

1 **A novel quinone biosynthetic pathway illuminates the evolution of aerobic metabolism**

2 Felix J. Elling^{1,2,*}, Fabien Pierrel³, Sophie-Carole Chobert³, Sophie S. Abby³, Thomas W. Evans^{4,5,#},
3 Arthur Reveillard³, Ludovic Pelosi³, Juliette Schnoebelen³, Jordon D. Hemingway⁶, Ahcène
4 Boumendjel⁷, Kevin W. Becker⁸, Pieter Blom⁹, Julia Cordes⁵, Vinitra Nathan^{1,§}, Frauke Baymann¹⁰,
5 Sebastian Lücker⁹, Eva Speck¹¹, Jared R. Leadbetter^{12,13}, Kai-Uwe Hinrichs⁵, Roger E. Summons⁴, Ann
6 Pearson¹

7 ¹ Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA

8 ² Leibniz-Laboratory for Radiometric Dating and Isotope Research, Christian-Albrecht University of
9 Kiel, 24118 Kiel, Germany

10 ³ Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble,
11 France

12 ⁴ Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology,
13 Cambridge, MA 02139, USA

14 ⁵ MARUM – Center for Marine Environmental Sciences and Department of Geosciences, University
15 of Bremen, 28359 Bremen, Germany

16 ⁶ Geological Institute, Department of Earth and Planetary Sciences, ETH Zurich, 8092 Zurich,
17 Switzerland

18 ⁷ Univ. Grenoble Alpes, INSERM, LRB, Grenoble, 38000, France

19 ⁸ GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany

20 ⁹ Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud
21 University, 6525 AJ Nijmegen, The Netherlands

22 ¹⁰ Laboratoire de Bioénergétique et Ingénierie des Protéines UMR 7281 CNRS/AMU, FR3479, F-
23 13402 Marseille Cedex 20, France

24 ¹¹ Department of Microbiology and Biotechnology, University of Hamburg, 22609 Hamburg, Germany.

25 ¹² Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA
26 91125, USA.

27 ¹³ Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA

28 91125, USA.

29 *Corresponding author: felling@leibniz.uni-kiel.de

30 #Present address: Shell Global Solutions International BV, 1031 CM Amsterdam, The Netherlands

31 \$Present address: Department of Biology, Boston University, Boston, MA 02215, USA

32 **Abstract**

33 The dominant organisms in modern oxic ecosystems rely on respiratory quinones with high redox
34 potential (HPQs) for electron transport in aerobic respiration and photosynthesis. The diversification of
35 quinones, from low redox potential in anaerobes to HPQs in aerobes, is assumed to have followed
36 Earth's surface oxygenation ~2.3 billion years ago. However, the evolutionary origins of HPQs remain
37 unresolved. Here, we characterize the structure and biosynthetic pathway of a novel ancestral HPQ,
38 methyl-plastoquinone, that is unique to bacteria of the phylum *Nitrospirota*. Methyl-plastoquinone is
39 structurally related to the two previously known HPQs, plastoquinone from
40 *Cyanobacteriota*/chloroplasts and ubiquinone from *Pseudomonadota*/mitochondria, respectively. We
41 demonstrate a common origin of the three HPQ biosynthetic pathways that predates the emergence of
42 *Nitrospirota*, *Cyanobacteriota*, and *Pseudomonadota*. An ancestral HPQ biosynthetic pathway evolved
43 ≥ 3.4 billion years ago in an extinct lineage and was laterally transferred to these three phyla ~2.5-3.2
44 billion years ago. We show that *Cyanobacteriota* and *Pseudomonadota* were ancestrally aerobic and
45 thus propose that aerobic metabolism using HPQs significantly predates Earth's surface oxygenation.
46 Two of the three HPQ pathways were later obtained by eukaryotes through endosymbiosis forming
47 chloroplasts and mitochondria, enabling their rise to dominance in modern oxic ecosystems.

48

49 **Significance statement**

50 Oxygenic photosynthesis and aerobic respiration by bacteria and eukaryotes rely on respiratory
51 quinones with high redox potential that facilitate membrane-bound electron transport. These quinones
52 are integral to aerobic metabolism and therefore the evolution of aerobic metabolism and quinone
53 biosynthesis must be intertwined. Only two types of high redox potential quinones have been described
54 in bacteria and eukaryotes. Here, we describe the structure and biosynthetic pathway of a third type,
55 methyl-plastoquinone, that is exclusive to bacteria of the phylum *Nitrospirota*. We then use
56 phylogenetic analysis to show that the three high redox potential quinones have a single evolutionary
57 origin and are much older than previously considered, predating the Great Oxygenation Event, when
58 significant amounts of O₂ first accumulated in the atmosphere.

59 **Introduction**

60 The oxygenation of Earth's surface environments following the emergence of oxygenic
61 photosynthesis in ancestors of *Cyanobacteriota* enabled the metabolic and genetic diversification of life
62 (1–4). The use of oxygen as a terminal electron acceptor, i.e., aerobic respiration, enabled a higher
63 energy yield compared to anaerobic metabolisms and was a prerequisite for the emergence of
64 eukaryotes (5, 6). However, it remains poorly resolved how and when the electron transport chain (ETC)
65 used for aerobic respiration evolved. While geochemical evidence indicates iron oxidation by
66 acidophilic bacteria must have evolved by the time oxygen accumulated in the atmosphere during the
67 great oxygenation event (GOE; ~2.4–2.3 Ga) (3, 7–9), there is now considerable evidence for an ancient
68 origin of dioxygen-utilizing and detoxifying enzymes as early as 3.1 Ga (10–13). Though these enzymes
69 may not have participated in aerobic respiration (11, 14, 15), their widespread occurrence in bacteria
70 suggests the availability of oxygen in physiologically significant quantities, at least in some niches,
71 before the GOE. Studying the evolution of ETC components, such as oxygen reductases that use
72 electrons derived from the ETC (16–21), can help elucidate the origins of aerobic metabolisms.
73 However, the interpretation of oxygen reductase evolution has remained contentious (16–20, 22), and
74 alternative roles of ancestral oxygen reductases in oxygen detoxification and nitric oxide reduction
75 rather than aerobic respiration have been proposed (17). Exploring the evolution of other ETC
76 components, such as respiratory quinones, may yield new insights into the evolution of ETCs and
77 aerobic respiration.

78 Strict anaerobes use ETCs and quinones with low redox potential (LPQs), while aerobes and
79 facultative aerobes generally use high-potential quinones (HPQs) (23–25). HPQs require all parts of the
80 ETC to operate at high redox potential (25–27) and confer no known benefit over LPQs under anaerobic
81 conditions. However, under aerobic conditions HPQs are advantageous due to their decreased electron
82 leakage to oxygen, thus reducing oxidative stress and minimizing free energy losses (26, 28). The
83 occurrence of HPQs may represent a marker for high-potential ETCs and their evolution may be tied to
84 the history of oxygenic photosynthesis and aerobic respiration. Within bacteria, HPQs have been found
85 only in two phyla, oxygenic *Cyanobacteriota* (here used *sensu stricto*, including only *Cyanophyceae*)

86 and *Pseudomonadota* (formerly Proteobacteria, now comprising the classes *Alpha*-, *Beta*-,
87 *Gammaproteobacteria*, *Acidithiobacillia*, and *Hydrogenophilia*) (29). The *Cyanobacteriota* and
88 *Pseudomonadota* produce two distinct types of HPQs, plastoquinone (PQ) and ubiquinone (UQ),
89 respectively (23, 24), which became the quinones of plastids (PQ) and mitochondria (UQ) through
90 endosymbiosis during the early evolution of eukaryotes (24, 30). Yet, despite the dominance of HPQ-
91 utilizing organisms in Earth's oxic environments today (31–36), the co-evolution of HPQs and Earth
92 surface oxygenation remains largely unresolved (37).

93 Recent progress in metagenomic coverage of uncultivated bacteria and isolation of novel lineages
94 may help elucidate HPQ evolution through the discovery of new quinone structures and biosynthetic
95 pathways in unstudied lineages of aerobic bacteria. Here, we describe the discovery of a third, novel
96 type of HPQ, methyl-plastoquinone (mPQ). mPQ occurs only in aerobic members of the phylum
97 *Nitrospirota* (formerly *Nitrospirae*), a metabolically diverse group of bacteria that perform essential
98 transformations in the biogeochemical cycles of iron, nitrogen, and manganese. We characterize the
99 biosynthetic pathway of mPQ using bioinformatic, genetic, and biochemical techniques and use these
100 data to infer the evolutionary history of HPQs. Our study sheds new light on the evolutionary history
101 of ETCs by revealing a single origin of the three HPQ biosynthetic pathways prior to the radiation of
102 crown-group *Cyanobacteriota*, *Nitrospirota*, and *Pseudomonadota*, which evidently preceded the GOE.

103 **Results & Discussion**

104 *Novel respiratory quinones in Nitrospirota*

105 Despite their widespread distribution and the important roles of *Nitrospirota* in biogeochemical
106 cycles of iron, manganese, and nitrogen (38–42), many aspects of their chemotaxonomy and
107 bioenergetics remain understudied. Genome-based bioenergetic models implicate the presence of ETCs
108 in aerobic and anaerobic *Nitrospirota* (42–46), yet their corresponding respiratory quinones have not
109 been studied. During screening of *Nitrospirota* genomes for lipid biosynthetic pathways (47), we
110 observed that the genomes of aerobic *Nitrospirota* did not contain any of the characterized quinone
111 biosynthesis pathways (24, 37). In contrast, genomes of anaerobic sulfur-reducing *Nitrospirota*, i.e.,
112 *Thermodesulfovibrio* species and some *Nitrospirota* metagenome-assembled genomes from anoxic

113 environments, contained the fthalosine pathway (MK_{mqn} , composed of *mqn* genes) for biosynthesis of
114 the LPQ menaquinone (MK; Supplementary Datafile S1).

