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Abstract 1 

Genome-wide association studies (GWAS) of disease progression are vulnerable to collider bias 2 

caused by selection of participants with disease at study entry. This bias introduces spurious 3 

associations between disease progression and genetic variants that are truly only associated 4 

with disease incidence. Methods of statistical adjustment to reduce this bias have been 5 

published, but rely on assumptions regarding the genetic correlation of disease incidence and 6 

disease progression which are likely to be violated in many human diseases. MR-Horse is a 7 

recently published Bayesian method to estimate the parameters of a general model of genetic 8 

pleiotropy in the setting of Mendelian Randomisation. We adapted this method to provide bias-9 

reduced GWAS estimates of associations with disease progression, robust to the genetic 10 

correlation of disease incidence and disease progression and robust to the presence of 11 

pleiotropic variants with effects on both incidence and progression. We applied this adapted 12 

method to simulated GWAS of disease incidence and progression with pleiotropic variants and 13 

varying degrees of genetic correlation. When significant genetic correlation was present, the 14 

MR-Horse method produced less biased estimates than unadjusted analyses or analyses 15 

adjusted using other existing methods. Type 1 error rates with the MR-Horse method were 16 

consistently below the nominal 5% level, at the expense of a modest reduction in power. We 17 

then applied this method to summary statistics from the CKDGen consortium GWAS of kidney 18 

function decline. MR-Horse attenuated the effects of variants with known likely biased effects 19 

in the CKDGen GWAS, whilst preserving effects at loci with likely true effects. 20 

Keywords: GWAS, selection bias, collider bias, kidney disease 21 
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Introduction 1 

Genome-wide association studies (GWAS) of disease progression are increasingly common due 2 

to the availability of sufficiently large cohorts of genotyped participants with specific diseases 3 

and long-term follow-up
1–3

. Selection for disease cases implicitly conditions on the processes 4 

causing incident disease, thus inducing biased associations through any confounders of the 5 

incidence - progression relationship
4,5

 (Fig 1). This bias may inflate type 1 error rates in GWAS of 6 

disease progression. Eliminating this bias by study design is challenging, as in order to define 7 

“disease progression”, participants must be stratified in some way by disease status. 8 

Measurement and elimination of this bias is important for understanding the genomic 9 

architecture of disease traits, and also could be applied to reduce the bias of estimates in non-10 

genetic epidemiological studies. 11 

If individual-level genetic data are available, and the selection-process responsible for the bias 12 

is well understood, then the bias can be addressed by inverse-probability weighting of 13 

participants according to the probability of selection
6
. Unfortunately these data are often not 14 

available. Methods have been proposed to adjust GWAS summary statistics in order to measure 15 

and reduce selection bias
6-8

. Given that the bias arises from conditioning on disease incidence, 16 

these methods use knowledge of genetic variant associations with disease incidence to 17 

estimate the bias of each SNP estimate in the stratified progression GWAS. 18 

The method proposed by Dudbridge and colleagues
7
 (termed “instrument effect regression” by 19 

some authors
8
) assumes that there is no correlation between direct genetic effects of a variant 20 

on incident disease (���) and its effects on disease progression (���), and thus any correlation 21 
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between estimated effects on incidence and progression must be due to collider bias according 1 

to the equation 2 

���� � ��� � ���� 

where ����  denotes the biased value of ��� observed in a GWAS stratified by incident disease. 3 

The collider bias effect is thus defined by the coefficient �, which can be estimated by linear 4 

regression of estimated progression effects from the biased GWAS on estimated incidence 5 

effects from a separate study (provided incident disease in both studies is defined in an 6 

identical manner). They also propose two possible mechanisms for adjusting results for 7 

measurement error in ����. The underlying assumption of no correlation is very strong, and in 8 

our view likely to be violated in most disease contexts. In the case of chronic kidney disease for 9 

example, incident disease is generally defined based on the measurement of a threshold value 10 

of a biomarker-based (usually serum creatinine) estimate of glomerular filtration rate (eGFR), 11 

and disease progression is typically defined as rate of change of this value over time (eGFR 12 

slope)
9
. In such an example, given that both phenotypes are defined based on the same 13 

measurements, it is likely that there is significant correlation between genetic effects on the 14 

phenotypes. 15 

The method proposed by Mahmoud and colleagues
10

 (Slope-Hunter method) does not assume 16 

that ��� and ��� are uncorrelated for all SNPs. Gaussian mixture models are used to cluster 17 

incidence-associated SNPs into a “hunted” cluster of SNPs with similar values of 
���
�

