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Abstract

How do we make good decisions in uncertain environments? In psychology and
neuroscience, the classic view is that we calculate the value of each option,
compare them, and choose the most rewarding modulo exploratory noise. An
ethologist, conversely, would argue that we commit to one option until its value
drops below a threshold and then explore alternatives. Because the fields use
incompatible methods, it remains unclear which view better describes human
decision-making. Here, we found that humans use compare-to-threshold compu-
tations in classic compare-alternative tasks. Because compare-alternative com-
putations are central to the reinforcement-learning (RL) models typically used
in the cognitive and brain sciences, we developed a novel compare-to-threshold
model (“foraging”). Compared to previous RL models, the foraging model bet-
ter fit participant behavior, better predicted the tendency to repeat choices,
and predicted held-out participants that were almost impossible under compare-
alternative models. These results suggest that humans use compare-to-threshold
computations in sequential decision-making.
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. Introduction

> Because the world is only imperfectly observable and changes frequently, many of the
s decisions we make are uncertain. How do we make good decisions in the presence of
+ this uncertainty? The conventional view in the cognitive and brain sciences is that
s we (1) estimate the subjective utility or “value” of each option being considered and
s then (2) compare alternative option values to make the best possible decision [1-5].
7 This “compare-alternatives” perspective is ubiquitous in psychology and neuroscience.
s For example, nearly all Reinforcement Learning (RL) models, from the earliest
s Rescorla-Wagner model [1] to more modern models like Q-Learning and SARSA [6, 7],
10 assume that the value of choosing each alternative option are compared in some way
u in order to select the best action [1, 4, 6]. These models, as well as the compare-
12 alternatives perspective more broadly, shape the way that tasks are designed in these
13 fields. For example, because we assume that values must be compared against each
1 other, laboratory tasks using cued rewards often present all options simultaneously
15 [8-11]. Similarly, because the reward prediction error in RL models functions to track
16 changing mean values, reward contingencies in reward learning tasks tend to both
17 increase and decrease over time [12-15]—in contrast decay of exploited resources often
18 seen in natural environments.

19 While the compare-alternatives view is widely influential, it is not universally
2 accepted. In ethology, for example, foraging models instead assume that we (1) cal-
2 culate the value of one exploited option and (2) compare this one value against a
» threshold to decide whether to continue exploiting or try something new [16, 17].
»3 The foraging view grew out of natural environments, where the value of an exploited
a  resource will tend to decay over time and options are encountered sequentially, rather
s than in parallel. As a result, although foraging models have begun seeing some use
2 among human cognitive scientists [18-23], these studies develop tasks that mirror the
7 assumptions at the heart of the foraging perspective: they introduce reward contin-
s gencies that decay at a predictable rate (rath(er than changing unpredictably) and/or
2 options that are encountered in sequence (rather than being presented simultane-
2 ously) [18-23]. In short, the compare-alternatives and compare-to-threshold views of
a1 sequential decision-making use incomparable formalisms to make sense of behavior in
2 incompatible environments. As a result, we do not know which view best describes
13 human decision-making in standard laboratory tasks.

3 Here, we asked whether human decision-making was better described as a compare-
s to-threshold process or as a compare-alternatives process in a classic testbed of
s decision-making under uncertainty from the reinforcement learning (RL) literature: a
s restless k-armed bandit task. We found that human behavior more closely resembled
;s compare-to-threshold computations than compare-alternatives computations. This
3 insight is difficult to reconcile with traditional RL algorithms from psychology and
w0 neuroscience, which model action selection with the critical assumption of compare-
a1 alternatives computations. Therefore, we developed a novel compare-to-threshold
2 sequential decision-making model that is inspired by foraging theory rather than
s the compare-alternatives approach at the heart of RL. Across 3 independent exper-
a iments, we compared this new foraging model with various variations on traditional
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s compare-alternatives RL models [4]. We found that the foraging model was a bet-
w ter fit for the participants’ decisions, outperformed multiple variations on traditional
s« RL models, and better predicted the participants’ tendency to repeat choices on both
»s  individual and group level. Together, these findings suggest that humans use compare-
s to-threshold computations—even in tasks that are commonly used as testbeds for
so compare-alternatives computations.

« Results

= Participants performed above chance and used complex
s strategies

s« In Experiment 1, participants on the Amazon mTurk platform (258 people, 120 female,
ss 2 other or non-reporting) performed a classic sequential decision-making task known
s as a restless k-armed bandit (Figure 1A; [6, 12, 14, 15, 24, 25]). The participants
57 were asked to repeatedly choose between k options, each of which was associated with
ss  some probability of reward. Reward probabilities changed unpredictably over time
s and independently across options (Figure 1B). The reward structure was not cued
6 to the participants so the only way to infer the value of an option was to sample it.
&1 Because rewards evolved over time, the longer the participants went without sam-
e pling an option, the more uncertain its payoff became. This task naturally encourages
63 decision-makers to alternate between exploiting valuable options and exploring uncer-
6 tain alternatives because the latter could become better at any time. It is a classic
6 in the RL literature and has become a testbed for evaluating RL models in both
s psychology and artificial intelligence (AI) [14, 26, 27].

o Participants were generally good at the task (Figure 1C) , despite its uncertainty.
s They chose the objectively best option 76.6% of the time (+/- 11.5% STD; Figure 1D)
o and received rewards 19.2 % more frequently than would be expected by chance (+/-
w 15.3 % STD; Figure 1E). (Note that 4/258 participants [1.6%] were excluded from
7 this and further analyses because they chose only one option.) Participants were more
» likely to repeat choices than to switch (switching on only 19.9% of trials, +/- 14.5%
7z STD). They were also more likely to repeat after reward (win-stay = 93.3%, +/- 11.1%
7#  STD) and switch after no-reward (lose-shift = 39.2%, +/- 21.0% STD). However, no
s participants followed a deterministic win-stay-lose-shift rule (all participants either
7 win-shifted or lose-stayed at least 5% of the time).
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Fig. 1: Task and baseline behavior. A) Participants (n=258)
chose between 2 face-down decks of playing cards that were com-
posed of aces and 2’s. Participants were told that the proportion
of aces and 2’s in each deck would change over time and that
decks could be good, bad, or mediocre right now, but would
not stay that way the whole time. Participants got a point (and
$0.02) for each ace they found, but no points for 2’s. B) The
reward probability of each option (red trace = option 1; blue
trace = option from an example reward schedule, with partic-
ipant choices along the top (red dots = option 1; blue dots
= option 2). C) Average probability of choosing option 1 as
a function of the difference in the objective reward probabil-
ity (“value”) between option 1 and 2. Error bars = standard
error of the mean (SEM) across participants. D) Distribution of
the number of trials in which each participant chose the objec-
tively best option. Dotted line = chance, caret = mean across
participants.E) Same as D, for the percent of trials in which par-
ticipants were rewarded, normalized such that units represent
percent of chance performance (caret = mean).
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7 Human behavior better resembles the fingerprint of
» compare-to-threshold decisions

7o Although both compare-alternatives and compare-to-threshold views of sequential
s decision-making come from different fields, they describe the same behavior: exploiting
a1 high-value options when those are available, but also occasionally switching to alterna-
s tives that could be better. Where the compare-alternatives and compare-to-threshold
s views differ is in how the decision to switch between options is made. As a result of
s these differences, compare-alternatives and compare-to-threshold views predict that
s switching will be most frequent in different kinds of environments (Figure 2A-C).

86 The compare-alternatives view predicts that people should switch options more
g7 often when it is most difficult to discern which option is the best. Because switch-
g ing occurs most frequently when option values are close together, people should
s switch more frequently in ambiguous environments versus discriminable environ-
o ments (Figure 2B-top). The compare-to-threshold view, conversely, predicts that
o1 people should switch more whenever an exploited option falls below a threshold.
o2 Because the value of an option is more likely to fall below threshold when all option
ez values are low, people should switch more frequently in poor environments (versus
u rich environments) (Figure 2C-bottom). (N.B. We assume that the threshold is learned
s over long time scales such that it is essentially fixed within any given experiment [17],
o6 rather than adapting at a rate that would cause it to start approximating compare-
o alternatives [21].) In short, switching should depend on very different aspects of
o¢ the environment in compare-to-threshold decision-making versus compare-alternatives
9 decision-making.

100 If we could dissociate richness from discriminability, we could identify whether
11 people were using compare-to-threshold or compare-alternative computations simply
102 by looking at which one influences switching behavior. This is because richness would
103 not affect switching in compare-alternatives decisions and discriminability would not
s affect switching in compare-to-threshold decisions. However, when rewards are prob-
s abilistic, these variables are not orthogonal (Figure 2A). The environment can only
s be very poor (reward probability of all options close to 0) or very rich (all reward
w7 probabilities close to 1) when discriminability is low. This means that compare-
s alternatives decision-making will have a relationship with richness in this task, but
w9 that relationship will be U-shaped with minimal switching at intermediate levels of
uo richness (where discriminability is highest; Figure 2B,bottorn). This also means that
m  compare-to-threshold decision-making will have a nonlinear relationship with discrim-
12 inability. This relationship would be subtly inverted U-shaped, with maximal switching
us  at intermediate levels of discriminability (where richness is lowest; Figure 2C,top).
na  Thus, although compare-to-threshold decisions are not based on discriminability and
us compare-alternatives decisions are not based on richness, the fact that rewards are
s bounded means that each strategy should have a unique fingerprint as a function of
ur  these two environmental variables (Figure 2 B-C).

