

1 **Nuclear stiffening in neoplastic cells aggregates T cell exhaustion via pFAK/SP1/IL-6 axis in**
2 **colorectal cancer**

3 Hao Kong^{1,†}, Xiangji Wu^{1,†}, Qingxin Yang^{1,†}, Qian Sun^{3,†}, Xin Yu¹, Yu Dai¹, Chunwei Wu¹, Dai
4 Xie¹, Lang Chen⁴, Panpan Ma⁴, Siqi Dai¹, Chong Chen¹, Peng Mi¹, Xiaodong Feng¹¹, Yong
5 Peng^{1,10}, Hubing Shi⁹, Dunfang Zhang¹, Nengwen Ke², Dan Cao⁸, Zongguang Zhou⁷, Bing Hu⁶,
6 Ping Wang^{1,*}, Lu Chen^{5*}, Yun-Hua Liu^{4,*}, Qiang Wei^{3,*}, Hong Jiang^{1,2,*}, §

7

8 1, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan
9 University, Chengdu 610041, China.

10 2, Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu 610041,
11 China.

12 3, College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer,
13 Sichuan University, Chengdu, Sichuan 610065, China.

14 4, Department of Surgical Oncology of the Second Affiliated Hospital, and Department of
15 Pathology & Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China.

16 5, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE,
17 Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second
18 University Hospital, Sichuan University, Chengdu 610041, China.

19 6, Department of Gastroenterology and Hepatology, Digestive Endoscopy Medical Engineering
20 Research Laboratory, West China Hospital, Sichuan University, Chengdu 610064, China

21 7, Laboratory of Digestive Surgery, State Key Laboratory of Biotherapy and Cancer Center,
22 Sichuan University, Chengdu 610041, China.

23 8, Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, State Key
24 Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China

25 9, Institute for Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital,
26 Sichuan University and Collaborative Innovation Center, Chengdu 610041, China, 610041

27 10, Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China

28 11, State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical
29 Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus &
30 Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences,
31 West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China

32

33 § Lead contact

34 † These authors contributed equally.

35 * Corresponding authors: Hong Jiang, hongjiang19@126.com; Qiang Wei, wei@scu.edu.cn; Yun-
36 Hua Liu, yunhualiu@zju.edu.cn; Lu Chen, luchen@scu.edu.cn; Ping Wang,
37 pingw1202@gmail.com.

38

39 **SUMMARY**

40 Nuclear abnormalities such as nuclear deformation are hallmarks of many diseases, including
41 cancer. Accumulating evidence suggests that the dense and mechanically stiff tumor
42 microenvironment promotes nuclear deformation in cancer cells. However, little is known about
43 how nuclear deformation in neoplastic cells regulates immune exhaustion in the tumor
44 microenvironment. Here, we found that lamin A/C-mediated nuclear stiffening in neoplastic cells
45 promotes the nuclear translocation of phosphorylated focal adhesion kinase (pFAK), which is
46 strongly correlated with the heterogeneity and exhaustion of CD8⁺ T cells within the spatial context
47 of the tumor microenvironment in human colorectal cancer. Mechanistically, we revealed that
48 increased nuclear tension within tumor cells promotes pFAK nuclear translocation, where nuclear
49 pFAK was found to regulate SP1/IL-6-mediated T-cell exhaustion and the transcription of
50 proinflammatory cytokines/chemokines. Pharmacological inhibition or disruption of pFAK
51 nuclear translocation enhanced antitumor immune responses and synergistically potentiated α PD-
52 1 and α TIM-3 immunotherapy by increasing CD8⁺ T-cell cytotoxicity and restoring exhaustion in
53 preclinical models of colorectal cancer. These findings highlight the pivotal role of nuclear
54 tension-mediated pFAK translocation into the tumor cell nucleus in regulating CD8⁺ T-cell
55 exhaustion, suggesting that pFAK is a promising target for advancing cancer immunotherapy.

56

57 **INTRODUCTION**

58

59 The treatment of colorectal cancer (CRC) remains challenging despite advances in multimodal
60 therapy, such as radiation, chemotherapy, and surgery^{1,2}. While these approaches improve local
61 disease control, the high distant recurrence rate of nearly 30% and substantial side effects highlight
62 the need for novel therapeutic strategies^{3,4}. Immunotherapy has revolutionized cancer treatment
63 for several malignancies, such as melanoma, but has shown limited benefit in colorectal cancer,
64 particularly in microsatellite stable (MSS) tumors^{5,6}. Only a small portion of patients with high
65 microsatellite instability (MSI-H) in colorectal cancer, estimated to be approximately 15%, are
66 eligible for immunotherapy targeting PD-1, PD-L1, or CTLA-4^{7,8}. Most colorectal cancers are
67 microsatellite stable (MSS) and are not responsive to immunotherapies^{9,10}. This disparity
68 highlights the urgent need for innovative immunotherapeutic approaches tailored to colorectal
69 cancers.

70

71 Studies have shown that a unique tumor microenvironment characterized by a fibrotic stroma,
72 exhaustion of CD8⁺ tumor-infiltrating lymphocytes (TILs), and extensive infiltration by
73 immunosuppressive cell populations contributes to the failure of therapies¹¹. While biomechanical
74 forces from the fibrotic niche promote nuclear deformation in cancer cells¹², potentially by
75 modulating nuclear tension and intracellular signaling¹³, their impact on T-cell function and tumor
76 progression remains poorly understood. On the other hand, the heterogeneity and exhaustion of
77 CD8⁺ T cells within the spatial context of the tumor microenvironment and their correlation with
78 treatment response and patient survival are still largely unknown¹⁴. Critically, the molecular
79 drivers of CD8⁺ T-cell exhaustion and immunotherapy resistance in CRC remain elusive¹⁵,

80 representing significant challenges in cancer immunotherapy¹⁶. A better understanding of these
81 mediators is needed to develop more effective immunotherapies for colorectal cancer and improve
82 patient outcomes.

83

84 Nuclear deformation plays a critical role in modulating cellular functions, including cell migration
85 and human disease pathogenesis¹⁷. Emerging evidence reveals that nuclear tension modulates the
86 conformational state of nuclear pore complexes (NPCs), and the resulting nuclear deformations
87 have a considerable effect on nucleocytoplasic transport¹⁸. Studies have shown that mechanical
88 signals from ECM rigidity are transmitted to the nucleus via LINC complexes¹⁹. These forces
89 cause nuclear envelope stretching, likely opening nuclear pores and promoting nuclear transport²⁰.
90 Notably, the fibrotic, mechanically rigid tumor microenvironment induces pronounced nuclear
91 deformation in cancer cells. How these biomechanical alterations in neoplastic cells regulate
92 immune exhaustion in the tumor microenvironment is largely undefined.

93

94 Focal adhesion kinase (FAK) is a well-known nonreceptor protein tyrosine kinase that clusters at
95 focal adhesion structures and plays a role in regulating cell adhesion, migration and survival. Our
96 previous work and others have shown that targeting FAK in pancreatic cancer cells reduces the
97 number of tumor-promoting macrophages and MDSCs and improves the response to anti-
98 PD1/CTLA4 checkpoint therapy²¹. Recently, we reported that *PTK2* was predominantly expressed
99 in epithelial cells, particularly in stem-like epithelial cells (**supporting Fig. 1a-e**). Interestingly,
100 *PTK2* was overexpressed in tumors, especially in the MMRp subtype (**supporting Fig. 1f-g**),
101 suggesting that FAK activation may play a critical role in driving T-cell exhaustion in the MMRp
102 subtype of CRC.

103

104 In the present study, we performed spatial transcriptomics analysis and multiplex
105 immunohistochemical staining to elucidate the spatial heterogeneity and functional characteristics
106 of CD8⁺ TILs in human colorectal cancer. Our findings revealed that increased nuclear tension
107 within the tumor microenvironment facilitates the nuclear translocation of pFAK and that the
108 activation of tumor cell nuclear FAK is correlated with TIL heterogeneity and exhaustion within
109 the tumor microenvironment. Using MC38 and CT26 mouse models of colorectal cancer, we
110 demonstrated that pharmacological inhibition or genetic loss of FAK enhances antitumor immune
111 responses by suppressing SP1/IL-6-mediated T-cell exhaustion. Importantly, targeting FAK with
112 an inhibitor enhances the efficacy of α PD-1 and α TIM-3 immunotherapy by increasing the
113 cytotoxicity of tumor-resident CD8⁺ T cells and reversing exhaustion states in preclinical models.
114 These findings highlight FAK as a nuclear mechanosensor and support its inhibition as a promising
115 strategy to improve immunotherapy outcomes in patients with colorectal cancer.

116

117 **RESULTS**

118 **Nuclear stiffening promotes pFAK nuclear translocation and augments T-cell exhaustion in** 119 **CRC**

120 To investigate potential differences in nuclear tension across different cell types, we performed
121 spatial transcriptomic analysis on human CRC tissues²². The tissues were annotated into five
122 histologically distinct regions: tumor, epithelium, fibroblast, lamina propria, and smooth muscle.
123 Among these regions, the tumor region presented markedly higher nuclear tension-related pathway
124 scores (nuclear lamina) than the other regions did (**Fig. 1a**). Nuclear transport pathways displayed
125 a similar spatial distribution and were strongly correlated with nuclear tension scores ($R = 0.85$, P

126 $<2.2 \times 10^{-16}$), indicating a tight association between elevated nuclear tension and enhanced nuclear
127 transport activity in tumor cells (**Fig. 1a, b**). Lamin A/C constitute a critical structural component
128 of the nuclear lamina and have been identified as predominant regulators of nuclear tension²³.
129 Immunohistochemical (IHC) analyses revealed significantly elevated lamin A/C protein
130 expression in tumor regions compared with both adjacent normal tissues and nontumor areas (**Fig.**
131 **1c**), providing pathological evidence for the aberrantly increased nuclear tension characteristic of
132 malignant cells and suggesting enhanced nuclear protein transport in tumor cells. Multiplex
133 immunohistochemical (mIHC) staining revealed significantly increased nuclear translocation of
134 pFAK in human CRC tissues than in adjacent normal tissues (**Fig. 1d**). Specifically, almost 80%
135 of tumor cells presented positive nuclear pFAK staining, and tumor cells exhibiting high nuclear
136 tension presented markedly greater pFAK nuclear accumulation than did their low-tension normal
137 counterparts in normal tissue (**Fig. 1e**). In addition, we compared regions with high and low nuclear
138 pFAK expression in the same CRC tissue and observed that high nuclear pFAK expression in
139 tumor cells correlated with increased TIM-3 expression in adjacent T cells (**Fig. 1f, g**).
140

141 To investigate whether tumor-intrinsic nuclear pFAK regulates T-cell exhaustion, we first used
142 CRISPR-Cas9 gene editing to knock out *Ptk2* expression in CT26 tumor cells (termed
143 CT26_sg*Ptk2*) (**Extended Data Fig. 1a**) and found that FAK deletion had no significant effect on
144 cell proliferation (**Extended Data Fig. 1b**). Next, we established CT26_FAK_WT and
145 CT26_FAK_mNLS cell lines by reintroducing either wild-type FAK or a nuclear localization
146 signal (NLS)-mutant FAK into CT26_sg*Ptk2* cells. Western blot analysis of total and nuclear
147 fractions confirmed impaired nuclear localization of NLS-mutant FAK (**Fig. 1h**). T cells were
148 subsequently pretreated with anti-CD3/CD28 antibodies and interleukin (IL)-2 for 24 h before

149 being cocultured with tumor cells to induce T-cell exhaustion (**Fig. 1i and Extended Data Fig.**
150 **1c**). Activated CD8⁺ T cells cocultured with CT26_FAK_mNLS or CT26_sgPtk2 tumor cells
151 presented reduced T-cell exhaustion, as evidenced by a lower percentage of PD-1⁺TIM-3⁺ cells
152 and a greater percentage of GZMB⁺ cells. In contrast, pronounced T-cell exhaustion was observed
153 when the cells were cocultured with CT26_sgNTC or CT26_FAK_WT tumor cells (**Fig. 1j, k and**
154 **Extended Data Fig. 1d, e**), suggesting that tumor nuclear pFAK can promote CD8⁺ T-cell
155 exhaustion. Next, we assessed the effects of the FAK-NLS mutation and FAK knockout on tumor
156 growth *in vivo*. Strikingly, FAK knockout did not result in a reduction in tumor volume in nude
157 mice (**Extended Data Fig. 1f**), whereas both FAK-NLS mutation and FAK knockout resulted in
158 a significant delay in tumor progression and reduced tumor weight in immunocompetent mice (**Fig.**
159 **1l, m and Extended Data Fig. 1g**), suggesting an enhanced antitumor immune response following
160 nuclear FAK inhibition. To further validate the impact of tumor cell FAK-NLS mutation and FAK
161 knockout on CD8⁺ T cells *in vivo*, we investigated the spatial exhaustion status of CD8⁺ T cells
162 via mIHC staining (**Fig. 1n and Extended Data Fig. 1h**). Analysis of tumor core-infiltrating CD8⁺
163 T cells revealed a significant reduction in the percentage of PD-1⁺TIM-3⁺TOX⁺CD8⁺ terminally
164 exhausted T (Tex) cells in both FAK-NLS-mutant and FAK-knockout tumors compared with that
165 in control tumors (**Fig. 1o and Extended Data Fig. 1i**). These findings strongly suggest that the
166 nuclear translocation of tumor-intrinsic FAK is a critical driver of T-cell exhaustion.