115 To evaluate the presence of respiratory quinones, we analyzed lipid extracts of one anaerobic and
116 eight aerobic species of *Nitrospirota*, covering all formally described genera (*Thermodesulfovibrio*,
117 *Leptospirillum*, *Nitrospira*, and *Candidatus Manganitrophus*), using high-performance liquid
118 chromatography coupled to high-resolution tandem mass spectrometry. MKs were detected only in the
119 anaerobic species, *Thermodesulfovibrio islandicus* (Fig. 1a), and we did not find any of the previously
120 known respiratory quinone types in the aerobic *Nitrospirota*. Instead, all eight studied aerobic
121 *Nitrospirota* contained a novel type of quinone, identified as methyl-plastoquinone (mPQ). The
122 polyprenyl chain of mPQ varied in length and saturation depending on species (Fig. 1, Fig. S1, SI
123 results). Mass spectrometric characterization of mPQ revealed fragmentation spectra analogous to PQ
124 but with a dominant ion at *m/z* 165 instead of 151, indicative of a distinctive trimethyl-benzoquinone
125 headgroup connected to the isoprenoid tail (Fig. 1, Fig. S1, Table S1). Stable isotope labeling
126 experiments and nuclear magnetic resonance spectroscopy of mPQ confirmed the structural assignment
127 of the headgroup (SI Results & Discussion; Fig. S2-4). Specifically, ¹H-NMR spectra showed the
128 absence of any proton linked to the C2 of the quinone moiety and ¹H-NMR and ¹³C-NMR confirmed
129 the presence of a third methyl group (Fig. S4; see SI Results & Discussion). mPQ is thus structurally
130 related to both UQ (methylated at C2 of the benzoquinone) and PQ (methylated at C5 and C6).

131 ***Characterization of the biosynthetic pathway of mPQ***

132 Based on the structure of mPQ, we hypothesized that its biosynthesis pathway might share
133 characteristics with the UQ and PQ biosynthesis pathways. The PQ biosynthesis pathway of
134 *Cyanobacteriota* has been partially resolved (48, 49) and contains several enzymes that are homologous
135 to enzymes involved in the well-characterized bacterial UQ pathway (37, 50). In both pathways, the
136 conversion of chorismate into 4-hydroxybenzoate (4-HBA) is mediated by a UbiC homolog and the
137 subsequent prenylation, decarboxylation, and hydroxylation of 4-HBA involve the UbiA, UbiD/X, and
138 UbiH homologs, respectively (Fig. 2a) (37). Specific to the UQ pathway, methylation at C2 is mediated

139 by UbiE (51). In the cyanobacteriotal PQ pathway, methylation at C5 and C6 has been proposed to be
140 mediated by Sll0418 (PlqQ) (50, 52).

141 Isotope labeling experiments further point to biochemical similarities between the HPQ
142 biosynthesis pathways. Supplementation of cultures with ring-¹³C₆-labeled substrates demonstrates that
143 4-HBA is the ring precursor in *Nitrospirota*, similar to *Cyanobacteriota* and *Pseudomonadota* (Fig. S5,
144 SI Discussion). Further, experiments with methyl-²H₃ methionine indicate that all three methyl groups
145 of mPQ (at C2, C5, and C6) are derived from methionine via SAM-dependent methyltransferases (Fig.
146 S2). We used this information to find multiple, homologous candidate genes for the biosynthetic
147 pathway of mPQ in genomes of *Nitrospirota*. We suggest a gene nomenclature for the mPQ pathway
148 (*mpq*) analogous to that of the UQ pathway and extend this to the PQ pathway (*plq*; Fig. 2). We
149 identified a four-gene cluster in *Leptospirillum* spp. (Fig. S6), encoding a *ubiA* family prenyltransferase
150 (*mpqA*; LFE_2122), *ubiC*-like chorismate pyruvate lyase (*mpqC*; LFE_2123), a cobalamin-binding
151 radical *S*-adenosyl methionine (SAM) methyltransferase (LFE_2124), and a *ubiE*-like
152 methyltransferase (*mpqE*; LFE_2125). The genes are not co-localized in other *Nitrospirota*, but *mpqA*
153 and *mpqE* homologs are found in all aerobic *Nitrospirota*, in addition to a *ubiB*-like kinase (*mpqB*). By
154 contrast, homologs of *mpqC*, *ubiD/X* (*mpqD/X*) and *plqQ* (*mpqQ*) occur only in a subset of aerobic
155 *Nitrospirota* (Table S2). No clear *ubiH* homologs were identified. Consequently, aerobic *Nitrospirota*
156 contain a mosaic pathway for mPQ biosynthesis composed of well-conserved (*mpqA*, *mpqB*, *mpqE*)
157 and alternative genes (*mpqC*, *mpqD/X*, *mpqQ*).

158 Due to the lack of suitable genetic systems in *Nitrospirota*, we verified the mPQ candidate genes
159 by assessing their functions in heterologous complementation assays using *Escherichia coli* mutants
160 deficient in defined steps of UQ biosynthesis. When expressed in the *E. coli* Δ *ubiC* mutant, the *mpqC*
161 from *L. ferrooxidans*, *Ca. N. nitrificans*, and *Ca. M. noduliformans* restored UQ biosynthesis up to
162 wild-type levels (Fig. 2b). Likewise, the *mpqA* homologs from *L. ferrooxidans*, *N. moscoviensis*, and
163 *Ca. M. noduliformans* restored UQ biosynthesis in an *E. coli* Δ *ubiA* mutant (Fig. 2, S7). Similarly, we
164 observed recovery of UQ levels in *E. coli* Δ *ubiD* and Δ *ubiX* mutants upon expression of *mpqD/X* from
165 *Ca. M. noduliformans* (*mpqD/X* do not occur in *Nitrospira* and *Leptospirillum* spp.; Fig. 2). Expression

166 of the *plqQ* homolog (*mpqQ*) from *N. inopinata* in an *E. coli* Δ *ubiIF* mutant yielded PQ₈ and mPQ₈
167 (Fig. S8b-g). The Δ *ubiIFE* strain, in which the *E. coli* *ubiE* gene was additionally deleted, showed a
168 strong increase in the amount of PQ₈ and the disappearance of mPQ₈ (Fig. 2e, S8b-g). Finally,
169 expression of *mpqE* from *L. ferrooxidans*, *N. moscoviensis*, and *Ca. M. noduliformans* in the Δ *ubiIFE*
170 strain led to the accumulation of mPQ₈ (Fig. 2e, S8c).

171 Based on these heterologous expression and isotope labeling experiments, we reconstructed a
172 tentative mPQ biosynthetic pathway that shares homology with the UQ and PQ pathways (Fig. 2). The
173 ring precursor 4-HBA is generated from chorismate by MpqC and alternative enzymes, followed by
174 prenylation of 4-HBA by MpqA and decarboxylation by MpqD/X. The following hydroxylation step at
175 C1 is unresolved, but observations from *Pseudomonadota* indicate that a large diversity of
176 benzoquinone C1 hydroxylases exist in nature (37, 53–55). Finally, methylations are introduced at C5
177 and C6 by MpqQ and at C2 by MpqE.

178 ***Distribution and function of mPQ***

179 Analysis of mPQ biosynthesis proteins in a representative selection of high- and medium-quality
180 genomes and metagenome-assembled genomes revealed that mPQ is present in all aerobic lineages of
181 *Nitrospirota* (*n*=85), but not found outside this phylum (*n*=482). A few early-branching lineages of
182 *Nitrospirota*, which are anaerobes using the MK_{mqn} pathway, are devoid of mPQ biosynthesis proteins
183 (Fig. 3). Since mPQ is the only respiratory quinone detected in aerobic *Nitrospirota*, it is likely involved
184 in the ETC used for aerobic respiration (42–44), and the structural similarity between mPQ and UQ/PQ
185 suggests that mPQ has a high redox potential. Since *Nitrospirota* grow slowly and to low cell densities,
186 mPQ could not be isolated in quantities required for redox potential measurements. We therefore
187 calculated the redox potential of mPQ, UQ, and PQ using density functional theory (56). For a given
188 biologically relevant prenyl chain length, the calculated redox potential of mPQ ($E^0(Q/H_2Q) = 517 \pm 8$
189 mV) is lower than that of PQ (551 ± 8 mV) but higher than that of UQ (480 ± 8 mV; Table S3).
190 Furthermore, all HPQs are described by significantly higher calculated redox potentials than the LPQ
191 MK (364 ± 8 mV), confirming the validity of our computational approach. Calculations for simple 1,4-
192 benzoquinones indicate that redox potentials decrease by ~50 mV per methyl or methoxy group, with

193 methoxy additions having the larger effect, which explains the higher potential of mPQ (trimethyl)
194 relative to UQ (dimethoxy, methyl). These functional group combinations may reflect redox tuning of
195 HPQs to specific components of the ETC in *Cyanobacteriota*, *Nitrospirota*, and *Pseudomonadota*. Due
196 to the tight coupling of redox potentials of quinones to other ETC components (e.g., iron sulfur clusters
197 of Rieske proteins and *b*-hemes in Rieske/cytb complexes) (27), we infer that aerobic *Nitrospirota* have
198 high potential ETCs. Indeed, we find that Rieske proteins of aerobic *Nitrospirota* contain the ‘SY’ motif
199 (Table S4) characteristic for Rieske/cytochrome *b* complexes adapted to interact with HPQs in high
200 potential ETCs (57). High potential ETCs would be advantageous for minimizing ROS generation and
201 maximizing proton motive force (27) in the low energy-yielding chemoautotrophic metabolisms of
202 aerobic *Nitrospirota*. Since the use of HPQs requires adaptation of the entire ETC to higher redox
203 potential (27), such a decisive step may have been linked to a major event, such as Earth’s surface
204 oxygenation (25, 27, 58).

