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Abstract

How do we make good decisions in uncertain environments? In psychology and
neuroscience, the classic view is that we calculate the value of each option,
compare them, and choose the most rewarding modulo exploratory noise. An
ethologist, conversely, would argue that we commit to one option until its value
drops below a threshold and then explore alternatives. Because the fields use
incompatible methods, it remains unclear which view better describes human
decision-making. Here, we found that humans use compare-to-threshold compu-
tations in classic compare-alternative tasks. Because compare-alternative com-
putations are central to the reinforcement-learning (RL) models typically used
in the cognitive and brain sciences, we developed a novel compare-to-threshold
model (“foraging”). Compared to previous RL models, the foraging model bet-
ter fit participant behavior, better predicted the tendency to repeat choices,
and predicted held-out participants that were almost impossible under compare-
alternative models. These results suggest that humans use compare-to-threshold
computations in sequential decision-making.
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Introduction1

Because the world is only imperfectly observable and changes frequently, many of the2

decisions we make are uncertain. How do we make good decisions in the presence of3

this uncertainty? The conventional view in the cognitive and brain sciences is that4

we (1) estimate the subjective utility or “value” of each option being considered and5

then (2) compare alternative option values to make the best possible decision [1–5].6

This “compare-alternatives” perspective is ubiquitous in psychology and neuroscience.7

For example, nearly all Reinforcement Learning (RL) models, from the earliest8

Rescorla-Wagner model [1] to more modern models like Q-Learning and SARSA [6, 7],9

assume that the value of choosing each alternative option are compared in some way10

in order to select the best action [1, 4, 6]. These models, as well as the compare-11

alternatives perspective more broadly, shape the way that tasks are designed in these12

fields. For example, because we assume that values must be compared against each13

other, laboratory tasks using cued rewards often present all options simultaneously14

[8–11]. Similarly, because the reward prediction error in RL models functions to track15

changing mean values, reward contingencies in reward learning tasks tend to both16

increase and decrease over time [12–15]—in contrast decay of exploited resources often17

seen in natural environments.18

While the compare-alternatives view is widely influential, it is not universally19

accepted. In ethology, for example, foraging models instead assume that we (1) cal-20

culate the value of one exploited option and (2) compare this one value against a21

threshold to decide whether to continue exploiting or try something new [16, 17].22

The foraging view grew out of natural environments, where the value of an exploited23

resource will tend to decay over time and options are encountered sequentially, rather24

than in parallel. As a result, although foraging models have begun seeing some use25

among human cognitive scientists [18–23], these studies develop tasks that mirror the26

assumptions at the heart of the foraging perspective: they introduce reward contin-27

gencies that decay at a predictable rate (rath(er than changing unpredictably) and/or28

options that are encountered in sequence (rather than being presented simultane-29

ously) [18–23]. In short, the compare-alternatives and compare-to-threshold views of30

sequential decision-making use incomparable formalisms to make sense of behavior in31

incompatible environments. As a result, we do not know which view best describes32

human decision-making in standard laboratory tasks.33

Here, we asked whether human decision-making was better described as a compare-34

to-threshold process or as a compare-alternatives process in a classic testbed of35

decision-making under uncertainty from the reinforcement learning (RL) literature: a36

restless k-armed bandit task. We found that human behavior more closely resembled37

compare-to-threshold computations than compare-alternatives computations. This38

insight is difficult to reconcile with traditional RL algorithms from psychology and39

neuroscience, which model action selection with the critical assumption of compare-40

alternatives computations. Therefore, we developed a novel compare-to-threshold41

sequential decision-making model that is inspired by foraging theory rather than42

the compare-alternatives approach at the heart of RL. Across 3 independent exper-43

iments, we compared this new foraging model with various variations on traditional44
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compare-alternatives RL models [4]. We found that the foraging model was a bet-45

ter fit for the participants’ decisions, outperformed multiple variations on traditional46

RL models, and better predicted the participants’ tendency to repeat choices on both47

individual and group level. Together, these findings suggest that humans use compare-48

to-threshold computations—even in tasks that are commonly used as testbeds for49

compare-alternatives computations.50

Results51

Participants performed above chance and used complex52

strategies53

In Experiment 1, participants on the Amazon mTurk platform (258 people, 120 female,54

2 other or non-reporting) performed a classic sequential decision-making task known55

as a restless k-armed bandit (Figure 1A; [6, 12, 14, 15, 24, 25]). The participants56

were asked to repeatedly choose between k options, each of which was associated with57

some probability of reward. Reward probabilities changed unpredictably over time58

and independently across options (Figure 1B). The reward structure was not cued59

to the participants so the only way to infer the value of an option was to sample it.60

Because rewards evolved over time, the longer the participants went without sam-61

pling an option, the more uncertain its payoff became. This task naturally encourages62

decision-makers to alternate between exploiting valuable options and exploring uncer-63

tain alternatives because the latter could become better at any time. It is a classic64

in the RL literature and has become a testbed for evaluating RL models in both65

psychology and artificial intelligence (AI) [14, 26, 27].66

Participants were generally good at the task (Figure 1C) , despite its uncertainty.67

They chose the objectively best option 76.6% of the time (+/- 11.5% STD; Figure 1D)68

and received rewards 19.2 % more frequently than would be expected by chance (+/-69

15.3 % STD; Figure 1E). (Note that 4/258 participants [1.6%] were excluded from70

this and further analyses because they chose only one option.) Participants were more71

likely to repeat choices than to switch (switching on only 19.9% of trials, +/- 14.5%72

STD). They were also more likely to repeat after reward (win-stay = 93.3%, +/- 11.1%73

STD) and switch after no-reward (lose-shift = 39.2%, +/- 21.0% STD). However, no74

participants followed a deterministic win-stay-lose-shift rule (all participants either75

win-shifted or lose-stayed at least 5% of the time).76
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Fig. 1: Task and baseline behavior. A) Participants (n=258)
chose between 2 face-down decks of playing cards that were com-
posed of aces and 2’s. Participants were told that the proportion
of aces and 2’s in each deck would change over time and that
decks could be good, bad, or mediocre right now, but would
not stay that way the whole time. Participants got a point (and
$0.02) for each ace they found, but no points for 2’s. B) The
reward probability of each option (red trace = option 1; blue
trace = option from an example reward schedule, with partic-
ipant choices along the top (red dots = option 1; blue dots
= option 2). C) Average probability of choosing option 1 as
a function of the difference in the objective reward probabil-
ity (“value”) between option 1 and 2. Error bars = standard
error of the mean (SEM) across participants. D) Distribution of
the number of trials in which each participant chose the objec-
tively best option. Dotted line = chance, caret = mean across
participants.E) Same as D, for the percent of trials in which par-
ticipants were rewarded, normalized such that units represent
percent of chance performance (caret = mean).
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Human behavior better resembles the fingerprint of77

compare-to-threshold decisions78

Although both compare-alternatives and compare-to-threshold views of sequential79

decision-making come from different fields, they describe the same behavior: exploiting80

high-value options when those are available, but also occasionally switching to alterna-81

tives that could be better. Where the compare-alternatives and compare-to-threshold82

views differ is in how the decision to switch between options is made. As a result of83

these differences, compare-alternatives and compare-to-threshold views predict that84

switching will be most frequent in different kinds of environments (Figure 2A-C).85

The compare-alternatives view predicts that people should switch options more86

often when it is most difficult to discern which option is the best. Because switch-87

ing occurs most frequently when option values are close together, people should88

switch more frequently in ambiguous environments versus discriminable environ-89

ments (Figure 2B-top). The compare-to-threshold view, conversely, predicts that90

people should switch more whenever an exploited option falls below a threshold.91

Because the value of an option is more likely to fall below threshold when all option92

values are low, people should switch more frequently in poor environments (versus93

rich environments) (Figure 2C-bottom). (N.B.We assume that the threshold is learned94

over long time scales such that it is essentially fixed within any given experiment [17],95

rather than adapting at a rate that would cause it to start approximating compare-96

alternatives [21].) In short, switching should depend on very different aspects of97

the environment in compare-to-threshold decision-making versus compare-alternatives98

decision-making.99

If we could dissociate richness from discriminability, we could identify whether100

people were using compare-to-threshold or compare-alternative computations simply101

by looking at which one influences switching behavior. This is because richness would102

not affect switching in compare-alternatives decisions and discriminability would not103

affect switching in compare-to-threshold decisions. However, when rewards are prob-104

abilistic, these variables are not orthogonal (Figure 2A). The environment can only105

be very poor (reward probability of all options close to 0) or very rich (all reward106

probabilities close to 1) when discriminability is low. This means that compare-107

alternatives decision-making will have a relationship with richness in this task, but108

that relationship will be U-shaped with minimal switching at intermediate levels of109

richness (where discriminability is highest; Figure 2B,bottom). This also means that110

compare-to-threshold decision-making will have a nonlinear relationship with discrim-111

inability. This relationship would be subtly inverted U-shaped, with maximal switching112

at intermediate levels of discriminability (where richness is lowest; Figure 2C,top).113

