

Humans forage for reward in reinforcement learning tasks

Meriam Zid^{1*}, Veldon-James Laurie¹, Jorge Ramírez-Ruiz¹,
Alix Lavigne-Champagne¹, Akram Shourkeshti¹,
Dameon Harrell², Alexander B. Herman^{2†}, R. Becket Ebitz^{1*†}

¹Department of Neuroscience, University of Montreal, Montreal, QC ,
H3T 1J4, Canada.

²Department of Psychiatry, University of Minnesota, Minneapolis, MN,
55455, USA.

*Corresponding author(s). E-mail(s): meriam.zid@umontreal.ca;
rebitz@gmail.com;

†These authors contributed equally to this work.

Abstract

How do we make good decisions in uncertain environments? In psychology and neuroscience, the classic view is that we calculate the value of each option, compare them, and choose the most rewarding modulo exploratory noise. An ethologist, conversely, would argue that we commit to one option until its value drops below a threshold and then explore alternatives. Because the fields use incompatible methods, it remains unclear which view better describes human decision-making. Here, we found that humans use compare-to-threshold computations in classic compare-alternative tasks. Because compare-alternative computations are central to the reinforcement-learning (RL) models typically used in the cognitive and brain sciences, we developed a novel compare-to-threshold model (“foraging”). Compared to previous RL models, the foraging model better fit participant behavior, better predicted the tendency to repeat choices, and predicted held-out participants that were almost impossible under compare-alternative models. These results suggest that humans use compare-to-threshold computations in sequential decision-making.

Keywords: foraging theory, reinforcement learning, decision-making, human behavior

1 Introduction

2 Because the world is only imperfectly observable and changes frequently, many of the
3 decisions we make are uncertain. How do we make good decisions in the presence of
4 this uncertainty? The conventional view in the cognitive and brain sciences is that
5 we (1) estimate the subjective utility or “value” of each option being considered and
6 then (2) compare alternative option values to make the best possible decision [1–5].
7 This “compare-alternatives” perspective is ubiquitous in psychology and neuroscience.
8 For example, nearly all **Reinforcement Learning** (RL) models, from the earliest
9 Rescorla-Wagner model [1] to more modern models like Q-Learning and SARSA [6, 7],
10 assume that the value of choosing each alternative option are compared in some way
11 in order to select the best action [1, 4, 6]. These models, as well as the compare-
12 alternatives perspective more broadly, shape the way that tasks are designed in these
13 fields. For example, because we assume that values must be compared against each
14 other, laboratory tasks using cued rewards often present all options simultaneously
15 [8–11]. Similarly, because the reward prediction error in RL models functions to track
16 changing mean values, reward contingencies in reward learning tasks tend to both
17 increase and decrease over time [12–15]—in contrast decay of exploited resources often
18 seen in natural environments.

19 While the compare-alternatives view is widely influential, it is not universally
20 accepted. In ethology, for example, **foraging** models instead assume that we (1) cal-
21 culate the value of one exploited option and (2) compare this one value against a
22 threshold to decide whether to continue exploiting or try something new [16, 17].
23 The foraging view grew out of natural environments, where the value of an exploited
24 resource will tend to decay over time and options are encountered sequentially, rather
25 than in parallel. As a result, although foraging models have begun seeing some use
26 among human cognitive scientists [18–23], these studies develop tasks that mirror the
27 assumptions at the heart of the foraging perspective: they introduce reward contin-
28 gencies that decay at a predictable rate (rather than changing unpredictably) and/or
29 options that are encountered in sequence (rather than being presented simultane-
30 ously) [18–23]. In short, the compare-alternatives and compare-to-threshold views of
31 sequential decision-making use incomparable formalisms to make sense of behavior in
32 incompatible environments. As a result, we do not know which view best describes
33 human decision-making in standard laboratory tasks.

34 Here, we asked whether human decision-making was better described as a compare-
35 to-threshold process or as a compare-alternatives process in a classic testbed of
36 decision-making under uncertainty from the reinforcement learning (RL) literature: a
37 restless k-armed bandit task. We found that human behavior more closely resembled
38 compare-to-threshold computations than compare-alternatives computations. This
39 insight is difficult to reconcile with traditional RL algorithms from psychology and
40 neuroscience, which model action selection with the critical assumption of compare-
41 alternatives computations. Therefore, we developed a novel compare-to-threshold
42 sequential decision-making model that is inspired by foraging theory rather than
43 the compare-alternatives approach at the heart of RL. Across 3 independent exper-
44 iments, we compared this new foraging model with various variations on traditional

45 compare-alternatives RL models [4]. We found that the foraging model was a bet-
46 ter fit for the participants' decisions, outperformed multiple variations on traditional
47 RL models, and better predicted the participants' tendency to repeat choices on both
48 individual and group level. Together, these findings suggest that humans use compare-
49 to-threshold computations—even in tasks that are commonly used as testbeds for
50 compare-alternatives computations.

