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Abstract 

Decision making involves evaluating options and predicting their likely outcomes. Traditional 

laboratory studies of decision making often employ tasks involving the discrimination of 

perceptual evidence, where sensory information is constant and presented continuously. 

However, during natural behavior, decision making usually involves intermittent information 

streams, punctuated by periods with no input. To investigate decision making under such 

conditions, we designed a perceptual task where participants observed tokens sequentially 

jumping from a central circle to one of two peripheral targets, disappearing shortly after. 

Participants were required to report which target they believed would have received most tokens 

by the trial's end. Half of the trials included a temporal gap, during which no information was 

displayed. To better understand decision-making dynamics, we introduced specific patterns of 

token jumps. We found that participants made choices with less available information and 

disproportionally weighted the information presented immediately after the gap more heavily than 

they did when no gap was present. Traditional computational models, which assume uniform or 

gradual decay or increase of weighting of information over time, could not account for this effect.  

A control task with randomly presented information further confirmed that the disproportionate 

weighting of post-gap information is a robust feature of the decision-making process. These 

findings highlight the importance of studying decision making in environments with intermittent 

information and temporal gaps, where the timing and structure of inputs critically shape behavior. 

Significance statement 

Decision making in real-world environments often involves intermittent information, where key 

evidence might be separated by temporal gaps. Our study demonstrate that people 

disproportionately rely on information received immediately after such gaps, weighting the same 

information more heavily than when no gap is present. Traditional decision-making models do 

not account for this effect, as they lack mechanisms to capture how temporal disruptions shape 

evidence weighting. By understanding how gaps influence decision making, this research 

provides insights into how people adapt their decisions in fluctuating environments, with 

implications for fields ranging from neuroscience to artificial intelligence. 

 

Introduction  

Perceptual decision making is generally considered to be a deliberative process, where individuals 

evaluate sensory evidence over time to make informed choices (Smith and Ratcliff, 2004; Gold 

and Shadlen, 2007). In most laboratory studies, sensory information is presented consistently, 

with a stable amount of evidence favoring a particular choice. While such paradigms have been 

pivotal in understanding decision-making dynamics, they often fail to capture the complexity of 

real-world decision making, where sensory evidence is frequently intermittent, fluctuating, and 

punctuated by periods where no new information is available. Some experimental designs have 

attempted to address this limitation by incorporating dynamic information, where the net evidence 

fluctuates over time (Cisek et al., 2009; Thura and Cisek, 2014; Winkel et al., 2014; Holmes et 

al., 2016; Ferrucci et al., 2021; Trueblood et al., 2021). However, even these studies often assume 

that information remains continuously available, neglecting the unique challenges posed by 
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intermittent evidence. In natural environments, individuals must adapt to interruptions in sensory 

input, requiring distinct strategies that may fundamentally alter how evidence is weighted.  

Traditionally, decision-making tasks typically present continuous sensory evidence, 

requiring animals or humans to report their decisions at the end of such streams of information 

(Ratcliff, 1978; Shadlen and Newsome, 2001; Roitman and Shadlen, 2002; Mazurek et al., 2003; 

Kiani et al., 2008; Kiani et al., 2013). In these paradigms, where the net sensory evidence 

consistently favors one choice, perceptual decisions appear unaffected by periods without 

information, leading to the proposal that a neural mechanism “freezes” the decision-making 

process during interruptions (Kiani et al., 2013; Waskom and Kiani, 2018; Tohidi-Moghaddam 

et al., 2019; Azizi and Ebrahimpour, 2023). This stability is often attributed to sustained neuronal 

activity that remains robust to external forces (Marcos et al., 2019). However, these findings 

might be confounded by different factors. For instance, the continuous and consistent nature of 

the evidence before and after temporal gaps allows participants to rely on the most recent 

evidence, without the need to maintain or integrate all prior information. Additionally, focusing 

solely on accuracy limits the interpretation of the decision process, as it overlooks critical 

variables such as decision times and the temporal structure of evidence (Kiani et al., 2013). Recent 

studies have emphasized the importance of incorporating additional variables, such as fluctuations 

in overall sensory evidence, decision times and the temporal placement of information, to better 

understand decision making (Kiani et al., 2008; Cisek et al., 2009; Thura et al., 2012; Brunton et 

al., 2013; Hanks et al., 2015; Carland et al., 2016; Piet et al., 2018; Ferrucci et al., 2021; Trueblood 

et al., 2021).  

Here, we directly examine how temporal interruptions –combined with fluctuating 

sensory evidence – affect both the timing of decisions and the weighting of evidence. Using a 

behavioral task that introduces a temporal gap within a stream of dynamically changing evidence, 

we aim to provide a deeper understanding of decision making under conditions of intermittent 

sensory input. By combining this task with computational modeling, we explore how such 

interruptions influence the decision-making dynamics and assess whether traditional models can 

adequately explain these effects. Our task required participants to track perceptual information, 

which changed in discrete steps, and make decisions at any point during the trial. This design not 

only allowed us to measure decision times but also to precisely assess the specific influence of 

each individual piece of information on decisions. By examining how interruptions affect the 

processing of dynamic evidence, our study represents a step toward bridging the gap between 

controlled laboratory paradigms and the complexities of real-world decision making. 

Results 

The experimental tasks were based on the tokens task (Cisek et al., 2009; Ferrucci et al., 2021) 

(see Materials and Methods). Briefly, fifteen tokens appeared within a central circle on the screen 

and sequentially jumped to one of two peripheral circles (targets), disappearing before the next 

token made its jump (Fig 1A). In half of the trials, the sequence of tokens occurred without 

interruption (no-pause trials; Fig 1B-top), while in the other half, a temporal gap of 300 ms was 

introduced during the sequence (pause trials; Fig 1B-bottom). Participants were instructed to 

predict, at any time, which of the two targets would receive more tokens by the end of the trial 

and report their choice by placing the mouse cursor on the chosen target. Two experimental tasks 

were designed: in the structured task, specific jump patterns were introduced to create well-

defined temporal sequences (Fig 1C), while in the non-structured task, which served as control, 

no predefined patterns were applied to the tokens jumps. This control task ensured that any 

observed effects in the structured task were specifically attributed to the temporal dynamics of 

the stimulus rather than being driven by implicit salience effects due to the introduced token 

sequences.  

Overall, participants performed the structured task with an accuracy well above chance 

(mean accuracy: 78 ± 1 %), indicating a strong ability to discriminate the sensory evidence. To 

assess how behavior was modulated by the trial profile, we analyzed decision times (DTs), 

success probabilities (SPs) and accuracy across the various trial profiles. Specifically, we 
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compared performance between easy and ambiguous trials to determine whether the overall 

difficulty of the trial influenced behavior (Fig 1C-left). Additionally, we contrasted bias-for and 

bias-against trials, focusing only on those trials where responses were made after the 7th token. 

This time point was chosen because it marks the moment when the two trial profiles converge in 

terms of SPs for the reminder of the trial (Fig 1C-right). Any differences in behavior for decisions 

made after this token would indicate the influence of prior information on choices. Given that 

information is not always available, any modulation of behavior across trials profiles suggests the 

need for working memory to track and maintain relevant information (Ferrucci et al., 2021). 

