

1 AQuaRef: Machine learning accelerated quantum refinement of

2 protein structures

3

4 Roman Zubatyuk^{1, #}, Małgorzata Biczysko^{2, #}, Kavindri Ranasinghe^{3, #}, Nigel W. Moriarty⁴
5 Hatice Gokcan¹, Holger Kruse⁶, Billy K. Poon⁴, Paul D. Adams^{4, 5}, Mark P. Waller⁶,
6 Adrian E. Roitberg³, Olexandr Isayev^{1, *}, Pavel V. Afonine^{4, *}

7

8 ¹Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA

9 ² Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław,
10 Poland

11 ³*Department of Chemistry, University of Florida, Gainesville, FL 32611, USA*

12 *⁴ Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National*
13 *Laboratory, Berkeley, CA 94720-8235, USA*

14 ⁵ Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720,
15 USA

⁶ Pending AI, Eveleigh, NSW 2015, Australia

17

18

19 # These authors contributed equally

20

21 *Corresponding authors: P.V.A. - PAfonine@LBL.Gov,
22 O.I. - olexandr@olexandrisavely.com

23 ABSTRACT

24

25 Cryo-EM and X-ray crystallography provide crucial experimental data for obtaining
26 atomic-detail models of biomacromolecules. Refining these models relies on library-
27 based stereochemical restraints, which, in addition to being limited to known chemical
28 entities, do not include meaningful noncovalent interactions relying solely on nonbonded
29 repulsions. Quantum mechanical (QM) calculations could alleviate these issues but are
30 too expensive for large molecules. We present a novel AI-enabled Quantum Refinement
31 (AQuaRef) based on AIMNet2 neural network potential mimicking QM at substantially
32 lower computational costs. By refining 41 cryo-EM and 30 X-ray structures, we show that
33 this approach yields atomic models with superior geometric quality compared to standard
34 techniques, while maintaining an equal or better fit to experimental data. Notably,
35 AQuaRef aids in determining proton positions, as illustrated in the challenging case of
36 short hydrogen bonds in the parkinsonism-associated human protein DJ-1 and its
37 bacterial homolog YajL.

38

39 INTRODUCTION

40

41 While advances in predictive modeling, such as AlphaFold3¹ or RoseTTAFold^{2,3}, have
42 provided powerful tools for structural biology, they remain limited while experimental
43 methods, including protein crystallography and cryo-EM, are still cornerstones of
44 structural biology and drug development⁴. Experimental data allow for the discovery of
45 new structures emerging in life evolution, potentially exhibiting previously unseen
46 features. These discoveries require unbiased information provided by experiments to
47 explore the unknown⁵. Atomic model refinement is a crucial near-final stage in
48 crystallographic or cryo-EM structure determination aimed at producing molecular models
49 that meet standard validation criteria while optimally fitting the experimental data⁶.
50 Refinement heavily relies on stereochemical restraints to maintain the correct geometry
51 of the atomic model while fitting to the experimental data⁷. These restraints originate from
52 standard libraries that tabulate the topology and parameters of known chemical entities^{8,9},

53 which are universally employed across popular software packages, such as CCP4¹⁰ and
54 Phenix¹¹.

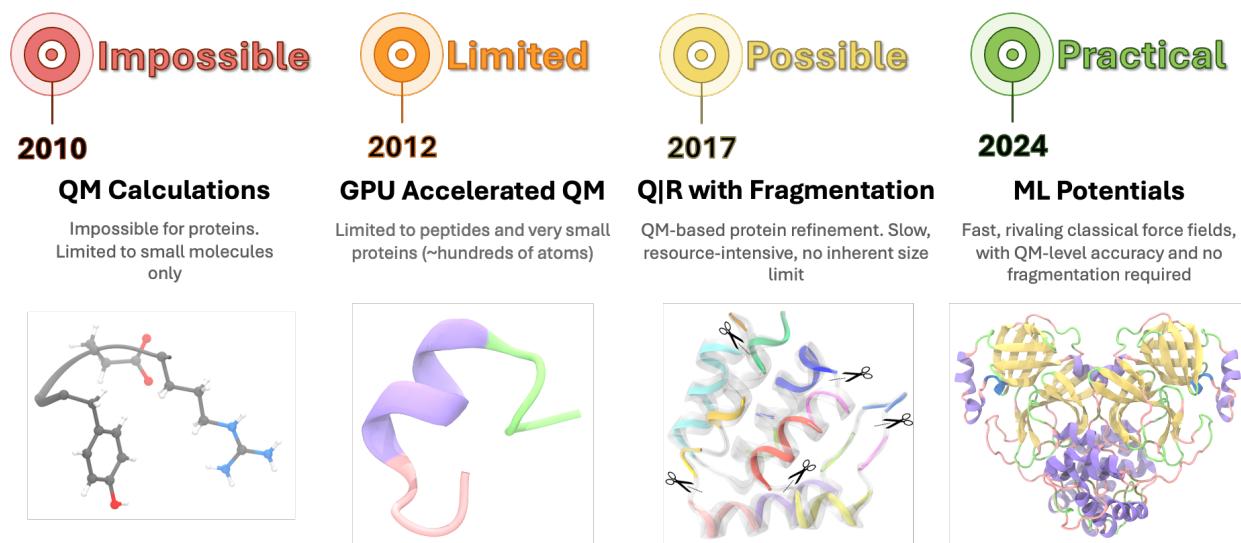
55 The limitations of library-based restraints are manifold. Firstly, they only include terms for
56 maintaining covalent bond lengths, bond angles, torsion angles, planes and chirality while
57 preventing clashes through non-bonded repulsion¹². However, it has been demonstrated
58 that at low resolution, these restraints are insufficient to maintain realistic, chemically
59 meaningful macromolecular geometries, making it essential to include additional
60 restraints on protein main chain ϕ/ψ angles, side chain torsion χ angles, as well as
61 hydrogen bond parameters and π -stacking interactions to stabilize protein or nucleic acid
62 secondary structure^{12–18}. These additional restraints cannot be reliably inferred from the
63 atomic model alone and thus require manual error-prone annotation and curation using
64 additional sources of information, such as homologous high-resolution models. Secondly,
65 library-based restraints parametrize only known chemical entities, such as standard
66 amino and nucleic acids as well as previously defined ligands. Consequently, any
67 nonstandard entities or interactions, such as novel ligands or covalent cross-chain links,
68 require manual annotation and definition, without which refinement may fail to proceed
69 correctly or at all. Finally, deviations from standard covalent geometry due to local
70 chemical interactions are not uncommon^{19–21}. While these deviations are valid, restraints
71 may interpret them as violations requiring 'correction'.

72 The advantage of using simple restraints⁷ is the minimal computational cost they add to
73 the refinement workflow. A possible next step is to use a classical force field to account
74 for geometric elements²². However, these force fields have their own set of limitations:
75 they require parametrization for new chemical species and cannot distinguish between
76 chemically equivalent bonds in different chemical environments.

77 Quantum refinement is a fundamentally different approach, balancing the fitting to
78 experimental data with a term related to the quantum mechanical energy of the
79 system^{23,24}. It has been demonstrated that the entire atomic model can benefit from a full
80 QM treatment^{25–27}. Figure 1 presents a timeline showcasing the evolution of quantum
81 mechanics calculations for proteins, highlighting four key stages of progress and
82 advancements in technology and methodology. Traditionally, quantum refinements were

83 deemed impractical for macromolecules due to the computational requirements. Methods
84 often focused solely on the macromolecular region of interest, such as a ligand-binding
85 pocket or enzyme active site, while employing a classical approach for the rest of the
86 molecule^{28,29}. Numerous approaches and implementations have been reported over
87 time³⁰, with GPU-accelerated codes enabling QM calculations for peptides and small
88 proteins of a few hundred atoms being one of the most prominent milestones³¹.
89 Interaction-based model partitioning into chemically meaningful fragments³² solved the
90 scalability issue in quantum calculations²⁶, which in turn enabled the refinement of larger
91 proteins. However, this approach remained computationally demanding.

92



93

94 **Figure 1.** Timeline illustrating the progression of quantum mechanics calculations applied
95 to proteins, emphasizing four critical stages marked by advancements in technology and
96 methodology.

97

98 Refinement of selected cryo-EM and X-ray atomic models across various resolutions
99 demonstrates the AQuaRef's ability to produce atomic models with superior geometric
100 quality compared to conventional techniques while maintaining or improving agreement
101 with experimental data. This work represents the first example where machine learning
102 (ML) potentials have been adopted to perform quantum refinement of the entire protein,

103 in contrast with a recent approach where ML potentials have been combined with the
104 ONIOM-like QM/MM partitioning³⁸.

