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Abstract   

Organisms use specialized sensors to measure their environments, but the fundamental principles that 

determine their accuracy remain largely unknown. In Escherichia coli chemotaxis, we previously found 

that gradient-climbing speed is bounded by the amount of information that cells acquire from their 

environment, and that E. coli operate near this bound. However, it remains unclear what prevents them 

from acquiring more information. Past work argued that E. coli's chemosensing is limited by the physics 

of molecules stochastically arriving at cells’ receptors, without direct evidence. Here, we show instead 

that E. coli are far from this physical limit. To show this, we develop a theoretical approach that uses 

information rates to quantify how accurately behaviorally-relevant signals can be estimated from 

available observations: molecule arrivals for the physical limit; chemotaxis signaling activity for E. coli. 

Measuring these information rates in single-cell experiments across multiple background concentrations, 

we find that E. coli encode two orders of magnitude less information than the physical limit. Thus, E. coli 

chemosensing is limited by internal noise in signal processing rather than the physics of molecule 

diffusion, motivating investigation of what specific physical and biological constraints shaped the 

evolution of this prototypical sensory system.  

 

 

Introduction   

Evolution selects function, and therefore living systems are shaped by complex fitness objectives and 

constraints. This has motivated the use of normative theories, subject only to constraints of physics, to 

derive fundamental limits on function and to rationalize the design of biological systems (1–17). This 

approach has been especially successful in the context of information processing, a hallmark of living 
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systems where theories of optimal estimation can be brought to bear (18,19). However, biology needs to 

implement information processing and other functions using non-ideal components, in the confines of a 

body, and with limited resources, which introduce additional system-specific constraints (20–27). 

Determining what bounds or constraints meaningfully limit information processing in a particular 

biological system would shed light on the forces that have shaped its evolution, and inform our 

understanding of biological information processing more broadly. 

Escherichia coli chemotaxis is an ideal system for studying the limits on biological information processing 

(28–30). E. coli climb chemical gradients by alternating between straight-swimming runs and randomly-

reorienting tumbles (31). As they swim, they measure the time-dependent concentration of attractant 

along their trajectory, 𝑐(𝑡), using transmembrane receptors, encode these measurements into the activity 

of intracellular, receptor-associated CheA kinase activity, 𝑎(𝑡), and act on these measurements to decide 

when to tumble (Fig. 1). Importantly, chemotaxis provides a fitness advantage, even above undirected 

motility, in structured chemical environments (32).  

E. coli must acquire information about their chemical environment in order to climb gradients. Recently, 

we asked how fast an ideal bacterium can climb a gradient with the information it gets, and how E. coli 

compare to this theoretical performance bound (17). We found that although typical E. coli cells get very 

little information about chemical signals—about 0.01 bits/s in a centimeter-long gradient—they climb 

gradients at speeds near the theoretical maximum with the information they get. Thus, information is 

functionally important for chemotaxis. 

This raises the question: why don’t E. coli get more information, and thus climb gradients faster? One 

possibility is that they are limited by fundamental physics. The first physically-measurable quantity is the 

rate of ligand molecule arrivals at the cell’s receptors by diffusion, 𝑟(𝑡) (Fig. 1). In a classic paper (4), Berg 

and Purcell demonstrated that the stochasticity of this arrival rate limits the accuracy of any estimate of 

chemical concentration, 𝑐(𝑡), inspiring an entire field of biophysics (20,21,33–47). They and others further 

argued that bacteria approach this physical limit, a widely-held understanding in the field. However, no 

direct comparison between bacterial chemosensing and physical limits has been made because it has 

remained unclear how to quantify a real cell’s uncertainty about external signals. This leaves open the 

alternative possibility that E. coli’s sensory information might be limited by system-specific, internal 

constraints. 

Directly answering whether physical limits or internal constraints prevent chemotaxing E. coli from 

acquiring more information faces several general challenges. First, not all environmental signals are useful 

for function. For chemotaxis in shallow gradients, we recently showed that the time derivative of (log) 

concentration, 𝑠(𝑡) =
𝑑

𝑑𝑡
log(𝑐)—rather than concentration, 𝑐(𝑡), itself—is the “behaviorally-relevant” 

signal (17). Second, cells do not need to represent their estimates of relevant signals in a straightforward 

way. In chemotaxis, CheA kinase activity depends on external signals, but 𝑎(𝑡) is not necessarily the cell’s 

estimate of 𝑠(𝑡), and the variation in 𝑎(𝑡) is not the cell’s uncertainty about 𝑠(𝑡). Signals are instead 

encoded in the dynamics of the cell’s intermediate variables and decoded by downstream processing. 

Third, probing cells’ encodings of time-varying signals requires dynamic experimental measurements of 

both the environment and responses in single cells, which was recently made possible by single-cell FRET 

(17,48–52).  
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Here, we address these challenges and determine whether E. coli chemosensing approaches the physical 

limits. To frame this question in an experimentally-testable way, we ask how accurately the signal 𝑠(𝑡) 

can be inferred from molecule arrivals, which sets the physical limit, compared to how accurately 𝑠(𝑡) can 

be inferred from the dynamics of kinase activity, the quantity accessible to the cell. Sensing accuracy in 

each case takes the form of an information rate (Fig. 1). Then, we quantify these information rates using 

single-cell FRET measurements in multiple background concentrations. We find, surprisingly, that a typical 

E. coli cell gets orders of magnitude less information than the physical limit—estimates of signal made 

from kinase activity are far less accurate than those made from molecule arrival rate. This is because E. 

coli’s signal transduction noise far exceeds molecule arrival noise, and we conclude that information 

processing during E. coli chemotaxis is internally-limited. We predict that the functional consequence is 

that E. coli climb gradients much slower than the physical limits on chemosensing allow, and support this 

with simulations. These results raise questions about what specific constraints limit E. coli’s 

chemosensing, and more broadly motivate consideration of the physical and biological constraints on 

information processing. 

 

 

 

Figure 1: Is E. coli’s sensing accuracy set by physical limits or internal constraints? To climb chemical 

gradients, E. coli need to accurately estimate an unknown signal: the rate of change of attractant ligand 

concentration, 𝑠(𝑡) =
𝑑

𝑑𝑡
log(𝑐(𝑡)) (17). The first physically-observable quantity is the stochastic rate at 

which ligand molecules arrive at the cell’s receptors, 𝑟(𝑡) (4). Thus, the physical limit on chemosensing, 

and in turn gradient-climbing speed, is set by how accurately 𝑠(𝑡) can be estimated from the time series 

of past 𝑟(𝑡), quantified by an information rate, 𝐼𝑠̇→𝑟
∗ . E. coli respond to ligand arrivals with changes in the 

activity of intracellular CheA kinases, 𝑎(𝑡). The accuracy with which the signal can be estimated from 

kinase activity is quantified by another information rate, 𝐼𝑠̇→𝑎
∗ . Since kinase activity is stochastic, E. coli’s 

sensing accuracy and gradient climbing speed must be below the physical limit, but how much less? 
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Physical limit on behaviorally-relevant information due to stochastic molecule arrivals 

To climb chemical gradients, E. coli must encode information about the time derivative of concentration, 

𝑠(𝑡), to be read out by the motors (17) (SI section “Drift speed and information rate”). The first quantity 

that is observable to the cell and informative of 𝑠(𝑡) is the stochastic arrival rate of ligand molecules at 

the cell’s receptors, 𝑟(𝑡) (Fig. 1). An ideal agent would estimate 𝑠(𝑡) and make navigation decisions based 

on perfect observations of past particle arrivals {𝑟}. The behaviorally-relevant information about signal, 

𝑠(𝑡), thus acquired from past particle arrivals, {𝑟}, is quantified by the following transfer entropy rate 

(53): 

𝐼𝑠̇→𝑟
∗ ≡ lim

𝑑𝑡→0

1

𝑑𝑡
𝐼(𝑟(𝑡 + 𝑑𝑡); 𝑠(𝑡)|{𝑟}) , (1) 

where 𝐼(𝑋; 𝑌|𝑍) is the mutual information between 𝑋 and 𝑌, conditioned on 𝑍 (54,55). This quantity 

obeys a data processing inequality (55) in the context of bacterial chemotaxis in shallow gradients, where 

feedback from behavior onto signals is negligible (56,57) (SI section “Data processing inequality”). 