DTs varied depending on the trial profile, with shorter DTs observed for easy trials 

compared to ambiguous trials and for bias-against compared to bias-for trials (Fig 2-left; paired-

samples Wilcoxon signed-rank test, z = 4.01 and z = 3.49, respectively; false discovery rate 

(FDR)-corrected for multiple comparisons p < 0.001). SPs at the time of decision were also 

significantly different across conditions (Fig 2-middle; paired-samples Wilcoxon signed-rank 

test, z = 3.39 - 4.01, FDR-corrected for multiple comparisons, p < 0.001). Similarly, accuracy was 

significantly modulated by trial condition (Fig 2-right; paired-samples Wilcoxon signed-rank test 

z = 4.01 for both comparisons, FDR-corrected for multiple comparisons, p < 0.0001). Consistent 

with previous studies, these results indicate that decisions are influenced by the temporal structure 

of the information flow, leading to a modulation of behavior, and that working memory plays a 

role in monitoring and integrating prior information throughout the decision-making process 

(Cisek et al., 2009; Ferrucci et al., 2021). Next, we asked whether such modulation could also be 

influenced by the presence or absence of the temporal gap. 

Decisions are influenced by a temporal gap 

To investigate the influence of a temporal gap in decisions, we analyzed only the trials where 

responses occurred after the 4th token, ensuring that the gap was present in pause trials, which 

occurred between the 3rd and the 4th token. Participants’ responses were significantly modulated 

by the presence of the temporal gap. They exhibited differences in their DTs between no-pause 

and pause trials, showing shorter DTs in the absence of a pause compared to trials with a pause 

(Fig 3A-left; paired-samples Wilcoxon signed-rank test, z = 4.01, p < 0.0001). Importantly, the 

time difference was shorter than the duration of the pause (mean difference in DTs ± SEM: 0.173 

± 0.123 s vs. 0.3 s), indicating that decision making progresses during the pause. If this were not 

the case, the DT difference would have matched the pause duration.  

However, despite the prolonged DTs observed during pause trials, participants did not 

utilize more information to make decisions. Instead, decisions were made with fewer tokens when 

a pause was present in the trial (Fig 3A-middle; paired-samples Wilcoxon signed-rank test, z = 

3.98, p < 0.0001). Consequently, choices were made with less SP for pause than no-pause trials 

(mean SP ± SEM: 0.80 ± 0.01 and 0.82 ± 0.01 for no-pause and pause trials, respectively; paired-

samples Wilcoxon signed-rank test, z = 3.81, p < 0.001). Interestingly, such reduction in both the 

number of tokens required for decision making and the SP at DT did not compromise 

performance. Accuracy was comparable across conditions (Fig 3A-right; paired-samples 

Wilcoxon signed-rank test, p = 0.77), and significantly exceeded the accuracy predicted by the 

decrease in SP at the time of decision (paired-samples Wilcoxon signed-rank test z = 2.90, p < 

0.01). This prediction was derived from the fitted relationship between SPs and accuracy (Fig 

3B). 

To investigate whether the presence of a pause modulates the differences observed 

between trial profiles, we analyzed the data by separating it into different trial types. To do this, 

we considered trials with decisions made after the jump of the 4th token for easy and ambiguous 

trials, and after the jump of the 7th token for bias-for and bias-against trials. Significant differences 

in DTs were observed between easy and ambiguous trials, as well as between bias-against and 

bias-for trials, in both no-pause and pause conditions (Fig 4-left; paired-samples Wilcoxon 

signed-rank test, z = 3.22 - 4.01, FDR-corrected for multiple comparisons, p < 0.01). Similarly, 

accuracy was modulated by the trial type in both no-pause and pause conditions, mirroring the 

trends observed in the main behavioral analysis (Fig 2-right and Fig 4-right; paired-samples 
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Wilcoxon signed-rank test, z = 3.91 - 4.01, FDR-corrected for multiple comparisons, p < 0.0001). 

These findings align with the idea of a working memory process that retain information not 

visually available, which then degrades over the course of the trial (Ferrucci et al., 2021). 

Moreover, the difference in the modulation of DTs between bias-for and bias-against trials for 

no-pause and pause conditions was not significantly different (paired-samples Wilcoxon signed-

rank test, p > 0.9), suggesting that the temporal gap does not increase the degradation of prior 

information. If it did, we would expect an increase in the difference between DTs for the pause 

condition. 

Therefore, a temporal gap introduced within the course of some trials modulated DTs of 

choices and the perceived amount of information. Surprisingly, however, this manipulation did 

not affect the accuracy of choices. This raises a pivotal question: can traditional decision-making 

models account for these effects, or do they require a fundamental revision to explain behavior 

under intermittent information streams? 

Traditional decision-making models fail to fully explain behavior 

We assessed existing models of decision making to determine whether they can account for the 

influence of temporal gaps on choices under conditions where information is incomplete and/or 

delayed. To explore this, we examined three well-established models from the literature: a drift 

diffusion model with fixed bounds (DDM-fixed), a drift diffusion model with collapsing bounds 

(DDM-collapsing) and an urgency-gating model (UGM). The models were selected because of 

their ability to explain a wide variety of behavior (Stone, 1960; Laming, 1968; Ratcliff, 1978; 

Usher and McClelland, 2001; Mazurek et al., 2003; Bogacz and Gurney, 2007; Hawkins et al., 

2015; Ferrucci et al., 2021; Yau et al., 2021; Smith and Ratcliff, 2022). In all these cases, working 

memory is responsible for storing and updating past information with incoming data (Ferrucci et 

al., 2021). To account for the observed differences between bias-for and bias-against trials, as 

well as the absence of modulation of this difference in pause trials, we introduced a leakage term 

into the working memory component. This term caused the degradation of stored information 

only when new information arrived (see Materials and Methods). 

To evaluate how well the computational models captured the observed behavior, we used 

a differential evolution algorithm to fit the experimental data. The estimated parameters for each 

model are shown in Table 1. Both the DDM-collapsing and UGM provided substantially better 

fits to the data than the DDM-fixed, as evidenced by the shapes of the real and simulated DT 

distributions (Fig 5A-C). This result was further confirmed by significantly better Bayesian 

Information Criterion (BIC) values for the DDM-collapsing and UGM compared to the DDM-

fixed across subjects (paired-samples Wilcoxon signed-rank test, z = 3.53 – 3.81, FDR-corrected 

for multiple comparisons, p < 0.001). This underscores the critical importance of incorporating 

an internal signal related to the urgency to respond in order to account for behavior, highlighting 

that the combination of perceptual evidence with urgency is essential to understand most 

decisions.  