105

106 RESULTS

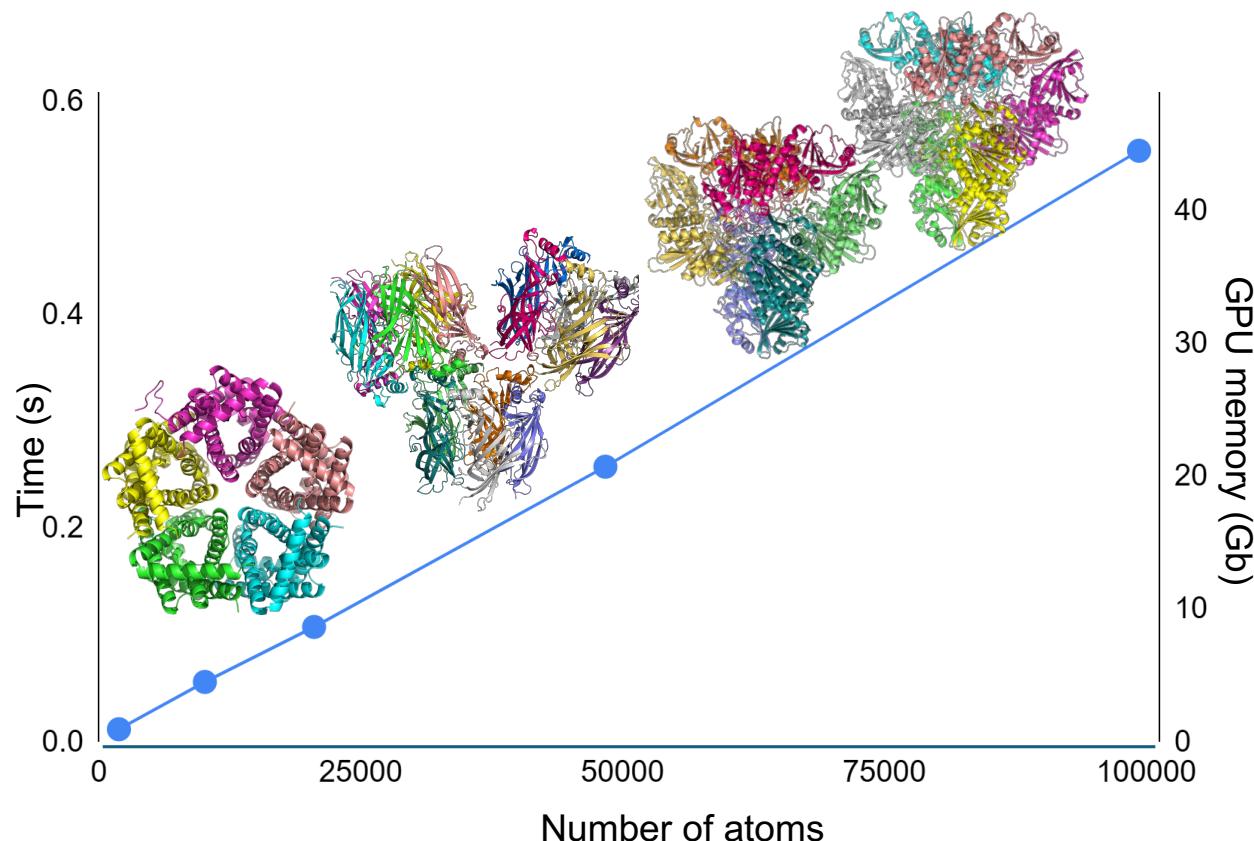
107

108 Conceptually, quantum-based atomic model refinement is very similar to classic
109 refinement wherein atomic model parameters are iteratively adjusted in order to minimize
110 the residual, $T = T_{data} + w * T_{restraints}$. Here, T_{data} describes the fit of the model to the data
111 and $T_{restraints}$ incorporates chemical restraints with an *a-priori* unknown weight, w ³⁹.

112 However, there are four fundamental differences. First, in QM refinement, restraints are
113 derived from quantum-mechanical calculations for the specific macromolecule in
114 consideration. Second, the requirements for the initial atomic model in QM refinement are
115 stricter compared to standard refinement: the atomic model must be correctly protonated,
116 atom-complete and free of severe geometric violations such as steric clashes or broken
117 covalent bonds^{23,24}. Third, while crystallographic software packages inherently account
118 for crystal symmetry, QM codes generally do not. Fourth, crystallographic software is
119 capable of handling static disorder that is modeled with alternative conformations,
120 whereas QM codes typically lack this capability. All these nuances specific to quantum
121 refinement (except handling static disorder, which is a current limitation) are addressed
122 in the Quantum Refinement package (Q|R)^{23,26,27,40}, which is being developed as part of
123 this work and provides the necessary procedures to enable quantum refinement within
124 the Phenix software.

125

126



127

128

129 **Figure 2.** Computational scaling of the AIMNet2 neural network model in AQuaRef. Time
130 to compute energy and forces (left axis) and peak GPU memory usage (right axis) versus
131 the number of atoms in the system. Calculations are performed on a single Nvidia H100
132 PCIe 80GB GPU.

133

134 Conventional QM methods like density functional theory (DFT) for N -electron systems
135 require $O(N^2)$ storage and $O(N^3)$ arithmetic operations. This $O(N^3)$ complexity is a critical
136 bottleneck that limits the ability to study large realistic biological systems like proteins.
137 Figure 2 shows the computational scaling of the AIMNet2 model, where both energy and
138 force calculations, as well as peak GPU memory usage, scale linearly ($O(N)$) with system
139 size. For a large protein system of 100,000 atoms, single-point energy and forces can be
140 computed in 0.5 seconds. Overall, an atomic model consisting of approximately 180,000
141 atoms can fit into the 80GB memory of a single NVIDIA H100 GPU.

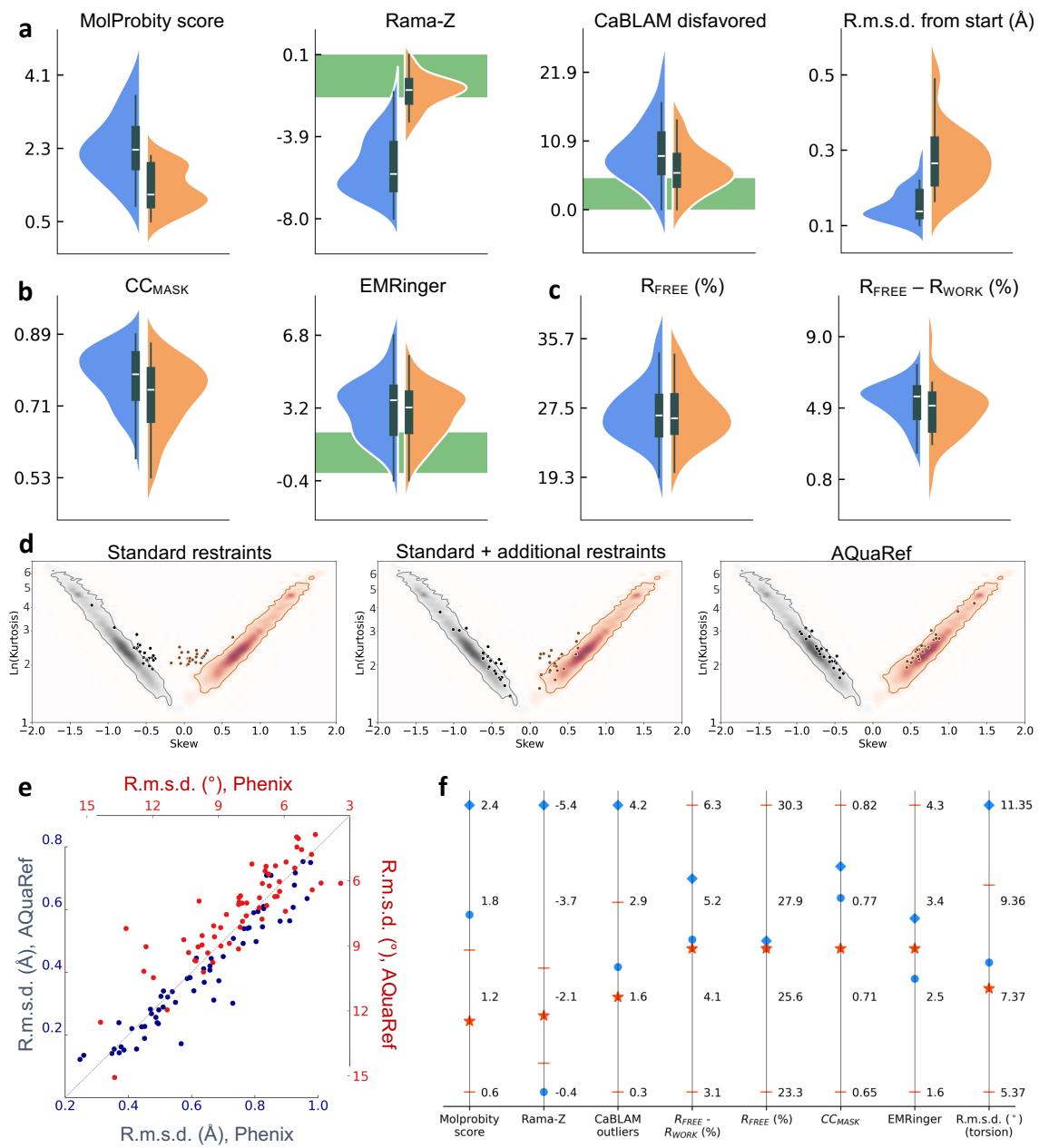
142 We tested the new quantum refinement procedure on 41 cryo-EM atomic models, 20 low-
143 resolution and 10 very high-resolution X-ray atomic models. Standard
144 stereochemistry^{41,42} and model-to-data fit criteria^{43–45}, MolProbity validation tools⁴⁶ along
145 with newly developed metrics to evaluate hydrogen bond quality¹⁸ were used to assess
146 the atomic models. Typically, the time needed for quantum refinement is about twice as
147 long as standard refinement, and often shorter than the standard refinement with
148 additional restraints such as the Ramachandran plot, secondary structure and side-chain
149 rotamer restraints^{47–50}. Quantum refinement takes under 20 minutes in about 70% of
150 models considered in this work, with a maximum of about 1 hour (Supplementary Data:
151 Table 6). These computations can be performed on GPU-equipped laptops, with the only
152 limitation being available GPU memory.

153

154 **Quantum refinement**

155 The AQuaRef refinement procedure begins with a check for the completeness of the
156 atomic model, followed by the addition of any missing atoms. This may result in steric
157 clashes, particularly if the model was previously refined without hydrogen atoms. Models
158 with missing atoms that cannot be trivially added (e.g., missing main chain atoms) cannot
159 be used for quantum refinement. If clashes or other severe geometric violations are
160 detected, quick geometry regularization is performed using standard restraints, ensuring
161 that atoms move as little as necessary to resolve the clashes. For crystallographic
162 refinement, to account for interactions arising from crystallographic symmetry and
163 periodicity of unit cells, the model is expanded into a supercell by applying appropriate
164 space group symmetry operators²⁵. Subsequently, it is truncated to retain only parts of
165 the symmetry copies within a prescribed distance from atoms of the main copy⁴⁰. This
166 step is unnecessary for refinement against cryo-EM data. The atom-completed and
167 expanded model then undergoes the standard atomic model refinement protocol as
168 implemented in Q|R package²³.