Therefore this quantity sets the physical limit on information available in any downstream encoding of 

the signal, including E. coli’s kinase activity. 

The form of the physical limit in Eqn. 1 is unknown. To derive it, we first need a dynamical model for the 

signal and the particle arrival rate. In static gradients, the signals a cell experiences are determined by 

their own run-and-tumble motion in the gradient. Accordingly, in a gradient of steepness 𝑔 =

𝑑 log(𝑐) /𝑑𝑥, the signal is 𝑠(𝑡) = 𝑔 𝑣𝑥(𝑡), where 𝑣𝑥 is the cell’s up-gradient velocity. In shallow gradients, 

where weak signals have small effects on the cell’s run-tumble statistics, we can rigorously approximate 

𝑠(𝑡) as Gaussian with correlation function ⟨𝑠(𝑡) 𝑠(𝑡′)⟩ = 𝑔2 𝑉(𝑡 − 𝑡′) ≈ 𝑔2 𝜎𝑣
2 exp (−

|𝑡−𝑡′|

𝜏𝑣
), to leading 

order in 𝑔 (17,22). Here, 𝑉(𝑡) is the correlation function of 𝑣𝑥 in the absence of a gradient; 𝜎𝑣
2 is the 

variance of 𝑣𝑥, which depends on the cell’s swimming speed; and 𝜏𝑣 is the signal correlation time, which 

depends on the cell’s mean run duration, the persistence of tumbles, and rotational diffusion (17,58).  

Molecule arrival events follow a Poisson process with time-varying rate ⟨𝑟(𝑡)⟩ = 𝑘𝐷  𝑐(𝑡) = 4 𝐷 𝑙 𝑐(𝑡), 

where 𝐷 ≈ 800 μm2/s (59,60) is the diffusivity of the ligand and 𝑙 is the radius of a circular sensor on the 

cell’s surface (4,42). We choose 𝑙 ≈ 60 nm (61) to match the size of the receptor array in E. coli's cell 

membrane. These give 𝑘𝐷 ≈ 1.2 × 105 s−1 μM−1, which is comparable to previous estimates (4,62). If 

many molecules arrive per run, 𝑟0 𝜏𝑣 ≫ 1, we can approximate the Poisson process for arrival events with 

a Gaussian process for the number of molecule arrivals per unit time, 𝑟(𝑡) = 𝑘𝐷 𝑐(𝑡) + √𝑟0  𝜉(𝑡). Here, 

𝑟0 = 𝑘𝐷 𝑐0 is the background molecule arrival rate, 𝑐0 is the background concentration, and the noise is 

⟨𝜉(𝑡) 𝜉(𝑡′)⟩ = 𝛿(𝑡 − 𝑡′). We assume the sensor absorbs every molecule it senses (4), but if it cannot 

distinguish between new ligand arrivals and rebinding events, the limit is lower by an 𝑂(1) prefactor 

(42,43).  

We next focused on calculating the behaviorally-relevant information quantity in Eqn. 1. Towards this, we 

discovered that the transfer entropy rate in Eqn. 1 is equivalent to a predictive information rate (22,23,63–

66) (SI section “Equivalence of transfer entropy and predictive information rates”): 

𝐼𝑠̇→𝑟
∗ = −[𝜕𝜏𝐼(𝑠(𝑡 + 𝜏); {𝑟})]𝜏=0. (2) 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 27, 2025. ; https://doi.org/10.1101/2024.07.09.602750doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.09.602750
http://creativecommons.org/licenses/by/4.0/


5 
 

This quantifies how the ability to predict future signals 𝑠(𝑡 + 𝜏) from past particle arrivals degrades as the 

forecasting interval 𝜏 increases, and is evaluated at the current moment, 𝜏 = 0. Importantly, this quantity 

only quantifies the information that is relevant for climbing the gradient. Therefore it is different from the 

total information encoded by E. coli’s signaling pathway about all past signals, {𝑠}, both relevant (current 

signal) and irrelevant (signal experienced in the past), that we and others studied previously (17,57,67,68).  

Since 𝑠(𝑡) and {𝑟} are approximately Gaussian, the physical limit in Eqn. 2 only depends on the posterior 

variance, 𝜎𝑠|𝑟
2 , of 𝑠(𝑡) given past particle arrivals {𝑟} (SI Eqn. 23), which can be derived using causal Wiener 

filtering theory (22,64,69–74) (SI section “Derivation of the physical limit on behaviorally-relevant 

information for chemotaxis”). We find that the physical limit on behaviorally-relevant information for 

chemotaxis in shallow gradients is: 

𝐼𝑠̇→𝑟
∗ ≈

1

𝜏𝑣
𝜌𝑟𝑠

2 ≈
1

𝜏𝑣

1

4
𝛾𝑟 , (3) 

where 𝜌𝑟𝑠 is the Peason correlation coefficient between the true signal 𝑠(𝑡) and the optimal estimator of 

𝑠(𝑡) constructed from past molecule arrivals, 𝑠̂𝑟(𝑡). Here, we defined the dimensionless signal-to-noise 

ratio of molecule arrivals, 𝛾𝑟 = 2 𝑟0 𝑔2 𝜎𝑣
2 𝜏𝑣

3. Eqn. 3 is valid when 𝛾𝑟 ≪ 1, which sets the small-signal 

regime for 𝐼𝑠̇→𝑟
∗ . We also provide a full expression for 𝐼𝑠̇→𝑟

∗  in the SI (SI Eqn. 46), and we validate our 

expression for 𝜌𝑟𝑠
2  using simulations (SI Fig. S5). Increasing the background 𝑟0, the gradient steepness 𝑔, 

or the swimming speed 𝜎𝑣 increases the signal-to-noise ratio of molecule arrivals. Longer runs, 𝜏𝑣, also 

increases 𝐼𝑠̇→𝑟
∗  by allowing more time to average out noise. We expect spatial sensing across the cell body 

to be negligible compared to temporal sensing, as argued by Berg and Purcell (SI section “Comparing 

temporal and spatial sensing”; see also (75)). The derivation of 𝐼𝑠̇→𝑟
∗  also provides the optimal kernel for 

constructing 𝑠̂𝑟(𝑡), which we discuss in the SI (section “Optimal kernel for estimating signal from particle 

arrivals”).  

 

Relevant information encoded in E. coli’s CheA kinase activity 

In E. coli, ligand binding to receptors modulates the activity of the CheA kinases in the receptor-kinase 

complex. Thus, kinase acivity 𝑎(𝑡) depends on past signals 𝑠(𝑡), but is not necessarily the cell’s 

representation of them. To compare E. coli to the theoretical limit, we next derive 𝐼𝑠̇→𝑎
∗ , which quantifies 

how well 𝑠(𝑡) can be estimated from the dynamics of kinase activity. For this, we need models of kinase 

responses to ligand molecule arrivals and noise in kinase activity. In shallow gradients, our approach is to 

use linear, Gaussian theory, which has been validated experimentally (17,48,49) and computationally (68). 