118 To determine whether human decision-making more closely resembled the predic-
ne tions of the compare-alternatives or compare-to-threshold hypotheses, we therefore
120 asked whether humans resembled the compare-alternatives or compare-to-threshold
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Fig. 2: Compare-to-threshold and compare-alternatives decisions have dissociable signatures in
rich and discriminable environments. A) top: Cartoon illustrating the non-linear relationship between
reward discriminability (i.e., how different the reward probability of all options are) and richness (i.e., How
rewarding all the options are) in a bounded environment. bottom: discriminability as a function of richness
in Experiment 1. Each dot represents a segment of 100 trials experienced by one participant. B) In compare-
alternatives decisions, switching behavior is maximal when the absolute difference in reward probability (A
reward) is low [24]. If we take the difference in rewards as a proxy for the probability of switch, then the
compare-alternatives hypothesis makes different predictions for how switching should change as a function
of reward discriminability (top) and richness (bottom). Shades of gold illustrate different hypothetical
“thresholds” for switching meaning that if the difference in reward probabilities between all options (A
reward) is below these hypothetical threshold the decision is to switch options. C) In compare-to-threshold
decisions, switching behavior is maximal when the sum of rewards is low. Here, each option’s value is
individually compared to a preset threshold. If the average of these below-threshold comparison serves as a
proxy for switching then the compare-to-threshold hypothesis makes different predictions for how switching
should change as a function of reward discriminability (top) and richness (bottom). Shades of green illustrate
different hypothetical “thresholds” for switching meaning that if the option’s reward probability is below
these hypothetical threshold the decision is to switch options. D) Probability of switch of all participants
in Experiment 1 as a function of different levels of reward discriminability (top) and richness (bottom) of
the environment (errorbar = SEM). E) Distribution of deviance ratio between linear and quadratic model
fits to compare-alternatives (gold) and compare-to-threshold (green) proxies (Figure2B-C) as a function
of reward discriminability (top) and richness (bottom) of the environment (black caret = humans). F)
Distribution of the quadratic term (i.e., curvature) of the quadratic model fit to compare-alternatives (gold)
and compare-to-threshold (green) proxies (Figure2B-C) as a function of reward discriminability (top) and
richness (bottom) of the environment (black caret = humans). G) Distribution of the linear term (i.e.,
slope) of the linear model fit to compare-alternatives (gold) and compare-to-threshold (green) proxies
(Figure2B-C) as a function of reward discriminability, (top) and richness (bottom) (black caret = humans).
H) Principle components (PC) projection of the nﬁ]ltidimensional features of the compare-alternatives
(gold) and compare-to-threshold (green) proxies (see Methods). Bounds encompass all simulations. x’s =
individual simulations, black caret = humans. I) Distance between humans and every compare-alternatives
(gold) and compare-to-threshold (green) proxy in the multidimensional space. Bars = mean distance, x’s
= individual simulations.
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1w fingerprints. We found that the participants switched options the most at inter-
12 mediate, rather than low levels of discriminability (Figure 2D,top), consistent with
123 compare-to-threshold computations. The participants were also less likely to switch
14 in rich environments, compared to poor ones (Figure 2D,bottom), again consistent
125 with compare-to-threshold computations. To quantify the relationship between partic-
126 ipants’ switching behavior and the respective fingerprints of the compare-alternatives
127 and compare-to-threshold views, we simulated data at every possible threshold for
128 compare-to-threshold decision-making and at every possible A reward for compare-
1o alternatives decision-making. We then used generalized linear models (GLMs) to
10 characterize the slope and curvature of these relationships for each hypothesis (Figure
wm 2E-I; see Methods). Human switching was sensitive to discriminability and richness
12 in a way that better resembled compare-to-threshold decision making, both in terms
13 of every individual feature (2E-G) and in a multivariate feature space that simulta-
1 neously considered all features (2H-I; average distance to compare-alternative proxies
s = 2.75 +/- 0.97 STD; to compare-to-threshold proxies = 1.34 +/- 0.44 STD; t(13)
s = 3.51, p < 0.005; see Methods). In sum, while the human data was not a perfect
137 match for either fingerprint, it better resembled the fingerprint of compare-to-threshold
138 decision-making than the fingerprint of compare-alternatives decision-making.

1w Compare-alternatives agents outperformed
w compare-to-threshold agents on the task

1w Although the k-armed bandit is a classic testbed for compare-alternatives models like
12 traditional RL models [4, 6, 14, 28], it was nonetheless possible that some aspect of
13 the task design encouraged the participants to use compare-to-threshold computations
s here. To determine if this was the case, we next developed a sequential decision-making
s agent based on compare-to-threshold computations and compared its performance on
us  the task against a traditional compare-alternatives RL agent (Rescorla-Wagner; [6, 7]).
47 A traditional RL agent estimates the value of choosing each individual option
ws  (V4,...,V,; Figure 3A) and compares values across the option set (compare-
o alternatives; Figure 3A) to select the best possible action. Our novel foraging agent
10 updates the value of the selected action via the same delta-rule computations used in a
11 traditional RL agent, but differs in what the action represents. Specifically, the foraging
12 agent only estimates the value of staying with the currently exploited option (Vexploit;
155 Figure 2B ). It then compares this value against a fixed threshold to decide whether to
15« continue exploiting or else to explore the alternatives at random (compare-to-threshold;
155 Figure 3B)

156 Simulating both agents in the same reward schedules experienced by our partici-
17 pants revealed that the environment did not advantage foraging over RL; in fact, RL
158 agents outperformed foraging agents, regardless of whether performance was defined
10 as the probability of choosing the objectively best option (Wilcoxon signed rank test
wo :p < 0.01; Figure 3C/D) or as the probability of reward (Wilcoxon signed rank test
e @ p < 0.01; Figure 3 E/F). In short, the task did not encourage compare-to-threshold
12 decision-making and, in fact, the participants would have had to sacrifice reward to
13 adopt this strategy over a compare-alternatives strategy.
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Fig. 3: RL and foraging models produce different choice patterns performance and quality
fits to the data. A) Top: A cartoon illustrating the mechanics of the traditional RL model. The model
estimates the value of choosing each individual option through a standard delta-rule update. The value of
choosing alternatives options are then compared to each other and the highest value is selected. Bottom:
Simulated data from the traditional RL model, fit to an example participant from Experiment 1 and run
on the corresponding reward schedule. The choices (colored dots) and estimated values (colored traces)
of the traditional RL model are shown, along with the objective reward probabilities (pale traces). B) A
cartoon illustrating the mechanics of the foraging model. The model estimates the value of staying with the
currently exploited option through a standard delta-rule update. The value of exploitation is then compared
to a threshold in order to decide whether to stay and continue exploiting or to switch and explore other
options. Bottom: Simulated data from the foraging model, fit to an example participant from Experiment
1 and run on the corresponding reward schedule. The choices (colored dots) and exploitation value (purple
trace) of the foraging model are shown, along with the objective reward probabilities (pale traces). The
horizontal green line is the threshold. C) Distribution of the probability of choosing the objectively best
option for both foraging (green) and RL (gold) agents. D) Difference between the distributions seen in C.
E) Distribution of the normalized average reward received by both foraging (green) and RL (gold) agents.
F) Difference between the distributions seen in E (caret = mean ). G) the negative log-likelihood of the
RL and foraging models fit to all data from Experiment 1. H) The Akaike information criteria (AIC) of the
RL and foraging model fits. I) Average choice likelihood for each participant under the foraging model (x-
axis) and the RL model (y-axis). Inset: Distribution of differences in choice likelihood across participants
of Experiment 1. J) The negative log-likelihood of various extensions of the RL (gold) and foraging models
(green). K) The Akaike information criteria of the extensions of the RL (gold) and foraging models (green).
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s Foraging models better predict participant decisions

s To determine how the participants solved the task, we fit computational models (see
s Methods). We first compared a simple 2-parameter Reinforcement learning model
wr (“standard RL”; Rescorla-Wagner; [1, 6]) with a simple 3-parameter formulation of
s the foraging model (“standard F”). We found that the standard foraging model was a
1o better fit to participant behavior than the standard RL model (Figure 3G-H; standard
w  F: log-likelihood = -23,206, AIC = 47,936, 3 parameters by 254 participants = 762
1 parameters; standard RL: log-likelihood = -24,878, AIC = 50,771, relative AIC weight
1 < 1.8%10732, 2 x 254 participants = 508 parameters; 76,200 total trials). The foraging
13 model also outperformed the RL model on an individual basis: it was a better fit in
v 64.2% of individual participants (163/254; Figure 3I; standard F: median individual
175 log-likelihood = 82.36, 95%CI = 9.40 to 201.06, standard RL: median = 86.72, 95% CI
ws = 9.56 to 199.66; significant paired t-test: p < 0.0001 , t(253) = 6.79, mean difference =
w 5.27,95% CI = 3.74 to 6.79). This suggests that a foraging-like compare-to-threshold
17s  mechanism may better describe the participants’ choices in this task.