Thus, although compare-to-threshold decisions are not based on discriminability and114

compare-alternatives decisions are not based on richness, the fact that rewards are115

bounded means that each strategy should have a unique fingerprint as a function of116

these two environmental variables (Figure 2 B-C).117

To determine whether human decision-making more closely resembled the predic-118

tions of the compare-alternatives or compare-to-threshold hypotheses, we therefore119

asked whether humans resembled the compare-alternatives or compare-to-threshold120
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Fig. 2: Compare-to-threshold and compare-alternatives decisions have dissociable signatures in
rich and discriminable environments. A) top: Cartoon illustrating the non-linear relationship between
reward discriminability (i.e., how different the reward probability of all options are) and richness (i.e., How
rewarding all the options are) in a bounded environment. bottom: discriminability as a function of richness
in Experiment 1. Each dot represents a segment of 100 trials experienced by one participant. B) In compare-
alternatives decisions, switching behavior is maximal when the absolute difference in reward probability (∆
reward) is low [24]. If we take the difference in rewards as a proxy for the probability of switch, then the
compare-alternatives hypothesis makes different predictions for how switching should change as a function
of reward discriminability (top) and richness (bottom). Shades of gold illustrate different hypothetical
“thresholds” for switching meaning that if the difference in reward probabilities between all options (∆
reward) is below these hypothetical threshold the decision is to switch options. C) In compare-to-threshold
decisions, switching behavior is maximal when the sum of rewards is low. Here, each option’s value is
individually compared to a preset threshold. If the average of these below-threshold comparison serves as a
proxy for switching then the compare-to-threshold hypothesis makes different predictions for how switching
should change as a function of reward discriminability (top) and richness (bottom). Shades of green illustrate
different hypothetical “thresholds” for switching meaning that if the option’s reward probability is below
these hypothetical threshold the decision is to switch options. D) Probability of switch of all participants
in Experiment 1 as a function of different levels of reward discriminability (top) and richness (bottom) of
the environment (errorbar = SEM). E) Distribution of deviance ratio between linear and quadratic model
fits to compare-alternatives (gold) and compare-to-threshold (green) proxies (Figure2B-C) as a function
of reward discriminability (top) and richness (bottom) of the environment (black caret = humans). F)
Distribution of the quadratic term (i.e., curvature) of the quadratic model fit to compare-alternatives (gold)
and compare-to-threshold (green) proxies (Figure2B-C) as a function of reward discriminability (top) and
richness (bottom) of the environment (black caret = humans). G) Distribution of the linear term (i.e.,
slope) of the linear model fit to compare-alternatives (gold) and compare-to-threshold (green) proxies
(Figure2B-C) as a function of reward discriminability (top) and richness (bottom) (black caret = humans).
H) Principle components (PC) projection of the multidimensional features of the compare-alternatives
(gold) and compare-to-threshold (green) proxies (see Methods). Bounds encompass all simulations. x’s =
individual simulations, black caret = humans. I) Distance between humans and every compare-alternatives
(gold) and compare-to-threshold (green) proxy in the multidimensional space. Bars = mean distance, x’s
= individual simulations.
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fingerprints. We found that the participants switched options the most at inter-121

mediate, rather than low levels of discriminability (Figure 2D,top), consistent with122

compare-to-threshold computations. The participants were also less likely to switch123

in rich environments, compared to poor ones (Figure 2D,bottom), again consistent124

with compare-to-threshold computations. To quantify the relationship between partic-125

ipants’ switching behavior and the respective fingerprints of the compare-alternatives126

and compare-to-threshold views, we simulated data at every possible threshold for127

compare-to-threshold decision-making and at every possible ∆ reward for compare-128

alternatives decision-making. We then used generalized linear models (GLMs) to129

characterize the slope and curvature of these relationships for each hypothesis (Figure130

2E-I; see Methods). Human switching was sensitive to discriminability and richness131

in a way that better resembled compare-to-threshold decision making, both in terms132

of every individual feature (2E-G) and in a multivariate feature space that simulta-133

neously considered all features (2H-I; average distance to compare-alternative proxies134

= 2.75 +/- 0.97 STD; to compare-to-threshold proxies = 1.34 +/- 0.44 STD; t(13)135

= 3.51, p < 0.005; see Methods). In sum, while the human data was not a perfect136

match for either fingerprint, it better resembled the fingerprint of compare-to-threshold137

decision-making than the fingerprint of compare-alternatives decision-making.138

Compare-alternatives agents outperformed139

compare-to-threshold agents on the task140

Although the k-armed bandit is a classic testbed for compare-alternatives models like141

traditional RL models [4, 6, 14, 28], it was nonetheless possible that some aspect of142

the task design encouraged the participants to use compare-to-threshold computations143

here. To determine if this was the case, we next developed a sequential decision-making144

agent based on compare-to-threshold computations and compared its performance on145

the task against a traditional compare-alternatives RL agent (Rescorla-Wagner; [6, 7]).146

A traditional RL agent estimates the value of choosing each individual option147

(V1, . . . , Vn; Figure 3A) and compares values across the option set (compare-148

alternatives; Figure 3A) to select the best possible action. Our novel foraging agent149

updates the value of the selected action via the same delta-rule computations used in a150

traditional RL agent, but differs in what the action represents. Specifically, the foraging151

agent only estimates the value of staying with the currently exploited option (Vexploit;152

Figure 2B ). It then compares this value against a fixed threshold to decide whether to153

continue exploiting or else to explore the alternatives at random (compare-to-threshold ;154

Figure 3B).155

Simulating both agents in the same reward schedules experienced by our partici-156

pants revealed that the environment did not advantage foraging over RL; in fact, RL157

agents outperformed foraging agents, regardless of whether performance was defined158

as the probability of choosing the objectively best option (Wilcoxon signed rank test159

: p < 0.01; Figure 3C/D) or as the probability of reward (Wilcoxon signed rank test160

: p < 0.01; Figure 3 E/F). In short, the task did not encourage compare-to-threshold161

decision-making and, in fact, the participants would have had to sacrifice reward to162

adopt this strategy over a compare-alternatives strategy.163
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Fig. 3: RL and foraging models produce different choice patterns performance and quality
fits to the data. A) Top: A cartoon illustrating the mechanics of the traditional RL model. The model
estimates the value of choosing each individual option through a standard delta-rule update. The value of
choosing alternatives options are then compared to each other and the highest value is selected. Bottom:
Simulated data from the traditional RL model, fit to an example participant from Experiment 1 and run
on the corresponding reward schedule. The choices (colored dots) and estimated values (colored traces)
of the traditional RL model are shown, along with the objective reward probabilities (pale traces). B) A
cartoon illustrating the mechanics of the foraging model. The model estimates the value of staying with the
currently exploited option through a standard delta-rule update. The value of exploitation is then compared
to a threshold in order to decide whether to stay and continue exploiting or to switch and explore other
options. Bottom: Simulated data from the foraging model, fit to an example participant from Experiment
1 and run on the corresponding reward schedule. The choices (colored dots) and exploitation value (purple
trace) of the foraging model are shown, along with the objective reward probabilities (pale traces). The
horizontal green line is the threshold. C) Distribution of the probability of choosing the objectively best
option for both foraging (green) and RL (gold) agents. D) Difference between the distributions seen in C.
E) Distribution of the normalized average reward received by both foraging (green) and RL (gold) agents.
F) Difference between the distributions seen in E (caret = mean ). G) the negative log-likelihood of the
RL and foraging models fit to all data from Experiment 1. H) The Akaike information criteria (AIC) of the
RL and foraging model fits. I) Average choice likelihood for each participant under the foraging model (x-
axis) and the RL model (y-axis). Inset: Distribution of differences in choice likelihood across participants
of Experiment 1. J) The negative log-likelihood of various extensions of the RL (gold) and foraging models
(green). K) The Akaike information criteria of the extensions of the RL (gold) and foraging models (green).
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Foraging models better predict participant decisions164

To determine how the participants solved the task, we fit computational models (see165

Methods). We first compared a simple 2-parameter Reinforcement learning model166

(“standard RL”; Rescorla-Wagner; [1, 6]) with a simple 3-parameter formulation of167

the foraging model (“standard F”). We found that the standard foraging model was a168

better fit to participant behavior than the standard RL model (Figure 3G-H; standard169

F: log-likelihood = -23,206, AIC = 47,936, 3 parameters by 254 participants = 762170

parameters; standard RL: log-likelihood = -24,878, AIC = 50,771, relative AIC weight171

< 1.8∗10−32, 2 x 254 participants = 508 parameters; 76,200 total trials). The foraging172

model also outperformed the RL model on an individual basis: it was a better fit in173

64.2% of individual participants (163/254; Figure 3I; standard F: median individual174

log-likelihood = 82.36, 95%CI = 9.40 to 201.06, standard RL: median = 86.72, 95% CI175

= 9.56 to 199.66; significant paired t-test: p < 0.0001 , t(253) = 6.79, mean difference =176