For a cell with steady-state kinase activity 𝑎0 in background 𝑟0, kinase responses are described by linear 

response theory (17,76,77) as follows: 

𝑎(𝑡) = 𝑎0 − ∫ 𝐾𝑟(𝑡 − 𝑡′) (𝑟(𝑡′) − 𝑟0) 𝑑𝑡′
𝑡

−∞

+ 𝜂𝑛(𝑡). (4) 

E. coli respond to a step increase in attractant concentration with a fast drop in kinase activity, followed 

by slow adaptation back to the pre-stimulus level (78). We model this phenomenologically with response 

function 𝐾𝑟(𝑡) = 𝐺𝑟 (
1

𝜏1
exp (−

𝑡

𝜏1
) −

1

𝜏2
exp (−

𝑡

𝜏2
))  Θ(𝑡), where 𝐺𝑟 is the gain of the response to 

molecule arrival rate 𝑟, 𝜏1 is the fast response time, 𝜏2 is the slow adaptation time, and Θ(𝑡) is the 
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Heaviside step function. Kinase responses can equivalently be expressed in terms of past signals 𝑠, with a 

related kernel 𝐾(𝑡) that we used previously (17) (𝐾𝑟(𝑡) =
1

𝑟0

𝑑

𝑑𝑡
𝐾(𝑡); SI Eqn. 78). 

Noise in kinase activity is driven by a combination of stochastic molecule arrivals and internally-driven 

fluctuations. Previous single-cell FRET experiments have observed large, slow fluctuations in kinase 

activity, 𝜂𝑛(𝑡), on a time scale of 10 s (17,48,49,79). These are well-described as Gaussian, with correlation 

function ⟨𝜂𝑛(𝑡) 𝜂𝑛(𝑡′)⟩ = 𝐷𝑛 𝜏𝑛  exp (−
|𝑡−𝑡′|

𝜏𝑛
). Here, 𝐷𝑛 is the diffusivity of internal noise in kinase 

activity, and 𝜏𝑛 is its correlation time. In addition, Eqn. 4 has additive noise arising from responses to 

molecule arrival noise. To date, it has not been possible to measure kinase fluctuations on time scales 

shorter than the CheY-CheZ relaxation time (𝜏1), but it cannot go below the level set by responses to 

molecule arrival noise. Thus, the phenomenological model above agrees with experiments at low 

frequencies while obeying known physics at high frequencies.  

With the relation between transfer entropy and predictive information in Eqn. 2, evaluating 𝐼𝑠̇→𝑎
∗  again 

reduces to deriving the posterior variance, 𝜎𝑠|𝑎
2 , of the signal 𝑠(𝑡) given past kinase activity {𝑎} (SI section 

“Derivation of the behaviorally-relevant information in kinase activity”). Furthermore, previous 

measurements (and measurements below) show that 𝜏1 ≪ 𝜏𝑣 (17,80,81) and 𝜏2 ≈ 𝜏𝑛 ≫ 𝜏1 (17). Thus, in 

shallow gradients, we find that the information rate encoded in kinase activity is:  

𝐼𝑠̇→𝑎
∗ ≈

1

𝜏𝑣
𝜌𝑎𝑠

2 ≈
1

𝜏𝑣

1

4
 𝛾𝑎

𝛾𝑟/𝛾𝑎

(1 + √𝛾𝑟/𝛾𝑎)
2 . (5) 

where 𝜌𝑎𝑠 is the Peason correlation coefficient between the true signal 𝑠(𝑡) and the optimal estimator of 

𝑠(𝑡) constructed from past kinase activity, 𝑠̂𝑎(𝑡). Here, we define the dimensionless kinase activity signal-

to-noise ratio 𝛾𝑎 =
𝐺𝑟

2

𝐷𝑛
 𝑟0

2 𝑔2 𝜎𝑣
2 𝜏𝑣. Eqn. 5 is valid when 𝛾𝑎 ≪ 1, which sets the small-signal regime for 

𝐼𝑠̇→𝑎
∗ . We also provide a full expression for 𝐼𝑠̇→𝑎

∗  in the SI (SI Eqn. 108), and we validate our expression for 

𝜌𝑎𝑠
2  using simulations (SI Fig. S5). An ideal sensor with no internal noise corresponds to 𝛾𝑎 → ∞. Taking 

this limit in Eqn. 5 results in the expression for 𝐼𝑠̇→𝑟
∗  in Eqn.  3. Conversely, internal noise degrades 

information about the signal, and the information rate becomes 𝐼𝑠̇→𝑎
∗ ≈

1

𝜏𝑣

1

4
 𝛾𝑎 as 𝛾𝑎/𝛾𝑟 → 0. The 

derivation of 𝐼𝑠̇→𝑎
∗  also provides the optimal kernel for constructing 𝑠̂𝑎(𝑡), which we discuss in the SI 

(section “Optimal kernel for estimating signal from kinase activity”). 

 

Single-cell measurements constrain signal and kinase properties 

To quantify the information rates above, we then performed single-cell tracking and FRET experiments to 

measure the parameters characterizing the signal statistics, kinase response function, and kinase noise 

statistics. As the attractant, we used aspartate (Asp), to which the E. coli chemotaxis signaling pathway 

responds with the highest sensitivity among known attractants (82).  

To quantify the signal statistics, we recorded trajectories of cells swimming in multiple background 

concentrations of Asp: 𝑐0 =  0.1, 1, and 10 μM (Fig. 2A). Single cells in the clonal population exhibited a 

range of phenotypes (79,83–91). Therefore, as before (17), we focused on a typical cell by estimating the 

median single-cell parameter values in the population. In particular, we binned cells by the fraction of 
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time spent running, 𝑃𝑟𝑢𝑛, and computed 𝑉(𝑡) among cells with the median 𝑃𝑟𝑢𝑛. The parameters 𝜎𝑣
2 and 

𝜏𝑣 in each background 𝑐0 were then estimated by fitting 𝑉(𝑡) with a decaying exponential. These 

parameters depended weakly on 𝑐0, and their values in 𝑐0 = 1 μM were 𝜎𝑣
2 = 146 ± 5 (μm/𝑠)2 and 𝜏𝑣 =

1.19 ± 0.01 𝑠 (see SI Fig. S1AB for all values). 

We measured kinase response functions as before (17), using a microfluidic device in which we can deliver 

controlled chemical stimuli with high time resolution (~100 ms) (50). Cells immobilized in the device were 

delivered ten small positive and negative step changes of Asp concentration around multiple backgrounds 

𝑐0 (Fig. 2B). Kinase responses were measured in single cells through FRET (48–50,52,92–94) between 

CheZ-mYFP and CheY-mRFP1. Then we fit each cell’s average response to 𝐾𝑟(𝑡) above, and computed the 

population-median parameter values. Since 𝜏1 estimated this way includes the relatively slow dynamics 

of CheY-CheZ interactions, we used 𝜏1 = 0 for calculations below, which only slightly overestimates 𝐼𝑠̇→𝑎
∗ . 

The adaptation time 𝜏2 depended weakly on 𝑐0 (in 𝑐0 = 1 μM, 𝜏2 = 7.4 ± 0.3 𝑠) (Fig. S1D), but 𝐺𝑟 varied 

significantly: for 𝑐0 = {0.1, 1, 10} μM we measured 𝐺𝑟 =
1

𝑘𝐷
{3.2 ± 0.1, 2.28 ± 0.05,0.251 ± 0.009} (Fig. 