���
 and a 18 

second cluster without such a relationship (the “pleiotropic” cluster). Any correlation between 19 

��� and ��� among the “hunted” SNPs is assumed to be caused by the collider bias effect, 20 
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which can thus be estimated by linear regression of estimated progression effects on estimated 1 

incidence effects in this cluster. Accurate identification of the appropriate “hunted” cluster 2 

requires that a plurality of variants with similar values of 
���
�

���
 only have true effects on disease 3 

incidence and not disease progression. This is termed the Zero Modal Residual Assumption 4 

[ZeMRA], and is less restrictive than that of the Dudbridge method, but still likely to be violated 5 

in certain human diseases. It is therefore desirable to have a method which can reduce the bias 6 

of disease progression associations without assumptions regarding the underlying genetic 7 

correlation of the traits of interest. Given the analogies between this assumption of no 8 

correlation and the InSIDE (Instrument Strength Independent of Direct Effects) assumption of 9 

Mendelian Randomisation methods, we sought to apply an MR method robust to violations of 10 

the InSIDE assumption to the problem of selection bias in GWAS. 11 

The MR Horse method developed by Grant and Burgess
11

 can give unbiased causal effect 12 

estimates in the Mendelian Randomisation setting, even in the presence of correlated 13 

pleiotropic effects (Fig 1C). This method uses a Bayesian approach to fit a model employing a 14 

shrinkage prior (horseshoe prior) on pleiotropic effects (�), to a set of summary statistics for 15 

variants associated with an exposure. This horseshoe prior allows variants with true pleiotropic 16 

effects to escape shrinkage, while shrinking most of the � effects to 0. The assumptions 17 

underlying this model are that effects in Fig 1C are approximately linear, and that confounder 18 

effects and causal effect � are constant across genetic variants. This model is very similar to the 19 

proposed model of causation in GWAS of disease progression (Fig 1D).  The application of this 20 

model to disease progression GWAS can be summarized as follows, amending some of the 21 

notation used by Grant and Burgess: 22 
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������ � 	
���� � ����� , ���� 
 

����� � 	
���� , ���� 
 

���������� � 	 ���0� , � ��� �������������� ��
��� �� 

where �� represents the correlation coefficient between ���� and ���� and �� and � are half 1 

Cauchy distributed variables representing the local and global shrinkage parameters 2 

respectively of a horseshoe prior
12

 for ���. Applying this model to a set of summary statistics 3 

for SNP associations with disease incidence and disease progression may allow unbiased 4 

estimation of SNP effects on disease progression, robust to correlation between ��� and ���. 5 

There are some important differences in the interpretation of parameters in the setting of 6 

collider bias vs in the MR setting. Firstly, � in the original MR-Horse setting (Fig 1) represents 7 

the direct causal effect of the exposure on the outcome. In the collider bias setting this value � 8 

incorporates residual direct effects from “Incidence” to “Progression” not completely 9 

accounted for by adjustment for Incidence, in addition to the effects mediated along the 10 

pathway through the confounders �. It therefore defines the magnitude of the collider bias but 11 

is not intuitively interpretable in the same way as � in the original MR-Horse formulation. 12 

Secondly, in the MR setting ��  represents the pleiotropic effects of the genetic variant � and its 13 

value is not of significant interest per se, whereas in the application to collider bias, ����  is the 14 

direct genetic effect of a variant on disease progression and thus is the estimand of interest. 15 

