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Abstract

Satellite cells are muscle-resident stem cells that maintain and repair muscle. Increasing evidence
supports the contributing role of satellite cells in Duchenne muscular dystrophy (DMD), a lethal
degenerative muscle disease caused by loss of dystrophin. However, whether or not satellite cells
exhibit dysfunction due to loss of dystrophin remains unresolved. Here, we used single cell RNA-
sequencing (scRNA-seq) to determine how dystrophin deficiency impacts the satellite cell
transcriptome and cellular composition by comparing satellite cells from mdx and the more severe D2-
mdx DMD mouse models. DMD satellite cells were disproportionally found within myogenic
progenitor clusters and a previously uncharacterized DMD enriched cluster. Despite exposure to
different dystrophic environments, mdx and D2-mdx satellite cells exhibited overlapping dysregulation
in gene expression and associated biological pathways. When comparing satellite stem cell versus
myogenic progenitor populations, we identified unique dysfunctions between DMD and healthy
satellite cells including apoptotic cell death and senescence, respectively. Pseudotime analyses revealed
differences in cell fate trajectories indicating that DMD satellite cells are stalled in their differentiation
capacity. In vivo regeneration assays confirmed that DMD satellite cells exhibit impaired myogenic
gene expression and cell fate dynamics during regenerative myogenesis. These defects in
differentiation capacity are accompanied by impaired senescence and autophagy dynamics. Finally, we
demonstrate that inducing autophagy can rescue differentiation of DMD progenitors. Our findings
provide novel molecular evidence of satellite cell dysfunction in DMD, expanding on our
understanding of their role in its pathology and suggesting pathways to target and enhance their

regenerative capacity.
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Introduction

Satellite cells, which are muscle-resident stem cells, are responsible for postnatal muscle growth,
maintenance of muscle homeostasis, and muscle repair in response to damage!. Upon a regeneration-
inducing stimulus, satellite cells activate and undergo myogenic commitment, transitioning into
proliferative myogenic progenitors (known as myoblasts), and subsequently terminally differentiate
into myocytes that undergo fusion to help repair damaged myofibers?. This process, known as

regenerative myogenesis, is critically dependent on satellite cells® >,

Recent advancement of single-cell transcriptomic technologies has allowed for the characterization of
satellite cell populations from resting and regenerating muscle. These studies have not only confirmed
the heterogenous nature of the satellite cell population and the myogenic trajectory of satellite cells
following injury but have also revealed distinct gene expression signatures that occur due to tissue
dissociation procedures® - % %19 Additionally, we have information pertaining to the impact of aging
and muscle degenerative diseases on satellite cell heterogeneity and transcriptional changes at the

single-cell level'! 12, 1314, 15,16

Duchenne muscular dystrophy (DMD), which impacts one in every 5,000 male births worldwide, is
caused by mutations in the X-linked DMD gene, which lead to the loss of expression of the protein
product dystrophin!’. The vast heterogeneity of DMD mutations, the large size of the DMD gene, and
the inefficient transduction of muscle tissue and satellite cells have impeded therapeutic development
resulting in a critical need for a cure for this lethal disease. In healthy muscle, dystrophin is an integral
component of the dystrophin glycoprotein complex (DGC), a large multimeric protein complex that
spans the myofiber membrane, maintaining its integrity and stability'3- 1% 20, Dystrophin is also
expressed in satellite cells, where it mediates the establishment of cell polarity to enable asymmetric

stem cell division?!. Accumulating evidence supports the notion that dystrophin-deficient satellite cells

3



81  exhibit intrinsic dysfunction which leads to impaired regenerative capacity?* 2> 2*, However, whether
82  satellite cells are directly impacted by dystrophin loss or indirectly affected due to the chronic
83  degenerative niche, and the extent to which satellite cell dysfunction contributes to DMD pathology,
84  has yet to be resolved. A question of particular interest is whether dystrophin-deficient satellite cells are
85  fully capable of undergoing regenerative myogenesis and successfully contributing to muscle repair.
86
87  We sought to establish how loss of dystrophin impacts satellite cells in both moderate and severe
88  mouse models of DMD. The mdx mouse is the most widely used DMD mouse model®>. However,
89  despite harboring a naturally occurring null mutation in the Dmd gene, these mice exhibit a mild
90 dystrophic phenotype and minimal reduction in lifespan. In contrast, D2-mdx mice, which are mdx
91 mice with a DBA/2 genetic background, exhibit a severe dystrophic pathology and a reduced lifespan
92  of 12-18 months?%27. We performed single-cell RNA-sequencing (scRNA-seq) on satellite cells
93  enriched from mdx, D2-mdx, and their respective wildtype counterparts to assess the impact of
94  dystrophin-deficiency on the satellite cell transcriptome and stem cell fate.
95
96 Interestingly, the majority of differentially expressed genes between the satellite cells of each DMD
97  model and their respective controls overlapped between the two DMD models, indicating molecular
98 impairments that are independent of the dystrophic niche. We identified distinct impairments in DMD
99  satellite cells (apoptosis) and DMD myogenic progenitors (cellular senescence). Additionally, we
100  characterized a DMD-specific satellite cell subpopulation that suggests an alternative, stalled
101  differentiation fate. /n vivo functional validation assays confirmed that DMD satellite cells exhibit
102  impaired myogenic differentiation along with altered senescence and autophagy dynamics during
103  regenerative myogenesis. Importantly, correcting these satellite cell dysfunctions has the potential to
104  improve regenerative capacity, which is a critical step forward for addressing muscle repair deficits in

105 muscle degenerative diseases.
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Results

Altered muscle regeneration and satellite cell profiles in mdx and D2-mdx mice

To characterize muscle degeneration and the muscle-resident satellite cells in mild and severe DMD
mouse models, we isolated tibialis anterior (TA) muscles from three-month-old mdx and D2-mdx mice,
along with their respective wildtype counterparts C57BL/10ScSn (B10) and DBA/2 (DBA).
Hematoxylin and eosin staining of TA cross-sections from mdx and D2-mdx mice revealed signs of
chronic muscle degeneration (Fig. 1A) and significantly larger mean myofiber size (Fig. 1B, P =

0.0049 for mdx and P = 0.0217 for D2-mdx).

We performed immunostaining for embryonic myosin heavy chain (eMyHC) and quantified the
number of centrally nucleated myofibers on TA cross-sections to assess regeneration (Fig. 1C). While
wildtype muscles exhibited little to no eMyHC+ or centrally nucleated myofibers, mdx and D2-mdx
dystrophic muscles exhibited a significant increase in both the percentage of eMyHC+ myofibers and
incidence of myofibers with centrally located nuclei (Fig. 1D-E). To assess satellite cell content, we
performed immunostaining of TA cross-sections for the canonical satellite cell marker PAX7 (Fig. 1F).
As previously reported, we found that mdx TA muscles have an increased number of PAX7+ satellite
cells compared to B10 controls?® ?°. In contrast, D2-mdx mice exhibited significantly lower numbers of
PAX7+ satellite cells compared to DBA controls (Fig. 1G). When comparing mdx and D2-mdx, D2-
mdx muscles had significantly less satellite cells compared to mdx (P = 0.019). Reduced numbers of
satellite cells have been observed in DBA mice compared to C57BL/6 mice following repeated
injuries, suggesting that differences in satellite cell content due to genetic background along with
enhanced TGF-B activity contribute to the overall reduced regenerative capacity of D2-mdx muscles®®
30, Consistent with this, we observe that mdx muscles exhibit chronic regeneration and enhanced
satellite cell numbers, while D2-mdx muscles, despite also showing increased regeneration compared to

their wildtype counterpart DBA, have significantly reduced satellite cell content and less regeneration
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compared to mdx (Fig. 1D, E, G). Altogether, these findings indicate unique differences in satellite cell

and muscle regeneration phenotypes between these commonly used mdx and D2-mdx DMD models.

scRNA-seq reveals differences in satellite cell distribution between healthy and dystrophic muscle
To focus on the satellite cell population, we performed scRNA-seq on prospectively isolated satellite
cells from the hindlimb muscles of mdx and D2-mdx mice, along with their wild-type counterparts (Fig.
S1A)*!. Sequences from the four individual libraries were integrated and cell clustering was performed
and visualized using uniform manifold approximation projection (UMAP) (Fig. S1B-C). Cell clusters
were identified by examining highly expressed genes unique to each cluster and comparing these with
published scRNA-seq data sets from satellite cells and whole muscle”-® % 19 (Fig. SID). While the
majority of our isolated cell population were satellite cells and myogenic progenitors (72.48-96.47%),
we also detected the presence of pericyte, vascular smooth muscle, glial, Schwann, white blood, and

endothelial cells (Fig. S1E-F).