Among the models tested, the UGM provided the most comprehensive fit. Although its 

overall performance was comparable to that from the DDM-collapsing - with no significant 

difference in the BIC values of each model (paired-samples Wilcoxon signed-rank test, FDR-

corrected for multiple comparisons, p > 0.01) – the UGM was the only model able to capture the 

observed differences in DTs across all trial types (Fig 5D-F; paired-samples Wilcoxon signed-

rank test, z = 3.70 – 4.01, FDR-corrected for multiple comparisons, p < 0.001). Additionally, the 

UGM accurately reflected the lack of significant differences in the DT modulation between bias-

for and bias-against trials when comparing no-pause and pause conditions (paired-samples 

Wilcoxon signed-rank test, p > 0.95). 

Despite its strength, the UGM, like the other models, fell short in explaining the effects 

of temporal disruptions introduced by a gap. While the DDM-fixed and UGM both captured 

overall differences in DTs between no-pause and pause conditions (Fig 5G-I-left), the DDM-

collapsing failed to do so. All models correctly replicated the observed difference in the number 

of tokens used for decisions between pause and no-pause conditions (Fig 5G-I-middle). However, 
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none of the models, including the UGM, were able to explain the lack of a significant difference 

in accuracy between no-pause and pause conditions (Fig G-I-right).  

Overall, although the UGM outperformed the other models in capturing key aspects of 

the data, its inability to explain the preservation of accuracy in pause trials highlights a crucial 

limitation. This limitation raises an important question: Are we overlooking essential aspects of 

how pieces of information are combined during decision making? Specifically, could the temporal 

dynamics of the trial – such as the sequence and timing of evidence presentation – play a pivotal 

role in shaping behavior? 

Perceptual evidence is weighted differently 

To investigate whether the contribution of each token was influenced by its temporal position 

within a sequence, we used logistic regression (see Materials and Methods). This analysis allowed 

us to compute regression coefficients that estimate the weight assigned to each token in the 

decision-making process. Moreover, we could also estimate the potential neuronal noise (signal-

to-noise ratio, SNR) as the average weight assigned to all tokens, and potential side biases (Keung 

et al., 2020).  

First, we computed the estimated weights for all experimental trials, considering 

decisions made within the first 12 tokens, as most decisions were made in that range (99.27 ± 

0.23%, ± SEM). The SNR was significantly greater than zero (one-sample Wilcoxon signed-rank 

test, z = 4.01 and Cohen’s d=2.87, FDR-corrected for multiple comparisons p <0.001; Fig 6A-

left), indicating that participants based their decisions on the evidence provided by the tokens. To 

assess whether participants weighted all tokens equally, we subtracted the average weight from 

the individual weight of each token. This analysis revealed that participants did not assign equal 

weight to all tokens, but rather, they weighted tokens unevenly over time. Specifically, tokens 

presented towards the middle of the sequence had a stronger impact on decisions, while tokens 

presented later in the sequence, particularly those towards the end, were given significantly less 

weight (one-sample Wilcoxon signed-rank test, z = 3.46 – 4.01, FDR-corrected for multiple 

comparisons, p < 0.001; Fig 6A-middle). Importantly, there was no side bias in the choices (Fig 

6A-right).  

Next, we examined whether this uneven weighting was consistent across no-pause and 

pause conditions. The proportion of trials with decisions made within the first 12 tokens did not 

significantly differ between no-pause and pause trials (99.20±0.23 and 99.33±0.14, ±SEM, 

respectively; paired-samples Wilcoxon signed-rank test, p > 0.58). No significant differences 

were found in SNR or side bias between conditions (Fig 6B-left and Fig 6B-right). However, the 

most striking result emerged for the 4th token, which occurred immediately after the pause. This 

token was weighted significantly more strongly in the pause condition than in the no-pause 

condition (paired-samples Wilcoxon signed-rank test, z = 3.53, FDR-corrected for multiple 

comparisons, p < 0.01; Fig 6B-middle). This suggests that the token presented right after the pause 

has a disproportionately strong influence on decision making in the pause condition, highlighting 

the critical role of the temporal gap in shaping how information is integrated during the decision 

process. Notably, the three first tokens, presented before the temporal gap in the pause condition, 

were weighted similarly to those in the no-pause condition, supporting the notion that the pause 

does not degrade the information provided earlier in the sequence. 

We performed the same computations with the simulations obtained with the UGM. We 

found that the SNR was significantly above zero (one-sample Wilcoxon signed-rank test, z = 4.01 

and Cohen’s d=2.16, FDR-corrected for multiple comparisons, p <0.001; Fig 6C-left), indicating 

that the model assigned meaningful weights to the tokens. However, unlike the real data, where 

late tokens were weighted less, the simulations show a slight increase in weight for later tokens 

(one-sample Wilcoxon signed-rank test, z = 2.73 – 4.01, FDR-corrected for multiple comparisons, 
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p < 0.05; Fig 6C-middle). This divergence highlights the model’s inability to replicate the 

observed temporal patterns of tokens weighting accurately. Additionally, no side bias was 

observed in the simulated data (Fig 6C-right), and comparisons between no-pause and pause 

conditions revealed no significant differences in either SNR (Fig 6D-left) or side bias (Fig 6D-

right). Crucially, unlike the experimental data, where the token presented immediately after the 

pause (the 4th token) received disproportionally higher weight in pause trials, the simulations 

showed no significant differences in the weighting of this token between conditions (paired-

samples Wilcoxon signed-rank test, p > 0.05; Fig 6D-middle).  

Overall, while the simulations captured some general features of the data, they failed to 

replicate key experimental results. In particular, the shift in tokens weighting and the absence of 

enhanced weighting of the post-gap token highlight the model’s limitation. These discrepancies 

underscore the need for additional mechanisms to explain behavior under these conditions. Such 

mechanisms may involve how the brain dynamically integrates evidence during decision making 

or how it processes the temporal disruption introduced by the pause.  

Importantly, the question of why accuracy remains consistent between no-pause and 

pause conditions persists. Could the inherent statistical properties of the perceptual stimuli make 

the post-gap token highly informative? If so, assigning greater weight to this token may 

compensate for the expected reduction in performance in the pause condition. A question we 

address next. 

Stimulus statistics enhance accuracy in the pause condition 

To assess the contribution of each token to the correct option, we calculated the proportion of 

trials in which each specific token favored the correct target. In most cases, the majority of tokens 

favored the correct choice (Fig 7A-left). We then used these favorable cases to compute the 

information added to the SP at the time of each token’s jump (see Materials and Methods). 

Notably, due to the structured nature of the task, where specific profiles of token sequences were 

used, the 4th token emerged as one of the most salient pieces of information (Fig 7A-right). 

Choices were significantly biased by the direction of that token more often in the pause than in 

the no-pause condition (paired-samples Wilcoxon signed-rank test, FDR-corrected for multiple 

comparisons, z = 3.49, p < 0.01; Fig 7B-left), consistent with the higher weight given to the token 

for the pause condition. This bias resulted in a significant improvement in accuracy (paired-

samples Wilcoxon signed-rank test, z = 3.53, FDR-corrected for multiple comparisons, p < 0.01; 

Fig 7B-right), indicating that the 4th token played a crucial role in enhancing performance. We 

hypothesize that this is the reason for the maintenance of similar accuracy levels between the two 

conditions.  