167
168 **Lamin A/C-mediated high-nuclear-tension neoplastic cells drive pFAK nuclear translocation**
169 To investigate the specificity of FAK nuclear translocation in CRC tumor cells, we cultured HT29
170 and HCT116 tumor cells, as well as normal colonic epithelial NCM460 cells, under both 3D and
171 adherent conditions *in vitro*. Consistent with observations in CRC tissues, mIHC staining of cell

172 spheres and IF staining of adherent cells revealed that nuclear pFAK was exclusively detected in
173 HT29 and HCT116 cells but not in NCM460 cells (**Fig. 2a, b**). Notably, HT29 and HCT116 cells
174 exhibited unusually smooth nuclear morphologies, which contrasts with the pronounced folds and
175 wrinkles found in the nuclear morphology of NCM460 cells (**Fig. 2c**), suggesting that the nuclei
176 of tumor cells may exist in a state of greater tension. To quantify this phenomenon, nuclear tension
177 was evaluated using a nanoindenter (**Fig. 2d**). The results demonstrated that tension in the nuclear
178 region of HT29 and HCT116 cells was significantly greater than that in NCM460 cells, which
179 aligns with the observed differences in nuclear morphology (**Fig. 2d**).

180

181 On the basis of our findings, we aimed to investigate whether nuclear tension drives pFAK nuclear
182 translocation. To address this, we first employed a cell confinement device to apply mechanical
183 pressure to the nucleus (**Fig. 2e**). Using the tumor cell lines HT29 and CT26, we conducted a
184 pressure experiment in which the height of individual nuclei was refined from an average resting
185 diameter of approximately 10 μm to 4 μm (**Fig. 2e**). We characterized the nuclear morphology and
186 deformation under 4 μm confinement and observed that while the nuclear height decreased (**Fig.**
187 **2f**), the projected surface area of the nucleus increased significantly (**Fig. 2g**), indicating a potential
188 increase in nuclear tension. The cells were subsequently subjected to confinement for 0.5 hours in
189 the presence of leptomycin B (a nuclear export inhibitor), followed by rapid fixation and staining
190 for cellular pFAK. Our analysis revealed that the nuclear localization of pFAK was significantly
191 greater in confined cells than in resting cells, a trend that was observed in both the HT29 and CT26
192 cell lines (**Fig. 2h**). *In vivo*, we compared tumor cells with high versus low nuclear pFAK
193 localization via mIHC. The results indicated that cells exhibiting signs of mechanical extrusion, as
194 evidenced by their encasement of abundant collagen, were associated with high nuclear pFAK

195 localization (**Fig. 2i**). These findings suggest that increased nuclear tension promotes pFAK
196 nuclear translocation.

197

198 We further tested whether pFAK translocation was affected by Lamin A/C-mediated nuclear
199 tension. Lamin A/C is an important component of the nuclear skeleton that mediates the
200 maintenance of nuclear pores and morphology. Previous studies have shown that lamin A/C
201 expression is positively correlated with nuclear tension²³, and our western blot results also revealed
202 that lamin A/C expression in tumor cells (high nuclear tension) was greater than that in normal
203 epithelial cells (low nuclear tension) (**Extended Data Fig. 2a**). We knocked down lamin A/C in
204 both human (HT29 and HCT116) and mouse (CT26 and MC38) CRC tumor cells and found that
205 lamin A/C-depleted cells displayed nuclear dysmorphism and increased nuclear folds, reflecting the
206 relaxation of tension in the nuclear envelope (**Extended Data Fig. 2b-e**). To estimate this
207 parameter, nuclear tension was examined in sgLMNA/Lmna cells and sgNTC cells, and as expected,
208 the nuclear tension of sgLMNA/Lmna cells was significantly lower than that of sgNTC cells, both
209 in human and mouse CRC tumor cells (**Fig. 2j and Extended Data Fig. 2b-e**). Then, pFAK
210 nuclear import was measured by monitoring the nuclear accumulation of pFAK while blocking
211 nuclear export with leptomycin B for 0 h, 0.5 h, 1 h, and 2 h. In both HT29 and CT26 cells, lamin
212 A/C-deficient (low nuclear tension) cells presented significantly reduced nuclear import of pFAK
213 compared with wild-type controls (high nuclear tension), indicating that impaired nuclear
214 translocation of pFAK was caused by reduced nuclear tension in lamin A/C-deficient cells (**Fig.**
215 **2k, l**). Similar to the *in vitro* results, normal intestinal epithelial cells with low lamin A/C
216 expression in adjacent normal tissues presented no expression of nuclear pFAK, whereas tumor

217 cells with high lamin A/C expression in tumor tissues presented obvious nuclear localization of
218 pFAK (**Fig. 1d and e**).

219
220 Taken together, our data suggest a novel mechanism by which tumor cells regulate the nuclear
221 localization of pFAK through abnormally high nuclear tension. We propose that high collagen I
222 expression in tumor tissues and high lamin A/C expression in tumor cells affect tumor nuclear
223 tension, which controls pFAK nuclear translocation.

224
225 **Tumor nuclear pFAK promotes IL-6 secretion by regulating the transcription factor SP1**
226 To elucidate the potential mechanism of nuclear pFAK-targeted genes, we first performed
227 cleavage under targets and tagmentation (CUT&Tag) analysis in DMSO- or FAKi-treated CT26
228 cells. The results of western blot and immunofluorescence (IF) staining demonstrated that FAKi
229 treatment significantly suppressed pFAK expression in CT26 cells, accompanied by a
230 corresponding reduction in nuclear pFAK fluorescence (**Fig. 3a and Extended Data Fig. 3a**).
231 Analysis of promoter regions (< 3 kb) with signals detected in the intersecting genes from DMSO
232 vs. pFAKi 12 h, 24 h, and 12 h vs. 24 h CUT&Tag data from CT26 cells revealed that pFAK binds
233 to promoters of 1,299 genes (**Fig. 3b, c**), and by ranking these genes, we identified the top-ranked
234 transcription factor, SP1 (specificity protein 1) (**Fig. 3d**). We next analyzed the pFAK-binding
235 motifs via the hybrid optimization of multiple energy resources (HOMER) motif discovery
236 program 40²⁴ (**Fig. 3e**) and found that the top-ranked motif was located in the pFAK binding site
237 of the *Sp1* promoter region. Through DNA pull-down assays, we demonstrated that the pFAK
238 protein specifically binds to the motif-containing sequence in the *Sp1* promoter (**Extended Data**
239 **Fig. 3b**). Notably, FAKi treatment reduced the DNA-binding activity of pFAK to the *Sp1* locus

240 (Fig. 3f). Validation via CUT&Tag-qPCR revealed a significant reduction in pFAK enrichment at
241 the *Sp1* promoter and a corresponding decrease in *Sp1* mRNA expression following FAKi
242 treatment compared with those in DMSO-treated control CT26 cells (Fig. 3g, h). Furthermore, we
243 performed IF staining for pFAK and SP1 in FAK_WT and FAK_mNLS CT26 cells (Fig. 3i, j).
244 The results revealed that SP1 was expressed mainly in the cell nucleus and that SP1 fluorescence
245 was significantly lower in FAK_mNLS cells than in FAK_WT cells, as shown by fluorescence
246 quantitative analysis (Fig. 3j). To validate the relationship between nuclear pFAK and SP1 in
247 human CRC, we conducted mIHC staining on adjacent normal and tumor tissues (Fig. 3k). Overall,
248 SP1 expression was significantly higher in tumor tissues than in adjacent normal tissues.
249 Specifically, compared with normal cells with low nuclear tension (low lamin A/C expression),
250 tumor cells with high nuclear tension (high lamin A/C expression) and distinct nuclear pFAK
251 translocation exhibited significantly upregulated SP1 expression (Fig. 3k).

252
253 On the basis of the finding that pFAK regulates the transcription factor SP1, we subsequently
254 validated the expression of SP1-targeted cytokine/chemokine genes²⁵ and found that *Il6*, *Csf1*, and
255 *Csf2* were consistently downregulated at the mRNA level following FAK inhibition in CT26 cells
256 (Fig. 3l). Consistent with these findings, *Il6* and *Csf1* expression was also reduced in CT26 cells
257 with FAK knockout or FAK_mNLS mutations (Fig. 3m, n). Using forward-phase protein arrays
258 (FPPAs), which enable the quantification of 40 chemokines/cytokines in conditioned media from
259 CT26 cells, we observed that FAK inhibition led to broad reprogramming of chemokines/cytokines,
260 including the SP1 target IL-6 (Extended Data Fig. 4a-c). Next, we focused on IL-6 to investigate
261 its role in T-cell regulation. Owing to the low basal secretion of IL-6 in CT26 cell culture media,
262 we stimulated cells with lipopolysaccharide (LPS) and measured the IL-6 levels via ELISA to

263 validate the FPPA results. ELISAs confirmed that FAK inhibition, FAK knockdown, and
264 FAK_mNLS mutation significantly reduced IL-6 secretion compared with that in control cells,
265 indicating that both nuclear FAK and FAK activation are critical for IL-6 regulation (**Fig. 3o-q**).
266 To further demonstrate that nuclear pFAK regulates IL-6 secretion, we treated CT26 cells with
267 leptomycin B to increase pFAK nuclear localization (**Extended Data Fig. 3c**). Increased nuclear
268 localization of pFAK resulted in a significant increase in IL-6 secretion, which was fully reversed
269 by FAKi treatment (**Fig. 3r**). To evaluate this relationship *in vivo*, we performed IL-6 staining in
270 control and sgPtk2 tumors and found that IL-6 was nearly undetectable in FAK-deficient tumors
271 (**Fig. 3 s**). These results suggest that the kinase activity of nuclear FAK is essential for the SP1-
272 dependent regulation of IL-6 secretion.

273

274 **Tumor-intrinsic IL-6 promotes CD8⁺ T-cell exhaustion**

275 To investigate the downstream effects of tumor cell-derived IL-6 on T-cell exhaustion, splenic
276 CD8⁺ T cells were isolated and then exposed to IL-6 *in vitro* (**Fig. 4a**). The results revealed that
277 IL-6 significantly promoted the expression of the exhaustion genes *Pdcd1* and *Havcr2* in T cells,
278 whereas the expression of the effector gene *Ifng* was suppressed by IL-6 (**Extended Data Fig. 5**
279 **a, b**). We further confirmed that IL-6 promoted the expression of exhaustion markers, such as PD-
280 1, TIM-3 and TOX, in CD8⁺ T cells and increased the proportion of exhausted CD8⁺ T cells (PD-
281 1⁺TIM-3⁺TOX⁺CD8⁺ T cells) in a time-dependent manner (**Fig. 4b**). To identify the downstream
282 mediators of IL-6-induced T-cell exhaustion, we examined the activation status of STAT3, a key
283 downstream target of IL-6 signaling²⁶. As expected, IL-6 promoted the expression and activation
284 of STAT3 in a time-dependent manner (**Fig. 4c and Extended Data Fig. 5c, d**).