S1EF). 

The dependence of 𝐺𝑟 on 𝑐0 was consistent with the Monod-Wyman-Changeux (MWC) model for kinase 

activity (29,95–97), which captures numerous experimental measurements (50,52,93,94,98). In 

particular, 𝐺𝑟 =
1

𝑟0
𝐺(𝑐0), where 𝐺(𝑐0) ≈ 𝐺∞

𝑐0

𝑐0+𝐾𝑖
 is the MWC gain, 𝐾𝑖 is the dissociation constant of two-

state receptors for Asp when in their inactive state, and 𝐺∞ is a constant (SI section “Modeling kinase 

activity”). Thus, in the “linear-sensing” regime (𝑐0 ≪ 𝐾𝑖), the gain is constant, 𝐺𝑟 = 𝐺∞
1

𝑘𝐷 𝐾𝑖
, and in the 

“log-sensing” regime (𝑐0 ≫ 𝐾𝑖) (99–101), the gain decreases with background, 𝐺𝑟 ≈ 𝐺∞/𝑟0. Fitting the 

measured 𝐺𝑟 to the MWC model gave 𝐺∞ = 3.5 ± 0.1 and 𝐾𝑖 = 0.81 ± 0.04 μM. 

Finally, we estimated the parameters of slow kinase fluctuations by measuring kinase activity in single 

cells experiencing constant Asp concentrations 𝑐0 (Fig. 2C). The diffusivity 𝐷𝑛 and time scale 𝜏𝑛 of these 

fluctuations were extracted from each time series using Bayesian filtering (17,102). We then computed 

the population-median parameter values. Both of these parameters depended weakly on 𝑐0, and their 

values in 𝑐0 = 1 μM were 𝐷𝑛 = 8.1 ± 0.9 × 10−4 𝑠−1 and 𝜏𝑛 = 8.7 ± 0.9 𝑠 (see Fig. S1CD for all values). 
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Figure 2: Measured signal statistics and kinase responses and fluctuations in different background 

ligand concentrations. A) Signal statistics. Left: Representative time series of up-gradient velocity 𝑣𝑥 from 

three individual cells are shown, one in each aspartate (Asp) concentration 𝑐0. Scale bar is 20 µm/s. Cells 

were binned by the fraction of time spent running, 𝑃𝑟𝑢𝑛, and the velocity autocorrelation function 𝑉(𝑡) 

was computed by averaging over cells with the median 𝑃𝑟𝑢𝑛. The parameters of 𝑉(𝑡) were extracted by 

fitting a decaying exponential to the data. Right: 𝑉(𝑡) model fits for each 𝑐0. The curves are on top of each 

other. Vertical axis units are (µm/s)2. Throughout, shading is standard error of the mean (SEM), and line 

colors indicate 𝑐0: Red: 0.1 µM; Green: 1 µM; Blue: 10 µM. B) Linear responses. Left: Kinase activity was 

measured by FRET in blocks of 25 seconds, separated by 65 seconds without illumination. In each block, 

after 5 s, concentration was stepped up (light gray shading) or down (dark gray shading) around 𝑐0, then 

maintained for 20 s, then returned to 𝑐0. Concentration step sizes Δ𝑐 were different for each 𝑐0 (shown 

above the panel). Shown are three representative cells, one from each 𝑐0. Scale bar is 0.3. Middle: Average 

responses of the cells in the left panel to steps up (light gray) and steps down (dark gray). Single-cell 

responses were fit to extract parameters of the response function 𝐾𝑟(𝑡). Right: Model fits for kinase 

responses to a steps size Δ𝑐, using population-median parameters. The gain 𝐺𝑟 decreases with 𝑐0. C) Noise 

statistics. Left: Fluctuations in kinase activity were measured in constant background concentrations. 
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Representative time series from three cells are shown, one from each 𝑐0. Scale bar height is 0.3. 

Parameters of the slow noise autocorrelation function were fit to single-cell traces using Bayesian filtering 

(17,102). Right: Estimated noise autocorrelation functions with population median parameters. Vertical 

axis units are kinase activity squared. 

 

Comparing E. coli to the physical limit 

Both E. coli’s information rate, 𝐼𝑠̇→𝑎
∗ , and the physical limit, 𝐼𝑠̇→𝑟

∗ , are proportional to 𝑔2 in shallow 

gradients. Therefore, using the measured parameters, we plotted the information rates per 𝑔2 as 

functions of 𝑐0 (Fig. 3A), for values of 𝑔 in which we previously measured E. coli's gradient-climbing speeds 

(17). Doing so reveals that E. coli are surprisingly far from the physical limit: in shallow gradients, 𝐼𝑠̇→𝑎
∗  is 

at least two orders of magnitude below 𝐼𝑠̇→𝑟
∗  across all background concentrations.  

To quantify this comparison, we computed the ratio of E. coli’s information rate and the physical limit, 

𝜂 ≡ 𝐼𝑠̇→𝑎
∗ /𝐼𝑠̇→𝑟

∗  (Fig. 3B, small error bars). In vanishingly small gradients (black curve), 𝜂 is independent of 

𝑔. In this regime, 𝐼𝑠̇→𝑟
∗ ∝ 𝑐0 in all background concentrations, and the shape of 𝜂 is determined by the gain 

of kinase response, 𝐺𝑟. When 𝑐0 ≪ 𝐾𝑖, the gain is constant, and 𝜂 increases with background, 𝜂 ∝ 𝑐0. 

When 𝑐0 ≫ 𝐾𝑖, 𝐺𝑟 decreases and cancels out increasing 𝑐0, so 𝜂 ∝ 1/𝑐0. These two regimes are separated 

by a peak at 𝑐0 = 𝐾𝑖, where 𝜂 ≈ 0.014 ± 0.002 at our closest measurement. As the gradient gets steeper, 

𝜂 increases, up to 𝜂 ≈ 0.1 when 𝑔 = 0.4 mm−1. This larger value of 𝜂 does not mean that E. coli count 

nearly every molecule in steeper gradients. Instead, the physical limit saturates (solid lines decreasing 

with 𝑔 in Fig. 3A). Thus, in a steep gradient, even a poor sensor can infer the signal with decent accuracy.  

Although typical cells in a population are far from the sensing limit, individual cells exhibit non-genetic 

diversity in sensing and swimming phenotypes (49,50,52,83,90,98), which could cause a significant 

fraction of the population to approach the limit. Our experimental setup did not allow us to measure all 

parameters in the same single cells, limiting our ability to answer this question. However, we do have 

single-cell parameters from different cells. Assuming that swimming, kinase responses, and kinase noise 

parameters are uncorrelated across cells, we use a maximum-likelihood approach to estimate the 

variability of 𝜂 in the population (SI section “Estimating population variability in 𝜂”). This analysis indicates 

that although the 95th percentile of the population can be ~5 times closer to the physical limit, they are 

still far from it (Fig. 3B , large error bars). 