169



170

171

172 **Figure 3. a-d:** Summary of refinements of 41 low-resolution cryo-EM models and 20 low-
173 resolution X-ray models using standard stereochemistry (blue) and AQuaRef (orange)
174 restraints (Supplementary Data: Table 1). **a:** MolProbity score, Ramachandran plot Z-
175 score, CaBLAM disfavored and r.m.s. deviation of refined model from initial model. **b:**
176 cross-correlation between experimental and model-generated maps (CC_{mask}), and
177 EMRinger score for cryo-EM models. **c:** R_{free} and R_{free}-R_{work} for X-ray models

178 (Supplementary Data: Table 3). Green band indicates favored range of corresponding
179 values. **d**: skew-kurtosis plots for hydrogen bond parameters (Hydrogen(H)...Acceptor(A)
180 distances and Donor-H...A angles) for refinements using (left-to-right): standard
181 restraints; standard restraints with addition of Ramachandran plot, secondary-structure
182 and side-chain rotamer restraints; and AQuaRef restraints. **e**: r.m.s. deviations between
183 refined and high-resolution homology models, refinements using standard versus
184 AQuaRef restraints, calculated using matching Cartesian coordinates (blue, lower-left)
185 and matching torsion angles (red, upper-right) (Supplementary Data: Tables 2,4). **f**:
186 summary of mean values, for all test refined models: MolProbity score, Ramachandran
187 Z-score, CaBLAM outliers, r.m.s. deviation of matching torsion angles between refined
188 and high-resolution homologous models, as well as $R_{\text{free}}-R_{\text{work}}$ and R_{free} for X-ray models
189 and CC_{mask} and EMRinger score for cryo-EM models for refined models with standard
190 restraints (blue rhombi), standard restraints with addition of Ramachandran plot,
191 secondary-structure and side-chain rotamer restraints (blue circles); and AQuaRef
192 restraints (red stars). Red bars show standard deviations for starred values.

193

194 **Application of the new refinement procedure to a set of deposited atomic models**

195 To evaluate the performance of the new QM-based refinement, we refined 41 low-
196 resolution cryo-EM atomic models, 20 low-resolution and 10 ultra-high-resolution X-ray
197 atomic models, which contain only proteins. All selected 61 low-resolution atomic models
198 have high-resolution homologs, which were used as the ground truth for comparison
199 (Supplementary Data: Tables 2,4). Refinements were carried out using three sets of
200 restraints: QM restraints from AIMNet2 (AQuaRef refinement); standard restraints; and
201 standard restraints plus additional restraints on hydrogen bonds and angles involved in
202 maintaining secondary structure, main-chain ϕ/ψ angles (Ramachandran plot restraints)
203 and side-chain torsion χ angles (rotamer restraints).

204 Overall, low-resolution atomic models after quantum refinement exhibit systematically
205 superior geometry quality compared to those obtained using standard restraints, as
206 indicated by their MolProbity scores⁵¹, Ramachandran Z-scores⁵², CaBLAM disfavored⁴⁶
207 (Fig. 3a), and skew-kurtosis plots for hydrogen bond parameters¹⁸ (Fig. 3d). They also

208 systematically deviate more from the initial coordinates. These atomic models
209 demonstrate a very similar fit to the experimental data (Fig. 3b,c), with slightly less data
210 overfitting for X-ray atomic models, as evidenced by a smaller $R_{\text{work}}-R_{\text{free}}$ gap and similar
211 R_{free} ^[53,54]. Since there is no equally efficient control over overfitting in cryo-EM as there is
212 with R_{free} in crystallography, the slightly lower cross-correlation between experimental and
213 model-calculated masked maps (CC_{mask})⁴³ and essentially the same EMRinger scores⁵⁵,
214 together with significantly improved atomic model geometry, likely indicate a reduction in
215 overfitting. Augmenting standard restraints with secondary structure, Ramachandran plot
216 and side-chain rotamer restraints expectedly improves the geometry (Fig. 3d,f), yet using
217 AQuaRef still produces superior atomic model geometries. With a few exceptions, atomic
218 models refined with quantum restraints are systematically closer to their higher-resolution
219 homologs compared to those using standard restraints alone or complemented with
220 additional restraints (Fig. 3e,f). In some of the most remarkable cases, the local structure
221 obtained with AQuaRef restraints closely matches the high-resolution homologs and
222 differs from those obtained using standard restraints by up to two Angstroms (Fig. 9a-c).
223

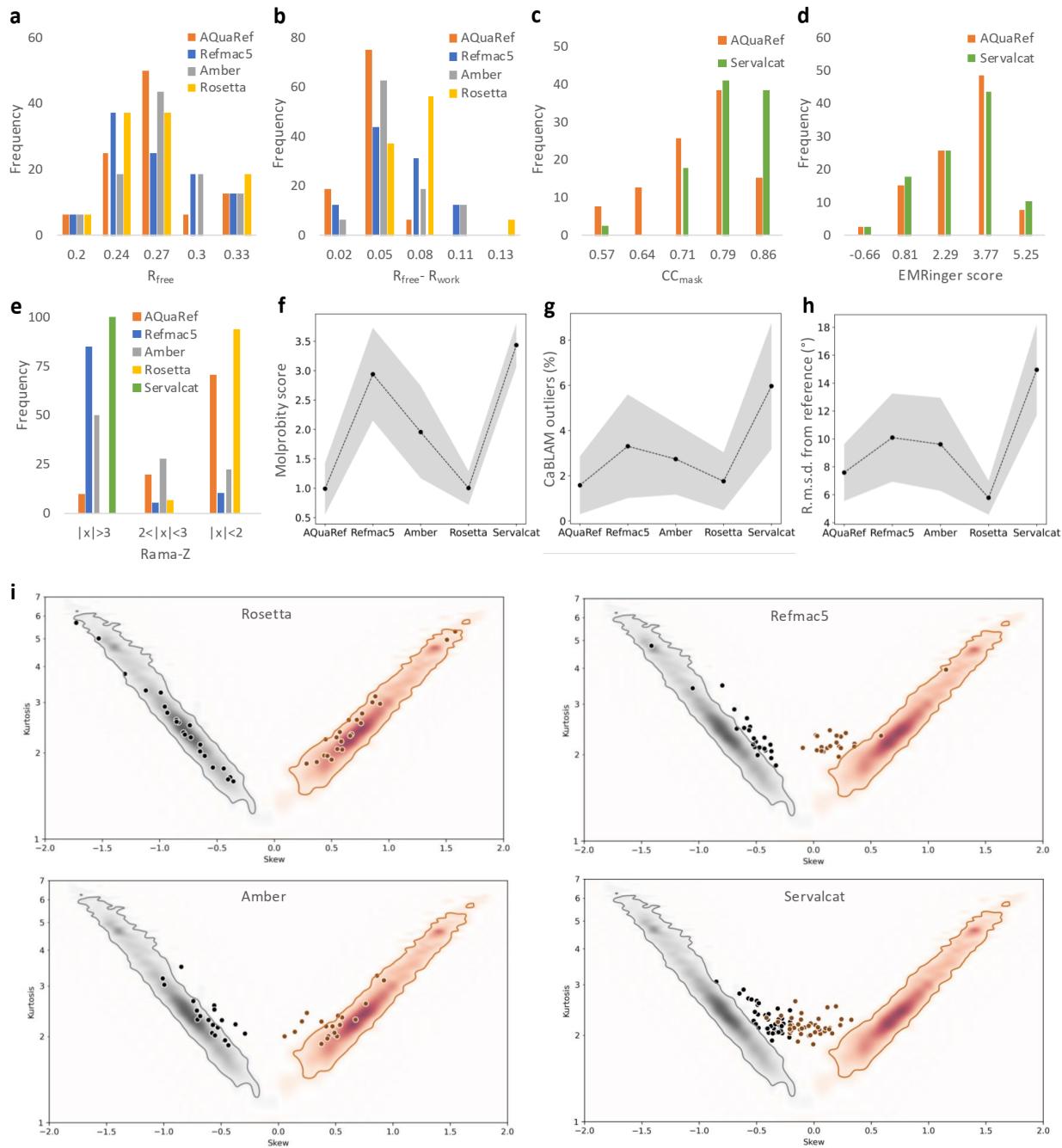
224 Comparison with alternative state-of-the-art approaches

225 To further evaluate the performance of AQuaRef refinement compared to other major
226 refinement methods and software, we refined selected low-resolution X-ray models using
227 the AMBER force field as a source of geometric restraints⁵⁶, the Rosetta all-atom force
228 field combined with its powerful sampling methods⁵⁷, and standard refinement as
229 implemented in REFMAC5⁵⁸. For cryo-EM, there are fewer refinement alternatives, with
230 Servalcat⁵⁹ being the most popular, which we also used in this analysis.

231 For X-ray models, AQuaRef produced slightly better overall R_{free} values (Fig. 4a) and
232 substantially less data overfitting, as indicated by the $R_{\text{free}}-R_{\text{work}}$ gap (Fig. 4b). For cryo-
233 EM models Servalcat lead to notably better CC_{mask} (Fig. 4c) and both scored the same
234 by EMRinger method (Fig. 4d). Models refined using AQuaRef and Rosetta performed
235 similarly well in terms of Rama-Z scores, achieving excellent results in most cases, while
236 REFMAC5 and Servalcat had the worst scores, and AMBER fell somewhere in between
237 (Fig. 4e). In terms of MolProbity scores and CaBLAM outliers (Fig. 4f,g), AQuaRef and

238 Rosetta also performed similarly well, significantly outperforming REFMAC5 and
239 Servalcat. Rosetta-refined models were closest to the high-resolution reference models,
240 followed by AQuaRef (Fig. 4h). This is likely due to Rosetta's use of non-gradient
241 optimization techniques, such as sampling and local model repacking, which have a
242 larger convergence radius compared to the gradient-driven minimization used in other
243 programs. Finally, AQuaRef and Rosetta both produced models that fit the expected
244 distribution of hydrogen bond parameters (Fig. 4i, Fig. 3d), followed by AMBER.
245 REFMAC5 and Servalcat largely failed to produce models fitting this distribution, with
246 Servalcat performing the worst.