5.27, 95% CI = 3.74 to 6.79). This suggests that a foraging-like compare-to-threshold177

mechanism may better describe the participants’ choices in this task.178

There are a variety of extensions to the RL model that outperform the standard 2-179

parameter formulation and it remained unclear whether any of these would fit behavior180

better than foraging. Therefore, we next compared the foraging model with 4 com-181

mon extensions of the RL model (2 forms of choice history dependence, asymmetrical182

learning, and value decay, see Methods). We found that every extended RL model per-183

formed substantially better than the standard RL model in model comparison (Figure184

3J-K). However, the foraging model continued to outperform: it was a better fit than185

RL models that incorporated asymmetrical learning from wins and losses (“asymmet-186

rical RL” [24, 29, 30]; log-likelihood = -23,963, AIC = 49,450, AIC weight relative187

to foraging model < 10−32, 762 parameters), decay in the value of unchosen options188

(“decaying RL”; [15, 31]; log-likelihood = -23,181, AIC = 47,887, relative AIC weight189

< 10−32, 762 parameters), and a simple form of choice-history dependence with 1190

added parameter (“history-kernel 1 RL”; [4]; log-likelihood = -23,252, AIC = 48,028,191

AIC weight relative to foraging model < 10−32, 762 parameters). The only extended192

RL model that outperformed the simple foraging model was a 2-parameter choice-193

history dependent model (“history-kernel 2 RL”; [4]; log-likelihood = -22,660, AIC =194

47,351, relative weight of the foraging model < 10−32). Thus, the simplest foraging195

model was a better explanation for behavior than all but the most complex of RL196

models.197

The various extensions of the RL models were developed over a period of decades198

to improve model fit and it remained ambiguous whether the 1 RL (i.e., 2-parameter199

choice-history dependent RL) model that did better than the foraging model did200

so because it was a compare-alternatives model or because it incorporated history201

dependence. Therefore, we next developed an equivalent version of the foraging model202

for each extensions of the RL model and compared the two model classes (see Methods;203

Figure 3J-K). Each extended foraging model outperformed the equivalent RL model.204

This was true for a foraging model that permitted asymmetrical learning between wins205

and losses (“asymmetrical foraging”: log-likelihood = -22,777, AIC = 47,585, AIC206

weight relative to asymmetrical RL< 10−32, 4 x 254 = 1016 parameters), for a foraging207
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model where the threshold decayed with repeated choices (“decaying foraging”: log-208

likelihood = -22,632, AIC = 47,295, AIC weight relative to decaying RL < 10−32,209

1016 parameters), and for the 1-parameter history-dependent model (“history-kernel210

1 foraging”: log-likelihood = -22,558, AIC = 47, 148, AIC weight relative to choice-211

kernel RL 1 < 10−32, 1016 parameters). Ultimately, the best model overall was the212

history-dependent foraging model, which outperformed the best RL model (“history-213

kernel 2 foraging”: log-likelihood = -22,292, AIC = 47,125, AIC weight relative to214

choice-kernel RL 2 < 10−32, 1270 parameters; relative AIC weights of all competing215

models < 10−32). This foraging model also outperformed the best RL model on an216

individual basis: it did at least as well or better in nearly every individual participant217

than the best RL model (foraging model: median individual log-likelihood = 79.32,218

95% CI = 8.92 to 197.18, RL model: median = 80.43, 95% CI = 8.72 to 195.31;219

significant paired t-test: p < 0.05, t(253) = 1.98, mean difference = 1.45, 95% CI =220

0.01 to 2.89). In short, as a class, the foraging models consistently provided a better221

fit to the participants’ decisions.222

It remained possible that the foraging model outperformed the RL model solely223

because it was a better fit for participants who did not fully understand or engaged224

with the task. However, there was no systematic relationship between how foraging-like225

an individual participant was and how well they did in the task. Individual differences226

in the ”foraging index” (see Methods) were not correlated with the probability that227

the participant would choose the best option (R = −0.01, p = 0.84) nor were they228

correlated with above-chance reward probability (R = 0.03, p = 0.64). In sum, the229

participants who were most likely to be using foraging computations did not have230

either an advantage or a disadvantage in this task. Considering that foraging agents231

significantly underperformed RL agents (Figure 3C-F), this null result suggests that232

our most foraging-like participants were just as engaged in the task, if not moreso,233

than other participants.234

Foraging better explained the participants’ tendency to repeat235

We next asked why the foraging model was a better fit to behavior: what aspects of236

behavior did it describe that the RL model was unable to account for? We previously237

found that choices are considerably more repetitive than what can be explained with238

standard RL models, at least in humans and other primates [15, 32]. This may explain239

why most common extensions of the RL model tend to make the model more repet-240

itive. This is most obvious in the case of the choice history kernel models: the added241

parameters increase the probability of repeating the previous choice. In the decay242

model, similarly, repetition increases as the value of the alternative decays towards243

zero. Even in the asymmetrical learning models, learning more from wins than losses244

tends to stabilize choices and increase repetition [33, 34]. Therefore, we next asked if245

the foraging model was a better fit to behavior because it also better captured the246

repetitiveness of the participants’ choices.247

We simulated data from RL and foraging agents that were matched to the par-248

ticipants’ environment and parameters (see Methods). We then compared the level of249

repetitiveness in these simulated datasets with the participants’. In the participants,250

the average run length (length of same-choice sequences: 4.31 trials) was close to our251

10

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 7, 2025. ; https://doi.org/10.1101/2024.07.08.602539doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.08.602539
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 0.2 0.4 0.6
RL predicted p(switch)

0

0.2

0.4

0.6

0.8

ob
se

rv
ed

 p
(s

w
itc

h)

C

0 0.2 0.4 0.6
foraging predicted p(switch)

0

0.2

0.4

0.6

0.8

ob
se

rv
ed

 p
(s

w
itc

h)

D

10 15
0

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

inter-switch interval

pr
ob

ab
ili

ty

50

1 exp
2 exp

50 10010
-5

10
0

0

E

n components

-3.5

-3.4

-3.3

-3.2

-3.1

-3

lo
g 

lik
el

ih
oo

d

104

1 2 3 4

F

1.00

1.10

1.20

1.30

ru
n 

le
ng

th

G

10

12

14

16

18

ru
n 

le
ng

th

H exploitative regime

0.78
0.8

0.82
0.84
0.86
0.88

%
 s

ho
rt

RL foraging
model

I

10
# of 300 trial runs

0

20

40

60

80

100

cu
m

ul
at

iv
e 

su
m

RL
foraging
observed

50

K

exploit

M
hidden states

explore

O1 O2observed 
choices:

exploit
O1

exploit
O2

L

4

4.2

4.4

4.6
ru

n 
le

ng
th

RL foraging
model

A

0.19

0.2

0.21

0.22

0.23

0.24

p(
sw

itc
h)

RL foraging
model

B

1.2
1.4
1.6
1.8
2.0
2.2

m
ea

n 
ru

ns
 >

 3
0

RLforaging

J

model

10-2

RL
Foraging
Humans

stationary 
distribution

activation 
energy

explore

po
te

nt
ia

l e
ne

rg
y

exploratory regime

Fig. 4: Foraging and RL predict different choice dynamics. A) Average number of trials between
switch decisions (i.e., run length) of RL (gold) and foraging (green) agents in simulated Experiment 1
(blue line = average for Experiment 1 participants). B) Probability of switch. Same convention as in A.
C) Human observed probability of switch as a function of RL predicted probability of switch. D) Human
observed probability of switch as a function of foraging predicted probability of switch. E) Distribution of
choice run lengths of humans in Experiment 1. If the probability of switching was fixed, run lengths would
be exponentially distributed (black dotted line). A mixture of two exponential distributions (blue line)
suggests 2 distinct probabilities of switching. Dotted blue lines show each mixing distribution, one slow-
switching (i.e., exploitative regime) and another fast-switching (i.e., exploratory regime). Insert: Same
data presented on a logarithmic scale. F) Log-likelihoods for different mixture models containing a range of
1 to 4 exponential distributions. G) Average run length in the exploratory regime. H) Average run length
in the exploitative regime. I) Proportion of exploratory regimes. J) Proportion of very long exploitative
regimes exceeding 30 consecutive trials. K) Four participants were held out of all analyses because they chose
the same option 300 trials in a row. To determine the expected number of these no-switch participants under
each model, 100 datasets were generated from the distribution of fitted parameters (each with 254 simulated
participants). Here, we plot the cumulative percent of simulations (y-axis) as a function of the numbers
of no-switch participants (x-axis). Black caret = proportion of no-switch participants in Experiment 1. L)
Hidden Markov model (HMM) was used to infer the underlying internal state of the participants on each
trial from their sequence of choices. The model included 3 hidden states, 2 exploitative states corresponding
to each option and an exploratory state which participants could choose any of the options. M) Overlaid
state dynamic landscapes for both foraging (green), RL (gold) agents and Experiment 1 participants (blue).
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expectation under foraging (4.33 trials, 95% CI = [4.24, 4.43]) but greater than any252

individual run length from the RL simulations (4.18 trials, 95% CI = [4.09, 4.24];253

p < 0.01; Figure 4A). This was related to the fact that the foraging model was more254

accurate in predicting how often the participants would switch (i.e., the inverse of the255

choice run lengths; Figure 4B-D; foraging, mean sum of squared errors [MSSE] = 0.72,256