In Fig. 3C, we show the power spectral density (PSD) of slow noise in kinase activity (green line) compared 

to the PSD of filtered molecule arrival noise (blue line) in 𝑐0 = 1 μM. If E. coli were close to the physical 

limit, nearly all noise in kinase activity would come from filtered molecule arrivals. Instead, slow kinase 

fluctuations are much larger over the range of frequencies observable in the experiment (Fig. 3C, outside 

the pink region). Thus, E. coli’s chemosensing is limited by constraints on its internal signal processing, 

rather than the external physics of ligand diffusion. 
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Figure 3: Comparing E. coli’s sensing accuracy to the physical limit. A) Information rates per gradient 

steepness squared, 𝑔2, in molecule arrival rate, 𝐼𝑠̇→𝑟
∗  (SI Eqn. 46; solid lines), and in kinase activity, 𝐼𝑠̇→𝑎

∗  

(SI Eqn. 108; dashed lines use the MWC model gain 𝐺(𝑐0) and remaining parameters measured in 𝑐0 =

1 μM) for gradients of varying steepness, 𝑔 ∈ {0+, 0.1, 0.2, 0.3, 0.4} mm−1 in black, blue, green, red, 

yellow, where 0+ is the limit of an infinitely shallow gradient. Dots are experimental measurements. Error 

bars and shading are the SEM. E. coli are far from the physical limit when signals are weak and sensor 

quality matters. B) 𝜂 = 𝐼𝑠̇→𝑎
∗ /𝐼𝑠̇→𝑟

∗  versus 𝑐0. Colors and markers are the same as in (A). Shading and small 

error bars on the dots are the SEM. Large error bars on the dots are estimates of 95% confidence intervals 

of population variation in 𝜂, assuming that swimming, kinase response, and kinase noise parameters are 

uncorrelated. Dots are shifted slightly for visual clarity. C) Fit models for the PSD’s of noise sources in 𝑐0 =

1 μM. Green: Slow noise in kinase activity. Blue: Molecule arrival noise filtered through the kinase 

response function. Black: Sum of green and blue. Red shading: Experimentally-inaccessible time scales 

using CheY-CheZ FRET. See also SI Fig. S3 and the SI section “Modeling kinase activity.” 

 

In Fig. 4, we demonstrate what this means for E. coli by simulating run-tumble motion in a gradient and 

constructing the optimal signal estimates (see SI section “Simulation details”). The top panels of Fig. 4A 

show the observed quantities: molecule arrival rate for an ideal cell, and kinase activity for E. coli. The 

bottom panels show the optimal estimates of the signal in each case, 𝑠̂𝑟(𝑡) and 𝑠̂𝑎(𝑡), overlaid on the true 

signal. The estimate from kinase activity, 𝑠̂𝑎(𝑡), is visibly lower-quality than 𝑠̂𝑟(𝑡). Quantitatively, 𝑠̂𝑎(𝑡) is 

less correlated with the true signal by nearly a factor of 10, and likewise kinase activity encodes about 10 

times less information about signals than the physical limit. This figure shows the best-case scenario 

among those in Fig. 3AB; in shallower gradients or other background concentrations, this discrepancy 

increases to 100-fold or more.   

Since information is needed for chemotaxis, this result implies that an ideal cell with the same swimming 

speed and run duration as E. coli (e.g. same 𝛾𝑟) could climb gradients much faster than E. coli. To support 

this, we simulated chemotaxis of ideal cells and E. coli-like cells in gradients of varying steepness. Fig. 4B 

indeed shows that ideal cells (blue), which directly observe particle arrival rate 𝑟, climb gradients much 

faster than E. coli-like cells (green), which only have access to kinase activity 𝑎. In Fig. 4C, we trace this 

reduction in drift speed directly back to E. coli’s loss of behaviorally-relevant information compared to an 

ideal cell. Our previous theory (17) predicts that the ratio of the E. coli cells’ drift speed, 𝑣𝑎, to the ideal 

cell’s drift speed, 𝑣𝑟, is 𝑣𝑎/𝑣𝑟 = √𝐼𝑠̇→𝑎
∗ /𝐼𝑠̇→𝑟

∗ , and plotting these ratios against each other in Fig. 4C shows 

good agreement. Thus, being far from the limits of chemosensing likely has a dramatic impact on E. coli’s 

gradient-climbing performance, especially in shallow gradients. 
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Figure 4: Consequences of E. coli being far from the physical limit on sensing. A) Simulation of run-tumble 

motion in a concentration gradient and optimal signal estimates using measured parameters (Fig. S1; 𝑐0 =

1 μM, 𝑔 = 0.4 mm−1). Top-left: An ideal cell directly observes molecule arrival rate 𝑟(𝑡) (blue dots). Black 

line is the mean, ⟨𝑟(𝑡)⟩ = 𝑘𝐷 𝑐(𝑡). Inset is the entire trajectory zoomed in to see the subtle changes in 

𝑐(𝑡). Bottom-left: Optimal signal estimate from molecule arrivals, 𝑠̂𝑟(𝑡) (blue), overlaid on the true signal, 

𝑠(𝑡) (red). Top-right: Simulated E. coli respond to molecule arrivals with changes in kinase activity (green). 

Bottom-right: Optimal signal estimate from kinase activity, 𝑠̂𝑎(𝑡) (green), overlaid on the true signal, 𝑠(𝑡) 

(red).  𝑠̂𝑎(𝑡) is visibly lower-quality than 𝑠̂𝑟(𝑡). Squared Pearson correlation coefficients, 𝜌𝑟𝑠
2  and 𝜌𝑎𝑠

2 , 

between the estimates and the true signal in each bottom panel quantify their accuracy. B) Chemotactic 

drift speed normalized by swimming speed, 𝑣𝑑/𝑣0, as a function of gradient steepness, 𝑔, for ideal cells 

(blue) and E. coli (green) in simulations (𝑐0 = 1 μM; SI section “Simulation details”). Error bars in (B) and 

(C) are SEMs. C) Information lost between particle arrivals and kinase activity causes E. coli to climb 

gradients at speeds, 𝑣𝑎, that are smaller than those of ideal cells, 𝑣𝑟, by a factor of 𝑣𝑎/𝑣𝑟 =

(𝐼𝑠̇→𝑎
∗ /𝐼𝑠̇→𝑟

∗ )
1/2

. Thus, E. coli likely climb gradients slower than the physical limits of sensing allow. Dots 

are 𝑔 = {0.05, 0.1, 0.2, 0.3, 0.4} mm−1, from top-right to bottom-left. 

 

Discussion 

Living systems process information to perform survival-relevant functions, suggesting selection might 

optimize information processing. Here, we asked whether chemotaxing E. coli approach the physical limits 

on information processing set by counting diffusing ligand molecules. To make this question 

experimentally-testable, we devised a general approach that asks: how accurately can behaviorally-
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relevant signals be inferred from a cell’s interval variables (kinase activity) compared to the first physically-

measureable quantity (ligand molecule arrivals). Accuracy in each case was quantified by an information 

rate, which we derived analytically. Then, we quantified these information rates in experiments using 

single-cell FRET measurements of cells’ CheA kinase activity in multiple background concentrations. Our 

results show that E. coli encode far less information than the physical limit, and thus E. coli’s chemosensing 

is shaped by internal constraints rather than the physical limit. The functional implication is that E. coli 

likely climb chemical gradients much slower than the physical limit on chemosensing allows. Thus, with 

the same signal-to-noise of particle arrivals, 𝛾𝑟  (set by the swimming speed, run duration, background 

concentration, and gradient steepness), in principle it may be possible to evolve or engineer a 

microswimmer that would climb gradients much faster than E. coli. 