Finally, in the MR setting causal effects cannot be estimated when there is an effect of a SNP on 16 

a confounder U. This restriction also applies to the setting of disease progression GWAS. If a 17 
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SNP has an effect on a confounder U, this effect will be captured in ���� estimates and would 1 

exhibit a different correlation structure with ��� than the direct ��� effects, invalidating the 2 

MR-Horse model. 3 

We aimed to adapt the MR-Horse method to produce bias-reduced estimates of disease-4 

progression associations in GWAS which adjust for incident disease, robust to correlation 5 

between ��� and ���. We then tested this method in published GWAS of CKD progression, 6 

taking advantage of the fact that there are known biased associations of genetic variants with 7 

progression
13

 which can be used as negative controls. 8 

Methods 9 

Simulations 10 

In order to test this novel application of the method we first simulated GWAS of disease 11 

incidence and progression, using knowledge of chronic kidney disease to approximately inform 12 

modelling choices. Genotypes were simulated for 10,000 individuals at 2,000 independent SNPs 13 

in Hardy-Weinberg equilibrium
14

 and in linkage equilibrium. 95% of SNPs had no effect on 14 

disease incidence or progression (�	), 1% of SNPs had effects on disease incidence only (�
), 1% 15 

of SNPs had effects on disease progression only (��) and 3% of SNPs had effects on both 16 

incidence and progression (�
�), with correlated ����  and ����  with correlation coefficient � 17 

(constant across �
�  variants). This set-up produces a large pleiotropic cluster of variants 18 

explaining more of the phenotypic variance of disease progression than the non-pleiotropic 19 

cluster. This situation is likely to violate the assumptions of both the Dudbridge and Slope-20 
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Hunter methods, but is a plausible architecture of chronic kidney disease related traits. In order 1 

to approximate realistic distributions of effect sizes across the range of allele frequencies, 2 

minor allele frequencies were first drawn from a uniform distribution between 0.01 and 0.49, 3 

and standardised effect sizes were defined as �√ ��

�
�����
���
 where variant level !� values 4 

were drawn from the positive half of a normal distribution with mean 0. Confounders � were 5 

simulated as a random normal variable, and disease incidence ("#$) was initially simulated 6 

under a liability threshold model where the liability had a 40% SNP heritability according to the 7 

equation: 8 

"#$� � % �����			

���

��� � �� � &
�  
A threshold value of the "#$ phenotype was selected to define the binary phenotype of incident 9 

CKD such that the prevalence of CKD in the simulated population was 40%. Kidney function 10 

decline or disease progression was then simulated in all participants as a continuous variable 11 

with genetic effects on progression scaled such that the phenotype has 30-40% SNP heritability 12 

(estimated in GWAS among the entire simulated population) and 30-40% of its variance 13 

explained by the confounders �, according to the equation 14 

'!()� � % �����			

���

��� � *"#$� � +�� � &��  

The values of * and + (Fig 1) were set as 0.1 and 1.5 respectively for all simulations. GWAS of 15 

the binary CKD incidence phenotype was then performed in the whole population (logistic 16 
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regression), and GWAS of the CKD progression phenotype was performed in only those 1 

simulated participants with incident CKD. Simulations were repeated with differing values of �. 2 

We then applied Dudbridge’s method, the Slope-Hunter method, and the MR-Horse method to 3 

these GWAS results. For both Dudbridge and Slope-Hunter methods, only variants associated 4 

with disease incidence (we employed a threshold of , - 0.001) were used to estimate �. The 5 

Hedges-Olkin approximation was used to adjust Dudbridge estimates for measurement error, 6 

as the alternative simulation extrapolation methods performed unpredictably at extremes of 7 

genetic correlation. Confidence intervals for the Slope Hunter estimates were bootstrapped 8 

over 200 iterations. The prior probabilities for the MR-Horse model parameters were informed 9 

by knowledge of chronic kidney disease. The prior probability for �  was 2!–1 where 10 