285

286 To validate the role of IL-6 in modulating CD8⁺ T-cell function *in vivo*, we generated IL-6-
287 knockdown CT26 cell lines (**Fig. 4d**) and inoculated sg*Il6*, sg*Ptk2*, and sgNTC cells into BALB/c
288 mice. Knocking down IL-6 and FAK in tumor cells markedly blunted tumor progression and led
289 to almost complete regression of some tumors (**Fig. 4e, f**). We subsequently evaluated the
290 exhaustion status of CD8⁺ T cells via mIHC (**Fig. 4g**). Compared with sgNTC tumors, sg*Il6* and
291 sg*Ptk2* tumors presented a decreased percentage of PD-1⁺TIM-3⁺TOX⁺CD8⁺ terminal exhausted
292 T cells and an increased percentage of PD-1⁺TIM-3⁺TOX⁻CD8⁺ functional T cells (**Fig. 4h, i**).
293 Consistently, the loss of IL-6 and FAK in tumor cells led to a reduced proportion of pSTAT3⁺CD8⁺
294 T cells (**Fig. 4j**). Bioinformatic analysis of the Cancer Genome Atlas (TCGA) datasets revealed a
295 positive correlation between IL-6 expression and the T-cell exhaustion score in patients with
296 colorectal cancer ($R = 0.33$, $P = 1 \times 10^{-11}$; **Fig. 4k**). Survival analysis of patients stratified by IL-
297 6 expression levels revealed that the low-expression group exhibited significantly longer survival
298 than did the high-expression group (**Fig. 4l**). Collectively, these findings suggest that tumor-
299 intrinsic nuclear pFAK promotes IL-6 secretion through the regulation of the transcription factor
300 SP1, thereby driving T-cell exhaustion in the TME.

301

302 **Pharmacological inhibition of FAK leads to stable disease progression by reprogramming
303 the TME**

304 To investigate the impact of FAK inhibition on tumor progression and alterations in the TME, we
305 assessed the effects of the clinically available FAK inhibitor VS-4718 in murine colorectal tumor
306 models, including MC38 (microsatellite instability, MSI) and CT26 (microsatellite stable, MSS)
307 models. Compared with control mice, MC38 tumor-bearing mice treated with 50 mg/kg FAK
308 inhibitor (FAKi) presented significantly reduced tumor growth and stable disease (**Fig. 5a**). This

309 tumor-suppressive effect was consistently observed in the CT26 subcutaneous tumor model (**Fig.**
310 **5b**). IF staining of CT26 tumors revealed that nuclear pFAK and IL-6 expression was significantly
311 inhibited after treatment with FAKi (**Fig. 5c, d**).

312

313 Subsequent single-cell RNA sequencing (scRNA-seq) analysis of CT26 tumors enabled
314 characterization of the transcriptional landscape of the tumor immune microenvironment (TIME).
315 After quality control, we obtained transcriptomes from 47,442 cells and identified 13 main cell
316 types, including various T/NK cell subsets, B cells, myeloid cells, endothelial cells, fibroblasts,
317 and tumor cells (**Extended Data Fig. 6a-b**). The identified populations were subsequently
318 visualized through dimensionality reduction via the uniform manifold approximation and
319 projection (UMAP) algorithm (**Fig. 5e**). Notably, CD8⁺ T-cell gene changes were most significant
320 after FAKi treatment compared with those in the control group (**Fig. 5f**). Compared with control
321 tumors, FAKi-treated tumors presented upregulated expression of cytotoxicity-associated genes
322 (*Stat1*, *Ifngr1*, and *Cxcr3*) and downregulated expression of exhaustion-related genes (*Stat3*,
323 *Pdcd1*, and *Tox*) in CD8⁺ T cells (**Fig. 5g**). Gene Ontology (GO) enrichment analysis, Kyoto
324 Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and gene set enrichment analysis
325 (GSEA) further revealed that FAKi treatment was associated with increased T-cell differentiation
326 and activation pathways (**Fig. 5h, i**). Recluster analysis of 1,942 CD8⁺ T cells from both groups
327 identified three subclusters, including proliferating CD8⁺ T cells (Tpro) expressing proliferation
328 markers (*Bicr5* and *Top2a*), effector/memory CD8⁺ T cells (Tem) expressing effector/memory
329 markers (*Gzmb*, *Ccl5*, *Sell* and *Tcf7*) and exhausted CD8⁺ T cells (Tex) expressing exhaustion
330 markers (*Tox* and *Pdcd1*) (**Fig. 5j**). Notably, FAKi treatment dramatically reduced the percentage
331 of the Tex population and increased the percentage of the Tem population (**Fig. 5k**).

332

333 Validation through mIHC and flow cytometric analysis confirmed that FAKi treatment
334 significantly reduced the proportion of exhausted T cells (PD-1⁺TIM-3⁺CD8⁺ T cells and PD-
335 1⁺TIM-3⁺TOX⁺CD8⁺ T cells) while increasing the percentage of stem-like CD8⁺ T cells
336 expressing TCF-1 in CT26 tumors (**Fig. 5l, m and Extended Data Fig. 7**). Furthermore, FAKi
337 treatment increased the proportion of GZMB⁺CD8⁺ T cells (effector CTLs) in CT26 tumors (**Fig.**
338 **5n**). Together, these findings suggest that FAK inhibition suppresses tumor progression by
339 preventing T-cell exhaustion, maintaining a stem-like state, and enhancing T-cell effector
340 functions, thereby reshaping the tumor immune microenvironment toward an antitumor response.

341

342 **FAK inhibitors potentiate immune checkpoint blockade (ICB) therapy *in vivo***

343 Given that FAK inhibition suppresses tumor growth by reprogramming the tumor
344 microenvironment, we sought to further investigate its potential to increase the efficacy of
345 immunotherapy. We found that FAKi synergized strikingly with immunotherapies when combined
346 with low-dose 5-fluorouracil (20 mg/kg, i.p., ‘5-Fu²⁰’) in both the CT26 (MSS) and MC38 (MSI)
347 tumor models of human CRC, resulting in notable suppression of tumor growth compared with
348 that in those treated with a FAK inhibitor or immunotherapy alone (**Fig. 6a-d**).

349

350 To decipher the underlying cellular and molecular mechanisms, we conducted scRNA-seq on
351 tumor-infiltrating CD45⁺ immune cells (**Extended Data Fig. 8a**). After quality control, T-
352 distributed stochastic neighbor embedding (t-SNE) analysis identified a total of 11 main cell types
353 on the basis of known expression markers (**Extended Data Fig. 8b, c**). GSEA revealed that CD8⁺
354 T cells from combination-treated tumors were enriched in pathways related to T-cell functions,

355 such as migration, proliferation, activation, and interferon-beta production (**Fig. 6e**). Reclustering
356 analysis of CD8⁺ T cells revealed four subsets: precursor effector/memory T cells (Tpem)
357 coexpressing stem-like (*Tcf7*, *Cd69*, *Mki67*) and effector/memory markers (*Ifngr1*, *Ccr2*);
358 proliferating T cells (Tprolif) characterized by *Mki67*, *Bicr5*, and *Top2a*; effector/memory T cells
359 (Tem) marked by *Tnf*, *Ifngr1*, and *Cd200*; and exhausted T cells (Tex) expressing *Tox*, *Havcr2*,
360 and *Pdcd1* (**Fig. 6f and Extended Data Fig. 8d**). Notably, we observed significant expansion of
361 Tpem clusters and Tem cell clusters in combination-treated tumors, whereas the proportions of
362 Tex cells were dramatically lower in combination-treated tumors than in the other three groups
363 (**Fig. 6g**). Furthermore, compared with those from the other three groups, CD8⁺ T cells from
364 combination-treated tumors presented reduced expression levels of exhaustion-related genes
365 (*Havcr2*, *Pdcd1* and *Tox*) and increased expression levels of cytotoxicity-related genes (*Cd69*,
366 *Ifngr1* and *Tnf*) (**Fig. 6h**). Pseudotime trajectory analysis, in which Tpem cells were used as the
367 root population, revealed two branches of differentiation via Tprolif cells: one branch toward Tem
368 cells and the other branch toward Tex cells, giving rise to cytotoxic and exhausted CD8⁺ T-cell
369 lineages, respectively (**Fig. 6i**). We observed that there were significantly lower levels of
370 exhaustion marker genes in the cytotoxic CD8⁺ T lineage from the combination-treated tumors
371 than in the other three groups. In contrast, the expression of cytotoxic marker genes was
372 significantly greater in CD8⁺ T cells from the combination-treated group than in those from the
373 other three groups (**Fig. 6j and Extended Data Fig. 8e**).

374
375 To validate the findings from the scRNA-seq data, we carried out mIHC to profile the CD8⁺ T-
376 cell status in both CT26 tumors. We confirmed that there was a significant decrease in IL-6 protein
377 expression in the combination-treated group as well as in the FAKi alone group (**Fig. 6k**). We also

378 detected a significant reduction in pSTAT3⁺TOX⁺TIM-3⁺CD8⁺ T cells in the combination and
379 FAKi groups (**Fig. 6l**).

380

381 Taken together, these findings demonstrate that inhibition of FAK enhances checkpoint therapy
382 across CRC models by potentiating tumor-resident CD8⁺ T-cell functionality and cytotoxicity and
383 reinvigorating exhausted states through suppression of the SP1–IL-6 proinflammatory axis.

384

385 **DISCUSSION**

386

387 This work demonstrated that the increased nuclear pFAK induced by nuclear stiffening in tumor
388 cells is a key regulator of CD8⁺ T-cell exhaustion in CRC. Mechanistically, we elucidated that
389 increased nuclear tension within tumor cells facilitates the nuclear translocation of pFAK. Once in
390 the nucleus, pFAK orchestrates SP1/IL-6-mediated T-cell exhaustion and regulates the
391 transcription of proinflammatory cytokines and chemokines. Importantly, our findings provide
392 evidence that targeting pFAK with small molecule inhibitors enhances the efficacy of α PD-1 and
393 α TIM-3 immunotherapies by increasing the degree of cytotoxicity among tumor-resident CD8⁺ T
394 cells and reversing exhausted states in mouse models of CRC.

395

396 In solid tumors, including CRC, the infiltration of T cells into tumor beds has long been associated
397 with favorable outcomes²⁷. However, how spatial immune microenvironments influence T-cell
398 exhaustion and immunotherapy resistance remains poorly understood²⁸. Moreover, the mediators
399 contributing to immune suppression and the limited response to immunotherapy in patients with
400 colorectal cancer remain unexplored. Our previous work and others have shown that targeting

401 FAK in pancreatic cancer cells reduces the number of tumor-promoting macrophages and MDSCs
402 and improves the response to anti-PD1/CTLA4 checkpoint therapy²¹. Here, by integrating spatial
403 transcriptomics and single-cell RNA sequencing, we identified pFAK nuclear translocation as a
404 driver of immune suppression and T-cell exhaustion in human CRC. Genetic or pharmacological
405 disruption of pFAK nuclear transport reprograms the tumor microenvironment, reversing terminal
406 exhaustion (PD-1⁺TIM-3⁺CD8⁺ T cells) and potentiating antitumor immunity in preclinical models.

407

408 Recent advances have revealed a close relationship between nuclear mechanical properties and
409 malignant tumor behavior. During metastasis, tumor cells need to cross a narrow extracellular
410 matrix (ECM) or vascular endothelial space (<5 μ m), whereas nuclei (usually >10 μ m) must
411 undergo significant deformation to pass through²⁹. The groundbreaking work of Denais *et al.*
412 revealed that tumor cell migration through narrow spaces can induce nuclear envelope rupture and
413 subsequent DNA damage¹². Shah *et al.* expanded this finding by demonstrating that nuclear
414 deformation can trigger DNA damage by increasing replication stress, which may promote
415 genomic instability and accelerate the tumor metastatic process³⁰. These discoveries establish
416 nuclear mechanical adaptability as a critical factor in cancer development. Consistent with our
417 findings, Swift *et al.* reported that lamin A/C expression and phosphorylation status directly
418 regulate nuclear rigidity³¹, with aberrant lamin A/C expression frequently observed in malignant
419 tumors. According to clinical CRC data, patients with elevated lamin A/C expression exhibit
420 nearly twice the mortality rate of lamin A/C-negative patients³². Furthermore, these nuclear
421 mechanical properties also participate in a broader “ECM stiffness–cytoskeletal tension–nuclear
422 deformation” feedback loop that activates mechanosensitive pathways, alters chromatin
423 organization, and ultimately reinforces proinvasive gene programs. In our work, we demonstrated

424 that nuclear stiffening in tumor cells can accelerate immune exhaustion in the tumor
425 microenvironment by promoting FAK nuclear translocation, while disruption of pFAK nuclear
426 translocation suppresses T-cell exhaustion, suggesting that nuclear mechanics might play a critical
427 role in modulating immune suppression in colorectal cancer.