To confirm this, we designed a non-structured task in which there were no specific trial 

profiles. Instead, the side of each token’s jump was randomly selected from a Bernoulli 

distribution with mean 0.71 for the first 12 tokens (see Materials and Methods). As a result, the 

jumps of these tokens consistently favored the correct target in a proportion around that mean 

(Fig 8A-left). Unlike the structured task, the information provided by the 4th token was no longer 

salient, as the information added by each token gradually diminished over time (Fig 8A-right). In 

this case, DTs and the number of tokens at decision followed a similar trend than in the non-

structured task (paired-samples Wilcoxon signed-rank test, z = 5.03 – 5.09, p < 0.0001), with an 

increase and decrease, respectively, between no-pause and pause conditions (Fig 8B). 

Despite the absence of a structured sequence and the lack of saliency of the 4th token, the 

weight assigned to this token remained significantly greater in the pause condition compared to 

the no-pause condition (Fig 8C-middle). This replication underscores that the enhanced impact of 

the information following a temporal gap is a robust phenomenon, independent of the saliency of 
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the event itself. Importantly, the SNR and side bias effects did not differ between conditions (Fig 

8C-left and 8C-right). However, unlike the structured task, accuracy was significantly lower in 

the pause condition (paired-samples Wilcoxon signed-rank test, z =3.10, p < 0.01), supporting 

our hypothesis that accuracy was preserved in the structured task due to the saliency of the post-

gap token. These findings provide compelling evidence that the brain assigns disproportionate 

weight to information arriving immediately after a temporal gap, even when that information 

lacks inherent saliency. 

Evidence weighting is shaped by the temporal gap 

A potential confound in our results on the differential weighting of information between no-pause 

and pause conditions lies in the difference in the number of tokens at the time of decision. 

Specifically, the disproportionate weight assigned to the post-gap token in the pause condition 

could reflect decisions being made with fewer tokens and, consequently, earlier in the tokens 

sequence. To address this, we conducted an additional analysis where we calculated the 

integration kernel for no-pause and pause conditions after applying a bootstrapping procedure to 

equalize the distribution of the numbers of tokens at decision across conditions (see Materials and 

Methods). This procedure was applied for both the structured and non-structured tasks, resulting 

in identical numbers of tokens at decisions for the no-pause and pause conditions in each task 

(mean ± SEM: 8.24  0.15, 7  0.21, for the structured and non-structured tasks, respectively). 

Consistent with our previous results, the 4th token received significantly greater weight in the 

pause compared to the no-pause condition in the two tasks (Fig 9; paired Wilcoxon signed rank 

test, z = 2.90 – 2.99, FDR-corrected for multiple comparisons, p < 0.05). These results confirm 

that the differential weighting of evidence between conditions is indeed associated with the 

temporal gap. This finding suggests the involvement of cognitive mechanisms specifically tuned 

to process and prioritize information following interruptions, a phenomenon that traditional 

decision-making models fail to capture. 

Discussion 

Our findings reveal that a temporal gap, during which no information is presented, significantly 

influences how information is processed for decision making. Specifically, we demonstrate that 

when a temporal gap occurs within a sequence of perceptual stimuli, decisions are made with less 

information compared to sequences without a gap. Additionally, the temporal gap alters the way 

individual pieces of information are weighted, with post-gap information exerting a 

disproportionately strong influence on choices. Despite this reduction in available information, 

accuracy remained stable in a structured task where the post-gap token was particularly 

informative due to the statistical properties of the stimulus. To test whether the increased 

weighting of post-gap information persisted regardless of stimulus structure, we designed a non-

structured task in which the saliency of the post-gap token was reduced. While accuracy was no 

longer preserved, the post-gap token still carried disproportionate weight, indicating that its 

influence is independent of its intrinsic saliency. 

Traditional decision-making models failed to replicate key aspects of our findings, 

including the preservation of accuracy in the structured task and the uneven weighting of 

sequential information – particularly the heightened influence of the post-gap token. This 

limitation suggests that existing models may lack critical mechanisms necessary to fully capture 

behavior under these conditions. Our results highlight the need for decision-making models to 

incorporate not only stimulus statistics and dynamic evidence integration but also mechanisms 

that account for the increased salience of information following temporal disruptions. 

Task design and generalization 

The position and duration of the temporal gap were carefully selected to maximize its potential 

impact on decision making. On the one hand, the gap was placed at a point in the sequence that 
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allowed us to test whether disrupting early information would alter its influence on choices. This 

was assessed by comparing bias-for and bias-against trial types. If the gap weakened the 

contribution of early evidence, we would expect a differential effect between these trial types in 

the pause versus no-pause conditions. Additionally, the gap was placed at a point in the sequence 

that ensured its presentation on the majority of trials, as decisions were typically made later in the 

sequence. On the other hand, the gap’s duration was chosen to introduce a meaningful disruption 

by breaking the symmetry of the sequence with a duration that differed from the token jumps. 

Moreover, it was selected to be long enough to exert an effect on behavior, but short enough to 

avoid conscious detection, as confirmed with a questionnaire. An important open question is 

whether variations in the gap’s position or duration would lead to different effects on the decision-

making process. 

Our task used on non-noisy sensory information, raising the question of whether these 

findings extend to scenarios involving noisy stimuli (Roitman and Shadlen, 2002; Kiani et al., 

2013; Marcos et al., 2015). However, a previous study using a task similar to ours but with noisy 

stimuli revealed no discernable difference in decision-making dynamics compared to those 

observed with non-noisy stimuli (Cisek et al., 2009; Thura et al., 2012; Ferrucci et al., 2021). 

Given these findings, it is reasonable to infer that temporal gaps would exert similar effects in 

both noisy and non-noisy environments. Nevertheless, future experiments should explicitly test 

this hypothesis by introducing temporal gaps in sequences of noisy information.  

Temporal disruptions and decision-making models 

In recent decades, various decision-making theories have emerged. The prevailing view suggests 

that decisions are made by accumulating sensory evidence until it reaches a decision boundary 

(Stone, 1960; Van Zandt et al., 2000; Brown and Heathcote, 2008; Churchland et al., 2011; 

Bollimunta et al., 2012; Cassey et al., 2014; Dutilh et al., 2019). Although this framework could 

explain many behavioral and neuronal observations, it fails to explain behavior when information 

continuously fluctuates (Cisek et al., 2009; Winkel et al., 2014; Holmes et al., 2016; Ferrucci et 

al., 2021; Trueblood et al., 2021), as it commonly occurs in natural conditions. In such cases, 

models incorporating an urgency signal – a time-varying drive to commit to a choice – better fit 

experimental data (Cisek et al., 2009; Carland et al., 2016; Ferrucci et al., 2021). Urgency-related 

neural dynamics have been observed in regions such as the dorsal premotor and primary motor 

cortex, as well as the basal ganglia (Thura and Cisek, 2014, 2017). However, urgency may 

influence decision making either by modulating sensory evidence or by collapsing decision 

bounds over time (Ditterich, 2006b, a; Churchland et al., 2008; Cisek et al., 2009; Hawkins et al., 