! � 123453,17. This prior puts most of the probability weighting around high positive 11 

correlation but allows for some lower and even negative correlation for some variants. The 12 

prior probability distribution for the global shrinkage parameter � was set as 13 

� � 849$:;�50,17, and the prior for the local shrinkage prior �� was �� � 849$:;�50,17. 14 

Uninformative priors were used for � � �#�<(!=5>10,107, � � 	50,17 and ��� � 	�50,17. 15 

Posterior parameter estimates were drawn from four parallel Markov Chains simulated in JAGS 16 

using 15,000 iterations with a 20% burn-in. Power, type 1 error and bias were recorded across 17 

1,000 simulation iterations. For better comparison of method performance, power was 18 

measured across the entire range of simulated variant effect sizes. Type 1 error was defined as 19 

the identification of a significant association of a �
  or �	 SNP with disease progression. 20 

Significant effects were defined at , - 0.05 for the regression based methods, and if the 95% 21 
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equal-tailed credible interval for the MR-Horse estimate of ���� did not include 0. Bias was 1 

defined as @����� > ����@ for each method. 2 

Sensitivity analyses were performed including simulated populations of different sizes, different 3 

relative cluster sizes (testing relative performances of the adjustment methods when 4 

assumptions of the other methods are met), and sparser or less sparse MR-Horse prior 5 

distributions for ����  (Supplemental Data). 6 

All analyses were performed in R 4.3.1 and JAGS 4.3.2 on the Oxford University Medical 7 

Sciences Division Biomedical Research Computing Cluster. 8 

Application to CKDGen data 9 

To illustrate the performance of our method in a real dataset we used data from large meta-10 

analyses of GWAS of kidney disease traits performed by the CKDGen consortium. We used 11 

summary statistics from two GWAS: (i) a GWAS of creatinine-based eGFR from Wuttke et al.
15

 12 

and (ii) a GWAS of eGFR decline over time, adjusted for baseline eGFR from Gorski et al.
13

. As 13 

pointed out by the authors, adjustment for eGFR in GWAS (ii) should introduce a collider bias 14 

effect and spurious associations between genetic variants associated with cross-sectional eGFR 15 

alone and eGFR decline. Notably this scenario of adjustment for a baseline variable is different 16 

to our simulated scenario of stratification by incident disease, but the use of creatinine-based 17 

eGFR measurements as the phenotype of interest has the illustrative advantage that genetic 18 

variants with a known functional role in creatinine production (or associated only with 19 

creatinine-based measurements of kidney function and not with cystatin-c or urea-based 20 

measurements) are unlikely to have true causal associations with kidney function decline over 21 
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time. Associations with such variants in GWAS (ii) at the GATM, CPS1, and SHROOM3 loci are 1 

likely to be due to bias and should be attenuated by an adjustment method which successfully 2 

reduces collider bias. They therefore can be used as a form of negative control. Conversely, 3 

associations with genetic variants at loci with probable true effects on kidney function decline 4 

over time (associated with multiple measures of kidney function or known implication of 5 

nearby genes in Mendelian kidney disease) should be relatively preserved. 6 

We identified a set of independent genetic variants in the Gorski et al. summary statistics using 7 

the PLINK 1.9 “clump” algorithm
16

, using the p-value of cross-sectional eGFR associations from 8 

GWAS (i) as the clumping parameter with a clumping window of 100 kilobases and an !� 9 

threshold of 0.001. 10 

The MR-Horse model was specified with the same structure and prior probability distributions 11 

as above (ie prior probability for � placing most probability mass around a correlation between 12 

cross-sectional eGFR lowering effects, and faster eGFR decline), and posterior parameter 13 

estimates were drawn from four parallel Markov chains with 15,000 iterations and a burn in of 14 

20%. In order to account for the fact that variants were selected for cross-sectional eGFR 15 

associations, and that the majority of such variants may have true associations with kidney 16 

function decline rendering a sparse horseshoe prior inappropriate, we performed a sensitivity 17 

analysis with less and more sparse prior probability distributions for ��� (Supplemental data). 18 