179 There are a variety of extensions to the RL model that outperform the standard 2-
10 parameter formulation and it remained unclear whether any of these would fit behavior
11 better than foraging. Therefore, we next compared the foraging model with 4 com-
12 mon extensions of the RL model (2 forms of choice history dependence, asymmetrical
113 learning, and value decay, see Methods). We found that every extended RL model per-
s formed substantially better than the standard RL model in model comparison (Figure
s 3J-K). However, the foraging model continued to outperform: it was a better fit than
185 RL models that incorporated asymmetrical learning from wins and losses (“asymmet-
wr rical RL” [24, 29, 30]; log-likelihood = -23,963, AIC = 49,450, AIC weight relative
s to foraging model < 10732, 762 parameters), decay in the value of unchosen options
1w (“decaying RL”; [15, 31]; log-likelihood = -23,181, AIC = 47,887, relative AIC weight
wo < 10732 762 parameters), and a simple form of choice-history dependence with 1
1 added parameter (“history-kernel 1 RL”; [4]; log-likelihood = -23,252, AIC = 48,028,
12 AIC weight relative to foraging model < 10732, 762 parameters). The only extended
13 RL model that outperformed the simple foraging model was a 2-parameter choice-
e history dependent model (“history-kernel 2 RL”; [4]; log-likelihood = -22,660, AIC =
s 47,351, relative weight of the foraging model < 10732). Thus, the simplest foraging
s model was a better explanation for behavior than all but the most complex of RL
17 models.

108 The various extensions of the RL models were developed over a period of decades
1o to improve model fit and it remained ambiguous whether the 1 RL (i.e., 2-parameter
20 choice-history dependent RL) model that did better than the foraging model did
201 SO because it was a compare-alternatives model or because it incorporated history
22 dependence. Therefore, we next developed an equivalent version of the foraging model
203 for each extensions of the RL model and compared the two model classes (see Methods;
2¢  Figure 3J-K). Each extended foraging model outperformed the equivalent RL model.
205 This was true for a foraging model that permitted asymmetrical learning between wins
26 and losses (“asymmetrical foraging”: log-likelihood = -22,777, AIC = 47,585, AIC
27 weight relative to asymmetrical RL < 10732, 4 x 254 = 1016 parameters), for a foraging
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2 model where the threshold decayed with repeated choices (“decaying foraging”: log-
20 likelihood = -22,632, AIC = 47,295, AIC weight relative to decaying RL < 10732,
20 1016 parameters), and for the 1-parameter history-dependent model (“history-kernel
an 1 foraging”: log-likelihood = -22,558, AIC = 47, 148, AIC weight relative to choice-
2o kernel RL 1 < 10732, 1016 parameters). Ultimately, the best model overall was the
23 history-dependent foraging model, which outperformed the best RL model (“history-
as kernel 2 foraging”: log-likelihood = -22,292, AIC = 47,125, AIC weight relative to
25 choice-kernel RL 2 < 10732, 1270 parameters; relative AIC weights of all competing
26 models < 10732). This foraging model also outperformed the best RL model on an
217 individual basis: it did at least as well or better in nearly every individual participant
zs  than the best RL model (foraging model: median individual log-likelihood = 79.32,
20 95% CI = 8.92 to 197.18, RL model: median = 80.43, 95% CI = 8.72 to 195.31;
20 significant paired t-test: p < 0.05, t(253) = 1.98, mean difference = 1.45, 95% CI =
21 0.01 to 2.89). In short, as a class, the foraging models consistently provided a better
22 fit to the participants’ decisions.

23 It remained possible that the foraging model outperformed the RL model solely
24 because it was a better fit for participants who did not fully understand or engaged
25 with the task. However, there was no systematic relationship between how foraging-like
26 an individual participant was and how well they did in the task. Individual differences
27 in the ”foraging index” (see Methods) were not correlated with the probability that
»s the participant would choose the best option (R = —0.01,p = 0.84) nor were they
2o correlated with above-chance reward probability (R = 0.03,p = 0.64). In sum, the
230 participants who were most likely to be using foraging computations did not have
o either an advantage or a disadvantage in this task. Considering that foraging agents
22 significantly underperformed RL agents (Figure 3C-F), this null result suggests that
213 our most foraging-like participants were just as engaged in the task, if not moreso,
2 than other participants.

»s Foraging better explained the participants’ tendency to repeat

236 We next asked why the foraging model was a better fit to behavior: what aspects of
27 behavior did it describe that the RL model was unable to account for? We previously
28 found that choices are considerably more repetitive than what can be explained with
20 standard RL models, at least in humans and other primates [15, 32]. This may explain
20 why most common extensions of the RL model tend to make the model more repet-
2 itive. This is most obvious in the case of the choice history kernel models: the added
a2 parameters increase the probability of repeating the previous choice. In the decay
23 model, similarly, repetition increases as the value of the alternative decays towards
a4 zero. Even in the asymmetrical learning models, learning more from wins than losses
25 tends to stabilize choices and increase repetition [33, 34]. Therefore, we next asked if
xs  the foraging model was a better fit to behavior because it also better captured the
a7 repetitiveness of the participants’ choices.

218 We simulated data from RL and foraging agents that were matched to the par-
20 ticipants’ environment and parameters (see Methods). We then compared the level of
0 repetitiveness in these simulated datasets with the participants’. In the participants,
251 the average run length (length of same-choice sequences: 4.31 trials) was close to our
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Fig. 4: Foraging and RL predict different choice dynamics. A) Average number of trials between
switch decisions (i.e., run length) of RL (gold) and foraging (green) agents in simulated Experiment 1
(blue line = average for Experiment 1 participants). B) Probability of switch. Same convention as in A.
C) Human observed probability of switch as a function of RL predicted probability of switch. D) Human
observed probability of switch as a function of foraging predicted probability of switch. E) Distribution of
choice run lengths of humans in Experiment 1. If the probability of switching was fixed, run lengths would
be exponentially distributed (black dotted line). A mixture of two exponential distributions (blue line)
suggests 2 distinct probabilities of switching. Dotted blue lines show each mixing distribution, one slow-
switching (i.e., exploitative regime) and another fast-switching (i.e., exploratory regime). Insert: Same
data presented on a logarithmic scale. F) Log-likelihoods for different mixture models containing a range of
1 to 4 exponential distributions. G) Average run length in the exploratory regime. H) Average run length
in the exploitative regime. I) Proportion of exploratory regimes. J) Proportion of very long exploitative
regimes exceeding 30 consecutive trials. K) Four participants were held out of all analyses because they chose
the same option 300 trials in a row. To determine the expected number of these no-switch participants under
each model, 100 datasets were generated from the distribution of fitted parameters (each with 254 simulated
participants). Here, we plot the cumulative percent of simulations (y-axis) as a function of the numbers
of no-switch participants (x-axis). Black caret = proportion of no-switch participants in Experiment 1. L)
Hidden Markov model (HMM) was used to infer the underlying internal state of the participants on each
trial from their sequence of choices. The model included 3 hidden states, 2 exploitative states corresponding
to each option and an exploratory state which participants could choose any of the options. M) Overlaid
state dynamic landscapes for both foraging (green), RL (gold) agents and Experiment 1 participants (blue).
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2  expectation under foraging (4.33 trials, 95% CI = [4.24, 4.43]) but greater than any
23 individual run length from the RL simulations (4.18 trials, 95% CI = [4.09, 4.24];
¢ p < 0.01; Figure 4A). This was related to the fact that the foraging model was more
255 accurate in predicting how often the participants would switch (i.e., the inverse of the
s choice run lengths; Figure 4B-D; foraging, mean sum of squared errors [MSSE] = 0.72,
27 95% CI across simulations = [0.53, 0.94], RL, MSSE = 2.78 (95% CI = [2.54,3.01];
s significantly greater in RL; 2-sided paired t-test: p < 0.0001, t(1,253) = 6.46). The
0 average probability of switching under the RL model was 22.7% (95% CI = [22.3%,
20 23.1%]) and under the foraging model it was 20.3% (95% CI = [20.0%, 20.7%)]). The
1 participants switched 20.0% of the time, less frequently than any of the samples from
%2 the RL model, but not the foraging model. In fact, the RL model systematically pre-
23 dicted that individual participants should switch more than they did (2.8% more, 95%
20 CI across individuals = [1.7%, 4.0%], p < 0.0001, t(1,253) = 4.72). The foraging model
»%s did not have a significant bias towards over- or under-estimating individual partici-
s pants (predicted 0.4% more on average, 95% CI = [-0.08% to 0.1%], p = 0.1, t(253) =
27 1.66). In short, in comparison to the RL model, the foraging model better predicted
s the participants’ tendency to switch on both the individual and group levels: it was
20 both more precise and less biased.