51 **Results**

52 **Participants performed above chance and used complex 53 strategies**

54 In Experiment 1, participants on the Amazon mTurk platform (258 people, 120 female,
55 2 other or non-reporting) performed a classic sequential decision-making task known
56 as a restless k-armed bandit (Figure 1A; [6, 12, 14, 15, 24, 25]). The participants
57 were asked to repeatedly choose between k options, each of which was associated with
58 some probability of reward. Reward probabilities changed unpredictably over time
59 and independently across options (Figure 1B). The reward structure was not cued
60 to the participants so the only way to infer the value of an option was to sample it.
61 Because rewards evolved over time, the longer the participants went without sam-
62 pling an option, the more uncertain its payoff became. This task naturally encourages
63 decision-makers to alternate between exploiting valuable options and exploring uncer-
64 tain alternatives because the latter could become better at any time. It is a classic
65 in the RL literature and has become a testbed for evaluating RL models in both
66 psychology and artificial intelligence (AI) [14, 26, 27].

67 Participants were generally good at the task (Figure 1C) , despite its uncertainty.
68 They chose the objectively best option 76.6% of the time (+/- 11.5% STD; Figure 1D)
69 and received rewards 19.2 % more frequently than would be expected by chance (+/-
70 15.3 % STD; Figure 1E). (Note that 4/258 participants [1.6%] were excluded from
71 this and further analyses because they chose only one option.) Participants were more
72 likely to repeat choices than to switch (switching on only 19.9% of trials, +/- 14.5%
73 STD). They were also more likely to repeat after reward (win-stay = 93.3%, +/- 11.1%
74 STD) and switch after no-reward (lose-shift = 39.2%, +/- 21.0% STD). However, no
75 participants followed a deterministic win-stay-lose-shift rule (all participants either
76 win-shifted or lose-stayed at least 5% of the time).

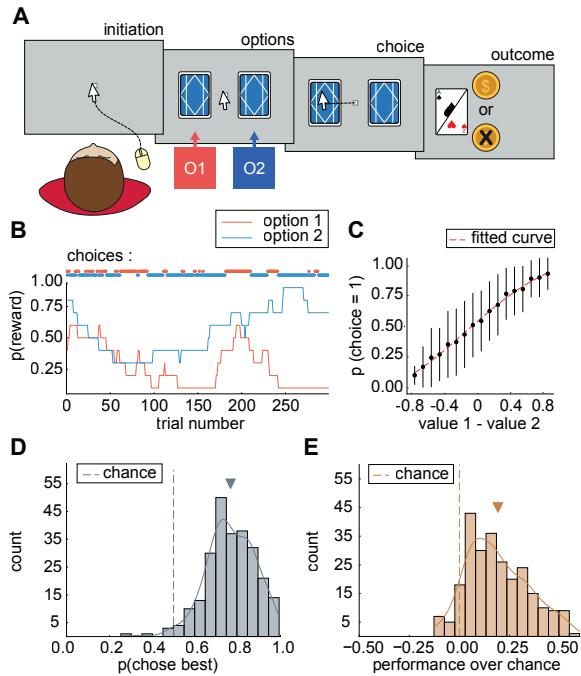


Fig. 1: Task and baseline behavior. **A)** Participants ($n=258$) chose between 2 face-down decks of playing cards that were composed of aces and 2's. Participants were told that the proportion of aces and 2's in each deck would change over time and that decks could be good, bad, or mediocre right now, but would not stay that way the whole time. Participants got a point (and \$0.02) for each ace they found, but no points for 2's. **B)** The reward probability of each option (red trace = option 1; blue trace = option 2) from an example reward schedule, with participant choices along the top (red dots = option 1; blue dots = option 2). **C)** Average probability of choosing option 1 as a function of the difference in the objective reward probability ("value") between option 1 and 2. Error bars = standard error of the mean (SEM) across participants. **D)** Distribution of the number of trials in which each participant chose the objectively best option. Dotted line = chance, caret = mean across participants. **E)** Same as **D**, for the percent of trials in which participants were rewarded, normalized such that units represent percent of chance performance (caret = mean).