95% CI across simulations = [0.53, 0.94], RL, MSSE = 2.78 (95% CI = [2.54,3.01];257

significantly greater in RL; 2-sided paired t-test: p < 0.0001, t(1,253) = 6.46). The258

average probability of switching under the RL model was 22.7% (95% CI = [22.3%,259

23.1%]) and under the foraging model it was 20.3% (95% CI = [20.0%, 20.7%]). The260

participants switched 20.0% of the time, less frequently than any of the samples from261

the RL model, but not the foraging model. In fact, the RL model systematically pre-262

dicted that individual participants should switch more than they did (2.8% more, 95%263

CI across individuals = [1.7%, 4.0%], p < 0.0001, t(1,253) = 4.72). The foraging model264

did not have a significant bias towards over- or under-estimating individual partici-265

pants (predicted 0.4% more on average, 95% CI = [-0.08% to 0.1%], p = 0.1, t(253) =266

1.66). In short, in comparison to the RL model, the foraging model better predicted267

the participants’ tendency to switch on both the individual and group levels: it was268

both more precise and less biased.269

Foraging better explained persistent choice runs270

In mice, monkeys, humans, and optimized RL models, the distribution of choice run271

lengths in this task is composed of two switching regimes: one regime with rapid272

switching that is likely due to exploratory trial-and-error sampling and one regime273

with slow switching that is likely due to exploitative, persistent choices to the same274

target [15, 24, 32]. A specific increase in the slow switching regime is what sets humans275

and other primates apart from rodents in this task [32] and it is also one major feature276

of human decision-making that RL models do not naturally capture [15]. Therefore,277

we next asked whether the foraging model might better account for the slow switching278

regime.279

Again in this dataset, the behavior of the participants and both models were well280

described as a mixture of 2 regimes (Figure 4E-F; see Exponential Mixture Models281

in Methods). In the participants, the 2 regime model (log-likelihood = -31,048, 3282

parameters, n = 14,847) provided a significantly better fit than 1 (log-likelihood =283

-34,645, 1 parameter, likelihood ratio test: ratio = 7193.0, p < 10−32) and, while284

adding additional switching regimes continued to improve model fit (3 regimes: log-285

likehood = -30,893, 5 parameters; 4 regimes: log-likelihood = -30,884), improvement286

was already saturated at 2 (Figure 4F). Two regimes were also apparent across all the287

simulated data from the RL and foraging models (RL: n = 1,699,789, 1 regime log-288

likelihood = -3,907,700, 2 regimes log likelihood = -3,527,300, 3 regimes log-likelihood289

= -3,502,000, 4 regimes log-likelihood = -3,500,600, significant improvement from 1290

to 2: ratio = 760,950, p < 10−32, elbow at 2; foraging: n = 1,517,656, 1 regime log-291

likelihood = -3,550,000, 2 regimes log likelihood = -3,128,100, 3 regimes log-likelihood292

= -3,105,700, 4 regimes log-likelihood = -3,103,900, significant improvement from 1 to293

2: ratio = 843,650, p < 10−32, elbow at 2). In sum, both models and the participants294

had two distinct switching regimes in this task.295
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The switching regimes in the foraging model better matched the participants than296

those in the RL model. Both the foraging and the RL model tended to switch more297

frequently than the humans did during their own fast-switching, exploratory regimes298

(Figure 4G; RL = 1.13 trials, 95% CI = [1.08, 1.19]; foraging = 1.16, 95% CI =299

[1.08,1.23]; participants = 1.29, significantly longer than both models, p < 0.01). This300

may be due to the fact that neither model accounted for the complexity of exploratory301

decision-making, which can be information maximizing rather than random in some302

circumstances [35–37]. Nonetheless, only the foraging model was able to replicate303

the average long run length of the participants’ slow-switching, exploitative regimes304

(Figure 4H; RL = 12.15 trials, 95% CI = [11.38, 12.86]; foraging = 15.05, 95% CI =305

[13.70,16.42]; participants = 14.99, only significantly different than RL [ p < 0.01]) and306

their relative frequency (Figure 4J). This might explain why participants had more307

very long choice runs than we would expect under RL (1.8% of their choice runs were308

longer than 10% of the total number of trials [30 trials], significantly more than the309

1.6% predicted by RL, 95% CI = [1.4%, 1.7%], p < 0.01) (Figure 4J). The participants’310

long-run lengths frequency was well within the distribution under the foraging model,311

however (1.8%, 95% = [1.7%, 2.0%]). In sum, the foraging model better accounted for312

the participants tendency to repeatedly persist in choosing certain options for long313

periods of time.314

Recall that we initially excluded 4 of our 258 participants (1.6%) because they315

chose same option for the entire 300-trial duration of the session, despite passing316

our initial screening criteria. Because model parameters were not identifiable in these317

participants, they represented held-out data that did not influence the simulations in318

any way. Therefore, we next asked how likely these participants were, given the two319

models. In the simulated data, we found that runs of 300 identical choices were very320

rare in RL simulations (4 of 25,400 or 0.016% of simulated sessions), in contrast to321

foraging (178 of 25,400 or 0.7% of simulated sessions). This meant that 4 or more322

participants who chose the same option 300 trials in a row would be expected in 10.9%323

of experiments under foraging (Figure 4K). By contrast, under RL, we would have less324

than a 1 in 1 million chance of observing these 4 participants. In sum, the foraging325

model better captured the stability or repetitiveness of participants choice runs, in326

both those that were included in the model fits and in those that were excluded.327

Foraging better explains the dynamics of switching and328

exploitation329

Foraging was better able to explain the participants’ tendency to generate long choice330

runs. This could suggest that the foraging model was simply more stable than the331

traditional RL model. However, the foraging model also predicted that participants332

should have more fast-switching (i.e., exploratory regime) choices than the RL model333

did (Figure 4B/I; relative frequency of short choice runs; foraging = 84.4%, 95% CI334

= [82.8%, 86.0%]; RL = 81.4%, 95% CI = [79.8%, 83.0%]). Again the participants335

matched the predictions of the foraging model, but not the RL model: they had336

many more short choice runs than the RL model had predicted (relative frequency of337

exploitative runs = 85.3%, only significantly different than RL [p < 0.01]). In short, the338
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participants both switched more and switched less than the RL model suggested they339

should, but foraging was able to capture the complexity of the switching dynamics.340

To understand why the foraging model was better at reproducing the partici-341

pants’ switching dynamics, we used latent state models to interrogate the dynamics342

of exploration and exploitation in the participants and in both models (see Meth-343

ods; [15, 24, 36, 37]. Briefly, this approach models exploration and exploitation as344

the latent states underlying sequences of decisions through training hidden Markov345

models (HMMs) on observed choice sequences (Figure 4L). Where the mixture mod-346

els helped characterize the switching dynamics from runs of sequential choices, the347

HMMs were used to infer the most likely generative state underlying each individual348

choice [15, 24, 36] and to make statistical inferences about the governing equations349

of exploration and exploitation [24, 32, 36]. For example, the parameters of the tran-350

sition matrix of an HMM are estimates of the probability of transitioning between351

specific states: that a decision-maker will continue to exploit once they have begun to352

exploit, for example, or that they will stop exploiting one option in order to explore353

the alternatives.354

The foraging model better matched the participants’ explore/exploit state dynam-355

ics than did the RL model. Every measurement made with the HMMs was out of356

sample for the RL model simulations, but well within sample of the foraging model.357

For example, the participants repeated exploration 90.4% of the time, which was sig-358

nificantly higher than the RL model simulations (87.3%, 95% CI = [86.3%, 88.4%],359

p < 0.01) but close to the mean of the foraging simulations (90.3%, 95% CI = [89.8%,360

90.9%]). Similarly, the participants repeated exploitation 93.9% of the time, which361

was significantly higher than RL (90.9%, 95% CI = [90.5%, 91.3%], p < 0.01) but362

close to the mean foraging model (93.7%, 95% CI = [93.4%, 94.1%]). The fact that363

the transition matrix of an HMMs is a Markov chain makes it particularly analyti-364

cally tractable. We can often solve for the stationary distributions of these equations:365

the long-term probability that the participants would exploit (vs. explore; see Meth-366

ods). Here again, we found that the participants stationary frequency of exploration367

and exploitation (39.2% explore, 60.8% exploit) was out of sample for the RL model368

(41.6% explore, 95% CI = [40.4%, 42.9%]; 58.4% exploit, 95% CI = [57.1%, 59.6%],369

p < 0.01 in both cases), but well within sample for the foraging model (39.3% explore,370

95% CI = [38.4%, 40.2%]; 60.7% exploit, 95% CI = [59.9%, 61.6%]). Together, these371

results illustrate that the foraging model well described the dynamics of exploration372

and exploitation in the participants, while the RL model was consistently off target.373