- Foraging better explained persistent choice runs

on In mice, monkeys, humans, and optimized RL models, the distribution of choice run
o2 lengths in this task is composed of two switching regimes: one regime with rapid
o3 switching that is likely due to exploratory trial-and-error sampling and one regime
on - with slow switching that is likely due to exploitative, persistent choices to the same
o target [15, 24, 32]. A specific increase in the slow switching regime is what sets humans
s and other primates apart from rodents in this task [32] and it is also one major feature
o of human decision-making that RL models do not naturally capture [15]. Therefore,
s we next asked whether the foraging model might better account for the slow switching
a0 Tegime.

280 Again in this dataset, the behavior of the participants and both models were well
21 described as a mixture of 2 regimes (Figure 4E-F; see Exponential Mixture Models
222 in Methods). In the participants, the 2 regime model (log-likelihood = -31,048, 3
23 parameters, n = 14,847) provided a significantly better fit than 1 (log-likelihood =
2w -34,645, 1 parameter, likelihood ratio test: ratio = 7193.0, p < 10732) and, while
25 adding additional switching regimes continued to improve model fit (3 regimes: log-
26 likehood = -30,893, 5 parameters; 4 regimes: log-likelihood = -30,884), improvement
27 was already saturated at 2 (Figure 4F). Two regimes were also apparent across all the
23 simulated data from the RL and foraging models (RL: n = 1,699,789, 1 regime log-
20 likelihood = -3,907,700, 2 regimes log likelihood = -3,527,300, 3 regimes log-likelihood
200 = -3,502,000, 4 regimes log-likelihood = -3,500,600, significant improvement from 1
2 to 2: ratio = 760,950, p < 10732, elbow at 2; foraging: n = 1,517,656, 1 regime log-
22 likelihood = -3,550,000, 2 regimes log likelihood = -3,128,100, 3 regimes log-likelihood
203 =-3,105,700, 4 regimes log-likelihood = -3,103,900, significant improvement from 1 to
xs  2: ratio = 843,650, p < 10732, elbow at 2). In sum, both models and the participants
25 had two distinct switching regimes in this task.
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206 The switching regimes in the foraging model better matched the participants than
207 those in the RL model. Both the foraging and the RL model tended to switch more
2 frequently than the humans did during their own fast-switching, exploratory regimes
20 (Figure 4G; RL = 1.13 trials, 95% CI = [1.08, 1.19]; foraging = 1.16, 95% CI =
s0  [1.08,1.23]; participants = 1.29, significantly longer than both models, p < 0.01). This
s may be due to the fact that neither model accounted for the complexity of exploratory
sz decision-making, which can be information maximizing rather than random in some
503 circumstances [35-37]. Nonetheless, only the foraging model was able to replicate
su  the average long run length of the participants’ slow-switching, exploitative regimes
s (Figure 4H; RL = 12.15 trials, 95% CI = [11.38, 12.86]; foraging = 15.05, 95% CI =
w6 [13.70,16.42]; participants = 14.99, only significantly different than RL [ p < 0.01]) and
s their relative frequency (Figure 4J). This might explain why participants had more
w8 very long choice runs than we would expect under RL (1.8% of their choice runs were
30 longer than 10% of the total number of trials [30 trials], significantly more than the
a0 1.6% predicted by RL, 95% CI = [1.4%, 1.7%], p < 0.01) (Figure 4J). The participants’
s long-run lengths frequency was well within the distribution under the foraging model,
sz however (1.8%, 95% = [1.7%, 2.0%]). In sum, the foraging model better accounted for
a3 the participants tendency to repeatedly persist in choosing certain options for long
s periods of time.

315 Recall that we initially excluded 4 of our 258 participants (1.6%) because they
a6 chose same option for the entire 300-trial duration of the session, despite passing
a7 our initial screening criteria. Because model parameters were not identifiable in these
ss  participants, they represented held-out data that did not influence the simulations in
a0 any way. Therefore, we next asked how likely these participants were, given the two
20 models. In the simulated data, we found that runs of 300 identical choices were very
s rare in RL simulations (4 of 25,400 or 0.016% of simulated sessions), in contrast to
w2 foraging (178 of 25,400 or 0.7% of simulated sessions). This meant that 4 or more
w3 participants who chose the same option 300 trials in a row would be expected in 10.9%
2¢  of experiments under foraging (Figure 4K). By contrast, under RL, we would have less
s than a 1 in 1 million chance of observing these 4 participants. In sum, the foraging
s model better captured the stability or repetitiveness of participants choice runs, in
327 both those that were included in the model fits and in those that were excluded.

» Foraging better explains the dynamics of switching and
» exploitation

s Foraging was better able to explain the participants’ tendency to generate long choice
s runs. This could suggest that the foraging model was simply more stable than the
s traditional RL model. However, the foraging model also predicted that participants
133 should have more fast-switching (i.e., exploratory regime) choices than the RL model
s did (Figure 4B/T; relative frequency of short choice runs; foraging = 84.4%, 95% CI
s = [82.8%, 86.0%]; RL = 81.4%, 95% CI = [79.8%, 83.0%]). Again the participants
s matched the predictions of the foraging model, but not the RL model: they had
s many more short choice runs than the RL model had predicted (relative frequency of
18 exploitative runs = 85.3%, only significantly different than RL [p < 0.01]). In short, the
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30 participants both switched more and switched less than the RL model suggested they
uo  should, but foraging was able to capture the complexity of the switching dynamics.
341 To understand why the foraging model was better at reproducing the partici-
a2 pants’ switching dynamics, we used latent state models to interrogate the dynamics
u3  of exploration and exploitation in the participants and in both models (see Meth-
s ods; [15, 24, 36, 37]. Briefly, this approach models exploration and exploitation as
us  the latent states underlying sequences of decisions through training hidden Markov
us  models (HMMSs) on observed choice sequences (Figure 4L). Where the mixture mod-
ur  els helped characterize the switching dynamics from runs of sequential choices, the
us  HMMs were used to infer the most likely generative state underlying each individual
s choice [15, 24, 36] and to make statistical inferences about the governing equations
30 of exploration and exploitation [24, 32, 36]. For example, the parameters of the tran-
1 sition matrix of an HMM are estimates of the probability of transitioning between
2 specific states: that a decision-maker will continue to exploit once they have begun to
33 exploit, for example, or that they will stop exploiting one option in order to explore
s the alternatives.

355 The foraging model better matched the participants’ explore/exploit state dynam-
36 ics than did the RL model. Every measurement made with the HMMs was out of
7 sample for the RL model simulations, but well within sample of the foraging model.
s For example, the participants repeated exploration 90.4% of the time, which was sig-
0 mificantly higher than the RL model simulations (87.3%, 95% CI = [86.3%, 88.4%],
0 p < 0.01) but close to the mean of the foraging simulations (90.3%, 95% CI = [89.8%,
s 90.9%]). Similarly, the participants repeated exploitation 93.9% of the time, which
2 was significantly higher than RL (90.9%, 95% CI = [90.5%, 91.3%], p < 0.01) but
s: close to the mean foraging model (93.7%, 95% CI = [93.4%, 94.1%]). The fact that
s the transition matrix of an HMMs is a Markov chain makes it particularly analyti-
s cally tractable. We can often solve for the stationary distributions of these equations:
w6 the long-term probability that the participants would exploit (vs. explore; see Meth-
7 ods). Here again, we found that the participants stationary frequency of exploration
s and exploitation (39.2% explore, 60.8% exploit) was out of sample for the RL model
w0 (41.6% explore, 95% CI = [40.4%, 42.9%)]; 58.4% exploit, 95% CI = [57.1%, 59.6%],
s p < 0.01 in both cases), but well within sample for the foraging model (39.3% explore,
sn 95% CI = [38.4%, 40.2%)]; 60.7% exploit, 95% CI = [59.9%, 61.6%)]). Together, these
sz results illustrate that the foraging model well described the dynamics of exploration
s and exploitation in the participants, while the RL model was consistently off target.
374 Plotting the energetic landscape of these dynamics (see Methods; [24, 32, 36])
s revealed the intuition behind all of these individual results: the energetic landscape of
s exploration and exploitation was flatter in the RL model than it was in either the par-
s ticipants or the foraging model (Figure 4M). In both the participants and the foraging
s model, exploitation was a deeper, more stable state than exploration, but a substantive
a0 energetic barrier between the two states meant that exploration and exploitation were
0 actually fairly stable states, with infrequent transitions between them. Conversely,
s in the RL model, not only was there less of a difference in the depth of exploration
s and exploitation, but there was less of an energy barrier between. Together, these
33 results suggest that the foraging model was a better fit for the participants because it
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s better captured the dynamics of exploration and exploitation: their tendency to alter-
s nate between temporally-extended periods of exploiting good options and exploring
s alternatives.
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Fig. 5: Foraging and RL have different quality fit to the data across different environ-
ments. A) An example reward schedule from the predictable two-armed bandit task (Experiment
2) , illustrating the reward probability of each option (red trace = option 1; blue trace = option 2)
and the choices made by the participant who had this reward schedule (red dots = option 1;blue
dots = option 2). B) The negative log-likelihood of the RL and foraging models fit to all data of
Experiment 2. C) Akaike information criterion. Same convention as in B. D) Human observed
probability of switch in Experiment 2 as a function of RL predicted probability of switch. E)
Foraging predicted probability of switch. Same convention as in D. F) Reward schedules auto-
correlations averaged for all participants of Experiment 1. Full line indicates the mean, shading
indicates STD and dotted line indicate the decay threshold. G) Same convention as in F' for 3
levels of volatilities (red line) participants of experiment 3 H) The negative log-likelihood of the
RL and foraging models fit to all data of Experiment 3. I) AIC of the RL and foraging models
across different volatility levels in Experiment 3. Same convention as in G.