Following the removal of non-myogenic and mature myonuclei cell types, sub-clustering of satellite
and myogenic progenitor cells resulted in the identification of seven transcriptionally distinct clusters
(Fig. 2A and S2A). Based on their gene expression signature, we designated these clusters as muscle
stem cell (MuSC) 1, MuSC 2, MuSC 3, cycling progenitor, differentiating myocyte, a population
comprised mainly of satellite cells from mdx and D2-mdx mice (which we termed DMD enriched), and

immunomyoblast (Fig. 2B).

As expected from satellite cells isolated from healthy and homeostatic resting muscle (B10 and DBA),
the majority of wildtype satellite cells were found within the three MuSC clusters (93.84% in B10 and
94.01% in DBA), which express high levels of Pax7 and Myf5 (Fig. 2B-E). To identify where these

MuSC clusters lie along the myogenic differentiation trajectory we performed gene annotation analysis
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on genes significantly upregulated by cells within these clusters (Fig. S2B-C). Clusters MuSC 1 and 2
uniquely expressed genes related to cell adhesion, while the MuSC 3 cluster uniquely expressed genes
related to RNA transcription (Fig. S2C). Transcriptional regulatory relationships unraveled by
sentence-based text-mining (TRRUST) analysis of these gene lists revealed that the MuSC 3 cluster is
highly enriched for genes regulated by transcription factors associated with satellite cell activation,
including Stat3, Fos, and Jun®% 33 (Fig. S2D). Together, these results indicate that cells within the
MuSC 3 cluster exhibit higher transcriptional activity compared to MuSC 1 and 2 clusters. Moreover,
among the three MuSC clusters, MuSC 1 has the lowest RNA content per cell (Fig. 2F). Based on these
observations, we conclude that the MuSC clusters are representative of freshly isolated satellite cells
along a continuum from close to quiescence (MuSC 1) to early activation (MuSC 3), with cells
transitioning between quiescence and activation (MuSC 2). Consistent with this, cells within MuSC 1

express high levels of genes associated with satellite cell quiescence (Notch3, Ncaml, VeamI)3* 336

b

while cells within MuSC 3 express high levels of genes associated with satellite cell activation (Fos,

Junb, Jund)® 3337 (Fig. 2C).

Not surprisingly, we observed a shift in DMD satellite cells from quiescent and activated states
(63.07% in mdx; and 65.70% in D2-mdx) towards myogenic progenitor states (Fig. 2D-E). These
myogenic progenitor clusters included a cycling progenitor population that expresses cell cycle genes
(Cdk6, Mki67) as well as the myogenic differentiation regulatory factor Myod1, and a differentiating
myocyte population that expresses the late differentiation marker Myog (Fig. 2B). Cell cycle analysis
confirmed that the cycling progenitor population had the highest percentage of cells in G2/M and S
phase (Fig. 2G). Interestingly, a significant proportion of mdx and D2-mdx cells were found in the
DMD enriched cluster (20.83% mdx; and 15.03% D2-mdx) compared to their healthy counterparts
(1.25% B10 and 1.46% DBA) (Fig. 2D-E). Of note, genes that are uniquely expressed by cells in this

cluster are genes associated with DMD, including Collal, Colla2, Islr, Mest, S100all, and Postn®% 3
7
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40.41 Tn addition to these genes, cells in this cluster also have increased expression of the negative cell
cycle regulator, cyclin dependent kinase inhibitor 1C (Cdknlc/p57r?), which has not previously been
associated with DMD (Fig. 2B, S2E). As previously reported, we also noted a minor population of

immunomyoblasts (0.22-2.45%) that are enriched in immune genes (Ifit1, Ifit3, Isg15) (Fig. 2B, D, E)3.

We utilized gene expression scores from published studies and gene ontology (GO) terms to validate
our cell clusters (Fig. S2F, Table S1). When we assessed the expression of these various scores across
the different mouse strains, we confirmed that wildtype B10 and DBA cells are enriched for the

9942

“genuine quiescence™? and “satellite cell”™* scores (Fig. S2G). In contrast, mdx and D2-mdx cells

2943 296, 42

exhibit higher expression of the “myoblasts/myocytes™* and “primed core scores. Using a DMD
gene signature established from young DMD patients®®, we also confirm that DMD satellite cells, and
in particular the DMD enriched cluster are specifically expressing DMD-associated genes (Fig. S2F-

G).

DMD satellite cells exhibit overlapping dysfunctions between mdx and D2-mdx models

Principal component analysis revealed that the most significant source of variation between the four
data sets is between disease (DMD) and healthy cells suggesting that loss of Dmd expression is driving
the most significant changes between samples and not differences in the genetic background (Fig. 3A).
Dystrophin-deficiency in DMD is known to impact the expression of components within the dystrophin
glycoprotein complex (DGC)*. Thus, we assessed the expression profile of DGC genes within our
scRNA-seq data set. We confirm the expression of DGC components in healthy B10 and DBA satellite
cells, including dystrophin, utrophin, dystroglycan, sarcoglycans, sarcospan and syntrophin (Fig. 3B).
While most DGC genes were downregulated in DMD satellite cells, Snth2 was an exception to this

trend and exhibited increased expression (Fig. 3B).



206  We performed differential gene expression analysis between DMD and healthy satellite cells (Fig. 3C-
207 D) and between the DBA and B10 genetic backgrounds (Fig. S3A-B). We found 742 upregulated genes
208  in mdx vs B10 and 774 upregulated genes in D2-mdx vs DBA (Fig. 3E). Surprisingly, more than half of
209 these genes (481 genes) are overlapping between the mdx and D2-mdx sets, suggesting that despite

210  differences in disease severity, the majority of differentially expressed genes are common to both mdx
211  and D2-mdx. To identify biological processes related to these overlapping genes, we performed gene
212 annotation enrichment analysis, which revealed pathways and processes including “extracellular matrix
213 organization” (Adamts2/4/7/14, Collal/2, Col5a2, Fnl, Has2, Mmp15, Tgfbl), “cytoskeleton in

214 muscle cells” (Actal, Myhl/3, Myll, Tnnil, Tnnt2, Tpm2, Ttn), “muscle structure development” (Cav3,
215  Cdkl, 1d3, Myog, Sdcl) , and “mitotic cell cycle” (Cenbi1/2, Cdca8, Cdc45, Cenpa, Cenpf, Cenpm,

216  Kif4/11/15/20a/22/23, Plkl1/2) as the top enriched terms in satellite cells from both DMD models (Fig.
217  3F). Of note, the genes that were uniquely upregulated in either mdx or D2-mdx were still largely

218  associated with pathways that are common to both DMD models (Fig. 3G). Altogether, these results
219 indicate that despite disease phenotypic differences between mdx and D2-mdx models, the impact of
220  dystrophin deficiency on satellite cells in these models are analogous.