428

429 FAK, a nonreceptor tyrosine kinase localized at focal adhesions, regulates cell adhesion, migration,
430 and survival. David Schlaepfer reported nuclear FAK translocation and its scaffolding role in cell
431 survival³³. Recently, Margaret Frame demonstrated that nuclear FAK is associated with chromatin
432 and interacts with TFs to control evasion of antitumor immunity³⁴. Consistent with these reports,
433 we also observed that pFAK is located in the cell nucleus in the context of colorectal cancer.
434 Importantly, our data suggest that increased nuclear tension, likely driven by the mechanically
435 stressed tumor microenvironment, facilitates pFAK nuclear translocation, supporting a
436 mechanoresponsive role for pFAK. We speculate that pFAK functions directly as a core
437 transcriptional machinery. More importantly, we identified SP1 as a direct target of nuclear pFAK.
438 We propose a model in which nuclear pFAK binds to the promoter of *Sp1*, which induces SP1
439 transcription and thereby leads to an increase in the production of IL-6, a direct target of Sp1²⁵.
440 Indeed, we demonstrated that IL-6 was a key contributor to T-cell exhaustion through the
441 activation of STAT3 both *in vitro* and *in vivo*. Notably, FAK inhibition also expands NK cell
442 populations, suggesting broader immunomodulatory effects beyond T-cell regulation, although the
443 detailed underlying mechanisms warrant further exploration.

444

445 T-cell exhaustion, which is characterized by elevated expression of inhibitory receptors (PD-1,
446 TIM-3, LAG-3, and CTLA-4), represents a critical barrier to effective antitumor immunity^{11,35,36}.

447 Targeting PD-1 with checkpoint inhibitors, such as nivolumab and pembrolizumab, has been
448 shown to be effective in reversing T-cell exhaustion and restoring antitumor responses, leading to
449 clinical benefits in some cancer patients^{37,38}. However, while targeting PD-1 has shown promising
450 results in some cancers, a significant proportion of patients still do not respond to this treatment^{39,40},
451 highlighting the need for additional therapeutic targets and a better understanding of the complex
452 mechanisms underlying T-cell exhaustion in cancer. T-cell immunoglobulin and mucin-domain-
453 containing protein 3 (TIM-3) is considered an immune checkpoint molecule similar to PD-1 and
454 CTLA-4^{41,42}. Studies have highlighted the role of TIM-3 expression on CD8⁺ T cells in relation to
455 disease stage in human colorectal cancer (CRC), as well as the potential benefits of TIM-3
456 blockade in enhancing antitumor responses^{43,44}. These outcomes highlight the complexity of
457 cancer immunotherapy and the need for multifaceted treatment approaches. Emerging evidence
458 suggests that the long-term persistence of TCF1⁺ stem-like T cells is important for achieving
459 durable responses to immunotherapies, such as checkpoint inhibitors^{45,46}. In this work, we
460 demonstrated that the nuclear translocation of pFAK contributes to T-cell exhaustion in human
461 colorectal cancers. Genetic or pharmacological disruption of pFAK nuclear transport reprograms
462 the tumor microenvironment, specifically reducing the number of terminally exhausted T cells
463 while enhancing antitumor immunity in preclinical models.

464

465 FAK overexpression and hyperactivation are associated with tumor progression, metastasis, and
466 resistance to therapy in various cancers. As a result, FAK inhibitors are being investigated in
467 multiple clinical trials, both as monotherapies and in combination with chemotherapy,
468 immunotherapy, or targeted therapies^{47,48}. Our previous work demonstrated that a combination of
469 FAK inhibitors and anti-PD-1/CTLA4 antibodies reduced the number of immunosuppressive cells

470 and improved overall survival in mouse models of human pancreatic cancer²¹. Consistent with
471 previous reports³⁴, here, we found that targeted inhibition of FAK dramatically improved the
472 efficacy of anti-PD1/TIM-3 checkpoint therapy in both MSS and MSI mouse models of human
473 CRC as a result of reinvigorating exhausted states of tumor-infiltrating lymphocytes and
474 potentiating effector T-cell cytotoxicity. FAK inhibitors represent a promising therapeutic
475 approach in oncology, particularly in combination with immunotherapy and targeted agents.
476 Ongoing clinical trials are aiming to validate their role in overcoming treatment resistance and
477 improving outcomes in aggressive cancers (NCT06072781, NCT02428270, NCT01849744,
478 NCT06166836 and NCT05580445). The results of these studies will determine their potential for
479 future clinical application and provide promising evidence that targeting the FAK pathway may
480 represent a promising strategy for cancer immunotherapy.

481

482 In summary, our study established nuclear pFAK as a mechanoresponsive transcriptional regulator
483 that drives CD8⁺ T-cell exhaustion through the SP1–IL-6 axis in CRC. Notably, our data suggest
484 that increased nuclear tension within tumor cells facilitates pFAK nuclear translocation, thereby
485 linking tumor mechanical stress to immune dysfunction. Together, these insights provide a strong
486 rationale for therapeutically targeting FAK to overcome immune exhaustion and improve the
487 efficacy of immune checkpoint blockade in colorectal cancer and a framework for developing
488 spatially and mechanically informed immunotherapeutic strategies.

489

490 **METHODS**

491

492 **Human tumor specimen collection**

493 Human colorectal cancer specimens were collected from patients with histologically confirmed
494 colorectal cancer who underwent curative surgical resection at the Department of Gastrointestinal
495 Surgery, West China Hospital, Sichuan University, China. This project was approved by the West
496 China Hospital Medical Committee (2020--374).

497

498 **Multiplex immunohistochemistry (mIHC)**

499 Multiplex IHC staining was performed using an Opal 7-color kit (Akoya Bioscience, US). Briefly,
500 the sections were dewaxed with xylene for 20 minutes. Then, ethanol was used for rehydration.
501 Microwave treatment was performed for antigen retrieval with antigen retrieval buffer. Next, all
502 the sections were cooled at room temperature for 30 minutes. Endogenous peroxidase activity was
503 blocked via Antibody Diluent/Block (Akoya Bioscience, US) for 10 minutes at room temperature.
504 The slides were then incubated for 1 hour at room temperature with the primary antibody (details
505 of the antibodies are described in **Supplemental Table 1**), for 20 minutes at 37°C with the
506 secondary reagents, and for 10 minutes at room temperature with Opal working buffer. The above
507 procedures were repeated for other antibodies, and the antibodies were removed by microwave
508 treatment before another round of staining was performed. Nuclear staining was performed via
509 incubation with DAPI (Akoya Bioscience, US) for 5 minutes at room temperature. Slides were
510 scanned at 20× magnification via the Vectra Polaris system (Akoya Biosciences, US). Whole-
511 tissue scans were analyzed with Qupath software (<https://qupath.github.io>) via area quantification
512 and a cytonuclear module⁴⁹.

513

514

515 **Statistics and reproducibility**

516 All the statistical analyses were performed via Prism 10 (GraphPad). The data are presented as the
517 mean \pm SEM, and two-tailed Student's t test, one-way ANOVA, or two-way ANOVA was used
518 as indicated in the figure legends. The exact value of n (number of biological or experimental
519 replicates) can be found in the figure legends, and the exact P values are indicated in the graphed
520 data. A P value < 0.05 was considered to indicate statistical significance. Most experiments were
521 carried out at least two or three times, and the findings of all the key experiments were reliably
522 reproduced.

523

524 **Conflicts of interest**

525 The authors declare that they have no potential conflicts of interest.

526

527 **Authors' contributions**

528 HJ, QW, YHL and PW designed the research; HK, PW and HJ wrote the paper; NWK and HK
529 collected the clinical samples; HK, QXY and Lang C analyzed the clinical sample data; QXY, HK
530 and PPM performed the scRNA-seq data analysis; QS and HK performed the cell mechanics
531 assays; XJW and SQD performed the CRISPR knockdown of FAK; XJW and HK generated the
532 *in vivo* mouse models; CWW and DX helped with the drug treatments; HK, XY and YD performed
533 the mIHC and analyzed the data; ZGZ, DC and BH supervised the clinical research design; YHL,
534 Lu C and HBS supervised the scRNA-seq data analysis; XDF, CC and PM supervised the *in vivo*
535 studies; PW, DFZ and YP supervised the T-cell coculture experiments.

536

537 **Acknowledgments**

538 The authors thank all members of the Hong Jiang laboratory (West China Hospital, Sichuan
539 University) for their insightful comments regarding this work. The authors thank the Laboratory
540 of Digestive Surgery, West China Hospital, for clinical sample preparation and quality control
541 (QC) validation. The authors thank Xiaogang Wang for providing the HALO image analysis
542 platform. This work was supported by the following funding: Natural Science Foundation of China
543 grants #82073158 (Hong Jiang), #82072615 (Yun-Hua Liu), #82273274 (Yun-Hua Liu) and #
544 T2222020 (Qiang Wei); the Leading Goose R&D Program of Zhejiang (2024c03142 to Yun-Hua
545 Liu) and 1.3.5 project for disciplines of excellence from West China Hospital of Sichuan
546 University (ZYYC24005, to Hong Jiang).

547

548 **References**

- 549 1. Ciombor, K. K., Wu, C. & Goldberg, R. M. Recent therapeutic advances in the treatment of
550 colorectal cancer. *Annu Rev Med* **66**, 83–95 (2015).
- 551 2. Dekker, E., Tanis, P. J., Vleugels, J. L. A., Kasi, P. M. & Wallace, M. B. Colorectal cancer.
552 *The Lancet* **394**, 1467–1480 (2019).
- 553 3. Biller, L. H. & Schrag, D. Diagnosis and Treatment of Metastatic Colorectal Cancer: A
554 Review. *JAMA* **325**, 669–685 (2021).
- 555 4. Cañellas-Socias, A., Sancho, E. & Batlle, E. Mechanisms of metastatic colorectal cancer. *Nat
556 Rev Gastroenterol Hepatol* (2024) doi:10.1038/s41575-024-00934-z.
- 557 5. O'Donnell, J. S., Teng, M. W. L. & Smyth, M. J. Cancer immunoediting and resistance to T-
558 cell-based immunotherapy. *Nat. Rev. Clin. Oncol.* **16**, 151–167 (2019).
- 559 6. Finck, A. V., Blanchard, T., Roselle, C. P., Golinelli, G. & June, C. H. Engineered cellular
560 immunotherapies in cancer and beyond. *Nat Med* **28**, 678–689 (2022).

561 7. Tjader, N. P. & Toland, A. E. Immunotherapy for colorectal cancer: insight from inherited
562 genetics. *Trends Cancer* **10**, 444–456 (2024).

563 8. Weng, J. *et al.* Exploring immunotherapy in colorectal cancer. *J Hematol Oncol* **15**, 95
564 (2022).

565 9. Vilar, E. & Gruber, S. B. Microsatellite instability in colorectal cancer—the stable evidence.
566 *Nat Rev Clin Oncol* **7**, 153–162 (2010).

567 10. Wang, C. & Fakih, M. Targeting MSS colorectal cancer with immunotherapy: are we turning
568 the corner? *Expert Opin Biol Ther* **21**, 1347–1357 (2021).

569 11. Baessler, A. & Vignali, D. A. A. T Cell Exhaustion. *Annu Rev Immunol* (2024)
570 doi:10.1146/annurev-immunol-090222-110914.

571 12. Denais, C. M. *et al.* Nuclear envelope rupture and repair during cancer cell migration.
572 *Science* **352**, 353–358 (2016).

573 13. Lomakin, A. J. *et al.* The nucleus acts as a ruler tailoring cell responses to spatial constraints.
574 *Science* **370**, eaba2894 (2020).

575 14. Binnewies, M. *et al.* Understanding the tumor immune microenvironment (TIME) for
576 effective therapy. *Nat Med* **24**, 541–550 (2018).