Plotting the energetic landscape of these dynamics (see Methods; [24, 32, 36])374

revealed the intuition behind all of these individual results: the energetic landscape of375

exploration and exploitation was flatter in the RL model than it was in either the par-376

ticipants or the foraging model (Figure 4M). In both the participants and the foraging377

model, exploitation was a deeper, more stable state than exploration, but a substantive378

energetic barrier between the two states meant that exploration and exploitation were379

actually fairly stable states, with infrequent transitions between them. Conversely,380

in the RL model, not only was there less of a difference in the depth of exploration381

and exploitation, but there was less of an energy barrier between. Together, these382

results suggest that the foraging model was a better fit for the participants because it383
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better captured the dynamics of exploration and exploitation: their tendency to alter-384

nate between temporally-extended periods of exploiting good options and exploring385

alternatives.386
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Fig. 5: Foraging and RL have different quality fit to the data across different environ-
ments. A) An example reward schedule from the predictable two-armed bandit task (Experiment
2) , illustrating the reward probability of each option (red trace = option 1; blue trace = option 2)
and the choices made by the participant who had this reward schedule (red dots = option 1;blue
dots = option 2). B) The negative log-likelihood of the RL and foraging models fit to all data of
Experiment 2. C) Akaike information criterion. Same convention as in B. D) Human observed
probability of switch in Experiment 2 as a function of RL predicted probability of switch. E)
Foraging predicted probability of switch. Same convention as in D. F) Reward schedules auto-
correlations averaged for all participants of Experiment 1. Full line indicates the mean, shading
indicates STD and dotted line indicate the decay threshold. G) Same convention as in F for 3
levels of volatilities (red line) participants of experiment 3 H) The negative log-likelihood of the
RL and foraging models fit to all data of Experiment 3. I) AIC of the RL and foraging models
across different volatility levels in Experiment 3. Same convention as in G.

Foraging better predicts behavior under varied uncertainty387

It is possible that the participants did not bother comparing alternative values388

because the value of unchosen options was difficult to estimate in a restless bandit389

environment. Therefore, in Experiment 2 and 3, we bidirectionally manipulated the390

uncertainty of the unchosen option to to try to make the participants more or less391

likely to prefer the RL-like, compare-alternative computations over the foraging-like392

compare-to-threshold.393
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In Experiment 2, participants (95 people, 41 females, 1 other or non reporting)394

performed an more predictable version of the 2-armed bandit task where informa-395

tion about the unchosen option was increased. In this variation, the environment was396

structured so that the sum of reward probabilities for any given trial always totaled397

one (‘Example walk’, Figure 5A). This reduces the uncertainty of the unchosen option398

because its value could be inferred from the chosen option (it was always 1 minus the399

value of the chosen option). In this new task, we found that foraging was also a better400

fit to human behavior than RL (Figure 5B-C, FOR: log-likelihood = -6819, RL: log-401

likelihood = -7241 and relative AIC weight < 5.1 ∗ 10−32). (Note that we were unable402

to fit the model in 1/95 participants because that participant repeatedly selected the403

same option 300 times ([1.1%]; a similar proportion to the number that did so in404

Experiment 1: 4/258 [1.5%]).) To understand why foraging was a better fit, we gen-405

erated an RL and foraging agent from each participant’s parameters (see Methods)406

and then compared the simulated agents’ behaviors with the humans’ choice patterns.407

In line with Experiment 1, foraging better accounted for the participants’ tendency408

to switch between options (Figure 5D-E, RL: MSSE = 0.38, foraging: MSSE = 0.06,409

Wilcoxon signed rank test p < 1.5 ∗ 10−7). Together, these results suggest that forag-410

ing continues to be a better fit even when it is easier to infer the value of the unchosen411

option.412

In Experiment 3, participants (270 people, 112 females, 2 other or non reporting)413

performed a 3-armed version of the bandit task in which information about the uncho-414

sen option was reduced by (1) manipulating volatility and (2) increasing the number415

of options (see Methods). Increasing the volatility of the environment increases uncer-416

tainty about unchosen options because it increases the speed at which prior reward417

information becomes uninformative about the current value. Moreover, prior research418

suggest that increasing volatility tends to increase switching behaviors in humans419

[38, 39], which could offer an advantage to RL, as a less stable and persistent algo-420

rithm. Given that both Experiment 1 and 2 had similar low volatility (Experiment421

1 is illustrated in Figure 5F), we increased the volatility of the environment by low,422

medium, or high levels (Figure 5G). Regardless of the volatility of the environment,423

foraging was a better fit (Figure 5H-I, ”high volatility” FOR: log-likelihood = -16,928424

, RL:log-likelihood=-18,013 and relative AIC weight < 1.2 ∗ 10−32 ; ”medium volatil-425

ity” FOR: log-likelihood = -19,155, RL:log-likelihood=-19,955 and relative AIC weight426

< 5.5 ∗ 10−32; ”low volatility” FOR: log-likelihood = -19,247 , RL:log-likelihood=-427

20,649 and relative AIC weight < 1.8 ∗ 10−32). Together, these results suggest that428

foraging better explained human behavior even in high volatility environments that429

should have been best suited to the kind of frequent switching seen in RL models.430

Discussion431

Although human and animal behavior in k-armed bandits are conventionally modeled432

as a compare-alternatives process [13–15, 24, 28], our results suggest that humans com-433

pare the value of staying with the currently exploited option against a fixed threshold434

rather than comparing the values of choosing alternative options directly. We leveraged435
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this finding to build a novel compare-to-threshold RL model (“foraging”) and com-436

pare it to a traditional compare-alternatives RL models [1, 4, 6]. The foraging model437

and its various extensions were a better fit to participants’ behavior compared to the438

compare-alternatives RL models [1, 4, 6] even when comparing alternatives would have439

been the more advantageous strategy. The foraging model fits were consistently bet-440

ter than traditional RL models across 2 variations of the task that manipulated the441

uncertainty of the unchosen option. Across environments, the foraging models consis-442

tently better matched participants’ tendency to switch options, both on average and443

on an individual basis. The foraging models were even able to predict the existence of444

multiple participants who never switched at all: participants that essentially should445

not have existed under compare-alternatives RL.446

The difference between the foraging and traditional RL models is not solely that447

the latter uses compare-alternatives computations and the format uses compare-to-448

threshold. Another critical difference is in the models’ action-value space. In the449

traditional RL model, values represent the subjective utility of each primitive action450

(choosing option 1 or 2). By contrast, the foraging model does not represent the value451

of primitive actions, but instead of temporally extended actions (i.e., of exploiting452

the left option, rather than choosing the left option). In this way, the foraging model453

resonates with recent work on hierarchical reinforcement learning that suggests that454

people do make choices at the level of policies rather than primitive actions [40–46].455

Higher level policies, macro actions and options [40] have been studied for over two456

decades in the RL literature and are a candidate strategy for achieving better general-457

ization and transfer of knowledge in artificial agents [40, 43]. This distinction between458

models could make the foraging model better able to scale outside of laboratory tasks,459

where the number of options available is generally much larger than the small finite460

sets we present in the lab. Where the computations and representations in traditional461

RL models become more costly in high-dimensional or continuous decision spaces, the462

computations and representations in the foraging model can remain comparatively463

efficient. Compare-to-threshold computations may thus be favored by humans because464

they better align with the brain’s biological constraints and because they are better465

equipped to scale to natural environments. Together, these considerations suggest that466

foraging is a better explanatory model both because decisions are more like compare-467

to-threshold than compare-alternatives, but also because decisions are made at the468

level of temporally extended policies, rather than primitive actions.469

The foraging model we introduce here draws both its inspiration and its limita-470

tions from the foraging literature and could be expanded on in the future in ways that471

could have implications across fields. The model assumes the existence of only two472

macro actions—explore and exploit—and defines a specific low-level policy and termi-473

nation for each of them. Based on the foraging literature, we assumed that switching474

from exploit to explore causes instant forgetting of exploited values (i.e. the patch475

is left behind), that explore actions select targets randomly (i.e. that we travel until476

we encounter some new opportunity at random), and that exploit action-values are477

compared to a fixed threshold (i.e. one that is learned very slowly across long-term478

experience in an environment). On one hand, drawing these assumptions from the479
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ethological literature is a powerful way to create new computational models and con-480

strain the space of useful macro polices. On the other hand, each of these assumptions481

is also an opportunity for future research that could improve on the simple foraging482

algorithm presented here. For example, the foraging model failed to account for the483

rapid speed of switching during the exploratory regime(Figure 4G). This might suggest484

that refining the exploratory policy in this model could substantially improve both485

model fit and agent performance. One promising approach would be to incorporate486

directed forms of exploration (like self-avoiding search [37]) or intrinsic motivations487