205 ***Ancient origin of high-potential quinones***

206 The biochemical similarity of the HPQ biosynthesis pathways suggests a common ancestry. The
207 mPQ biosynthesis proteins of *Nitrospirota* are most closely related to homologs from the UQ and PQ
208 pathways of *Cyanobacteriota* and *Pseudomonadota*, which is unexpected given the phylogenetic
209 distance between these phyla (Fig. 3). Specifically, the phylogenies of the key prenyltransferases and
210 decarboxylases exhibit a consistent tree topology, with HPQ proteins being monophyletic relative to
211 homologous proteins of the LPQ biosynthesis pathways (Fig. 4; see SI for expanded discussion). HPQ
212 homologs from *Pseudomonadota* and *Nitrospirota* branch as sister lineages with respect to
213 *Cyanobacteriota*. Other proteins of the HPQ pathways (chorismate-pyruvate lyase, decarboxylase co-
214 factor) generally support this topology, although with lower branch support (Fig. S19-20). These
215 patterns suggest a single, shared origin of the universal core of HPQ biosynthesis in bacteria.

216 The distribution of LPQs, HPQs and their associated biosynthetic genes in *Bacteria* suggests that
217 HPQ biosynthesis is conserved in all known lineages of *Cyanobacteriota*, *Pseudomonadota*, and
218 aerobic *Nitrospirota* (Fig. 3, S11-13; see SI for expanded discussion). Conversely, HPQs are not found
219 in anaerobic *Nitrospirota*, nor in the sister phyla of *Cyanobacteriota*, *Nitrospirota*, or *Pseudomonadota*,

220 all of which produce LPQs via the MK_{mqn} pathway (Fig. 3; Table S5). Given that *Cyanobacteriota*,
221 *Nitrospirota*, and *Pseudomonadota* are paraphyletic, vertical inheritance of HPQ pathways from a
222 common ancestor is unlikely. Instead, HPQ occurrence and protein phylogenies indicate that an
223 ancestral HPQ pathway was laterally acquired by stem-group *Cyanobacteriota*, *Pseudomonadota*, and
224 aerobic *Nitrospirota* from an unknown or extinct donor lineage.

225 The ancestral HPQ pathway later diversified through changes to the C2, C5, and C6 substituents.
226 Specifically, C2 methyltransferases are present in all LPQ and HPQ biosynthesis pathways except PQ.
227 LPQ and HPQ C2 methyltransferases form sister clades (Fig. 4b) and C2 methyltransferases may thus
228 be as old as the divergence between LPQ and HPQ pathways. Consequently, it is likely that the ancestral
229 HPQ pathway contained a C2 methyltransferase that was lost prior to the radiation of crown group
230 *Cyanobacteriota* (Fig. 4c). Lack of C2 methylation increases the redox potential of PQ (Table S3) and
231 is essential for the functioning of the oxygen-evolving photosystem II (62). Loss of C2-methylation was
232 likely linked to the evolution of oxygenic photosynthesis and therefore did not occur in
233 *Pseudomonadota* and *Nitrospirota*. The evolution of the C5/C6 functional groups is less constrained.
234 The C5/C6 methyltransferases of the PQ/mPQ pathways are poorly conserved in *Nitrospirota* and
235 *Cyanobacteriota*, but at least one subgroup of *Nitrospirota* laterally acquired a C5/C6 methyltransferase
236 from *Cyanobacteriota* (Fig. 4b; see SI discussion). C5/C6 methylation requires a single enzyme,
237 whereas methoxylation to yield UQ requires at least two enzymes that are specific to *Pseudomonadota*
238 (37, 55). Thus, the most parsimonious explanation is that the ancestral HPQ was methylated at C5/C6
239 in addition to C2, i.e., identical to mPQ, and that methoxylation evolved later (Fig. 4c).

240 It has been proposed that LPQs were present in the last universal common ancestor or evolved
241 shortly thereafter, given their nearly universal presence in *Archaea* and *Bacteria* (72). Of the two LPQ
242 biosynthetic pathways, the MK_{mqn} pathway is considered ancestral to basal *Archaea* and *Bacteria*,
243 whereas the MK_{men} pathway was laterally transferred from *Bacteria* to a subset of *Archaea* (72).
244 Homologous proteins suggest that the LPQ and HPQ biosynthetic pathways are evolutionarily related.
245 The HPQ pathways share five homologs with the MK_{mqn} pathway (prenyltransferase, two-component
246 decarboxylase, C2 methyltransferase, kinase) and two with the alternative MK_{men} pathway

247 (prenyltransferase, C2 methyltransferase) (37). Our analysis shows that the MK_{mqn} homologs from
248 *Archaea* and *Bacteria* form sister groups to the HPQ proteins, whereas the two homologs of the MK_{men}
249 pathway are more distantly related to both HPQ and MK_{mqn} proteins (Fig. 4, S14-16, and SI discussion).
250 This topology suggests that contrary to previous conclusions (73), the HPQ pathways did not descend
251 directly from extant MK pathways.

252 Instead, the HPQ and MK pathways likely evolved from an ancestral quinone biosynthesis pathway
253 that, like all extant pathways, used a chorismate derivative as precursor. In the case of HPQ, this
254 precursor is prenylated in the second step, whereas prenylation is a late step in MK biosynthesis. The
255 specificity of prenyltransferase for its quinone substrate (74) combined with early prenylation in the
256 HPQ pathways may have facilitated evolutionary divergence of the HPQ and MK pathways. Existing
257 machinery from the ancestral quinone biosynthesis pathway such as decarboxylase, C2
258 methyltransferase, and kinase were then co-opted by these new pathways. The deep phylogenetic
259 divergence between HPQ and LPQ proteins (Fig. S14-16) suggests that the ancestral HPQ pathway
260 could have emerged before the radiation of *Bacteria* and *Archaea* (72) 4.1-3.4 Ga ago in an extinct
261 lineage coeval to the evolution of the extant LPQ pathways (Fig. 4c-d). Such an early origin of HPQs
262 is not necessarily linked to aerobic respiration or oxygenic photosynthesis using high-potential ETCs.
263 Instead, ancestral HPQs could have been involved in different functions, such as oxygen detoxification
264 or a primordial form of high-potential photosynthesis (75, 76), and only later adopted into high-potential
265 ETCs used for oxygenic photosynthesis and respiration using oxygen or other high-potential electron
266 acceptors, such as nitric oxide (17, 77).

267 ***Early evolution of aerobic metabolism***

268 The association of HPQ biosynthesis with oxygenic photosynthesis and aerobic respiration in
269 extant bacteria suggests that these traits became inseparably linked during evolution. The phylogeny of
270 HPQ biosynthesis proteins therefore allows dating the origin of aerobic metabolism using HPQs
271 relative to Earth's oxygenation. Oxygen first accumulated permanently in the atmosphere during the
272 GOE (7) but geochemical tracers suggest oxygen was locally present during the late Archean (63, 64,
273 78). The likely presence of oxygen during the Archean aligns with the diversification of electron

274 transport pathways, oxygenases, oxidoreductases, and antioxidant enzymes around 3.3-2.9 Ga (10–13,
275 79), i.e., long before the GOE. Alternative proposals place the emergence of crown group
276 *Cyanobacteriota*, oxygenic photosynthesis, and aerobic respiration coeval to, or after, the GOE (4, 70,
277 80). Regardless of whether oxygenic photosynthesis emerged during the Archean or was coeval to the
278 GOE, the phylogenetic split between HPQ and LPQ proteins and the presence of the MK_{mqn} pathway
279 in the non-photosynthetic sister lineages (*Vampirovibrionophyceae*, “*Candidatus Margulisbacteria*”,
280 “*Candidatus Sericytochromatia*”; Fig. 3, 4; Table S5; SI discussion) together indicate that the HPQ
281 pathway in *Cyanobacteriota* originated from lateral transfer after their divergence from these sister
282 lineages. Because PQ is central to the functioning of photosystem II in all extant oxygenic
283 photosynthesizers (24, 81), emergence of PQ biosynthesis was likely tied to the evolution of oxygenic
284 photosynthesis and thus may have existed before the radiation of crown group *Cyanobacteriota*. This
285 supports earlier proposals that the extant oxygenic photosynthetic machinery originated in a lineage that
286 diverged from the non-photosynthetic sister lineages (80, 82) but pre-dated the radiation of crown group
287 *Cyanobacteriota* (76). Collectively, these constraints indicate that HPQs are at least as old as oxygenic
288 photosynthesis by *Cyanobacteriota* and therefore predate the GOE.

289 Aerobic metabolism preceding the GOE is supported by the near-universal occurrence of aerobic
290 respiration in crown group *Cyanobacteriota* and *Pseudomonadota*. All basal clades of *Cyanobacteriota*
291 and *Pseudomonadota* possess HPQs and are capable of aerobic respiration, with only few late-
292 branching *Pseudomonadota* being obligate anaerobes (Fig. 3, S10, S12-13). Molecular clocks calibrated
293 using cyanobacteriota fossils place the last common ancestor of crown group *Cyanobacteriota* and the
294 emergence of basal, aerobic *Pseudomonadota* (*Magnetococcia*) around 2.5-3.2 Ga (10, 12, 66–68, 83),
295 whereas aerobic *Nitrospirota* may have emerged shortly after the GOE (66, 71). HPQs were thus likely
296 used for aerobic respiration by the time of the radiation of extant *Cyanobacteriota* and
297 *Pseudomonadota*. Given the constraint that HPQs must have been present in stem-group
298 *Cyanobacteriota* and *Pseudomonadota*, the minimum age of extant HPQs is between 2.5-3.2 Ga,
299 whereas the ancestral HPQ pathway may be as old as crown-group *Bacteria* (3.4-4.1 Ga; Fig. 4d). We
300 therefore suggest that aerobic respiration with high potential ETCs may have originated up to 800 Ma

301 before oxygen permanently accumulated in the atmosphere during the GOE. Microbial mats could have
302 provided a niche for chemoautotrophs and heterotrophs consuming oxygen provided by
303 *Cyanobacteriota* directly (32), preventing escape to the atmosphere.