w Foraging better predicts behavior under varied uncertainty

s It is possible that the participants did not bother comparing alternative values
s because the value of unchosen options was difficult to estimate in a restless bandit
o environment. Therefore, in Experiment 2 and 3, we bidirectionally manipulated the
31 uncertainty of the unchosen option to to try to make the participants more or less
s likely to prefer the RL-like, compare-alternative computations over the foraging-like
33 compare-to-threshold.
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304 In Experiment 2, participants (95 people, 41 females, 1 other or non reporting)
35 performed an more predictable version of the 2-armed bandit task where informa-
36 tion about the unchosen option was increased. In this variation, the environment was
so7  structured so that the sum of reward probabilities for any given trial always totaled
s one (‘Example walk’, Figure 5A). This reduces the uncertainty of the unchosen option
s because its value could be inferred from the chosen option (it was always 1 minus the
w0 value of the chosen option). In this new task, we found that foraging was also a better
s fit to human behavior than RL (Figure 5B-C, FOR: log-likelihood = -6819, RL: log-
x> likelihood = -7241 and relative AIC weight < 5.1 10732). (Note that we were unable
w3 to fit the model in 1/95 participants because that participant repeatedly selected the
s same option 300 times ([1.1%]; a similar proportion to the number that did so in
ws  Experiment 1: 4/258 [1.5%]).) To understand why foraging was a better fit, we gen-
ws erated an RL and foraging agent from each participant’s parameters (see Methods)
w07 and then compared the simulated agents’ behaviors with the humans’ choice patterns.
ws In line with Experiment 1, foraging better accounted for the participants’ tendency
w0 to switch between options (Figure 5D-E, RL: MSSE = 0.38, foraging: MSSE = 0.06,
a0 Wilcoxon signed rank test p < 1.5 % 10~7). Together, these results suggest that forag-
a1 ing continues to be a better fit even when it is easier to infer the value of the unchosen
a2 option.

a3 In Experiment 3, participants (270 people, 112 females, 2 other or non reporting)
as performed a 3-armed version of the bandit task in which information about the uncho-
a5 sen option was reduced by (1) manipulating volatility and (2) increasing the number
a6 of options (see Methods). Increasing the volatility of the environment increases uncer-
a7 tainty about unchosen options because it increases the speed at which prior reward
as  information becomes uninformative about the current value. Moreover, prior research
a0 suggest that increasing volatility tends to increase switching behaviors in humans
w0 [38, 39], which could offer an advantage to RL, as a less stable and persistent algo-
a1 rithm. Given that both Experiment 1 and 2 had similar low volatility (Experiment
w2 1 is illustrated in Figure 5F), we increased the volatility of the environment by low,
w23 medium, or high levels (Figure 5G). Regardless of the volatility of the environment,
«2¢ foraging was a better fit (Figure 5H-I, ”high volatility” FOR: log-likelihood = -16,928
ws , RL:log-likelihood=-18,013 and relative AIC weight < 1.2 % 10732 ; "medium volatil-
ws  ity” FOR: log-likelihood = -19,155, RL:log-likelihood=-19,955 and relative AIC weight
w21 < 5.5 % 10732; "low volatility” FOR: log-likelihood = -19,247 , RL:log-likelihood=-
ws 20,649 and relative AIC weight < 1.8 x 10732). Together, these results suggest that
wo  foraging better explained human behavior even in high volatility environments that
a0 should have been best suited to the kind of frequent switching seen in RL models.

= Discussion

a2 Although human and animal behavior in k-armed bandits are conventionally modeled
a3 as a compare-alternatives process [13-15, 24, 28], our results suggest that humans com-
aa pare the value of staying with the currently exploited option against a fixed threshold
s rather than comparing the values of choosing alternative options directly. We leveraged
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s this finding to build a novel compare-to-threshold RL model (“foraging”) and com-
w7 pare it to a traditional compare-alternatives RL models [1, 4, 6]. The foraging model
s and its various extensions were a better fit to participants’ behavior compared to the
a0 compare-alternatives RL models [1, 4, 6] even when comparing alternatives would have
wmo  been the more advantageous strategy. The foraging model fits were consistently bet-
s ter than traditional RL models across 2 variations of the task that manipulated the
w2 uncertainty of the unchosen option. Across environments, the foraging models consis-
w3 tently better matched participants’ tendency to switch options, both on average and
ws on an individual basis. The foraging models were even able to predict the existence of
ws  multiple participants who never switched at all: participants that essentially should
us  not have existed under compare-alternatives RL.

aa7 The difference between the foraging and traditional RL models is not solely that
us  the latter uses compare-alternatives computations and the format uses compare-to-
ao  threshold. Another critical difference is in the models’ action-value space. In the
w0 traditional RL model, values represent the subjective utility of each primitive action
s1 (choosing option 1 or 2). By contrast, the foraging model does not represent the value
2 of primitive actions, but instead of temporally extended actions (i.e., of exploiting
3 the left option, rather than choosing the left option). In this way, the foraging model
sa  resonates with recent work on hierarchical reinforcement learning that suggests that
sss  people do make choices at the level of policies rather than primitive actions [40-46].
s6  Higher level policies, macro actions and options [40] have been studied for over two
7 decades in the RL literature and are a candidate strategy for achieving better general-
s ization and transfer of knowledge in artificial agents [40, 43]. This distinction between
s models could make the foraging model better able to scale outside of laboratory tasks,
wo where the number of options available is generally much larger than the small finite
w1 sets we present in the lab. Where the computations and representations in traditional
w2 RL models become more costly in high-dimensional or continuous decision spaces, the
w3 computations and representations in the foraging model can remain comparatively
ws  efficient. Compare-to-threshold computations may thus be favored by humans because
w5 they better align with the brain’s biological constraints and because they are better
ws equipped to scale to natural environments. Together, these considerations suggest that
w7 foraging is a better explanatory model both because decisions are more like compare-
ws  to-threshold than compare-alternatives, but also because decisions are made at the
wo level of temporally extended policies, rather than primitive actions.

470 The foraging model we introduce here draws both its inspiration and its limita-
. tions from the foraging literature and could be expanded on in the future in ways that
a2 could have implications across fields. The model assumes the existence of only two
a3 macro actions—explore and exploit—and defines a specific low-level policy and termi-
aa nation for each of them. Based on the foraging literature, we assumed that switching
w5 from exploit to explore causes instant forgetting of exploited values (i.e. the patch
ws s left behind), that explore actions select targets randomly (i.e. that we travel until
w7 we encounter some new opportunity at random), and that exploit action-values are
ws compared to a fixed threshold (i.e. one that is learned very slowly across long-term
w9 experience in an environment). On one hand, drawing these assumptions from the
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w0 ethological literature is a powerful way to create new computational models and con-
s strain the space of useful macro polices. On the other hand, each of these assumptions
w2 is also an opportunity for future research that could improve on the simple foraging
a3 algorithm presented here. For example, the foraging model failed to account for the
ss¢  rapid speed of switching during the exploratory regime(Figure 4G). This might suggest
w5 that refining the exploratory policy in this model could substantially improve both
ss  model fit and agent performance. One promising approach would be to incorporate
47 directed forms of exploration (like self-avoiding search [37]) or intrinsic motivations
s (like entropy maximizing policies [47]). Developing more sophisticated exploratory
w0 strategies is likely necessary for translating the simple foraging algorithm we present
w0 here into something that could be useful in Al In that sense, our work could represent
w1 a bridge between observations in animal behavior and major challenges in Al, includ-
w2 ing the problem of identifying useful macro action spaces. In short, developing new,
w3 biologically-inspired models of human decision-making could have broader impacts:
sa  not only for understanding the human mind, but also for generating powerful new
ws  tools in Al

496 The observation that foraging models are a better fit to human behavior may
w7 superficially appear to contradict the large body of evidence for RL-like computations
w8 in the neuroscience literature. However, the neural evidence for reinforcement learn-
w0 ing computations in the brain is strongest when we consider signals related to reward
soo  prediction errors and value functions— both of which also exist in our novel foraging
so. model. Both models calculate reward prediction errors: this is how they learn their
sz respective value functions from their environments. Further, although neural activity
s0s  often correlates with action value (a signal thought to play a role in specifying primi-
s tive actions; [48]), RL primitive action-values are likely to be highly collinear with the
ss macro action-values calculated by the foraging model. Because no direct comparison
ss  between these two value signals has been performed, it is thus not entirely clear that
sov  evidence for the former would be evidence against the latter. We would note that it is
sos  always important to be cautious in interpreting correlations between value and neural
s0 activity because (1) time series data are prone to spurious correlations, (2) puta-
si0  tive neural correlates of value could be caused by other mechanisms, like mnemnonic
su errors [49], and (3) neural activity have a complex, nonlinear relationship with value
sz even when value is explicitly cued [50], which calls into question the interpretabil-
si3 ity of linear correlations here. Further, there exist some neural observations—such
su - as nonlinearities in neural activity around shifts between exploration and exploita-
sis tion [15, 25, 51-53]—that are difficult to reconcile with traditional RL models. In the
sis  foraging model, by contrast, instant forgetting at the onset of exploration causes an
si7 - obvious nonlinearity. It will be important, in the future, to determine whether these
sis  assumptions of the forging model are either validated or refuted by neural observations
s [15, 25]. Ultimately, neuroscience research will hold the key to determining whether
s0 the computations humans perform are truly more consistent with compare-alternative
s or compare-to-threshold accounts.