247



248

249 **Figure 4.** Summary of refinements for 41 low-resolution cryo-EM models using AQuaRef
 250 and Servalcat, and 20 low-resolution X-ray models using AQuaRef, REFMAC5, AMBER,
 251 and Rosetta. **a-e:** Distributions of R_{free} , $R_{\text{free}} - R_{\text{work}}$, CC_{mask} , EMRinger score, and Rama-
 252 Z, respectively. **f-h:** Mean values of MolProbity score, CaBLAM outliers, and r.m.s.
 253 deviation from the reference model, calculated across all refined models; gray bands
 254 represent the standard deviation. **i:** Skew-kurtosis plots for hydrogen bond parameters

255 (Hydrogen(H)...Acceptor(A) distances and Donor-H...A angles) for refinements
256 performed using REFMAC5, AMBER, Rosetta and Servalcat.

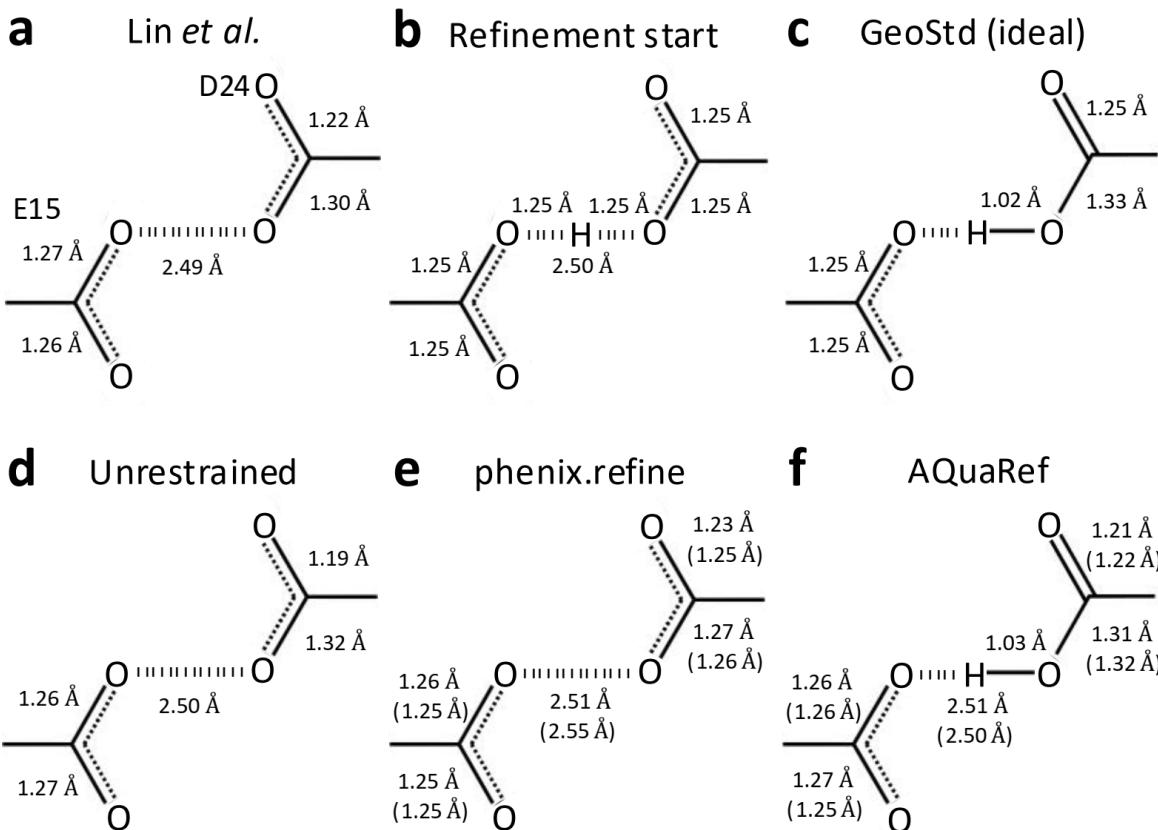
257

258 **Case study: Short hydrogen bonds in human DJ-1 and its bacterial homologue**
259 **YajL**

260 Short hydrogen bonds play a key functional role in proteins, and determining the
261 protonation states of involved residues is critical. However, accurate location of proton
262 positions experimentally remains challenging at resolutions near 1 Å. Lin *et al*⁶⁰ analyzed
263 high-resolution X-ray crystal structures of human DJ-1 and its bacterial homolog YajL to
264 determine the protonation states of carboxylic acids involved in dimer-spanning hydrogen
265 bonds. Their approach combined bond length analysis, leveraging the distinct lengths of
266 C=O and C–OH bonds, with qualitative interpretation of difference map peaks to identify
267 potential evidence of protons.

268 This method is complicated by stereochemical restraints applied during coordinate
269 refinement, which can bias bond lengths. For example, in E/D residues, bond length
270 restraints for COOH groups depend on whether a hydrogen atom is explicitly modeled
271 (Fig. 5c). To minimize this bias, Lin *et al.* performed final rounds of conjugate gradient
272 least-squares refinement in SHELXL⁶¹ without applying restraints to the residues of
273 interest. In contrast, QM-based refinement avoids such biases entirely.

274



275

276 **Figure 5.** Wild-type DJ-1 (PDB code: 5SY6). Bond distances in the moiety of hydrogen
277 bond between O ε 2 (E15) and O δ 2 (D24), **a**: as measured in downloaded from PDB
278 model, **b**: starting geometry for all refinements (H is present only in AQuaRef refinement),
279 **c**: ideal library values in Phenix; geometry of –COOH or –COO groups is the same for
280 Asp and Glu residues, **d**: unrestrained and **e**: restrained refinement with phenix.refine, **f**:
281 refinement with AQuaRef. Distances in parentheses correspond to refinement using
282 resolution-truncated data at 2 Å. H atom is shown only if it was explicitly modelled (present
283 in the PDB model file).

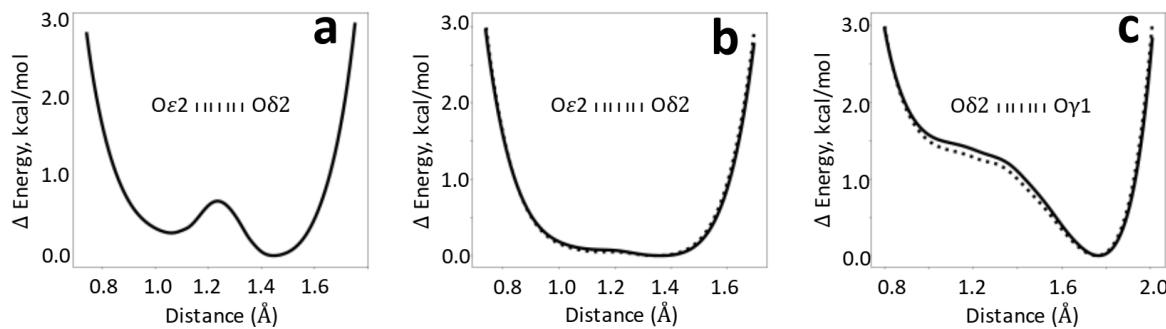
284

285 AQuaRef refinement of DJ-1, starting with E15/D24 in an unprotonated state (Fig. 5b),
286 produced proton positions and bond geometries (Fig 5f) consistent with Lin et al.'s
287 findings (Fig. 5a) and unrestrained refinement using phenix.refine (Fig. 5d). However,
288 restrained refinement with phenix.refine (Fig. 5e) yielded bond geometries that matched

289 library values assuming no proton on either COO group, highlighting the impact of
290 restraint bias.

291 To test the robustness of AIMNet2 restraints in preserving accurate geometries, the same
292 refinements were performed using experimental data truncated at 2 Å resolution. This
293 truncation removed atomic-level details that could resolve bond lengths and hydrogen
294 positions. AQuaRef produced results nearly identical to those obtained using the original
295 1.1 Å atomic resolution data, whereas restrained refinements with phenix.refine further
296 biased oxygen-carbon distances toward idealized values for the unprotonated state (Fig.
297 5e-f, values in parentheses).

298



299

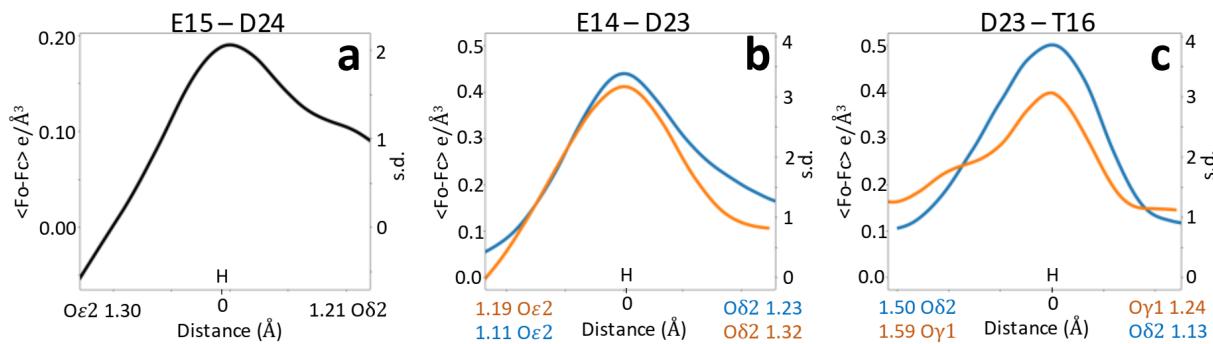
300 **Figure 6.** AIMNet2 energy values relative to their minimum as a function of hydrogen
301 position between corresponding oxygen atoms, **a**: O δ 2 (D24) and O ε 2 (E15) in DJ-1, **b**:
302 O δ 2 (D23) and O ε 2 (E14) in YajL, and **c**: O δ 2 (D23) and O γ 1 (T16) in YajL. Solid and
303 dashed lines represent two instances of the bond in the YajL model.

304

305 Starting from an idealized symmetric arrangement (Fig. 5b), the refinement could, in
306 principle, place the proton on either E15 or D24. To explain why the proton ultimately
307 settled on O δ 2 of D24, two independent sources of evidence were considered. First,
308 sampling the hydrogen position along the O δ 2–O ε 2 bond vector and computing the
309 AIMNet2 energy profile revealed a slight preference for D24 protonation (Fig. 6a).

310 Second, while the resolution and R-factors were insufficient for definitive proton
311 identification in the difference map, the difference map values along the O ε 2-O δ 2 axis
312 showed elevated positive values near O δ 2, close to the prospective hydrogen position
313 (Fig. 7a). This, together with the energetic preference from AIMNet2, may have guided
314 the refinement to move the hydrogen toward D24.