2015; Carland et al., 2016; Murphy et al., 2016; Ferrucci et al., 2021). To examine these models 

under conditions where temporal gaps interrupted sensory evidence, we tested three 

implementations: a DDM (without urgency), a DDM-collapsing (urgency as collapsing decision 

bounds), and a UGM (urgency as a time-increasing signal). Although prior studies showed that 

the DDM fails in fluctuating environments (Cisek et al., 2009; Ferrucci et al., 2021), we included 

it to assess whether it could still capture decision dynamics under temporal disruptions. However, 

it failed to do so. Among the urgency-based models, the UGM performed best, reinforcing the 

idea that urgency is essential in dynamic environments. However, it still could not explain the 

disproportionate weighting of the post-gap stimulus, suggesting the involvement of additional 

underlying mechanisms. One possibility is that temporal gaps create a contrast effect, making the 

post-gap stimulus stand out more prominently and exert greater influence on decisions. This 

highlights the need for further refinements to current models to fully capture how the brain 

integrates information over time. 

In scenarios characterized by intermittent information, decisions cannot be made 

instantaneously, necessitating the use of memory to construct and maintain a representation of 

absent information while integrating new inputs as they become available. This dual demand 

requires memory systems to strike a delicate balance: they must be stable enough to preserve 

information over time, yet sufficiently flexible to adapt when new information arrives. In this 

study, we have proposed a basic equation to model this process, capturing how previous 

information is retained but gradually degrades as new information is incorporated. However, the 
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neural mechanisms underlying this computation within distributed memory networks remain 

unresolved. One compelling hypothesis is that a population of neurons with heterogeneous 

excitability interact with each other, giving rise to stable yet adaptable dynamics (Marcos et al., 

2019). Nevertheless, to provide a definitive answer to this question, further experiments involving 

animals and electrophysiology are imperative. 

Our results demonstrate that temporal gaps significantly modulate decision making, 

reducing the amount of evidence needed for a choice and altering how evidence is processed. 

These results challenge the idea that behavior remains invariant when delays are present (Kiani 

et al., 2013; Waskom and Kiani, 2018). Both experimental and computational analyses indicate 

that the proposed “freezing” mechanism, which suggests stability of the decision-making process 

during gaps, is insufficient to explain the observed behavior. Additionally, a pipeline processing 

of perceptual information (Moran et al., 2015; Calder-Travis et al., 2023), which accounts for 

slow integration of sensory information, also fails to capture the dynamics of decision making 

during temporal gaps. Together, these findings underscore the need for more refined models that 

can capture the complex interplay between temporal disruptions and evidence processing in 

decision making. 

Weighting of dynamic evidence 

Previous research has shown that when participants are presented with two pulses of perceptual 

stimuli, the second pulse exerts a stronger influence on decisions (Kiani et al., 2013). While these 

studies have provided valuable insights, they have not fully explored how individual pieces of 

information shape decision making over time. By using stimuli that changed in discrete steps, our 

study allowed for the precise isolation and quantification of the contribution of each piece of 

information to decision making. We revealed an uneven weighting of information across the 

sequence, with this weighting being further modulated by the information immediately following 

a temporal pause. These findings highlight the critical role of temporal context in shaping 

perceptual decisions. 

Similar patterns of uneven weighting of information haven been reported in prior studies 

(Keung et al., 2019, 2020), where participants were presented with sequences of auditory “clicks”, 

and asked to determine which side (left or right ear) received the most clicks. Integration kernels 

in these studies varied in shape, with the most common being a “bump” shape where information 

in the middle of the sequence was weighted more heavily. The authors proposed a divisive 

normalization model that successfully captured the variability in kernel shapes and the observed 

behaviors (Keung et al., 2020). However, applying this model to our data presents several 

challenges. Notably, the model does not account for the time between events, treating them as 

continuously occurring with instantaneous durations. However, in our experimental design time 

is critical: while the tokens are presented at consistent intervals, the temporal gap introduces an 

asymmetry by extending the sequence duration. This temporal disruption is integral to our study 

and influences the decision-making process in a way that the divisive model cannot currently 

address. Additionally, in this model, decisions are made at the end of the sequence presentation, 

by comparing the activity of two population units. This approach does not involve an explicit 

decision threshold, and the choice is based on which population exhibits higher activity at the end 

of the sequence. Incorporating these features to the model would imply significant theoretical 

adjustments, introducing complexities and implications that fall beyond the scope of our study. 

Importantly, our study differs from previous work that found invariant decision making 

in the presence of temporal gaps (Kiani et al., 2013; Waskom and Kiani, 2018; Tohidi-

Moghaddam et al., 2019; Azizi and Ebrahimpour, 2023). A key distinction lies in the experimental 

design: while those studies used tasks with a go signal instructing participants when to decide, 

our task allowed participants to respond at their discretion. This design potentially enabled them 

to manage their speed-accuracy trade-off through an urgency signal that grows over time (Cisek 

et al., 2009). Additionally, the perceptual evidence in our task was dynamic, changing in discrete 

steps throughout the trial. These differences in experimental designs highlight the importance of 

considering both accuracy and decision times as complementary behavioral measures for a 
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comprehensive understanding of the decision-making process. Moreover, incorporating time-

varying information into the experimental designs – reflecting real-world scenarios – is essential 

for advancing our understanding of perceptual decision making in naturalistic contexts.  

 

Conclusions 

Overall, our findings emphasize the importance of investigating decision making with sensory 

stimuli that reflect real-world dynamics to gain deeper insights into perceptual decision making. 

By isolating the contribution of each piece of evidence, we observed an uneven weighting, 

particularly influenced by the gaps between stimuli. This highlights the need for decision-making 

models that can better capture these dynamics and the complexities of how information is 

processed across time. Refining computational models to account for temporal disruptions, along 

with incorporating time-varying information into experimental designs, will be crucial for 

advancing our understanding of perceptual decision making in naturalistic environments.  

 

Materials and Methods 

Ethics statement 

All experimental procedures were in accordance with the ethical standards of the university 

research committee, with the Code of Ethics of the World Medical Association (Declaration of 

Helsinki, 1964) and its later amendments. The experimental protocol was approved by the Ethics 

Committee of the Miguel Hernández University/CSIC/Institute of Neurosciences of Alicante. 

Before performing the tasks, all participants provided written consent. 

Experimental tasks 

Each participant completed one of two experimental tasks: the structured or the non-structured 

task. Within each task, participants were required to complete a set number of blocks, each with 

a predefined number of correct trials, to prevent random guessing. The experimental paradigm 

was based on the modified version of the task from Cisek et al. (2009), as presented in Ferrucci 

et al. (2021).  

In the two tasks, at the beginning of each trial, three circles with white outlines were 

displayed on a black screen, each measuring 2.5 cm in diameter (Fig 1A). The central circle, 

positioned at the center of the screen, contained 15 tokens randomly distributed within its area. 

