

1
2
3
4

5 **HIV broadly neutralizing antibody escape dynamics drive the outcome of AAV
6 vectored immunotherapy in humanized mice**

7
8
9

10 Nicolas M.S. Galvez^{1*}, Adam D. Nitido^{1*}, Seo Bin Yoo¹, Yi Cao¹, Cailin E. Deal¹,
11 Christine L. Boutros¹, Scott W. MacDonald¹, Yentli E. Soto Albrecht¹, Evan C. Lam¹,
12 Maegan L. Sheehan¹, Dylan Parsons¹, Allen Z. Lin¹, Martin J. Deymier¹, Jacqueline M.
13 Brady¹, Benjamin Moon¹, Christopher B. Bullock¹, Serah Tanno¹, Amarendra Pegu²,
14 Xuejun Chen², Cuiping Liu², Richard A. Koup², John R. Mascola², Vladimir D. Vrbanac¹,
15 Daniel Lingwood¹ and Alejandro B. Balazs^{1#}

16
17
18

19 ¹ Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of
20 Technology and Harvard University, Cambridge, MA 02139, USA

21 * These authors contributed equally.

22 ² Vaccine Research Center, National Institute of Allergy and Infectious Diseases and
23 National Institutes of Health, Bethesda, MD 20892, USA

24 #Direct all correspondence to: Dr. Alejandro Balazs, Ragon Institute of MGH, MIT &
25 Harvard, 600 Main St, Cambridge, MA 02139; phone: (857) 268-7000; e-mail:
26 abalazs@mgh.harvard.edu

27 Key Words: Vectored Immunotherapy, HIV, Broadly Neutralizing Antibody, Humanized
28 Mice, AAV, Evolution, Resistance, Escapability

29 **Summary**

30 Broadly neutralizing antibodies (bNAbs) have shown promise for prevention and
31 treatment of HIV. Potency and breadth measured *in vitro* are often used as predictors of
32 clinical potential; however, human studies demonstrate that clinical efficacy of bNAbs
33 can be undermined by both pre-existing and *de novo* resistance. Here we find that HIV-
34 infected humanized mice receiving bNAbs delivered via AAV as Vectored
35 ImmunoTherapy (VIT) can be used to identify antibody escape paths, which are largely
36 conserved for each bNAb. Path selection, and consequent therapeutic success, is
37 driven by the fitness cost and resistance benefit of emerging mutations. Applying this
38 framework, we independently modulated bNAb resistance or the fitness cost of escape
39 mutants, resulting in enhanced efficacy of VIT. This escape path analysis successfully
40 explains the therapeutic efficacy of bNAbs, and enables a tractable means of
41 quantifying and comparing the potential for viral escape from therapeutics *in vivo*.

42 **Introduction**

43 Despite substantial efforts to develop therapies and vaccines, HIV-1 remains a
44 global pandemic. Current combination antiretroviral therapy (cART) regimens can
45 effectively prevent and treat HIV infections, and emerging long-acting agents such as
46 Lenacapavir show remarkable efficacy in preventing viral acquisition^{1,2}. However, their
47 therapeutic success still requires strict adherence to the regimen, as viral rebound is
48 swiftly observed upon treatment interruption and may lead to the development of cART
49 resistance¹. This is of particular relevance when access to healthcare is interrupted³.
50 Over the past decade, broadly neutralizing antibodies (bNAbs) have been extensively
51 described and characterized^{4,5}. These antibodies target different sites of vulnerability on
52 the HIV envelope (Env) protein and can prevent infection across HIV clades⁴. Their
53 clinical success is often predicted by using metrics determined *in vitro* across large
54 panels of diverse viral isolates⁶. These measurements consist of potency, the average
55 inhibitory concentration needed to block 50% infection (IC₅₀) across all tested isolates,
56 as well as breadth, the fraction of isolates neutralized at a given antibody
57 concentration⁷. Recent advances in antibody isolation have identified new bNAbs with
58 median potencies as low as 0.003 µg/mL^{8,9} and breadth capable of neutralizing up to
59 96% of a panel of 208 viruses at an IC₅₀ of <1 µg/mL¹⁰.

60 Given their potential, significant efforts have been made to advance bNAb-based
61 therapies, with multiple studies demonstrating their success in preventing HIV infection
62 in mouse¹¹⁻¹⁶ and non-human primate (NHP) models¹⁷⁻²¹. These findings paved the way
63 for the Antibody Mediated Protection (AMP) studies (NCT02716675 and
64 NCT02568215), two international harmonized phase 2b randomized controlled trials

65 assessing the capacity of the CD4 binding site (CD4bs)-targeting bNAb VRC01 to
66 prevent HIV-1 acquisition²². While VRC01 prevented transmission of neutralization-
67 sensitive strains, overall efficacy was limited by a large fraction of circulating strains with
68 mutations conferring resistance to neutralization^{23,24}. Numerous additional studies have
69 also demonstrated the potential for bNAb administration to transiently suppress HIV
70 viremia in animal models²⁵⁻³² as well as in people living with HIV (PLWH) who harbor
71 sensitive viruses³³⁻⁴⁰. However, these studies also revealed that even combinations of
72 two or three bNAbs targeting different sites of vulnerability can fail to control viremia due
73 to the emergence of escape mutations^{38,41,42}.

74 The clinical translation of bNAbs is also hindered by the need for repeated
75 infusions to maintain serum concentrations above a therapeutic threshold⁴³. To
76 overcome this, we and others have described Vectored Immunoprophylaxis (VIP)¹²,
77 which utilizes a single intramuscular (IM) injection of recombinant adeno-associated
78 viral (AAV) vectors engineered to encode a bNAb transgene⁴⁴⁻⁴⁷. VIP induces the
79 production of durable and protective concentrations of antibodies *in vivo*⁴⁸. Studies of
80 VIP with VRC07, a CD4bs-targeting bNAb clonally related to VRC01 but with greater
81 potency and breadth^{8,17}, have demonstrated that delivery via AAV8 prevents
82 intravenous and mucosal transmission of HIV in humanized mice^{11,12,16} and of SIV/SIV
83 in NHP models^{49,50}. Recently, the VRC603 trial administered AAV8-VRC07^{11,51} to cART-
84 suppressed patients (NCT03374202). In this study, volunteers reported up to 3 µg/mL of
85 VRC07 in serum for at least three years following a single IM administration⁵¹. Despite
86 these promising results, anti-drug antibodies (ADAs) emerged in a subset of
87 participants, highlighting one of the challenges of this approach. However, recent

88 studies suggest that ADAs may be less likely to emerge in settings of increased immune
89 tolerance, such as transient immunosuppression of adult NHPs⁵² or in pediatric
90 settings⁵³.

91 The therapeutic potential of bNAbs delivered via AAV as Vectored
92 ImmunoTherapy (VIT) to cure an established HIV infection is an area of active
93 investigation, given its potential use in resource-limited settings where ART adherence
94 is suboptimal⁵³. In particular, the success of VIT can be hindered by the selection of
95 escape variants, as seen during previous trials of passively transferred bNAbs⁵⁴. Here,
96 we present the use of VIT in HIV-infected humanized mice as an experimental model to
97 evaluate viral suppression and profile the emergence of Env mutations leading to viral
98 escape from individual vectored antibodies. We chose two widely used Clade B, Tier 2
99 isolates for this: HIV_{JR-CSF}, a chronic virus cloned from the CSF of a person who died of
100 severe AIDS encephalopathy⁵⁵; and HIV_{REJO.c}, a transmitter/founder isolate that was
101 computationally derived as the likely strain that initiated a heterosexual transmission⁵⁶.
102 Both of these isolates represent clinically relevant viruses, as they were cloned soon
103 after isolation and have not been extensively cultured *in vitro* unlike laboratory adapted
104 strains (e.g., HIV_{NL4-3})⁵⁷. To our surprise, AAV8-VRC07 treatment drove viral evolution
105 towards a high fitness cost escape path that often failed to emerge, enabling long-term
106 suppression of HIV_{REJO.c}. Interestingly, while necessary for activity, traditional breadth
107 and potency metrics were insufficient to predict therapeutic outcome; instead, the
108 specific fitness cost and resistance benefit tradeoffs of the primary escape paths best
109 explained the success of VIT. To understand this dynamic, we adapted the fitness
110 landscape⁵⁸ framework to create an 'escapability' map for each antibody-strain

111 combination, effectively explaining VIT outcomes by identifying the most traversed
112 escape paths during vectored antibody therapy. Our data show that escape pathway
113 dynamics are a key component to understanding the *in vivo* efficacy of antibody-
114 mediated therapies against HIV, and that future therapeutic strategies that increase the
115 fitness cost of the primary escape paths are essential for clinical success.

116 **Results**

117 VRC07, but neither N6 nor PGDM1400, suppresses HIV_{REJO.c} replication in humanized
118 mice

119 To explore whether bNAbs delivered via AAV8 as VIT could be used as a long-
120 lived therapeutic strategy for suppressing ongoing HIV replication, we employed the
121 Bone marrow-Liver-Thymus (BLT) humanized mouse model⁵⁹. This model exhibits
122 robust engraftment of human lymphocytes across tissues, enabling sustained infection
123 with HIV^{60,61}. BLT mice were infected with HIV_{REJO.c}, a clade B, Tier 2, CCR5-tropic,
124 transmitted/founder infectious molecular clone (IMC) of HIV⁵⁶. Prior to treatment, the
125 virus was allowed to propagate and diversify in the host over a period of four weeks
126 (Figure 1A). Groups of BLT mice harboring established HIV_{REJO.c} infections were given a
127 single IM injection of 5x10¹¹ genome copies (GC) AAV8 expressing either VRC07, N6,
128 or PGDM1400 bNAbs or Luciferase as a negative control. Importantly, all the tested
129 bNAbs potently neutralized HIV_{REJO.c} *in vitro* (Figure S1A, Table S1). After vector
130 administration, antibody expression levels in all mice increased over a period of six
131 weeks (Figure 1B).

132 For AAV8-VRC07-treated mice, the bNAb expression level plateaued at a
133 geometric mean of ~55 µg/mL in plasma, which was sustained for the remainder of the
134 study; a value approximately 2,000 times over its *in vitro* IC₅₀ value (Figure S1B).
135 Infected mice exhibited mean plasma viral loads averaging 5.34x10⁵ copies per mL of
136 plasma by week four and sustained viremia following AAV8-Luciferase treatment for the
137 remaining 22 weeks of the study (Figure 1C). In contrast, following AAV8-VRC07
138 treatment, viral loads decreased precipitously over a three-week period, which diverged

139 into two outcomes: viral rebound in 56% (30/54) or sustained control in 44% (24/54) of
140 mice throughout the study (Figure 1D, Figure S1C). Notably, this trend was observed
141 across five independent experiments, each using a unique donor for each batch of BLT
142 mice (Table S2).

143 To explore whether another CD4bs-directed bNAb could achieve long-lived viral
144 suppression we tested N6⁶², an exceptionally broad bNAb with an *in vitro* IC₅₀ against
145 HIV_{REJO.c} similar to that of VRC07 (Figure S1A). In AAV8-N6 treated mice, the plasma
146 concentrations of N6 achieved a geometric mean of ~15 µg/mL, over 300 times above
147 the *in vitro* IC₅₀ against HIV_{REJO.c} (Figure 1B, Figure S1B). However, AAV8-N6 treatment
148 only resulted in a transient decline in viral load over the first two weeks, which returned
149 to pre-treatment levels within four weeks of vector injection (Figure 1E).

150 Finally, we also tested PGDM1400⁶³, a somatic variant of the PGT145 antibody
151 family that recognizes the HIV envelope trimer V1/V2 apex with exceptional potency.
152 This bNAb neutralized HIV_{REJO.c} with approximately five-fold greater potency than those
153 measured for VRC07 and N6 (Figure S1A, Table S1). Following AAV8-PGDM1400
154 administration, expression of PGDM1400 rapidly increased, reaching a geometric mean
155 plasma concentration of ~28 µg/mL, or nearly 3,700 times above the *in vitro* IC₅₀ against
156 HIV_{REJO.c} (Figure 1B, Figure S1B). However, all mice treated with AAV8-PGDM1400
157 displayed no significant change in viremia over the 26-week period of observation
158 (Figure 1F). Comparison of the geometric mean viral loads of all evaluated mice
159 demonstrated that only those animals receiving AAV8-VRC07 exhibited a significant
160 decline in viral load compared to the AAV8-Luciferase control. (Figure S1D).

161 To determine whether differences in viral population structure prior to antibody
162 treatment might explain the observed outcome, we compared the average diversity
163 (Shannon entropy) of the HIV env gene three weeks after infection, but prior to vector
164 administration, and noted no significant differences between any of the different groups
165 (Figure S1E). When comparing rebounding AAV8-VRC07 treated mice to suppressed
166 mice, we found that mice in each group had indistinguishable expression levels of
167 VRC07 antibody (Figure S1F), but rebounding mice had a 1.6 times higher viral load
168 compared to suppressed mice at the time of AAV administration (Figure S1F).

169 Together, these studies show that only AAV8-VRC07 could suppress actively
170 replicating HIV_{REJO.c} for an extended duration. In contrast, AAV8-N6 treatment resulted
171 in a small but significant delay in viral escape as compared to the AAV8-Luciferase
172 control; while AAV8-PGDM1400 was unable to significantly delay viral escape, despite
173 comparable viral heterogeneity and higher bNAb potency (Figure 1G).

174

175 Antibody escape paths are conserved for each broadly neutralizing antibody

176 To understand the basis for the observed variation in bNabs effectiveness
177 against HIV_{REJO.c}, we mapped the escape paths traversed by the virus to acquire
178 resistance to each individual bNAb. Plasma viral RNA was obtained from each mouse
179 endpoint and used to amplify viral Env for deep sequencing to analyze non-synonymous
180 mutations that arose during viral escape. Individual HIV-infected mice receiving AAV8-
181 Luciferase exhibited mutations distributed throughout the HIV_{REJO.c} envelope (Figure
182 S2A, Control); however, these mutations followed no discernable pattern on the HIV_{REJO}

183 *env* gene (Figure S2B) and did not significantly impact the distribution of potential N-
184 linked glycosylation sites (PNGs) on this protein (Figure S2C).

185 Most Env sequences obtained from HIV_{REJO.c}-infected animals that escaped from
186 VRC07 exhibited two pairs of potential escape mutations: either two D-loop mutations
187 (N276D and D279A) or a D-loop and a V5-loop mutation (D279A and N460D,
188 respectively) (Figure S2A, VRC07). When assessed collectively across all escaped
189 mice, these three mutations encompassed the majority of amino acid divergence from
190 the parental (WT) sequence (Figure 2A). Notably, the N460D mutation also resulted in a
191 PNGs loss in the V5-loop of HIV_{REJO.c} (Figure S2D).

192 To determine the impact of these mutations on VRC07 resistance, each
193 individual mutation and combination of mutations observed in haplotypes were
194 engineered into HIV_{REJO.c} IMC plasmids to produce replication-competent Env mutant
195 viruses. Each mutant virus was tested for neutralization sensitivity against VRC07 *in*
196 *vitro* (Figure 2B). When assessed individually, neither N276D nor N460D conferred any
197 resistance to VRC07 neutralization relative to the WT HIV_{REJO.c}. However, D279A led to
198 partial escape by mediating a 51-fold increase in the IC₅₀ to 1.4 µg/mL and a reduction
199 of the dose-response curve slope (Table S1) ⁶⁴. Of note, this new IC₅₀ still remained
200 well below the geometric mean serum concentration of VRC07 achieved *in vivo*.
201 However, complete escape from VRC07 was only observed for envelopes containing
202 both D279A and either N460D or N276D (Figure 2B).

203 To measure the fitness cost associated with VRC07 escape mutations emerging
204 in HIV_{REJO.c}, we determined the growth rate of each IMC envelope mutant using
205 QuickFit, an RT-qPCR-based assay that quantifies viral growth in activated primary

206 CD4⁺ T cells across large numbers of replicates (Figure S2E)⁶⁵. The doubling time of
207 each IMC harboring escape mutations was then normalized to the WT virus to
208 determine specific fitness costs (or benefits) (Figure 2C). The D279A mutation incurred
209 a significant fitness cost, whereas no changes were observed for the N276D or N460D
210 mutations alone. Strains containing paired mutations also exhibited a higher fitness cost
211 compared to the WT strain. Altogether, these results show that HIV_{REJO.c} follows
212 conserved evolutionary paths to achieve complete escape from VRC07 with differential
213 impact on fitness cost and antibody resistance benefit.

214 The escape paths traversed by HIV_{REJO.c} to acquire resistance to N6 were also
215 evaluated (Figure S2A, N6). Three mutations in or around the D-loop were the most
216 frequent (Figure S2F), with one of them resulting in loss of a PNGs (Figure S2G). Unlike
217 the HIV_{REJO.c} escape paths from VRC07, one mutation on the D-loop, namely A281D,
218 was sufficient to escape from levels of N6 achieved *in vivo* (Figure S2H, Table S1).
219 Moreover, when A281D was paired with T278K, resistance increased, whereas pairing
220 with N276D modestly decreased resistance. Additionally, A281K led to complete
221 escape from N6, although it required three nucleotide mutations from the parental
222 sequence (Figure S2H). Using the aforementioned QuickFit assay, the fitness cost of all
223 identified individual and haplotype combinations of mutations were evaluated (Figure
224 S2I,J). Similar to the HIV_{REJO.c} VRC07 escape paths, the initial A281D and the
225 combinations with N276D or T278K, resulted in a higher fitness cost relative to the WT
226 strain (Figure S2I,J).

227 Lastly, the escape paths traversed by HIV_{REJO.c} to acquire resistance to
228 PGDM1400 were evaluated (Figure S2A, PGDM1400). Mutations were observed

229 surrounding the V1/V2 trimer apex region, with N160K and D167G being the most
230 prevalent (Figure S2K), with the former resulting in the loss of a PNGs (Figure S2L). As
231 expected, both of these mutations were sufficient to confer complete escape from
232 PGDM1400, reaching IC_{50} values above the average level of expression achieved *in*
233 *vivo* (Figure S2M, Table S1). N160K and D167G resulted in a fitness benefit compared
234 to WT strain (Figure S2N,O).

235 Together, these results show that *in vivo* escape from bNAbs in humanized mice
236 follows reproducible paths, each with distinct fitness costs and resistance benefits. In
237 light of the abundance of escape paths, we sought to understand why a given pathway
238 was traversed as opposed to another.

239

240 *The Escape Barrier of each bNAb is determined by the fitness landscape of escape*
241 *paths*

242 To create an escapability map of the fitness landscape in the context of VIT, we
243 projected individual escape mutations onto a two-dimensional axis of replicative fitness
244 cost and resistance benefit (Figure S2P). This was replicated for each evaluated bNAb,
245 with each point representing an identified escape mutation and arrows representing the
246 potential escape paths (Figure 2D-F). We categorized each mouse sample into an
247 escape path by using the viral haplotype frequencies of the dominant escape mutations
248 (Figure S3A-F).

249 To escape VRC07 *in vivo*, 81% of the HIV_{REJO.c} sequences harbored the D279A
250 mutation, conferring partial escape from VRC07, albeit with a high fitness cost (Figure
251 2D). These escaped viruses also acquired a secondary mutation, typically N460D (Path

252 A) or N276D (Path B), leading to complete escape from VRC07. Path A escape variants
253 (D279A + N460D) incurred an even higher fitness cost than the D279A-only escape
254 variants; whereas path B escape variants (N276D + D279A) improved their fitness
255 relative to the D279A-only variants. Notably, 19% of the escapes did not harbor the
256 D279A amino acid change as a partial escape (Path D), but rather found an alternative
257 escape pathway. These non-canonical escape paths exhibited a significant delay in
258 time to escape (Figure 2G), suggesting that these viral populations incurred a higher
259 fitness cost than D279A-based escape paths. To identify the potential forces driving a
260 given population into a specific path, we compared the VRC07 expression levels (Figure
261 S3G), the post-escape viral load (Figure S3J), and the total number of accumulated
262 mutations (Figure S3M) for each path, but failed to find any significant differences
263 across the paths.