77 **Human behavior better resembles the fingerprint of**
78 **compare-to-threshold decisions**

79 Although both compare-alternatives and compare-to-threshold views of sequential
80 decision-making come from different fields, they describe the same behavior: exploiting
81 high-value options when those are available, but also occasionally switching to alterna-
82 tives that could be better. Where the compare-alternatives and compare-to-threshold
83 views differ is in how the decision to switch between options is made. As a result of
84 these differences, compare-alternatives and compare-to-threshold views predict that
85 switching will be most frequent in different kinds of environments (Figure 2A-C).

86 The compare-alternatives view predicts that people should switch options more
87 often when it is most difficult to discern which option is the best. Because switch-
88 ing occurs most frequently when option values are close together, people should
89 switch more frequently in **ambiguous** environments versus *discriminable* environ-
90 ments (Figure 2B-*top*). The compare-to-threshold view, conversely, predicts that
91 people should switch more whenever an exploited option falls below a threshold.
92 Because the value of an option is more likely to fall below threshold when all option
93 values are low, people should switch more frequently in **poor** environments (versus
94 *rich* environments) (Figure 2C-*bottom*). (*N.B.* We assume that the threshold is learned
95 over long time scales such that it is essentially fixed within any given experiment [17],
96 rather than adapting at a rate that would cause it to start approximating compare-
97 alternatives [21].) In short, switching should depend on very different aspects of
98 the environment in compare-to-threshold decision-making versus compare-alternatives
99 decision-making.

100 If we could dissociate richness from discriminability, we could identify whether
101 people were using compare-to-threshold or compare-alternative computations simply
102 by looking at which one influences switching behavior. This is because richness would
103 not affect switching in compare-alternatives decisions and discriminability would not
104 affect switching in compare-to-threshold decisions. However, when rewards are prob-
105 abilistic, these variables are not orthogonal (Figure 2A). The environment can only
106 be very poor (reward probability of all options close to 0) or very rich (all reward
107 probabilities close to 1) when discriminability is low. This means that compare-
108 alternatives decision-making will have a relationship with richness in this task, but
109 that relationship will be U-shaped with minimal switching at intermediate levels of
110 richness (where discriminability is highest; Figure 2B,*bottom*). This also means that
111 compare-to-threshold decision-making will have a nonlinear relationship with discrim-
112 inability. This relationship would be subtly inverted U-shaped, with maximal switching
113 at intermediate levels of discriminability (where richness is lowest; Figure 2C,*top*).
114 Thus, although compare-to-threshold decisions are not based on discriminability and
115 compare-alternatives decisions are not based on richness, the fact that rewards are
116 bounded means that each strategy should have a unique fingerprint as a function of
117 these two environmental variables (Figure 2 B-C).

118 To determine whether human decision-making more closely resembled the predic-
119 tions of the compare-alternatives or compare-to-threshold hypotheses, we therefore
120 asked whether humans resembled the compare-alternatives or compare-to-threshold

