentation pattern of UQ8:8 from Ramlibacter shown in g for 576 
reference.  577 
 578 

Fig. 2. Characterization of the mPQ biosynthetic pathway. a, Biosynthetic pathways of quinones showing 579 
homology of pathways for mPQ9 in Nitrospirota (purple), PQ9 in the cyanobacterium Synechocystis sp. PCC6803 580 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 22, 2025. ; https://doi.org/10.1101/2024.07.27.605408doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.27.605408
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

(green) and UQ8 in the gammaproteobacterium Escherichia coli (blue). Biosynthetic steps are numbered, and 581 
homologous steps are connected by colored lines. b-d, Heterologous complementation experiments using mPQ 582 
biosynthesis gene candidates to restore UQ8 production in E. coli mutants lacking key genes for ubiquinone 583 
biosynthesis (∆ubiC+mpqC, ∆ubiA+mpqA, ∆ubiX+mpqX, ∆ubiD+mpqD). e, PQ production in E. coli ∆ubiIFE 584 
mutants complemented with mpqQ from N. inopinata as well as PQ and mPQ in E. coli ∆ubiIFE mutants 585 
complemented with mpqQ from N. inopinata and mpqE from other Nitrospirota. WT=wild type; vec=empty 586 
vector; thick bars represent means and error bars represent standard deviations of the means, n=3-5; AU=arbitrary 587 
units. Abbreviations: Ca. N. nitrificans (Nnit), N. moscoviensis (Nmos), N. inopinata (Nino), L. ferrooxidans 588 
(Lfer), Ca. M. noduliformans (Mnod). The numbering of the carbon atoms on the 4-HBA precursor (panel a, light 589 
grey) defines the nomenclature for all intermediates described in the text. The octaprenyl and nonaprenyl chains 590 
are abbreviated with R8 and R9, respectively. See Fig. S7-S9 for details on compound identification and 591 
quantification. Stars indicate p < 0.01 (**), p < 0.001 (***), and p < 0.0001 (****) for unpaired Student’s t tests 592 
relative to the empty vector. 593 

 594 
Fig. 3. Phylogenetic tree of bacteria showing the occurrence of respiratory quinones. Quinones with high 595 
redox potential (UQ, PQ, mPQ) occur only in aerobic Nitrospirota, Pseudomonadota, and Cyanobacteriota. Low 596 
potential quinones occur in anaerobic Nitrospirota (MK), some Pseudomonadota (MK), and all Cyanobacteriota 597 
(PhQ). Asterisks indicate strains in which presence of mPQ has been verified experimentally. See Fig. S11-13 for 598 
detailed trees. The maximum-likelihood phylogenetic tree was constructed from 120 concatenated single copy 599 
marker proteins (59) of 547 isolate genomes and metagenome-assembled genomes, covering all bacterial phyla, 600 
and rooted using the DST group to approximate the bacterial root (60, 61). Quinone occurrences were derived 601 
from instrumental analysis of isolates or inferred from the presence of key biosynthesis genes (SI results; 602 
Supplementary Datafile S3; including literature data). Phenotype oxytolerance was curated from strain 603 
descriptions. Selected classes/orders denoted inside of rings. Selected phyla denoted outside of rings: ACD, 604 
Aquificota-Campylobacterota-Deferribacterota; Desulfob., Desulfobacterota; DST, Deinococcota-Synergistota-605 
Thermotogota; BA, Bacillota-Actinomycetota; FCB, Fibrobacterota-Chloroflexota-Bacteroidota; Marg., 606 
Candidatus Margulisbacteria; Myxoc., Myxococcota; Nitrospin., Nitrospinota; PVC, Planctomycetota-607 
Verrucomicrobiota-Chlamydiota; Seri., Candidatus Sericytochromatia; Vamp., Vampirovibrionophyceae. Circles 608 
indicate ultra-fast bootstrap support ≥95%. 609 

 610 

Fig. 4. High-potential quinones (HPQ) share a single origin predating the great oxygenation event. a, 611 
Phylogenetic trees of HPQ biosynthesis proteins demonstrating that prenyltransferases and decarboxylases of the 612 
ubiquinone (UQ, UbiAD), plastoquinone (PQ, PlqAD), and methylplastoquinone (mPQ, MpqAD) pathways form 613 
sister clades of the archaeal and bacterial futalosine pathway for biosynthesis of menaquinone (MK, MqnPL). b, 614 
Phylogenetic trees of quinone C5/C6 (PlqQ, MpqQ) and C2 methyltransferases (UbiE, MpqE), showing a nested 615 
topology of C5/C6 methyltransferases and that C2 methyltransferases form a sister lineage of menaquinone-616 
associated methyltransferases (MqnK). Outgroups used for rooting the trees are not shown but discussed in the 617 
Supplementary Information. Scale bars indicate 0.5 substitutions per site. Open circles indicate ultra-fast bootstrap 618 
support ≥95%. c, Conceptual sketch of HPQ evolution and resulting redox potentials, based on the trees in panels 619 
a-b. d, Timescale of LPQ and HPQ evolution (colors as in panel c; based on panels 4a-b and the observation that 620 
the last common ancestors of Pseudomonadota, Cyanobacteriota, and aerobic Nitrospirota contained UQ, PQ, 621 
and mPQ, respectively) in relation to geochemical changes (evidence for localized O2 oases (63–65), the great 622 
oxygenation event, GOE (7)) and biological innovations (Archean rapid genetic expansion (10), evolution of 623 
enzymes protecting against reactive oxygen species (ROS) (12), expansion of O2 reductase diversity (11)). Shaded 624 
hexagons indicate minimum and maximum estimates of HPQ evolution timescale. Open symbols indicate median 625 
ages (colored bars: uncertainty range; quinone symbols: upper/lower estimate) of relevant clades estimated by 626 
previous molecular clock analyses (Boden et al. (12); Davín et al. (66); Fournier et al. (67); Oliver et al. (68); 627 
Magnabosco et al. (69); Shih et al. (70); Ward et al. (71)). The earliest date of UQ/PQ/mPQ emergence is set as 628 
the earliest estimate of the radiation of crown Cyanobacteria, Pseudomonadota, and (aerobic) Nitrospirota 629 
assuming that UQ, PQ, or mPQ were present in the last common ancestor of each clade. 630 
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