264 The same analysis was performed for N6 (Figure 2E), where 86% of the escape
265 variants harbored an A281D mutation, conferring complete escape from N6, with an
266 IC₅₀ 4.5 times greater than the average *in vivo* expression. These A281D variants
267 typically had a second mutation, either N276D (Path A) or T278K (Path B). Compared
268 to A281D-only variants, path A escapes were marginally more fit and less resistant to
269 N6; while path B escapes were both more fit and more resistant to N6 (Figure 2E). A
270 mix of both path A and path B haplotypes was found within most samples (Figure S3E).
271 Notably, samples with higher serum concentrations of N6 were associated with lower
272 post-escape viral loads (Figure 2H), suggesting that N6 may impair viral replication.
273 This was particularly evident for samples with higher frequencies of N276D (Path A)
274 (Figure 2I). A small number of N6 escape sequences had three nucleotide mutations

275 resulting in A281K, which completely escaped N6 with a minor fitness cost (Figure 2E).
276 There were also some escaped samples harboring only the A281D variant, with no
277 other prevalent mutations; however, the N6 serum levels of these samples were 6.4-fold
278 lower compared to those of path A samples (Figure S2H). Of note, given that these
279 were only two samples, statistical differences could not be assessed. The post-escape
280 viral load (Figure S2K) and the total number of accumulated mutations (Figure S2N)
281 were similar across the different paths.

282 Finally, the PGDM1400 escape paths were clustered based on the haplotypes of
283 N160K and D167G (Figure 2F, Figure S3C and S3F). N160K (Path A) was found in
284 56% of the escape variants and the remaining 44% contained D167G (Path B). Both
285 paths led to complete escape from PGDM1400, with an IC_{50} 2.0- or 2.9-times greater
286 than the average *in vivo* expression (Figure 2F). We did not observe any significant
287 difference between the PGDM1400 expression levels and post-escape viral loads for
288 the two escape paths (Figure S3I and 3L, respectively). However, Path B escapes
289 accumulated significantly more mutations compared to Path A escapes (Figure S3O).

290 In order to understand the cumulative fitness cost of HIV_{REJO.c} escape from
291 VRC07, N6, and PGDM1400, we used the escapability maps to determine Escape
292 Barrier scores. Briefly, for each escape path on the map, we calculated the area under
293 the curve (AUC) summing the fitness cost across the IC_{50} values from the WT to the
294 escaped strain (Figure S4A-C). We then combined the AUC of the top two escape
295 paths, which accounted for the majority of the observed haplotypes, into a final Escape
296 Barrier score (Figures S4D-F). Interestingly, the ranking of the Escape Barrier scores for

297 VRC07, N6, and PGDM1400 corresponded with *in vivo* experimental outcomes (Figure
298 2J).

299

300 *HIV_{JR-CSF} rapidly escapes from bNAbs due to low fitness cost escape mutations*

301 Given the ability of AAV8-VRC07 to reproducibly suppress HIV_{REJO.c} in a subset
302 of mice, we sought to determine whether this could be replicated with another HIV
303 isolate. HIV_{JR-CSF} is a Tier 2, Clade B, CCR5-tropic primary isolate originally obtained
304 from the cerebrospinal fluid of a person living with HIV⁵⁵. Groups of humanized mice
305 were infected with an HIV_{JR-CSF} IMC viral stock four weeks prior to receiving AAV8-
306 Luciferase or AAV8-bNAbs (Table S2). Antibody expression stabilized within four weeks
307 of AAV administration, achieving geometric mean plasma concentrations tens to
308 hundreds of times above the *in vitro* IC₅₀ (Figure 3A, Figure S5A,B). In contrast to
309 HIV_{REJO.c}, HIV_{JR-CSF}-infected mice exhibited no changes in viral load following
310 administration of any of the AAV8-bNAbs evaluated and were indistinguishable from the
311 AAV8-Luciferase controls (Figure 3B, Figure S5C-F).

312 We deep sequenced HIV_{JR-CSF} Env from each mouse to identify mutations
313 associated with escape from VRC07, N6, and PGDM1400 (Figure S6A). Interestingly,
314 mice receiving AAV8-Luciferase exhibited some consistent mutations distributed
315 throughout the HIV_{JR-CSF} envelope despite the absence of bNAb selection pressure,
316 suggesting adaptation to the host (Figure S6B). This was most apparent at position
317 N339 that translated into loss of a PNGs near the V3-loop, which was not observed for
318 HIV_{REJO.c} (Figure S6C). Other mutations around the V2- and V4-loops were also found
319 at higher rates than for HIV_{REJO.c}.

320 To escape VRC07, HIV_{JR-CSF} acquired a single D-loop mutation at position D279,
321 which was observed across all samples (Figure 3C), and a minority of samples
322 exhibited a loss of a PNGs at N276 as also seen for HIV_{REJO.c} (Figure S6D). The IC₅₀ of
323 HIV_{JR-CSF} harboring D279 escape mutations were evaluated, with D279A and D279H
324 achieving complete escape with an IC₅₀ greater than 200 µg/mL, while D279N exhibited
325 a modest increase in IC₅₀ relative to the WT strain (Figure S6E, Table S2). D279A
326 exhibited an increased fitness cost relative to the parental strain, while D279H and
327 D279N had no statistically significant fitness cost (Figure S6F,G). Unlike HIV_{REJO.c}, a
328 single mutation at site D279 was sufficient to mediate complete escape from VRC07
329 with a modest fitness cost (Figure 3D), in line with the inability of AAV8-VRC07 to
330 suppress HIV_{JR-CSF}.

331 Next, we evaluated the escape paths following AAV8-N6 treatment, finding
332 selection for a single nucleotide change to yield a A281D mutation (Figure S6H), along
333 with loss of a PNGs at site N276 (Figure S6I). The A281D mutation was sufficient to
334 achieve escape (Figure S6J) albeit at a high fitness cost (Figure S6K,L). We also
335 observed that the combination of A281D with N276D resulted in complete escape at a
336 lower fitness cost (Figure S6M).

337 Finally, escape from AAV8-PGDM1400 treatment resulted in a variety of V2-loop
338 mutations at sites N160 or T162 (Figure S6N), resulting in loss of a PNGs (Figure S6O).
339 All of the mutations evaluated at sites N160 and T162 resulted in escape from
340 PGDM1400 (Figure S6P), with no fitness cost (Figure S6Q,R). The resulting
341 escapability map recapitulates that of HIV_{REJO.c} (Figure S6S).

342 Considering the lack of viral suppression observed for some VIT-treated HIV-
343 infected mice, we evaluated the *in vitro* neutralizing activity of sera from a subset of
344 these animals (Figure S7A-H). As expected, sera from all mice expressing bNAbs were
345 able to neutralize both HIV_{REJO.c} and HIV_{JR-CSF} with an IC₅₀ value similar to purified
346 proteins. No neutralization activity was seen in sera from control mice. Given prior
347 reports of antiviral activity of bNAbs following passive transfer in HIV-infected
348 humanized mice³¹, we explored whether the kinetics of vectored antibody expression
349 played a role in the lack of antiviral activity seen for N6 and PGDM1400 in our studies.
350 We performed passive transfer of either a control antibody (2A10, a malaria-specific
351 antibody), N6, or PGDM1400 in HIV_{JR-CSF} infected humanized mice (Figure S7I-L and
352 Table S3). As expected, high antibody concentrations were detected starting as early as
353 one week post-infusion, and remained elevated throughout the course of weekly
354 administrations (Figure S7I). Interestingly, we did not observe any change in viral load
355 in any of the mice during the length of the experiment (Figure S7K-L). Despite this, deep
356 sequencing of viral envelopes revealed the selection of escape mutations that largely
357 mirrored those seen for AAV-delivered bNAbs (Figure 7M,N). These results suggest
358 that differences in antibody expression kinetics do not explain the lack of activity seen in
359 our studies. Instead, it is possible that HIV infection in the BLT humanized mouse model
360 may be particularly challenging to suppress relative to other models³¹.

361

362 *Increasing HIV_{REJO.c} mutation resistance benefit enables complete escape from VRC07*

363 Our experiments demonstrate that HIV_{REJO.c} and HIV_{JR-CSF} exhibit
364 differences in escape paths under VRC07 selection. However, these studies could not

365 discern whether the differences in Env sequence or the inherent fitness differences
366 between these isolates contributed to escapability. Notably, in the context of the
367 HIV_{REJO.c} Env, the D279A mutation only resulted in a partial escape, whereas for HIV_{JR-}
368 _{CSF}, the same mutation resulted in complete escape. To evaluate whether this could be
369 explained by differences in the diversification of these viruses in humanized mice,
370 relative to those seen in humans, we compared the baseline frequency of each amino
371 acid at each position in env for both isolates to the frequencies observed in the
372 corresponding position in the LANL database. We found that amino acids that were at a
373 high frequency in HIV_{REJO.c} and HIV_{JR-CSF} also tended to have a higher frequency in the
374 LANL database (Figure S8A), suggesting that both isolates generate diverse
375 quasispecies that are consistent with clinical infections. To determine whether the
376 fitness cost of escape mutations observed in both viruses were consistent with
377 conservation in the LANL database, we directly compared the LANL amino acid
378 frequency of each escape mutation to their observed fitness cost in HIV_{REJO.c} and HIV_{JR-}
379 _{CSF} backbones, and found a strong and significant negative correlation (Figure S8B),
380 confirming that high fitness cost mutations in both isolates are also rarely seen in the
381 LANL database.

382 To dissect the contribution of the resistance benefit to escape VRC07, we
383 engineered chimeric IMCs of HIV_{REJO.c} containing the swaps of amino acid sequences
384 comprising the D-loop (HIV_{RD}), the V5-loop (HIV_{RV}) or both loops (HIV_{RDV}) from HIV_{JR-}
385 _{CSF} (Figure 3E, Table S4). Each of the three chimeric viruses were neutralized by
386 VRC07 with a similar IC₅₀ to those of the original isolates (Figure 3F). Importantly, both
387 D-loop chimeras, HIV_{RD} and HIV_{RDV}, exhibited a modest increase in fitness cost,

388 whereas the V5-loop-only chimera, HIV_{RV}, showed no difference in fitness relative to the
389 HIV_{REJO.c} strain (Figure S9A,B).

390 Following infection of BLT humanized mice with each chimeric strain, AAV8-
391 VRC07 administration resulted in a geometric mean steady-state plasma antibody
392 concentration of approximately 50 µg/mL for all the groups (Figure S9C). This led to
393 suppression in a subset of HIV_{REJO.c}-infected mice, whereas all HIV_{JR-CSF}-infected mice
394 escaped (Figure S9D,E). A similar proportion of mice infected with HIV_{RD} and HIV_{RDV}
395 were suppressed by VRC07, as seen for HIV_{REJO.c} (Figure S9F,G). In contrast, all mice
396 infected with HIV_{RV} exhibited rapid escape from VRC07, as seen for HIV_{JR-CSF} (Figure
397 3G, Figure S9H,I).

398 We focused on the HIV_{RV} chimera to understand why this swap resulted in a
399 suppression outcome similar to that of HIV_{JR-CSF}. In contrast to HIV_{REJO.c}, mutations
400 arising in HIV_{RV}-infected animals receiving AAV8-VRC07 were confined to the D-loop
401 (Figure S9J-N). HIV_{RV} mutants harboring single amino acid changes at D279 were
402 completely escaped from VRC07, albeit with substantial fitness costs (Figure S9O-Q).

403 Taken together, these data suggest that the sequence context of the HIV
404 envelope directly influences the path taken to escape from VRC07 (Figure 3H). The
405 escapability map reveals that D279 mutations result in complete escape for HIV_{RV}, in
406 contrast to HIV_{REJO.c}. Finally, the Escape Barrier score for HIV_{JR-CSF} escaping from all
407 bNAbs and HIV_{RV} escape from VRC07 was calculated as before (Figure S10A-D). For
408 HIV_{JR-CSF}, VRC07 exhibited the lowest score; whereas HIV_{RV} score was between
409 HIV_{REJO.c} and HIV_{JR-CSF} (Figure 3I, Figure S10E,F).

410

411 Increasing HIV_{REJO.c} mutation fitness cost results in complete suppression by VRC07

412 Given the importance of sequence context in defining the resistance benefit of
413 mutations along the evolutionary escape path, we sought to evaluate the impact of
414 mutation fitness cost on escape. To this end, we sought to alter the fitness of VRC07-
415 escape mutants without affecting their resistance benefits. Given the previously
416 described reduction in viral fitness following escape from antiretroviral therapy (ART)
417 drug regimens⁶⁶, we tested the ability of the Polymerase (Pol) mutations to impact the
418 fitness of VRC07 escape mutations. We engineered Pol M184I and M184V mutations
419 into the original HIV_{REJO.c} IMC vector and detected no changes in neutralization
420 sensitivity to VRC07 or viral fitness (Figure S11A,B). We then evaluated both the fitness
421 cost and resistance benefit of the previously identified VRC07-HIV_{REJO.c} escape
422 mutations (i.e., N276D, D279A, N460D, and their combinations) in the context of the Pol
423 M184V mutation. While we observed no changes in neutralization sensitivity (Figure 2B,
424 Figure S11C, Table S1), we observed significant increases in the fitness cost for escape
425 mutants containing Pol M184V relative to WT Pol (Fig 4A, Figure S11D).

426 The net effect of this was a shift in the escapability map for HIV_{REJO.c} with the Pol
427 M184V mutation, such that complete escape through a second envelope mutation
428 incurred substantially higher fitness costs than for the WT Pol strain (Figure 4B). The
429 Escape Barrier score was calculated for Pol M184V mutants assuming the same
430 relative escape paths frequencies as seen for the WT Pol, resulting in a 43% increase
431 (Figure 4C), suggesting that selection of the Pol M184 mutations could improve VRC07
432 suppression of HIV_{REJO.c}.

433 To evaluate the predicted reduction in HIV_{REJO.c} escape from VRC07, we
434 intentionally drove the emergence of Pol mutations through sub-optimal dosing of ART
435 in humanized mice. BLT mice were infected with HIV_{REJO.c} and over the course of 6
436 weeks, we titrated the dose of ART drug in their food, from 1% to 100% of the standard
437 human equivalent dose. Eight weeks after infection, either AAV8-VRC07 or AAV8-
438 Luciferase were administered. Two weeks after AAV administration, the ART treatment
439 was interrupted (Figure 4D, Table S5). Importantly, at the time of AAV administration,
440 no meaningful differences in viral loads were seen between the mice that had received
441 escalating antiretroviral drugs relative to control mice (Figure S11E). As expected, HIV
442 *pol* genes sequenced from mice receiving the suboptimal ART dosing displayed a near-
443 complete prevalence of M184V/I at the time of VRC07 administration (Figure 4E).

444 As anticipated, ART drug treatment had no impact on AAV8-driven expression of
445 VRC07 (Figure S11F). ART-treated mice receiving AAV8-Luciferase maintained steady
446 viral loads, with minor dips at each escalation of drug concentration (Figure 4F).
447 Administration of AAV8-VRC07 without ART treatment resulted in only partial
448 suppression of HIV, as observed in our prior experiments (Figure S11G). Additionally,
449 the post-escape viral load for the Luciferase-treated mice showed no difference
450 irrespective of the presence or absence of the selective pressure (Figure S11H).
451 However, administration of AAV8-VRC07 to ART-treated mice resulted in complete
452 suppression (Figure 4F,G), suggesting that the additional fitness costs were specific to
453 the VRC07 escape mutations, as predicted in our theoretical escape map and Escape
454 Barrier scores. Taken together, these results suggest that by decreasing the overall

455 fitness of $\text{HIV}_{\text{REJO.c}}$, and therefore modulating the fitness cost axis of the escapability
456 maps, resistance to VRC07 becomes significantly more difficult.

457 **Discussion**

458 Antibody immunotherapy to prevent or treat HIV infection is currently being
459 evaluated in numerous clinical trials. While bNAb combinations have shown
460 promise^{42,67-69}, individual bNAbs have demonstrated limited activity in viremic PLWH
461 due to their half-life and the emergence of escape mutations^{34,35,37,39,70,71}. Here we show
462 that vectored delivery of a single bNAb, well-matched to the infecting strain, is capable
463 of suppressing viremia in approximately half of HIV-infected humanized mice. Notably,
464 this efficacy was not correlated with neutralization potency determined *in vitro* against
465 the infecting viral stock or breadth metrics derived from global pseudovirus
466 panels^{17,62,63}. Rather, our results suggest that the *in vivo* efficacy of this treatment is
467 best explained by the bNAb-specific dynamics of viral escape. By using the BLT
468 humanized mouse platform and viral stocks derived from IMCs, we performed dozens of
469 independent infections with a specific virus and AAV8-bNAb treatment. This led to the
470 reproducible characterization of the most commonly traversed escape paths by HIV,
471 demonstrating surprising conservation of viral escape from specific bNAbs.

472 Of the two CD4bs-targeting antibodies evaluated in this study, N6 was broader,
473 neutralizing 96% of a 181-strain global panel with an IC₅₀ of less than 1 µg/mL⁶².
474 Despite its outstanding potency and breadth, we found that a single base pair change in
475 the D-loop of HIV_{REJO.c} or HIV_{JR-CSF} yielded resistance to neutralization that was above
476 the steady-state concentrations achieved in our experiments. Remarkably, this A281
477 mutation has also been previously reported for antibodies from the VRC01-class family,
478 suggesting conserved escape paths for these antibodies^{72,73}. Despite a lack of viral
479 suppression by AAV8-N6, we observed that mice with higher antibody concentrations

480 exhibited lower post-escape viral loads. As such, a higher steady-state concentration of
481 N6 would likely result in improved viral suppression; however, expression was lower
482 relative to other bNAbs despite identical vector dosage, consistent with previous reports
483 of short N6 half-life following passive transfer^{74,75}.

484 PGDM1400 recognizes the HIV envelope V1/V2 trimer apex and neutralizes with
485 a median IC₅₀ of 0.003 µg/mL against a 77-virus panel⁶³. A single-point mutation in the
486 V2-loop (N160 or D167) was enough for both HIV isolates to acquire complete
487 resistance to PGDM1400, which has been previously observed for trimer apex-targeting
488 antibodies⁷⁶. The low fitness cost of these mutations is reflected in their high pre-
489 existing frequency in control mice and PLWH (Table S6) (<https://www.hiv.lanl.gov/>). In a
490 clinical trial using PGDM1400, multiple sequences isolated from rebound participants
491 exhibited a loss of the N160 glycan, suggesting that glycan-based escape is a major
492 driver of bNAb resistance in humans⁶⁸.

493 VRC07 neutralizes 83% of a panel of 179 strains at less than 1 µg/mL, with a
494 geometric mean IC₅₀ of 0.11 µg/mL¹⁷. In contrast to N6 and PGDM1400, complete
495 escape of HIV_{REJO.c} from VRC07 required a two-step evolutionary path. The mutations
496 we report here include an essential D-loop mutation at D279, resulting in partial
497 resistance with moderate fitness cost, and a second mutation in either the D- or V5-
498 loops which confers complete resistance and further modulates the fitness of the virus.
499 Notably, the tolerability of D- and V5-loop mutations identified through deep mutational
500 scanning varied significantly across strains, in line with our isolate-specific fitness cost
501 data⁷⁷. Although it required two steps, HIV_{REJO.c} escape from VRC07 occurred in 44% of
502 mice across our study. Interestingly, the N276D D279A escape path was observed less

503 often than the D279A N460D escape path, despite having a lower fitness cost. This may
504 be a result of the high frequency of pre-existing N460D (Table S6) and the large
505 distance between these two mutations, which is known to increase the likelihood of
506 recombination⁷⁸. Of note, D279A, along with the paired mutations at N276 and N460,
507 have been previously reported as escape mutations from VRC01-class antibodies in
508 humans^{36,73,79}. Finally, HIV_{REJO.c} escapes that did not acquire D279A had a significant
509 delay in time-to-escape, suggesting that blocking a primary escape path can result in
510 the emergence of rarer and more costly alternatives. The differences in escape paths
511 seen for VRC07 suggest that the timing of escape, and particularly how early these
512 mutations emerge, plays a significant role in the therapeutic success of VIT, and future
513 analyses should try to dissect this more in depth.