221

222 Similarly, we observed 730 downregulated genes in mdx vs B10 and 868 downregulated genes in D2-
223 mdx vs DBA, with 411 overlapping between the two comparisons (Fig. 3H). The top downregulated
224 pathways included several terms associated with neural pathways including “neuron projection

225  morphogenesis” (Cdh4, Cxcr4, Fgfr2, Lgr4, Nign3, Ntn5, Vegfa) and “cell-cell adhesion” (Cadm2/4,
226  Cdh4, Celsr2, Mcam, Tnxb) (Fig. 31-J). We noted the presence of overlapping terms between

227  upregulated and downregulated pathways including “extracellular matrix organization” and “negative
228  regulation of cell population proliferation” (Fig. 3F, I). While the upregulated and downregulated genes
229  within these terms are distinct, we conclude that the presence of these terms in both comparisons

230 indicate a general dysregulation of these pathways in DMD models.
9
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In our comparison between the DBA and B10 backgrounds (Fig. S3A-B), “cell cycle”, “cell cycle
phase transition” and “mitotic cell cycle process” pathways were upregulated in D2-mdx vs mdx (Fig.
S3C-E). “Skeletal muscle cell differentiation” was downregulated in DBA vs B10, while “muscle
tissue development” was downregulated in both D2-mdx vs mdx and DBA vs B10 (Fig. S3F-H). These
results suggest that muscle regeneration pathways are upregulated in B10/mdx compared to DBA/D2-
mdx, which is consistent with our assessment of regeneration in mdx and D2-mdx TA muscles (Fig. 1C-

E)®.

To focus on DMD-specific gene expression differences related to cellular health that would impact
myogenic differentiation, we evaluated the top 100 enriched pathways and processes and noted
“positive regulation of programmed cell death” (apoptosis) and “cellular senescence”, which were
increased in both DMD models compared to controls (Fig. 4A-B, S4). To determine which satellite cell
clusters were most significantly impacted by apoptosis and senescence we assessed which clusters
exhibited the most enrichment for these GO terms. Interestingly, the expression of genes related to
apoptosis (apoptosis GO) were highest in the MuSC 2 and 3 clusters, while expression of genes related
to senescence (senescence GO) was highest in the cycling progenitor cluster (Fig. 4C and S5A). These
findings indicate unique cellular dysfunctions between early satellite cell and later myogenic progenitor

states.

To examine if DMD satellite cells are indeed undergoing cell death by apoptosis, we performed
terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) on TA cross-sections from
B10, mdx, DBA, and D2-mdx mice. In agreement with our scRNA-seq data, we observed the presence
of TUNEL+ and PAX7+ satellite cells in mdx and D2-mdx muscles, indicating double stranded DNA

breaks, a hallmark of apoptosis (Fig. 4D-E, S5B). In contrast, we did not observe any TUNEL+
10
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satellite cells in B10 and DBA controls. Consistent with this data, we also performed TUNEL staining
on freshly isolated myofibers from extensor digitorum longus (EDL) muscles from B10 and mdx mice.
We observed the presence of TUNEL+ and PAX7+ satellite cells in mdx myofibers, which were absent

in control B10 fibers (Fig. S5C-E).

DMD myogenic progenitors exhibit increased senescence, which has been reported in DMD muscles!*
23,45 We assessed the expression of senescence genes Cdknla (p21©PY), Cdkn2a (p16™4%), and Cdkn2b
(p15™%4*) in our scRNA-seq data set and confirmed increased expression and percentage of cells
expressing senescence genes in DMD satellite cells compared to healthy controls (Fig. 4F). We
performed quantitative droplet digital PCR (ddPCR) from freshly isolated satellite cells from B10, mdx,
DBA, and D2-mdx mice and confirmed significantly increased expression of Cdknla, Cdkn2a, and
Cdkn2b in both mdx and D2-mdx compared to wildtype controls (Fig. 4G). In addition, we performed
senescence-associated -galactosidase (SA-B-Gal) staining in TA cross sections from B10, mdx, DBA
and D2-mdx mice, which showed significantly increased numbers of senescent nuclei per mm? of tissue

in DMD muscles compared to wildtype controls (Fig. 4H-I).

In healthy quiescent satellite cells, cellular autophagy, a nutrient recycling pathway, has been shown to
prevent senescence and thus maintain stemness and regenerative capacity*S. To examine if cellular
autophagy is also dysregulated in DMD satellite cells we performed ddPCR analysis to assess the
expression of a panel of autophagy genes (41g%a, Atgl4, Mapllc3b) in satellite cells freshly isolated
from B10, mdx, DBA and D2-mdx mice. In agreement with studies indicating that autophagy prevents
satellite cell senescence and that autophagy is dysregulated in DMD satellite cells, we found that the
expression of autophagy genes were all downregulated in DMD satellite cells compared to wildtype

controls*® 47 (Fig. 47).
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Identification of an impaired myogenic differentiation gene signature in DMD satellite cells
Previous studies indicate that satellite cells in DMD exhibit impaired asymmetric cell division and
myogenic commitment?" 22, We assessed the expression of components of the cell polarity complex as
well as the myogenic commitment factor Myf5 and found reduced expression of Mark2, Prkci, and
Myf5 in both mdx and D2-mdx satellite cells compared to controls (Fig. SA-B). Expression of genes
within the “cell polarity establishment and maintenance” GO term was also reduced in DMD satellite

cells (Fig. S2G).

In addition to Myf3, we assessed expression levels of canonical satellite cell and myogenic
differentiation markers in our scRNA-seq dataset (Pax7, Myod1, and Myog). Pax7 and Myf5 levels
were highest in B10 and DBA cells and reduced in mdx and D2-mdx (Fig. 5B). In contrast, Myod[ and
Myog levels were higher in mdx and D2-mdx compared to wildtype controls. These scRNA-seq results
were validated by ddPCR analysis of freshly isolated satellite cells from B10, mdx, DBA, and D2-mdx
mice (Fig. 5C). The reduced expression of satellite stem cell (Pax7) and early myogenic commitment
(Myf5) markers and increased expression of myogenic differentiation markers (Myodl and Myog)
would suggest that DMD satellite cells exist in a more differentiated state. However, when we assessed
the expression of genes involved in regulating myogenic differentiation, we found that DMD satellite
cells express higher levels of anti-differentiation genes (/d3, Runx1, Jdp2) and lower levels of pro-
differentiation genes (Igfbp5, Meg3, Megf10) compared to their wildtype counterparts (Fig. 5D). We
also validated the increased expression of Cdknlc, which coordinates the switch between proliferation
and cell-cycle arrest, in freshly isolated DMD satellite cells by ddPCR**4° (Fig. 5C). Moreover, using a
recently published single nuclei transcriptomic data set from muscle biopsies collected from DMD
patients as well as age and gender-matched controls, we confirmed that CDKNIC expression is higher

in DMD patient satellite cells compared to healthy controls and that expression correlates with disease
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severity®® (Fig. S5F). Together, this suggests an impairment of the normal myogenic program in DMD

satellite cells.

Our findings indicate that mdx and D2-mdXx satellite cells exhibit similar impairments with respect to
their cellular health (apoptosis, senescence, and autophagy) and myogenic regenerative profiles.
Although disease severity differs between the two DMD models, the exposure to similar dystrophic
signals may contribute to the observed defects in satellite cell health and function. Thus, to assess cell
autonomous defects in satellite cells prior to the dystrophic niche increasing in severity, we isolated
satellite cells from prenecrotic neonate mdx and D2-mdx mice (between 10 and 14 days of age), along
with their respective wildtype controls®'. We performed gene expression using ddPCR and found that
certain genes were significantly impacted in mdx (Myog, Cdknic) and D2-mdx (Myf5) neonate satellite
cells compared to wildtype controls (Fig. S6A). We also observed similar trends in the senescence gene
Cdknla (Fig. S6B). However, autophagy genes show opposing trends compared to adults (4¢g9%a in
mdx) or no difference (4tg/4) in DMD neonate satellite cells compared to control (Fig. S6C). As well,
the expression of genes which are significantly impacted in both DMD strains in adults such as Pax7
and Cdkn2a are not significantly changed in DMD neonate satellite cells. These findings altogether
suggest that there are dysfunctions in DMD satellite cells that are cell autonomous and observed at an

early stage, as well as those that are accumulated with age and exposure to a dystrophic niche.