(like entropy maximizing policies [47]). Developing more sophisticated exploratory488

strategies is likely necessary for translating the simple foraging algorithm we present489

here into something that could be useful in AI. In that sense, our work could represent490

a bridge between observations in animal behavior and major challenges in AI, includ-491

ing the problem of identifying useful macro action spaces. In short, developing new,492

biologically-inspired models of human decision-making could have broader impacts:493

not only for understanding the human mind, but also for generating powerful new494

tools in AI.495

The observation that foraging models are a better fit to human behavior may496

superficially appear to contradict the large body of evidence for RL-like computations497

in the neuroscience literature. However, the neural evidence for reinforcement learn-498

ing computations in the brain is strongest when we consider signals related to reward499

prediction errors and value functions— both of which also exist in our novel foraging500

model. Both models calculate reward prediction errors: this is how they learn their501

respective value functions from their environments. Further, although neural activity502

often correlates with action value (a signal thought to play a role in specifying primi-503

tive actions; [48]), RL primitive action-values are likely to be highly collinear with the504

macro action-values calculated by the foraging model. Because no direct comparison505

between these two value signals has been performed, it is thus not entirely clear that506

evidence for the former would be evidence against the latter. We would note that it is507

always important to be cautious in interpreting correlations between value and neural508

activity because (1) time series data are prone to spurious correlations, (2) puta-509

tive neural correlates of value could be caused by other mechanisms, like mnemnonic510

errors [49], and (3) neural activity have a complex, nonlinear relationship with value511

even when value is explicitly cued [50], which calls into question the interpretabil-512

ity of linear correlations here. Further, there exist some neural observations—such513

as nonlinearities in neural activity around shifts between exploration and exploita-514

tion [15, 25, 51–53]—that are difficult to reconcile with traditional RL models. In the515

foraging model, by contrast, instant forgetting at the onset of exploration causes an516

obvious nonlinearity. It will be important, in the future, to determine whether these517

assumptions of the forging model are either validated or refuted by neural observations518

[15, 25]. Ultimately, neuroscience research will hold the key to determining whether519

the computations humans perform are truly more consistent with compare-alternative520

or compare-to-threshold accounts.521

Ultimately, this paper reinforces and extends a body of recent observations that522

humans, like many other animals, can use foraging computations to make sequen-523

tial decisions [19–21]. However, where previous studies of foraging computations in524
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psychology and neuroscience used foraging-specific tasks—tasks that are explicitly525

designed to encourage foraging strategies or computations [18–23, 54, 55]—the present526

study did the opposite. Through developing a new foraging model that is capable527

of navigating dynamic, unpredictable environments, we determined that humans also528

use foraging computations even in tasks that were originally designed as testbeds for529

compare-alternatives RL algorithms.530

Methods531

Data Collection532

Ethics Approval. All experiments procedures were in line with the standards set533

by the Declaration of Helsinki and were approved by the relevant ethical review534

boards (Experiment 1 and 2: the guidelines of the Comité d’Éthique de la Recherche535

en Sciences et Santé (CERSES) of the University of Montreal [Project #2021-536

1090], Experiment 3: Institutional Review Board of the University of Minnesota537

[STUDY00008486]).538

Participants. Participants were recruited via the online platform, Amazon539

Mechanical (mTurk). To avoid bots and facilitate better data quality, participants were540

only accepted when they had a minimum of 5000 approved human intelligence tasks541

(HIT) and a minimal percentage of 98% in proportions of completed tasks that are542

approved by requesters. Geographical restrictions were set for US participants only.543

To help ensure that participants understood the task, there was an initial 25 trial544

block with fixed but randomly assigned reward probabilities (20%, 30% and 70%). To545

continue to the main task, participants were required to (1) switch between options at546

least twice, and (2) get reward more than 42% of the time during the practice block.547

The criteria and number of trials was chosen to ensure that people choosing at ran-548

dom would rarely pass through to to the main task. Participants were not allowed to549

repeat the experiment. All participants who successfully submitted the HIT, either550

the practice block or the full experiment, were paid a base rate of $0.50, plus a bonus551

of $3.61 mean ± $0.97 SD based on their performance (for each trial that ended with552

a reward, participants were given a $0.02 compensation). Participants provided writ-553

ten informed consent after the experimental procedure had been fully explained and554

were reminded of their right to withdraw at any time during the study.555

For Experiment 1 (two-armed bandit task), a total of 258 participants (120 females,556

137 males, 1 preferred not to say) completed the task. This dataset has been analyzed557

previously in a comparison of switching behavior between mice, monkeys, and humans558

[32], but all analyses presented here are new. For experiment 2 (predictable two-559

armed task), a total of 95 participants (41 females, 51 males) completed the task. For560

experiment 3 (three-armed bandit task), a total of 270 participants (112 females, 156561

males, 2 prefer not say) completed the task.562

Experiment 1: Two-armed restless bandit task. To investigated how humans563

solved a restless bandit task, participants were required to repeatedly choose one of564

two options. Each option was associated with a probability of reward, which changed565

across trials and independently across options. The experiment consisted of 25 practice566

trials followed by 300 trials. To avoid environmental biases, each participant’s reward567
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schedule was randomly initialized. At any given step, the reward probability of each568

option could subsequently vary by a 0.1 increment with a hazard rate of 0.1, following569

a Bernoulli distribution.570

Experiment 2: Predictable 2-armed bandit task. To understand how571

decreased uncertainty in unchosen option influences behavior, participants performed572

a modified version of the two-armed restless bandit task. Although both tasks are sim-573

ilar, they differ in how rewards are allocated to each of the two options. Specifically,574

in this task, the reward probabilities associated with each option varied inversely with575

respect to one another and across time.576

Experiment 3: Volatile 3-armed bandit task. To explore how increased uncer-577

tainty in unchosen options influences behavior, participants performed a three-armed578

restless bandit task under various manipulations of volatility of the environment. This579

task differed from the two-armed restless bandit in two keys aspects. First, an addi-580

tional option was introduced. This is common practice in the field, and previous studies581

show that increasing the number of options (up to 4) has no significant effect on the582

probabilities of switching and exploring [32]. Second, the change in reward probabil-583

ities was variable (probability of step = 1 or 0.1), with a different increment size for584

each participant (ranging from 0.05 to 0.667).585

Since there were 2 manipulations in this task (i.e., probability of step and step586

size), volatility was assessed by looking at the auto-correlation of the reward schedule587

experienced by each participant. We estimated the rate of decay of the auto-correlation588

by measuring when it decayed to 0.75 of its initial value. We used this measurement589

as an arbitrary volatility index for each participant. We then divided the volatilities590

into 3 levels (high, medium, low).591

Data Analysis592

General Analysis Methods593

Data was analyzed with custom software written in MATLAB and Python. Statisti-594

cal tests were two-sided unless otherwise specified. Significance was compared against595

the standard alpha = 0.05 threshold throughout. Correlations are Pearson correlation596

unless otherwise indicated. A small number of participants (Experiment 1: 4/258 par-597

ticipants, 1.6% ; Experiment 2: 1/95, 0.95%) were excluded from some model-based598

analyses because they chose only one option in the main task, which made the model599

parameters unidentifiable. However, these participants were included in other analyses600

wherever it was possible to do so.601

Strategy Fingerprints602

Compare-alternatives and compare-to-threshold decision-making depend on different603

aspects of the environment. Here, we characterized the fingerprints of each strategy604

as a function of two features of the environment: richness (the sum of the values) and605

discriminability (the range of the values, normalized to the sum). We assumed that606

the compare-alternatives strategy would switch whenever discriminability was below607

some ∆ reward and that the compare-to-threshold strategy would switch whenever608

richness was below some threshold. Example simulations for specific parameter values609
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of ∆ reward and threshold are illustrated in 2B-C. To quantify the fingerprints, we610

fit the simulated switch probabilities at each parameter value for each strategy with a611

linear (2 parameter) generalized linear model (GLM) and a quadratic (3 parameter)612

GLM, first as function of richness and then as a function of discriminability. (Identical613

results were found with the identity and binomial link functions, though only the614

former was used for illustration.) We then extracted 3 features from the fitted models:615

(1) the relative deviance of the linear and quadratic models (a measure of the extent616

of curvature as a function of either richness or discriminability), (2) the quadratic617

term of quadratic model (a measure of the sign and magnitude of curvature in the618

relationship), and (3) the linear term of the linear model (a measure of the overall619

slope of the relationship). Distributions of these features are illustrated in 2E-G. To620

provide a more holistic and multivariate view of these fingerprints, we took the 6621

feature dimensions described above and added the overall probability of switching622

as a 7th feature. We then performed PCA for illustration (2H) and calculated the623

distance from the 7-dimensional fingerprint of the human data to the fingerprint of624

every possible value for each of the two strategies 2I.625

Foundations of Decision-Making Models626

To determine whether participants were using foraging-like or RL-like computations,627

we fit a series of 10 cognitive models (5 RL models and 5 foraging models). All mod-628

els were initialized with 50 random seeds and fit via maximum likelihood (minimizing629

the negative of the log likelihood; fminsearch, MATLAB, scipy.optimize.minimize,630

Python). Here, we will describe the standard formulations of both the RL and foraging631

models. The following section will explain the various extensions of each model.632