514 The AMP trials have identified the predicted serum neutralization 80% inhibitory
515 dilution titer (PT₈₀) as a robust predictor of protection in humans and NHPs^{24,80}. This
516 biomarker is defined as the bNAb serum concentration over the *in vitro* IC₈₀ value
517 against a given HIV strain. A steady-state PT₈₀ of 200 or higher correlated with a
518 prevention efficacy of 90%²⁴. Despite reaching average PT₈₀ values against HIV_{REJO.c} of
519 over 500 for VRC07 and over 400 for PGDM1400 over the four week period of
520 increasing expression, we did not see efficacy against established infections (Figure
521 S12). Interestingly, there were no differences in PT₈₀ values between HIV_{REJO.c}
522 suppressed or escaped mice, demonstrating that in our model, potency- and breadth-
523 derived parameters were insufficient to predict the *in vivo* efficacy of bNAbs.

524 Our results show that escape from CD4bs-directed bNAbs is more likely to
525 impact viral fitness as compared to bNAbs targeting a variable loop, likely due to the

526 CD4-binding requirement during viral infection^{36,81}. In a clinical trial evaluating 3BNC117,
527 another CD4bs-targeting bNAb, sequences from three out of eight participants
528 remained sensitive to the bNAb following viral rebound after antibody serum decay³⁴.
529 Additionally, patients undergoing ART interruption following 3BNC117 administration
530 remained suppressed until antibody levels declined, suggesting a lack of pre-existing
531 escape variants in the latent viral reservoir⁷². Recent characterization of escape from
532 eCD4-Ig further demonstrates the difficulty of viral escape from CD4bs-targeted
533 therapeutics⁸¹. Collectively, these findings highlight the advantage of targeting high
534 fitness-cost epitopes.

535 In this study we project the fitness landscape of each bNAb-strain onto two-
536 dimensional escapability maps by comparing both the fitness cost and resistance
537 benefit of mutations for each major escape path. Using chimeric strains, we modulated
538 the neutralization benefit of escape mutations as represented by the X-axis of the
539 escapability maps. Despite the same neutralization sensitivity to VRC07 and no
540 difference in fitness compared to HIV_{REJO.c}, we found that the HIV_{RV} chimera exhibited
541 complete and rapid escape from vectored VRC07, like HIV_{JR-CSF}, highlighting the
542 importance of sequence context on escape mutations⁷⁷. In this study, we utilized two
543 different HIV isolates and found that the diversity of the quasispecies in infected
544 humanized mice was similar to the sequence diversity seen in the LANL database, as
545 reported by other studies that evaluated the conservation of mutations cross-
546 sectionally⁸². Importantly, this conservation also correlated with the fitness cost of the
547 mutations, showing that more costly mutations were less represented in the LANL

548 database. The relevance of the sequence context and diversification could have
549 implications for studies performed in NHPs, given the chimeric nature of SHIV⁸³.

550 Using M184 Pol mutations, we modulated the fitness cost of escape mutations,
551 as represented by the Y-axis of the escapability maps. We found that M184 Pol viruses
552 harboring VRC07 escape mutations maintained their susceptibility to VRC07 but grew
553 more slowly than WT Pol strains *in vitro*. We predicted that this shift in fitness cost
554 would result in a more challenging escape path from the antibody *in vivo*. Consistent
555 with this hypothesis, AAV8-VRC07 administration to HIV_{REJO.c}-infected animals
556 harboring these Pol mutations resulted in sustained viral suppression. Together, these
557 experiments demonstrate that the two escapability map dimensions of resistance
558 benefit and fitness cost drive the efficacy of AAV-bNAb therapy *in vivo*.

559 The BLT humanized mouse model enables the systematic comparison of bNAb
560 therapeutic efficacy and identification of escape paths taken by HIV isolates. Despite
561 their lack of endogenous humoral immune responses, here we report the same VRC07,
562 N6, and PGDM1400 escape mutations seen in NHPs and humans, with the benefit of a
563 shorter time frame and lower cost⁸⁴. Given their diverse and continuously evolving viral
564 population, as previously reported³¹ and seen here (Figure S7), HIV-infected humanized
565 mice represent an excellent model to evaluate bNAb escape *in vivo*.

566 The concept of fitness landscapes has been frequently used to understand HIV
567 evolution, including the dynamics of intrapatient adaptation⁸⁵ and antiretroviral escape⁸⁶.
568 Within this framework, it is well known that a fitness cost is typically accrued during
569 escape from cytotoxic T lymphocytes^{87–89}, antiretroviral drugs^{90–93}, or antibodies⁹⁴.
570 Indeed, modern cART leverages this understanding to maximize their clinical efficacy⁹⁵.

571 Our findings suggest that bNAb escape paths are predictable and that maximizing the
572 cost of escape *in vivo* may be the key to improving their clinical efficacy. Whether
573 analogous improvements in the clinical efficacy of bNabs could be achieved by
574 reducing the fitness of viruses replicating in patients who have failed ART regimens
575 remains to be determined. Recent efforts have focused on antibody combinations that
576 target independent sites of vulnerability, however, future bNAb combinations with
577 orthogonal, high cost, escape paths should be tested, as combinations whose escape
578 mutations result in additive fitness costs may improve the therapeutic efficacy of
579 antibody-based interventions.

580 **Limitations of the study**

581 Despite our best effort to be comprehensive, our study has a number of
582 limitations. First, as previously stated, differences in bNAb expression levels influence
583 the resulting escape paths. Future studies could focus on dissecting the influence of
584 bNAb expression level on escape path selection. In addition, AAV-mediated antibody
585 delivery starts with lower serum levels of bNAb before achieving a high steady-state
586 concentration, whereas passive transfer results in high initial concentration, which then
587 declines over time. This difference could result in divergent outcomes, as passive
588 transfer applies a stronger initial selection pressure, which may alter viral escape
589 dynamics. However, subclinical viral replication has been reported as passively
590 transferred antibody decays, even when still above the currently accepted protective
591 levels⁹⁶. Moreover, at steady-state, the mutations we identified were the same as those
592 which ultimately emerged during passive transfer studies. Second, we report the results
593 of only three antibodies targeting two distinct sites of vulnerability against two clade B
594 isolates of HIV. However, a plethora of bNAbs have been described targeting five sites
595 of vulnerability and many diverse HIV isolates exist⁹⁷. Whether our findings would
596 extend to other bNAbs and HIV clades remains to be determined. However, several
597 reports show that mutations and evolutionary paths are conserved and convergent
598 across different isolates and clades⁹⁸⁻¹⁰⁰. Third, our study focuses on escape mutations
599 present at the endpoint of each independent experiment, therefore, the dynamic events
600 occurring earlier and over the course of escape still need to be elucidated. Fourth, HIV
601 infection in BLT humanized mice could not be assessed beyond six months due to
602 declining health of animals from this model, which may limit the opportunities for escape

603 mutations to arise. Fifth, humanized mice have a relatively small blood volume and lack
604 secondary lymphoid organs that may not completely recapitulate HIV infection in
605 humans¹⁰¹. Moreover, BLT mice elicit a poor humoral immune response, and therefore
606 lack this selective pressure¹⁰², which may influence the selection of escape paths. In the
607 case of PGDM1400, it has been shown that the polyclonal humoral response elicited in
608 humans is reactive against the various glycans on the Env protein¹⁰³. Viremic patients
609 receiving individual bNAbs have exhibited more substantial drops in viral load than what
610 was seen in our model^{34,35,41,70}. Additionally, there have been reports of synergy
611 between passively transferred bNAbs and endogenous antibody responses in
612 patients¹⁰⁴, which are unlikely to occur in humanized mice. As such, bNAb-based
613 suppression of HIV in humanized mice may represent a high bar for therapeutic efficacy
614 given that suppression is completely dependent on the administered bNAb. Finally,
615 measurements of viral growth rates were performed *in vitro* with PBMCs from a single
616 donor. Whether the absolute growth rate of these mutants across genetically distinct
617 patients varies remains untested, previous studies suggest that their relative fitness
618 would remain unchanged⁶⁵.

619 **Resources availability**

620 **Lead contact**

621 Further information and requests for resources and reagents should be directed
622 to and will be fulfilled by the lead contact, Dr. Alejandro Balazs
623 (abalazs@mgh.harvard.edu).

624 **Materials availability**

625 All genetic constructs and unique biological materials generated in this study are
626 available from the lead contact without restriction upon request.

627 **Data and code availability**

628 A summary of the sequencing analyzed data is available online at
629 <https://github.com/Balazs-Lab/Escapability>. Raw sequencing files reported in this paper
630 will be shared by the lead contact upon request. All other data are available in the main
631 text or as part of the supplementary data and tables. Source data referencing each
632 figure are also provided for this study as supplementary material. Codes used for the
633 sequencing analyses in this study, along with instructions to run them, can be found in
634 the following link: <https://github.com/Balazs-Lab/Escapability>

635 **Acknowledgements**

636 We wish to thank Dennis Burton (Scripps) for providing antibody proteins, Dan
637 Barouch for providing anti-PGDM1400 idiotype antibody protein. We also thank K. L.
638 Clayton and D. T. Claiborne for advice on experimental design and the manuscript. We
639 thank the Ragon Institute Protein Core for providing antibody proteins. The following
640 reagents were obtained through the NIH HIV Reagent Program, Division of AIDS,
641 NIAID, NIH: HIV-1, Strain JR-CSF Infectious Molecular Clone (pYK-JRCSF), ARP-2708,

642 contributed by Dr. Irvin S. Y. Chen and Dr. Yoshio Koyanagi; ARP-11746
643 (pREJO.c/2864), contributed by Dr. John Kappes and Dr. Christina Ochsenbauer; TZM-
644 bl Cells, ARP-8129, contributed by Dr. John C. Kappes, Dr. Xiaoyun Wu and Tranzyme
645 Inc. N.M.S.G. was supported by the Executive Committee on Research (ECOR) of the
646 Mass General Hospital (MGH) Fund for Medical Discovery (FMD) Fundamental
647 Research Fellowship Award. A.D.N. was supported by the Ruth L. Kirschstein National
648 Research Service Award (NRSA) Postdoctoral Training Program Award T32AI007245.
649 C.E.D. was supported by the NRSA Individual Postdoctoral Fellowship 1F32AI125096-
650 01A1. J.M.B. was supported by the NSRA Predoctoral Award 1F31AI131747-01A1.
651 A.B.B. was supported by the National Institute for Allergy and Infectious Disease Career
652 Transition Award K22AI102769, Research Grants R01AI174875, R01AI174276, the
653 National Institutes for Drug Abuse (NIDA) Avenir New Innovator Award DP2DA040254,
654 the NIDA Avant-Garde Award 1DP1DA060607, CDC subcontract 200-2016-91773-
655 T.O.2, the MGH Transformative Scholars Program as well as funding from the Charles
656 H. Hood Foundation. This independent research was supported by the Gilead Sciences
657 Research Scholars Program in HIV.

658 **Author contributions**

659 C.E.D. and A.B.B. designed the experiments. N.M.S.G., A.D.N., Y.C., C.E.D.,
660 C.L.B., S.W.M., Y.E.S.A., E.C.L., M.L.S., D.P., A.L., M.J.D., S.B.Y., B.M., and C.B.B.
661 carried out experiments and analyzed data. J.M.B., A.P., X.C., C.L., R.A.K., J.R.M. and
662 D.L. offered suggestions for experiments and provided key materials. S.T. and V.D.V.
663 provided humanized mice. N.M.S.G., A.D.N, Y.C., C.E.D. and A.B.B. wrote the paper
664 with contributions from all authors. The authors of this study fulfill all the authorship

665 criteria required by Cell Press. Roles and responsibilities were agreed among the
666 authors ahead of the research within reason and changes on these roles were
667 previously agreed by the authors.

668 **Declaration of interests**

669 A.B.B. is a founder of Cure Systems LLC. All other authors declare no conflicts of
670 interest.

671 **Supplemental information**

672 Document S1. Figures S1–S12 and Tables S1-S6.

673 Document S2. Excel file containing all source data referring to all the figures.

674 Document S3. Excel file presenting all the mice, their treatment, antibody
675 concentration reported at escape, and weeks of suppression (or to escape).

676 **Figure legends**

677 **Figure 1. Vectored delivery of VRC07, but not PGDM1400 or N6, can suppress**
678 **established HIV_{REJO.c} infection.**

679 **(A)** BLT humanized mice were infected with 300 TCID₅₀ of HIV_{REJO.c} and the viral
680 population was allowed to replicate for 4 weeks. Mice were then IM injected with 5x10¹¹
681 genome copies (GC) of AAVs encoding for either VRC07, N6, PGDM1400, or
682 Luciferase as control. Mice were followed for 6 months, and blood samples were
683 collected weekly.

684 **(B)** ELISA-based quantitation of gp120-binding antibodies in the serum of HIV_{REJO.c}-
685 infected humanized mice following administration of AAV8-Luciferase, AAV8-VRC07,
686 AAV8-N6, or AAV8-PGDM1400 vectors. Black arrow denotes vector administration.
687 Data are plotted as geometric mean ± geometric SD.

688 **(C-F)** HIV viral load in plasma of HIV_{REJO.c}-infected mice injected with AAV8-Luciferase
689 as control **(C)**, AAV8-VRC07 **(D)**, AAV8-N6 **(E)**, or AAV8-PGDM1400 **(F)**. Black arrows
690 denote vector administration. Each colored line depicts an individual mouse tracked
691 over time. The sensitivity of qPCR was 1 genome copy per μL of plasma, and 5 μL were
692 used in the reaction, resulting in a 1000 copy per mL limit of detection (solid line). Data
693 are presented as mean ± S.E.M.

694 **(G)** Kaplan-Meier plot of viral suppression in BLT humanized mice infected with
695 HIV_{REJO.c} given the indicated bNAb-expressing vector. The total model significance
696 (p<0.0001) and pairwise comparison against the Luciferase control (****: p<0.0001)
697 were assessed independently using Log-rank (Mantel-Cox) tests. The percentage of
698 HIV suppressed was defined as the fraction of mice that were not escaped as described
699 in the methods.

700 **Figure 2. Fitness cost and resistance benefit accrued along escape paths**
701 **determine the difficulty of HIV_{REJO} escape from each bNAb.**

702 **(A)** Amino acid divergence from the envelope gene of the HIV_{REJO.c} parental strain
703 across all AAV8-VRC07 treated mice. Sequences were determined by Illumina Deep
704 Sequencing of the viral envelope isolated from plasma at the final experimental
705 timepoint. The X-axis represents the envelope protein amino acid position relative to
706 HIV_{HXB2} numbering. The Y-axis represents the percentage of average amino acid
707 divergence from the parental strain, corrected for divergence observed in control mice.
708 Pie charts represent the most common amino acid mutations for sites with the highest
709 divergence. See also Figure S2.

710 **(B)** *In vitro* neutralization assays of each HIV_{REJO.c} mutant identified in **(A)** against
711 VRC07. Data are plotted as mean ± S.E.M. Each data point was evaluated in
712 quadruplicate.

713 **(C)** Relative viral growth of each HIV_{REJO.c} mutant identified in **(A)**. Growth rates were
714 determined in activated CD4⁺ T cells performing *QuickFit* assays and normalized to the
715 parental strain. Data are plotted as mean ± S.E.M. and statistical differences were

716 assessed by a Kruskal-Wallis non-parametric ANOVA with Dunn's *post hoc* test to
717 correct for multiple comparisons (****: p<0.0001). See also Figure S2.

718 **(D-F)** Escapability maps denoting fitness cost (Y-axis, relative doubling time shown in
719 **(C)**) and resistance benefits (X-axis, neutralization resistance shown in **(B)**) for each
720 HIV_{REJO.c} mutant observed during escape from VRC07 **(D)**, N6 **(E)**, or PGDM1400 **(F)**.
721 Dashed vertical line denotes the geometric mean antibody serum concentration after
722 vectored bNAb administration. Shaded areas represent the neutralization assay limit of
723 detection. Solid arrows represent the likely initial path taken with dashed arrows
724 representing the likely second step paths to escape. In the map legend, each escape
725 path is sorted based on the relative frequency observed in the sequencing data. See
726 also Figures S2 and S3.

727 **(G)** Survival analysis of HIV_{REJO.c}-infected mice treated with AAV8-VRC07 by escape
728 path haplotype. The total model significance (p=0.0126) and pairwise comparisons of
729 the non-D279A escape paths to each other escape path (*: p<0.05) were assessed
730 independently using Log-rank (Mantel-Cox) tests. See also Figure S3.

731 **(H)** Correlation plot of N6 geometric mean-expression vs post-escape HIV_{REJO.c} viral
732 load. The line represents the semi-log least squares regression, ρ represents the
733 Spearman correlation value determined for the data, with the associated p-value below.
734 See also Figure S3.

735 **(I)** Correlation plot of the post-N6 escape viral load of HIV_{REJO.c} vs the frequency of
736 N276D determined by viral envelope sequencing. The line represents the semi-log least
737 squares regression, ρ represents the Spearman correlation value determined for the
738 data, with the associated p-value below. See also Figure S3.

739 **(J)** Escape Barrier (AUC) Score denoting the aggregate fitness cost for each escape
740 path as determined in the escapability maps. This score was calculated by adding the
741 area under the escapability plot for escape paths A and path B viral escapes from
742 VRC07, N6, and PGDM1400. See also Figure S4.

743 **Figure 3. HIV_{REJO.c} V5-loop restricts escape from VRC07, by decreasing the
744 resistance benefit of D279 mutations.**

745 **(A)** ELISA-based quantitation of gp120-binding antibodies in the serum of HIV_{JR-CSF}-
746 infected humanized mice following administration of 5×10^{11} genome copies (GC) of
747 AAV8-Luciferase, AAV8-VRC07, AAV8-N6, or AAV8-PGDM1400 vectors. Black arrow
748 denotes vector administration. Data are plotted as geometric mean \pm geometric SD.

749 **(B)** Kaplan-Meier plot of viral suppression in humanized mice infected with HIV_{JR-CSF}
750 given the indicated bNAb-expressing vector. The total model significance was assessed
751 using a Long-rank (Mantel-Cox) test (p=0.0714). See also Figure S5.

752 **(C)** Amino acid divergence from the envelope gene of the HIV_{JR-CSF} parental strain
753 across all AAV8-VRC07 treated mice. Sequences were determined by Illumina Deep
754 Sequencing of the viral envelope isolated from plasma at the final experimental
755 timepoint. The X-axis represents the envelope protein amino acid position relative to

756 HIV_{HXB2} numbering. The Y-axis represents the percentage of average amino acid
757 divergence from the parental strain, corrected for divergence observed in control mice.
758 Pie chart represents the most common amino acid mutations for the site with the
759 highest divergence. See also Figure S6.

760 **(D)** Escapability map of HIV_{JR-CSF} escape from VRC07. Dashed vertical line denotes the
761 geometric mean antibody serum concentration after AAV8-VRC07 administration.
762 Shaded area represents the neutralization assay limit of detection. Arrows represent the
763 likely path taken to escape. See also Figures S6 and S8.

764 **(E)** Alignment of the D-loop and the V5-loop amino acid sequences for HIV_{REJO.c}, HIV_{JR-}
765 _{CSF}, and the HIV_{RD}, HIV_{RV}, and HIV_{RDV} chimeras.

766 **(F)** *In vitro* neutralization of HIV_{REJO.c}, HIV_{RD}, HIV_{RV}, HIV_{RDV}, and HIV_{JR-CSF} by VRC07
767 bNAb. Data are plotted as mean \pm S.E.M. Each datapoint was evaluated in
768 quadruplicate.

769 **(G)** Kaplan-Meier plot of viral suppression in humanized mice infected with HIV_{REJO.c},
770 HIV_{RV}, or HIV_{JR-CSF} following vectored VRC07 administration. The total model
771 significance ($p<0.0001$) and pairwise comparisons against HIV_{REJO.c} (***: $p<0.001$) were
772 assessed independently using Log-rank (Mantel-Cox) tests. See also Figure S7.

773 **(H)** Escapability map of HIV_{RV} during escape from VRC07. Lighter square symbols
774 represent the original HIV_{REJO.c} escape path taken against VRC07. Dashed vertical line
775 denotes geometric mean bNAb concentrations after vectored VRC07 administration.
776 Shaded areas represent the limits of detection. Arrows represent the likely path to
777 escape. See also Figures S7 and S8.

778 **(I)** Escape Barrier (AUC) Score quantifying the difficulty of escape from VRC07 for
779 HIV_{REJO.c}, HIV_{RV}, and HIV_{JR-CSF}. See also Figure S8.