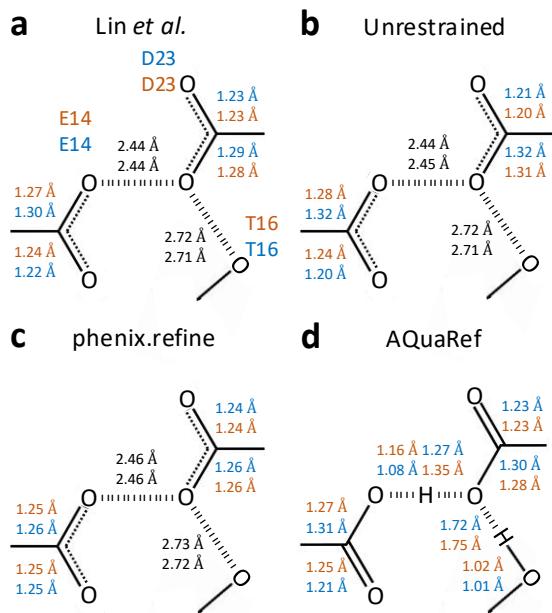
315



316

317 **Figure 7.** Mean values of the difference density map, shown in absolute units (e/ \AA^3) and
318 as standard deviation values along the O-H vector for the analyzed bonds for: **(a)** DJ-1
319 and **(b-c)** E. coli YajL models. All peak centers are aligned to the origin. Atoms belonging
320 to chains A and B are shown in blue and orange, correspondingly.

321



322

323

324 **Figure 8.** *E. coli* YajL (PDB code: 5SY4). Bond distances in the moiety of hydrogen bond
325 between O ε 2 (E14) and O δ 2 (D23) across chains A (blue) and B (orange), **a**: as
326 measured in downloaded from PDB model, **b**: unrestrained and **c**: restrained refinement
327 using phenix.refine, **d**: refinement with AQuaRef. H atom is shown only if it was explicitly
328 modelled (present in the PDB model file).

329

330 Bacterial DJ-1 homologue, the YajL structure, contains two copies of the molecule in the
331 asymmetric unit, resulting in two instances of the E14/D23 interaction. Similar to DJ-1,
332 unrestrained refinement of YajL (Fig. 8b) yielded results consistent with Lin et al. (Fig.
333 8a). As with DJ-1, restrained refinement introduced significant bias in bond lengths (Fig.
334 8c) for both instances of the E14/D23 interaction.

335 Results from AQuaRef refinement aligned with Lin et al. and unrestrained phenix.refine
336 refinement, suggesting that both D23 and E14 are protonated. However, in contrast to
337 DJ-1, the proton in YajL does not appear to be fully associated with either of the two
338 oxygen atoms. Instead, it seems to be shared between O ε 2 and O δ 2, consistent with a
339 Low Barrier Hydrogen Bond.

340 The AIMNet2 energy profile between O ε 2 and O δ 2 supports this interpretation, showing
341 a relatively flat energy landscape (Fig 6b). This indicates that the hydrogen's position
342 could be entirely guided by the experimental data while staying within the flat region of
343 the AIMNet2 energy well. Indeed, there is a significant difference map peaks above 3 s.d.
344 and well above mean solvent density of 0.25 e/Å³ very close to the position of hydrogens
345 in the refined model in both instances of the E14/D23 interaction (Fig. 7b).

346 Further evidence that C-O δ 2 elongation is due to O ε 2…H…O δ 2 LBHB is provided by the
347 analysis of another hydrogen bond involving D23 and T16. All three, AQuaRef refinement
348 (Fig 8d), the AIMNet2 energy profile (Fig. 6c), and difference map density values along
349 the O δ 2 of D23 and O γ 1 of T16 (Fig 7c), confirm the protonation of T16 and rule out the
350 D23 protonation in the “anti” configuration.

351

352 DISCUSSION

353 Here, we present AQuaRef, a novel approach to the quantum refinement of entire protein
354 structures, made possible by using ML-accelerated quantum mechanical calculations
355 with AIMNet2. For the first time, this allows for the refinement of full atomic models of
356 realistic protein structures using stereochemical restraints derived from quantum
357 mechanical calculations.

358 Test refinements using 61 low-resolution X-ray and cryo-EM atomic models show
359 systematic improvements in geometric validation criteria by using QM restraints while
360 maintaining a similar fit to the experimental data and reducing overfitting. The presence
361 of high-resolution homologous atomic models, which are expected to better represent the
362 actual true structures than low-resolution atomic models, allowed us to assess whether
363 these improvements are associated with refined structures becoming closer to the true
364 ones. With a few exceptions, we find that atomic models refined with AQuaRef restraints
365 are systematically closer to their high-resolution matches. This indicates that QM-based
366 refined atomic models not only improve standard validation metrics but also provide more
367 realistic representations of the true structures compared to atomic models refined with
368 standard restraints. Expectedly, refining 10 very high-resolution atomic models did not

369 significantly alter the atomic coordinates but did lead to improved R -factors for all ten
370 models (Supplementary Data: Table 5). The most notable differences compared to
371 refinement with standard restraints were observed in the position of hydrogen atoms,
372 specifically those with rotational degrees of freedom (Fig. 9 d-g), where some of these
373 atoms reoriented during refinement to better fit the data and, at the same time, form
374 favorable hydrogen bonds. Another notable difference is the increased r.m.s. deviations
375 from ideal (library) bond and angle values in the case of AQuaRef refinement
376 (Supplementary Data: Table 5), which together with improved hydrogen positions is likely
377 to contribute to improved R -factors.

378 An extended comparison with popular state-of-the-art software packages and refinement
379 methods, including the use of AMBER and Rosetta force fields as refinement restraints,
380 as well as REFMAC5 and Servalcat from the CCP4 software suite, shows that for crystal
381 structure refinement, only Rosetta approaches AQuaRef in terms of the quality of refined
382 atomic model geometries. However, AQuaRef produces slightly improved R_{free} values
383 and significantly better $R_{\text{free}}-R_{\text{work}}$ gaps, indicating reduced data overfitting. It is also worth
384 noting that Rosetta-based refinement is only available for crystal structures using X-ray
385 data, and refinement times with Rosetta are up to an order of magnitude slower. Although
386 Servalcat achieved superior CC_{mask} values compared to AQuaRef (Fig. 4d), this suggests
387 that Servalcat overfits the map, producing higher CC_{mask} values at the cost of significantly
388 poorer model geometry.

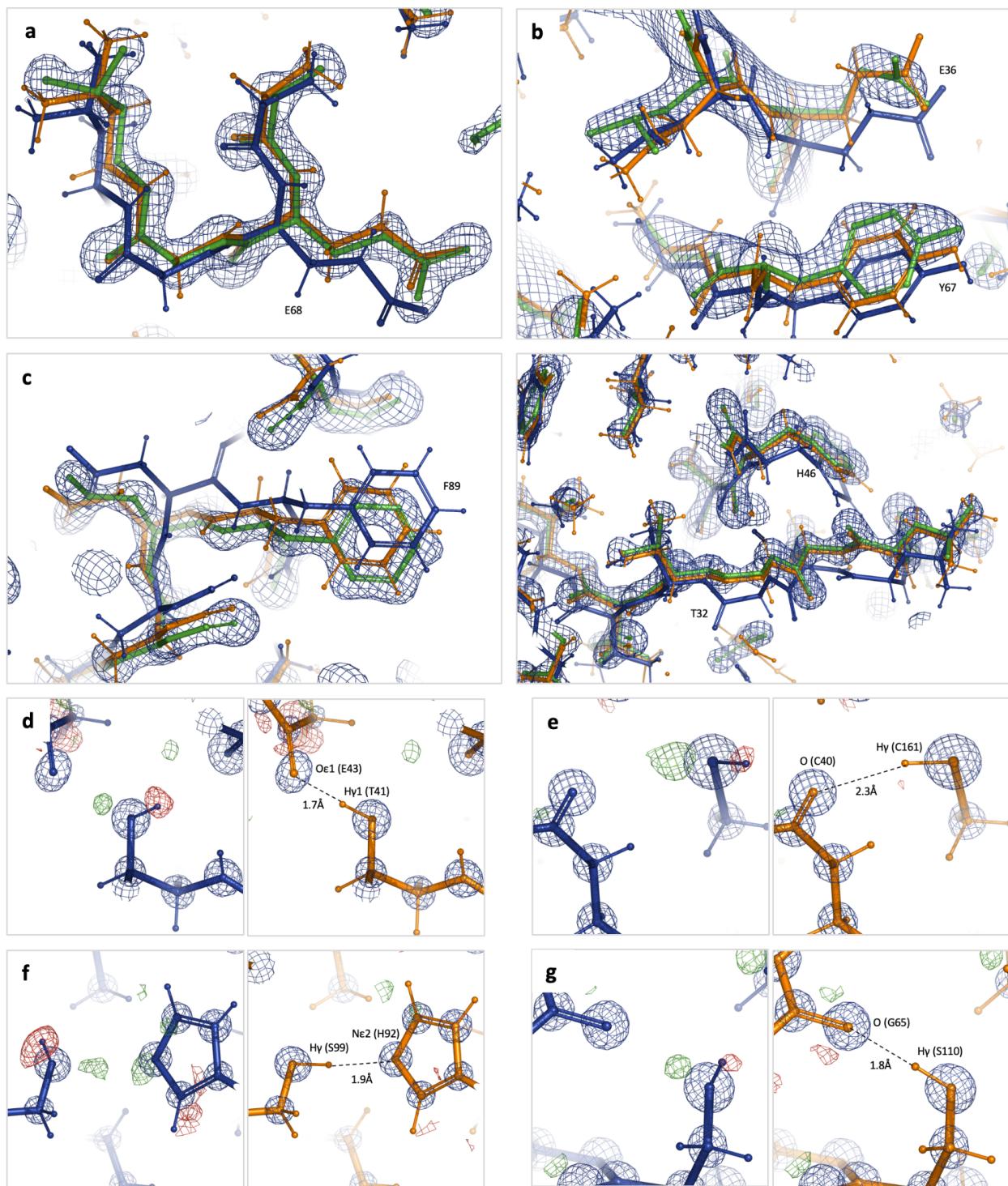
389 The case study of short hydrogen bonds in human DJ-1 and its bacterial homolog YajL,
390 as well as the protonation states of carboxylic acids involved in these hydrogen bonds,
391 highlights the feasibility of AQuaRef in determining proton positions consistent with
392 experimental evidence across diverse scenarios. This process is fully automated and
393 unbiased by the choice of restraints. Additionally, AIMNet2 energy profiles provide further
394 information about the characteristics of hydrogen bonds and protonation states, which
395 can be used to support specific hypotheses.