304 In modern ecosystems, some aerobic bacteria continue to use LPQ- rather than HPQ-dependent
305 ETCs for aerobic respiration (23). In the presence of O₂, reduced HPQs are relatively stable but reduced
306 LPQs are rapidly autoxidized, resulting in the loss of reducing equivalents to O₂ (26, 84). Further,
307 aerobic respiration with LPQs leads to increased formation of deleterious reactive oxygen species (28,
308 85), requiring energy to be expended on the mitigation of cellular damage, thereby decreasing growth
309 rates (28, 86). Finally, the use of LPQs instead of HPQs for proton pumping by complex I is less
310 efficient (87, 88). Given these drawbacks, one might question why all aerobes have not switched from
311 LPQs to HPQs to use oxygen without these disadvantages. The evolution of HPQs was a complex
312 process closely tied to the evolution of the ETC itself, demanding not only the acquisition of a dedicated
313 pathway for quinone biosynthesis, but also an upshift in redox potential of all other ETC components,
314 including hemes and iron-sulfur clusters (27). These complex requirements may explain why the
315 evolution of HPQ was successful only once and lateral transfers were rare. Distinct redox-tuning then
316 led to the extant diversity of HPQ structures and biosynthetic pathways in *Cyanobacteriota*,
317 *Pseudomonadota*, and *Nitrospirota*. Two of the three HPQ pathways were later obtained by eukaryotes,
318 UQ via incorporation of an alphaproteobacterium as the mitochondrion and PQ via incorporation of a
319 cyanobacterium as the chloroplast (58, 89) (Fig. 4d), while mPQ remained exclusively bacterial.
320 Through their high potential ETCs, these lineages were able to rise to dominance in modern oxic
321 ecosystems (32–36), as evidenced by the prevalence of HPQs in modern oxic environments (31, 90).

322 **Material & Methods**

323 Detailed methods can be found in the SI Appendix. Cultures were grown in standard media with or
324 without ¹³C-isotope-labeled compounds and harvested as described in the SI Appendix. Quinones were
325 isolated using solvent extraction and chromatography and structurally characterized using high-
326 performance chromatography coupled to high resolution tandem mass spectrometry or using nuclear
327 magnetic resonance spectroscopy. Candidate genes and their phylogenies were identified using standard

328 genomic and phylogenetic techniques and verified using heterologous complementation in *E. coli*
329 mutants.

330 **Acknowledgements**

331 We thank Susan Carter for laboratory assistance and Colleen Hansel, Gregory Fournier, and C.S.
332 Raman for discussions. Linda L. Jahnke and Mary N. Parenteau are thanked for providing biomass of
333 *G. violaceus*. Fay-Wey Li is thanked for providing the *A. panamensis* culture and Anja Engel for access
334 to UPLC-Orbitrap-MS/MS. Two anonymous reviewers are thanked for comments that helped improve
335 the quality of the manuscript. This work was funded through National Science Foundation grants
336 1702262 and 1843285 (to A.P.), the Gordon and Betty Moore Foundation (to A.P.), and the Deutsche
337 Forschungsgemeinschaft grant 441217575 (to F.J.E). This work was also supported by the French
338 National Research Agency through the grant ANR-21-CE02-0018 (to S.S.A.), and the “Investissements
339 d’Avenir” program (ANR-15-IDEX-02) through the “Origin of Life” project and the IDEX-IRS 2020
340 call of the Grenoble-Alpes University (to S.S.A.). Research at MARUM was supported by the Deutsche
341 Forschungsgemeinschaft via Germany’s Excellence Strategy, no. EXC-2077-390741603. T.W.E.
342 acknowledges funding by the Alexander-von-Humboldt-Stiftung through the Feodor-Lynen-
343 Fellowship. S.L. acknowledges funding by the Netherlands Organisation for Scientific Research
344 (016.Vidi.189.050). Research at MIT was otherwise supported by the NASA Astrobiology Institute
345 Exobiology Program grant number 18-EXXO18-0039. This result is part of a project that has received
346 funding from the European Research Council (ERC) under the European Union’s Horizon 2020
347 research and innovation program (Grant agreement No. 946150, to J.D.H.). Research at Caltech was
348 supported by the NASA Astrobiology Institute Exobiology grant no. 80NSSC19K0480. This research
349 was supported through high-performance computing resources available at the Kiel University
350 Computing Centre. Redox potential calculations were performed on the Euler cluster operated by the
351 High-Performance Computing group at ETH Zurich. The authors thank Coline Fernandes from
352 University Grenoble Alpes for running the ¹H and ¹³C NMR experiments.

353 **Material & Data Availability**

354 All data including alignments and phylogenetic trees are available through the Open Science
355 Framework under doi:10.17605/OSF.IO/KNRW9. Data tables are additionally available in the
356 supplementary materials. Strains are available from the authors upon request.

357 **Code Availability**

358 All code for the calculation of redox potentials is available in the supplementary materials.

359 **Competing Interests**

360 The authors declare no competing interests.

361 **References**

362 1. J. Raymond, The Effect of Oxygen on Biochemical Networks and the Evolution of Complex Life.
363 *Science* **311**, 1764–1767 (2006).

364 2. A. L. Zerkle, *et al.*, Onset of the aerobic nitrogen cycle during the Great Oxidation Event. *Nature*
365 **542**, 465–467 (2017).

366 3. K. O. Konhauser, *et al.*, Aerobic bacterial pyrite oxidation and acid rock drainage during the Great
367 Oxidation Event. *Nature* **478**, 369–373 (2011).

368 4. W. W. Fischer, J. Hemp, J. S. Valentine, How did life survive Earth’s great oxygenation? *Current
369 Opinion in Chemical Biology* **31**, 166–178 (2016).

370 5. D. C. Catling, C. R. Glein, K. J. Zahnle, C. P. McKay, Why O₂ Is Required by Complex Life on
371 Habitable Planets and the Concept of Planetary “Oxygenation Time.” *Astrobiology* **5**, 415–438
372 (2005).

373 6. N. Lane, How energy flow shapes cell evolution. *Current Biology* **30**, R471–R476 (2020).

374 7. A. Bekker, *et al.*, Dating the rise of atmospheric oxygen. *Nature* **427**, 117–120 (2004).

375 8. G. Izon, *et al.*, Bulk and grain-scale minor sulfur isotope data reveal complexities in the dynamics
376 of Earth’s oxygenation. *Proceedings of the National Academy of Sciences* **119**, e2025606119
377 (2022).

378 9. B. T. Uveges, G. Izon, S. Ono, N. J. Beukes, R. E. Summons, Reconciling discrepant minor sulfur
379 isotope records of the Great Oxidation Event. *Nat Commun* **14**, 279 (2023).

380 10. L. A. David, E. J. Alm, Rapid evolutionary innovation during an Archaean genetic expansion.
381 *Nature* **469**, 93–96 (2011).

382 11. J. Jabłońska, D. S. Tawfik, The evolution of oxygen-utilizing enzymes suggests early biosphere
383 oxygenation. *Nature Ecology & Evolution* **5**, 442–448 (2021).

384 12. J. S. Boden, K. O. Konhauser, L. J. Robbins, P. Sánchez-Baracaldo, Timing the evolution of
385 antioxidant enzymes in cyanobacteria. *Nat Commun* **12**, 4742 (2021).

- 386 13. M. Wang, *et al.*, A Universal Molecular Clock of Protein Folds and Its Power in Tracing the Early
387 History of Aerobic Metabolism and Planet Oxygenation. *Molecular Biology and Evolution* **28**,
388 567–582 (2011).
- 389 14. J. Jabłońska, D. S. Tawfik, Innovation and tinkering in the evolution of oxidases. *Protein Science*
390 **31**, e4310 (2022).
- 391 15. M. C. Weiss, *et al.*, The physiology and habitat of the last universal common ancestor. *Nature
392 Microbiology* **1**, 16116 (2016).
- 393 16. J. Castresana, M. Lübben, M. Saraste, D. G. Higgins, Evolution of cytochrome oxidase, an
394 enzyme older than atmospheric oxygen. *EMBO J* **13**, 2516–2525 (1994).
- 395 17. A.-L. Ducluzeau, *et al.*, The evolution of respiratory O₂/NO reductases: an out-of-the-
396 phylogenetic-box perspective. *Journal of The Royal Society Interface* **11**, 20140196–20140196
397 (2014).
- 398 18. C. Brochier-Armanet, E. Talla, S. Gribaldo, The Multiple Evolutionary Histories of Dioxygen
399 Reductases: Implications for the Origin and Evolution of Aerobic Respiration. *Mol Biol Evol* **26**,
400 285–297 (2009).
- 401 19. F. L. Sousa, *et al.*, The superfamily of heme–copper oxygen reductases: Types and evolutionary
402 considerations. *Biochimica et Biophysica Acta (BBA) - Bioenergetics* **1817**, 629–637 (2012).
- 403 20. S. Gribaldo, E. Talla, C. Brochier-Armanet, Evolution of the haem copper oxidases superfamily:
404 a rooting tale. *Trends in Biochemical Sciences* **34**, 375–381 (2009).
- 405 21. R. Murali, J. Hemp, R. B. Gennis, Evolution of quinol oxidation within the heme-copper
406 oxidoreductase superfamily. *Biochimica et Biophysica Acta (BBA) - Bioenergetics* **1863**, 148907
407 (2022).
- 408 22. J. B. Glass, C. E. Elbon, L. D. Williams, Something old, something new, something borrowed,
409 something blue: the anaerobic microbial ancestry of aerobic respiration. *Trends in Microbiology*
410 **31**, 135–141 (2023).
- 411 23. M. D. Collins, D. Jones, Distribution of Isoprenoid Quinone Structural Types in Bacteria and
412 Their Taxonomic Implications. *Microbiological Reviews* **45**, 316–354 (1981).
- 413 24. B. Nowicka, J. Kruk, Occurrence, biosynthesis and function of isoprenoid quinones. *Biochimica
414 et Biophysica Acta (BBA) - Bioenergetics* **1797**, 1587–1605 (2010).
- 415 25. B. Schoepp-Cothenet, *et al.*, On the universal core of bioenergetics. *Biochimica et Biophysica
416 Acta (BBA) - Bioenergetics* **1827**, 79–93 (2013).
- 417 26. B. Schoepp-Cothenet, *et al.*, Menaquinone as pool quinone in a purple bacterium. *Proceedings of
418 the National Academy of Sciences* **106**, 8549–8554 (2009).
- 419 27. L. Bergdoll, F. ten Brink, W. Nitschke, D. Picot, F. Baymann, From low- to high-potential
420 bioenergetic chains: Thermodynamic constraints of Q-cycle function. *Biochimica et Biophysica
421 Acta (BBA) - Bioenergetics* **1857**, 1569–1579 (2016).
- 422 28. A. Anand, *et al.*, Adaptive evolution reveals a tradeoff between growth rate and oxidative stress
423 during naphthoquinone-based aerobic respiration. *PNAS* **116**, 25287–25292 (2019).