780 **Figure 4. Increasing the fitness cost of HIV_{REJO.c} escape mutations enhances the
781 efficacy of vectored VRC07.**

782 **(A)** The fitness of HIV_{REJO.c}-VRC07 escape mutations with or without the Pol M184V
783 mutation were evaluated using *QuickFit*. Data are presented as mean \pm SD. Statistical
784 differences were assessed by a Two-Way ANOVA, with a Šidák *post hoc* test to correct
785 for multiple comparisons (*: $p<0.05$; ****: $p<0.0001$). See also Figure S9.

786 **(B)** Escapability map of HIV_{REJO.c}-VRC07 escape mutants with or without the Pol M184V
787 mutation. Solid symbols (diamonds) represent envelope mutations on the Pol M184V
788 mutant background, while lighter symbols (circles) represent the data for envelope
789 mutations on the WT Pol background. Shaded areas represent the limits of detection.
790 Solid arrows represent the likely path taken with dashed arrows representing secondary
791 steps to escape. See also Figure S9.

792 **(C)** Empirical Escape Barrier score for HIV_{REJO.c} escape from VRC07 as compared to
793 the theoretical Escape Barrier score for HIV_{REJO.c-PolM184V} escape from VRC07.

794 **(D)** Experimental setup to determine the impact of Pol M184 mutations on HIV_{REJO.c}
795 escape from VRC07. Humanized mice were infected with HIV_{REJO.c} and then treated

796 with a sub-optimal ART starting 2 weeks after infection, to select and maintain Pol M184
797 mutants. At week 8, 5×10^{11} GC of AAV8-VRC07 was injected IM, and the ART regimen
798 was stopped at week 10. Mice were followed for 6 months, and blood samples were
799 collected weekly.

800 **(E)** Percentage of Pol M184V/I mutations determined from viral sequences isolated from
801 the plasma of HIV_{REJO.c}-infected mice at week 8, prior to AAV8-VRC07 administration.
802 Statistical differences were assessed by an unpaired two-tailed Student's t-test (****:
803 p<0.0001). Data are presented as mean \pm S.E.M.

804 **(F)** HIV_{REJO.c} viral load in plasma of AAV8-VRC07 treated mice. Black arrows denote
805 vector administration. Each colored line depicts an individual mouse. The qPCR lower
806 limit of detection was 1 genome copy per μ L of plasma and 5 μ L were used in the
807 reaction (solid line). Data are presented as mean \pm S.E.M.

808 **(G)** Kaplan-Meier plot of viral suppression in humanized mice infected with HIV_{REJO.c}
809 with or without ART selection and with or without AAV8-VRC07 administration. The total
810 model significance (p<0.0001) and pairwise comparisons against the Luciferase +
811 Selection control (***: p<0.001; ****: p<0.0001) were assessed independently with Log-
812 rank (Mantel-Cox) tests. See also Figure S9.

813

814

815 **Supplementary figure titles**

816 **Figure S1. AAV-VRC07 can suppress HIV_{REJO.c} infection in BLT humanized mice**
817 **(Related to Figure 1).**

818 **Figure S2. Detailed escape data for HIV_{REJO.c}-infected mice treated with VRC07,**
819 **N6, and PGDM1400 (Related to Figure 2).**

820 **Figure S3. Escape path analysis for HIV_{REJO.c}-infected mice treated with various**
821 **bNAbs (Related to Figure 2).**

822 **Figure S4. Escape Barrier score calculation for the primary HIV_{REJO.c} escape paths**
823 **from various bNAbs (Related to Figure 2).**

824 **Figure S5. Vectored delivery of VRC07, N6, or PGDM1400 bNAbs fails to suppress**
825 **HIV_{JR-CSF} in BLT humanized mice (Related to Figure 3).**

826 **Figure S6. Detailed escape data for HIV_{JR-CSF}-infected mice treated with VRC07,**
827 **N6, and PGDM1400 (Related to Figure 3).**

828 **Figure S7. Vectored antibodies retain neutralizing activity in vivo and passively**
829 **transferred bNAbs fail to suppress HIV_{JR-CSF} in the BLT model due to escape.**

830 **Figure S8. Comparative analysis of amino acid frequencies in control mice and**
831 **LANL database (Related to Figures 1 and 3).**

832 **Figure S9. Neutralization, growth rate, and infectivity of chimeric HIV_{REJO.c} viruses**
833 **(Related to Figure 3).**

834 **Figure S10. Escape Barrier scores for HIV_{JR-CSF} escape paths from various bNAbs**
835 **and HIV_{RV} escape paths from VRC07 (Related to Figure 3).**

836 **Figure S11. Characterization of HIV_{REJO.c} strains harboring ART-escape mutations**
837 **during VRC07 escape (Related to Figure 4).**

838 **Figure S12. Fold change over IC₅₀ and calculated PT₈₀ values for HIV_{REJO.c-} and**
839 **HIV_{JR-CSF}-infected humanized mice expressing vectored bNAbs (Related to**
840 **Figures 1 and 3).**

841 **Methods**

842 **BLT Humanized Mice.** BLT humanized mice were generated by the Human Immune
843 System Mouse Program at the Ragon Institute of MGH, MIT, and Harvard. Briefly, 6- to
844 8-week-old female NSG mice were transplanted with human liver and thymus tissue
845 under the kidney capsule and injected intravenously with 100,000 CD34⁺ cells isolated
846 from liver tissue by AutoMACS (Miltenyi Biotec, Cat#130-100-453). Mice were rested for
847 10 weeks after surgery to allow for recovery and engraftment. All experiments were
848 done with approval from the Institutional Animal Care and Use Committee of the MGH
849 and conducted in accordance with the guidelines and regulations of the American
850 Association for the Accreditation of Laboratory Animal Care.

851

852 **HIV production.** HIV was produced by transient transfection of HEK 293T/17 cells
853 (ATCC, Cat#CRL-11268 - RRID:CVCL_1926) using 25K MW Linear Polyethyleneimine
854 (PEI, Polysciences Inc., Cat#23966) maintained in DMEM medium (Corning, Cat# 10-
855 013-CV) supplemented with 10% fetal bovine serum (FBS - VWR, Cat#89510-186), and
856 1% penicillin–streptomycin mix (Corning, Cat#30-002-CI) with infectious molecular
857 clone (IMC) plasmids encoding for HIV_{REJO.c} or HIV_{JR-CSF} (AIDS Reagent Program NIH -
858 BEI Resources Cat#ARP-11746 and #ARP-2708, respectively) or IMC plasmids
859 containing the indicated mutations. After 48 hours, culture supernatants were collected,
860 filtered through a 0.45-m filter, and titered using either an HIV-1 p24 antigen capture
861 assay (AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick
862 National Laboratory for Cancer Research) or a 50% tissue culture infective dose

863 (TCID₅₀) assay on TZM-bl cells (BEI Resources, Cat#ARP-8129 - RRID:CVCL_B478).

864 TCID₅₀ was calculated using the Spearman-Karber formula¹⁰⁵.

865

866 **Humanized mouse HIV infection.** Prior to HIV infection, blood samples were obtained
867 from mice and subjected to flow cytometry to determine the baseline CD3⁺ (BioLegend,
868 Cat#300434 - RRID:AB_10962690), CD4⁺ (BioLegend, Cat#300534 - RRID:
869 AB_2563791), and CD8⁺ (BioLegend, Cat#300554 - RRID: AB_2564382) T cells
870 engraftment levels. The next day, mice were intravenously infected with either 10ng of
871 p24 or 300 TCID₅₀ of HIV_{REJO.c} or HIV_{JR-CSF} diluted in PBS (Corning, Cat#21-031-CV) to
872 a volume of 50 μ L. Blood was collected weekly to determine viral loads and bNAb levels
873 in serum.

874

875 **AAVs vector production, quantification, validation, and administration.** AAV8
876 vectors encoding either Luciferase, 2A10, or bNAbs were produced and validated as
877 previously described¹². Briefly, HEK293T/17 cells were co-transfected with the AAV
878 backbone vector and helper vectors pHELP and pAAV 2/8 SEED using PEI. AAVs were
879 collected over a five day period following transfection, filtered through a 0.22 μ m filter
880 (Corning, Cat#431097), and fresh media was gently added back to the cells each time.

881 After collection, the virus was Polyethylene glycol 8,000 (PEG, VWR, Cat#JTU222-9)
882 precipitated on ice O.N., and then pelleted at 8,000 x g for 30 min. Pellets were re-

883 suspended in cesium chloride, split evenly into two Quick-Seal tubes (Beckman,
884 Cat#342413) and centrifuged at 330,000 x g at 20 °C for 24 h (Beckman Coulter, Optima
885 LE-80K, 70Ti rotor). AAV-containing fractions were determined with a refractometer,
886 with refractive indexes between 1.3755 and 1.3655 considered positive. These were
887 then diluted into 151 mL of Test Formulation Buffer 2 (TFB2, 100 mM sodium citrate
888 (VWR, Cat#Cat#6132-04-3), 10 mM Tris, pH 8.00 (Fisher Scientific, Cat#S1519-
889 500GM)), loaded in a 100kDa MWCO centrifugal filter (Millipore, Cat#UFC910024) and
890 centrifuged at 500 x g at 4 °C until 1 mL remained in the filter. This wash was repeated
891 twice. Final retentate was aliquoted and stored at -80 °C. Purified AAVs were quantified
892 by qPCR using the PerfeCTa SYBR Green SuperMix, Low ROX (Quanta Biosciences,
893 Cat#95056-500) and primers designed against the CMV enhancer
894 (AACGCCAATAGGGACTTCC and GGGCGTACTTGGCATATGAT). Samples were
895 run in duplicate on an QuantStudio 12K Flex (Applied Biosystems). To validate the
896 functional activity of each lot, *in vitro* transduction assays were performed in
897 HEK293T/17 cells. Six days after transduction, supernatants were recovered and
898 quantified for total IgG production by ELISA. AAV8 IM injections were performed as

899 previously described¹². Briefly, aliquots of previously titered viruses were thawed on ice
900 and diluted in PBS to achieve the predetermined dose in a 40 μ L volume. A single 40 μ L
901 injection was administered into the gastrocnemius muscle of BLT humanized mice with
902 a 28 G insulin syringe.

903

904 **Antibody quantification by ELISA.** Plasma was used to determine bNAb
905 concentrations. For detection of gp120-binding IgG, ELISA plates were coated with 2
906 μ g/mL of HIV gp120 protein (Novus, Cat#NBP1-76371 or Immune Technology, Cat#IT-
907 001-0025p) per well for 1h at room temperature. For detection of PGDM1400, ELISA
908 plates were coated with BG505 SOSIP (provided by the Vaccine Research Center) at 5
909 μ g/mL or a PGDM1400-specific idiotype (provided by Dan Barouch) at 1 μ g/mL for 2hr
910 at room temperature. Plates were blocked with 1% BSA (LGC Clinical Diagnostics,
911 Cat#50-61-00) in Tris-buffered saline (TBS - Thermo Scientific, Cat#AAJ75892AE)
912 overnight at 4°C. Samples were incubated in TBS plus Tween 20 (Thermo Scientific,
913 Cat#BP-337-100) containing 1% BSA for 1h at room temperature before incubation with
914 1:2,500 to 1:10,000-diluted horseradish peroxidase (HRP)-conjugated goat anti-human
915 IgG-Fc antibody (Bethyl, Cat#A80-104A - RRID: AB_67064) for 30 min at room
916 temperature. Samples were detected by the TMB Microwell Peroxidase substrate
917 system (SeraCare, Cat#50-76-00). A standard curve was generated using purified
918 VRC07, N6, or PGDM1400 (provided by the Vaccine Research Center) as appropriate
919 for the sample.

920

921 **Viral load test by quantitative RT-PCR (RT-qPCR).** Viral RNA was extracted from
922 plasma samples using the QIAamp viral RNA mini kit (Qiagen, Cat#52906)). Each RNA
923 sample was treated with 2 U of Turbo DNase (Fischer Scientific, Cat#AM2239) at 37°C
924 for 30 min followed by heat inactivation at 75°C for 15 min. 10 μ L of the treated RNA
925 were used in a 20 μ L RT-qPCR reaction with the qScript XLT one-step RT-qPCR Tough
926 Mix, low ROX mix (Quanta Biosciences, Cat#95134-500), a TaqMan probe (5'-/56-
927 FAM/CCCACCAAC/ZEN/AGGCAGGCCTTAAGT/3IABkFQ/-3') (IDT) and primers
928 designed targeting the Pol gene of HIV_{REJO.c} (CAATGGCCCCAATTCATCA and
929 GAATGCCGAATTCTGCTTGA) or HIV_{JR-CSF} (CAATGGCAGCAATTCACCA and
930 GAATGCCAAATTCTGCTTGA). Samples were run in triplicate on a QuantStudio 12K
931 Flex (Applied Biosystems). The following cycling conditions were used: 50°C for 10 min,
932 95°C for 3 min followed by 55 cycles of 95°C for 3s and 60°C for 30s. Virus titer was
933 determined by comparison with a standard curve generated using RNA extracted from
934 serially diluted mixture of commercially titered viral stock and pure mouse serum. The
935 limits of detection were 1,000 copies per mL for all viral strains. For the purpose of
936 generating Kaplan-Meier curves, viral escape was defined as the first week after AAV
937 administration in which viral load did not decrease at least 75% relative to the prior
938 week and was above 10^4 copies per mL, provided that a subsequent week was also
939 above that value. Curves were analyzed for statistical significance using the Mantel-Cox
940 Log-rank test in Graphpad Prism v10.2.2 (RRID:SCR_002798).

941

942 **Illumina deep sequencing and identification of HIV envelope mutants.** Viral RNA
943 extracted from blood samples at the conclusion of each study was used to synthesize

944 cDNA using the SuperScript IV Reverse Transcriptase enzyme with a strain-specific 3'
945 primer for HIV_{REJO.c} (TTGGTACTTGTGATTGCTCCATGTCTCTCC) or HIV_{JR-CSF}
946 (CCCTATCTGTTGCTGGCTCAGCTCGTC). cDNA was subjected to nested PCR
947 amplification with HIV-specific envelope primers that yielded a 2.5-kb fragment. The
948 first-round primers used for amplification from HIV_{REJO.c} were
949 GCAATAGTAGCATTAGTAATAGCAGGAATAATAGCAATAGTTGTGTGG and
950 CTGCTCCCACCCCCCTCTG; whereas the primers used for envelope amplification from
951 HIV_{JR-CSF} were GCAATAATTGTGTGGTCCATAGTACTCATAGAATATAGGA and
952 CCCTATCTGTTGCTGGCTCAGCTCGTC. First-round PCR was performed with 1 to
953 2.5 μ L from cDNA reaction using 1x Q5 reaction buffer, 5 mM dNTPs, 0.5 μ M of strain
954 specific primers and 0.02U/ μ L of Q5 Hot Start High-Fidelity DNA Polymerase (NEB,
955 Cat#M0493L) in a total reaction volume of 25 μ L. PCR conditions for the first round
956 were: 98°C for 30s, followed by 30 cycles of 98°C for 10s, 70°C for 30s, 72°C for 3 min,
957 with a final extension of 72°C for 2 min. 1 μ L of first round PCR product was then used
958 as the template for the second round PCR with identical cycling conditions and PCR mix
959 except for the primers. The second-round primers used for envelope amplification from
960 HIV_{REJO.c} were AAAATAGACAGGTTAATTGATAGAATAAGAGATAGAGCAGAAGACA-
961 GTG and TCATTCTTCCCTTACAGCAGGCCATC; whereas the primers used for
962 envelope amplification from HIV_{JR-CSF} were AAAATAGATAGGTTAATTGATAAAATAAG-
963 AGAGAGAGCAGAAGACAG and TCATTCTTCCCTTACAGTAGACCACATCCAGGC.
964 PCR products were gel extracted, diluted to 0.15 ng/ μ L in UV-irradiated water and
965 subjected to Nextera XT Illumina library preparation (Illumina, Cat#FC-131-1096). PCR
966 products were quantified using Qubit and D5000 ScreenTape System (Agilent,

967 Cat#5067-5589). The library pool was denatured with 0.2 N NaOH, diluted to 4 nM,
968 spiked with 10% PhiX to improve sequence heterogeneity and quality and subjected to
969 2 x 250 or 2 x 300 paired-end sequencing on the Illumina MiSeq (RRID:SCR_016379).

970

971 **Envelope Escape Mutant Analysis.** Sequencing reads were filtered for quality using
972 fastp (RRID: SCR_016962)¹⁰⁶ and aligned to a reference sequence specific to the viral
973 strain under analysis using Bowtie2 (RRID: SCR_016368)¹⁰⁷. The alignments were
974 sorted and indexed using samtools (RRID: SCR_002105)¹⁰⁸. Amino acid changes were
975 called using a custom codon aware variant caller, written in python (RRID:
976 SCR_008394). For each sample, the total divergence at each amino acid site was
977 determined by summing the frequency of every non-WT amino acid (relative to the IMC
978 strain sequence, meaning that synonymous mutations are not considered divergent).
979 The group amino acid divergence (plotted in the figures) was determined by averaging
980 the amino acid divergence across each sample at every site. Each site was numbered
981 using the HIV_{HXB2} nomenclature¹⁰⁹. The analysis pipeline was run using snakemake
982 (RRID: SCR_003475)¹¹⁰. All the bioinformatics tools used in these analyses are
983 available online at <https://github.com/Balazs-Lab/Escapability>.

984

985 **Viral Diversity and Variant Conservation Analysis.** Similar to the envelope escape
986 mutation analysis, sequencing reads were filtered for quality using fastp¹⁰⁶ and aligned
987 to a reference sequence specific to the viral strain under analysis using Bowtie2¹⁰⁷. The
988 alignments were sorted and indexed using samtools¹⁰⁸. SNVs were called using
989 LoFreq¹¹¹. The heterogeneity of each sample was determined using the SNV data to

990 calculate the average Shannon entropy across all sites in the viral envelope, as
991 performed previously^{112,113}. The Shannon entropy at each site in the genome was
992 calculated by taking the sum of the frequency of each SNV times the natural log of the
993 SNV frequency (frequency * ln(frequency)), multiplied by negative one. The analysis
994 pipeline was run using snakemake¹¹⁰ and is available online at
995 <https://github.com/Balazs-Lab/Escapability>. For the comparison of viral diversification to
996 the LANL database, the HIV1 FLT 2022 Env Protein Alignment was downloaded from
997 LANL and filtered for subtype B sequences. All positions were numbered based on their
998 HIV_{HXB2} alignment and only positions shared across HIV_{REJO.c}, HIV_{JR-CSF}, and the LANL
999 database were analyzed. The average frequency of each HIV_{REJO.c} and HIV_{JR-CSF} amino
1000 acid was binned by rounding the log₁₀ transformed frequency using the MROUND()
1001 function in excel. These grouped bins were then used to evaluate the LANL amino acid
1002 frequency data, of which the average and standard deviation were calculated using the
1003 Excel Pivot Table functions.

1004
1005 **Construction of HIV mutants.** Individual mutations were introduced into the parental
1006 IMC vectors expressing the molecular clone using overlapping PCR with primers
1007 incorporating the desired mutations. After amplification of the *env* or *pol* gene with the
1008 mutagenesis primers using KOD Hot Start Master mix (EMD Millipore, Cat#71975-3) or
1009 Q5 Hot Start Master Mix (NEB, Cat#M0493L), the PCR product was purified by gel
1010 extraction (Promega, Cat#A9282) and cloned by homologous recombination into the
1011 appropriate recipient parental backbone vector using the In-Fusion HD cloning kit
1012 (Clontech, Cat#639650). The ligation product was transformed into DH5 λ (Zymo,

1013 Cat#T3009) or SURE2 (Agilent, Cat#200152) competent cells, and positive clones were
1014 full plasmid sequenced.

1015

1016 ***In vitro* neutralization assay.** To compare the sensitivity of point-mutant viruses to
1017 bNAb antibody neutralization, each mutant was produced by transient transfection of
1018 HEK 293T cells as described above and viral supernatants were titered by TCID₅₀ on
1019 TZM-bl cells. Then, neutralization assays were performed using a TECAN Fluent 780
1020 liquid handler by mixing 20 μ L of virus with 20 μ L of 2.5-fold serial dilutions of each
1021 antibody and incubating this mixture at 25°C for 1 h. After the incubation, antibody-virus
1022 mixtures were added to previously plated 6,000 TZM-bl cells with 75 μ g per mL of DEAE
1023 dextran (Sigma, Cat#D9885-10G) and incubated at 37°C for 48 h. Cells were then lysed
1024 using luciferin-containing buffer¹¹⁴ and Luciferase signal was quantified using a
1025 PHERAstar FSX plate reader (BMG LabTech). Percentage of infection was determined
1026 by calculating the difference in luminescence between test wells (cells with virus and
1027 antibody) and cell control wells (cells only) and dividing this value by the difference
1028 between the virus control wells (cells with virus) and the cell control wells. These values
1029 were plotted against antibody concentrations and fitted into a four-parameter nonlinear
1030 regression to calculate IC₅₀ and Hill Slope using GraphPad Prism v10.2.2.