396 The method has been implemented in the quantum refinement software (Q|R), which is
397 built upon the CCTBX library⁶² and optionally utilizes tools from Phenix. Q|R is accessible

398 within Phenix, thereby making these methods readily available to the broader community
399 of structural biologists.

400 Currently, AQuaRef is trained using commonly known amino acid residues, which means
401 the method can only be applied to protein-only structures. Another main limitation is that,
402 at present, static disorder (alternate conformations) is not handled in Q|R. Removing both
403 limitations is the subject of future work.

404



405

406 **Figure 9. a-c:** Close-up showing models refined with standard restraints (blue) and
407 AQuaRef restraints (orange) superposed onto their higher-resolution homologous models
408 (green) with their corresponding 2mFo-DFc Fourier maps contoured at 2σ ; for PDB 5YI5,
409 8R1G, and 6XMX, respectively. **d-g:** Refinement with standard AQuaRef restraints

410 (orange) overlaid with their corresponding 2mFo-DFc and mFo-DFc Fourier maps,
411 contoured at 5σ (blue) and $\pm 2\sigma$ (green, red), respectively (PDB 4O8H). The focus is on
412 hydrogen atoms with rotational degrees of freedom that re-orient during refinement with
413 AQuaRef restraints to satisfy the residual map and participate in hydrogen bonding.

414

415 METHODS

416

417 **AIMNet2 training dataset and AQuaRef model**

418 Since our goal was the parametrization of ML potential for polypeptides, our training
419 dataset needed to cover chemical (amino acid sequence and protonation states),
420 conformational, and intermolecular degrees of freedom. We began by creating a library
421 of small peptides as SMILES strings. We used all 20 standard amino acids, 11 alternate
422 protonation forms, three options for sequence start (ACE, NH3+, NH2), and four options
423 for the end (NME, NHE, CBX, CBA). We enumerated all possible mono- and di-peptides
424 and selected a random subset for tri- and tetra-peptides. Additionally, we generated
425 SMILES for peptides linked by the cysteine-cysteine disulfide bond and their selenium
426 counterparts. Molecular conformations were generated with OpenEye Omega⁶³ software
427 using dense torsion sampling. No restrictions were applied to the configurations of the
428 chiral centers, ensuring that the dataset and resulting model should work equally well for
429 D-, L-, and mixed stereochemistry peptides. Intermolecular interactions were modeled by
430 generating intermolecular complexes of 2 to 4 peptides with random orientations. No prior
431 knowledge of preferred types of secondary structure for polypeptides was used. To
432 manage the size of the dataset and the training process, we limited the size of peptides
433 and complexes to less than 120 atoms, including hydrogens.

434 Non-equilibrium conformations of peptides and complexes were sampled with molecular
435 dynamics simulations using the GFN-FF⁶⁴ force field. Cartesian restraints were added to
436 keep structures near the input structure, with random torsion and intermolecular degrees
437 of freedom. Molecular configurations for labeling (DFT calculations) and inclusion into the
438 training dataset were selected using Query-By-Committee active learning (AL)

439 approach³⁵. We started with a random selection of 500k samples, used an ensemble of
440 4 models, and performed a total of 4 iterations of AL adding new samples with high
441 uncertainty of energy and atomic forces prediction. In the final iteration of AL, we
442 performed uncertainty-guided optimization of the structures, minimizing the weighted
443 difference of energy prediction and its uncertainty. This type of active sampling finds
444 structures that balance low predicted forces and high energy uncertainty. The entire
445 procedure resulted in a training dataset containing about one million samples, with a
446 median number of 42 atoms per sample.

447 DFT calculations were performed with the B97M-D4/def2-QZVP⁶⁵⁻⁶⁸ method using ORCA
448 5.0.3 software⁶⁹. Since the Q|R does not use periodic boundary conditions, and usually
449 not all ions and solvent molecules are resolved in the refinement, we used implicit
450 treatment of solvent effects with CPCM⁷⁰ method using parameters for water as solvent.

451 The core architecture of the AQuaRef model matches the base AIMNet2 model³³, with
452 few modifications. First, we did not use explicit long-range Coulomb and dispersion
453 interactions, we trained to total DFT-D4 energy instead. With CPCM treatment, the
454 Coulomb term could not be estimated using interactions between partial atomic charges,
455 and also long-range interactions are effectively screened with a polarizable continuum.
456 Long range dispersion interactions beyond the local cutoff of 5 Å have little effect on
457 atomic forces, which are important in Q|R refinement. We also added explicit short-range
458 exponential repulsion terms to make the potential more robust for the structures with
459 clashes. The model was trained to reproduce DFT-D4 energies, forces, and Hirshfeld
460 partial atomic charges.

461

462 **Experimental data and atomic models for test cases**

463 Protein-only, single-conformation high-to-low resolution X-ray crystallography and Cryo-
464 EM models, along with their corresponding experimental datasets, were selected from
465 RCSB and EMDB based on multiple criteria. These criteria include model size (between
466 1,000 and 10,000 non-hydrogen atoms), resolution (between 2.5 and 4 Å), geometric
467 model quality (MolProbity clashscore better than 50, with no covalent bonds deviating by

468 more than 4 r.m.s.d. from ideal library values), goodness of fit between the model and the
469 experimental data (Cryo-EM: $CC_{mask} > 0.6$, X-ray: $R_{work} < 0.3$), and the availability of a
470 higher-resolution (better than 2 Å) homologous model (main chain superposition r.m.s.d.
471 < 1 Å, sequence identity greater than 95%) for each considered model. Additionally, 11
472 ultra-high resolution single-conformation X-ray models were selected that contained only
473 protein and ordered water atoms.

474

475 **Comparison of models**

476 All atoms were used to calculate coordinate r.m.s. deviations between models before and
477 after refinement, as shown in Figure 3a. Coordinate r.m.s. deviations between models
478 used for test refinements and their high-resolution homologues were calculated using the
479 Phenix tool phenix.superpose_pdbs, which included all non-hydrogen backbone atoms
480 plus C β and C γ atoms where present. R.m.s. deviations in torsion angle space were
481 calculated using CCTBX⁶², with matching torsion angles selected as described by Headd
482 et al.¹⁵.

483

484 **Atomic model preparation for refinement**

485 Model preparation for refinement (e.g., adding any missing atoms) was done using
486 qr.finalise program of Q|R, which uses the Reduce program⁷¹ to add hydrogen atoms at
487 geometrically predicted positions. Model geometry regularization was done using the
488 Phenix tool phenix.geometry_minimization.

489

490 **Model refinement**

491 The exact same input models were used for all trial refinements. Real-space refinement
492 in Phenix was performed using the phenix.real_space_refine program¹². Four refinement
493 runs were performed independently, starting with the same input maps (cryo-EM) or
494 reflection data (X-ray) and models. The runs included: 1) standard restraints consisting

495 of restraints on bond lengths, bond angles, torsion angles, planes, chirality, and non-
496 bonded repulsion; 2) standard restraints with the addition of secondary-structure
497 restraints; 3) standard restraints with the addition of Ramachandran plot restraints; and
498 4) standard restraints with the addition of secondary-structure and Ramachandran plot
499 restraints.

500 Quantum-based real- and reciprocal-space refinement was performed using the qr.refine
501 program of Q|R, using all default settings except for the source of QM restraints
502 (AQuaRef).

503 Reciprocal-space refinement in Phenix was performed using phenix.refine⁷² with the
504 exact same four choices of restraints as in real-space refinement.

505

506 **Software and availability**

507 Phenix software is available at: phenix-online.org. Quantum refinement (Q|R) software is
508 available at qrefine.com. AQuaRef refinement is available in Phenix starting dev-5395
509 version. CCTBX-based Python scripts and the data (atomic models, cryo-EM maps, X-
510 ray diffraction data) used in this study are available at: <https://phenix->
511 [online.org/phenix_data/afonine/qr_aimnet2_2024/](https://phenix-online.org/phenix_data/afonine/qr_aimnet2_2024/). Refinement parameters are
512 documented in README files, as well as in the Python scripts used to run the
513 refinements. Input data for deposited models were obtained from the Protein Data Bank⁷³
514 and Electron Microscopy Data Bank⁷⁴, either by using the Phenix tool phenix.fetch_pdb
515 or from the CERES server⁷⁵.

516

517 **Graphics software**

518 Map and model images were prepared using PyMOL⁷⁶. Routine inspection of maps and
519 models was performed using Coot⁷⁷. Plots were generated using Matplotlib⁷⁸.

520

521 **Acknowledgements**

522 PVA, NWM, and PDA acknowledge funding from the National Institutes of Health (grants
523 R01GM071939, P01GM063210, and R24GM141254), as well as support from the Phenix
524 Industrial Consortium and the US Department of Energy under Contract No. DE-AC02-
525 05CH11231. OI acknowledges support from the US National Science Foundation (NSF
526 CHE-2154447). AER acknowledges support from the US National Science Foundation
527 (NSF CHE-1802831 and OAC-2311632). MB acknowledges support from the COST
528 Action CA21101 “Confined molecular systems: from a new generation of materials to the
529 stars’ (COSY)” supported by COST (European Cooperation in Science and Technology)
530 and computer resources provided by Wroclaw Centre for Networking and
531 Supercomputing (<http://wcss.pl>).

532

533 This work used Expanse at SDSC and Bridges-2 at PSC through allocation CHE200122
534 from the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support
535 (ACCESS) program, which is supported by NSF grants #2138259, #2138286, #2138307,
536 #2137603, and #2138296. This research is part of the Frontera computing project at the
537 Texas Advanced Computing Center. Frontera is made possible by the National Science
538 Foundation award OAC-1818253. This research, in part, was done using resources
539 provided by the Open Science Grid, which is supported by the award 1148698 and the
540 U.S. DOE Office of Science.