Given that the true genetic architecture of many disease traits of interest is often unknown, 19 

sensitivity analyses were also performed using larger and smaller clumping windows for variant 20 

selection, and using deliberately mis-specified prior distributions for � (Supplemental data). 21 
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Results 1 

Simulations 2 

Markov chains for ��� estimates converged satisfactorily (A C - 1.1 for > 99% of variants across 3 

1000 iterations in each simulated scenario). Power for different adjustment methods by 4 

different simulated scenarios are shown in Figure 2a. The adapted MR-Horse model had less 5 

power to detect small variant effect sizes than unadjusted or Dudbridge method across the 6 

range of genetic correlations, but had greater power than the Slope-Hunter method when 7 

significant correlation was present. At the sample size tested, the power to detect variants of 8 

explaining ~ 0.5% of the variance of the progression phenotype was 80-90% for the adapted MR 9 

Horse method across the range of genetic correlations. This range of effect size is relevant to 10 

kidney function phenotypes, with variants at the UMOD locus explaining ~ 0.3 - 0.5% of the 11 

variance of eGFR decline
13

. 12 

A collider bias effect was apparent in unadjusted analyses among variants with effects on 13 

disease incidence (�
  and �
�  variants), and was strongest when genetic correlation was 14 

strongly positive (ie in the same direction as confounder effects +), and weakest when genetic 15 

correlation was negative (Fig 2b; unadjusted analyses). In the setting of no or little genetic 16 

correlation, this bias was reduced by the Dudbridge method, however the bias was markedly 17 

increased by both Dudbridge and Slope-Hunter methods in the setting of strong genetic 18 

correlation (Fig 2b). In our simulations the Slope-Hunter method increased the bias of �
  and 19 

�
�  variants across the range of genetic correlations, likely due to ZeMRA violations. The MR-20 
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Horse method reduced the bias of �
  and �
�  variants across the range of genetic correlations 1 

(Fig 2b). 2 

The adapted MR-Horse consistently had lower Type 1 Error rates below the nominal (5%) level 3 

and below the other methods across the range of genetic correlations. This observation reflects 4 

the propensity of the method to shrink null effects to zero with a high precision whilst allowing 5 

non-zero effects to escape shrinkage. 6 

Analyses with different sample sizes demonstrated a greater sensitivity of the power of the 7 

adapted MR-Horse method to sample size changes, with a larger proportional increase and 8 

drop-off in power with changes in sample size than the other methods (Supplemental figures 1-9 

2). 10 

Changes in the relative sizes of �
, �
�  and �� clusters had significant effects on the 11 

performance of the Slope-Hunter and Dudbridge methods, with both methods acheiving 12 

comparable reductions in bias, and higher power than the adapted MR-Horse when the 13 

pleiotropic cluster was smaller (and explaining less phenotypic variance) than the non-14 

pleiotropic cluster. When cluster sizes were equal, the adapted MR-Horse achieved a superior 15 

reduction in bias and type 1 error in the setting of high genetic correlation (Supplemental 16 

figures 3-4). Relative performance of the adjustment methods was not significantly altered by 17 

changes in the parameters of the prior probability distributions for � (Supplemental figures 5-6). 18 

Using a normal prior for ��� effects resulted in greater power, but inflated bias and type 1 error 19 

rates, especially when correlation between ��� and ��� was negative (Supplemental figure 7).  20 
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The power of the MR-Horse method was greater when variants strongly associated with disease 1 

incidence also were strongly associated with disease progression (Supplemental Figure 8). In 2 

simulations we observed a positive relationship between power and F-statistics with a plateau 3 

at F statistics > 15 (referring to F statistics calculated based on observed disease progression 4 

associations among variants with significant disease incidence associations at p < 0.001). 5 