Two additional circles, designated as targets, were placed 5 cm on either side of the central circle 

(left or right). To initiate a trial, the participant was required to place the mouse cursor inside the 

central circle. Subsequently, the tokens began to jump to one of the two peripheral circles every 

200 ms, disappearing just before the subsequent token’s jump. Participants were free to report 

their decision at any moment before the last token’s jump, and were instructed to report their 

choice by moving the cursor inside one of the peripheral circles. Following their selection, the 

outline of the chosen circle changed from white to green for correct choices and to red for 

incorrect choices. After feedback, the remaining tokens jumped to one of the peripheral circles 

every 20 ms. Consequently, participants could save time by making rapid choices, encouraging 

the participants to respond before the trial concluded. If the choice was not made before the last 

token’s jump, no feedback was provided. A time interval of 500 ms separated the end of a trial 

from the beginning of the next. 

Two conditions were introduced in the sequence of jumps: trials with a 300 ms temporal 

gap before the jump of the fourth token, termed pause trials, and trials without such a gap, termed 

no-pause trials. The temporal gap consisted of a period where no jumps occurred and no 

information was available on the screen. The specific position of the temporal gap within the 
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token’s sequence was selected to maximize its potential effect on behavior (see below). Within 

each block, half of the trials were pause trials and both conditions were randomly interleaved 

within the block. 

Structured task. Twenty-one participants performed the structured task (aged 23-42; all 

right-handed except one; ten females). Each participant performed 5 blocks of perceptual 

decision-making trials that contained pause and no-pause trials in a random order. The participant 

had to make 100 correct trials to complete each block. A BENQ GL2580 monitor (24.5’’) was 

used to display the visual stimuli for the task and a mouse was used as an interface between the 

participants and the computer. The participants sat in front of the screen at approximately 60 cm. 

In each of the five blocks, we included five trial types, in equal proportion (20%): 

“random”, “easy”, “ambiguous”, “bias-for” and “bias-against” (Cisek et al., 2009; Ferrucci et al., 

2021). In random trials, the direction of token jumps was randomly determined. Easy trials 

involved most tokens jumping to the correct target while ambiguous trials featured an even 

distribution of tokens between the two targets until just before the trial's end (Fig 1C-left). The 

bias-for and bias-against trials were particularly effective in discerning the effect of the temporal 

gap (Ferrucci et al., 2021). The reason is that these two trial types differ solely in the direction of 

the first six tokens' jumps, which is completely opposite, with the highest divergence occurring 

after the 3rd token jump (Fig 1C-right). By using these well-defined sequences, the analysis can 

specifically target how the temporal gap influences the processing of early vs late information. 

Introducing a temporal gap immediately after this jump has to potential to substantially impact 

the behavioral differences between the two trial types by altering the processing of early versus 

late information. Random trials were included to prevent subjects from anticipating the trial 

pattern.   

 Non-structured task. Thirty-four participants performed the non-structured task (aged 

18-48; all right handed except one; twenty-two females). Each participant completed 6 blocks 

with no-pause and pause trials randomly interleaved, and was required to perform 125 correct 

trials. A laptop (Lenovo IDEAPAD 310-15ABR; screen: 15.6’’, resolution: 1920x1080) was used 

to display the visual stimuli, and a mouse served as the interface between the participants and the 

computer. The participants sat approximately 60 cm from the screen. 

For each trial, the jump of the first 12 tokens was generated following a Bernoulli 

distribution with a mean probability of 0.71 for landing on the correct target. The last 3 tokens 

always jumped towards the correct target. 

Behavioral analysis 

At each time in the trial, we could calculate the “success probability” 𝑝𝑖(𝑡) associated with being 

correct when selecting target i. This probability was determined based on the number of tokens 

remaining in the center (Nr), the number of tokens at target 1 (N1) and the number of tokens at 

target 2 (N2). Specifically, the probability of target 1 being correct was computed as follows 

(Cisek et al., 2009; Ferrucci et al., 2021): 

𝑃(𝐶|𝑁1, 𝑁2, 𝑁𝑟) =
𝑁𝑟!

2𝑁𝑟
∑

1

𝑘! (𝑁𝑟 − 𝑘)!

min⁡(𝑁𝑟,7−𝑁2)

𝑘=0

 

The SP was calculated by determining the probability that the chosen target was correct.  

  To estimate decision times (DTs), participants performed an additional set of 40 trials 

where only one token jumped to one of the targets, randomly. The interval from the token’s arrival 

at the target to the moment the mouse cursor left the central circle to report the choice established 

the subject’s baseline reaction time (RT). The baseline RT was subtracted from the RT recorded 

from the main task. The RT in the main task was estimated by subtracting the trial’s start time 

from the time of maximum acceleration of the cursor. By employing this method, we mitigated 

the influence of trials in which participants moved the cursor from the central circle but 
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experienced delays in making their selection (~10% of trials). We estimated a mean RT of 0.32 s 

(± 0.01, SEM) for the structured task and a mean RT of 0.34 s (± 0.01, SEM) for the non-structured 

task. Number of tokens and SPs were then computed based on the estimated DT. 

 We computed the amount of information added by each token (∆𝐼) by calculating the SP 

value when the token appears (SPtoken) and the one just before it (SPpre-token). Then, we calculated 

the logarithmic difference between the two: 

∆𝐼 = 𝑙𝑜𝑔2
𝑆𝑃𝑝𝑟𝑒−𝑡𝑜𝑘𝑒𝑛
𝑆𝑃𝑡𝑜𝑘𝑒𝑛

 

 Unless otherwise stated, all analyses are performed on correct trials. 

 We controlled the lack of awareness of either the temporal gap or the trial types with a 

questionnaire, provided at the end of the experimental session. Only one participant in each task 

reported the presence of the gap. 

Computational model 

We fitted the experimental data from the structured task to three different decision-making 

models. All models received the same sensory evidence input, which was derived from a module 

simulating the degradation of perceptual information due to retention in memory. 

Sensory evidence. The perceptual evidence was updated with each new token jump, 

simultaneously adding new information while causing the retained evidence to decay: 

𝑑𝑒𝑙𝑒𝑎𝑘

𝑑𝑡
=

𝑑𝑒

𝑑𝑡
− 𝐿𝑒𝑒𝑙𝑒𝑎𝑘 

where Le represents a leakage term for the retained perceptual information, and 
𝑑𝑒

𝑑𝑡
 is the 

change in the perceptual evidence displayed on the screen. Specifically, 
𝑑𝑒

𝑑𝑡
 is defined as: 

𝑑𝑒

𝑑𝑡
= 𝛿𝑡,𝑡𝑅 − 𝛿𝑡,𝑡𝐿 

where the delta functions represent the jump of a token to either right (𝛿𝑡,𝑡𝑅 = 1) or left (𝛿𝑡,𝑡𝐿 =

1). Since the tokens’ jumps are deterministic, we modeled the perceptual evidence as a 

deterministic process as well. 