577 15. Ganesh, K. *et al.* Immunotherapy in colorectal cancer: rationale, challenges and potential.
578 *Nat. Rev. Gastroenterol. Hepatol.* **16**, 361–375 (2019).

579 16. Jiang, W. *et al.* Exhausted CD8+T Cells in the Tumor Immune Microenvironment: New
580 Pathways to Therapy. *Front. Immunol.* **11**, (2021).

581 17. Zwerger, M., Ho, C. Y. & Lammerding, J. Nuclear Mechanics in Disease. *Annual Review of
582 Biomedical Engineering* **13**, 397–428 (2011).

583 18. Zimmerli, C. E. *et al.* Nuclear pores dilate and constrict in cellulo. *Science* **374**, eabd9776
584 (2021).

585 19. Kalukula, Y., Stephens, A. D., Lammerding, J. & Gabriele, S. Mechanics and functional
586 consequences of nuclear deformations. *Nat Rev Mol Cell Biol* **23**, 583–602 (2022).

587 20. Elosegui-Artola, A. *et al.* Force Triggers YAP Nuclear Entry by Regulating Transport across
588 Nuclear Pores. *Cell* **171**, 1397-1410.e14 (2017).

589 21. Jiang, H. *et al.* Targeting Focal Adhesion Kinase Renders Pancreatic Cancers Responsive to
590 Checkpoint Immunotherapy. *Nat Med* **22**, 851–860 (2016).

591 22. Wu, Y. *et al.* Spatiotemporal Immune Landscape of Colorectal Cancer Liver Metastasis at
592 Single-Cell Level. *Cancer Discov* **12**, 134–153 (2022).

593 23. Kalukula, Y., Stephens, A. D., Lammerding, J. & Gabriele, S. Mechanics and functional
594 consequences of nuclear deformations. *Nat Rev Mol Cell Biol* **23**, 583–602 (2022).

595 24. Heinz, S. *et al.* Simple Combinations of Lineage-Determining Transcription Factors Prime
596 cis-Regulatory Elements Required for Macrophage and B-Cell Identities. *Molecular Cell* **38**,
597 576–589 (2010).

598 25. Tanaka, T., Narasaki, M. & Kishimoto, T. IL-6 in Inflammation, Immunity, and Disease.
599 *Cold Spring Harbor Perspectives in Biology* **6**, a016295–a016295 (2014).

600 26. Johnson, D. E., O’Keefe, R. A. & Grandis, J. R. Targeting the IL-6/JAK/STAT3 signaling
601 axis in cancer. *Nat Rev Clin Oncol* **15**, 234–248 (2018).

602 27. Hegde, P. S. & Chen, D. S. Top 10 Challenges in Cancer Immunotherapy. *Immunity* **52**, 17–
603 35 (2020).

604 28. Brosseau, J.-P. & Le, L. Q. Heterozygous Tumor Suppressor Microenvironment in Cancer
605 Development. *Trends Cancer* **5**, 541–546 (2019).

606 29. Follain, G. *et al.* Hemodynamic Forces Tune the Arrest, Adhesion, and Extravasation of
607 Circulating Tumor Cells. *Developmental Cell* **45**, 33-52.e12 (2018).

608 30. Nuclear Deformation Causes DNA Damage by Increasing Replication Stress. *Current*
609 *Biology* **31**, 753-765.e6 (2021).

610 31. Swift, J. *et al.* Nuclear Lamin-A Scales with Tissue Stiffness and Enhances Matrix-Directed
611 Differentiation. *Science* **341**, 1240104 (2013).

612 32. Willis, N. D. *et al.* Lamin A/C Is a Risk Biomarker in Colorectal Cancer. *PLOS ONE* **3**,
613 e2988 (2008).

614 33. Lim, S.-T. *et al.* Nuclear FAK promotes cell proliferation and survival through FERM-
615 enhanced p53 degradation. *Mol Cell* **29**, 9–22 (2008).

616 34. Serrels, A. *et al.* Nuclear FAK controls chemokine transcription, Tregs, and evasion of anti-
617 tumor immunity. *Cell* **163**, 160–173 (2015).

618 35. Mellman, I., Chen, D. S., Powles, T. & Turley, S. J. The cancer-immunity cycle: Indication,
619 genotype, and immunotype. *Immunity* **56**, 2188–2205 (2023).

620 36. Patsoukis, N., Wang, Q., Strauss, L. & Boussirotis, V. A. Revisiting the PD-1 pathway. *Sci*
621 *Adv* **6**, eabd2712 (2020).

622 37. Wright, J. J., Powers, A. C. & Johnson, D. B. Endocrine toxicities of immune checkpoint
623 inhibitors. *Nat Rev Endocrinol* **17**, 389–399 (2021).

624 38. Rotte, A., Jin, J. Y. & Lemaire, V. Mechanistic overview of immune checkpoints to support
625 the rational design of their combinations in cancer immunotherapy. *Ann Oncol* **29**, 71–83
626 (2018).

627 39. Topalian, S. L. *et al.* Safety, activity, and immune correlates of anti-PD-1 antibody in cancer.
628 *N Engl J Med* **366**, 2443–2454 (2012).

629 40. Chen, L. & Han, X. Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. *J*
630 *Clin Invest* **125**, 3384–3391 (2015).

631 41. Wolf, Y., Anderson, A. C. & Kuchroo, V. K. TIM3 comes of age as an inhibitory receptor.
632 *Nat Rev Immunol* **20**, 173–185 (2020).

633 42. Acharya, N., Sabatos-Peyton, C. & Anderson, A. C. Tim-3 finds its place in the cancer
634 immunotherapy landscape. *J Immunother Cancer* **8**, e000911 (2020).

635 43. Saleh, R. *et al.* Expression of immune checkpoints and T-cell exhaustion markers in early
636 and advanced stages of colorectal cancer. *Cancer Immunol Immunother* **69**, 1989–1999
637 (2020).

638 44. Huang, Y.-H. *et al.* CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. *Nature*
639 **517**, 386–390 (2015).

640 45. Philip, M. & Schietinger, A. CD8+ T-cell differentiation and dysfunction in cancer. *Nat Rev*
641 *Immunol* **22**, 209–223 (2022).

642 46. Escobar, G. *et al.* Tumor immunogenicity dictates reliance on TCF1 in CD8+ T cells for
643 response to immunotherapy. *Cancer Cell* S1535-6108(23)00273–8 (2023)
644 doi:10.1016/j.ccr.2023.08.001.

645 47. Dawson, J. C., Serrels, A., Stupack, D. G., Schlaepfer, D. D. & Frame, M. C. Targeting FAK
646 in anticancer combination therapies. *Nat Rev Cancer* **21**, 313–324 (2021).

647 48. Ozmadenci, D. *et al.* Tumor FAK orchestrates immunosuppression in ovarian cancer via the
648 CD155/TIGIT axis. *Proc Natl Acad Sci U S A* **119**, e2117065119 (2022).

649 49. Bankhead, P. *et al.* QuPath: Open source software for digital pathology image analysis. *Sci*
650 *Rep* **7**, 16878 (2017).

651

652 **Figure legends**

653 **Fig. 1 Nuclear stiffening enhances pFAK nuclear translocation and promotes T-cell
654 exhaustion in the CRC TME**

655 **a**, Spatial transcriptomics data illustrating the differential expression of the nuclear lamina and
656 nuclear transport pathways across the tumor, epithelial, fibroblast, lamina propria and smooth
657 muscle regions in CRC tumor tissue (left). Pathway activity scores were compared among these
658 regions (right), with *P* values calculated via multiple two-sided unpaired t tests, ****P* < 0.0001. **b**,
659 Spearman correlation between nuclear lamina and nuclear transport expression in CRC spatial
660 transcriptomics data ($R = 0.85$, $P < 2.2 \times 10^{-16}$), with the *P* value calculated via a two-sided
661 Spearman rank correlation test. **c**, Representative immunohistochemistry images and percentages
662 of lamin A/C in human adjacent normal colon and CRC tumor tissues. The data are presented as
663 the means \pm SEMs ($n = 3$), as determined by two-tailed paired t tests. **d**, Representative mIHC
664 images of pFAK distribution in tumor cells (lamin A/C high) and normal epithelial cells (lamin
665 A/C low) stained with DAPI (blue), lamin A/C (cyan), pFAK (red) and CK19 (green). The arrows
666 indicate tumor cells with pFAK nuclear localization. **e**, Comparisons of the percentage of nuclear
667 pFAK⁺CK19⁺ cells between adjacent normal and tumor tissues (left) ($n = 6$ per group).
668 Comparisons of the percentage of nuclear pFAK⁺ cells between nontumor cells and tumor cells in
669 tumor tissue (middle) ($n = 6$ per group). Comparisons of the percentage of nuclear pFAK⁺ cells
670 among lamin A/C⁺ cells and lamin A/C⁻ cells in tumor tissue (right) ($n = 5$ per group). The data
671 are presented as the means \pm SEMs, as determined by two-tailed unpaired t tests. **f** and **g**,
672 Representative mIHC images (f) and quantification of TIM-3⁺CD3⁺ T cells in low-nuclear pFAK
673 regions or high-nuclear pFAK regions (ROIs, $n = 18$ per group) (b) of human colorectal cancer
674 sections (g). The data are presented as the means \pm SEMs, as determined by two-tailed unpaired t

675 tests. **h**, Western blot analysis of total and nuclear FAK/pFAK expression in CT26 FAK_WT and
676 FAK_mNLS cell lysates. **i**, Schematic diagram illustrating the *in vitro* coculture system of CD8⁺
677 T cells with FAK_WT or FAK_mNLS tumor cells. **j**, Percentages of PD-1⁺TIM-3⁺CD8⁺ T cells
678 among CD8⁺ T cells in coculture systems (n = 4 per group). The data are presented as the means
679 ± SEMs, as determined by two-tailed unpaired t tests. **k**, Percentage of GZMB⁺CD8⁺ T cells among
680 CD8⁺ T cells in the coculture system (n = 4 per group). The data are presented as the means ±
681 SEMs, as determined by two-tailed unpaired t tests. **l**, Size of CT26 FAK_WT or FAK_mNLS
682 subcutaneous tumors (n = 5 per group). The data are presented as the mean ± SEM, as determined
683 by two-way ANOVA. **m**, Tumor image and weights of CT26 FAK_WT and FAK_mNLS
684 subcutaneous tumors (n = 5 per group). The data are presented as the mean ± SEM, as determined
685 by a two-tailed unpaired t test. **n**, Representative mIHC images of DAPI (blue), tumor cells (green),
686 CD8 (pink), PD-1 (cyan) and TOX (red) in CT26 FAK_WT and FAK_mNLS tumors (left).
687 Comparisons of the percentages of terminally exhausted T cells (PD-1⁺TIM-3⁺TOX⁺) among
688 CD8⁺ T cells within tumor core regions from CT26 FAK_WT and FAK_mNLS tumors. The data
689 are presented as the means ± s.e.m.s (ROIs, n = 6 per group), as determined by two-tailed unpaired
690 t tests.