CKDGen data 6 

Clumping yielded 531 independent genetic variants with available data in both GWAS (i) [GWAS 7 

of cross-sectional eGFR] and (ii) [GWAS of eGFR decline adjusted for baseline eGFR]. This 8 

pruning process removed ten of the lead variants from GWAS (ii) as they were not lead variants 9 

in GWAS (i); these variants were added back to the dataset giving a total set of 541 SNPs for use 10 

in the Dudbridge, Slope-Hunter and MR-Horse methods. 11 

Application of the adapted MR-Horse method to summary statistics from the CKDGen GWAS of 12 

eGFR decline adjusted for baseline eGFR attenuated the magnitude of the estimates at all loci 13 

identified as significantly associated with eGFR decline (Fig 3). Credible intervals calculated by 14 

MR Horse were wider than confidence intervals in unadjusted estimates, reflecting the 15 

reduction in power associated with the method. Effect estimates for variants that were 16 

identified as likely to have a true effect on kidney function decline (notably at the UMOD locus) 17 

remained significantly associated with eGFR decline after MR-Horse adjustment (ie the 95% 18 

credible interval for ��� did not include 0). For rs77924615 (considered to be a causal variant at 19 

the UMOD-PDILT locus
17

), the effect of one additional A allele on eGFR decline adjusted for 20 

baseline eGFR was 0.092 mls/min/year (95% confidence interval 0.081 - 0.103); adjusted using 21 
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the adapted MR-Horse this was attenuated to 0.067 mls/min/year (equal-tailed 95% credible 1 

interval: 0.056 - 0.078). Associations at loci likely to have biased associations with eGFR decline 2 

(GATM, CPS1 and SHROOM3) were not significantly associated with kidney function decline 3 

after MR-Horse adjustment. In the case of the GATM locus, where there is good evidence that 4 

the association is mediated directly by effects on creatine metabolism rather than kidney 5 

function
13

, the baseline-eGFR adjusted result was 0.029 mls/min/year per additional A allele 6 

(0.021 - 0.038); adjusted using the adapted MR-Horse model this was attenuated to 0.002 7 

mls/min/year (-0.001 - 0.010). Sensitivity analyses with less and more sparse prior probabilities 8 

for ���, alterations in clumping parameters or deliberately mis-specified prior distributions for 9 

� did not alter the interpretation of estimates at GATM, CPS1 and SHROOM3 loci, although mis-10 

specification of the probability priors did lead to likely true associations being rejected at the 11 

ACVR2B, OVOL1 and TPPP loci (Supplemental Figures 9 - 11). Employing a normal prior for ��� 12 

effects lead to marked shrinkage of estimates at loci with likely true effects (eg UMOD) whilst 13 

effects at loci likely to be biased (GATM, CPS1, SHROOM3) were not shrunk to zero 14 

(Supplemental figure 12). 15 

Discussion 16 

We set out to assess methods of studying the genetic associations of disease progression, 17 

accounting for effects of selection bias. The presented analyses have shown that an adapted 18 

version of the MR-Horse method appears to reliably reduce selection bias in GWAS of disease 19 

progression in simulated studies of phenotypes with heritability and polygenicity values within 20 

the range of values relevant to human complex traits
18

. When applied to real GWAS of kidney 21 
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disease traits, it significantly attenuates associations at loci where currently observed 1 

associations are likely to be biased. Importantly, associations at loci with likely real effects are 2 

largely preserved, although attenuated in magnitude. This method may be useful in 3 

interpretation of signals in GWAS of disease progression where Type 1 error due to selection 4 

bias may be present. 5 

The assumptions underlying the structure of the model used here are: (i) confounding is 6 

constant across genetic variants, (ii) genetic effects are independent and additive, (iii) all effects 7 

in Figure 1 are approximately linear and (iv) there are no direct effects of selected SNPs on 8 

confounders. Additionally, it is important that the definitions of disease incidence used in both 9 

GWAS of disease incidence and disease progression are as similar as possible. These 10 

assumptions are less restrictive than those of the Dudbridge or Slope-Hunter method, and 11 

notably there are no assumptions regarding the underlying correlation of ��� and ��� effects. 12 