DMD satellite cells exhibit impaired in vivo regenerative myogenesis

Thus far, our analysis in homeostatic dystrophin-deficient satellite cells indicate differences in the
expression of genes associated with regenerative myogenesis. To further explore this, we inferred
myogenic differentiation trajectories from our scRNA-seq dataset of mdx and D2-mdx satellite cells by
performing pseudotime analysis, which revealed two main trajectories (Fig. SE-F). One trajectory, from

MuSC 1 towards MuSC 3, reflects previously reported transcriptional changes that are induced by ex
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vivo muscle tissue enzymatic dissociation and satellite cell isolation procedures®. The other trajectory is
representative of a canonical myogenic differentiation program, from MuSC 1 towards the cycling
progenitor cluster, which represents the furthest pseudotime point from the MuSC clusters. The
canonical trajectory included an additional branch point originating from MuSC 1 and ending in the
DMD enriched cluster. Altogether, these trajectories resulted in three possible end points (MuSC 3,
cycling progenitor, and DMD enriched), representing distinct cell fates. Visualization of these
pseudotime trajectories on the UMAP for each mouse strain (Fig. 5G) revealed that the majority of B10
and DBA cells are found in the MuSC 3 fate. In contrast, mdx and D2-mdx cells were clearly skewed

towards the cycling progenitor and DMD enriched fates.

The trajectory towards the DMD enriched cluster suggested that DMD satellite cells exhibit an altered
fate, which led us to interrogate if this represents an impaired differentiate state. Genes that are highly
expressed and unique to the DMD enriched cluster include several genes that have been associated with
DMD as well as Cdknlc. Increased expression of Cdknlc in DMD satellite cells within this cluster
suggests that these cells are non-proliferating due to its negative regulation of the cell cycle®®. The
DMD enriched cluster also exhibits higher Pax7 expression and lower MyodI and Myog in comparison
to the differentiating myocyte cluster (Fig. S7A), suggesting that these cells have an altered myogenic

fate and are stalled in their differentiation.

To assess the differentiation potential of DMD satellite cells we utilized an in vivo muscle regeneration
approach to induce differentiation within the context of a dystrophic niche. We performed
intramuscular injury on the TA and gastrocnemius muscles of B10 and mdx mice and then
prospectively isolated satellite cells from these mice at one- and three-days post-injury (1 and 3 DPI).
Gene expression analyses by ddPCR from these samples were compared to satellite cells isolated from

non-injured (NI) muscles. B10 satellite cells followed the expected trends of satellite cells transitioning

14



355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

from quiescence (NI) to activation (1 DPI) and proliferation (3 DPI). Expression of markers of
quiescence (Cd34, Calcr, Cxcr4) as well as satellite stem cells (Pax7) were highest in NI cells and were
reduced upon activation (Fig. 6A, S7B). Myod1 expression was highest in B10 1 DPI activated cells,
while Myog levels increased from 1 to 3 DPI (Fig. 6A). Interestingly, mdx satellite cells did not display
the same dynamic expression of myogenic regulatory genes. While Pax7 and Myf5 expression was
lower in homeostatic mdx cells compared to B10, expression of these factors was higher in mdx
compared to control cells at 1 and 3 DPI. We also observed a significant reduction in Myod! expression
at 1 DPI in mdx cells compared to B10. In contrast, Myog and Cdknic levels were elevated in mdx cells
compared to B10 at all time points. Altogether these results indicate the dysregulation of myogenic

transcription factor expression during regenerative myogenesis of DMD satellite cells.

While ddPCR provides a quantitative readout for transcript levels, myogenic gene expression levels do
not always correlate with cell fate. Thus, we also assessed myogenic protein expression and cell fate
dynamics using the gold standard ex vivo EDL myofiber assay. Rather than isolating the myofibers and
subsequently culturing them ex vivo, we performed intramuscular injury on the TA muscle and then
collecting the adjacent EDL muscle at five-, seven-, and nine-days post injury (5, 7, and 9 DPI) to
examine satellite cell differentiation that was induced in vivo. Quantification of myogenic cells on B10
injured myofibers revealed an expected increase in the number of MYOG+ cells from 5 to 9 DPI (Fig.
6B-C). In contrast, we did not observe an increase in MYOG+ cells in mdx injured fibers and the
number of MY OG-+ cells were significantly reduced in mdx fibers at 9 DPI (Fig. 6C). The number of
PAXT7+ cells per fiber was increased over all time points in mdx compared to B10 injured fibers. When
representing the data as a ratio of MYOG+ to PAX7+ cells, mdx myofibers have significantly reduced
MYOG+/PAX7+ ratios at 7 and 9 DPI. Most strikingly, we observed the presence of large clusters of
cells in mdx fibers at all time points that were virtually absent in B10 fibers except for at 9 DPI (Fig.

6D-F). These cell clusters contained myogenic cells expressing nuclear PAX7, MYOG as well as
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p57%iP2 (protein nomenclature for Cdknic) (Fig. 6E). The numbers of large cell clusters (>1000um?) as
well as the area of the observed cell clusters were increased in mdx injured myofibers compared to B10
controls (Fig. 6F). Altogether, our scRNA-seq data along with our in vivo regenerative myogenesis
analyses of DMD satellite cells indicate that DMD satellite cells exhibit impaired myogenic

differentiation.

Altered senescence and autophagy dynamics in DMD satellite cells

Cellular senescence was enriched in DMD satellite cells compared to wildtype (Fig. 4F-I), which was
specifically enriched in the cycling progenitors cluster (Fig. 4C). Thus, we assessed the expression of
senescence-associated genes Cdknla, Cdkn2a, and Cdkn2b in satellite cells following injury by
ddPCR. We found that in healthy B10 satellite cells, the expression of senescence genes is increased
during early activation (Fig. 7A). In contrast, DMD satellite cells exhibit significantly higher baseline
senescence gene expression in non-injured satellite cells and these levels are maintained during
regeneration, thereby indicating a chronic persistence of senescence gene expression in DMD satellite

cells, which we hypothesize is impairing the regenerative capacity of DMD satellite cells*> 2,

Next, we assessed the expression of autophagy genes (4tg9%a, Atgl4, Mapllc3b, Sqstm1, and Gabarap)
during injury-induced myogenesis. In wildtype satellite cells, expression levels were highest during
quiescence and reduced upon activation (Fig. 7B). This trend was opposite of what we observed with
respect to the expression of senescence genes following injury (Fig. 7A). Moreover, this reduction in
autophagy gene expression during regenerative myogenesis was absent in mdx satellite cells at 1 and 3

DPI suggesting impaired autophagy dynamics in mdx satellite cells following injury (Fig. 7B).

We assessed the expression of senescence and autophagy gene expression scores in the single nuclei

human DMD transcriptomic data set>®. Here we observed a similar trend in human DMD satellite cells
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as we found in our murine data from mdx and D2-mdx satellite cells. Human DMD satellite cells
exhibited enhanced senescence in the stable patient group, while autophagy was reduced in both stable
and declining patient groups (Fig. S7C). These data from DMD patient samples support our findings in
mouse satellite cells, which are from a niche that is representative of an early disease state due to their

less severe phenotype.

We next asked if modulating autophagy would improve the differentiation capacity of DMD satellite
cells. To address this, we used 3-methyladenine (3MA), a class III phosphoinositide kinase inhibitor
that inhibits autophagy, and Tat-Beclin 1 (D11), an autophagy promoting peptide that contains 11
amino acids from the autophagy inducing protein Beclin 1°* 3%, We treated primary myogenic
progenitors isolated from mdx mice with either 3MA or D11 and assessed their differentiation capacity
(Fig. 7C-D, S7D-E). While inhibiting autophagy with 3MA did not have a significant impact on
differentiation, inducing autophagy with D11 resulted in enhanced differentiation of DMD progenitors
(Fig. 7D). Thus, inducing autophagy in DMD progenitors improves the differentiation capacity of
DMD progenitor cells. Altogether, our results support the notion that counteracting these DMD
progenitor-specific impairments (ie. reduced autophagy) can improve their endogenous regenerative

capacity.

Discussion

Single cell sequencing technologies have provided the ability to parse out cellular heterogeneity and
identify transcriptomic differences within complex cell populations. Here, we used scRNA-sequencing
to elucidate the mechanisms by which satellite cells in DMD in particular are impacted by loss of
dystrophin. Recent studies have used both single cell and single nucleus transcriptomic approaches to
assess whole muscle tissue from various mouse and rat DMD models'® 13, While these approaches

have identified significant alterations in tissue-wide cellular diversity in DMD, our study uniquely
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focused on sequencing of the satellite cell population to gain sufficient sequencing depth to identify
distinct satellite cell populations within the heterogenous satellite cell pool. By adequately capturing
these subpopulations, we were able to elucidate molecular pathways that differ between DMD and
healthy satellite cells (apoptosis) and myogenic progenitors (senescence) and identify a DMD-specific

satellite cell subpopulation.