All of the models, RL and foraging alike, had a classic delta-rule value updating633

process at their core,634

vt+1 = vt + α(rt − vt) . (1)

That is, values (vt+1) were updated at each time step t according to the difference635

between the observed reward (rt) and the previous value (vt; v0 = 0 for all values and636

in all models). The magnitude of the update is scaled by a learning rate (α; constrained637

between 0 and 1 in all models). The delta-rule update dynamically calculates value638

as an exponentially-decaying recency-weighted average of reward. This is a canonical639

computation, with widespread neural and behavioral evidence supporting its existence640

in humans and other animals [1, 6, 14, 56–60]. Though both models have the delta-rule641

computation at their core, they differ in what the value represents.642

RL model643

Here, there are multiple values because each option i has its own value and each is644

updated (or not) at each time step. One common approach, which we used in the645

standard RL model here, is to update only the value of chosen options,646

vi,t+1 =

{
vi,t + α(rt − vi,t), if i is chosen

vi,t, otherwise
, (2)
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A softmax function transformed values into choice probabilities with the usual647

Boltzmann exploration strategy.In RL models, the probability of choosing option i at648

time t was649

p(choicet = i) =
eβvi,t∑N
j=1 e

βvj,t

, (3)

where β is an inverse temperature parameter that controls the noise in the value650

comparison (constrained between 0 [high noise] and 100 [low noise] in all models).651

Because this task only had N = 2 options, we can expand the sum and rearrange this652

equation,653

p(choicet = i) =
1

1 + e−β(vi,t−vj,t)
, (4)

which may clarify the point that this function compares the value of the two options654

in order to decide which to choose.655

Foraging model656

Here, the value is the value of a single focal option: it is the value of staying with or657

“exploiting” that option, so the update equation is precisely Eq. 1. One useful way658

to characterize the foraging model is to think of it as a hierarchical action algorithm:659

there are higher-level, temporally-extended actions that determine the choices at each660

trial to each target. In particular, we can use the options framework [40] to define661

this hierarchical model. In this framework, an option o consist of three components: a662

policy π, a termination condition β,and an initiation set I,663

o =


π : S ×A → [0, 1] ,

β : S+ → [0, 1] ,

I ⊆ S ,

(5)

where S is the state space, and A is the primitive action space. If an option o =664

⟨I, π, β⟩ is taken, then actions are selected according to π until the option terminates665

stochastically according to β. This framework can be extended to semi-Markov options,666

where a history Ω over states, actions and rewards can be taken as input to the low667

level policy π. This is important because our foraging model will make use of this668

history.669

In the foraging model, the primitive action space A is the set of targets than can670

be chosen, the state space is a trivial one-state space (so initiation sets are trivial),671

and we define the option space as672

O = {explore, exploit}, (6)

with each option defined the following way:673

1. The exploit option has a lower level policy πexploit that executes always the674

same action (given by the previous action from the history), and terminates with675

probability676

βexploit = 1− p(exploit), (given in Eq. 9), (7)
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2. The explore option has a lower level policy πexplore that selects targets uniformly677

randomly, and terminates with probability678

βexplore = p(exploit). (8)

We define the termination conditions with a softmax rule, in a similar fashion to679

how the RL model randomly selects other targets, in the following way:680

p(exploit) =
1

1 + e−β(v−ρ)
, (9)

where v is a value that gets updated using Eq. 1 and the threshold ρ could be thought681

of as the expected value of any alternative (the background rate of reward in the682

environment [17]) or as a literal threshold for exploration. It is important to note that683

the foraging algorithm only tracks one value (which we can think of as the value of the684

exploit option). This way of interrupting or terminating options is a usual choice in the685

context of hierarchical actions and options [40, 61], where we decide to interrupt the686

execution of a temporally-extended action based on the value of that option compared687

to alternatives. With this space of options, we can now build a policy over options to688

define the foraging algorithm: whenever an option terminates, the other starts.689

Because exploration ensured that a new option was chosen and value of exploiting it690

was unknown, the value of exploitation was reset to the threshold on each exploration691

trial.692

Extensions to Decision-Making Models693

In addition to the standard formulations of the RL and foraging models introduced694

above, we considered a variety of extensions that are commonly used to improve the695

fit of RL models. First, we introduced an asymmetrical learning parameter, meaning696

a way for models to learn at different rates from rewards and omissions. Adding697

asymmetry often improves the fit of RL models [24, 62] and it improved the fit of698

both models here. In both the RL asymmetry and foraging asymmetry models, the699

delta-rule update was rewritten700

vt+1 =

{
vt + αW (1− vt), if rt = 1

vt + αL(0− vt), if rt = 0
, (10)

where v was the value of the chosen arm in the RL model or the value of exploitation701

in foraging. Both positive and negative learning rates were constrained between 0 and702

1 in both models. Next, we introduced a decay parameter, meaning a way for some703

values to diminish over time without sampling. This approach is widely used in the704

reinforcement learning literature, where it has been interpreted as the indicative of705

limited memory resources. It consistently improves RL model fits [63–65] and improved706

the fit of both models here. In the reinforcement learning model, we implemented decay707

in the traditional way: instead of allowing the value of an unchosen option to carry708

forward unchanged in time, it decayed in proportion to delta (bounded at 0 and 1) as709
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vi,t+1 =

{
vi,t + α(rt − vi,t), if i is chosen

δvi,t, otherwise
. (11)

Although the foraging model has no unchosen values to decay, it does have a710

threshold parameter, ρ, which was previously modeled as static, but now allowed to711

change over time712

p(exploitt) =
1

1 + e−β(vt−ρt)
. (12)

Specifically, ρ could now decay with each successive choice to the same option through713

updating it in a state-dependent way as a function of some decay parameter δ,714

ρt+1 =

{
δρt, if exploit

ρ0, if explore
. (13)

where ρ0 is the value at which ρ is initialized at time 0 or at the onset of explo-715

ration. Finally, we considered 2 models that included history dependence, meaning an716

outcome-independent tendency to repeat past behavior. Adding dependence on previ-717

ous choices tends to improve the fit of RL models [4, 24], likely because of the strong718

tendency towards hysteresis in the choices of humans and other animals. Adding his-719

tory dependence also improved the fit of both models here. In reinforcement learning,720

one common approach adds a choice kernel (k) for each option i which is updated in721

parallel with the value as722

ki,t+1 =

{
ki,t + αc(1− ki,t), if choice = i

ki,t + αc(0− ki,t), otherwise
, (14)

where αc is the choice kernel learning rate parameter. The choice kernel value is then723

combined with value in the softmax decision rule,724

p(choice = i) =
eβ(vi+ki)∑N
j=1 e

β(vj+kj)
. (15)

Thus far, we have added only 1 choice-history dependent parameter to this RL725

model, the αc parameter, and this model is the history kernel 1 RL model referred to726

in the text. However, it is common to give choice history its own inverse temperature727

parameter βc . This is the history kernel 2 RL model,728

p(choice = i) =
eβvi+βcki∑N

j=1 e
βvj+βkkj

. (16)

Although there was no natural way to add a choice history kernel to the foraging729

model, we could use a nearly identical approach to add a state history kernel to the730

foraging model. This approach adds hysteresis at the level of the exploitation state,731

rather than at the level of the choices themselves. To do this, we introduced a state732
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history kernel that was updated alongside the value of exploitation as733

kt+1 =

{
kt + αc(1− ki,t), if exploitt
0, otherwise

. (17)

Meaning that the state history kernel was re-set to 0 when the animal explored.734

In the history-kernel 1 foraging model, this kernel was then added directly to the735

exponential in the decision rule,736

p(exploitt) =
1

1 + e−β(vt−ρ+kt)
. (18)

In the history-kernel 2 foraging model, the kernel was inserted, but scaled with its737

own inverse noise parameter, βk, as738

p(exploitt) =
1

1 + e−β(vt−ρ)−βkkt
. (19)

Model Fitting Procedure739

Maximum Likelihood Estimation (MLE) was performed to determine the parameter740

values of both standard models that most accurately described human behavioral data.741

The log likelihood (LL) was computed as follows:742

LL = log p(choice1:T |θm,m) =

T∑
t=1

log p(choicet, θm,m) . (20)

where p(choice1:T |θm,m) is the probability of all choices (from 1 to T trials) given the743

parameters θm of each model m with θRL = [α, β] and θforaging = [α, β, ρ] for each744

participant. To find the maximum likelihood parameters, the negative log-Likelihood745

was minimized using an optimization function (Experiment 1: Matlab fminsearch;746

Experiment 2-3: Python scipy.optimize.minimize). The optimization process was initi-747

ated multiple times with randomly selected starting parameters to avoid local minima748