Our results are contrary to the belief, held in the field for nearly 50 years, that E. coli’s chemosensing 

approaches the physical limit, dramatically revising our understanding of bacterial chemotaxis. Since Berg 

and Purcell did not have direct access to E. coli’s uncertainty about ligand concentration, their argument 

for E. coli’s optimality assumed that cells must estimate the change in concentration over a single run, Δ𝑐, 

with uncertainty less than Δ𝑐 (Eqn. 57 in Ref. (4)). Using experimental measurements and their physical 

limit, they computed the minimum required averaging time, 𝑇, for this condition to be met if the cell had 

access to particle arrivals. They found that measured bacterial run durations were slightly longer than the 

minimum 𝑇, and argued that chemotaxis would be impossible with shorter runs. Thus, they concluded 

that the bacterial chemotaxis machinery is nearly optimal. The problem with this argument is its first 

assumption: that in order to climb gradients, E. coli’s sensing machinery must exceed a stringent signal-

to-noise threshold, so as to accurately infer the gradient direction in each run. Instead, E. coli's 

displacement along the gradient accumulates their inferences over many runs. Therefore, even when 

individual tumble decisions are inaccurate, cells still climb the gradient on average, with no hard threshold 

on accuracy. In fact, we can show that Berg and Purcell’s assumption is too stringent: in our notation, their 

threshold condition can be written as 𝛾𝑟 > 16/3 (SI section “Berg & Purcell’s SNR threshold for 

chemotaxis”), but both the ideal cells and the E. coli cells simulated in Fig. 4B are able to climb the gradient 

when 𝑔 = 0.05 mm−1, 𝑐0 = 1 μM, and 𝛾𝑟 = 0.15 ≪ 16/3. 

Our results also disagree with those of Ref. (62), which argued that the marine bacterium Vibrio ordalii 

senses chemical signals with accuracy within a factor of ~6 of the physical limit, based on fits of agent-

based simulations to measurements of bacteria climbing dynamic chemical gradients. We believe the 

reason for this difference is that their model assumed cells infer 𝑠(𝑡) in independent time windows of 

duration 𝑇 = 0.1 𝑠. However, the signal is correlated over a time 𝜏𝑣 > 𝑇, so an ideal agent can average 

out molecule arrival noise for times up to 𝜏𝑣. This increases the theoretical limit, and thus V. ordalii’s 

distance from it, by a factor of (𝜏𝑣/𝑇)3 = (
0.45 𝑠

0.1 𝑠
)

3
≈ 90, due to the 𝜏𝑣

3 in 𝛾𝑟  (Eqn. 3) (related to the 𝑇3 

in Ref (35)). This suggests that chemosensing in other bacterial species, besides E. coli, may also be 

internally-limited. Beyond bacteria, our results call for a recalibration of expectations about the extent to 

which biology approaches physical limits on information processing or other functions. 

Why are E. coli so far from the physical limit? One possibility is the physical implementation of their 

sensory system may impose trade-offs. For example, the need to operate over a wide range of background 

concentrations (99–101) suppresses response gain in high backgrounds, but the noise stays constant, 

reducing information. Cells may need to amplify signals above downstream noise sources, such as 

stochastic motor switching, requiring the densely-packed arrays seen universally across bacterial species 
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(103), but strongly-coupled CheA kinases likely also introduce noise. Indeed, the dense localization of 

receptors suggests that molecule counting is not limiting, since if it were, the optimal strategy would be 

to uniformly distribute the receptors (4). E. coli also need to sense amino acids, sugars, and peptides 

(82,104) with different receptors, but the presence of multiple receptor types in the array reduces the 

response to any one ligand (94). Another possibility is that E. coli may be, and likely are, under selection 

pressures to perform other tasks, such as localize at concentration peaks (76,77,105,106). Laboratory 

strains have long been selected for chemotaxis via collective migration assays (107–109). The steep 

gradients generated during migration, reaching 𝑔 ≈ 1 mm−1 or steeper (110–112), might obviate the 

need for a high-fidelity sensor. Lastly, increasing information about signals might be possible, but too 

costly in resources or energy to be worth the gain in fitness (20–26,32,113–115). The mechanism of 

amplification is not well understood, but recent work has argued that it consumes energy (116–118). 

These possibilities might be distinguished by measuring information rates of single cells in an isogenic 

population or information rates of mutants. If any single cell approaches the physical limit, it would mean 

that E. coli are not limited by hard implementation constraints, but rather by costs or competing 

objectives. Answering this question will likely inform our thinking about the relevant physical constraints 

on information processing in other systems. 

Physical limits, and whether biology approaches them, have long inspired physicists’ curiosity (1–17). At 

first glance, our results seem to call into question the value of normative theories and physical limits for 

understanding biological information processing. However, our findings were only possible because we 

derived a physical limit that provided a reference point against which to compare. At the same time, our 

results motivate going beyond physical limits and taking seriously the system-specific, physical and 

biological constraints on biological information processing. Going forward, we expect E. coli chemotaxis 

will be a valuable template for studying physical limits and constraints on information processing in higher 

organisms. 
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Methods 

Strains and plasmids 

All strains and plasmids used are the same as in our recent work (17). The strain used for the FRET 

experiments is a derivative of E. coli K-12 strain RP437 (HCB33), a gift of T. Shimizu, and described in detail 

elsewhere (49,50). The FRET acceptor-donor pair (CheY-mRFP and CheZ-mYFP) is expressed in tandem 

from plasmid pSJAB106 (49) under an isopropyl β-D-thiogalactopyranoside (IPTG)-inducible promoter. 

The glass-adhesive mutant of FliC (FliC*) was expressed from a sodium salicylate (NaSal)-inducible pZR1 

plasmid (49). The plasmids are transformed in VS115, a cheY cheZ fliC mutant of RP437 (49) (gift of V. 

Sourjik). RP437, the direct parent of the FRET strain and also a gift from T. Shimizu, was used to measure 

swimming statistics parameters. All strains are available from the authors upon request.  

 

Cell preparation 

Single-cell FRET microscopy and cell culture was carried out essentially as described previously 

(17,49,50,52). Cells were picked from a frozen stock at -80°C and inoculated in 2 mL of Tryptone Broth 

(TB; 1% bacto tryptone, 0.5 % NaCl) and grown overnight to saturation at 30°C and shaken at 250 RPM. 

Cells from a saturated overnight culture were diluted 100X in 10 mL TB and grown to OD600 0.45-0.47 in 

the presence of 100 μg/ml ampicillin, 34 μg/ml chloramphenicol, 50 μM IPTG and 3 μM NaSal, at 33.5°C 

and 250 RPM shaking. Cells were collected by centrifugation (5 min at 5000 rpm, or 4080 RCF) and washed 

twice with motility buffer (10 mM KPO4, 0.1 mM EDTA, 1 μM methionine, 10 mM lactic acid, pH 7), and 

then were resuspended in 2 mL motility buffer, plus the final concentration of Asp. Cells were left at 22°C 

for 90 minutes before loading into the microfluidic device. All experiments, FRET and swimming, were 

performed at 22-23°C. 

For swimming experiments, cells were prepared similarly. Saturated overnight cultures were diluted 100X 

in 5 mL of TB. After growing to OD600 0.45-0.47, 1 mL of cell suspension was washed twice in motility 

buffer with 0.05% w/v of polyvinylpyrrolidone (MW 40 kDa) (PVP-40). Washes were done by centrifuging 

the suspension in an Eppendorf tube at 1700 RCF (4000 RPM in this centrifuge) for 3 minutes. After the 

last wash, cells were resuspended with varying background concentrations of Asp. 

 

Microfluidic device fabrication and loading for FRET measurements 

Microfluidic devices for the FRET experiments (50,52,92) were constructed from polydimethylsiloxane 

(PDMS) on 24 x 60 mm cover glasses (#1.5) following standard soft lithography protocols (119), exactly as 

done before (17).  