We compared satellite cells from two DMD mouse models, the mildly dystrophic mdx mouse and the
more severely dystrophic D2-mdx mouse. Of note, mdx and D2-mdx mice exhibit differences in
satellite cell content. While mdx muscles have higher satellite cell numbers compared to their control
counterpart, D2-mdx mice have reduced satellite cell numbers (Fig. 1G), supporting previous studies
demonstrating that satellite cells have reduced regenerative capacity in DBA/2 muscles compared to
C57BL/6, thereby impacting their ability to maintain a sufficient satellite cell pool within the context of
chronic degeneration?®. The altered muscle regenerative potential in DBA and D2-mdx is supported by
our pathway enrichment analyses, which indicated reduced muscle tissue development and skeletal
muscle differentiation when comparing satellite cells from the DBA versus B10 background (Fig.
S3G). Whereas an increase in satellite cell numbers has been reported in human DMD tissue?8, these
differences in satellite cell number and muscle regeneration should be considered when interpreting

data from the D2-mdx model.

Despite these differences in disease severity and thus satellite cell niche, we found the two DMD
models shared many overlapping differentially expressed genes and molecular dysfunctions as
compared to their healthy counterparts (Fig. 3G, J). We recognize that although mdx and D2-mdx DMD
models exhibit these phenotypic differences, it is likely that dystrophic niche signaling between the two
DMD models are similar. Thus, to assess dystrophin-deficient satellite cells prior to exposure to this

signaling, we examined neonate satellite cells from mdx and D2-mdx mice and found early signs of
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myogenic impairment as well as altered senescence and autophagy gene expression (Fig. S6A-C).
However, some genes, such as Pax7 and Cdkn2a, do not show the same significant shift seen in adults.
These findings suggest that satellite cell dysfunction in DMD is a combination of both cell autonomous
defects that are present at early stages prior to muscle degeneration as well as a result of accumulated
exposure to the niche. Interestingly, when we compared myogenic gene expression between neonate
and adult satellite cells, the expression of myogenic genes (Pax7, Myf5, Myog, Cdknlc) are
significantly changed in adult (three months of age) vs neonate in healthy control cells (Fig. S6A).
However, in DMD satellite cells this change from neonate to adult is greatly reduced, suggesting an

impairment in satellite cell transition from neonate to early adult stages.

Prior to the discovery that dystrophin is expressed in the satellite cell, it was generally thought that the
loss of dystrophin had minimal impact on satellite cells and their progeny, the myogenic progenitors.
While earlier studied have shown no difference in or even accelerated myogenic differentiation kinetics
in cultured DMD satellite cells, we propose that in vitro culturing selects for those cells capable of
proliferating and surviving in culture rather than those vulnerable to cell death>® 37, There is indeed
evidence that intrinsic impairment of DMD satellite cells and myogenic progenitors leads to reduced
regenerative capacity, thereby resulting in an inability to support dystrophic muscle repair 2!-22 24, 38,59,
Using single cell transcriptomics, we were able to visualize heterogeneity within DMD satellite cells
with respect to molecular dysfunctions as well as myogenic differentiation capacity. Of note, we
identified a DMD enriched cell cluster that uniquely expresses genes associated with DMD (Fig. S2F),
expresses high levels of the cell cycle inhibitor Cdknlc (Fig. S2E), and has a distinct cell fate trajectory
(Fig. 5F). This DMD enriched cluster paradoxically expresses higher levels of stem cell and myogenic
commitment markers Pax7 and Myf5 and lower levels of differentiation markers Myod! and Myog

compared to the progenitor and myocyte clusters (Fig. S7A).
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While DMD satellite cells are skewed towards progenitor populations (Fig. 2D), as expected in a
continually regenerating tissue, we propose that at least a subpopulation of DMD satellite cells is
stalled in differentiation and exhibit dysregulated myogenic capacity. In line with this, less than 50% of

42 and “myoblast/myocyte™ scores (Fig. S2G).

DMD satellite cells are expressing the “primed core
Importantly, our in vivo regeneration assays confirmed an impairment in regenerative myogenesis in
mdx satellite cells compared to B10 controls (Fig. 6A-F). Interestingly, while mdx satellite cells express
lower levels of Pax7 transcripts and higher levels of Myog transcripts, we show that the level of gene
expression does not correlate with cell number as we observe increased PAX7+ cells and reduced
MYOGH+ cells in mdx fibers following injury (Fig. 6A-C). Our results suggest that mdx mice have a
higher number of cells that are PAX7+, which each have low Pax7 transcript, and a low number of
MYOGH+ cells that are expressing high levels of Myog. In addition, we observed previously
undescribed large cell clusters uniquely in injured mdx myofibers (Fig. 6D-F), suggesting an

impairment in cell fusion. Further experiments to isolate and characterize these cells by flow cytometry

would provide important insight into this DMD enriched cell population.

We found that DMD satellite cells exhibit enrichment in programmed cell death pathways (Fig. 4A-C).
This is the first reporting of increased apoptosis in DMD satellite cells. In contrast, DMD myogenic
progenitors exhibit enrichment in cellular senescence (Fig. 4A-C). We found that healthy satellite cells
express increased levels of senescence-associated genes following injury (Fig. 7A). Recent studies have
indicated that senescent cells are a normal component within the regenerating muscle niche!! 1660,
however DMD satellite cells exhibit increased baseline expression of senescence-associated genes
suggesting a chronic and dysregulated senescent state (Fig. 4G, 7A). The chronic presence of these

senescent cells in DMD would hinder muscle regeneration! 4.
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The nutrient recycling macroautophagy pathway has previously been shown to be dysregulated in
DMD muscle and satellite cells*”> 162, Consistent with these findings, we found that the expression of
autophagy genes is universally lower in DMD satellite cells (Fig. 4)) and do not exhibit a dynamic
downregulation during regenerative myogenesis (Fig. 7B). We propose that this impairment in
autophagy dynamics would also impact the regenerative capacity of DMD satellite cells. Indeed, we
found that stimulating autophagy with Tat-Beclin D11, which induces autophagy independently of
inhibiting the master metabolic regulator mammalian target of rapamycin, improved the differentiation
capacity of mdx progenitor cells (Fig. 7C-D)>3. Our results support earlier work indicating that
autophagy reduction in DMD muscle tissue correlates with reduced muscle function and that inducing
autophagy with agents such as rapamycin and the AMPK agonist AICAR can improve regeneration

and pathology in mdx mice*” 4364,

In conclusion, our study provides additional molecular evidence that satellite cells are dysfunctional in
DMD and that their reduced regenerative potential contributes to the characteristic progressive muscle
wasting of the disease. The work described here serves as a critical resource characterizing the
transcriptomes of two widely used DMD mouse models, mdx and D2-mdx, along with their wildtype
counterparts. Importantly, transcriptomic data from satellite cells from DMD patients supports our
findings of dysregulated cell death, senescence, and autophagy pathways. Our results indicate that
DMD satellite cells are heterogenous with respect to their myogenic regenerative potential and their
exhibition of impaired cellular pathways. We propose that gene therapies aimed at transducing satellite
cells should examine the benefits and consequences of targeting specific satellite cell populations.
Overall, our study provides a molecular map that illustrates how satellite cell subpopulations are
impacted by the loss of dystrophin and will inform therapeutic strategies aimed at improving the

regenerative capacity of DMD muscle.
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Methods

Mice

Housing, husbandry and all experimental protocols for mice used in this study were performed in
accordance with the guidelines established by the McGill University Animal Care Committee, which is
based on the guidelines of the Canadian Council on Animal Care. C57BL/10ScSnJ (B10, #000476),
C57BL/10ScSn-Dmd™*/J (mdx, #001801), DBA/2J (DBA2, #000671), and D2.B10-Dmd"*/J (D2-
mdx, #013141) were purchased from The Jackson Laboratory. One- to one-and-a-half-week-old male
mice were used for neonatal experiments and two- to three-month-old male mice were used for

experiments in adults.