This is important because the genetic architectures of disease progression traits are unknown a 13 

priori and methods that entail fewer assumptions are thus more useful for accurate inference. 14 

Violations of assumption (i) could however arise if there was a single locus or small set of loci 15 

responsible for a large proportion of variance of either phenotype. This would mean that the 16 

genetic component of � would vary depending on whether a variant being tested was at or in 17 

LD with such a locus. This could be ameliorated by removing such a locus from the data, and � 18 

could still be estimated from such an analysis. Violation of assumption (ii) is possible, but non-19 

additive effects are likely a small contributor to heritability of complex traits
19

. Assumption (iii) 20 

is likely to hold when the effects concerned are small. Assumption (iv) can be tested for known 21 

confounders with existing GWAS evidence. 22 
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Results of this method will be to some extent influenced by the prior probability distributions 1 

specified by the user. It could be argued that using a horseshoe prior (or alternative shrinkage 2 

prior) for the ����  effects in our analysis is inappropriate if we consider pleiotropy to be a major 3 

characteristic of the genetic architecture of disease progression, and some work has shown that 4 

posterior estimates can be very sensitive to hyperprior choice when using horseshoe priors
20

. 5 

We have shown in sensitivity analyses that use of a normal prior for ��� effects resulted in 6 

inflated type 1 error rates in simulations, and a failure to reject the likely biased associations at 7 

CPS1, GATM and SHROOM3 in CKDGen data. Importantly, type 1 error rates when using a 8 

normal prior were sensitive to the magnitude of correlation between genetic effects on 9 

incident and progressive disease; this is an undesirable characteristic when the true underlying 10 

correlation is unknown. Results of our simulations and the CKDGen analyses were not 11 

significantly changed despite large magnitude alterations of (i) the sparseness of the horseshoe 12 

prior distribution and (ii) the prior probability for the correlation of genetic effects. Using the 13 

horseshoe prior therefore retains sufficient power to detect important effects in real GWAS, 14 

whilst biased effects are shrunk to zero. 15 

In practice, it will computationally intractable for most users to fit the MR-Horse model on a 16 

genome wide scale. As such, a subset of variants must be selected on which the model should 17 

be fitted. Specific considerations when selecting these variants are (a) they must be 18 

independent, (b) they should be strongly associated with disease incidence and (c) they should 19 

explain a sizeable proportion of the variance of disease progression. We suggest based on 20 

simulations that an F statistic > 15 calculated with respect to the observed disease progression 21 

associations should provide adequate power for the MR-Horse method. 22 
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A further limitation of the method is the fact that the bias reductions are small relative to 1 

unadjusted analyses in the setting of no or negative genetic correlation (or in the more general 2 

case, where the correlation of genetic effects is in the opposite direction to the correlation of 3 

confounder effects responsible for the collider bias). The power reduction when using MR-4 

Horse in these analyses is however quite marked. It may be preferable therefore in situations 5 

where correlation appears unlikely to use unadjusted estimates or alternative methods for 6 

adjustment. For example in the case of cancer where incident disease is driven by cell 7 

proliferation, but disease progression driven by invasion and metastasis, it is possible that the 8 

biology and genetic architecture of disease progression and incidence are distinct
21

. 9 

Assumptions of no or low correlation may therefore be appropriate. However we again 10 

emphasise that in most cases the true underlying correlation structure is unknown, and the 11 

relatively consistent performance of MR-Horse across the range of correlations renders it less 12 

vulnerable to model mis-specification. Unadjusted analyses and Slope-Hunter and Dudbridge 13 

methods can produce extreme biases when significant correlation is present. 14 

In principal, this method could be applied to binary outcomes (for example incident end-stage 15 

kidney disease among those with a specific kidney disease type), although similar to 16 

instrumental variable analyses such as MR, such estimates may become biased towards the null 17 

due to the non-collapsibility of odds ratios
22

. There are also potential applications of this 18 

method to observational epidemiology more broadly. The coefficient � in Figure 1D, which 19 

defines the magnitude of any collider bias effect and can be estimated from the MR-Horse 20 

model, is independent of the specific exposure of interest and could be applied to reduce bias 21 

of estimated effects on disease progression in other observational studies provided that 22 
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“incident disease” and “progression” are defined in the same manner as in the genetic study of 1 

interest. 2 

Unbiased estimates of the associations of genetic and environmental factors with disease 3 

prognosis are crucial to understanding disease mechanisms and predicting disease risks. As 4 

drug development pipelines become more reliant on genetic evidence for target selection
23