522 Ultimately, this paper reinforces and extends a body of recent observations that
53 humans, like many other animals, can use foraging computations to make sequen-
s tial decisions [19-21]. However, where previous studies of foraging computations in
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s psychology and neuroscience used foraging-specific tasks—tasks that are explicitly
s designed to encourage foraging strategies or computations [18-23, 54, 55]—the present
s27 study did the opposite. Through developing a new foraging model that is capable
s of navigating dynamic, unpredictable environments, we determined that humans also
s use foraging computations even in tasks that were originally designed as testbeds for
s compare-alternatives RL algorithms.

531 Methods

s»2 Data Collection

53 Ethics Approval. All experiments procedures were in line with the standards set
s by the Declaration of Helsinki and were approved by the relevant ethical review
s boards (Experiment 1 and 2: the guidelines of the Comité d’Ethique de la Recherche
si% en Sciences et Santé (CERSES) of the University of Montreal [Project #2021-
s 1090], Experiment 3: Institutional Review Board of the University of Minnesota
s [STUDY00008486]).

530 Participants. Participants were recruited via the online platform, Amazon
s0  Mechanical (mTurk). To avoid bots and facilitate better data quality, participants were
sanonly accepted when they had a minimum of 5000 approved human intelligence tasks
s (HIT) and a minimal percentage of 98% in proportions of completed tasks that are
sz approved by requesters. Geographical restrictions were set for US participants only.
sa To help ensure that participants understood the task, there was an initial 25 trial
s block with fixed but randomly assigned reward probabilities (20%, 30% and 70%). To
s6  continue to the main task, participants were required to (1) switch between options at
s least twice, and (2) get reward more than 42% of the time during the practice block.
ss ' The criteria and number of trials was chosen to ensure that people choosing at ran-
se0  dom would rarely pass through to to the main task. Participants were not allowed to
s0  repeat the experiment. All participants who successfully submitted the HIT, either
ss1 the practice block or the full experiment, were paid a base rate of $0.50, plus a bonus
s2 of $3.61 mean £ $0.97 SD based on their performance (for each trial that ended with
53 a reward, participants were given a $0.02 compensation). Participants provided writ-
s ten informed consent after the experimental procedure had been fully explained and
55 were reminded of their right to withdraw at any time during the study.

556 For Experiment 1 (two-armed bandit task), a total of 258 participants (120 females,
ssv 137 males, 1 preferred not to say) completed the task. This dataset has been analyzed
sss previously in a comparison of switching behavior between mice, monkeys, and humans
s0 [32], but all analyses presented here are new. For experiment 2 (predictable two-
so  armed task), a total of 95 participants (41 females, 51 males) completed the task. For
s experiment 3 (three-armed bandit task), a total of 270 participants (112 females, 156
sz males, 2 prefer not say) completed the task.

563 Experiment 1: Two-armed restless bandit task. To investigated how humans
s solved a restless bandit task, participants were required to repeatedly choose one of
ss  two options. Each option was associated with a probability of reward, which changed
sss  across trials and independently across options. The experiment consisted of 25 practice
ss7  trials followed by 300 trials. To avoid environmental biases, each participant’s reward
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ss  schedule was randomly initialized. At any given step, the reward probability of each
ss0  option could subsequently vary by a 0.1 increment with a hazard rate of 0.1, following
s a Bernoulli distribution.

571 Experiment 2: Predictable 2-armed bandit task. To understand how
s» decreased uncertainty in unchosen option influences behavior, participants performed
53 a modified version of the two-armed restless bandit task. Although both tasks are sim-
s.a  ilar, they differ in how rewards are allocated to each of the two options. Specifically,
si5  in this task, the reward probabilities associated with each option varied inversely with
st respect to one another and across time.

577 Experiment 3: Volatile 3-armed bandit task. To explore how increased uncer-
s tainty in unchosen options influences behavior, participants performed a three-armed
s9 - restless bandit task under various manipulations of volatility of the environment. This
sso  task differed from the two-armed restless bandit in two keys aspects. First, an addi-
ss1  tional option was introduced. This is common practice in the field, and previous studies
s22 show that increasing the number of options (up to 4) has no significant effect on the
3 probabilities of switching and exploring [32]. Second, the change in reward probabil-
s ities was variable (probability of step = 1 or 0.1), with a different increment size for
sss each participant (ranging from 0.05 to 0.667).

586 Since there were 2 manipulations in this task (i.e., probability of step and step
s size), volatility was assessed by looking at the auto-correlation of the reward schedule
sss  experienced by each participant. We estimated the rate of decay of the auto-correlation
ss0 by measuring when it decayed to 0.75 of its initial value. We used this measurement
s0 as an arbitrary volatility index for each participant. We then divided the volatilities
s into 3 levels (high, medium, low).

> Data Analysis
ss (General Analysis Methods

soa  Data was analyzed with custom software written in MATLAB and Python. Statisti-
sos  cal tests were two-sided unless otherwise specified. Significance was compared against
so6 the standard alpha = 0.05 threshold throughout. Correlations are Pearson correlation
o7 unless otherwise indicated. A small number of participants (Experiment 1: 4/258 par-
sos  ticipants, 1.6% ; Experiment 2: 1/95, 0.95%) were excluded from some model-based
se0 analyses because they chose only one option in the main task, which made the model
e parameters unidentifiable. However, these participants were included in other analyses
61 wherever it was possible to do so.

o Strategy Fingerprints

sz Compare-alternatives and compare-to-threshold decision-making depend on different
e aspects of the environment. Here, we characterized the fingerprints of each strategy
o5 as a function of two features of the environment: richness (the sum of the values) and
s discriminability (the range of the values, normalized to the sum). We assumed that
607 the compare-alternatives strategy would switch whenever discriminability was below
es  some A reward and that the compare-to-threshold strategy would switch whenever
e richness was below some threshold. Example simulations for specific parameter values
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s of A reward and threshold are illustrated in 2B-C. To quantify the fingerprints, we
en  fit the simulated switch probabilities at each parameter value for each strategy with a
sz linear (2 parameter) generalized linear model (GLM) and a quadratic (3 parameter)
a3 GLM, first as function of richness and then as a function of discriminability. (Identical
eua results were found with the identity and binomial link functions, though only the
a5 former was used for illustration.) We then extracted 3 features from the fitted models:
sis (1) the relative deviance of the linear and quadratic models (a measure of the extent
siv  of curvature as a function of either richness or discriminability), (2) the quadratic
sis  term of quadratic model (a measure of the sign and magnitude of curvature in the
s relationship), and (3) the linear term of the linear model (a measure of the overall
s20 slope of the relationship). Distributions of these features are illustrated in 2E-G. To
e provide a more holistic and multivariate view of these fingerprints, we took the 6
62 feature dimensions described above and added the overall probability of switching
e as a Tth feature. We then performed PCA for illustration (2H) and calculated the
ea distance from the 7-dimensional fingerprint of the human data to the fingerprint of
e every possible value for each of the two strategies 2I.

w2 Foundations of Decision-Making Models

627 To determine whether participants were using foraging-like or RL-like computations,
w8 we fit a series of 10 cognitive models (5 RL models and 5 foraging models). All mod-
o0 els were initialized with 50 random seeds and fit via maximum likelihood (minimizing
e the negative of the log likelihood; fminsearch, MATLAB, scipy.optimize.minimize,
sn  Python). Here, we will describe the standard formulations of both the RL and foraging
62 models. The following section will explain the various extensions of each model.