541

542 **Author contributions**

543 Conceptualization: P.V.A., A.E.R., O.I., M.B.; Methodology: R.Z., H.G., K.R.; Software:
544 P.V.A., N.W.M., R.Z., M.P.W, H.K.; Validation: M.B., K.R., H.G., P.D.A.; Formal analysis:
545 M.B.; Data Curation: R.Z., H.G., K.R., P.V.A.; Writing (original draft): P.V.A., M.B., R.Z.;
546 Writing (review & editing): all authors; Visualization: P.V.A., M.B., H.G., R.Z.; Supervision,
547 P.V.A., A.E.R., O.I.; Project administration: P.V.A., A.E.R., O.I., M.B.; Funding
548 Acquisition: P.D.A., P.V.A., A.E.R., O.I.

549

550 **Competing Interests**

551 The authors declare no competing interests.

552

553 **References**

- 554 1. Abramson, J. *et al.* Accurate structure prediction of biomolecular interactions with
555 AlphaFold 3. *Nature* **630**, 493–500 (2024).
- 556 2. Baek, M. *et al.* Accurate prediction of protein structures and interactions using a
557 three-track neural network. *Science* **373**, 871–876 (2021).
- 558 3. Krishna, R. *et al.* Generalized biomolecular modeling and design with RoseTTAFold
559 All-Atom. *Science* **384**, eadl2528 (2024).
- 560 4. Terwilliger, T. C. *et al.* AlphaFold predictions are valuable hypotheses and
561 accelerate but do not replace experimental structure determination. *Nat. Methods*
562 **21**, 110–116 (2024).
- 563 5. Edich, M., Briggs, D. C., Kippes, O., Gao, Y. & Thorn, A. The impact of AlphaFold2
564 on experimental structure solution. *Faraday Discuss.* **240**, 184–195 (2022).
- 565 6. Urzhumtsev, A. G. & Lunin, V. Y. Introduction to crystallographic refinement of
566 macromolecular atomic models. *Crystallogr. Rev.* **25**, 164–262 (2019).
- 567 7. Evans, P. R. An introduction to stereochemical restraints. *Acta Crystallogr. D Biol.*
568 *Crystallogr.* **63**, 58–61 (2007).
- 569 8. Vagin, A. A. *et al.* REFMAC 5 dictionary: organization of prior chemical knowledge
570 and guidelines for its use. *Acta Crystallogr. D Biol. Crystallogr.* **60**, 2184–2195
571 (2004).

572 9. Engh, R. A. & Huber, R. Accurate bond and angle parameters for X-ray protein
573 structure refinement. *Acta Crystallogr. A* **47**, 392–400 (1991).

574 10. Agirre, J. *et al.* The CCP 4 suite: integrative software for macromolecular
575 crystallography. *Acta Crystallogr. Sect. Struct. Biol.* **79**, 449–461 (2023).

576 11. Liebschner, D. *et al.* Macromolecular structure determination using X-rays, neutrons
577 and electrons: recent developments in *Phenix*. *Acta Crystallogr. Sect. Struct. Biol.*
578 **75**, 861–877 (2019).

579 12. Afonine, P. V. *et al.* Real-space refinement in *PHENIX* for cryo-EM and
580 crystallography. *Acta Crystallogr. Sect. Struct. Biol.* **74**, 531–544 (2018).

581 13. Kovalevskiy, O., Nicholls, R. A. & Murshudov, G. N. Automated refinement of
582 macromolecular structures at low resolution using prior information. *Acta Crystallogr.*
583 *Sect. Struct. Biol.* **72**, 1149–1161 (2016).

584 14. DeLaBarre, B. & Brunger, A. T. Considerations for the refinement of low-resolution
585 crystal structures. *Acta Crystallogr. D Biol. Crystallogr.* **62**, 923–932 (2006).

586 15. Headd, J. J. *et al.* Use of knowledge-based restraints in *phenix.refine* to improve
587 macromolecular refinement at low resolution. *Acta Crystallogr. D Biol. Crystallogr.*
588 **68**, 381–390 (2012).

589 16. Sobolev, O. V., Afonine, P. V., Adams, P. D. & Urzhumtsev, A. Programming new
590 geometry restraints: parallelity of atomic groups. *J. Appl. Crystallogr.* **48**, 1130–1141
591 (2015).

592 17. De Vries, I. *et al.* New restraints and validation approaches for nucleic acid
593 structures in *PDB-REDO*. *Acta Crystallogr. Sect. Struct. Biol.* **77**, 1127–1141 (2021).

594 18. Afonine, P. V., Sobolev, O. V., Moriarty, N. W., Terwilliger, T. C. & Adams, P. D.

595 Overall protein structure quality assessment using hydrogen-bonding parameters.

596 *Acta Crystallogr. Sect. Struct. Biol.* **79**, 684–693 (2023).

597 19. Moriarty, N. W., Liebschner, D., Tronrud, D. E. & Adams, P. D. Arginine off-kilter:

598 guanidinium is not as planar as restraints denote. *Acta Crystallogr. Sect. Struct. Biol.*

599 **76**, 1159–1166 (2020).

600 20. Richardson, J. S. *et al.* Model validation: local diagnosis, correction and when to

601 quit. *Acta Crystallogr. Sect. Struct. Biol.* **74**, 132–142 (2018).

602 21. Jiang, Z., Biczysko, M. & Moriarty, N. W. Accurate geometries for “Mountain pass”

603 regions of the Ramachandran plot using quantum chemical calculations. *Proteins*

604 *Struct. Funct. Bioinforma.* **86**, 273–278 (2018).

605 22. Moriarty, N. W. *et al.* Improved chemistry restraints for crystallographic refinement

606 by integrating the Amber force field into *Phenix*. *Acta Crystallogr. Sect. Struct. Biol.*

607 **76**, 51–62 (2020).

608 23. Zheng, M., Reimers, J. R., Waller, M. P. & Afonine, P. V. Q | R : quantum-based

609 refinement. *Acta Crystallogr. Sect. Struct. Biol.* **73**, 45–52 (2017).

610 24. Bergmann, J., Oksanen, E. & Ryde, U. Combining crystallography with quantum

611 mechanics. *Curr. Opin. Struct. Biol.* **72**, 18–26 (2022).

612 25. Zheng, M. *et al.* Including crystallographic symmetry in quantum-based refinement:

613 Q | R #2. *Acta Crystallogr. Sect. Struct. Biol.* **76**, 41–50 (2020).

614 26. Zheng, M. *et al.* Solving the scalability issue in quantum-based refinement: Q|R#1.

615 *Acta Crystallogr. Sect. Struct. Biol.* **73**, 1020–1028 (2017).

616 27. Wang, L. *et al.* Real-space quantum-based refinement for cryo-EM: Q | R #3. *Acta*

617 *Crystallogr. Sect. Struct. Biol.* **76**, 1184–1191 (2020).

618 28. Borbulevych, O. Y., Plumley, J. A., Martin, R. I., Merz, K. M. & Westerhoff, L. M.

619 Accurate macromolecular crystallographic refinement: incorporation of the linear

620 scaling, semiempirical quantum-mechanics program *DivCon* into the *PHENIX*

621 refinement package. *Acta Crystallogr. D Biol. Crystallogr.* **70**, 1233–1247 (2014).

622 29. Ryde, U. Combined quantum and molecular mechanics calculations on

623 metalloproteins. *Curr. Opin. Chem. Biol.* **7**, 136–142 (2003).

624 30. Canfield, P., Dahlbom, M. G., Hush, N. S. & Reimers, J. R. Density-functional

625 geometry optimization of the 150 000-atom photosystem-I trimer. *J. Chem. Phys.*

626 **124**, 024301 (2006).

627 31. Kulik, H. J., Luehr, N., Ufimtsev, I. S. & Martinez, T. J. Ab Initio Quantum Chemistry

628 for Protein Structures. *J. Phys. Chem. B* **116**, 12501–12509 (2012).

629 32. Zheng, M. & Waller, M. P. Adaptive quantum mechanics/molecular mechanics

630 methods. *WIREs Comput. Mol. Sci.* **6**, 369–385 (2016).

631 33. Anstine, D., Zubatyuk, R. & Isayev, O. AIMNet2: A Neural Network Potential to Meet

632 your Neutral, Charged, Organic, and Elemental-Organic Needs. Preprint at

633 <https://doi.org/10.26434/chemrxiv-2023-296ch-v2> (2024).

634 34. Smith, J. S., Isayev, O. & Roitberg, A. E. ANI-1: an extensible neural network

635 potential with DFT accuracy at force field computational cost. *Chem. Sci.* **8**, 3192–

636 3203 (2017).

637 35. Smith, J. S., Nebgen, B., Lubbers, N., Isayev, O. & Roitberg, A. E. Less is more:

638 Sampling chemical space with active learning. *J. Chem. Phys.* **148**, 241733 (2018).

639 36. Devereux, C. *et al.* Extending the Applicability of the ANI Deep Learning Molecular

640 Potential to Sulfur and Halogens. *J. Chem. Theory Comput.* **16**, 4192–4202 (2020).

641 37. Zubatyuk, R., Smith, J. S., Nebgen, B. T., Tretiak, S. & Isayev, O. Teaching a neural
642 network to attach and detach electrons from molecules. *Nat. Commun.* **12**, 4870
643 (2021).

644 38. Yan, Z., Wei, D., Li, X. & Chung, L. W. Accelerating reliable multiscale quantum
645 refinement of protein–drug systems enabled by machine learning. *Nat. Commun.*
646 **15**, 4181 (2024).

647 39. Brünger, A. T., Karplus, M. & Petsko, G. A. Crystallographic refinement by simulated
648 annealing: application to crambin. *Acta Crystallogr. A* **45**, 50–61 (1989).

649 40. Wang, Y. *et al.* Optimal clustering for quantum refinement of biomolecular
650 structures: Q|R#4. *Theor. Chem. Acc.* **142**, 100 (2023).

651 41. Moriarty, N. W., Tronrud, D. E., Adams, P. D. & Karplus, P. A. Conformation-
652 dependent backbone geometry restraints set a new standard for protein
653 crystallographic refinement. *FEBS J.* **281**, 4061–4071 (2014).