- 424 29. A. Oren, G. M. Garrity, Valid publication of the names of forty-two phyla of prokaryotes.
425 *International Journal of Systematic and Evolutionary Microbiology* **71**, 005056 (2021).
- 426 30. P. López-García, L. Eme, D. Moreira, Symbiosis in eukaryotic evolution. *Journal of Theoretical*
427 *Biology* **434**, 20–33 (2017).
- 428 31. K. W. Becker, *et al.*, Isoprenoid Quinones Resolve the Stratification of Redox Processes in a
429 Biogeochemical Continuum from the Photic Zone to Deep Anoxic Sediments of the Black Sea.
430 *Applied and Environmental Microbiology* **84**, e02736-17 (2018).
- 431 32. N. Finke, *et al.*, Mesophilic microorganisms build terrestrial mats analogous to Precambrian
432 microbial jungles. *Nat Commun* **10**, 4323 (2019).
- 433 33. M. Delgado-Baquerizo, *et al.*, A global atlas of the dominant bacteria found in soil. *Science* **359**,
434 320–325 (2018).
- 435 34. N. Lang-Yona, *et al.*, Terrestrial and marine influence on atmospheric bacterial diversity over the
436 north Atlantic and Pacific Oceans. *Commun Earth Environ* **3**, 121 (2022).
- 437 35. S. Nayfach, *et al.*, A genomic catalog of Earth’s microbiomes. *Nat Biotechnol* **39**, 499–509
438 (2021).
- 439 36. S. Sunagawa, *et al.*, Structure and function of the global ocean microbiome. *Science* **348**,
440 1261359–1261359 (2015).
- 441 37. S. S. Abby, K. Kazemzadeh, C. Vragniau, L. Pelosi, F. Pierrel, Advances in bacterial pathways
442 for the biosynthesis of ubiquinone. *Biochimica et Biophysica Acta (BBA) - Bioenergetics* **1861**,
443 148259 (2020).
- 444 38. H. Daims, “The Family *Nitrospiraceae*” in *The Prokaryotes: Other Major Lineages of Bacteria*
445 and *The Archaea*, E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, F. Thompson, Eds.
446 (Springer, 2014), pp. 733–749.
- 447 39. H. Yu, G. L. Chadwick, U. F. Lingappa, J. R. Leadbetter, Comparative Genomics on Cultivated
448 and Uncultivated Freshwater and Marine “*Candidatus Manganitrophaceae*” Species Implies Their
449 Worldwide Reach in Manganese Chemolithoautotrophy. *mBio* **13**, e03421-21 (2022).
- 450 40. H. Daims, S. Lücker, M. Wagner, A New Perspective on Microbes Formerly Known as Nitrite-
451 Oxidizing Bacteria. *Trends in Microbiology* **24**, 699–712 (2016).
- 452 41. G. M. Garrity, J. G. Holt, “Phylum BVIII. Nitrospirae phy. nov.” in *Bergey’s Manual of*
453 *Systematic Bacteriology: Volume One: The Archaea and the Deeply Branching and Phototrophic*
454 *Bacteria*, (Springer New York, 2001), pp. 451–464.
- 455 42. H. Yu, J. R. Leadbetter, Bacterial chemolithoautotrophy via manganese oxidation. *Nature* **583**,
456 453–458 (2020).
- 457 43. S. Lücker, *et al.*, A *Nitrospira* metagenome illuminates the physiology and evolution of globally
458 important nitrite-oxidizing bacteria. *Proceedings of the National Academy of Sciences* **107**,
459 13479–13484 (2010).
- 460 44. G. Levicán, *et al.*, Comparative Genomic Analysis Reveals Novel Facts about *Leptospirillum* spp.
461 Cytochromes. *MIP* **22**, 94–104 (2012).

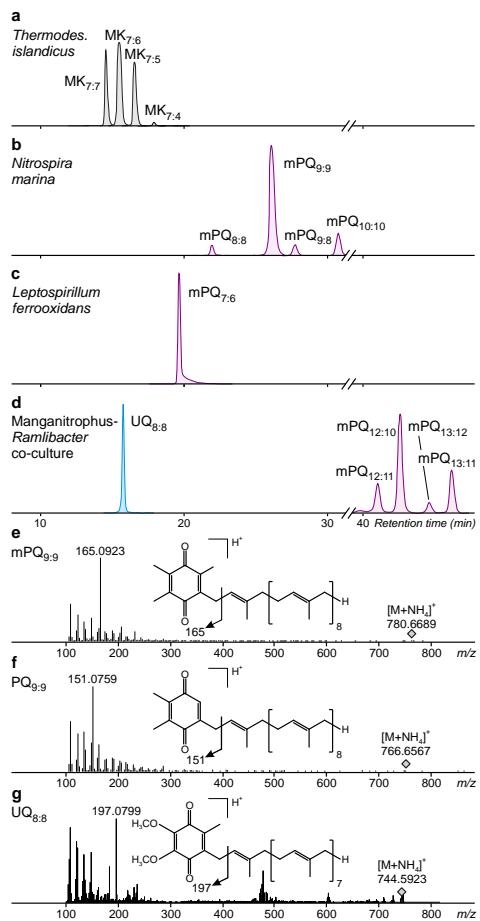
- 462 45. Y. A. Frank, *et al.*, Characterization and Genome Analysis of the First Facultatively Alkaliphilic
463 *Thermodesulfovibrio* Isolated from the Deep Terrestrial Subsurface. *Frontiers in Microbiology* **7**
464 (2016).
- 465 46. S. Zecchin, *et al.*, Rice Paddy *Nitrospirae* Carry and Express Genes Related to Sulfate
466 Respiration: Proposal of the New Genus “*Candidatus Sulfobium*.” *Applied and Environmental
467 Microbiology* **84** (2018).
- 468 47. F. J. Elling, *et al.*, Marine and terrestrial nitrifying bacteria are sources of diverse
469 bacteriohopanepolyols. *Geobiology* **20**, 399–420 (2022).
- 470 48. R. Sadre, C. Pfaff, S. Buchkremer, Plastoquinone-9 biosynthesis in cyanobacteria differs from
471 that in plants and involves a novel 4-hydroxybenzoate solanesyltransferase. *Biochemical Journal*
472 **442**, 621–629 (2012).
- 473 49. C. Pfaff, N. Glindemann, J. Gruber, M. Frentzen, R. Sadre, Chorismate Pyruvate-Lyase and 4-
474 Hydroxy-3-solanesylbenzoate Decarboxylase Are Required for Plastoquinone Biosynthesis in the
475 Cyanobacterium *Synechocystis* sp. PCC6803. *J. Biol. Chem.* **289**, 2675–2686 (2014).
- 476 50. Y. Sakuragi, D. A. Bryant, “Genetic Manipulation of Quinone Biosynthesis in Cyanobacteria” in
477 *Photosystem I: The Light-Driven Plastocyanin: Ferredoxin Oxidoreductase*, Advances in
478 Photosynthesis and Respiration., J. H. Golbeck, Ed. (Springer Netherlands, 2006), pp. 205–222.
- 479 51. P. T. Lee, A. Y. Hsu, H. T. Ha, C. F. Clarke, A C-methyltransferase involved in both ubiquinone
480 and menaquinone biosynthesis: isolation and identification of the *Escherichia coli ubiE* gene.
481 *Journal of Bacteriology* **179**, 1748–1754 (1997).
- 482 52. Z. Cheng, *et al.*, Highly Divergent Methyltransferases Catalyze a Conserved Reaction in
483 Tocopherol and Plastoquinone Synthesis in Cyanobacteria and Photosynthetic Eukaryotes. *The
484 Plant Cell* **15**, 2343–2356 (2003).
- 485 53. L. Pelosi, *et al.*, Evolution of Ubiquinone Biosynthesis: Multiple Proteobacterial Enzymes with
486 Various Regioselectivities To Catalyze Three Contiguous Aromatic Hydroxylation Reactions.
487 *mSystems* **1**, e00091-16 (2016).
- 488 54. H. Nagatani, *et al.*, UbiN, a novel *Rhodobacter capsulatus* decarboxylative hydroxylase involved
489 in aerobic ubiquinone biosynthesis. *FEBS Open Bio* **13**, 2081–2093 (2023).
- 490 55. K. Kazemzadeh, *et al.*, Diversification of Ubiquinone Biosynthesis via Gene Duplications,
491 Transfers, Losses, and Parallel Evolution. *Molecular Biology and Evolution* **40**, msad219 (2023).
- 492 56. M. T. Huynh, C. W. Anson, A. C. Cavell, S. S. Stahl, S. Hammes-Schiffer, Quinone 1 e[−] and 2 e[−]
493 /2 H⁺ Reduction Potentials: Identification and Analysis of Deviations from Systematic Scaling
494 Relationships. *J. Am. Chem. Soc.* **138**, 15903–15910 (2016).
- 495 57. F. ten Brink, B. Schoepp-Cothenet, R. van Lis, W. Nitschke, F. Baymann, Multiple Rieske/cytb
496 complexes in a single organism. *Biochimica et Biophysica Acta (BBA) - Bioenergetics* **1827**,
497 1392–1406 (2013).
- 498 58. M. Degli Esposti, A Journey across Genomes Uncovers the Origin of Ubiquinone in
499 Cyanobacteria. *Genome Biol Evol* **9**, 3039–3053 (2017).
- 500 59. D. H. Parks, *et al.*, GTDB: an ongoing census of bacterial and archaeal diversity through a
501 phylogenetically consistent, rank normalized and complete genome-based taxonomy. *Nucleic
502 Acids Research* **50**, D785–D794 (2022).