691

692 **Fig. 2 High nuclear tension in CRC tumor cells drives pFAK nuclear translocation**

693 **a**, Representative merged images of 3D cell spheres stained with mIHC for DAPI (blue), CK19
694 (cyan) and pFAK (red). **b**, Representative immunofluorescence staining of pFAK in NCM460,
695 HT29 and HCT116 cells (left) and fluorescence colocalization analysis of pFAK and DAPI in
696 NCM460, HT29 and HCT116 cells (right). **c**, Images of the lamin A/C-labeled nuclear membrane
697 in NCM460, HT29 and HCT116 cells. **d**, Schematic diagram of nanoindentation (left) and

698 measurements of nuclear tension in NCM460, HT29 and HCT116 cells (right, n = 20 per group).
699 The data are presented as the means \pm s.e.m.s, as determined by one-way ANOVA. **e**, Schematic
700 diagram of cell confinement. **f**, 3D xz views of the DAPI-stained nucleus. Measurements of nuclear
701 height in resting and confined HT29/CT26 cells (n = 8 per group). The data are presented as the
702 means \pm SEMs, as determined by a two-tailed unpaired t test. **g**, 3D xy views of the DAPI-stained
703 nucleus. Measurements of the nuclear projection area in resting and confined HT29/CT26 cells (n
704 = 8 per group). The data are presented as the means \pm SEMs, as determined by two-tailed unpaired
705 t tests. **h**, Nuclear-to-cytoplasmic pFAK fluorescence ratio in resting and confined HT29/CT26
706 cells incubated with leptomycin B for 0.5 hours (n = 20 per group). The data are presented as the
707 means \pm SEMs, as determined by two-tailed unpaired t tests. **i**, Representative mIHC images of
708 pFAK distribution in resting and confined tumor cells stained with DAPI (blue), CK19 (green),
709 pFAK (red) and Collagen I (white) (n = 5 ROIs per group). The arrows indicate tumor cells with
710 pFAK nuclear localization. The data are presented as the means \pm SEMs, as determined by two-
711 tailed unpaired t tests. **j**, Measurements of nuclear tension in HT29/CT26_sgNTC and
712 sgLMNA/Lmna cells (n = 20 per group). The data are presented as the means \pm s.e.m.s, as
713 determined by one-way ANOVA. **k**, Representative immunofluorescence images and the nuclear-
714 to-cytoplasmic pFAK fluorescence ratio in HT29_sgNTC and sgLMNA cells incubated with
715 leptomycin B for 0, 0.5, 1, or 2 hours (n = 20 per group). The data are presented as the means \pm
716 s.e.m.s, as determined by one-way ANOVA. **l**, Representative immunofluorescence images and
717 the nuclear-to-cytoplasmic pFAK fluorescence ratio in CT26_sgNTC and sgLMNA cells incubated
718 with leptomycin B for 0, 0.5, 1, or 2 hours (n = 20 per group). The data are presented as the means
719 \pm s.e.m.s, as determined by one-way ANOVA.

720

721 **Fig. 3 Tumor nuclear pFAK promotes IL6 secretion by regulating the transcription factor**
722 **SP1.**

723 **a**, Representative immunofluorescence staining of pFAK in CT26 cells treated with DMSO or
724 FAKi for 12 and 24 hours (left), fluorescence colocalization analysis of pFAK and DAPI in CT26
725 cells treated with DMSO or FAKi for 12 and 24 hours (right). **b**, Heatmap of CUT&Tag
726 sequencing data showing pFAK binding sites in CT26 cells treated with DMSO or FAKi for 12
727 and 24 hours (n = 2 per group). **c**, Venn diagram showing the intersection of genes with promoter
728 (< 3 kb) signals identified through MACS2 analysis across three comparisons: DMSO vs. FAKi
729 12 h, DMSO vs. FAKi 24 h, and FAKi 12 h vs. FAKi 24 h. **d**, Robust rank aggregation (RRA)
730 ranking of the 1,299 CUT&Tag-enriched genes identified in **Fig. 3c**, with the top five ranked genes
731 displayed. **e**, Top five known motifs of pFAK enriched by HOMER according to the peaks
732 identified in the DMSO vs. FAKi comparison at 24 h. **f**, CUT&Tag sequencing tracks of the *Sp1*
733 locus. Differentially accessible sites are highlighted with gray bars, and the top-ranked motif in
734 the promoter region is indicated by a gray horizontal line. **g**, Real-time quantitative PCR (RT–
735 qPCR) of the pFAK-binding promotor of *Sp1* in the CUT&Tag library constructed from DMSO–
736 and FAKi (12 and 24 hours)-treated CT26 cells (n = 2 per group). The data are presented as the
737 mean ± SEM, as determined by one-way ANOVA. **h**, Real-time quantitative PCR (RT–qPCR) of
738 *Sp1* transcript levels in CT26 cells treated with DMSO or FAKi for 12 or 24 h (n = 3 per group).
739 The data are presented as the mean ± SEM, as determined by one-way ANOVA. **i**, Representative
740 immunofluorescence staining of pFAK in CT26 FAK_WT and FAK_mNLS cells. **j**,
741 Representative immunofluorescence staining of SP1 in CT26 FAK_WT and FAK_mNLS cells
742 and mean fluorescence intensity analysis of SP1 in CT26 FAK_WT and FAK_mNLS cells (n =
743 25 per group). The data are presented as the mean ± SEM, as determined by a two-tailed unpaired

744 t test. **k**, Representative mIHC images of SP1 expression in tumor cells (lamin A/C and nuclear
745 pFAK high) and normal epithelial cells (lamin A/C and nuclear pFAK low) stained with DAPI
746 (blue), CK19 (green), lamin A/C (cyan), pFAK (red) and SP1 (yellow). The arrows indicate the
747 nuclear lamin A/C⁺pFAK⁺SP1⁺ tumor cells. Comparisons of the percentage of SP1⁺ cells in all
748 cells (ROIs, n = 6 per group) and the percentage of nuclear lamin A/C⁺pFAK⁺SP1⁺ CK19⁺ cells
749 (ROIs, n = 6 per group) between adjacent normal and tumor tissues. The data are presented as the
750 means ± SEMs, as determined by two-tailed unpaired t tests. **l**, RT–qPCR analysis of cytokine
751 transcript levels in CT26 cells treated with DMSO or FAKi for 24 h (n = 3 per group). The data
752 are presented as the mean ± SEM, as determined by a two-tailed unpaired t test. **m**, RT–qPCR of
753 cytokine transcript levels in CT26 sgNTC and sgPtk2 cells (n = 3 per group). The data are
754 presented as the mean ± SEM, as determined by one-way ANOVA. **n**, RT–qPCR analysis of
755 cytokine transcript levels in CT26 FAK_WT and FAK_mNLS cells (n = 3 per group). The data
756 are presented as the mean ± SEM, as determined by a two-tailed unpaired t test. **o-q**, IL-6 secretion
757 measured by ELISA in supernatants from DMSO-treated, FAKi-treated (24 hours), sgNTC, sgPtk2,
758 FAK_WT, and FAK_mNLS CT26 cells stimulated with 20 ng/ml LPS for 6 hours *in vitro* (n = 3
759 per group). The data are presented as the mean ± SEM, as determined by one-way ANOVA or
760 two-tailed unpaired t test. **r**, IL-6 secretion measured by ELISA in supernatants from FAKi (24 h)-
761 and LMB (1 h)-treated CT26 cells stimulated with 20 ng/ml LPS for 6 hours *in vitro* (n = 3 per
762 group). The data are presented as the mean ± SEM, as determined by one-way ANOVA. **s**,
763 Representative mIHC images and percentages of IL-6⁺ cells in CT26 sgNTC and sgPtk2 tumors
764 (n = 4 per group). The data are presented as the means ± SEMs, as determined by one-way ANOVA.
765

766 **Fig. 4 Nuclear pFAK-regulated IL-6 promotes CD8⁺ T-cell exhaustion**

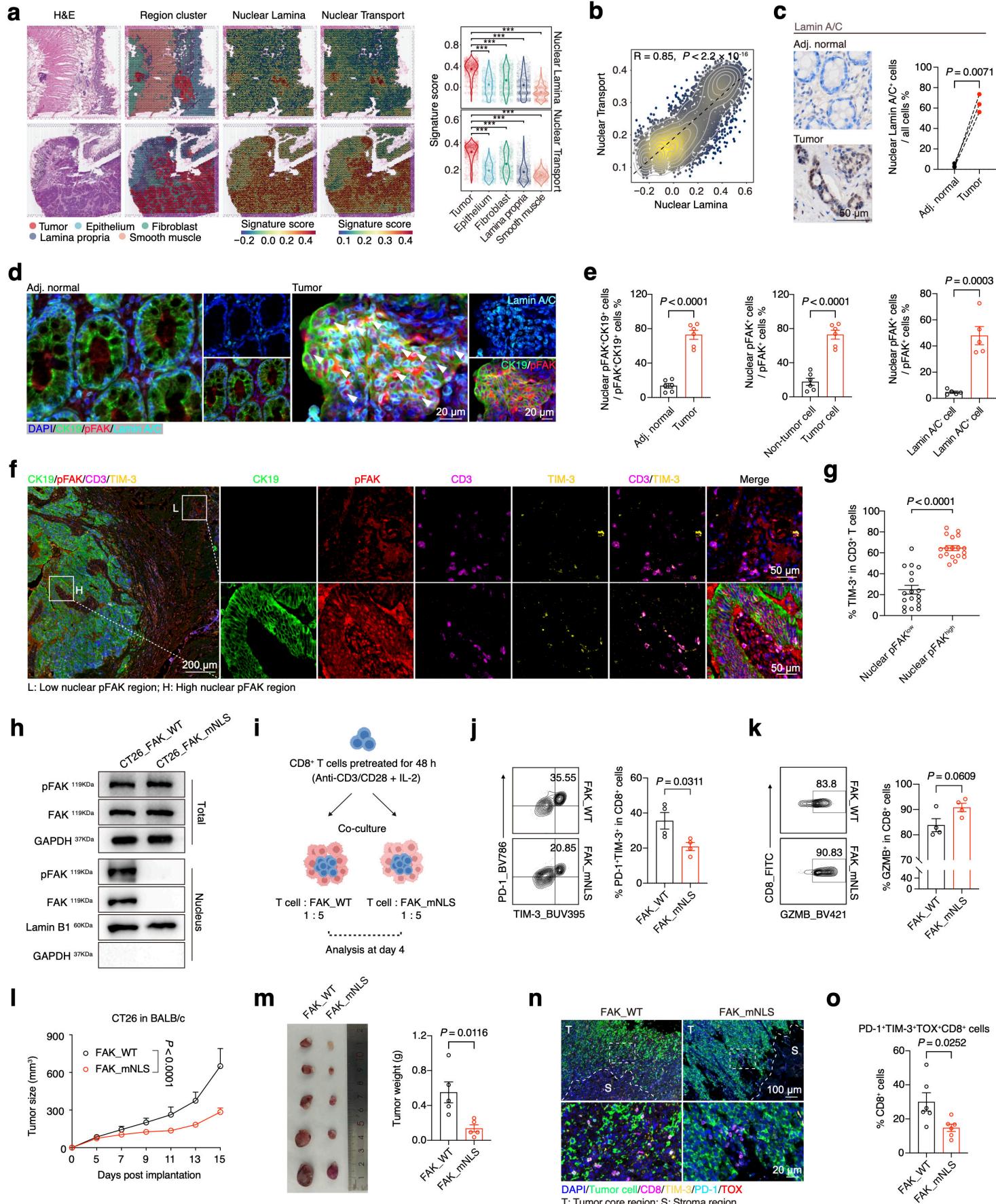
767 **a**, Schematic diagram of the *in vitro* culture model. **b**, Percentages of PD-1⁺TIM-3⁺TOX⁺CD8⁺ T
768 cells among CD8⁺ T cells treated with or without IL-6 for 3 days or 6 days, as determined by flow
769 cytometry (n = 3 per group). The data are presented as the means \pm SEMs, as determined by two-
770 tailed unpaired t tests. **c**, Western blot analysis of pSTAT3 and total STAT3 expression in CD8⁺ T
771 cells treated with IL-6 over time. The time-dependent experiment was performed with a fixed IL-
772 6 concentration of 10 ng/mL. **d**, IL-6 secretion in supernatants from CT26 sgNTC and sg*Il6* cells
773 stimulated with 20 ng/ml LPS for 6 hours *in vitro* was measured by ELISA (n = 3 per group). The
774 data are presented as the mean \pm SEM, as determined by one-way ANOVA. **e**, Growth curves of
775 CT26 sgNTC, sg*Ptk2* and sg*Il6* tumors in BALB/c mice (n = 5 per group). The data are presented
776 as the means \pm SEMs, as determined by two-way ANOVA. **f**, Tumor images and weights (n = 5
777 per group). The data are presented as the means \pm SEMs, as determined by one-way ANOVA. **g**,
778 Representative merged images of tumor sections stained with mIHC for DAPI (blue), CD8 (pink),
779 PD-1 (cyan), TIM-3 (yellow), TOX (red) and pSTAT3 (green). **h**, Comparisons of the percentages
780 of PD-1⁺TIM-3⁺TOX⁺CD8⁺ cells among CT26 sgNTC, sg*Ptk2* and sg*Il6* tumors (n = 4–5 per
781 group). The data are presented as the means \pm SEMs, as determined by one-way ANOVA. **i**,
782 Comparisons of the percentages of PD-1⁺TIM-3⁺TOX⁺CD8⁺ cells from CT26 sgNTC, sg*Ptk2* and
783 sg*Il6* tumors (n = 4–5 per group). The data are presented as the means \pm SEMs, as determined by
784 one-way ANOVA. **j**, Comparisons of the percentages of pSTAT3⁺CD8⁺ cells from CT26 sgNTC,
785 sg*Ptk2* and sg*Il6* tumors (n = 4–5 per group). The data are presented as the means \pm SEMs, as
786 determined by one-way ANOVA. **k**, Spearman correlation between *IL6* expression and the T-cell
787 exhaustion signature in TCGA-CRC bulk RNA-seq data ($R = 0.33$, $P = 1 \times 10^{-11}$), with the P value
788 calculated via a two-sided Spearman rank correlation test. **l**, Kaplan–Meier survival analysis of
789 TCGA-CRC patients stratified by *IL-6* expression quartiles, with *high IL-6 levels* (≥ 75 th