654 42. Engh, R. A. & Huber, R. Structure quality and target parameters. in 474–484 (2012).
655 doi:10.1107/97809553602060000857.

656 43. Afonine, P. V. *et al.* New tools for the analysis and validation of cryo-EM maps and
657 atomic models. *Acta Crystallogr. Sect. Struct. Biol.* **74**, 814–840 (2018).

658 44. Booth, A. D. LXXIV. An expression for following the process of refinement in X-ray
659 structure analysis using fourier series. *Lond. Edinb. Dublin Philos. Mag. J. Sci.* **36**,
660 609–615 (1945).

661 45. Brünger, A. T. Free R value: a novel statistical quantity for assessing the accuracy
662 of crystal structures. *Nature* **355**, 472–475 (1992).

663 46. Williams, C. J. *et al.* MolProbity: More and better reference data for improved all-

664 atom structure validation. *Protein Sci.* **27**, 293–315 (2018).

665 47. Lovell, S. C. *et al.* Structure validation by C α geometry: ϕ, ψ and C β deviation.

666 *Proteins Struct. Funct. Bioinforma.* **50**, 437–450 (2003).

667 48. Hintze, B. J., Lewis, S. M., Richardson, J. S. & Richardson, D. C. Molprobity's

668 ultimate rotamer-library distributions for model validation: MolProbity's Ultimate

669 Rotamer-Library. *Proteins Struct. Funct. Bioinforma.* **84**, 1177–1189 (2016).

670 49. Lovell, S. C., Word, J. M., Richardson, J. S. & Richardson, D. C. The penultimate

671 rotamer library. *Proteins Struct. Funct. Genet.* **40**, 389–408 (2000).

672 50. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of

673 *Coot*. *Acta Crystallogr. D Biol. Crystallogr.* **66**, 486–501 (2010).

674 51. Chen, V. B. *et al.* MolProbity: all-atom structure validation for macromolecular

675 crystallography. *Acta Crystallogr. D Biol. Crystallogr.* **66**, 12–21 (2010).

676 52. Sobolev, O. V. *et al.* A Global Ramachandran Score Identifies Protein Structures

677 with Unlikely Stereochemistry. *Structure* **28**, 1249–1258.e2 (2020).

678 53. Tickle, I. J., Laskowski, R. A. & Moss, D. S. R_{free} and the R_{free} Ratio. I. Derivation of

679 Expected Values of Cross-Validation Residuals Used in Macromolecular Least-

680 Squares Refinement. *Acta Crystallogr. D Biol. Crystallogr.* **54**, 547–557 (1998).

681 54. Tickle, I. J., Laskowski, R. A. & Moss, D. S. R_{free} and the R_{free} ratio. II. Calculation

682 of the expected values and variances of cross-validation statistics in

683 macromolecular least-squares refinement. *Acta Crystallogr. D Biol. Crystallogr.* **56**,

684 442–450 (2000).

685 55. Barad, B. A. *et al.* EMRinger: side chain–directed model and map validation for 3D

686 cryo-electron microscopy. *Nat. Methods* **12**, 943–946 (2015).

687

688 56. Moriarty, N. W. *et al.* Improved chemistry restraints for crystallographic refinement by
689 integrating the Amber force field into Phenix. *Acta Cryst D* **76**, 51–62 (2020).

690 57. DiMaio, F. *et al.* Improved low-resolution crystallographic refinement with Phenix and
691 Rosetta. *Nat Methods* **10**, 1102–1104 (2013).

692 58. Murshudov, G. N. *et al.* REFMAC5 for the refinement of macromolecular crystal
693 structures. *Acta Cryst D* **67**, 355–367 (2011).

694 59. Yamashita, K., Palmer, C. M., Burnley, T. & Murshudov, G. N. Cryo-EM single-particle
695 structure refinement and map calculation using Servalcat. *Acta Cryst D* **77**, 1282–1291
696 (2021).

697 60. Lin, J., Pozharski, E. & Wilson, M. A. Short Carboxylic Acid–Carboxylate Hydrogen
698 Bonds Can Have Fully Localized Protons. *Biochemistry* **56**, 391–402 (2017).

699 61. Sheldrick, G. M. Crystal structure refinement with SHELXL. *Acta Cryst C* **71**, 3–8
700 (2015).

701 62. Grosse-Kunstleve, R. W., Sauter, N. K., Moriarty, N. W. & Adams, P. D. The
702 *Computational Crystallography Toolbox*: crystallographic algorithms in a reusable
703 software framework. *J. Appl. Crystallogr.* **35**, 126–136 (2002).

704 63. Hawkins, P. C. D., Skillman, A. G., Warren, G. L., Ellingson, B. A. & Stahl, M. T.
705 Conformer Generation with OMEGA: Algorithm and Validation Using High Quality
706 Structures from the Protein Databank and Cambridge Structural Database. *J. Chem.
707 Inf. Model.* **50**, 572–584 (2010).

708 64. Spicher, S. & Grimme, S. Robust Atomistic Modeling of Materials, Organometallic,
709 and Biochemical Systems. *Angew. Chem. Int. Ed.* **59**, 15665–15673 (2020).

710 65. Mardirossian, N. & Head-Gordon, M. Mapping the genome of meta-generalized
711 gradient approximation density functionals: The search for B97M-V. *J. Chem. Phys.*
712 **142**, 074111 (2015).

713 66. Caldeweyher, E. *et al.* A generally applicable atomic-charge dependent London
714 dispersion correction. *J. Chem. Phys.* **150**, 154122 (2019).

715 67. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence
716 and quadruple zeta valence quality for H to Rn: Design and assessment of
717 accuracy. *Phys. Chem. Chem. Phys.* **7**, 3297 (2005).

718 68. Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. *Phys. Chem. Chem.*
719 *Phys.* **8**, 1057 (2006).

720 69. Neese, F., Wennmohs, F., Becker, U. & Riplinger, C. The ORCA quantum chemistry
721 program package. *J. Chem. Phys.* **152**, 224108 (2020).

722 70. Barone, V. & Cossi, M. Quantum Calculation of Molecular Energies and Energy
723 Gradients in Solution by a Conductor Solvent Model. *J. Phys. Chem. A* **102**, 1995–
724 2001 (1998).

725 71. Word, J. M., Lovell, S. C., Richardson, J. S. & Richardson, D. C. Asparagine and
726 glutamine: using hydrogen atom contacts in the choice of side-chain amide
727 orientation 1 1Edited by J. Thornton. *J. Mol. Biol.* **285**, 1735–1747 (1999).

728 72. Afonine, P. V. *et al.* Towards automated crystallographic structure refinement with
729 *phenix.refine*. *Acta Crystallogr. D Biol. Crystallogr.* **68**, 352–367 (2012).

730 73. Berman, H. M. The Protein Data Bank. *Nucleic Acids Res.* **28**, 235–242 (2000).

731 74. The wwPDB Consortium *et al.* EMDB—the Electron Microscopy Data Bank. *Nucleic*
732 *Acids Res.* **52**, D456–D465 (2024).

733 75. Liebschner, D. *et al.* CERES : a cryo-EM re-refinement system for continuous
734 improvement of deposited models. *Acta Crystallogr. Sect. Struct. Biol.* **77**, 48–61
735 (2021).

736 76. Schrödinger, LLC. The PyMOL Molecular Graphics System, Version 1.8. (2015).

737 77. Emsley, P. & Cowtan, K. Coot : model-building tools for molecular graphics. *Acta
738 Crystallogr. D Biol. Crystallogr.* **60**, 2126–2132 (2004).

739 78. Hunter, J. D. Matplotlib: A 2D Graphics Environment. *Comput. Sci. Eng.* **9**, 90–95
740 (2007).

741

742 SUPPLEMENTAL METHODS

743 **Case study: Short hydrogen bonds in human DJ-1 and its bacterial homologue 744 YajL**

745 Atomic models and experimental data for human DJ-1 and the bacterial homologue YajL
746 were downloaded from the Protein Data Bank (PDB) using accession codes 5SY6 and
747 5SY4, respectively. Reflection intensities were used in all calculations. Both atomic
748 models were protonated using the Reduce program from Phenix suite, as the deposited
749 models lacked hydrogen atoms.

750 To address uncertainty in refined atomic model parameters due to intrinsic refinement
751 properties, particularly in the coordinates, interatomic distances are reported as averages
752 with standard deviations, based on 100 refinement runs. Each refinement run (restrained
753 and unrestrained with phenix.refine as well as AQuaRef) used identical settings but began
754 with models where coordinates were randomized with an r.m.s.d. of 0.1 Å.

755 To avoid biases in assumptions about the protonation states of E/D and D/T residues,
756 these residues were modeled as unprotonated with idealized geometries in the input
757 refinement models. For AQuaRef refinements, the proton was positioned exactly between
758 the O ε 2 and O δ 2 atoms for DJ-1 (Fig. 5b) and YajL, as well as between the O δ 2 and O γ 1

759 atoms for YajL. In phenix.refine, this proton was not explicitly modeled to avoid assuming
760 its association with a particular residue.

761 Restrained phenix.refine refinements were performed with 10 macro-cycles to ensure
762 convergence. Unrestrained refinements used the same settings, except geometric
763 restraints affecting hydrogen bond interaction moieties in E/D and D/T residues were
764 eliminated. Excluded restraints were covalent bond and angle restraints for COO moieties
765 and repulsion restraints between O ε 2, O δ 2, and O γ 1 atoms. AQuaRef refinements were
766 performed with all default settings.

767 The AIMNet2 energy profiles between corresponding oxygen atoms were calculated by
768 sampling the proton positions along the line connecting the oxygens at 100 equally
769 spaced points.

770 The sigma-A weighted Fo-Fc difference map value profiles were interpolated along the
771 O δ 2-H, O ε 2-H, and O γ 1-H lines using tri-cubic interpolation and averaged across 100
772 difference maps from corresponding refinements. The mean bulk-solvent density value
773 was estimated using the flat bulk-solvent model, as implemented in Phenix.

774 All Python scripts using Q|R and CCTBX libraries to perform all the above calculations
775 are available in Supplemental Data.

776