633 All of the models, RL and foraging alike, had a classic delta-rule value updating
64 process at their core,

Vi1 = v +alry — o) . (1)
635 That is, values (v; 4+ 1) were updated at each time step ¢ according to the difference
% between the observed reward (r;) and the previous value (vy; vg = 0 for all values and
sz in all models). The magnitude of the update is scaled by a learning rate («; constrained
08 between 0 and 1 in all models). The delta-rule update dynamically calculates value
6 as an exponentially-decaying recency-weighted average of reward. This is a canonical
60 computation, with widespread neural and behavioral evidence supporting its existence
s in humans and other animals [1, 6, 14, 56-60]. Though both models have the delta-rule
s2 computation at their core, they differ in what the value represents.

s RL model

e Here, there are multiple values because each option i has its own value and each is
ws updated (or not) at each time step. One common approach, which we used in the
e standard RL model here, is to update only the value of chosen options,

(2)

vt +a(ry —v;¢), if 4 is chosen
Vit+1 = .
’ Vi.t, otherwise
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647 A softmax function transformed values into choice probabilities with the usual
ss  Boltzmann exploration strategy.In RL models, the probability of choosing option i at
e0  time ¢ was

. ) eﬁvi,t
p(choice; = 1) = Zj\,ﬂ o (3)
es0 where § is an inverse temperature parameter that controls the noise in the value
s comparison (constrained between 0 [high noise] and 100 [low noise] in all models).
62 Because this task only had N = 2 options, we can expand the sum and rearrange this
653 equation,

1
1+ e—Bit—vje) ’ (4)
e« which may clarify the point that this function compares the value of the two options
65 in order to decide which to choose.

p(choice; = i) =

ess Foraging model

e7 Here, the value is the value of a single focal option: it is the value of staying with or
ess  “exploiting” that option, so the update equation is precisely Eq. 1. One useful way
60 to characterize the foraging model is to think of it as a hierarchical action algorithm:
s0 there are higher-level, temporally-extended actions that determine the choices at each
1 trial to each target. In particular, we can use the options framework [40] to define
662 this hierarchical model. In this framework, an option o consist of three components: a
63 policy 7, a termination condition $,and an initiation set Z,

T:SxA—10,1],

o=4p4:8"—=10,1], (5)
ICs,
664 where S is the state space, and A is the primitive action space. If an option o =

es (L, m, ) is taken, then actions are selected according to 7 until the option terminates
es  stochastically according to 5. This framework can be extended to semi-Markov options,
e7 where a history 2 over states, actions and rewards can be taken as input to the low
es level policy w. This is important because our foraging model will make use of this
669 hiStOl"y.

670 In the foraging model, the primitive action space A is the set of targets than can
sn  be chosen, the state space is a trivial one-state space (so initiation sets are trivial),
ez and we define the option space as

O = {explore, exploit}, (6)

673 with each option defined the following way:

e+ 1. The exploit option has a lower level policy Texplois that executes always the
675 same action (given by the previous action from the history), and terminates with
676 probability

Bexploit = 1 — p(exploit), (given in Eq. 9), (7)
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s 2. The explore option has a lower level policy Texplore that selects targets uniformly

678 randomly, and terminates with probability
Bexplore = p(explmt) (8)
679 We define the termination conditions with a softmax rule, in a similar fashion to

e how the RL model randomly selects other targets, in the following way:

1

T e ©)
61 where v is a value that gets updated using Eq. 1 and the threshold p could be thought
2 of as the expected value of any alternative (the background rate of reward in the
3 environment [17]) or as a literal threshold for exploration. It is important to note that
s the foraging algorithm only tracks one value (which we can think of as the value of the
ses exploit option). This way of interrupting or terminating options is a usual choice in the
s context of hierarchical actions and options [40, 61], where we decide to interrupt the
e7 execution of a temporally-extended action based on the value of that option compared
e to alternatives. With this space of options, we can now build a policy over options to
eo define the foraging algorithm: whenever an option terminates, the other starts.

p(exploit) =

690 Because exploration ensured that a new option was chosen and value of exploiting it
e1  was unknown, the value of exploitation was reset to the threshold on each exploration
e02 trial.

s Extensions to Decision-Making Models

ss In addition to the standard formulations of the RL and foraging models introduced
es above, we considered a variety of extensions that are commonly used to improve the
ss fit of RL models. First, we introduced an asymmetrical learning parameter, meaning
sr a way for models to learn at different rates from rewards and omissions. Adding
o8 asymmetry often improves the fit of RL models [24, 62] and it improved the fit of
s both models here. In both the RL asymmetry and foraging asymmetry models, the
w0 delta-rule update was rewritten

vor = { Fowllm o, (10)

ve+ap(0—wv), ifr,=0

1 where v was the value of the chosen arm in the RL model or the value of exploitation
2 in foraging. Both positive and negative learning rates were constrained between 0 and
73 1 in both models. Next, we introduced a decay parameter, meaning a way for some
¢ values to diminish over time without sampling. This approach is widely used in the
s reinforcement learning literature, where it has been interpreted as the indicative of
w6 limited memory resources. It consistently improves RL model fits [63-65] and improved
w7 the fit of both models here. In the reinforcement learning model, we implemented decay
s in the traditional way: instead of allowing the value of an unchosen option to carry
w0 forward unchanged in time, it decayed in proportion to delta (bounded at 0 and 1) as
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) o £ i is o
Vit+1 = Vip + a(ry Uz,t)7 1Iei1s C. osen a1)
Vst otherwise
710 Although the foraging model has no unchosen values to decay, it does have a

m  threshold parameter, p, which was previously modeled as static, but now allowed to

n2  change over time
1

T 1t e Boip)
n3  Specifically, p could now decay with each successive choice to the same option through
na  updating it in a state-dependent way as a function of some decay parameter ¢,

p(exploit, ) (12)

. 13
po, if explore (13)

{5pt, if exploit
Pt+1 =
ns  where pg is the value at which p is initialized at time 0 or at the onset of explo-
ne  ration. Finally, we considered 2 models that included history dependence, meaning an
n7  outcome-independent tendency to repeat past behavior. Adding dependence on previ-
ns  ous choices tends to improve the fit of RL models [4, 24], likely because of the strong
79 tendency towards hysteresis in the choices of humans and other animals. Adding his-
20 tory dependence also improved the fit of both models here. In reinforcement learning,
= one common approach adds a choice kernel (k) for each option ¢ which is updated in
722 parallel with the value as

P {ki,t +oae(l—kiy), if choic.e =4 (14)

kit +ac(0— ki), otherwise

=3 where a. is the choice kernel learning rate parameter. The choice kernel value is then
74 combined with value in the softmax decision rule,

N eB(vitk:)

choice =1) = ————— . 15
p(choi 1) Z;\,:l Ao (15)
5 Thus far, we have added only 1 choice-history dependent parameter to this RL

= model, the a. parameter, and this model is the history kernel 1 RL model referred to
=7 in the text. However, it is common to give choice history its own inverse temperature
s parameter B, . This is the history kernel 2 RL model,

) _ eBvitBeki
p(choice = 1) = W . (16)

729 Although there was no natural way to add a choice history kernel to the foraging
70  model, we could use a nearly identical approach to add a state history kernel to the
1 foraging model. This approach adds hysteresis at the level of the exploitation state,
7 rather than at the level of the choices themselves. To do this, we introduced a state
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73 history kernel that was updated alongside the value of exploitation as

k (1 — kK if exploit
by = 4Rt ac(l — ki), ifexp oft, (17)
0, otherwise
734 Meaning that the state history kernel was re-set to 0 when the animal explored.

75 In the history-kernel 1 foraging model, this kernel was then added directly to the
76 exponential in the decision rule,

1

p(eXplOltt) = m . (18)
737 In the history-kernel 2 foraging model, the kernel was inserted, but scaled with its
738 OWN inverse noise parameter, S, as
. 1
p(exploit,) = (19)

1+ e Bwi—p)—Brks °

20 Model Fitting Procedure

0 Maximum Likelihood Estimation (MLE) was performed to determine the parameter
71 values of both standard models that most accurately described human behavioral data.
2 The log likelihood (LL) was computed as follows:

T
LL = log p(choicey.r|0,,, m) = Z log p(choicet, 8,,, m) . (20)
t=1
3 where p(choiceq.r|0,,,m) is the probability of all choices (from 1 to T trials) given the
1 parameters 6, of each model m with Or;, = [a, 5] and bforaging = [, B, p] for each
s participant. To find the maximum likelihood parameters, the negative log-Likelihood
16 was minimized using an optimization function (Experiment 1: Matlab fminsearch;
. Experiment 2-3: Python scipy.optimize.minimize). The optimization process was initi-
s ated multiple times with randomly selected starting parameters to avoid local minima
1o (Experiment 1: 20 times, Experiment 2-3: 50 times). The set of parameters with the
0 lowest negative Log-Likelihood were selected. The Akaike Information Criteria was
1 calculated to identify the best fitting model, adjusting for differences in the number
m of parameters, and Akaike weights were calculated to estimate the relative ability of
73 each model to minimize information loss.