Muscle histology

Cryostat cross-sections of tibialis anterior (TA) muscle of 10 um were used for hematoxylin and eosin
(H&E) staining, senescence-associated -galactosidase staining and immunofluorescent (IF) labelling.
Sections for H&E were fixed with 4% paraformaldehyde (PFA) and stained with Mayer’s modified
hematoxylin solution (Abcam) and washed for five minutes followed by differentiation with 1% HCI in
10% ethanol. Sections were stained with Eosin Y working solution (0.25% Eosin disodium salt
(Sigma) in 80% ethanol with 0.5% glacial acetic acid), dehydrated and mounted with xylene mounting

media (Fisher).

For terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL)/PAX7
immunofluorescence (IF) co-labelling, sections were fixed with 2% PFA for ten minutes, then
decrosslinked for 45 minutes at 95 °C in citrate buffer (Abcam). This was followed by permeabilization
and blocking for one hour (0.25% triton X-100 + 0.1 M Glycine in PBS + 5% donkey serum (DS) +
2% bovine serum albumin (BSA) + Mouse on Mouse Blocking Reagent (Vector Laboratories) in

phosphate buffered saline (PBS)). TUNEL assay was done by incubating slides with an /n Situ Cell
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Death Detection Kit (Roche) for 37 °C for half an hour. Primary antibody incubation was performed
overnight at 4 °C with pure PAX7 antibody (DSHB) with 5% DS + 2% BSA. Secondary incubation in
labelling buffer (5% DS + 2% BSA in PBS) was done for one hour at room temperature, followed by
Hoechst staining for five minutes. Slides were mounted with ProLong™ Gold antifade reagent

(Thermo Fisher).

For eMyHC labelling, TA cryosections were fixed with 4% PFA for 10 minutes then permeabilized and
blocked for one hour (0.1 M glycine + 5% DS + 0.25% triton-X-100 + Mouse on Mouse Blocking
Reagent (Vector Laboratories) in tris buffered saline (TBS)). Subsequently, cryosections were
incubated overnight at 4 °C with eMyHC primary antibody (DSHB) primary antibody solution (1% DS

+0.25% triton-X-100 in TBS). Secondary antibody incubation and mounting were performed as above.

Sections were imaged using a Zeiss Axio Observer 7 at 20X, except for eMyHC-stained cryosections

which were imaged at an EVOS M5000 microscope using a 10X objective.

Senescence-associated B-galactosidase staining

Tibialis anterior (TA) sections were fixed for four minutes with 1% PFA and 0.2% glutaraldehyde in
PBS, followed by incubating for 30 minutes in PBS at pH 5.5. Sections were then incubated with X-gal
staining solution (4 mM potassium ferricyanide + 4 mM potassium ferrocyanide + 2 mM MgCl, +1
mg/mL X-gal and 0.04% IGEPAL (Sigma) in PBS at pH 5.5) for 48 hours at 37 °C. Sections were
subsequently washed in PBS for 10 minutes and fixed again with 1% PFA diluted in PBS for 10
minutes. Sections were counterstained with Hoechst. The stained sections were mounted with

ProLong™ Gold antifade reagent and imaged using a Zeiss Axio Observer microscope.
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Single myofiber isolation

Single myofibers were isolated from the extensor digitorum longus (EDL) muscle of mice that were
either uninjured or mice that received injections of 1.2% BaCl; to the TA (30 pl at 1.2%) five, seven or
nine days prior to isolation to induce injury and thus activate satellite cells®>. After isolation, single

myofibers were collected and fixed immediately in 2% PFA.

IF and TUNEL staining on fibers

Fixed myofibers were permeabilized for 10 minutes (0.1 M glycine + 0.1% triton X-100 in PBS) then
blocked for two hours (2% BSA +2.5% DS + 2.5% goat serum (GS) in PBS). Primary antibody
incubation was done overnight labelling solution (0.5% DS + 0.5% GS in PBS) at 4 °C with antibodies
for PAX7 (DSHB), MYOG (Abcam), p57X%? (Santa Cruz). Secondary antibody incubation was done
for one hour at room temperature in labelling solution, followed by Hoechst staining for one minute.

Fibers were mounted on slides with ProLong™ Gold antifade reagent.

TUNEL staining was done with the /n Situ Cell Death Detection Kit (Roche). Fibers were fixed with
2% PFA, then permeabilized and blocked as previously described. Fibers were then incubated with
TUNEL reaction mixture for one hour at 37 °C followed by primary antibody incubation overnight at 4
°C. Secondary antibody incubation, Hoechst and mounting on slides were performed as described

above.

Myofibers were imaged using a Zeiss LSM710 using ZEN 3.2 (blue edition), with the exception of Fig.
6B which was imaged at an EVOS M5000 microscope (software version 1.6.1899.478) using a 20X

objective.

Quantification of IF images
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All image analysis was done with Fiji ImageJ (version 1.451)%. PAX7+, MYOG+, TUNEL+, and SA-
Bgal+ nuclei quantification was performed using the cell counter feature. Cross sectional area of
myofibers and aspect ratio was obtained using the automated muscle histology analysis algorithm
Myosoft (version 14) to define individual fiber ROIs via WGA staining®’. Using this same software,
the number of eMyHC+ fibers were determined by automatically measuring mean grey value. These
values were then corrected through background subtraction. A negative control was used to determine
the range of values that represented “true” negatives and values above this (>75) were considered

eMyHC+. Fibers that contained one or more nuclei within the fiber were counted as centrally nucleated

fibers.

Satellite cell isolation

Satellite cells were prospectively isolated from the hind limb muscles of mice by fluorescence-
activated cell sorting (FACS) as previously described®®. Cells were labelled with negative and positive
lineage markers (Table S2) and satellite cells were sorted using a BD FACSAriaTM III (BD

Biosciences).

Mouse single cell RNA-sequencing and computational analyses

For each mouse strain (B10, mdx, DBA, D2-mdx), ITGA7+/VCAM+/Lin- satellite cells from two mice
were pooled, sorted and captured on the 10X Genomics Chromium platform and subjected to single
cell transcriptomic sequencing. Following satellite cell isolation, the single-cell RNA-sequencing
libraries were prepared using the 10X Genomics NextGen scRNA 3’ V3.1 (10X Genomics, Pleasanton,
CA) with approximately 10,000 satellite cells from each strain. Libraries were then sequenced with an
[llumina NovaSeq6000 sequencer (Illumina, San Diego, CA). Reads were processed with Cell Ranger

(version 3.0.1) and aligned to the mouse reference transcriptome mm10.
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Computational analysis was performed using RStudio (version 4.2.1, 2022-06-23), and the data were
imported with Seurat (version 5.1.0)%°. Cells were filtered to remove cells with less than 1,000 or more
than 5,000 genes, as well as cells with more than 8% mitochondrial genes, to eliminate low quality
cells. Doublets were removed using DoubletFinder (version 2.0.4)7°. After normalization and scaling,
cells from the different mouse strains were integrated. The resolution was determined using the
Clustree function (version 0.5.1) and unsupervised clustering was carried out using the FindClusters
function’!. The first clustering was done with a resolution of 0.1, and the sub-clustering of the
myogenic cells (MuSC and myoblast) was done with a resolution of 0.2. Cells expressing high levels
mature myonuclei genes (Actal, Tnnc2, Tnnt3), representing a minor portion of total myogenic cells
(0.04 — 0.11%) were removed for final downstream analysis. Differential gene expression and cluster
identification were performed using FindAllMarkers function in Seurat. The scores were generated
with the AddModuleScore function, using published genes lists. Stacked violin plots were made using
the StackedVInPlot function’?. Dot plots and feature plots were created using scCustomize package
(version 2.1.2)7. Cell cycle analysis was done using the CellCycleScoring function of the Seurat
Package. The total RNA counts per cell were done by extracting the raw count matrix using the
GetAssayData function, and the total RNA counts (UMI) per cell were calculated and added to the

metadata. The violin plot was created using ggplot2 package (version 3.5.1).