Sample preparation in the microfluidic device was conducted as follows. Five inlets of the device were 

connected to reservoirs (Liquid chromatography columns, C3669; Sigma Aldrich) filled with motility buffer 

containing various concentrations of Asp through polyethylene tubing (Polythene Tubing, 0.58 mm id, 

0.96 mm od; BD Intermedic) (see SI of (17)). The tubing was connected to the PMDS device through 

stainless steel pins that were directly plugged into the inlets or outlet of the device (New England Tubing). 

Cells washed and suspended in motility buffer were loaded into the device from the outlet and allowed 

to attached to the cover glass surface via their sticky flagella by reducing the flow speed inside the 
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chamber. The pressure applied to the inlet solution reservoirs was controlled by computer-controlled 

solenoid valves (MH1; Festo), which rapidly switched between atmospheric pressure and higher pressure 

(1.0 kPa) using a source of pressurized air. Only one experiment was conducted per device. E. coli consume 

Asp, so all experiments below were performed with a low dilution of cells to minimize this effect. The 

continuous flow of fresh media also helped ensured that consumption of Asp minimally affected the signal 

cells experienced. 

 

Single-cell FRET imaging system 

FRET imaging in the microfluidic device was performed using the setup as before (17), on an inverted 

microscope (Eclipse Ti-E; Nikon) equipped with an oil-immersion objective lens (CFI Apo TIRF 60X Oil; 

Nikon). YFP was illuminated by an LED illumination system (SOLA SE, Lumencor) through an excitation 

bandpass filter (FF01-500/24-25; Semrock) and a dichroic mirror (FF520-Di02; Semrock). The fluorescence 

emission was led into an emission image splitter (OptoSplit II; Cairn) and further split into donor and 

acceptor channels by a second dichroic mirror (FF580-FDi01-25x36; Semrock). The emission was then 

collected through emission bandpass filters (F01-542/27-25F and FF02-641/75; Semrock) by a sCMOS 

camera (ORCA-Flash4.0 V2; Hamamatsu). RFP was illuminated in the same way as YFP except that an 

excitation bandpass filter (FF01-575/05-25; Semrock) and a dichroic mirror (FF593-Di03; Semorock) were 

used. An additional excitation filter (59026x; Chroma) was used in front of the excitation filters. To 

synchronize image acquisition and the delivery of stimulus solutions, a custom-made MATLAB program 

controlled both the imaging system (through the API provided by Micro-Manager (120)) and the states of 

the solenoid valves. 

 

Computing FRET signal and kinase activity 

FRET signals were extracted from raw images using the E-FRET method (121), which corrects for different 

rates of photobleaching between donor and acceptor molecules. In this method, YFP (the donor) is 

illuminated and YFP emission images (𝐼𝐷𝐷) and RFP (the acceptor) emission images (𝐼𝐷𝐴) are captured. 

Periodically, RFP is illuminated and RFP emission images are captured (𝐼𝐴𝐴). From these, photobleach-

corrected FRET signal is computed as before (17), which is related to kinase activity 𝑎(𝑡) by an affine 

transform when CheY and CheZ are overexpressed (17,93). All parameters associated with the imaging 

system were measured previously (17). 

In each experiment, we first delivered a short saturating stimulus (1 mM MeAsp plus 100 µM serine (94)) 

to determine the FRET signal at minimum kinase activity, followed by motility buffer with Asp at 

background concentration 𝑐0. Before the saturating stimulus was delivered, the donor was excited every 

0.5 seconds to measure 𝐼𝐷𝐷 and 𝐼𝐷𝐴 (see SI of (17)) for 5 seconds. Then the stimulus was delivered for 10 

seconds, and the donor was excited every 0.5 seconds during this time. Before and after the donor 

excitations, the acceptor was excited three times in 0.5-second intervals to measure 𝐼𝐴𝐴 (see SI of (17)). 

After the stimulus was removed, the acceptor was excited three more times at 0.5-second intervals. 

Imaging was then stopped and cells were allowed to adapt to the background for 120 seconds. 

Stimulus protocols for measuring kinase linear response functions and fluctuations are described below. 
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At the end of each experiment, we delivered a long saturating stimulus (1 mM MeAsp plus 100 µM serine) 

for 180 seconds to allow the cells to adapt. Then we removed the stimulus back to the background 

concentration, eliciting a strong response from the cells, from which we determined the FRET signal at 

maximum kinase activity. The donor was excited for 5 seconds before the saturating stimulus and 10 

seconds after it, every 0.5 seconds. Before and after these donor excitations, the acceptor was excited 

three times in 0.5-second intervals. The cells were exposed to the saturating stimulus for 180 seconds. 

The donor was excited every 0.5 seconds for 5 seconds before cells were exposed to motility buffer with 

Asp at background concentration 𝑐0, followed by 10 seconds of additional donor excitations. Before and 

after the donor excitations, the acceptor was again excited three times in 0.5-second intervals. 

FRET signals were extracted as before (17). The FRET signal at minimum kinase activity, 𝐹𝑅𝐸𝑇𝑚𝑖𝑛, was 

computed from the average FRET signal during the first saturating stimulus. The FRET signal at maximum 

kinase activity, 𝐹𝑅𝐸𝑇𝑚𝑎𝑥, was computed from the average FRET signal during the first quarter (2.5 

seconds) of the removal stimulus at the end of the experiment. Kinase activity was then computed from 

corrected FRET signal: 𝑎(𝑡) =
𝐹𝑅𝐸𝑇(𝑡)−𝐹𝑅𝐸𝑇𝑚𝑖𝑛

𝐹𝑅𝐸𝑇𝑚𝑎𝑥−𝐹𝑅𝐸𝑇𝑚𝑖𝑛
. 

 

Kinase linear response functions 

Experiments were performed in Asp background concentrations 𝑐0 of 0.1, 1, and 10 µM. Measurements 

were made in single cells, and at least three replicates were performed per background. FRET level at 

minimum kinase activity was measured at the beginning of each experiment, as described above. After 

this, a series of stimuli were delivered to the cells in the microfluidic device. Cells were only illuminated 

and imaged when stimulated in order to limit photobleaching. Before each stimulus, cells were imaged 

for 7.5 seconds in the background concentration 𝑐0. Then, the concentration of Asp was shifted up to 

𝑐+ > 𝑐0 for 30 seconds and imaging continued. Donor excitation interval was 0.75 seconds and acceptor 

excitations were done before and after the set of donor excitations. After this, imaging was stopped and 

the Asp concentration returned to 𝑐0 for 65 seconds to allow cells to adapt. Then, the same process was 

repeated, but this time shifting Asp concentration down to 𝑐− < 𝑐0. Alternating up and down stimuli were 

repeated 10 times each. 𝑐+ and 𝑐− varied with each experiment and each background 𝑐0. Finally, FRET 

level at maximum kinase activity was measured at the end of each experiment, as described above. The 

whole imaging protocol lasted <2200 seconds. In total, cells spent <60 minutes in the device, from loading 

to the end of imaging.  