= Simulations from Decision-Making Models

s Performance Optimization. In order to determine if foraging had an advantage
6 (or disadvantage) compared to RL in performance, we asked if the upper bound on
77 performance was higher for foraging than it was for RL. This meant that we used
s simulation to identify the optimal parameter combination for each model in matched,
79 randomly generated environments that matched the statistics of Experiment 1. We
0 then compared the performance of these optimized models. Optimal parameters com-
1 bination was selected so that it maximized the relative reward (minimizing the negative
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w2 of the relative reward, Python scipy.optimize.minimize) while remaining within the
3 participants’ parameters range.

764 Cohort simulation. When simulating data from the standard foraging and RL
s models, our goal was to produce datasets under each model that would resemble the
s  set of human participants as closely as possible. To do this, we took the stochastic
o reward schedule experienced by each participant and simulated a new sequence of
e choices in that reward environment from the RL and foraging models. The simulations
o were generated using fitted parameters from the participant who experienced that
770 environment.

= Exponential Mixture Model

72 We examined whether identifiable temporal patterns existed within the participants’
7 choice sequences. If a single time constant (probability of switching) governed the
7 behavior, we would expect to see exponentially distributed inter-switch intervals. That
s is, the distribution of inter-switch intervals should be well described by the following
776 model:

f(x) = % , (21)

. where (3 is the survival parameter of the model (mean inter-switch interval). Although
78 the time between switch decisions was largely monotonically decreasing and concave
o upwards, the distribution was not well described by a single exponential distribution.
0 Therefore, we next fit mixtures of varying numbers of exponential distributions (1-
m  4) in order to infer the number of switching regimes in these choice processes. For
2 continuous-time processes, these mixture distributions would be of the form:

flz) = Zme—ﬁﬁ , (22)

s where 1 > m; > 0 for all m;, and Z?:l m; = 1. Here, each (; reflects the survival
s parameter (average inter-switch interval) for each component distribution ¢ and the ;
s reflects the relative weight of each component. Because trials were discrete, we fit the
6 discrete analog of this distribution: mixtures of 1-4 discrete exponential (geometric)
wr  distributions [66]. Mixtures were fit via the expectation-maximisation algorithm and
s we used standard model comparison techniques [67] to determine the most probable
70 number of mixing components. Two regimes (log-likelihood = -31,048, 3 parameter)
0 were significantly better fit to data than one (log-likelihood = -34,645, 1 parameter,
71 likelihood ratio test: ratio = 7193.0, p < 10732) and, while adding additional regimes
72 continued to improve model fit (3 regimes: log-likehood = -30,893, 5 parameters; 4
3 regimes: log-likelihood = -30,884), improvement was already saturated at 2 regimes
794 (Figure 5D)

s Hidden Markov Model

w6 To determine when models and participants were exploring (versus exploiting), we
77 used a hidden Markov model (HMM; [15, 24, 32, 36, 37]. In an HMM, choices (y)
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s are ‘emissions’ that are generated by an unobserved decision process that is in some
0 latent, hidden state (z). Latent states are defined by both the probability of making
so each choice (k, out of Nj possible options), and by the probability of transitioning
s from each state to every other state. Our model consisted of two types of states, an
sz explore state and the exploit states. The emissions model for the explore state was
g3 the maximum-entropy distribution for a categorical variable, a uniform distribution:

p(y: = k|z: = explore) = (23)

Ny’
ss meaning that we made the fewest number of assumptions possible about the choices
ss that were made during exploration in order to avoid biasing the model towards or
ss away from any particular type of policy. However, modeling exploratory choices with
g7 a uniform distribution does not imply, require, or enforce random decision-making
w8 during these states [36, 37]. Because exploitation involves repeated sampling of each
g0 option, exploit states only permitted choice emissions that matched one option:

p(y: = k|ze = exploit;, k =4) =1

p(y: = k|2 = exploit;, k #i) =0
meaning latent states in this model are Markovian. The current state (z;) depends
only on the most recent state (z;_1),

(24)

p(zt|zt—17yt—17"'7Z17y1) :p(zt|zt—1) ’ (25)
s meaning that we can describe the entire pattern of dynamics in terms of a time-
su invariant transition matrix between 3 possible states (two exploit states and one
sz explore state). This matrix is a system of stochastic equations that describe the one-
sz time-step probability of transitioning between every combination of past and future
s states (,7),

plze =ilze—1 = 7). (26)

a5 Because we had only a limited number of trials for each participant (300), parameters
a1 were tied across exploit states: each exploit state had the same probability of begin-
siv ning (from exploring) and of sustaining itself. For conceptual reasons, the model also
ais  assumed that participants started in exploration and had to pass through exploration
a0 in order to start exploiting a new option, even if only for a single trial [15, 24, 32, 36, 37].
a0 We have previously shown that models that lack these constraints by design tend to
s approximate them when fit to sufficiently large datasets [15, 24].
822 Because the emissions model was fixed, certain parameters were tied, the structure
g3 of the transmission matrix was constrained, and the initial state was specified, the
s20  final HMM had only two free parameters: one corresponding to the probability of
a5 exploring, given exploration on the last trial, and one corresponding to the probability
a6 of exploiting, given exploitation on the last trial. We have previously reported that
er  this constrained model does not underperform an unconstrained model [15, 24]. and
&8 that unconstrained models tend to closely resemble to the constrained model when fit
w20 to large amounts of data [15].
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830 The HMM was fit via expectation-maximization using the Baum Welch algorithm
e [68]. This algorithm finds a (possibly local) maxima of the complete-data likelihood.
sz The algorithm was reinitialized with random seeds 20 times, and the model that
a3 maximized the observed (incomplete) data log likelihood across all the sessions for
s each animal was ultimately taken as the best. To decode latent states from choices,
a5 we used the Viterbi algorithm to discover the most probable a posteriori sequence of
a6 latent states.

s Explore/Exploit State Dynamics

ss  In order to understand the dynamics of exploration and exploitation in the partic-
a0 ipants, RL models, and foraging models, we analysed the dynamics of the HMMs
so  [24, 32, 37]. The fitted HMMSs are a set of equations that describe probability of tran-
a1 sitions between exploration and exploitation and vice versa, or the state dynamics of
a2 each agent. Methods from statistical thermodynamics can then be used to analyze
a3 these equations and generate insight into the potential energy of each state in each
ws  agent (Figure 4M).

845 In statistical thermodynamics, the potential energy of a state (E;) is related to
ws  the long-time scale probability of observing a process (here, a decision-maker) in that
s state (p;) via the Boltzman distribution,

1 =&

p; = EekBT , (27)
wms  where Z is the partition function of the system, kB is the Boltzman constant, and
so 1 is the temperature. In a two-state system, the partition functions cancel out, the
so relative occupancy of the states is just a function of the difference in energy between
1 them, and we can rearrange to express the difference in energy between two states as
ss2  a function of the difference between them,

In (ﬁz) kiBT = Ej - Ez 5 (28)
j

s where E; — E; is the difference in the energetic depth between the two states (i.e. the
s« Gibbs Free Energy), which is proportional to the log odds of each state, up to some
ss multiplicative factor, kBT.

856 To calculate the probability of exploration and exploitation (p; and p;), we solved
es7  for the stationary distribution 7* of the fitted HMMSs, where 7* is the probability
ss  distribution that satisfies

=7 Ay, (29)
w0 where Ay, is the transition matrix for agent k. If it exists, this distribution is a (nor-
so  malised) left eigenvector of Ay with an eigenvalue of 1, so we solved for this eigenvector
g1 to determine the stationary distribution over explore and exploit states for each agent.
s2  We then took an average of these stationary distributions across all sessions for each
s3 species, and plugged these back into the Boltzman equations to calculate the relative
se energy (depth) of exploration and exploitation in (Figure 4M).

865 In order to calculate the height of the energetic barrier between exploration and
ss exploitation, we built on the Arrhenius equation from chemical kinetics that relates
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sr  the rate of transitions (k) between some pair of states to the activation energy required
ws  to affect these transitions (Ea):

By
k=CeFsT | (30)
s where C is a constant pre-exponential factor and kBT is again the product of tem-

sro perature and the Boltzman constant. Rearranging to solve for activation energy yields
sn our equation for the height of the energy barrier,

k
E,=—-In (C) kpT | (31)

sz which has an obvious similarity to the Boltzman distribution illustrated earlier, where
sz the relative depth of each state was proportional to the probability of occupying each
s state and the activation energy is now proportional to the rate of transitions between
e States.

876 To create the dynamical landscape graphs (Figure 4M), transition matrices were
ez calculated individually for all participants and for simulated data from both foraging
e and RL algorithms. Energy measurements were then averaged within each class of
eo  agents. Note that our approach only identifies the energy of three discrete states (an
w0 explore state, an exploit state, and the peak of the barrier between them). These are
sa1  illustrated by tracing a continuous potential through these three points to provide a
s> physical intuition for the differences in explore/exploit dynamics between models and
a3 participants.

w Foraging Index

ss  In order to determine if individual participants were more foraging-like (versus RL-
ses  like) in their approach to the task, we calculated the foraging index as the difference
s in the individual model likelihood (L) between the best-fitting foraging model (F*)
s and the best-fitting RL model (RL*) for each participant i:

foraging index; = L+ ; — Lrr+; (32)
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