, it 5 

is increasingly important that the genetic evidence base is unbiased. This adaptation of the MR-6 

Horse method minimises selection bias, which is an under-addressed source of error in studies 7 

of disease progression.  8 

 9 
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Figure legends 1 

Figure 1: Conditioning on incident disease leads to biased associations of genetic variants with disease progression (A-B). Comparison of MR Horse model and its adaptation 2 

for mitigating collider bias (C – D). 1A: Directed acyclic graph (DAG) representing genetic effects on disease progression and incidence in the presence of confounders. 1B: 3 

Conditioning on incident disease (black rectangle) in GWAS of progression can induce biased associations through the confounders U. (red dashed line). G: participant genotype, 4 

���: effect of genetic variant on disease incidence, ���: direct effect of genetic variant on disease progression, U: confounders of the incidence/progression relationship, �: 5 

direct effect of disease incidence on disease progression 1C: DAG representing Mendelian Randomisation with pleiotropic variants, incorporating the notation used in original 6 

MR-Horse publication: G: participant genotype, ���: effect of genetic variant on disease exposure, �: direct (pleiotropic) effect of genetic variant on outcome, U: confounders of 7 

the incidence/progression relationship, �: direct causal effect of exposure on outcome  1D: Adaptation of the DAG in 1A to illustrate the applicability of this model to the setting 8 

of selection bias in GWAS. �: direct causal effect of disease incidence on disease progression, �: effect of confounders on disease progression b: biasing pathway through U and 9 

�, due to conditioning on Incidence (rectangle).  Effects from U to Incidence are set as 1, allowing the relative confounder effects to vary by varying a single parameter �. 10 

          11 

 12 

Figure 2: The adapted MR-Horse method has lower bias and type 1 error rates across the range of genetic correlations, at the expense of a reduction in statistical power. 13 

Left: Power of unadjusted and adjusted analyses to detect ��� effects across the range of effect sizes, by different values of �. Plotted values are mean power (%) across 1,000 14 

simulation iterations with shaded areas +/- 1.96 * SEM. Phenotypic variance explained per variant defined as: 2��	
��1 �	
��. Right: Bias (top panel) and type 1 error rates 15 

(bottom panel) of each method (mean bias of �� and ��� variants [variants with direct effects on incidence] across 1,000 simulation iterations). Unadjusted analyses have 16 

increasing type 1 error rates with increasingly positive correlation. Dudbridge and Slope-Hunter analyses have increasing bias and type 1 error at extremes of correlation. MR-17 
Horse retains control of type 1 error across range of correlation.             18 

 19 

Figure 3: Unadjusted and MR-Horse adjusted associations of variants with eGFR decline, adjusted for baseline eGFR (adapted from CKDGen analyses). 1A: Associations of lead 20 

variants in Gorski et al.
13 

with eGFR decline, adjusted for baseline eGFR. Variants in top panel have likely true associations with eGFR-decline (associated with decline in analyses 21 

not adjusted for baseline eGFR). Variants in bottom panel have observed effects likely due to bias (not associated with eGFR decline in unadjusted analyses, and in the case of 22 

GATM and CPS1, likely related to creatinine metabolism directly rather than kidney function). 1B: Results after adjustment using adapted MR-Horse method. *Genome-wide 23 
significant result in GWAS adjusted for baseline eGFR. ^Significant result using MR-Horse method (95% credible interval does not include zero). 24 
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