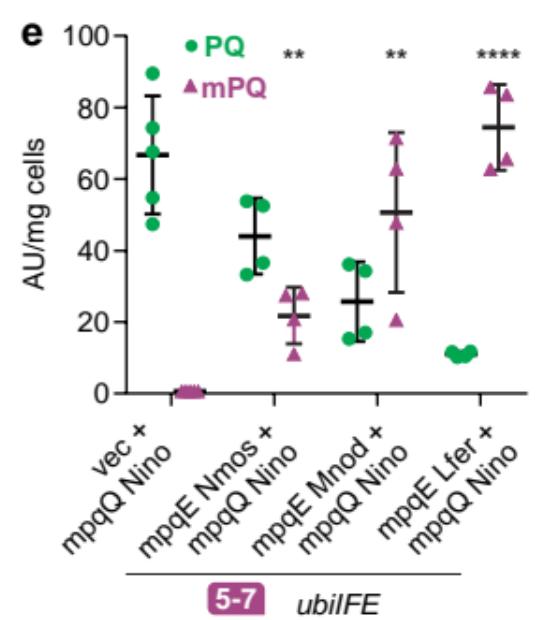
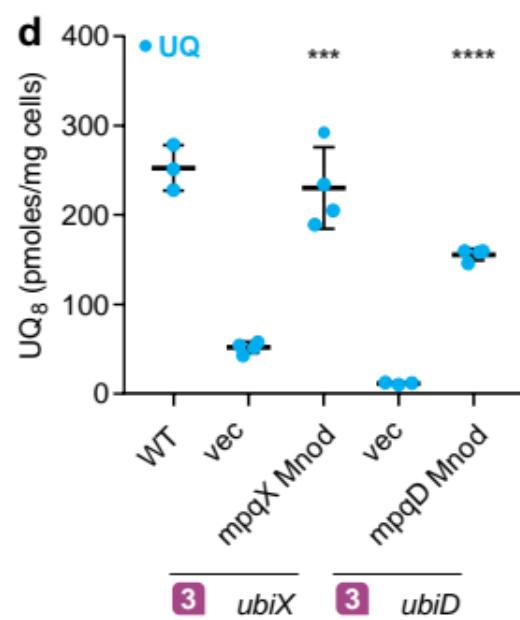
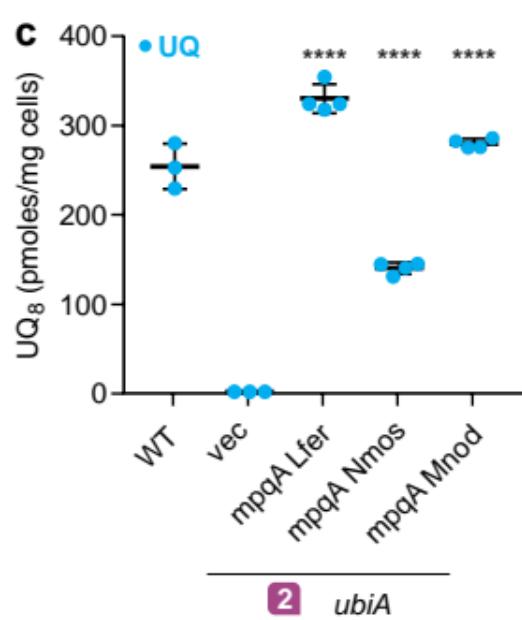
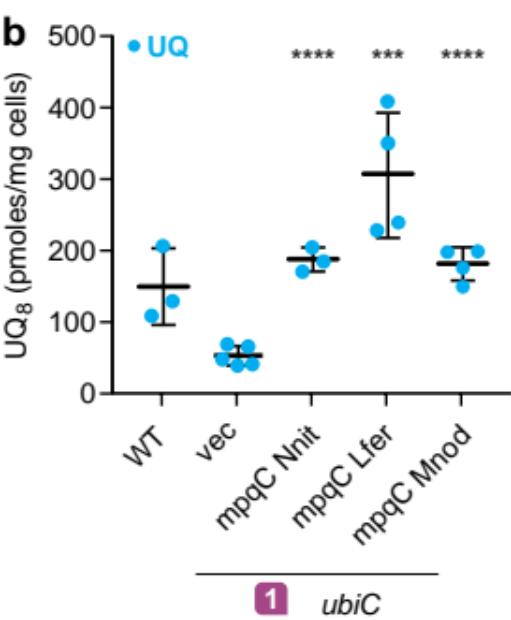
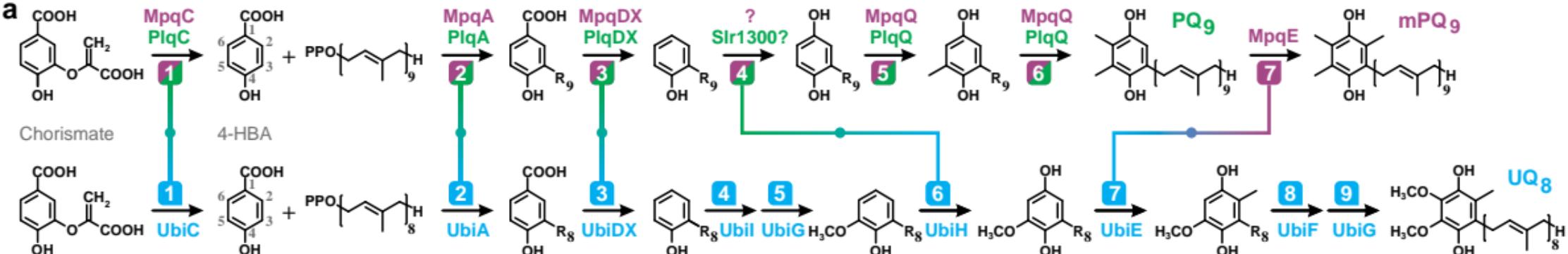
- 503 60. G. A. Coleman, *et al.*, A rooted phylogeny resolves early bacterial evolution. *Science* **372**,
504 eabe0511 (2021).
- 505 61. F. U. Battistuzzi, S. B. Hedges, A Major Clade of Prokaryotes with Ancient Adaptations to Life
506 on Land. *Molecular Biology and Evolution* **26**, 335–343 (2009).
- 507 62. L. Stutts, *et al.*, The evolution of strictly monofunctional naphthoquinol C-methyltransferases is
508 vital in cyanobacteria and plastids. *The Plant Cell* **35**, 3686–3696 (2023).
- 509 63. B. Eickmann, *et al.*, Isotopic evidence for oxygenated Mesoarchaean shallow oceans. *Nature
510 Geosci* **11**, 133–138 (2018).
- 511 64. F. Ossa Ossa, *et al.*, Limited oxygen production in the Mesoarchean ocean. *Proc Natl Acad Sci
512 USA* **116**, 6647–6652 (2019).
- 513 65. S. L. Olson, L. R. Kump, J. F. Kasting, Quantifying the areal extent and dissolved oxygen
514 concentrations of Archean oxygen oases. *Chemical Geology* **362**, 35–43 (2013).
- 515 66. A. A. Davín, *et al.*, An evolutionary timescale for Bacteria calibrated using the Great Oxidation
516 Event. [Preprint] (2023). Available at: <https://www.biorxiv.org/content/10.1101/2023.08.08.552427v1> [Accessed 28 April 2024].
- 518 67. G. P. Fournier, *et al.*, The Archean origin of oxygenic photosynthesis and extant cyanobacterial
519 lineages. *Proceedings of the Royal Society B: Biological Sciences* **288**, 20210675 (2021).
- 520 68. T. Oliver, P. Sánchez-Baracaldo, A. W. Larkum, A. W. Rutherford, T. Cardona, Time-resolved
521 comparative molecular evolution of oxygenic photosynthesis. *Biochimica et Biophysica Acta (BBA) - Bioenergetics* **1862**, 148400 (2021).
- 523 69. C. Magnabosco, K. R. Moore, J. M. Wolfe, G. P. Fournier, Dating phototrophic microbial lineages
524 with reticulate gene histories. *Geobiology* **16**, 179–189 (2018).
- 525 70. P. M. Shih, J. Hemp, L. M. Ward, N. J. Matzke, W. W. Fischer, Crown group Oxyphotobacteria
526 postdate the rise of oxygen. *Geobiology* **15**, 19–29 (2017).
- 527 71. L. M. Ward, D. T. Johnston, P. M. Shih, Phanerozoic radiation of ammonia oxidizing bacteria.
528 *Scientific Reports* **11**, 2070 (2021).
- 529 72. X.-Y. Zhi, *et al.*, The Futarosine Pathway Played an Important Role in Menaquinone Biosynthesis
530 during Early Prokaryote Evolution. *Genome Biology and Evolution* **6**, 149–160 (2014).
- 531 73. D. A. Ravcheev, I. Thiele, Genomic Analysis of the Human Gut Microbiome Suggests Novel
532 Enzymes Involved in Quinone Biosynthesis. *Front. Microbiol.* **7**, 128 (2016).
- 533 74. C. A. Cotrim, *et al.*, A Distinct Aromatic Prenyltransferase Associated with the Futarosine
534 Pathway. *ChemistrySelect* **2**, 9319–9325 (2017).
- 535 75. W. W. Fischer, J. Hemp, J. E. Johnson, Manganese and the Evolution of Photosynthesis. *Orig
536 Life Evol Biosph* **45**, 351–357 (2015).
- 537 76. T. Cardona, J. W. Murray, A. W. Rutherford, Origin and Evolution of Water Oxidation before the
538 Last Common Ancestor of the Cyanobacteria. *Molecular Biology and Evolution* **32**, 1310–1328
539 (2015).
- 540 77. A.-L. Ducluzeau, *et al.*, Was nitric oxide the first deep electron sink? *Trends in Biochemical
541 Sciences* **34**, 9–15 (2009).