1031

1032 **Determination of viral fitness.** *In silico* viral growth curves were generated with growth
1033 rates derived from *in vitro* QuickFit assays as described previously⁶⁵. Briefly,
1034 commercially acquired human PBMCs (AllCells, Cat#PB004F; Lot #A2857) were
1035 thawed and CD4⁺ T cells were isolated using the EasySepTM Human CD4⁺ T Cell

1036 Isolation Kit (STEMCELL Technologies, Cat#17952). Naive CD4⁺ T cells were
1037 resuspended in complete RPMI 1640 (Corning, Cat#36750) (cRPMI; 10% FBS and 1%
1038 penicillin/streptomycin) supplemented with 10 ng/mL recombinant IL-2 (R&D Systems,
1039 Cat#202-IL-050) and 4 µg/mL of anti-CD28 antibody (Biolegend, Cat#302934 - RRID:
1040 AB_11148949), plated in 24-well plates coated with 2 µg/mL of anti-CD3 antibody
1041 (Biolegend, Cat#317326 - RRID: AB_11150592), and incubated at 37°C and 5% CO₂
1042 for 4 days. Cells were then pooled and incubated for another 4 days before use.
1043 Purification and activation efficiency were evaluated by flow cytometry. Previously
1044 titered viruses were three-fold serially diluted and then added to 50 µL of activated CD4⁺
1045 (1x10⁵ cells per well) plated in a 96 round-well plate. Viruses and cells were
1046 spinoculated at 1,200 RPM for 1 hour at 20°C, and then incubated for 24 hours at 37°C
1047 with 5% CO₂. Cells were washed five times with 200 µL of cRPMI, resuspended in 200
1048 µL of fresh cRPMI plus 10 ng/mL of IL-2 and finally transferred to a 96 flat-well plate.
1049 Plates were incubated at 37°C with 5% CO₂ for 6 days. 32 µL of supernatant were
1050 collected daily and fresh media was added to replace the volume. Collected
1051 supernatants were immediately RNA extracted using QuickExtract DNA Extraction
1052 Solution (Biosearch Technologies, Cat#QE09050)⁶⁵. Extracted RNA was used to
1053 determine viral loads by RT-qPCR as stated above. Viral loads were used to determine
1054 growth rates and generate *in silico* growth curves using a half-maximal equation in
1055 MonolixSuite 2023R1 (Lixoft).

1056

1057 **Escape Barrier Analysis.** Sample specific sequencing data from the Envelope Escape
1058 Mutant Analysis was used to generate sample specific escape haplotypes. Sequences

1059 from each escaped sample were filtered for a minimum mutation frequency of at least
1060 10%, and then manually classified into an escape path using the decision tree
1061 algorithms described in Figure S3 and Figure S8. The area under the curve (AUC) for
1062 each escape path was calculated from the IC₅₀ values and relative fitness cost data
1063 using the trapz function in the pracma¹¹⁵ package in R (RRID:SCR_001905)¹¹⁶. The
1064 calculation began at the WT coordinate for each virus and summed the AUC up to the
1065 position of the escaped haplotype. If the escape IC₅₀ was greater than 200 µg/mL (the
1066 limit of detection), then the X-coordinate for IC₅₀ was assigned a value of 200 µg/mL,
1067 otherwise the IC₅₀ of the escape haplotype was used. For all samples (except the HIV_{RV}
1068 escape) only escape paths A and B were used for the Escape Barrier score analysis
1069 because they represented at least 50% of the escape paths. The raw AUC value for
1070 each path was scaled by the relative proportions of the paths (Relative Fraction value in
1071 Figure S4D and S8E). The path scaled AUC scores were then summed to create the
1072 Escape Barrier Score. The scripts and coordinate files are available at
1073 <https://github.com/Balazs-Lab/Escapability>.

1074

1075 **Passive transfer experiments.** Humanized BLT mice were infected with HIV_{JR-CSF} as
1076 described above, and 4 weeks later were passively infused with 25µg per gram of body
1077 weight of a control antibody (2A10), N6 or PGDM1400, weekly for 12 weeks. Blood was
1078 collected weekly to determine viral loads and bNAb levels in serum.

1079

1080 ***In vivo* antiretroviral selection-pressure of HIV.** To select for ART-escaping HIV
1081 mutations, individual tablets of emtricitabine (EmtrivaTM (FTC), Gilead Sciences) or

1082 Tenvir (tenofovir disoproxil fumarate (TDF); Cipla LTD) were crushed into a fine powder
1083 and manufactured with TestDiet 5B1Q feed (Modified LabDiet 5058 with 0.12%
1084 amoxicillin) into powder. The final concentration of these drugs in the stock food was
1085 2.3% (4500 mg/kg TDF, 3000 mg/kg FTC)²⁸. To achieve a comparable human dose
1086 (i.e., 200 mg FTC, 300 mg TDF), the Reagan-Shaw formula¹¹⁷ was used to translate the
1087 dose from human to mouse with the assumption that an average mouse weighs 20 g
1088 and a human weighs 60 kg. On average mice ate 2 g of food per day and the powdered
1089 ART-food was diluted in normal TestDiet 5B1Q food to achieve ingestion of the
1090 corresponding target human dose per day. BLT mice were infected with HIV_{REJO.c} as
1091 previously stated and over the course of 6 weeks, we titrated the dose of ART drug in
1092 their food, from 1% to 100% of the standard human equivalent dose (1% for weeks 2
1093 and 3, 10% for weeks 4 through 6, 100% until week 10). At week 8, mice were injected
1094 with AAV expressing VRC07 or Luciferase as stated above. At week 10, ART treatment
1095 was interrupted. Blood samples were collected weekly to evaluate viral loads and
1096 antibody expression.

1097 **References**

- 1098 1. Landovitz, R.J., Scott, H., and Deeks, S.G. (2023). Prevention, treatment and cure of HIV
1099 infection. *Nat Rev Microbiol* 21, 657–670. <https://doi.org/10.1038/s41579-023-00914-1>.
- 1100 2. Bekker, L.-G., Das, M., Abdool Karim, Q., Ahmed, K., Batting, J., Brumskine, W., Gill, K.,
1101 Harkoo, I., Jaggernath, M., Kigozi, G., et al. (2024). Twice-Yearly Lenacapavir or Daily F/TAF
1102 for HIV Prevention in Cisgender Women. *N Engl J Med* 391, 1179–1192.
1103 <https://doi.org/10.1056/NEJMoa2407001>.
- 1104 3. Jewell, B.L., Mudimu, E., Stover, J., Ten Brink, D., Phillips, A.N., Smith, J.A., Martin-Hughes,
1105 R., Teng, Y., Glaubius, R., Mahiane, S.G., et al. (2020). Potential effects of disruption to HIV
1106 programmes in sub-Saharan Africa caused by COVID-19: results from multiple
1107 mathematical models. *The Lancet HIV* 7, e629–e640. [https://doi.org/10.1016/S2352-3018\(20\)30211-3](https://doi.org/10.1016/S2352-3018(20)30211-3).
- 1109 4. McCoy, L.E., and Burton, D.R. (2017). Identification and specificity of broadly neutralizing
1110 antibodies against HIV. *Immunological reviews* 275, 11–20.
1111 <https://doi.org/10.1111/imr.12484>.
- 1112 5. Sajadi, M.M., Dashti, A., Rikhtegaran Tehrani, Z., Tolbert, W.D., Seaman, M.S., Ouyang, X.,
1113 Gohain, N., Pazgier, M., Kim, D., Cavet, G., et al. (2018). Identification of Near-Pan-
1114 neutralizing Antibodies against HIV-1 by Deconvolution of Plasma Humoral Responses.
1115 *Cell*. <https://doi.org/10.1016/j.cell.2018.03.061>.
- 1116 6. deCamp, A., Hraber, P., Bailer, R.T., Seaman, M.S., Ochsenbauer, C., Kappes, J., Gottardo,
1117 R., Edlefsen, P., Self, S., Tang, H., et al. (2014). Global Panel of HIV-1 Env Reference Strains
1118 for Standardized Assessments of Vaccine-Elicited Neutralizing Antibodies. *J Virol* 88, 2489–
1119 2507. <https://doi.org/10.1128/JVI.02853-13>.
- 1120 7. Sok, D., and Burton, D.R. (2018). Recent progress in broadly neutralizing antibodies to HIV.
1121 *Nat Immunol* 19, 1179–1188. <https://doi.org/10.1038/s41590-018-0235-7>.
- 1122 8. Wu, X., Zhang, Z., Schramm, C.A., Joyce, M.G., Kwon, Y.D., Zhou, T., Sheng, Z., Zhang, B.,
1123 O'Dell, S., McKee, K., et al. (2015). Maturation and Diversity of the VRC01-Antibody
1124 Lineage over 15 Years of Chronic HIV-1 Infection. *Cell* 161, 470–485.
1125 <https://doi.org/10.1016/j.cell.2015.03.004>.
- 1126 9. Diskin, R., Scheid, J.F., Marcovecchio, P.M., West, A.P., Klein, F., Gao, H., Gnanapragasam,
1127 P.N.P., Abadir, A., Seaman, M.S., Nussenzweig, M.C., et al. (2011). Increasing the Potency
1128 and Breadth of an HIV Antibody by Using Structure-Based Rational Design. *Science*.
1129 <https://doi.org/10.1126/science.1213782>.
- 1130 10. Doria-Rose, N.A., Bhiman, J.N., Roark, R.S., Schramm, C.A., Gorman, J., Chuang, G.-Y.,
1131 Pancera, M., Cale, E.M., Ernandes, M.J., Louder, M.K., et al. (2016). New Member of the
1132 V1V2-Directed CAP256-VRC26 Lineage That Shows Increased Breadth and Exceptional

1133 Potency. *J Virol* 90, 76–91. <https://doi.org/10.1128/JVI.01791-15>.

1134 11. Balasz, A.B., Ouyang, Y., Hong, C.M., Chen, J., Nguyen, S.M., Rao, D.S., An, D.S., and
1135 Baltimore, D. (2014). Vectored immunoprophylaxis protects humanized mice from
1136 mucosal HIV transmission. *Nature Medicine* 20, 296–300.
1137 <https://doi.org/10.1038/nm.3471>.

1138 12. Balasz, A.B., Chen, J., Hong, C.M., Rao, D.S., Yang, L., and Baltimore, D. (2011). Antibody-
1139 based protection against HIV infection by vectored immunoprophylaxis. *Nature* 481, 81–
1140 84. <https://doi.org/10.1038/nature10660>.

1141 13. Deruaz, M., Moldt, B., Le, K.M., Power, K.A., Vrbanac, V.D., Tanno, S., Ghebremichael,
1142 M.S., Allen, T.M., Tager, A.M., Burton, D.R., et al. (2016). Protection of Humanized Mice
1143 From Repeated Intravaginal HIV Challenge by Passive Immunization: A Model for Studying
1144 the Efficacy of Neutralizing Antibodies In Vivo. *The Journal of Infectious Diseases* 214,
1145 612–616. <https://doi.org/10.1093/infdis/jiw203>.

1146 14. Stoddart, C.A., Galkina, S.A., Joshi, P., Kosikova, G., Long, B.R., Maidji, E., Moreno, M.E.,
1147 Rivera, J.M., Sanford, U.R., Sloan, B., et al. (2014). Efficacy of broadly neutralizing
1148 monoclonal antibody PG16 in HIV-infected humanized mice. *Virology* 462-463C, 115–125.
1149 <https://doi.org/10.1016/j.virol.2014.05.036>.

1150 15. Veselinovic, M., Neff, C.P., Mulder, L.R., and Akkina, R. (2012). Topical gel formulation of
1151 broadly neutralizing anti-HIV-1 monoclonal antibody VRC01 confers protection against
1152 HIV-1 vaginal challenge in a humanized mouse model. *Virology* 432, 505–510.
1153 <https://doi.org/10.1016/j.virol.2012.06.025>.

1154 16. Brady, J.M., Phelps, M., MacDonald, S.W., Lam, E.C., Nitido, A., Parsons, D., Boutros, C.L.,
1155 Deal, C.E., Garcia-Beltran, W.F., Tanno, S., et al. (2022). Antibody-mediated prevention of
1156 vaginal HIV transmission is dictated by IgG subclass in humanized mice. *Sci. Transl. Med.*
1157 14, eabn9662. <https://doi.org/10.1126/scitranslmed.abn9662>.

1158 17. Rudicell, R.S., Kwon, Y.D., Ko, S.-Y., Pegu, A., Louder, M.K., Georgiev, I.S., Wu, X., Zhu, J.,
1159 Boyington, J.C., Chen, X., et al. (2014). Enhanced potency of a broadly neutralizing HIV-1
1160 antibody in vitro improves protection against lentiviral infection in vivo. *Journal of Virology*
1161 88, 12669–12682. <https://doi.org/10.1128/JVI.02213-14>.

1162 18. Julg, B., Liu, P.-T., Wagh, K., Fischer, W.M., Abbink, P., Mercado, N.B., Whitney, J.B.,
1163 Nkolola, J.P., McMahan, K., Tartaglia, L.J., et al. (2017). Protection against a mixed SHIV
1164 challenge by a broadly neutralizing antibody cocktail. *Science translational medicine* 9,
1165 eaao4235. <https://doi.org/10.1126/scitranslmed.aao4235>.

1166 19. Julg, B., Tartaglia, L.J., Keele, B.F., Wagh, K., Pegu, A., Sok, D., Abbink, P., Schmidt, S.D.,
1167 Wang, K., Chen, X., et al. (2017). Broadly neutralizing antibodies targeting the HIV-1
1168 envelope V2 apex confer protection against a clade C SHIV challenge. *Science translational*

1169 medicine 9, eaal1321. <https://doi.org/10.1126/scitranslmed.aal1321>.

1170 20. Julg, B., Sok, D., Schmidt, S.D., Abbink, P., Newman, R.M., Broge, T., Linde, C., Nkolola, J.,
1171 Le, K., Su, D., et al. (2017). Protective Efficacy of Broadly Neutralizing Antibodies with
1172 Incomplete Neutralization Activity against Simian-Human Immunodeficiency Virus in
1173 Rhesus Monkeys. *Journal of Virology* 91, e01187-17. <https://doi.org/10.1128/JVI.01187-17>.

1175 21. Moldt, B., Rakasz, E.G., Schultz, N., Chan-Hui, P.-Y., Swiderek, K., Weisgrau, K.L.,
1176 Piaskowski, S.M., Bergman, Z., Watkins, D.I., Poignard, P., et al. (2012). Highly potent HIV-
1177 specific antibody neutralization in vitro translates into effective protection against
1178 mucosal SHIV challenge in vivo. *Proceedings of the National Academy of Sciences of the*
1179 *United States of America* 109, 18921–18925. <https://doi.org/10.1073/pnas.1214785109>.

1180 22. Corey, L., Gilbert, P.B., Juraska, M., Montefiori, D.C., Morris, L., Karuna, S.T., Edupuganti,
1181 S., Mgodi, N.M., deCamp, A.C., Rudnicki, E., et al. (2021). Two Randomized Trials of
1182 Neutralizing Antibodies to Prevent HIV-1 Acquisition. *N Engl J Med* 384, 1003–1014.
1183 <https://doi.org/10.1056/NEJMoa2031738>.

1184 23. Mayer, K.H., Seaton, K.E., Huang, Y., Grunenberg, N., Isaacs, A., Allen, M., Ledgerwood,
1185 J.E., Frank, I., Sobieszczky, M.E., Baden, L.R., et al. (2017). Safety, pharmacokinetics, and
1186 immunological activities of multiple intravenous or subcutaneous doses of an anti-HIV
1187 monoclonal antibody, VRC01, administered to HIV-uninfected adults: Results of a phase 1
1188 randomized trial. *PLoS medicine* 14, e1002435.
1189 <https://doi.org/10.1371/journal.pmed.1002435>.

1190 24. Gilbert, P.B., Huang, Y., deCamp, A.C., Karuna, S., Zhang, Y., Magaret, C.A., Giorgi, E.E.,
1191 Korber, B., Edlefsen, P.T., Rossenhan, R., et al. (2022). Neutralization titer biomarker for
1192 antibody-mediated prevention of HIV-1 acquisition. *Nat Med* 28, 1924–1932.
1193 <https://doi.org/10.1038/s41591-022-01953-6>.

1194 25. Badamchi-Zadeh, A., Tartaglia, L.J., Abbink, P., Bricault, C.A., Liu, P.-T., Boyd, M., Kirilova,
1195 M., Mercado, N.B., Nanayakkara, O.S., Vrbanac, V.D., et al. (2018). Therapeutic Efficacy of
1196 Vectored PGT121 Gene Delivery in HIV-1-Infected Humanized Mice. *Journal of Virology* 92,
1197 118. <https://doi.org/10.1128/JVI.01925-17>.

1198 26. Barouch, D.H., Whitney, J.B., Moldt, B., Klein, F., Oliveira, T.Y., Liu, J., Stephenson, K.E.,
1199 Chang, H.-W., Shekhar, K., Gupta, S., et al. (2013). Therapeutic efficacy of potent
1200 neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys.
1201 *Nature*, 1–16. <https://doi.org/10.1038/nature12744>.

1202 27. Borducchi, E.N., Liu, J., Nkolola, J.P., Cadena, A.M., Yu, W.-H., Fischinger, S., Broge, T.,
1203 Abbink, P., Mercado, N.B., Chandrashekhar, A., et al. (2018). Antibody and TLR7 agonist
1204 delay viral rebound in SHIV-infected monkeys. *Nature* 278, 1295.
1205 <https://doi.org/10.1038/s41586-018-0600-6>.

1206 28. Halper-Stromberg, A., Lu, C.-L., Klein, F., Horwitz, J.A., Bournazos, S., Nogueira, L.,
1207 Eisenreich, T.R., Liu, C., Gazumyan, A., Schaefer, U., et al. (2014). Broadly Neutralizing
1208 Antibodies and Viral Inducers Decrease Rebound from HIV-1 Latent Reservoirs in
1209 Humanized Mice. *Cell*, 1–11. <https://doi.org/10.1016/j.cell.2014.07.043>.

1210 29. Horwitz, J.A., Halper-Stromberg, A., Mouquet, H., Gitlin, A.D., Tretiakova, A., Eisenreich,
1211 T.R., Malbec, M., Gravemann, S., Billerbeck, E., Dorner, M., et al. (2013). HIV-1 suppression
1212 and durable control by combining single broadly neutralizing antibodies and antiretroviral
1213 drugs in humanized mice. *Proceedings of the National Academy of Sciences of the United
1214 States of America*. <https://doi.org/10.1073/pnas.1315295110>.

1215 30. Julg, B., Pegu, A., Abbink, P., Liu, J., Brinkman, A., Molloy, K., Mojta, S., Chandrashekhar, A.,
1216 Callow, K., Wang, K., et al. (2017). Virological Control by the CD4-Binding Site Antibody N6
1217 in Simian-Human Immunodeficiency Virus-Infected Rhesus Monkeys. *Journal of Virology*
1218 91, e00498-17. <https://doi.org/10.1128/JVI.00498-17>.

1219 31. Klein, F., Halper-Stromberg, A., Horwitz, J.A., Gruell, H., Scheid, J.F., Bournazos, S.,
1220 Mouquet, H., Spatz, L.A., Diskin, R., Abadir, A., et al. (2012). HIV therapy by a combination
1221 of broadly neutralizing antibodies in humanized mice. *Nature* 492, 118–122.
1222 <https://doi.org/10.1038/nature11604>.

1223 32. Shingai, M., Nishimura, Y., Klein, F., Mouquet, H., Donau, O.K., Plishka, R., Buckler-White,
1224 A., Seaman, M., Piatak, M., Lifson, J.D., et al. (2013). Antibody-mediated immunotherapy
1225 of macaques chronically infected with SHIV suppresses viraemia. *Nature*, 1–15.
1226 <https://doi.org/10.1038/nature12746>.