Human single nuclei RNA-sequencing and computational analyses

Control and DMD human data were generated and kindly shared by Prof. Jordi Diaz-Manera’s team.
Computational analysis was performed as described above. Cells were filtered to remove cells with less
than 100 or more than 5,000 genes, as well as cells with more than 5% mitochondrial genes, and
doublets were removed using DoubletFinder (version 2.0.4)7°. After normalization and scaling, cells

from the different samples were integrated with a resolution of 0.1, and the sub-clustering of the
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myogenic cells (PAX7") was done with a resolution of 0.4. The sample groups were generated as

described>’.

Principal component analysis (PCA) — Pseudobulk

The processed individual datasets were merged, and the object was converted into a
SingleCellExperiment object. Counts were aggregated with aggregateBioVar package (version
1.14.0)"*. Differential gene expression was performed using DESeq2 Package (version 1.44.0)7. The

PCA plot was generated using plotPCA function.

Differential gene expression and Gene Ontology (GO) enrichment analysis

Differentially expressed genes lists were generated using the FindMarkers function. Genes with
Log2FC more than 1 and adj pVal less than 0.05 were selected for GO enrichment analysis. GO
enrichment was performed using Metascape (version 3.5, metascape.org) with multiple gene lists using
the Custom Analysis function’®. GO Biological Processes, KEGG Pathway, Reactome Gene Sets,
CORUM, WikiPathways, and PANTHER Pathway were selected. Terms with a p-value <0.01, a
minimum count of 3, and an enrichment factor > 1.5 were grouped into clusters based on their
membership similarities. GO terms analysis has been performed with the enrichGO function of the
clusterProfiler package version 4.12.077. Volcano plots were generated using the EnhancedVolcano
package (version 1.22.0)7%. Venn Diagrams were generated using VennDiagram package (version

1.7.3)7.

Pseudotime analysis
The pseudotime analysis was performed using Monocle3 package (version 1.3.7)%. The datasets were
processed as described previously. The Seurat object has been transformed as a cell data set using the

SeuratWrappers package (version 0.3.5). Cells were then clustered using the cluster cells function. The
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trajectory was generated using the learn_graph function by adjusting the default setting of
minimal_branch_len to 10, euclidean_distance ratio to 1 and geodesic_distance ratio to 1. Finally,

cells were ordered along the learned trajectory.

Droplet digital PCR (ddPCR)

RNA was extracted from isolated satellite cells using the PicoPure RNA Isolation Kit (Applied
Biosystems) and cDNA was generated with the SuperScript III First-Strand Synthesis System
(Invitrogen). ddPCR was performed using ddPCR Supermix for Probes (no dUTP) (Biorad) and data
collected with the QX100 Droplet Digital PCR System (Biorad) with QuantaSoft (version 1.7.4). A list

of primers can be found in Table S3.

Autophagy modulation assays

Primary satellite cell-derived myoblasts were isolated from mdx mice as previously described®!. Cells
were seeded in proliferation media (20% FBS, 10% HS, 3% CEE, 10 ng/mL bFGF and 2 mM L-
glutamine in Ham's F-10) on collagen-coated 35 mm plates. When cells reached 80-90% confluence,
cells were treated for two hours with either 10 uM Tat-Beclin 1 D11 peptide (Novus Biologicals) or
Tat-Beclin 1 L11S peptide scramble control (vehicle, Novus Biologicals); 5 mM 3-methyladenine (3-
MA, Sigma) or water (vehicle)’* 4. Following treatment, cells were induced to differentiate for two
days in differentiation medium (50% DMEM, 50% F10, 5% HS). Cells were fixed and immunolabeled
with MYOG (Abcam) and MyHC antibody (DSHB), and fusion index was determined as previously

described?®?.

Western blotting
Cell pellets from a replicate of the autophagy modulation assays were collected in lysis buffer (50 mM

Tris pH7.5, 150 mM NaCl, 2 mM MgCl2, 0.5 mM EDTA, 0.5% Triton X-100, 1X protease inhibitor,
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and 1X phosphatase inhibitor) and incubated on ice for 30 minutes. Samples were centrifuged at 15,000
rcf at 4°C for 20 minutes and supernatants collected. The protein concentration of the resulting lysates
was determined using the Pierce BCA Assay Kit (Thermo Fisher). Lysates were mixed with 4X
Laemmli sample buffer, denatured at 95°C for five minutes, and resolved using an 12% SDS-PAGE gel
containing 0.5% 2,2,2-Trichloroethanol (TCE). Total protein was determined using the ChemiDoc
imaging system (Bio-Rad) via ultra-violet activation. Samples were then transferred to a
polyvinylidene difluoride (PVDF) membrane and blocked for one hour at room temperature in
blocking buffer (5% milk + 0.5% Tween in PBS). Membranes were incubated with primary antibody in
blocking buffer at 4°C overnight with agitation, then incubated with secondary antibody in blocking
buffer for one hour at room temperature. Membrane was incubated with SuperSignal West Femto
Maximum Sensitivity Substrate (Thermo Fisher) and visualized using the ChemiDoc imaging system

(Bio-Rad). Protein band intensity was quantified using Fiji Image].

Statistical analysis

For data not related to scRNA-seq, statistical analyses and visualizations were done in GraphPad Prism
(version 10.2.2). Significance was determined through unpaired t-tests, two-way analysis of variance
(ANOVA) with Sidék’s multiple comparisons test, mixed-effects analysis with Sidak’s multiple
comparisons test, or one-sided Fisher’s exact test, as indicated. P values in figure legends for two-way
ANOV As and mixed-effects analysis describe row*column effect unless otherwise noted. Confidence

interval = 95% for all tests.

Two-tailed t-tests in Fig. 1 were performed on 4-7 biological replicates per group. Analysis of fiber
area was done via nested t-test. Analysis of PAX7+/TUNEL+ satellite cells (Fig. 4D-E) was done with
a one-sided t-test as control animals are assumed to have few such cells. For all two-tailed unpaired t-

tests of strain comparison ddPCR data, n = 3 for all groups except D2-mdx where n = 4. Two-way
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ANOVA tests which were conducted on NI, 1 DPI and 3 DPI data and data comparing neonates to
adults. For injury data, three biological replicates were used for all groups except B10 3DPI, where n =
4. For neonate data, n = 3-5 biological replicates as indicated on graphs. Cluster data in Fig. 6C and F
was done using EDL fibers from one biological replicate per condition. Significance was then
calculated via mixed-effects analysis due to uneven sample size. -galactosidase assays were done with
three biological replicates per condition and significance calculated via two-tailed unpaired t-tests.
TUNEL+ nuclei percentage from EDL fibers was calculated from three mice per strain, counting n =
25,50 and 21 B10 and n = 82, 45 and 69 mdx PAX7+ nuclei. A one-sided Fisher’s exact test was used
as B10 has zero positives. Autophagy modulation assays were done on three biological replicates per
condition and significance determined with two-tailed unpaired t-tests. Standard sample sizes for the
field and that are sufficient to show differences with this disease model were chosen. scRNA-seq

sample size was chosen to ensure sufficient depth of sequencing.

Data availability
Integrated sScRNA-seq datasets generated in this study are available at:

https://singlocell.openscience.mcgill.ca/display?dataset=Muscle_Stem_Cells DMD_2024
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Figure Legends

Figure 1. Altered regenerative and satellite cell profiles in mdx and D2-mdx mice. A) H&E images
from TA cross-sections of three-month old male DMD models (mdx and D2-mdx) and their respective
controls (B10 and DBA), showing morphological changes in the DMD models such as centralized
nuclei and changes in fiber cross sectional area. B) Quantification of fiber cross sectional area,
demonstrating changes in DMD models compared to controls. C) Wheat germ agglutinin (WGA,
green) and eMyHC (magenta) IF labelling of TA cross-sections showing regenerating injuries only in
DMD models which, as quantified in D) show a significant increase in eMyHC+ fibers compared to
controls. E) Quantification of centrally nucleated fibers per mm? of TA, showing a significant increase
in mdx and D2-mdx compared to controls. F) Representative IF labelling of TA cross-sections for
WGA (green) and PAX7 (magenta), showing PAX7+ satellite cells (arrows). G) Quantification of
number of PAX7+ cells per mm? of TA, showing a significant increase in mdx and a decrease D2-mdx
compared to their respective controls. Scalebars = 50 um (A, C) and 10 um (F), *P < 0.05, **P <0.01,
*Hxp <0.001, ****P <(0.0001 (two-tailed unpaired t-test, n = 4-7 biological replicates per strain). Data

are expressed as frequency distribution (B) or mean + SD (D, E, G).