These data were analyzed as before (17) to extract linear response parameters for each cell. In brief, the 

responses of a cell to all steps up or steps down in concentration were averaged and the standard error 

of the response at each time point computed. Model parameters were extracted by maximizing the 

posterior probability of parameters given data, assuming a Gaussian likelihood function and log-uniform 

priors for the parameters. The uncertainties of single-cell parameter estimates were generated by MCMC 

sampling the posterior distribution. Finally, the population-median parameters were computed from all 

cells in experiments in a given background 𝑐0. Uncertainty 𝜎𝜃𝑖

2  of the population-median value of 

parameter 𝜃𝑖, with 𝜃 = (𝐺, 𝜏1, 𝜏2), was computed using: 

𝜎𝜃𝑖

2 =
1

𝑁
(1.4826 mad({𝜃𝑖

𝑀𝐴𝑃}))
2

+
1

𝑁2
∑(𝜎𝜃𝑖

2 )
𝑘

𝑘

. (6) 
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This expression accounts both for cell-to-cell variations (first term) and uncertainties in the single-cell 

estimates (second term). 𝑁 is the number of cells. 1.4826 mad(  ) is an outlier-robust uncertainty 

estimate that coincides with the standard deviation when the samples are Gaussian-distributed, and 

mad(  ) is the median absolute deviation, used previously (17). {𝜃𝑖
𝑀𝐴𝑃} are the single-cell maximum a-

posteriori (MAP) estimates of parameter 𝜃𝑖. (𝜎𝜃𝑖

2 )
𝑘

 is the uncertainty of 𝜃𝑖
𝑀𝐴𝑃 in cell 𝑘, which was 

computed using  

(𝜎𝜃𝑖
)

𝑘
= 1.4826 mad ({𝜃𝑖}

𝑘
) (7) 

where {𝜃̂𝑖}
𝑘

 are the samples from the 𝑘th cell’s posterior via Markov Chain Monte Carlo (MCMC). 

 

Fitting the MWC kinase gain 

Parameters 𝐺∞ and 𝐾𝑖 of the MWC model gain were estimated by fitting the model to estimated values 

of 𝐺 in each background 𝑐0. The fit was done by minimizing the sum of squared errors between the 

logarithms of the measured 𝐺 and predicted values of 𝐺. Since the estimated values of 𝐺 varied by about 

an order of magnitude, taking the logarithms ensured that the smallest value of 𝐺 had similar weight as 

largest value in the objective function. 

 

Statistics of noise in kinase activity 

Fluctuations in kinase activity were measured in the same Asp background concentrations 𝑐0 as above, as 

well as 𝑐0 = 0 μM. At least three replicate experiments were performed per background. FRET level at 

minimum kinase activity was measured at the beginning of each experiment, as described above. After 

these measurements, imaging was then stopped and cells were allowed to adapt to the background for 

120 seconds. After this, cells were imaged for about 1200 seconds. Throughout, donor excitations were 

done every 1.0 second, except when it was interrupted by acceptor excitations, which were conducted 

every 100 donor excitations (see SI of (17)). Finally the FRET level at maximum kinase activity was 

measured at the end of each experiment, as described above. The whole imaging protocol lasted <1400 

seconds. In total, cells spent about < 60 minutes in the device, from loading to the end of imaging.  

These data were analyzed as before (17). Bayesian filtering methods (102) were used to compute the 

likelihood of the parameters given the data, and the prior distribution was taken to be uniform in log. 

Single-cell estimates and uncertainties of the noise parameters were extracted from the posterior 

distribution as described above. In each background 𝑐0, the population median parameter values were 

computed, and their uncertainties were computed as described above, with 𝜃 = (𝐷𝑛, 𝜏𝑛). 

 

Swimming velocity statistics 

Cells were prepared and imaged as before (17). After the second wash step of the Cell preparation section 

above, cells were centrifuged again and resuspended in motility buffer containing a background 

concentration of Asp 𝑐0. The values of 𝑐0 used here were the same as in the FRET experiments, including 

𝑐0 = 0 μM. Then, the cell suspension was diluted to an OD600 of 0.00025. This low dilution of cells both 
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enables tracking and minimizes the effect of cells consuming Asp. The cell suspension was then loaded 

into µ-Slide Chemotaxis devices (ibidi; Martinsried, Germany). Swimming cells were tracked in one of the 

large reservoirs. 1000-s movies of swimming cells were recorded on a Nikon Ti-E Inverted Microscope 

using a CFI Plan Fluor 4X objective (NA 0.13). Images were captured using a sCMOS camera (ORCA-Flash4.0 

V2; Hamamatsu). Four biological replicates were performed for each background 𝑐0. 

Cell detection and tracking were carried out using the same custom MATLAB as we used previously (17), 

with the same analysis parameters (see SI of that paper for details). Tumble detection was also carried 

out identically as before (17). There was no minimum trajectory duration, but cells were kept only if at 

least two tumbles were detected in their trajectory. For each cell, we computed the fraction of time spent 

in the “run” state 𝑃𝑟𝑢𝑛. Then we constructed the distribution of 𝑃𝑟𝑢𝑛, correcting for biases caused by the 

different diffusivities of cells with different 𝑃𝑟𝑢𝑛 (17). As before (17), we then computed the correlation 

function of velocity along one spatial dimension for each cell, 𝑉𝑖(𝑡) = ⟨𝑣𝑥(𝑡′)𝑣𝑥(𝑡′ + 𝑡)⟩𝑡′  among cells 

with 𝑃𝑟𝑢𝑛 within ±0.01 of the population-median value,. Finally, we computed a weighted average of the 

correlation functions over all cells in the population-median bin of 𝑃𝑟𝑢𝑛, where trajectories were weighted 

by their duration , giving 𝑉(𝑡). In each background 𝑐0, for the median bin of 𝑃𝑟𝑢𝑛, the average trajectory 

duration was ~7.6 seconds, and the total trajectory time was ≥ 2.7 × 104 seconds.  

These correlation functions 𝑉(𝑡) in each background 𝑐0 and each experiment were fit to decaying 

exponentials 𝜎𝑣
2 exp(−|𝑡|/𝜏𝑣), and the parameters and their uncertainties were extracted in two steps. 

First, we determined the MAP estimates of the parameters. An initial estimate of the parameters were 

esimated using the MATLAB fit function to fit exponentials to the 𝑉(𝑡) in the time rang 𝑡 ∈ [2 Δ𝑡, 10 s], 

with Δ𝑡 = 50 ms. The estimated 𝜏𝑣 was used to get the uncertainty of 𝑉(𝑡) in each experiment, as done 

before (17). Assuming a Gaussian likelihood function and parameters distributed uniformly in logarithm, 

the posterior distribution of parameter was constructed. In each experiment, MAP estimates of the 

parameters were extracted as done for the kinase parameters, and parameter uncertainties were 

computed from MCMC samples of the posterior distribution as above. Finally, we computed the average 

parameters 𝜎𝑣
2 and 𝜏𝑣 over experimental replicates, as well as their standard errors over replicates. 

 

Additional error analysis 

Once the variance of the population-median value of parameter 𝑖 was computed, 𝜎𝜃𝑖

2 , we propagated the 

uncertainty to functions of those parameters. For some function of the parameters, 𝑓(𝜃), we computed 

the variance of 𝑓(𝜃), 𝜎𝑓
2, as: 

𝜎𝑓
2 = ∑ (

𝜕𝑓

𝜕𝜃𝑖
)

2

𝑖

𝜎𝜃𝑖

2  

= 𝑓2 ∑ (
𝜕 log 𝑓

𝜕𝜃𝑖
)

2

𝑖

𝜎𝜃𝑖

2 . (8) 

The equations above neglect correlations in the uncertainties between pairs of parameters. This was used 

to compute the uncertainties of  𝐼𝑠̇→𝑟
∗ , 𝐼𝑠̇→𝑎

∗ , and 𝜂. The same formula was used to compute uncertainties 

of functions of time by applying the formula above pointwise at each time delay 𝑡 and neglecting 

correlations in uncertainties between time points. 
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