1227 33. Bar, K.J., Sneller, M.C., Harrison, L.J., Justement, J.S., Overton, E.T., Petrone, M.E., Salantes,
1228 D.B., Seamon, C.A., Scheinfeld, B., Kwan, R.W., et al. (2016). Effect of HIV Antibody VRC01
1229 on Viral Rebound after Treatment Interruption. *The New England journal of medicine* 375,
1230 2037–2050. <https://doi.org/10.1056/NEJMoa1608243>.

1231 34. Caskey, M., Klein, F., Lorenzi, J.C.C., Seaman, M.S., West, A.P., Buckley, N., Kremer, G.,
1232 Nogueira, L., Braunschweig, M., Scheid, J.F., et al. (2015). Viraemia suppressed in HIV-1-
1233 infected humans by broadly neutralizing antibody 3BNC117. *Nature*.
1234 <https://doi.org/10.1038/nature14411>.

1235 35. Caskey, M., Schoofs, T., Gruell, H., Settler, A., Karagounis, T., Kreider, E.F., Murrell, B.,
1236 Pfeifer, N., Nogueira, L., Oliveira, T.Y., et al. (2017). Antibody 10-1074 suppresses viremia
1237 in HIV-1-infected individuals. *Nature Medicine* 23, 185–191.
1238 <https://doi.org/10.1038/nm.4268>.

1239 36. Lynch, R.M., Wong, P., Tran, L., O'Dell, S., Nason, M.C., Li, Y., Wu, X., and Mascola, J.R.
1240 (2015). HIV-1 fitness cost associated with escape from the VRC01 class of CD4 binding site
1241 neutralizing antibodies. *Journal of Virology* 89, 4201–4213.
1242 <https://doi.org/10.1128/JVI.03608-14>.

1243 37. Mehandru, S., Vcelar, B., Wrin, T., Stiegler, G., Joos, B., Mohri, H., Boden, D., Galovich, J.,
1244 Tennen-Racz, K., Racz, P., et al. (2007). Adjunctive passive immunotherapy in human
1245 immunodeficiency virus type 1-infected individuals treated with antiviral therapy during
1246 acute and early infection. *Journal of Virology* *81*, 11016–11031.
1247 <https://doi.org/10.1128/JVI.01340-07>.

1248 38. Mendoza, P., Gruell, H., Nogueira, L., Pai, J.A., Butler, A.L., Millard, K., Lehmann, C., Suárez,
1249 I., Oliveira, T.Y., Lorenzi, J.C.C., et al. (2018). Combination therapy with anti-HIV-1
1250 antibodies maintains viral suppression. *Nature*, 1–21. <https://doi.org/10.1038/s41586-018-0531-2>.

1252 39. Trkola, A., Kuster, H., Rusert, P., Joos, B., Fischer, M., Leemann, C., Manrique, A., Huber,
1253 M., Rehr, M., Oxenius, A., et al. (2005). Delay of HIV-1 rebound after cessation of
1254 antiretroviral therapy through passive transfer of human neutralizing antibodies. *Nature Medicine* *11*, 615–622. <https://doi.org/10.1038/nm1244>.

1256 40. Happe, M., Lynch, R.M., Fichtenbaum, C.J., Heath, S.L., Koletar, S.L., Landovitz, R.J., Presti,
1257 R.M., Santana-Bagur, J.L., Tressler, R.L., Holman, L.A., et al. (2025). Virologic effects of
1258 broadly neutralizing antibodies VRC01LS and VRC07-523LS on chronic HIV-1 infection. *JCI Insight* *10*, e181496. <https://doi.org/10.1172/jci.insight.181496>.

1260 41. Bar-On, Y., Gruell, H., Schoofs, T., Pai, J.A., Nogueira, L., Butler, A.L., Millard, K., Lehmann,
1261 C., rez, I.S. x000E1, Oliveira, T.Y., et al. (2018). Safety and antiviral activity of combination
1262 HIV-1 broadly neutralizing antibodies in viremic individuals. *Nature Medicine*, 1–13.
1263 <https://doi.org/10.1038/s41591-018-0186-4>.

1264 42. Julg, B., Walker-Sperling, V.E.K., Wagh, K., Aid, M., Stephenson, K.E., Zash, R., Liu, J.,
1265 Nkolola, J.P., Hoyt, A., Castro, M., et al. (2024). Safety and antiviral effect of a triple
1266 combination of HIV-1 broadly neutralizing antibodies: a phase 1/2a trial. *Nat Med*.
1267 <https://doi.org/10.1038/s41591-024-03247-5>.

1268 43. Ledgerwood, J.E., Coates, E.E., Yamshchikov, G., Saunders, J.G., Holman, L., Enama, M.E.,
1269 DeZure, A., Lynch, R., Gordon, I., Plummer, S., et al. (2015). Safety, Pharmacokinetics, and
1270 Neutralization of the Broadly Neutralizing HIV-1 Human Monoclonal Antibody VRC01 in
1271 Healthy Adults. *Clinical and experimental immunology*. <https://doi.org/10.1111/cei.12692>.

1272 44. Lewis, A.D., Chen, R., Montefiori, D.C., Johnson, P.R., and Clark, K.R. (2002). Generation of
1273 Neutralizing Activity against Human Immunodeficiency Virus Type 1 in Serum by Antibody
1274 Gene Transfer. *Journal of Virology* *76*, 8769–8775.
1275 <https://doi.org/10.1128/JVI.76.17.8769-8775.2002>.

1276 45. Fang, J., Qian, J.-J., Yi, S., Harding, T.C., Tu, G.H., VanRoey, M., and Jooss, K. (2005). Stable
1277 antibody expression at therapeutic levels using the 2A peptide. *Nature Biotechnology* *23*,
1278 584–590. <https://doi.org/10.1038/nbt1087>.

1279 46. Fuchs, S.P., Martinez-Navio, J.M., Piatak, M., Lifson, J.D., Gao, G., and Desrosiers, R.C.
1280 (2015). AAV-Delivered Antibody Mediates Significant Protective Effects against SIVmac239
1281 Challenge in the Absence of Neutralizing Activity. *PLoS Pathogens* 11, e1005090.
1282 <https://doi.org/10.1371/journal.ppat.1005090>.

1283 47. Gardner, M.R., Kattenhorn, L.M., Kondur, H.R., von Schaewen, M., Dorfman, T., Chiang,
1284 J.J., Haworth, K.G., Decker, J.M., Alpert, M.D., Bailey, C.C., et al. (2015). AAV-expressed
1285 eCD4-Ig provides durable protection from multiple SHIV challenges. *Nature*, 1–16.
1286 <https://doi.org/10.1038/nature14264>.

1287 48. Brady, J.M., Baltimore, D., and Balazs, A.B. (2017). Antibody gene transfer with adeno-
1288 associated viral vectors as a method for HIV prevention. *Immunological reviews* 275, 324–
1289 333. <https://doi.org/10.1111/imr.12478>.

1290 49. Saunders, K.O., Wang, L., Joyce, M.G., Yang, Z.-Y., Balazs, A.B., Cheng, C., Ko, S.-Y., Kong,
1291 W.-P., Rudicell, R.S., Georgiev, I.S., et al. (2015). Broadly Neutralizing Human
1292 Immunodeficiency Virus Type 1 Antibody Gene Transfer Protects Nonhuman Primates
1293 from Mucosal Simian-Human Immunodeficiency Virus Infection. *Journal of Virology* 89,
1294 8334–8345. <https://doi.org/10.1128/JVI.00908-15>.

1295 50. Welles, H.C., Jennewein, M.F., Mason, R.D., Narpala, S., Wang, L., Cheng, C., Zhang, Y.,
1296 Todd, J.-P., Lifson, J.D., Balazs, A.B., et al. (2018). Vectored delivery of anti-SIV envelope
1297 targeting mAb via AAV8 protects rhesus macaques from repeated limiting dose intrarectal
1298 swarm SIVsmE660 challenge. *PLoS Pathogens* 14, e1007395.
1299 <https://doi.org/10.1371/journal.ppat.1007395>.

1300 51. Casazza, J.P., Cale, E.M., Narpala, S., Yamshchikov, G.V., Coates, E.E., Hendel, C.S., Novik,
1301 L., Holman, L.A., Widge, A.T., Apte, P., et al. (2022). Safety and tolerability of AAV8 delivery
1302 of a broadly neutralizing antibody in adults living with HIV: a phase 1, dose-escalation trial.
1303 *Nat Med*. <https://doi.org/10.1038/s41591-022-01762-x>.

1304 52. Fuchs, S.P., Mondragon, P.G., Zabizhin, R., Tomer, S., Wang, L., Cook, E., Dudley, D.M.,
1305 Weisgrau, K.L., Furlott, J., Coonen, J., et al. (2025). Transient rapamycin treatment avoids
1306 unwanted host immune responses toward AAV-delivered anti-HIV antibodies. *Nat
1307 Commun* 16, 8906. <https://doi.org/10.1038/s41467-025-63970-6>.

1308 53. Ardesir, A., O'Hagan, D., Mehta, I., Shandilya, S., Hopkins, L.L.J., Adamson, L., Kuroda,
1309 M.J., Hahn, P.A., da Costa, L.A.B., Fuchs, S.P., et al. (2025). Determinants of successful
1310 AAV-vectored delivery of HIV-1 bNAbs in early life. *Nature* 645, 1020–1028.
1311 <https://doi.org/10.1038/s41586-025-09330-2>.

1312 54. Thavarajah, J.J., Hønge, B.L., and Wejse, C.M. (2024). The Use of Broadly Neutralizing
1313 Antibodies (bNAbs) in HIV-1 Treatment and Prevention. *Viruses* 16, 911.
1314 <https://doi.org/10.3390/v16060911>.

1315 55. Koyanagi, Y., Miles, S., Mitsuyasu, R.T., Merrill, J.E., Vinters, H.V., and Chen, I.S. (1987).
1316 Dual infection of the central nervous system by AIDS viruses with distinct cellular tropisms.
1317 *Science* **236**, 819–822.

1318 56. Ochsenbauer, C., Edmonds, T.G., Ding, H., Keele, B.F., Decker, J., Salazar, M.G., Salazar-
1319 Gonzalez, J.F., Shattock, R., Haynes, B.F., Shaw, G.M., et al. (2012). Generation of
1320 Transmitted/Founder HIV-1 Infectious Molecular Clones and Characterization of Their
1321 Replication Capacity in CD4 T Lymphocytes and Monocyte-Derived Macrophages. *J Virol*
1322 **86**, 2715–2728. <https://doi.org/10.1128/JVI.06157-11>.

1323 57. McCarthy, M., He, J., and Wood, C. (1998). HIV-1 Strain-Associated Variability in Infection
1324 of Primary Neuroglia. *J Neurovirol* **4**, 80–89.
1325 <https://doi.org/10.3109/13550289809113484>.

1326 58. Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding, and selection in
1327 evolution. *Proc. In Sixth Int. Cong. Genet* **1**, 356–366.

1328 59. Melkus, M.W., Estes, J.D., Padgett-Thomas, A., Gatlin, J., Denton, P.W., Othieno, F.A.,
1329 Wege, A.K., Haase, A.T., and Garcia, J.V. (2006). Humanized mice mount specific adaptive
1330 and innate immune responses to EBV and TSST-1. *Nature Medicine* **12**, 1316–1322.
1331 <https://doi.org/10.1038/nm1431>.

1332 60. Baenziger, S., Tussiwand, R., Schlaepfer, E., Mazzucchelli, L., Heikenwalder, M., Kurrer,
1333 M.O., Behnke, S., Frey, J., Oxenius, A., Joller, H., et al. (2006). Disseminated and sustained
1334 HIV infection in CD34+ cord blood cell-transplanted Rag2-/-gamma c-/- mice. *Proceedings
1335 of the National Academy of Sciences of the United States of America* **103**, 15951–15956.
1336 <https://doi.org/10.1073/pnas.0604493103>.

1337 61. Sun, Z., Denton, P.W., Estes, J.D., Othieno, F.A., Wei, B.L., Wege, A.K., Melkus, M.W.,
1338 Padgett-Thomas, A., Zupancic, M., Haase, A.T., et al. (2007). Intrarectal transmission,
1339 systemic infection, and CD4+ T cell depletion in humanized mice infected with HIV-1. *The
1340 Journal of experimental medicine* **204**, 705–714. <https://doi.org/10.1084/jem.20062411>.

1341 62. Huang, J., Kang, B.H., Ishida, E., Zhou, T., Griesman, T., Sheng, Z., Wu, F., Doria-Rose, N.A.,
1342 Zhang, B., McKee, K., et al. (2016). Identification of a CD4-Binding-Site Antibody to HIV
1343 that Evolved Near-Pan Neutralization Breadth. *Immunity* **45**, 1108–1121.
1344 <https://doi.org/10.1016/j.immuni.2016.10.027>.

1345 63. Sok, D., van Gils, M.J., Pauthner, M., Julien, J.-P., Saye-Francisco, K.L., Hsueh, J., Briney, B.,
1346 Lee, J.H., Le, K.M., Lee, P.S., et al. (2014). Recombinant HIV envelope trimer selects for
1347 quaternary-dependent antibodies targeting the trimer apex. *Proceedings of the National
1348 Academy of Sciences of the United States of America* **111**, 17624–17629.
1349 <https://doi.org/10.1073/pnas.1415789111>.

1350 64. Webb, N.E., Montefiori, D.C., and Lee, B. (2015). Dose–response curve slope helps predict

1351 therapeutic potency and breadth of HIV broadly neutralizing antibodies. *Nat Commun* 6,
1352 8443. <https://doi.org/10.1038/ncomms9443>.

1353 65. Galvez, N.M.S., Sheehan, M.L., Lin, A.Z., Cao, Y., Lam, E.C., Jackson, A.M., and Balazs, A.B.
1354 (2024). QuickFit: A High-Throughput RT-qPCR-Based Assay to Quantify Viral Growth and
1355 Fitness In Vitro. *Viruses* 16, 1320. <https://doi.org/10.3390/v16081320>.

1356 66. Wainburg, M.A. (2004). The impact of the M184V substitution on drug resistance and viral
1357 fitness. *Expert Review of Anti-infective Therapy* 2, 147–151.
1358 <https://doi.org/10.1586/14787210.2.1.147>.

1359 67. Mendoza, P., Gruell, H., Nogueira, L., Pai, J.A., Butler, A.L., Millard, K., Lehmann, C., Suárez,
1360 I., Oliveira, T.Y., Lorenzi, J.C.C., et al. (2018). Combination therapy with anti-HIV-1
1361 antibodies maintains viral suppression. *Nature*, 1–21. <https://doi.org/10.1038/s41586-018-0531-2>.

1363 68. Julg, B., Stephenson, K.E., Wagh, K., Tan, S.C., Zash, R., Walsh, S., Ansel, J., Kanjilal, D.,
1364 Nkolola, J., Walker-Sperling, V.E.K., et al. (2022). Safety and antiviral activity of triple
1365 combination broadly neutralizing monoclonal antibody therapy against HIV-1: a phase 1
1366 clinical trial. *Nat Med* 28, 1288–1296. <https://doi.org/10.1038/s41591-022-01815-1>.

1367 69. Pegu, A., Xu, L., DeMouth, M.E., Fabozzi, G., March, K., Almasri, C.G., Cully, M.D., Wang, K.,
1368 Yang, E.S., Dias, J., et al. (2022). Potent anti-viral activity of a trispecific HIV neutralizing
1369 antibody in SHIV-infected monkeys. *Cell Reports* 38, 110199.
1370 <https://doi.org/10.1016/j.celrep.2021.110199>.

1371 70. Lynch, R.M., Boritz, E., Coates, E.E., DeZure, A., Madden, P., Costner, P., Enama, M.E.,
1372 Plummer, S., Holman, L., Hendel, C.S., et al. (2015). Virologic effects of broadly neutralizing
1373 antibody VRC01 administration during chronic HIV-1 infection. *Science translational
1374 medicine* 7, 319ra206-319ra206. <https://doi.org/10.1126/scitranslmed.aad5752>.

1375 71. Schoofs, T., Klein, F., Braunschweig, M., Kreider, E.F., Feldmann, A., Nogueira, L., Oliveira,
1376 T., Lorenzi, J.C.C., Parrish, E.H., Learn, G.H., et al. (2016). HIV-1 therapy with monoclonal
1377 antibody 3BNC117 elicits host immune responses against HIV-1. *Science*.
1378 <https://doi.org/10.1126/science.aaf0972>.

1379 72. Scheid, J.F., Horwitz, J.A., Bar-On, Y., Kreider, E.F., Lu, C.-L., Lorenzi, J.C.C., Feldmann, A.,
1380 Braunschweig, M., Nogueira, L., Oliveira, T., et al. (2016). HIV-1 antibody 3BNC117
1381 suppresses viral rebound in humans during treatment interruption. *Nature*.
1382 <https://doi.org/10.1038/nature18929>.

1383 73. Otsuka, Y., Schmitt, K., Quinlan, B.D., Gardner, M.R., Alfant, B., Reich, A., Farzan, M., and
1384 Choe, H. (2018). Diverse pathways of escape from all well-characterized VRC01-class
1385 broadly neutralizing HIV-1 antibodies. *PLoS Pathog* 14, e1007238.
1386 <https://doi.org/10.1371/journal.ppat.1007238>.

1387 74. Wise, M.C., Xu, Z., Tello-Ruiz, E., Beck, C., Trautz, A., Patel, A., Elliott, S.T.C., Chokkalingam,
1388 N., Kim, S., Kerkau, M.G., et al. (2020). In vivo delivery of synthetic DNA-encoded
1389 antibodies induces broad HIV-1–neutralizing activity. *Journal of Clinical Investigation* *130*,
1390 827–837. <https://doi.org/10.1172/JCI132779>.

1391 75. Wu, R.L., Houser, K.V., Gaudinski, M.R., Widge, A.T., Awan, S.F., Carter, C.A., Holman, L.A.,
1392 Saunders, J., Hendel, C.S., Eshun, A., et al. (2025). Safety and pharmacokinetics of N6LS, a
1393 broadly neutralising monoclonal antibody for HIV: a phase 1, open-label, dose-escalation
1394 study in healthy adults. *The Lancet HIV*. [https://doi.org/10.1016/s2352-3018\(25\)00041-4](https://doi.org/10.1016/s2352-3018(25)00041-4).

1395 76. Moore, P.L., Gray, E.S., Sheward, D., Madiga, M., Ranchobe, N., Lai, Z., Honnen, W.J.,
1396 Nonyane, M., Tumba, N., Hermanus, T., et al. (2011). Potent and broad neutralization of
1397 HIV-1 subtype C by plasma antibodies targeting a quaternary epitope including residues in
1398 the V2 loop. *J Virol* *85*, 3128–3141. <https://doi.org/10.1128/JVI.02658-10>.

1399 77. Radford, C.E., and Bloom, J.D. (2025). Comprehensive maps of escape mutations from
1400 antibodies 10-1074 and 3BNC117 for Envs from two divergent HIV strains. *bioRxiv*,
1401 2025.01.30.635715. <https://doi.org/10.1101/2025.01.30.635715>.

1402 78. Neher, R.A., and Leitner, T. (2010). Recombination Rate and Selection Strength in HIV
1403 Intra-patient Evolution. *PLoS Comput Biol* *6*, e1000660.
1404 <https://doi.org/10.1371/journal.pcbi.1000660>.

1405 79. Li, Y., O'Dell, S., Walker, L.M., Wu, X., Guenaga, J., Feng, Y., Schmidt, S.D., McKee, K.,
1406 Louder, M.K., Ledgerwood, J.E., et al. (2011). Mechanism of neutralization by the broadly
1407 neutralizing HIV-1 monoclonal antibody VRC01. *J Virol* *85*, 8954–8967.
1408 <https://doi.org/10.1128/JVI.00754-11>.

1409 80. Pegu, A., Borate, B., Huang, Y., Pauthner, M.G., Hessell, A.J., Julg, B., Doria-Rose, N.A.,
1410 Schmidt, S.D., Carpp, L.N., Cully, M.D., et al. (2019). A Meta-analysis of Passive
1411 Immunization Studies Shows that Serum-Neutralizing Antibody Titer Associates with
1412 Protection against SHIV Challenge. *Cell Host & Microbe* *26*, 336-346.e3.
1413 <https://doi.org/10.1016/j.chom.2019.08.014>.