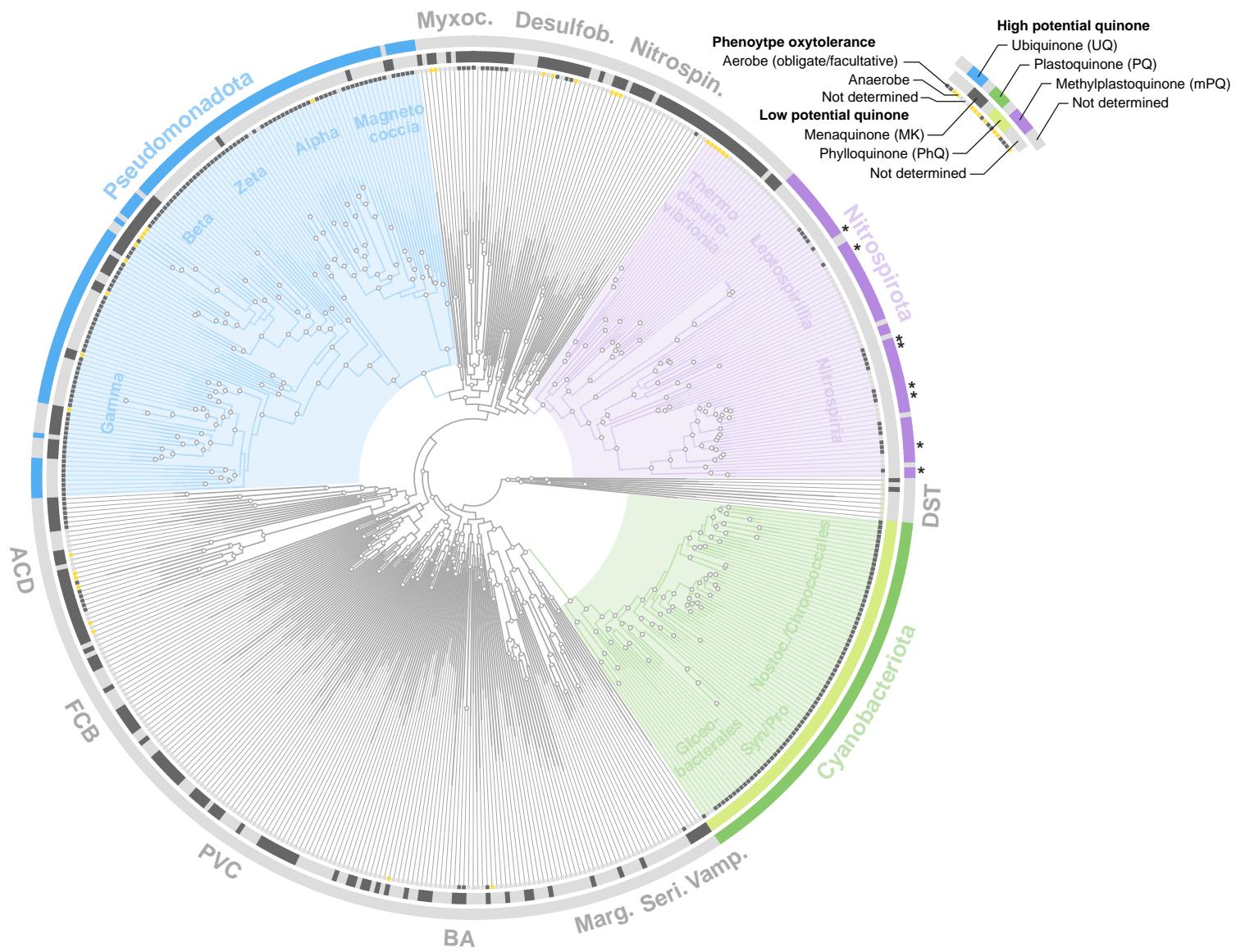
- 542 78. R. Riding, P. Fralick, L. Liang, Identification of an Archean marine oxygen oasis. *Precambrian*
543 *Research* **251**, 232–237 (2014).
- 544 79. K. M. Kim, *et al.*, Protein Domain Structure Uncovers the Origin of Aerobic Metabolism and the
545 Rise of Planetary Oxygen. *Structure* **20**, 67–76 (2012).
- 546 80. W. W. Fischer, J. Hemp, J. E. Johnson, Evolution of Oxygenic Photosynthesis. *Annual Review of*
547 *Earth and Planetary Sciences* **44**, 647–683 (2016).
- 548 81. M. Havaux, Plastoquinone In and Beyond Photosynthesis. *Trends in Plant Science* **25**, 1252–1265
549 (2020).
- 550 82. R. M. Soo, J. Hemp, D. H. Parks, W. W. Fischer, P. Hugenholtz, On the origins of oxygenic
551 photosynthesis and aerobic respiration in Cyanobacteria. *Science* **355**, 1436–1440 (2017).
- 552 83. F. Garcia-Pichel, *et al.*, Timing the Evolutionary Advent of Cyanobacteria and the Later Great
553 Oxidation Event Using Gene Phylogenies of a Sunscreen. *mBio* **10**, e00561-19 (2019).
- 554 84. S. Korshunov, J. A. Imlay, Detection and Quantification of Superoxide Formed within the
555 Periplasm of *Escherichia coli*. *Journal of Bacteriology* **188**, 6326–6334 (2006).
- 556 85. A. Nitzschke, K. Bettenbrock, All three quinone species play distinct roles in ensuring optimal
557 growth under aerobic and fermentative conditions in *E. coli* K12. *PLoS One* **13**, e0194699 (2018).
- 558 86. M. Khademian, J. A. Imlay, How Microbes Evolved to Tolerate Oxygen. *Trends in Microbiology*
559 **29**, 428–440 (2021).
- 560 87. E. Nakamaru-Ogiso, M. Narayanan, J. A. Sakiyama, Roles of semiquinone species in proton
561 pumping mechanism by complex I. *J Bioenerg Biomembr* **46**, 269–277 (2014).
- 562 88. U. Brandt, A two-state stabilization-change mechanism for proton-pumping complex I. *Biochimica et*
563 *Biophysica Acta (BBA) - Bioenergetics* **1807**, 1364–1369 (2011).
- 564 89. W. F. Martin, S. Garg, V. Zimorski, Endosymbiotic theories for eukaryote origin. *Philosophical*
565 *Transactions of the Royal Society B: Biological Sciences* **370**, 20140330 (2015).
- 566 90. A. Hiraishi, *et al.*, Significance of Lipoquinones as Quantitative Biomarkers of Bacterial
567 Populations in the Environment. *Microbes and Environments* **18**, 89–93 (2003).
- 568