(Experiment 1: 20 times, Experiment 2-3: 50 times). The set of parameters with the749

lowest negative Log-Likelihood were selected. The Akaike Information Criteria was750

calculated to identify the best fitting model, adjusting for differences in the number751

of parameters, and Akaike weights were calculated to estimate the relative ability of752

each model to minimize information loss.753

Simulations from Decision-Making Models754

Performance Optimization. In order to determine if foraging had an advantage755

(or disadvantage) compared to RL in performance, we asked if the upper bound on756

performance was higher for foraging than it was for RL. This meant that we used757

simulation to identify the optimal parameter combination for each model in matched,758

randomly generated environments that matched the statistics of Experiment 1. We759

then compared the performance of these optimized models. Optimal parameters com-760

bination was selected so that it maximized the relative reward (minimizing the negative761
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of the relative reward, Python scipy.optimize.minimize) while remaining within the762

participants’ parameters range.763

Cohort simulation. When simulating data from the standard foraging and RL764

models, our goal was to produce datasets under each model that would resemble the765

set of human participants as closely as possible. To do this, we took the stochastic766

reward schedule experienced by each participant and simulated a new sequence of767

choices in that reward environment from the RL and foraging models. The simulations768

were generated using fitted parameters from the participant who experienced that769

environment.770

Exponential Mixture Model771

We examined whether identifiable temporal patterns existed within the participants’772

choice sequences. If a single time constant (probability of switching) governed the773

behavior, we would expect to see exponentially distributed inter-switch intervals. That774

is, the distribution of inter-switch intervals should be well described by the following775

model:776

f(x) =
1

β
e−

x
β , (21)

where β is the survival parameter of the model (mean inter-switch interval). Although777

the time between switch decisions was largely monotonically decreasing and concave778

upwards, the distribution was not well described by a single exponential distribution.779

Therefore, we next fit mixtures of varying numbers of exponential distributions (1-780

4) in order to infer the number of switching regimes in these choice processes. For781

continuous-time processes, these mixture distributions would be of the form:782

f(x) =

n∑
i=1

πie
− x

βi , (22)

where 1 ≥ πi ≥ 0 for all πi, and
∑n

i=1 πi = 1. Here, each βi reflects the survival783

parameter (average inter-switch interval) for each component distribution i and the πi784

reflects the relative weight of each component. Because trials were discrete, we fit the785

discrete analog of this distribution: mixtures of 1-4 discrete exponential (geometric)786

distributions [66]. Mixtures were fit via the expectation-maximisation algorithm and787

we used standard model comparison techniques [67] to determine the most probable788

number of mixing components. Two regimes (log-likelihood = -31,048, 3 parameter)789

were significantly better fit to data than one (log-likelihood = -34,645, 1 parameter,790

likelihood ratio test: ratio = 7193.0, p < 10−32) and, while adding additional regimes791

continued to improve model fit (3 regimes: log-likehood = -30,893, 5 parameters; 4792

regimes: log-likelihood = -30,884), improvement was already saturated at 2 regimes793

(Figure 5D).794

Hidden Markov Model795

To determine when models and participants were exploring (versus exploiting), we796

used a hidden Markov model (HMM; [15, 24, 32, 36, 37]. In an HMM, choices (y)797
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are ‘emissions’ that are generated by an unobserved decision process that is in some798

latent, hidden state (z). Latent states are defined by both the probability of making799

each choice (k, out of Nk possible options), and by the probability of transitioning800

from each state to every other state. Our model consisted of two types of states, an801

explore state and the exploit states. The emissions model for the explore state was802

the maximum-entropy distribution for a categorical variable, a uniform distribution:803

p(yt = k|zt = explore) =
1

Nk
, (23)

meaning that we made the fewest number of assumptions possible about the choices804

that were made during exploration in order to avoid biasing the model towards or805

away from any particular type of policy. However, modeling exploratory choices with806

a uniform distribution does not imply, require, or enforce random decision-making807

during these states [36, 37]. Because exploitation involves repeated sampling of each808

option, exploit states only permitted choice emissions that matched one option:809

p(yt = k|zt = exploiti, k = i) = 1

p(yt = k|zt = exploiti, k ̸= i) = 0
, (24)

meaning latent states in this model are Markovian. The current state (zt) depends
only on the most recent state (zt−1),

p(zt|zt−1, yt−1, ..., z1, y1) = p(zt|zt−1) , (25)

meaning that we can describe the entire pattern of dynamics in terms of a time-810

invariant transition matrix between 3 possible states (two exploit states and one811

explore state). This matrix is a system of stochastic equations that describe the one-812

time-step probability of transitioning between every combination of past and future813

states (i, j),814

p(zt = i|zt−1 = j) . (26)

Because we had only a limited number of trials for each participant (300), parameters815

were tied across exploit states: each exploit state had the same probability of begin-816

ning (from exploring) and of sustaining itself. For conceptual reasons, the model also817

assumed that participants started in exploration and had to pass through exploration818

in order to start exploiting a new option, even if only for a single trial [15, 24, 32, 36, 37].819

We have previously shown that models that lack these constraints by design tend to820

approximate them when fit to sufficiently large datasets [15, 24].821

Because the emissions model was fixed, certain parameters were tied, the structure822

of the transmission matrix was constrained, and the initial state was specified, the823

final HMM had only two free parameters: one corresponding to the probability of824

exploring, given exploration on the last trial, and one corresponding to the probability825

of exploiting, given exploitation on the last trial. We have previously reported that826

this constrained model does not underperform an unconstrained model [15, 24]. and827

that unconstrained models tend to closely resemble to the constrained model when fit828

to large amounts of data [15].829
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The HMM was fit via expectation-maximization using the Baum Welch algorithm830

[68]. This algorithm finds a (possibly local) maxima of the complete-data likelihood.831

The algorithm was reinitialized with random seeds 20 times, and the model that832

maximized the observed (incomplete) data log likelihood across all the sessions for833

each animal was ultimately taken as the best. To decode latent states from choices,834

we used the Viterbi algorithm to discover the most probable a posteriori sequence of835

latent states.836

Explore/Exploit State Dynamics837

In order to understand the dynamics of exploration and exploitation in the partic-838

ipants, RL models, and foraging models, we analysed the dynamics of the HMMs839

[24, 32, 37]. The fitted HMMs are a set of equations that describe probability of tran-840

sitions between exploration and exploitation and vice versa, or the state dynamics of841

each agent. Methods from statistical thermodynamics can then be used to analyze842

these equations and generate insight into the potential energy of each state in each843

agent (Figure 4M).844

In statistical thermodynamics, the potential energy of a state (Ei) is related to845

the long-time scale probability of observing a process (here, a decision-maker) in that846

state (pi) via the Boltzman distribution,847

pi =
1

Z
e

−Ei
kBT , (27)

where Z is the partition function of the system, kB is the Boltzman constant, and848

T is the temperature. In a two-state system, the partition functions cancel out, the849

relative occupancy of the states is just a function of the difference in energy between850

them, and we can rearrange to express the difference in energy between two states as851

a function of the difference between them,852

ln

(
pi
pj

)
kBT = Ej − Ei , (28)

where Ej −Ei is the difference in the energetic depth between the two states (i.e. the853

Gibbs Free Energy), which is proportional to the log odds of each state, up to some854

multiplicative factor, kBT .855

To calculate the probability of exploration and exploitation (pi and pj), we solved856

for the stationary distribution π∗ of the fitted HMMs, where π∗ is the probability857

distribution that satisfies858

π∗ = π∗Ak , (29)

where Ak is the transition matrix for agent k. If it exists, this distribution is a (nor-859

malised) left eigenvector of Ak with an eigenvalue of 1, so we solved for this eigenvector860

to determine the stationary distribution over explore and exploit states for each agent.861

We then took an average of these stationary distributions across all sessions for each862

species, and plugged these back into the Boltzman equations to calculate the relative863

energy (depth) of exploration and exploitation in (Figure 4M).864

In order to calculate the height of the energetic barrier between exploration and865

exploitation, we built on the Arrhenius equation from chemical kinetics that relates866
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the rate of transitions (k) between some pair of states to the activation energy required867

to affect these transitions (Ea):868

k = Ce
Ea

kBT , (30)

where C is a constant pre-exponential factor and kBT is again the product of tem-869

perature and the Boltzman constant. Rearranging to solve for activation energy yields870

our equation for the height of the energy barrier,871

Ea = − ln

(
k

C

)
kBT , (31)

which has an obvious similarity to the Boltzman distribution illustrated earlier, where872

the relative depth of each state was proportional to the probability of occupying each873

state and the activation energy is now proportional to the rate of transitions between874

states.875

To create the dynamical landscape graphs (Figure 4M), transition matrices were876

calculated individually for all participants and for simulated data from both foraging877

and RL algorithms. Energy measurements were then averaged within each class of878

agents. Note that our approach only identifies the energy of three discrete states (an879

explore state, an exploit state, and the peak of the barrier between them). These are880

illustrated by tracing a continuous potential through these three points to provide a881

physical intuition for the differences in explore/exploit dynamics between models and882

participants.883

Foraging Index884

In order to determine if individual participants were more foraging-like (versus RL-885

like) in their approach to the task, we calculated the foraging index as the difference886

in the individual model likelihood (L) between the best-fitting foraging model (F*)887

and the best-fitting RL model (RL*) for each participant i:888

foraging indexi = LF∗,i − LRL∗,i (32)
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