1414 81. Fellinger, C.H., Gardner, M.R., Weber, J.A., Alfant, B., Zhou, A.S., and Farzan, M. (2019).
1415 eCD4-Ig limits HIV-1 escape more effectively than CD4-Ig or a broadly neutralizing
1416 antibody. *Journal of Virology*. <https://doi.org/10.1128/JVI.00443-19>.

1417 82. Bricault, C.A., Yusim, K., Seaman, M.S., Yoon, H., Theiler, J., Giorgi, E.E., Wagh, K., Theiler,
1418 M., Hraber, P., Macke, J.P., et al. (2019). HIV-1 Neutralizing Antibody Signatures and
1419 Application to Epitope-Targeted Vaccine Design. *Cell Host & Microbe* *25*, 59-72.e8.
1420 <https://doi.org/10.1016/j.chom.2018.12.001>.

1421 83. Asmal, M., Luedemann, C., Lavine, C.L., Mach, L.V., Balachandran, H., Brinkley, C., Denny,
1422 T.N., Lewis, M.G., Anderson, H., Pal, R., et al. (2015). Infection of monkeys by simian-

1423 human immunodeficiency viruses with transmitted/founder clade C HIV-1 envelopes.
1424 *Virology* 475, 37–45. <https://doi.org/10.1016/j.virol.2014.10.032>.

1425 84. Zhang, C., Zaman, L.A., Poluektova, L.Y., Gorantla, S., Gendelman, H.E., and Dash, P.K.
1426 (2023). Humanized Mice for Studies of HIV-1 Persistence and Elimination. *Pathogens* 12,
1427 879. <https://doi.org/10.3390/pathogens12070879>.

1428 85. Wodarz, D., and Nowak, M.A. (1998). The effect of different immune responses on the
1429 evolution of virulent CXCR4–tropic HIV. *Proc. R. Soc. Lond. B* 265, 2149–2158.
1430 <https://doi.org/10.1098/rspb.1998.0552>.

1431 86. Theys, K., Deforche, K., Beheydt, G., Moreau, Y., Van Laethem, K., Lemey, P., Camacho,
1432 R.J., Rhee, S.-Y., Shafer, R.W., Van Wijngaerden, E., et al. (2010). Estimating the
1433 individualized HIV-1 genetic barrier to resistance using a nelfinavir fitness landscape. *BMC
1434 Bioinformatics* 11, 409. <https://doi.org/10.1186/1471-2105-11-409>.

1435 87. Ganusov, V.V., and De Boer, R.J. (2006). Estimating Costs and Benefits of CTL Escape
1436 Mutations in SIV/HIV Infection. *PLoS Comput Biol* 2, e24.
1437 <https://doi.org/10.1371/journal.pcbi.0020024>.

1438 88. Read, E.L., Tovo-Dwyer, A.A., and Chakraborty, A.K. (2012). Stochastic effects are
1439 important in intrahost HIV evolution even when viral loads are high. *Proc. Natl. Acad. Sci.
1440 U.S.A.* 109, 19727–19732. <https://doi.org/10.1073/pnas.1206940109>.

1441 89. Batorsky, R., Sergeev, R.A., and Rouzine, I.M. (2014). The Route of HIV Escape from
1442 Immune Response Targeting Multiple Sites Is Determined by the Cost-Benefit Tradeoff of
1443 Escape Mutations. *PLoS Comput Biol* 10, e1003878.
1444 <https://doi.org/10.1371/journal.pcbi.1003878>.

1445 90. Gardner, E.M., Burman, W.J., Steiner, J.F., Anderson, P.L., and Bangsberg, D.R. (2009).
1446 Antiretroviral medication adherence and the development of class-specific antiretroviral
1447 resistance. *AIDS* 23, 1035–1046. <https://doi.org/10.1097/QAD.0b013e32832ba8ec>.

1448 91. Armstrong, K.L., Lee, T.-H., and Essex, M. (2011). Replicative Fitness Costs of
1449 Nonnucleoside Reverse Transcriptase Inhibitor Drug Resistance Mutations on HIV Subtype
1450 C. *Antimicrob Agents Chemother* 55, 2146–2153. <https://doi.org/10.1128/AAC.01505-10>.

1451 92. Hill, A.L., Rosenbloom, D.I.S., and Nowak, M.A. (2012). Evolutionary dynamics of HIV at
1452 multiple spatial and temporal scales. *J Mol Med* 90, 543–561.
1453 <https://doi.org/10.1007/s00109-012-0892-1>.

1454 93. Zanini, F., Puller, V., Brodin, J., Albert, J., and Neher, R.A. (2017). *In vivo* mutation rates and
1455 the landscape of fitness costs of HIV-1. *Virus Evolution* 3, vex003.
1456 <https://doi.org/10.1093/ve/vex003>.

1457 94. Meijers, M., Vanshylla, K., Gruell, H., Klein, F., and Lässig, M. (2021). Predicting *in vivo*

1458 escape dynamics of HIV-1 from a broadly neutralizing antibody. *Proc. Natl. Acad. Sci.*
1459 U.S.A. 118, e2104651118. <https://doi.org/10.1073/pnas.2104651118>.

1460 95. Cong, M., Heneine, W., and García-Lerma, J.G. (2007). The Fitness Cost of Mutations
1461 Associated with Human Immunodeficiency Virus Type 1 Drug Resistance Is Modulated by
1462 Mutational Interactions. *J Virol* 81, 3037–3041. <https://doi.org/10.1128/jvi.02712-06>.

1463 96. Gonelli, C.A., King, H.A.D., Ko, S., Fennessey, C.M., Iwamoto, N., Mason, R.D., Heimann, A.,
1464 Flebbe, D.R., Todd, J.-P., Foulds, K.E., et al. (2025). Antibody prophylaxis may mask
1465 subclinical SIV infections in macaques. *Nature* 639, 205–213.
1466 <https://doi.org/10.1038/s41586-024-08500-y>.

1467 97. Caskey, M. (2020). Broadly neutralizing antibodies for the treatment and prevention of HIV
1468 infection. *Curr Opin HIV AIDS* 15, 49–55.
1469 <https://doi.org/10.1097/COH.0000000000000600>.

1470 98. Han, C., Johnson, J., Dong, R., Kandula, R., Kort, A., Wong, M., Yang, T., Breheny, P.J.,
1471 Brown, G.D., and Haim, H. (2020). Key Positions of HIV-1 Env and Signatures of Vaccine
1472 Efficacy Show Gradual Reduction of Population Founder Effects at the Clade and Regional
1473 Levels. *mBio* 11, e00126-20. <https://doi.org/10.1128/mBio.00126-20>.

1474 99. Haddox, H.K., Dingens, A.S., Hilton, S.K., Overbaugh, J., and Bloom, J.D. (2018). Mapping
1475 mutational effects along the evolutionary landscape of HIV envelope. *eLife* 7.
1476 <https://doi.org/10.7554/eLife.34420>.

1477 100. DeLeon, O., Hodis, H., O'Malley, Y., Johnson, J., Salimi, H., Zhai, Y., Winter, E., Remec, C.,
1478 Eichelberger, N., Van Cleave, B., et al. (2017). Accurate predictions of population-level
1479 changes in sequence and structural properties of HIV-1 Env using a volatility-controlled
1480 diffusion model. *PLoS Biol* 15, e2001549. <https://doi.org/10.1371/journal.pbio.2001549>.

1481 101. Karpel, M.E., Boutwell, C.L., and Allen, T.M. (2015). BLT humanized mice as a small animal
1482 model of HIV infection. *Curr Opin Virol* 13, 75–80.
1483 <https://doi.org/10.1016/j.coviro.2015.05.002>.

1484 102. Seung, E., and Tager, A.M. (2013). Humoral immunity in humanized mice: a work in
1485 progress. *J Infect Dis* 208 Suppl 2, S155-159. <https://doi.org/10.1093/infdis/jit448>.

1486 103. McCoy, L.E., van Gils, M.J., Ozorowski, G., Messmer, T., Briney, B., Voss, J.E., Kulp, D.W.,
1487 Macauley, M.S., Sok, D., Pauthner, M., et al. (2016). Holes in the Glycan Shield of the
1488 Native HIV Envelope Are a Target of Trimer-Elicited Neutralizing Antibodies. *Cell Reports*
1489 16, 2327–2338. <https://doi.org/10.1016/j.celrep.2016.07.074>.

1490 104. Freund, N.T., Wang, H., Scharf, L., Nogueira, L., Horwitz, J.A., Bar-On, Y., Goljanin, J.,
1491 Sievers, S.A., Sok, D., Cai, H., et al. (2017). Coexistence of potent HIV-1 broadly neutralizing
1492 antibodies and antibody-sensitive viruses in a viremic controller. *Science translational
1493 medicine* 9, eaal2144. <https://doi.org/10.1126/scitranslmed.aal2144>.

1494 105. Ramakrishnan, M.A. (2016). Determination of 50% endpoint titer using a simple formula.
1495 *World journal of virology* 5, 85–86. <https://doi.org/10.5501/wjv.v5.i2.85>.

1496 106. Chen, S., Zhou, Y., Chen, Y., and Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ
1497 preprocessor. *Bioinformatics* (Oxford, England) 34, i884–i890.
1498 <https://doi.org/10.1093/bioinformatics/bty560>.

1499 107. Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. *Nature
1500 Methods* 9, 357–359. <https://doi.org/10.1038/nmeth.1923>.

1501 108. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G.,
1502 Durbin, R., and 1000 Genome Project Data Processing Subgroup (2009). The Sequence
1503 Alignment/Map format and SAMtools. *Bioinformatics* (Oxford, England) 25, 2078–2079.
1504 <https://doi.org/10.1093/bioinformatics/btp352>.

1505 109. Korber, B.T., Foley, B.T., Kuiken, C.L., Pillai, S.K., and Sodroski, J.G. (2014). Numbering
1506 Positions in HIV Relative to HXB2CG. LANL.
1507 <https://www.hiv.lanl.gov/content/sequence/HIV/REVIEWS/HXB2.html>.

1508 110. Köster, J., and Rahmann, S. (2012). Snakemake—a scalable bioinformatics workflow engine.
1509 *Bioinformatics* (Oxford, England) 28, 2520–2522.
1510 <https://doi.org/10.1093/bioinformatics/bts480>.

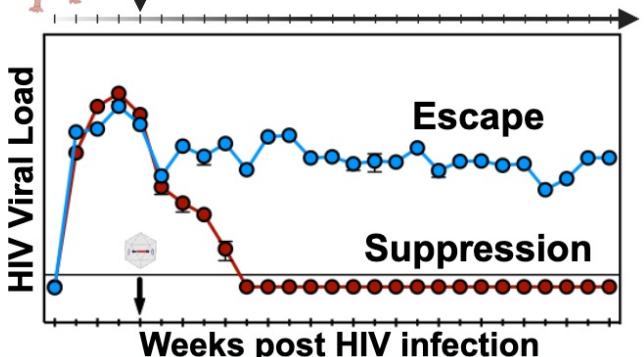
1511 111. Wilm, A., Aw, P.P.K., Bertrand, D., Yeo, G.H.T., Ong, S.H., Wong, C.H., Khor, C.C., Petric, R.,
1512 Hibberd, M.L., and Nagarajan, N. (2012). LoFreq: a sequence-quality aware, ultra-sensitive
1513 variant caller for uncovering cell-population heterogeneity from high-throughput
1514 sequencing datasets. *Nucleic Acids Research* 40, 11189–11201.
1515 <https://doi.org/10.1093/nar/gks918>.

1516 112. Piantadosi, A., Freije, C.A., Gosmann, C., Ye, S., Park, D., Schaffner, S.F., Tully, D.C., Allen,
1517 T.M., Dong, K.L., Sabeti, P.C., et al. (2019). Metagenomic Sequencing of HIV-1 in the Blood
1518 and Female Genital Tract Reveals Little Quasispecies Diversity during Acute Infection.
1519 *Journal of Virology* 93. <https://doi.org/10.1128/JVI.00804-18>.

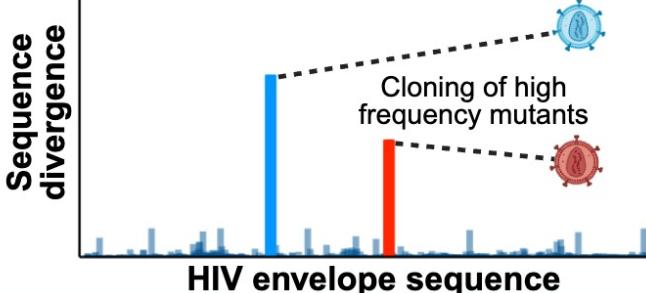
1520 113. McCrone, J.T., and Lauring, A.S. (2016). Measurements of Intrahost Viral Diversity Are
1521 Extremely Sensitive to Systematic Errors in Variant Calling. *Journal of Virology* 90, 6884–
1522 6895. <https://doi.org/10.1128/JVI.00667-16>.

1523 114. Siebring-van Olst, E., Vermeulen, C., de Menezes, R.X., Howell, M., Smit, E.F., and van
1524 Beusechem, V.W. (2013). Affordable Luciferase Reporter Assay for Cell-Based High-
1525 Throughput Screening. *J Biomol Screen* 18, 453–461.
1526 <https://doi.org/10.1177/1087057112465184>.

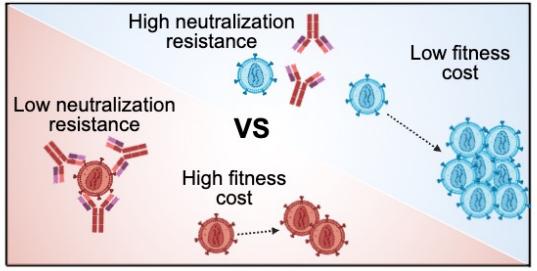
1527 115. Borchers, H.W. (2023). *pracma*: Practical Numerical Math Functions. Version R package
1528 version 2.4.4.

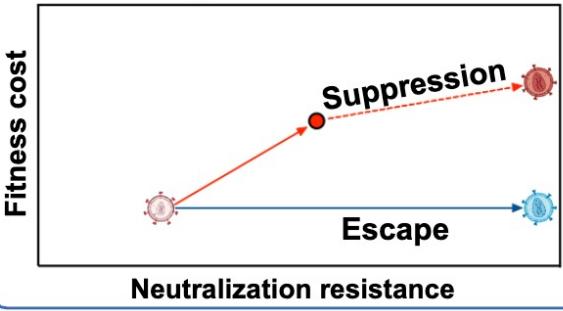

1529 116. R Core Team (2024). R: A Language and Environment for Statistical Computing. (R
1530 Foundation for Statistical Computing).

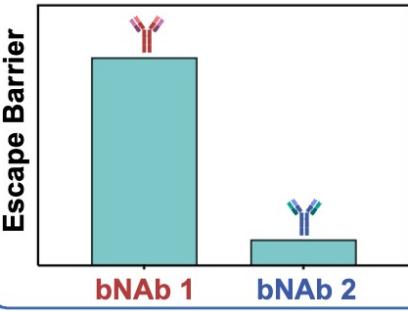
1531 117. Reagan-Shaw, S., Nihal, M., and Ahmad, N. (2008). Dose translation from animal to human
1532 studies revisited. *The FASEB journal*®: official publication of the Federation of American
1533 Societies for Experimental Biology 22, 659–661. <https://doi.org/10.1096/fj.07-9574LSF>.

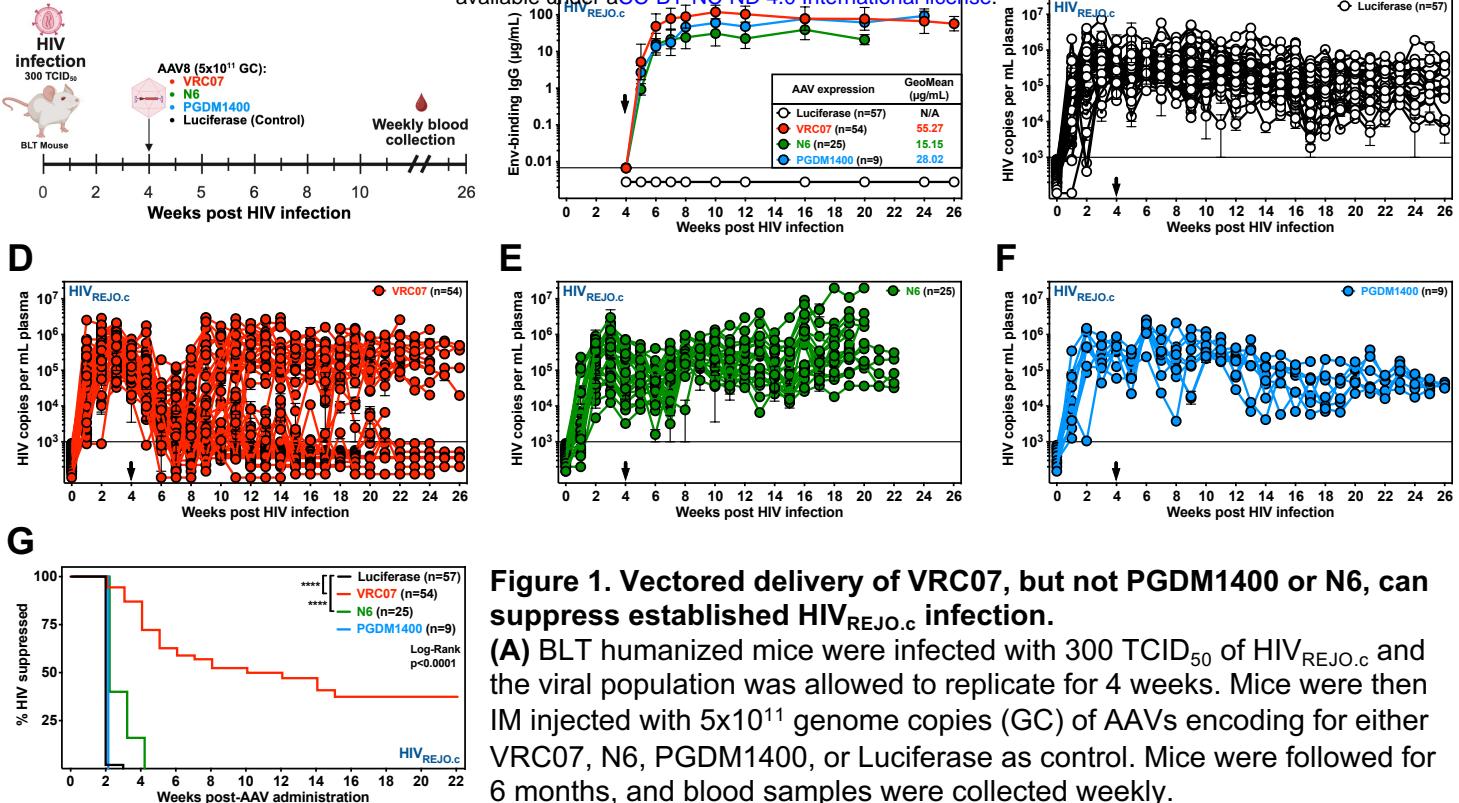

1534

1535


Evaluate efficacy of AAV-bNAbs

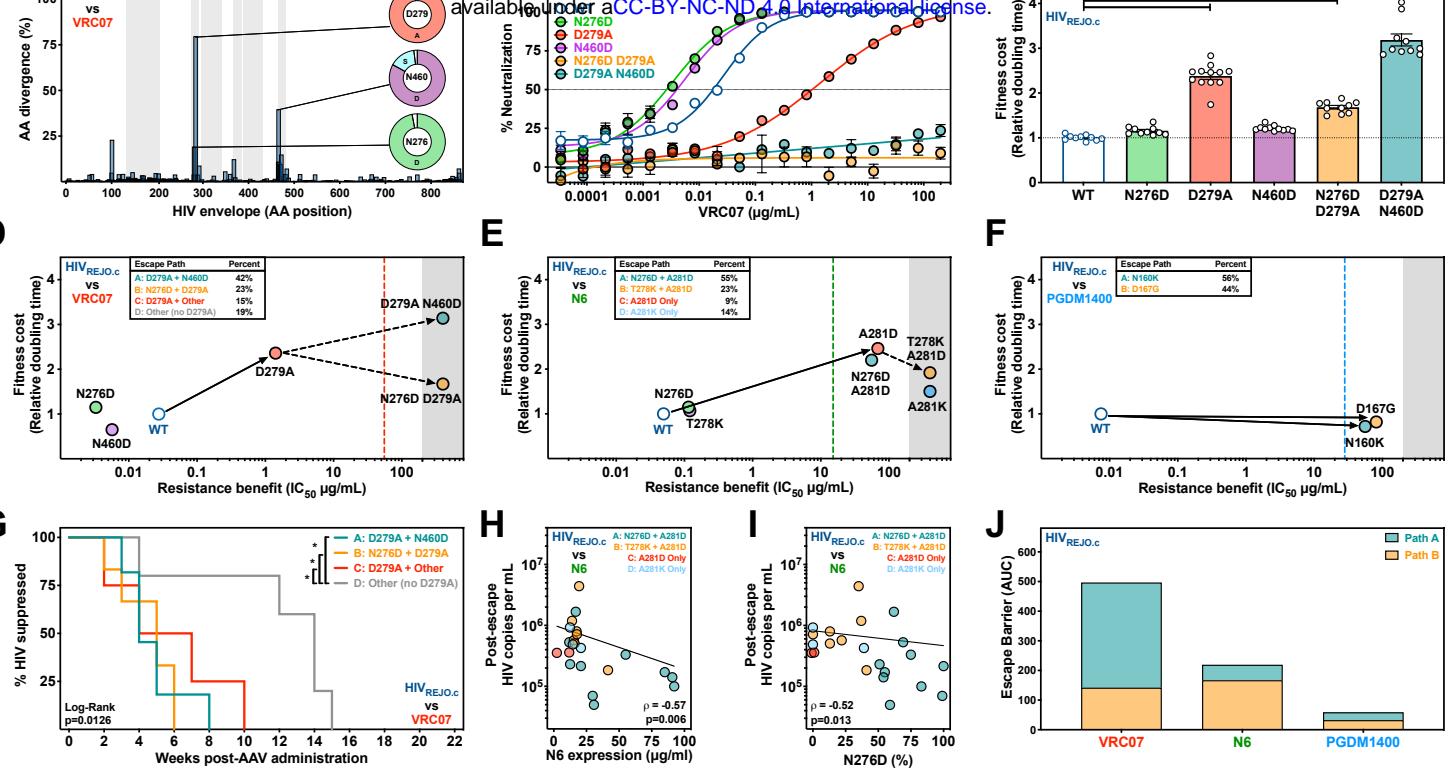

Deep sequencing of HIV


Resistance benefit and fitness cost evaluation


Escapability map generation

"Escape Barrier" score calculation

Graphical Abstract.