Decision-making models. We implemented the drift diffusion model with fixed boundaries 

(DDM-fixed), the drift diffusion model with collapsing boundaries (DDM-collapsing) and the 

urgency-gating model (UGM). The models have been selected based on the validity of the three 

to explain a wide range of experimental data (Stone, 1960; Laming, 1968; Ratcliff, 1978; Usher 

and McClelland, 2001; Mazurek et al., 2003; Bogacz and Gurney, 2007; Hawkins et al., 2015; 

Ferrucci et al., 2021; Yau et al., 2021; Smith and Ratcliff, 2022).  

The basic idea behind the diffusion process is that evidence accumulates towards one of 

two decision bounds, and a decision is made when the accumulated evidence reaches a bound. 

The predicted response time is the sum of the time it takes for the process to reach a bound and 

the additional time required for non-decision-related components of choice, including action 

execution. The dynamics of this process are governed by five key parameters: the average rate of 

drift towards one bound (drift rate), the noise in the diffusion process, the separation of the 

bounds, the starting position of the diffusion process and the time taken for non-decision-related 

processes (Stone, 1960). Over recent decades, variability has been introduced into some of these 

parameters, such as drift rate.  

In our implementation of the process, we modeled the diffusion as starting at 0 and 

drifting toward two symmetric bounds and estimated DTs as the time the process takes to reach 

one of the two bounds. Non-decision-related times were not included, as we aimed at fitting DTs 
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estimated from the experimental data. We accounted for variability in the drift diffusion rate, 

which varied from trial to trial, and modeled the process as stochastic. Therefore, the DDM-fixed 

and DDM-collapsing followed these same dynamics: 

𝑑𝑥

𝑑𝑡
= 𝑣′𝑒(𝑡) + ⁡𝑠𝜉(𝑡) 

where x describes the state of the process at time t (decision variables), 𝜈′ is the drift rate, e is the 

sensory evidence, s is a scaling factor and  is an independent and identically distributed random 

sample taken from a standard normal distribution. We used the Euler’s method (Brown et al.) to 

simulate the model: 

𝑥𝑡+∆𝑡 = 𝑥𝑡 + 𝜈′𝑒𝑡∆𝑡 + 𝑠𝜉√Δ𝑡 

where ∆𝑡 is the step size of the simulation. In each simulated trial, the initial value of x was set to 

0 and the drift rate ’ was sampled from a normal distribution with standard deviation  and 

mean. A decision was considered to be made when 𝑥𝑡+∆𝑡 reached a specific value 𝜃 (bound), 

and the decision time was estimated as 𝑡 −
∆𝑡

2
. In the DDM-fixed, 𝜃 was kept constant throughout 

the trial, whereas in the DDM-collapsing 𝜃 varied according to: 

𝜃𝑡+∆𝑡 = 𝑎 − (1 − 𝑒
−(

𝑡
𝜆
)
𝑘

)(
1

2
𝑎 − 𝑎′) 

 

where 𝜆 is the scale parameter of the Weibull distribution, 𝑎′ defines the extent to which the 

bounds collapsed, and k determines the shape of the bound.  

In the simulations, we arbitrarily set s to 0.1 and ∆𝑡 to 0.01 s. The value of k was set to 3 

in the DDM-collapsing to impose a “late collapse” of the bounds, because it is a representative 

value when the value is freely estimated (Hawkins et al., 2015). The parameters ,  and 𝜃 in the 

DDM-fixed were free parameters estimated with a fitting procedure optimized for the goodness 

of fit, whereas , , 𝑎, 𝑎′ and 𝜆 were estimated for the DDM-collapsing, following the same fitting 

procedure. In both cases, the leaky term in the sensory evidence (𝐿𝑒) was also fitted. 

 In the urgency-gating models, the build-up activity towards a bound is driven by a time-

varying gain signal rather than by temporal accumulation of evidence. In these models, 

momentary evidence is combined with a growing signal that reflects increasing urgency to make 

a decision. The UGM followed the stochastic equation: 

𝑑𝑥

𝑑𝑡
= −

𝑥(𝑡)

𝜏
+ 𝜈′𝑒(𝑡) + 𝑠𝜉(𝑡) 

where x, ’, e, s,  are parameters defined as in the DDMs and 𝜏 is the time constant of a low-

pass filter. We used the Euler’s method (Brown et al., 2006) to simulate the model: 

𝑥𝑡+∆𝑡 =
𝜏

𝜏 + ∆𝑡
𝑥𝑡 +

∆𝑡

𝜏 + ∆𝑡
(𝜈′𝑒𝑡+∆𝑡∆𝑡 + 𝑠𝜉√Δ𝑡) 

where ∆𝑡 is the step size of the simulation. We set s and ∆𝑡 as in the DDMs and  to 0.01 s. An 

urgency signal, which increases with the time elapsed since the initiation of the decision-making 

process (ut=t), multiplied the instantaneous value of the accumulation of evidence. The decision 

was considered to be made when 𝑥𝑡+Δ𝑡 · 𝑢𝑡+Δ𝑡 > 𝜃 or 𝑥𝑡+Δ𝑡 · 𝑢𝑡+Δ𝑡 < −𝜃 and the corresponding 

decision time was estimated as 𝑡 −
∆𝑡

2
. The parameters , , 𝜃 and the leaky term 𝐿𝑒 were 

estimated following the same procedure as for the DDMs. 

Estimation of model parameters 
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The free model parameters of the models were estimated independently for each model to fit the 

participants’ data. We used the quantile maximum products estimation (QMPE) (Heathcote et al., 

2002; Ferrucci et al., 2021), dividing DTs into quantiles for correct and error trials. The QMPE 

estimates the similarity between simulated and real data by comparing the proportion of data 

within each quantile. We used a differential evolution algorithm to maximize the goodness of fit 

(Mullen et al., 2011; Ardia et al., 2013), with broad parameters boundaries and executing 100 

particles for 500 search iterations. To mitigate the risk of local minima, this parameter estimation 

process was repeated five times for each model and participant’s data. Model predictions were 

assessed through Monte Carlo stimulation, generating 10,000 replicates for each experimental 

condition. Upon termination of the search, data was simulated using the parameters set that 

yielded the highest goodness of fit.  

The data fitting procedure was performed using all trials, including correct and errors, 

across pause and no-pause conditions. 

Integration kernel 

To calculate the contribution of each specific token to the choice made, we used logistic 

regression (Keung et al., 2020). In this approach, the probability of choosing “left” was estimated 

as: 

𝑙𝑜𝑔𝑖𝑡[𝑃𝑙𝑒𝑓𝑡𝑎𝑡⁡𝑡𝑟𝑖𝑎𝑙⁡𝑡] =∑𝛽𝑖
𝑡𝑜𝑘𝑒𝑛𝑇𝑖 + 𝛽𝑠𝑖𝑑𝑒

12

𝑖=1

 

where Ti represents the i-th token (+1 for left, -1 for right and 0 if the tokens was not presented). 