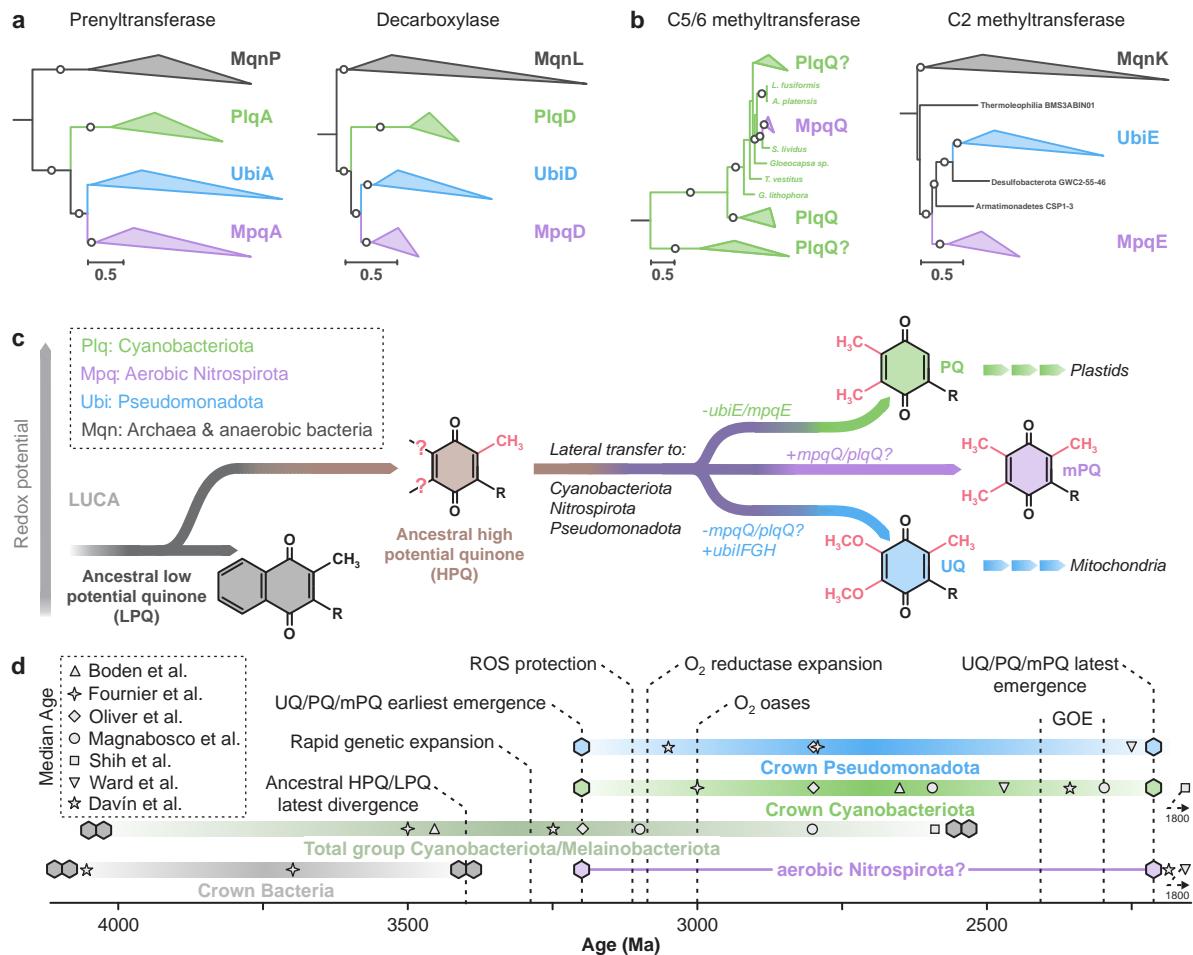
569 **Figure legends**

570 **Fig. 1. Novel quinones detected in aerobic *Nitrospirota*.** **a-d**, Chromatograms showing presence of a distinct
571 quinone type (methyl-plastoquinone, mPQ) in aerobic *Nitrospirota* (*Nitrospira marina*, *Leptospirillum*
572 *ferrooxidans*, *Ca. Manganitrophus noduliformans*) and canonical menaquinones (MK) in the anaerobic
573 *Nitrospirota* species *Thermodesulfovibrio islandicus*. Ubiquinone (UQ_{8:8}) in the *Ca. Manganitrophus-Ramlibacter*
574 co-culture derives from *Ramlibacter* (see Fig. S1). **e-g**, High resolution mass spectrometric characterization of
575 mPQ_{9:9} and PQ_{9:9} showing similar fragmentation patterns but suggesting the presence of a trimethyl-benzoquinone
576 moiety in mPQ_{9:9} (see Fig. S1); structure and fragmentation pattern of UQ_{8:8} from *Ramlibacter* shown in **g** for
577 reference.


578






579 **Fig. 2. Characterization of the mPQ biosynthetic pathway.** **a**, Biosynthetic pathways of quinones showing
580 homology of pathways for mPQ₉ in *Nitrospirota* (purple), PQ₆ in the cyanobacterium *Synechocystis* sp. PCC6803


581 (green) and UQ₈ in the gammaproteobacterium *Escherichia coli* (blue). Biosynthetic steps are numbered, and
582 homologous steps are connected by colored lines. **b-d**, Heterologous complementation experiments using mPQ
583 biosynthesis gene candidates to restore UQ₈ production in *E. coli* mutants lacking key genes for ubiquinone
584 biosynthesis ($\Delta ubiC+mpqC$, $\Delta ubiA+mpqA$, $\Delta ubiX+mpqX$, $\Delta ubiD+mpqD$). **e**, PQ production in *E. coli* $\Delta ubiIFE$
585 mutants complemented with *mpqQ* from *N. inopinata* as well as PQ and mPQ in *E. coli* $\Delta ubiIFE$ mutants
586 complemented with *mpqQ* from *N. inopinata* and *mpqE* from other *Nitrospirota*. WT=wild type; vec=empty
587 vector; thick bars represent means and error bars represent standard deviations of the means, $n=3-5$; AU=arbitrary
588 units. Abbreviations: *Ca.* *N. nitrificans* (Nnit), *N. moscoviensis* (Nmos), *N. inopinata* (Nino), *L. ferrooxidans*
589 (Lfer), *Ca.* *M. noduliformans* (Mnod). The numbering of the carbon atoms on the 4-HBA precursor (panel **a**, light
590 grey) defines the nomenclature for all intermediates described in the text. The octaprenyl and nonaprenyl chains
591 are abbreviated with R₈ and R₉, respectively. See Fig. S7-S9 for details on compound identification and
592 quantification. Stars indicate $p < 0.01$ (**), $p < 0.001$ (***), and $p < 0.0001$ (****) for unpaired Student's *t* tests
593 relative to the empty vector.


594
595 **Fig. 3. Phylogenetic tree of bacteria showing the occurrence of respiratory quinones.** Quinones with high
596 redox potential (UQ, PQ, mPQ) occur only in aerobic *Nitrospirota*, *Pseudomonadota*, and *Cyanobacteriota*. Low
597 potential quinones occur in anaerobic *Nitrospirota* (MK), some *Pseudomonadota* (MK), and all *Cyanobacteriota*
598 (PhQ). Asterisks indicate strains in which presence of mPQ has been verified experimentally. See Fig. S11-13 for
599 detailed trees. The maximum-likelihood phylogenetic tree was constructed from 120 concatenated single copy
600 marker proteins (59) of 547 isolate genomes and metagenome-assembled genomes, covering all bacterial phyla,
601 and rooted using the DST group to approximate the bacterial root (60, 61). Quinone occurrences were derived
602 from instrumental analysis of isolates or inferred from the presence of key biosynthesis genes (SI results;
603 Supplementary Datafile S3; including literature data). Phenotype oxytolerance was curated from strain
604 descriptions. Selected classes/orders denoted inside of rings. Selected phyla denoted outside of rings: ACD,
605 *Aquificota-Campylobacterota-Deferribacterota*; Desulfob., *Desulfobacterota*; DST, *Deinococcota-Synergistota*-
606 *Thermotogota*; BA, *Bacillota-Actinomycetota*; FCB, *Fibrobacterota-Chloroflexota-Bacteroidota*; Marg.,
607 *Candidatus Margulisbacteria*; Myxoc., *Myxococcota*; Nitrospin., *Nitrospinota*; PVC, *Planctomycetota*-
608 *Verrucomicrobiota-Chlamydiota*; Seri., *Candidatus Sericytochromatia*; Vamp., *Vampirovibrionophyceae*. Circles
609 indicate ultra-fast bootstrap support $\geq 95\%$.
610

611 **Fig. 4. High-potential quinones (HPQ) share a single origin predating the great oxygenation event.** **a**,
612 Phylogenetic trees of HPQ biosynthesis proteins demonstrating that prenyltransferases and decarboxylases of the
613 ubiquinone (UQ, UbiAD), plastoquinone (PQ, PlqAD), and methylplastoquinone (mPQ, MpqAD) pathways form
614 sister clades of the archaeal and bacterial fumalosine pathway for biosynthesis of menaquinone (MK, MqnPL). **b**,
615 Phylogenetic trees of quinone C5/C6 (PlqQ, MpqQ) and C2 methyltransferases (UbiE, MpqE), showing a nested
616 topology of C5/C6 methyltransferases and that C2 methyltransferases form a sister lineage of menaquinone-
617 associated methyltransferases (MqnK). Outgroups used for rooting the trees are not shown but discussed in the
618 Supplementary Information. Scale bars indicate 0.5 substitutions per site. Open circles indicate ultra-fast bootstrap
619 support $\geq 95\%$. **c**, Conceptual sketch of HPQ evolution and resulting redox potentials, based on the trees in panels
620 a-b. **d**, Timescale of LPQ and HPQ evolution (colors as in panel c; based on panels 4a-b and the observation that
621 the last common ancestors of *Pseudomonadota*, *Cyanobacteriota*, and aerobic *Nitrospirota* contained UQ, PQ,
622 and mPQ, respectively) in relation to geochemical changes (evidence for localized O₂ oases (63–65), the great
623 oxygenation event, GOE (7)) and biological innovations (Archean rapid genetic expansion (10), evolution of
624 enzymes protecting against reactive oxygen species (ROS) (12), expansion of O₂ reductase diversity (11)). Shaded
625 hexagons indicate minimum and maximum estimates of HPQ evolution timescale. Open symbols indicate median
626 ages (colored bars: uncertainty range; quinone symbols: upper/lower estimate) of relevant clades estimated by
627 previous molecular clock analyses (Boden et al. (12); Davín et al. (66); Fournier et al. (67); Oliver et al. (68);
628 Magnabosco et al. (69); Shih et al. (70); Ward et al. (71)). The earliest date of UQ/PQ/mPQ emergence is set as
629 the earliest estimate of the radiation of crown Cyanobacteria, Pseudomonadota, and (aerobic) Nitrospirota
630 assuming that UQ, PQ, or mPQ were present in the last common ancestor of each clade.