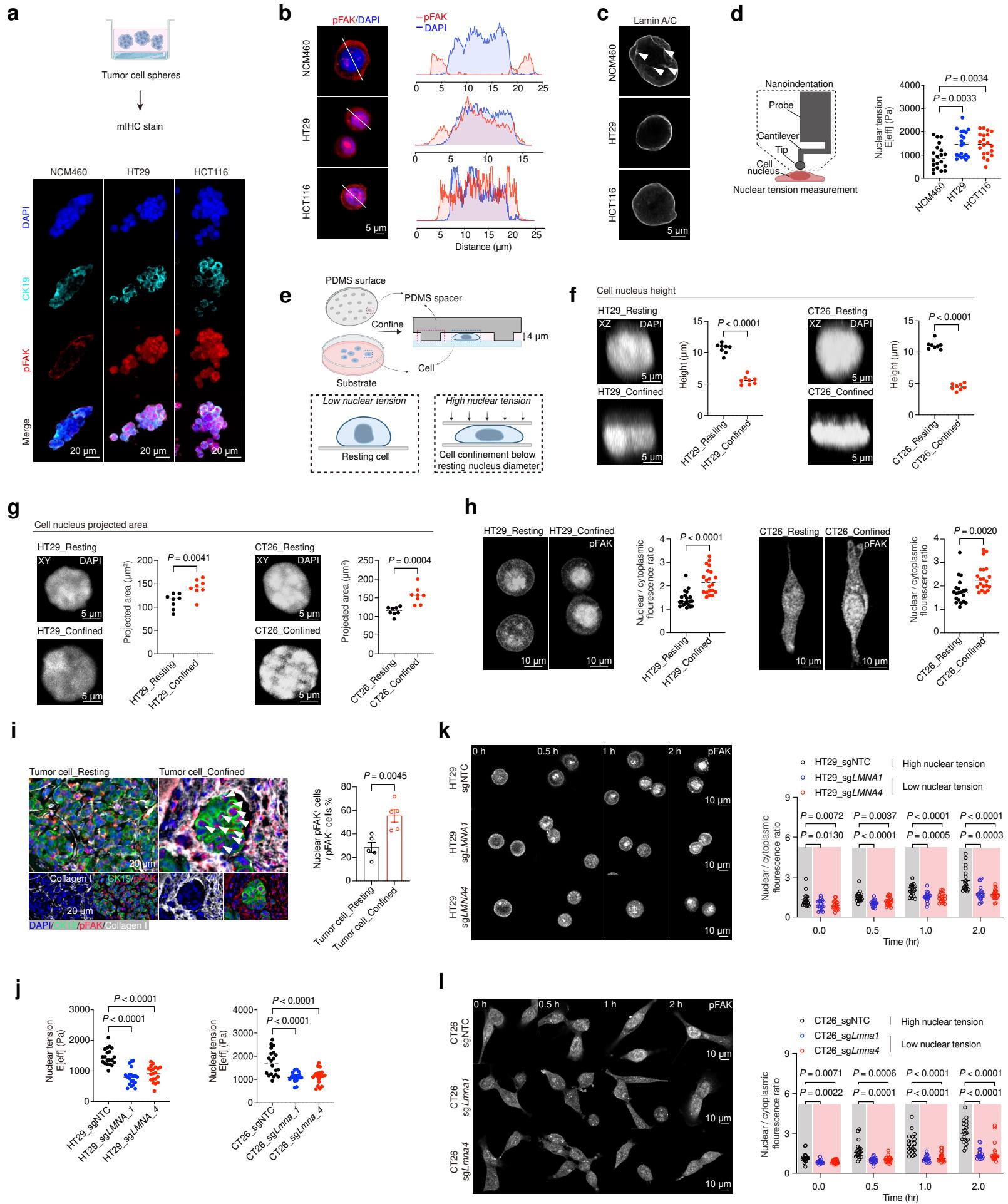
790 percentile, red), *moderate IL-6 levels* (25th–75th percentile, blue), and *low IL-6 levels* (≤ 25 th
791 percentile, purple) included.

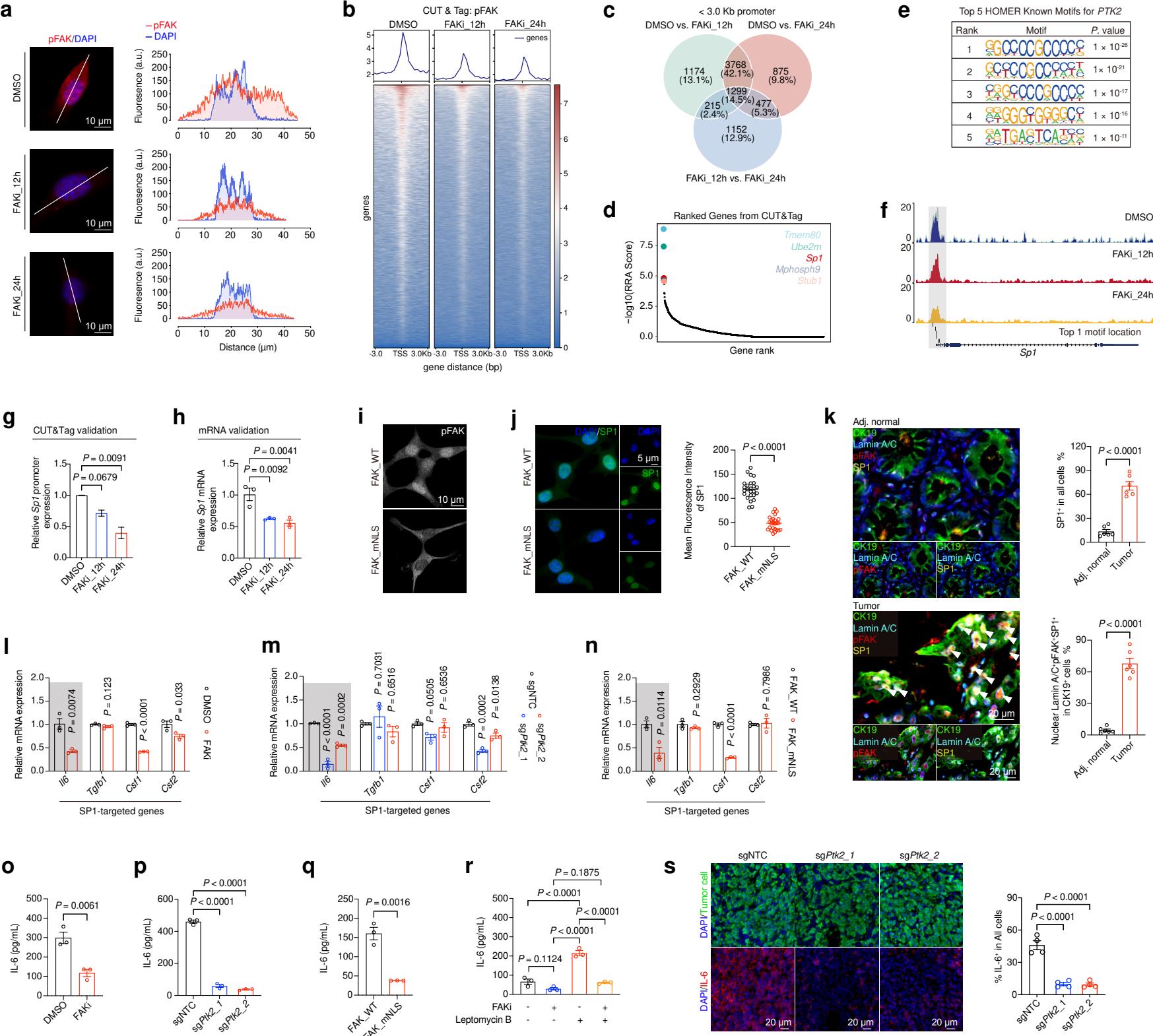
792

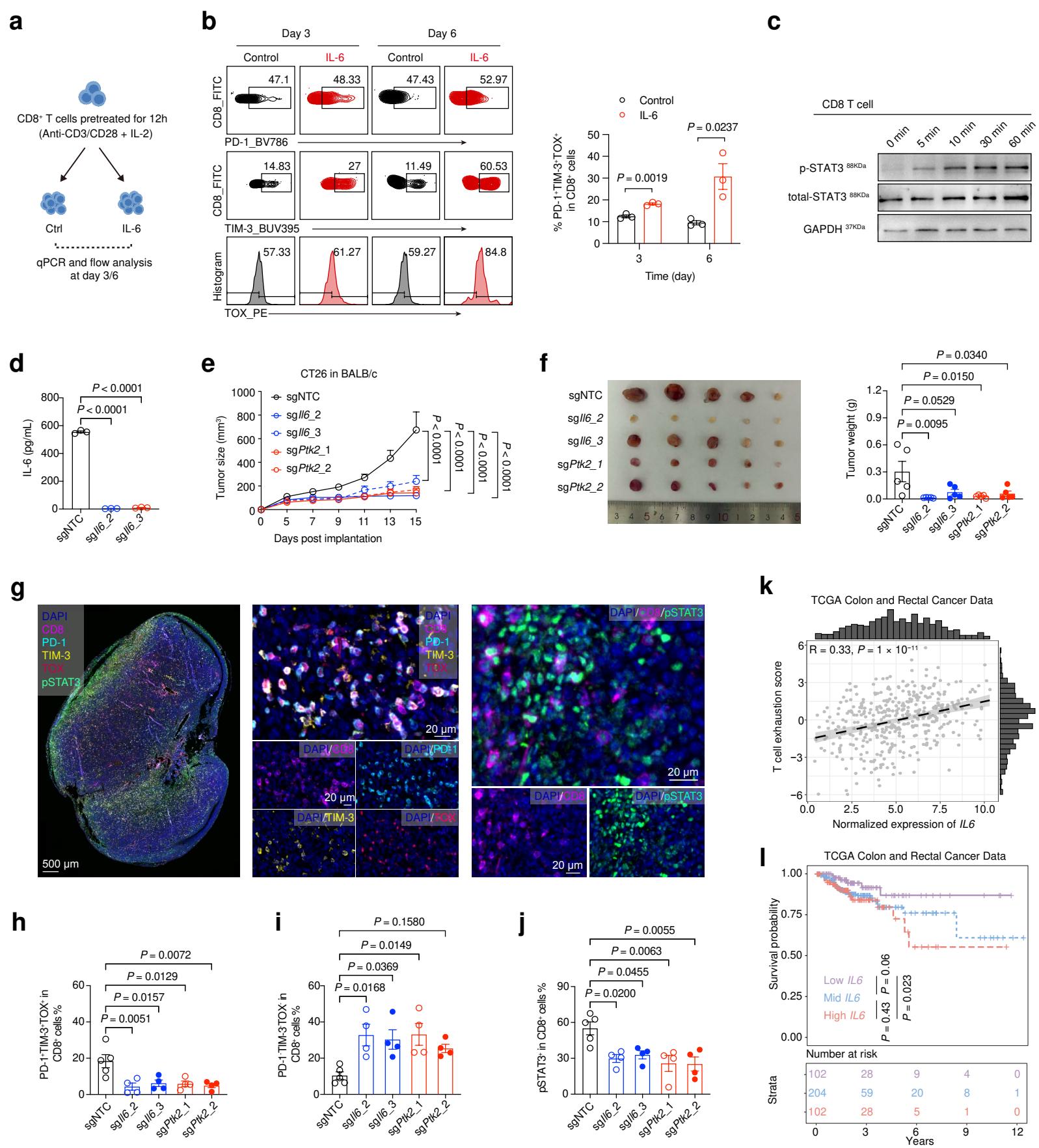
793 **Fig. 5 FAK inhibition leads to stable disease progression by reshaping the TIME.**