The regression coefficients (𝛽𝑖
𝑡𝑜𝑘𝑒𝑛, 𝛽𝑠𝑖𝑑𝑒) reflect the contribution of each factor: the perceptual 

tokens and side bias, respectively, on the decision. To fit the model, we considered the first 12 

tokens because participants made most of their decisions within that range (99.27 ± 0.23% and 

99.59 ± 0.17%, for the structured and non-structured tasks, respectively, ± SEM). We estimated 

the signal-to-noise ratio (SNR) as the average weight assigned to all tokens. Correct and error 

trials were considered. 

For the analysis with the data sorted by no-pause and pause conditions, only trials with decisions 

made after the 4th token jump were included.  

We used the same procedure to estimate the model-predicted kernel and SNR.  

Equalization of the number of tokens at decision 

To equalize the number of tokens at the time of decision between no-pause and pause conditions, 

we implemented a bootstrapping procedure. For each token position (from token 4 to token 12), 

we selected the trials where decisions were made at that specific token in both the no-pause and 

pause condition, separately. For each token, we determined the smaller number of trials to sample 

randomly from each condition. This procedure was repeated 1,000 times to ensure robustness.  

Statistical tests 

We used a non-parametric test for statistical comparisons. Specifically, the Wilcoxon signed-rank 

test was employed, as it does not assume normality in the data distribution. Moreover, it is less 

sensitive to outliers, providing a reliable measurement of central tendency by focusing on the 

median rather than the mean. 

Correction for multiple comparisons was performed using the False Discovery Rate (FDR), to 

account for Type I errors.  
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Data and code availability 

The data and code for computational modelling used in this study, as well as any additional 

information are available from the corresponding author upon request.  
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Figures 

 

Figure 1. Experimental design. (A) Temporal sequence of task events. At the beginning of each 

trial, fifteen tokens are presented on a central circle on the screen. When the participant moves 

the mouse cursor within the central circle, the tokens start to sequentially jump (every 200 ms) to 

one of the two peripheral circles (targets), disappearing shortly after. Participants are asked to 

select the peripheral target that they think will accumulate the majority of the tokens by the end 

of the trial. To make their choice, they have to move the cursor within the selected target. (B) 

Sequential order of tokens’ jumps for no-pause (top) and pause trials (bottom). (C) Success 

probability (SP) for specific trial’s profiles: easy and ambiguous trials (left), bias-for and bias-

against trials (right). 

 

 

Figure 2. Behavior of subjects for different trial types. DT (left), SP (middle) and accuracy 

(right) for ambiguous (A), easy (E), bias-for (BF) and bias-against trials (BA) (paired Wilcoxon 

signed rank test, FDR-corrected for multiple comparisons, *** = p<0.0001, ** = p<0.001). 

Colored solid line shows the median of the population. 
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Figure 3. Behavior for subjects for pause and no-pause trials. (A) DTs (left), number of tokens 

at DTs (middle) and accuracy (right) divided into no-pause (NP) and pause (P) trials (paired 

Wilcoxon signed-rank test, *** = p < 0.0001, ns = non-significant). (B) SP Vs accuracy for all 

correct and incorrect trials divided into pause and no-pause conditions. 

 

 

Figure 4. Behavioral modulation across trial types for pause and no-pause conditions. DTs 

(left) and accuracy across trial types (right) for pause and no-pause conditions. In both cases, only 

correct trials with decisions made after the jump of the 4th token for ambiguous (A) and easy (E) 

trials and after the jump of the 7th token for bias-for (BF) and bias-against trials (BA) were 

considered (paired-samples Wilcoxon signed-rank test, *** = p < 0.0001, *** = p < 0.001, * = p 

< 0.01). 

 

  𝜼 𝜽 𝒂 Le 𝜽′ λ 

DDM-fixed Mean 0.0662 0.0174 0.2701 - 0.5119 - - 

SEM 0.0136 0.0106 0.0358 - 0.1114 - - 

DDM-collapsing Mean 0.0831 0.0157 - 0.8234 0.4338 -0.3493 1.5449 

SEM 0.0241 0.0108 - 1.1745 0.1214 0.5248 0.5933 

UGM Mean 0.1781 0.1518 2.7992 - 0.0773 - - 

SEM 0.0864 0.1429 0.2493 - 0.1436 - - 

 

Table 1. Value of the free parameters estimated for the three models. The values are averaged 

across subjects (± SEM). 
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Figure 5. Simulated results for the best fitting parameters. (A-C) DTs distribution for real and 

simulated data for the DDM-fixed, DDM-collapsing and UGM, pooled across all subjects (real 

data) and all simulations (simulated data). (D-E) DTs for ambiguous (A), easy (E), bias-for and 

bias-against (BA) trials types across no-pause and pause conditions. (G-I) DTs (left), number of 

tokens at decision (middle) and accuracy (right) for no-pause (NP) and pause (P) conditions when 

only trials with decisions made after the 4th token are considered (paired-samples Wilcoxon 

signed-rank test, *** = p<0.0001, ** = p<0.001, * = p<0.05; ns, non-significant). The simulated 

data was obtained with 5,000 trials for each model. 
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Figure 6. Integration kernels for real and simulated data. (A) SNR (left), deviation of tokens 

weight from the mean (middle) and side bias (right) for all experimental trials (one-sample 

Wilcoxon signed-rank test, false discovery rate (FDR)-corrected for multiple comparisons, ** = 

p <0.001). (B) SNR (Left panel), deviation of tokens weight from the mean (middle) and side bias 

(right) for experimental data, divided into no-pause and pause conditions (paired-samples 

Wilcoxon signed-rank test, false discovery rate (FDR)-corrected for multiple comparisons, * = p 

<0.05). (C-D) Same conventions as in (A) and (B) for simulated data obtained from the UGM (* 

= p <0.01).  

 

 

 

Figure 7. Performance by direction of tokens jump. (A) Proportion of trials in which the jump 

of the specific token favored the correct target (left). Variations in information added by each 

specific token (right). (B) Proportion of choices made towards the target that received the jump 

of the specific token (left). Accuracy for trials in which the specific token jumped towards the 

correct target (right; paired Wilcoxon signed rank test, FDR-corrected for multiple comparisons, 

* = p<0.05).  
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Figure 8. Stimulus statistics, behavioral outcome and information weight in the non-

structured task. (A) Proportion of trials in which the specific token favors the correct target (left) 

and information added by each token’s jump (right). (B) DTs and number of tokens at decision 

time for no-pause (NP) and pause (P) conditions. (C) SNR (left), deviation of tokens weight from 

the mean (middle) and side bias (right) for trials divided in no-pause and pause conditions (*** = 

p<0.001). (D) Accuracy in no-pause (NP) and pause (P) conditions (paired Wilcoxon signed rank 

test, FDR-corrected for multiple comparisons, * = p<0.05, *** = p<0.0001). 

 

 

Figure 9. Information weighting is related to the temporal gap. Deviation of tokens weight 

from the mean in the structured (left) and non-structured tasks (right) when a bootstrapping 

procedure was conducted to ensure an equalized number of tokens at decision for no-pause and 

pause conditions (paired Wilcoxon signed rank test, FDR-corrected for multiple comparisons, * 

= p < 0.05). 
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