Figure 2. Single cell RNA-seq analysis of DMD satellite cells. A) UMAP representation after
unsupervised clustering of myogenic cells showing the mapping of cells into seven distinct clusters. B)
Violin plot of highly expressed markers used to define the identity of each myogenic cluster. C)
Expanded violin plot of genes associated with satellite cell quiescence and activation for each satellite
cell cluster (MuSC 1, 2 and 3). D) Percentage of cells belonging to each cluster by strain, summarized
in E), showing a decrease in MuSC clusters and increase in cycling, differentiating and "DMD
enriched" clusters in the DMD models mdx and D2-mdx compared to their respective controls. F)

Violin plot of total RNA counts per cell for each myogenic cluster. G) Feature plot of cell cycle stage,
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showing that cycling progenitors are in G2M or S phase while MuSC 1, 2, 3, differentiating myocyte,

and DMD enriched cells are mainly in G1 phase.

Figure 3. Differential gene expression in DMD satellite cells. A) PCA plot showing separation of
DMD models versus healthy controls across PC1 and mouse genetic background on PC2. B) Dot plot
of the expression of genes which comprise the dystrophin-glycoprotein complex, showing decreased
expression of all components except Snth2 in DMD models vs respective controls. C, D) Volcano plots
of differentially expressed genes in mdx versus B10 (C) and D2-mdx versus DBA (D). E, H) Venn
diagram of up-regulated (E) and down-regulated (H) genes from mdx versus B10 (blue) and D2-mdx
versus DBA (pink) and their overlap and F, I) heatmaps of top 20 enriched terms, coloured by p-value,
related to these gene lists. G, J) Circos plots representing overlap between up-regulated (G) and down-
regulated (J) gene lists. Outer circle represents the gene list for mdx (blue) and D2-mdx (red). Inner
circle represents gene lists, where hits are arranged along the arc. Genes that hit multiple lists are
colored in dark orange, and genes unique to a list are shown in light orange. Purple curves link identical

genes between gene lists. Blue curves link genes that belong to the same enriched ontology term.

Figure 4. Apoptosis in DMD satellite cells and senescence in DMD myogenic progenitors. A) Selected
terms related to apoptosis and senescence from top 100 terms derived from differentially upregulated
genes in mdx and D2-mdx satellite cells compared to controls. Dot plot of the expression of apoptosis
and senescence GO-terms comparing expression by B) strain and by C) cell cluster. D) IF labelling of
a cross-section of an mdx TA muscle for PAX7 (magenta) and TUNEL (yellow) showing a nucleus
double positive for both PAX7 and TUNEL. E) Quantification of number of nuclei that are PAX7 and
TUNEL positive, visualized per mm?, showing their presence in DMD models only (n = 4-5 biological

replicates). F) Dot plot of scRNA-seq data showing an increase in senescence-associated genes
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Cdknla, Cdkn2a and Cdkn2b in DMD models as compared to controls and G) verification of this
increase in Cdknla, Cdkn2a, and Cdkn2b, with ddPCR from prospectively isolated satellite cells (n =3
or 4 biological replicates as indicated). H) SA-B-Gal (blue) and Hoechst (yellow) staining of TA cross-
sections showing senescence in DMD models and I) quantification of SA-B-Gal+ nuclei showing
significant increase in DMD muscle as compared to controls. J) Strain-comparison of the expression of
autophagy-associated genes from satellite cells described in G, showing reduced expression of
autophagy genes in DMD models compared to healthy controls. Scalebars = 10 um (D), 50 um (H). *P
<0.05, ¥*P <0.01, ***P <0.001, ****P <(0.0001 (two-tailed unpaired t-test (G, L, J), one-sided

Fisher's exact test (E)). Data are expressed as mean = SD.

Figure 5. DMD MuSCs exhibit impaired myogenic differentiation. A) Dot plot of cell polarity genes
and B) canonical myogenic regulatory factors and Cdknic from scRNA-seq data. C) Digital PCR
validation of myogenic regulatory factors and Cdknlc from prospectively isolated satellite cells,
showing lowered expression of early satellite cell factors like Pax7 and increased expression of late
differentiation factors such as Myog. *P < 0.05, **P < 0.01, ****P <(0.0001 (two-tailed unpaired t-
test)). Data are expressed as mean = SD. D) Dot plot of scRNA-seq data for regulators of
differentiation showing a decrease in pro-differentiation and an increase in anti-differentiation genes in
DMD models compared to controls. E) Pseudotime analysis of satellite cells showing cell fate
trajectories with F) three distinct cell fates, and G) visualization by strain showing a preference for the

“DMD enriched” cluster fate in DMD compared to control satellite cells.

Figure 6. DMD satellite cells exhibit impaired in vivo regenerative myogenesis. A) Expression of
myogenic factors and Cdknlc in satellite cells from non-injured (NI), one-day post-injury (1DPI) and

three-day post-injury (3DPI) showing dysregulation in mdx mice during myogenesis. (P < 0.0001 for
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Pax7 and Myf5, P = 0.0496 for Myod1, P =0.0028 for Myog, P =n.s. for Cdknlc however strain factor
P =0.026) B) Representative IF labelling of an mdx EDL myofiber isolated five-days post-injury
(5DPI) for PAX7 (magenta) and MYOG (green), showing myogenic cells along the fiber. C)
Quantification of PAX7+ and MYOG+ nuclei at five, seven and nine DPI showing more PAX7+ and
less MYOG+ nuclei in mdx. (Strain*DPI = n.s., strain factor P = 0.0124 for PAX7, P = 0.038 for
MYOG) D) Images of a B10 (top) and mdx (bottom) EDL myofiber isolated SDPI and labelled for
PAX7 (magenta) and MYOG (green), showing a myogenic cluster in the mdx myofiber. E) A large
myogenic cluster on an mdx EDL myofiber labelled for MYOG (green), PAX7 (magenta), and p57%i?
(white) at 7DPI. F) Quantification of the number of large clusters (> 1000 pum?) and the area of these
clusters. Scalebars = 100 pm (B), 10 pm (D, E). *P <0.05, **P < 0.01, ***P <0.001, ****P < (0.0001

(two-way ANOVA (A), two-tailed unpaired t-test (C, F)). Data are expressed as mean = SD.

Figure 7. DMD satellite cells have impaired autophagy and senescence dynamics during regeneration.
A) Digital PCR quantification of senescence-associated genes Cdknla, Cdkn2a, and Cdkn2b from non-
injured (NI), one day post injury (1DPI) and three days post injury (3DPI) B10 and mdx mice showing
dysregulation in mdx (P > 0.05 for effect of strain*DPI, however P < 0.0001, P =0.0134 and P =
0.0577 for effect of strain alone). B) Digital PCR quantification of autophagy-associated genes in NI,
1DPI and 3DPI B10 and mdx satellite cells demonstrating impaired autophagy dynamics in mdx cells
during regeneration (Strain*DPI = P < 0.0001, < 0.0001, = 0.0007, < 0.0001, and = 0.0006,
respectively). C) Representative images of IF staining against MYOG (yellow) and MyHC (magenta)
from mdx primary myoblasts treated with an autophagy inhibitor (3-MA, 5 mM and H>O control) or
autophagy inducer (Tat-D11, 10 uM and Scramble control) for two hours prior to differentiation for
two days. D) Fusion index of each condition was determined and shows increased differentiation after
Tat-D11 treatment. Scalebar =25 uM, *P < 0.05, **P < 0.01, ***P < (0.001, ****P <(.0001 (two-way

analysis of variance (A, B) and two-tailed unpaired t-test (D)). Data are expressed as mean + SD.
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Figure 3
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Figure 4
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Figure 5
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