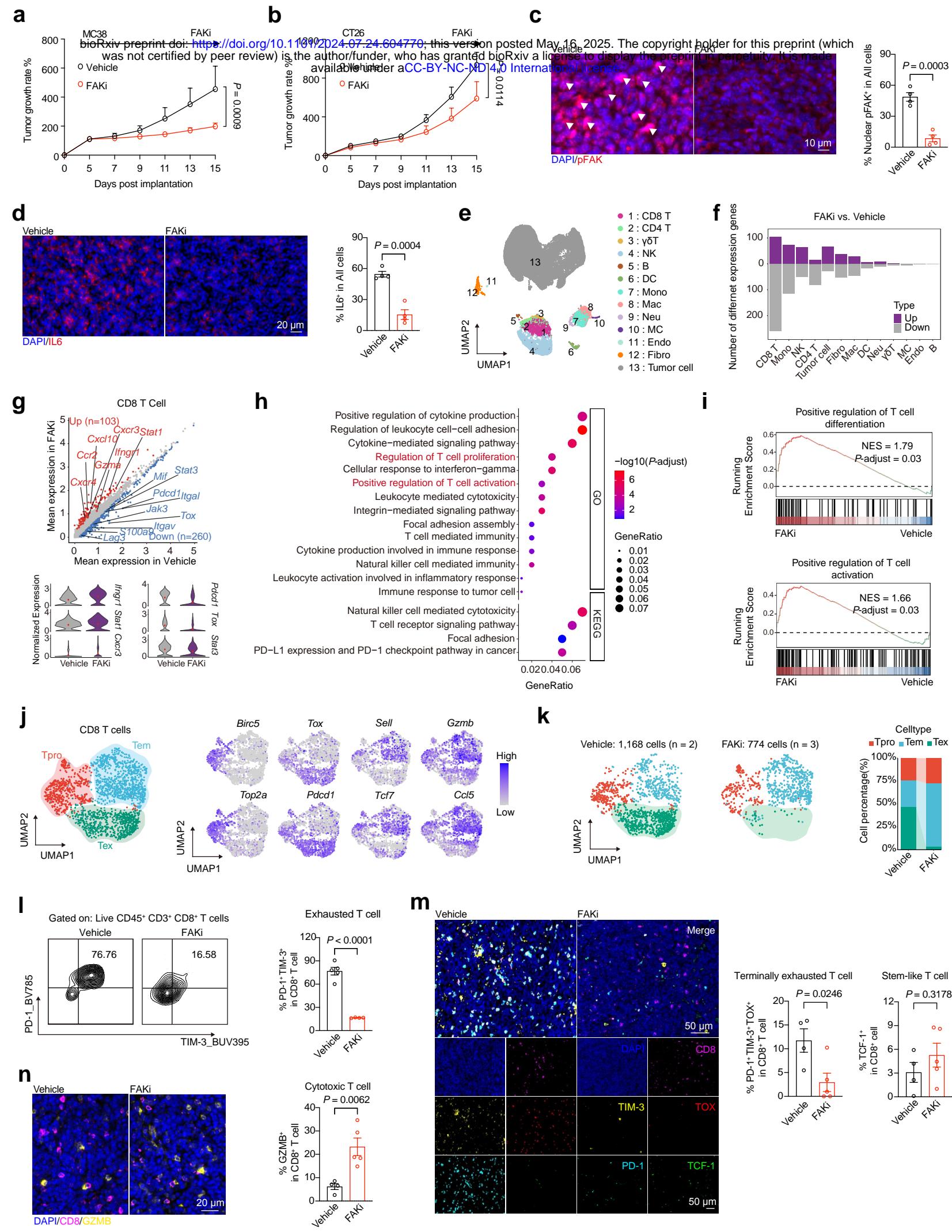
794 **a**, Growth rate of MC38 subcutaneous tumors treated with a FAK inhibitor (FAKi, VS-4718, 50
795 mg/kg) or vehicle (vehicle, $n = 5$; FAKi, $n = 6$). Vehicle or FAKi was administered intragastrically
796 twice per day. The data are presented as the mean \pm SEM, as determined by two-way ANOVA. **b**,
797 Growth rate of subcutaneous CT26 tumors treated with a FAK inhibitor (FAKi, VS-4718, 50
798 mg/kg) or vehicle ($n = 6$ per group). Vehicle or FAKi was administered intragastrically twice per
799 day. The data are presented as the means \pm SEMs, as determined by two-way ANOVA. **c**,
800 Representative mIHC images and percentages of nuclear pFAK $^+$ cells in vehicle- or FAKi-treated
801 tumors ($n = 4$ per group). The data are presented as the means \pm SEMs, as determined by two-
802 tailed unpaired t tests. **d**, Representative mIHC images and percentages of IL-6 $^+$ cells in vehicle-
803 or FAKi-treated tumors. The data are presented as the means \pm SEMs ($n = 4$ per group), as
804 determined by two-tailed unpaired t tests. **e**, UMAP plot of 47,442 cells from vehicle ($n = 2$)- or
805 FAKi ($n = 3$)-treated tumor tissues, colored according to the annotated cell type. **f**, Numbers of
806 DEGs (upregulated in purple, downregulated in gray) in each cell type between the FAKi-treated
807 group and the vehicle-treated group. Genes were identified on the basis of an adjusted P value $<$
808 0.05 and \log_2 -fold change > 0.25 via the Benjamini–Hochberg (BH) method for multiple testing
809 correction. **g**, Differentially expressed genes in CD8 $^+$ T cells between the FAKi-treated group and
810 the vehicle group, as shown in **Fig. 5f**. The X-axis and Y-axis represent the average expression
811 levels in the vehicle and FAKi groups, respectively. The upregulated genes are shown in red, and
812 the downregulated genes are shown in blue (top). Selected representative genes were visualized


813 via violin plots to illustrate expression differences between the two groups (bottom). **h**, GO and
814 KEGG terms enriched for differentially expressed genes from **Fig. 5g**. *P* values were calculated
815 via a hypergeometric test and adjusted for multiple comparisons via the Benjamini–Hochberg (BH)
816 method. The color scale represents the adjusted *P* values, and the symbol size reflects the number
817 of enriched genes associated with each term. **i**, Gene set enrichment analysis of transcriptional
818 signatures related to T-cell differentiation and activation in FAKi-treated vs. vehicle-treated CD8⁺
819 T cells. *P* values were calculated via a permutation test and adjusted for multiple comparisons via
820 the Benjamini–Hochberg (BH) method. **j**, UMAP plot of CD8⁺ T cells from all cells collected
821 from the scRNA-seq data. CD8⁺ T cells were clustered into Tpro (red), Tem (blue), and Tex (green)
822 subsets (left panel). Key markers for clustering are shown (right panel). **k**, Relative fraction of
823 each cluster in **Fig. 5j** between the vehicle- and FAKi-treated groups. The left panel shows the
824 UMAP plot, whereas the right panel presents the stacked bar chart. **l**, Percentages of exhausted
825 (TIM-3⁺PD-1⁺) CD8⁺ T cells among CD8⁺ T cells determined by flow cytometry in CT26 tumors
826 from vehicle-treated mice (n = 5) and FAKi-treated mice (n = 4 per group). The data are presented
827 as the means \pm SEMs, as determined by two-tailed unpaired t tests. **m**, Representative image and
828 percentages of PD-1⁺TIM-3⁺TOX⁺CD8⁺ T cells and TCF-1⁺CD8⁺ T cells among CD8⁺ T cells in
829 CT26 tumors from vehicle- or FAKi-treated mice (n = 4–5 per group). The data are presented as
830 the means \pm SEMs, as determined by two-tailed unpaired t tests. **n**, Representative image and
831 percentage of GZMB⁺CD8⁺ T cells among CD8⁺ T cells in CT26 tumors from vehicle- or FAKi-
832 treated mice (n = 4–5 per group). The data are presented as the means \pm SEMs, as determined by
833 two-tailed unpaired t tests.


834


835 **Fig. 6 Inhibition of FAK improves the efficacy of immune checkpoint blockade (ICB) therapy**
836 *in vivo*.


837 **a**, Growth curves of subcutaneous MC38 tumors treated with combination therapies (n = 6 per
838 group). In the Immuno group, 5-Fu (20 mg/kg) combined with anti-TIM-3 (10 mg/kg) and anti-
839 PD-1 (10 mg/kg) was used. Vehicle or FAKi was administered intragastrically twice per day. 5-Fu
840 or vehicle was intraperitoneally administered once every two days. Isotype or anti-TIM-3
841 combined with anti-PD-1 was intraperitoneally administered once every 4 days. The data are
842 presented as the means \pm SEMs, as determined by two-way ANOVA. **b**, Tumor images and
843 weights (n = 6 per group). The data are presented as the means \pm SEMs, as determined by one-
844 way ANOVA. **c**, Growth curves of subcutaneous CT26 tumors treated with combination therapies
845 (n = 5 per group). In the Immuno group, 5-Fu (20 mg/kg) combined with anti-TIM-3 (10 mg/kg)
846 and anti-PD-1 (10 mg/kg) was used. Vehicle or FAKi was administered intragastrically twice per
847 day. 5-Fu or vehicle was intraperitoneally administered once every two days. Isotype or anti-TIM-
848 3 combined with anti-PD-1 was intraperitoneally administered once every 4 days. The data are
849 presented as the means \pm SEMs, as determined by two-way ANOVA. **d**, Tumor images and
850 weights (n = 5 per group). The data are presented as the means \pm SEMs, as determined by one-
851 way ANOVA. **e**, Gene set enrichment analysis of CD8⁺ T cells in the combination-treated group
852 versus the other groups. *P* values were calculated via a permutation test and adjusted for multiple
853 comparisons via the Benjamini–Hochberg (BH) method. The color scale represents the –
854 log10(adjusted *P* value). **f**, UMAP plot of CD8⁺ T cells from all the cells collected from the
855 scRNA-seq data. CD8⁺ T cells were clustered into Tprolif (purple), Tpem (yellow), Tem (blue),
856 and Tex (red) subsets. Key markers of the clustering process are highlighted in the map. **g**, Relative
857 fraction of each cluster in **Fig. 6f** in the vehicle-, immune-, FAKi- or combination-treated groups.


858 **h**, Violin map of the expression of exhaustion markers (*Havcr2*, *Pdcd1*, and *Tox*) and cytotoxic
859 markers (*Cd69*, *Ifngr1* and *Tnf*) in the vehicle (purple), immunotherapy (red), FAKi (blue), and
860 combination-treated (yellow) groups. **i**, Two trajectories (cytotoxic trajectory and exhausted
861 trajectory) of CD8⁺ T cells based on Slingshot, and the CD8⁺ T-cell phenotype (left) and
862 pseudotime (right) are displayed. The solid line represents the cytotoxic trajectory, whereas the
863 dashed line represents the exhausted trajectory. **j**, Plot of exhaustion and cytotoxicity markers
864 along the cytotoxic CD8⁺ T-cell lineage on the basis of pseudotime from **Fig. 6i**. The black line
865 represents the vehicle group, the gray line represents the immunotherapy group, the blue line
866 represents the FAKi group, and the red line represents the combination-treated group. **k**,
867 Percentages of IL-6⁺ cells among all cells in CT26 tumors from vehicle-treated mice (n = 5),
868 immuno-treated mice (n = 5), FAKi-treated mice (n = 4) and combination-treated mice (n = 5)
869 determined by miHIC. The data are presented as the means ± SEMs, as determined by one-way
870 ANOVA. **l**, Percentages of pSTAT3⁺TOX⁺TIM-3⁺CD8⁺ T cells among CD8⁺ T cells in CT26
871 tumors from vehicle-treated mice (n = 5), immuno-treated mice (n = 5), FAKi-treated mice (n = 4)
872 and combination-treated mice (n = 5) determined by miHIC. The data are presented as the means
873 ± SEMs, as determined by one-way ANOVA.