Figure 1. Vectored delivery of VRC07, but not PGDM1400 or N6, can suppress established HIV_{REJO.c} infection.

(A) BLT humanized mice were infected with 300 TCID₅₀ of HIV_{REJO.c} and the viral population was allowed to replicate for 4 weeks. Mice were then IM injected with 5x10¹¹ genome copies (GC) of AAVs encoding for either VRC07, N6, PGDM1400, or Luciferase as control. Mice were followed for 6 months, and blood samples were collected weekly.

(B) ELISA-based quantitation of gp120-binding antibodies in the serum of HIV_{REJO.c}-infected humanized mice following administration of AAV8-Luciferase, AAV8-VRC07, AAV8-N6, or AAV8-PGDM1400 vectors. Black arrow denotes vector administration. Data are plotted as geometric mean ± geometric SD.

(C-F) HIV viral load in plasma of HIV_{REJO.c}-infected mice injected with AAV8-Luciferase as control **(C)**, AAV8-VRC07 **(D)**, AAV8-N6 **(E)**, or AAV8-PGDM1400 **(F)**. Black arrows denote vector administration. Each colored line depicts an individual mouse tracked over time. The sensitivity of qPCR was 1 genome copy per μL of plasma, and 5 μL were used in the reaction, resulting in a 1000 copy per mL limit of detection (solid line). Data are presented as mean ± S.E.M.

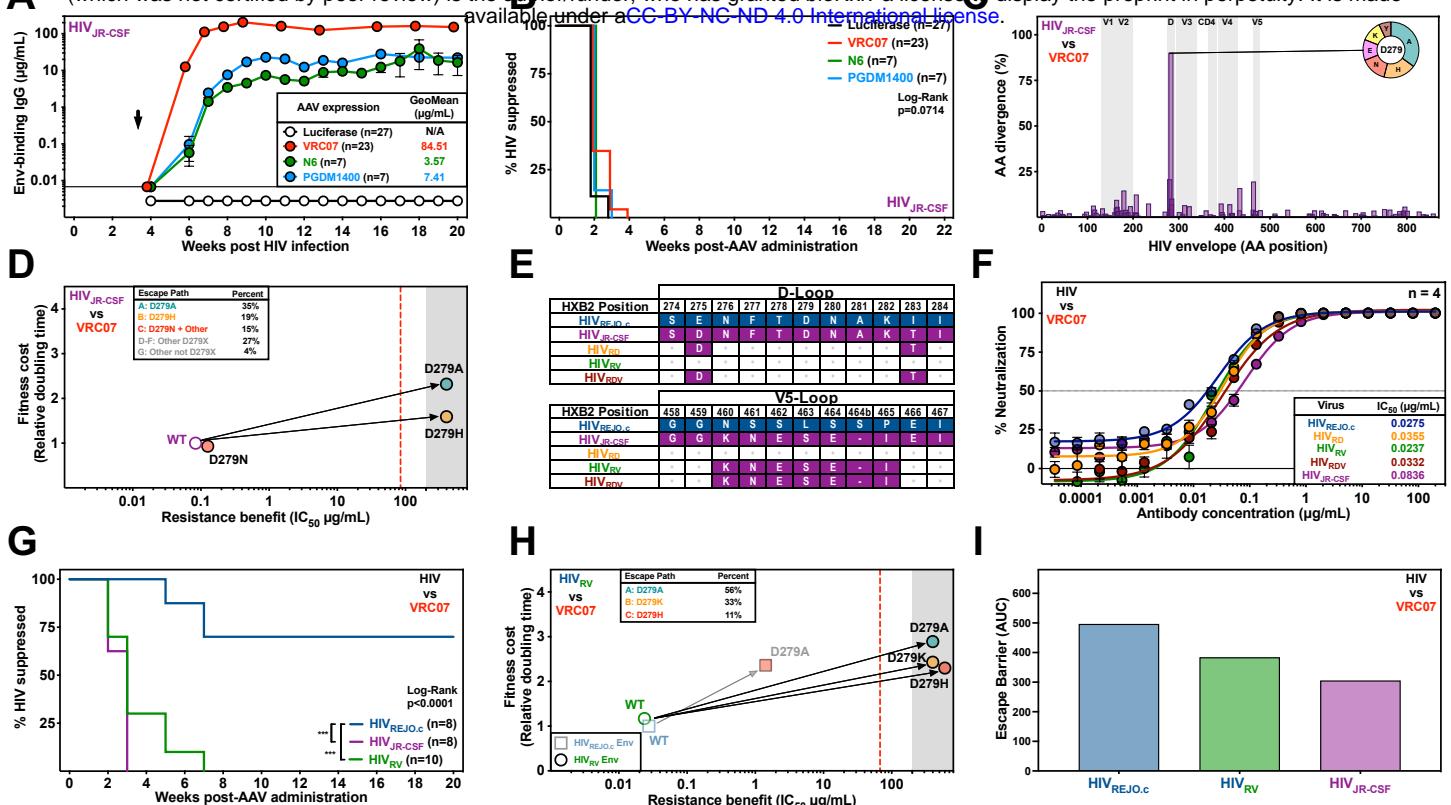
(G) Kaplan-Meier plot of viral suppression in BLT humanized mice infected with HIV_{REJO.c} given the indicated bNAb-expressing vector. The total model significance (p<0.0001) and pairwise comparison against the Luciferase control (****: p<0.0001) were assessed independently using Log-rank (Mantel-Cox) tests. The percentage of HIV suppressed was defined as the fraction of mice that were not escaped as described in the methods.

Figure 2. Fitness cost and resistance benefit accrued along escape paths determine the difficulty of HIV_{REJO} escape from each bNAb.

(A) Amino acid divergence from the envelope gene of the HIV_{REJO.c} parental strain across all AAV8-VRC07 treated mice. Sequences were determined by Illumina Deep Sequencing of the viral envelope isolated from plasma at the final experimental timepoint. The X-axis represents the envelope protein amino acid position relative to HIV_{HXB2} numbering. The Y-axis represents the percentage of average amino acid divergence from the parental strain, corrected for divergence observed in control mice. Pie charts represent the most common amino acid mutations for sites with the highest divergence. See also Figure S2.

(B) *In vitro* neutralization assays of each HIV_{REJO.c} mutant identified in **(A)** against VRC07. Data are plotted as mean \pm S.E.M. Each data point was evaluated in quadruplicate.

(C) Relative viral growth of each HIV_{REJO.c} mutant identified in **(A)**. Growth rates were determined in activated CD4⁺ T cells performing *QuickFit* assays and normalized to the parental strain. Data are plotted as mean \pm S.E.M. and statistical differences were assessed by a Kruskal-Wallis non-parametric ANOVA with Dunn's *post hoc* test to correct for multiple comparisons (****: $p < 0.0001$). See also Figure S2.


(D-F) Escapability maps denoting fitness cost (Y-axis, relative doubling time shown in **(C)**) and resistance benefits (X-axis, neutralization resistance shown in **(B)**) for each HIV_{REJO.c} mutant observed during escape from VRC07 **(D)**, N6 **(E)**, or PGDM1400 **(F)**. Dashed vertical line denotes the geometric mean antibody serum concentration after vectored bNAb administration. Shaded areas represent the neutralization assay limit of detection. Solid arrows represent the likely initial path taken with dashed arrows representing the likely second step paths to escape. In the map legend, each escape path is sorted based on the relative frequency observed in the sequencing data. See also Figures S2 and S3.

(G) Survival analysis of HIV_{REJO.c}-infected mice treated with AAV8-VRC07 by escape path haplotype. The total model significance ($p=0.0126$) and pairwise comparisons of the non-D279A escape paths to each other escape path (*: $p < 0.05$) were assessed independently using Log-rank (Mantel-Cox) tests. See also Figure S3.

(H) Correlation plot of N6 geometric mean-expression vs post-escape HIV_{REJO.c} viral load. The line represents the semi-log least squares regression, p represents the Spearman correlation value determined for the data, with the associated p -value below. See also Figure S3.

(I) Correlation plot of the post-N6 escape viral load of HIV_{REJO.c} vs the frequency of N276D determined by viral envelope sequencing. The line represents the semi-log least squares regression, p represents the Spearman correlation value determined for the data, with the associated p -value below. See also Figure S3.

(J) Escape Barrier (AUC) Score denoting the aggregate fitness cost for each escape path as determined in the escapability maps. This score was calculated by adding the area under the escapability plot for escape paths A and path B viral escapes from VRC07, N6, and PGDM1400. See also Figure S4.

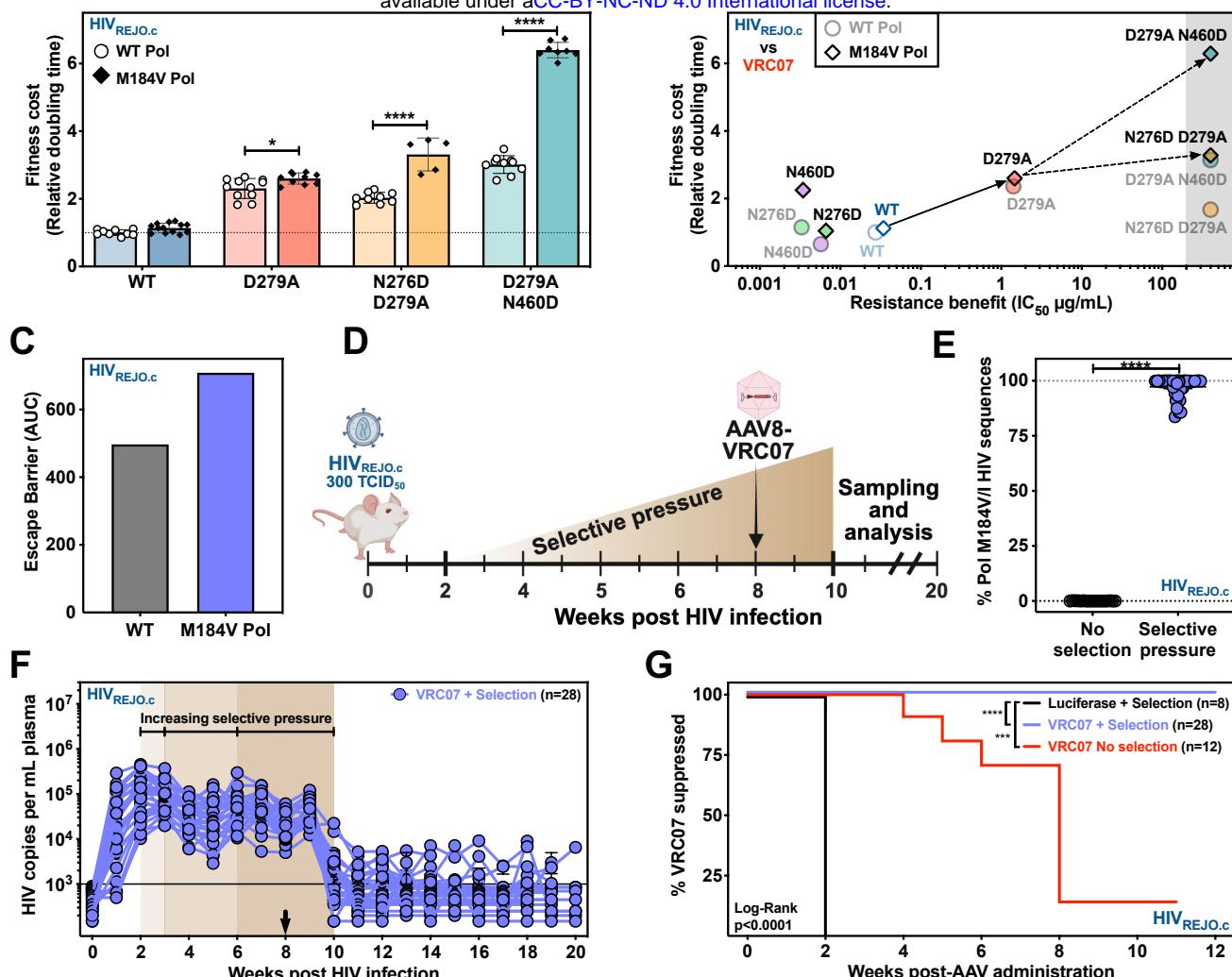
Figure 3. HIV_{REJO.c} V5-loop restricts escape from VRC07, by decreasing the resistance benefit of D279 mutations.

(A) ELISA-based quantitation of gp120-binding antibodies in the serum of HIV_{JR-CSF}-infected humanized mice following administration of 5x10¹¹ genome copies (GC) of AAV8-Luciferase, AAV8-VRC07, AAV8-N6, or AAV8-PGDM1400 vectors. Black arrow denotes vector administration. Data are plotted as geometric mean \pm geometric SD.

(B) Kaplan-Meier plot of viral suppression in humanized mice infected with HIV_{JR-CSF} given the indicated bNAb-expressing vector. The total model significance was assessed using a Long-rank (Mantel-Cox) test ($p=0.0714$). See also Figure S5.

(C) Amino acid divergence from the envelope gene of the HIV_{JR-CSF} parental strain across all AAV8-VRC07 treated mice. Sequences were determined by Illumina Deep Sequencing of the viral envelope isolated from plasma at the final experimental timepoint. The X-axis represents the envelope protein amino acid position relative to HIV_{HXB2} numbering. The Y-axis represents the percentage of average amino acid divergence from the parental strain, corrected for divergence observed in control mice. Pie chart represents the most common amino acid mutations for the site with the highest divergence. See also Figure S6.

(D) Escapability map of HIV_{JR-CSF} escape from VRC07. Dashed vertical line denotes the geometric mean antibody serum concentration after AAV8-VRC07 administration. Shaded area represents the neutralization assay limit of detection. Arrows represent the likely path taken to escape. See also Figures S6 and S8.


(E) Alignment of the D-loop and the V5-loop amino acid sequences for HIV_{REJO.c}, HIV_{JR-CSF}, and the HIV_{RD}, HIV_{RV}, and HIV_{RDV} chimeras.

(F) In vitro neutralization of HIV_{REJO.c}, HIV_{RD}, HIV_{RV}, HIV_{RDV}, and HIV_{JR-CSF} by VRC07 bNAb. Data are plotted as mean \pm S.E.M. Each datapoint was evaluated in quadruplicate.

(G) Kaplan-Meier plot of viral suppression in humanized mice infected with HIV_{REJO.c}, HIV_{RV}, or HIV_{JR-CSF} following vectored VRC07 administration. The total model significance ($p<0.0001$) and pairwise comparisons against HIV_{REJO.c} (**: $p<0.001$) were assessed independently using Log-rank (Mantel-Cox) tests. See also Figure S7.

(H) Escapability map of HIV_{RV} during escape from VRC07. Lighter square symbols represent the original HIV_{REJO.c} escape path taken against VRC07. Dashed vertical line denotes geometric mean bNAb concentrations after vectored VRC07 administration. Shaded areas represent the limits of detection. Arrows represent the likely path to escape. See also Figures S7 and S8.

(I) Escape Barrier (AUC) Score quantifying the difficulty of escape from VRC07 for HIV_{REJO.c}, HIV_{RV}, and HIV_{JR-CSF}. See also Figure S8.

Figure 4. Increasing the fitness cost of HIV_{REJO.c} escape mutations enhances the efficacy of vectored VRC07.

(A) The fitness of HIV_{REJO.c}-VRC07 escape mutations with or without the Pol M184V mutation were evaluated using *QuickFit*. Data are presented as mean \pm SD. Statistical differences were assessed by a Two-Way ANOVA, with a Šidák *post hoc* test to correct for multiple comparisons (*: $p<0.05$; ****: $p<0.0001$). See also Figure S9.

(B) Escapability map of HIV_{REJO.c}-VRC07 escape mutants with or without the Pol M184V mutation. Solid symbols (diamonds) represent envelope mutations on the Pol M184V mutant background, while lighter symbols (circles) represent the data for envelope mutations on the WT Pol background. Shaded areas represent the limits of detection. Solid arrows represent the likely path taken with dashed arrows representing secondary steps to escape. See also Figure S9.

(C) Empirical Escape Barrier score for HIV_{REJO.c} escape from VRC07 as compared to the theoretical Escape Barrier score for HIV_{REJO.c-PolM184V} escape from VRC07.

(D) Experimental setup to determine the impact of Pol M184 mutations on HIV_{REJO.c} escape from VRC07. Humanized mice were infected with HIV_{REJO.c} and then treated with a sub-optimal ART starting 2 weeks after infection, to select and maintain Pol M184 mutants. At week 8, 5×10^{11} GC of AAV8-VRC07 was injected IM, and the ART regimen was stopped at week 10. Mice were followed for 6 months, and blood samples were collected weekly.

(E) Percentage of Pol M184V/I mutations determined from viral sequences isolated from the plasma of HIV_{REJO.c}-infected mice at week 8, prior to AAV8-VRC07 administration. Statistical differences were assessed by an unpaired two-tailed Student's t-test (****: $p<0.0001$). Data are presented as mean \pm S.E.M.

(F) HIV_{REJO.c} viral load in plasma of AAV8-VRC07 treated mice. Black arrows denote vector administration. Each colored line depicts an individual mouse. The qPCR lower limit of detection was 1 genome copy per μ L of plasma and 5 μ L were used in the reaction (solid line). Data are presented as mean \pm S.E.M.

(G) Kaplan-Meier plot of viral suppression in humanized mice infected with HIV_{REJO.c} with or without ART selection and with or without AAV8-VRC07 administration. The total model significance ($p<0.0001$) and pairwise comparisons against the Luciferase + Selection control (***: $p<0.001$; ****: $p<0.0001$) were assessed independently with Log-rank (Mantel-Cox) tests. See also Figure S9.