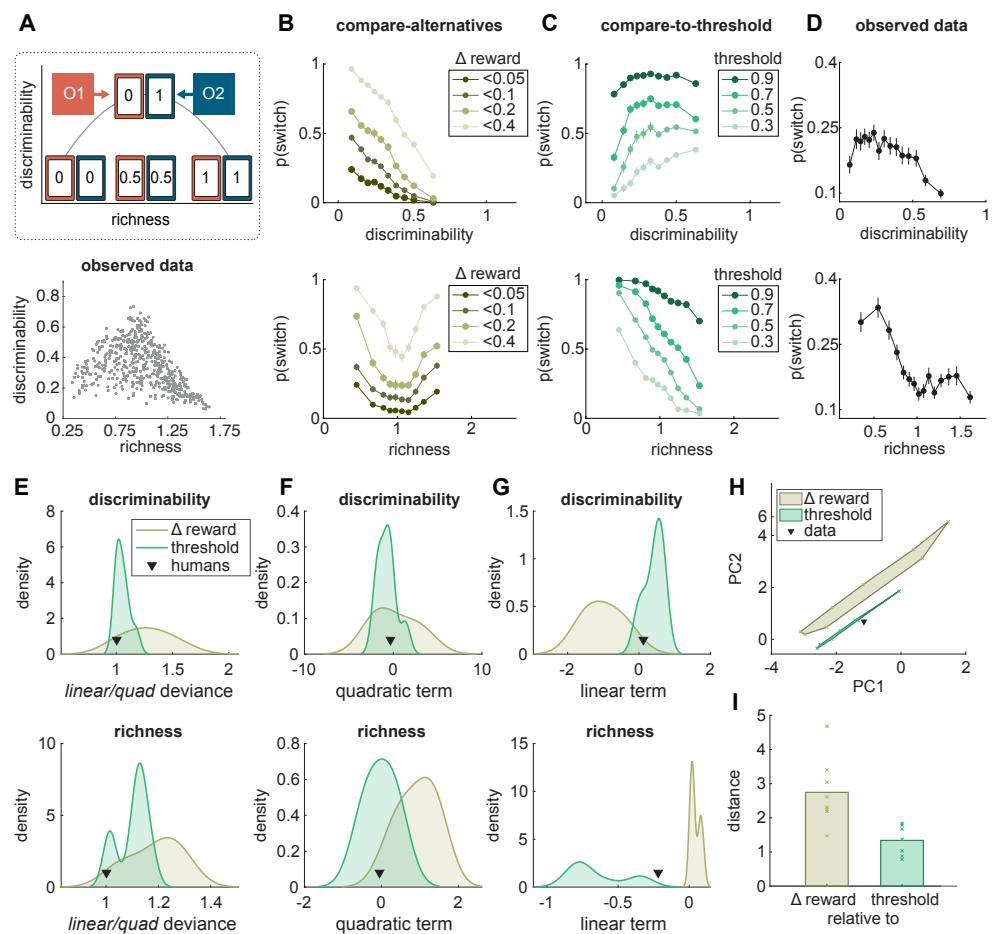


Fig. 2: Compare-to-threshold and compare-alternatives decisions have dissociable signatures in rich and discriminable environments. **A)** *top*: Cartoon illustrating the non-linear relationship between reward discriminability (*i.e.*, how different the reward probability of all options are) and richness (*i.e.*, How rewarding all the options are) in a bounded environment. *bottom*: discriminability as a function of richness in Experiment 1. Each dot represents a segment of 100 trials experienced by one participant. **B)** In compare-alternatives decisions, switching behavior is maximal when the absolute difference in reward probability (Δ reward) is low [24]. If we take the difference in rewards as a proxy for the probability of switch, then the compare-alternatives hypothesis makes different predictions for how switching should change as a function of reward discriminability (*top*) and richness (*bottom*). Shaded of gold illustrate different hypothetical “thresholds” for switching meaning that if the difference in reward probabilities between all options (Δ reward) is below these hypothetical threshold the decision is to switch options. **C)** In compare-to-threshold decisions, switching behavior is maximal when the sum of rewards is low. Here, each option’s value is individually compared to a preset threshold. If the average of these below-threshold comparison serves as a proxy for switching then the compare-to-threshold hypothesis makes different predictions for how switching should change as a function of reward discriminability (*top*) and richness (*bottom*). Shaded of green illustrate different hypothetical “thresholds” for switching meaning that if the option’s reward probability is below these hypothetical threshold the decision is to switch options. **D)** Probability of switch of all participants in Experiment 1 as a function of different levels of reward discriminability (*top*) and richness (*bottom*) of the environment (errorbar = SEM). **E)** Distribution of deviance ratio between linear and quadratic model fits to compare-alternatives (gold) and compare-to-threshold (green) proxies (Figure 2B-C) as a function of reward discriminability (*top*) and richness (*bottom*) of the environment (black caret = humans). **F)** Distribution of the quadratic term (*i.e.*, curvature) of the quadratic model fit to compare-alternatives (gold) and compare-to-threshold (green) proxies (Figure 2B-C) as a function of reward discriminability (*top*) and richness (*bottom*) of the environment (black caret = humans). **G)** Distribution of the linear term (*i.e.*, slope) of the linear model fit to compare-alternatives (gold) and compare-to-threshold (green) proxies (Figure 2B-C) as a function of reward discriminability (*top*) and richness (*bottom*) (black caret = humans). **H)** Principle components (PC) projection of the multidimensional features of the compare-alternatives (gold) and compare-to-threshold (green) proxies (see Methods). Bounds encompass all simulations. x’s = individual simulations, black caret = humans. **I)** Distance between humans and every compare-alternatives (gold) and compare-to-threshold (green) proxy in the multidimensional space. Bars = mean distance, x’s = individual simulations.

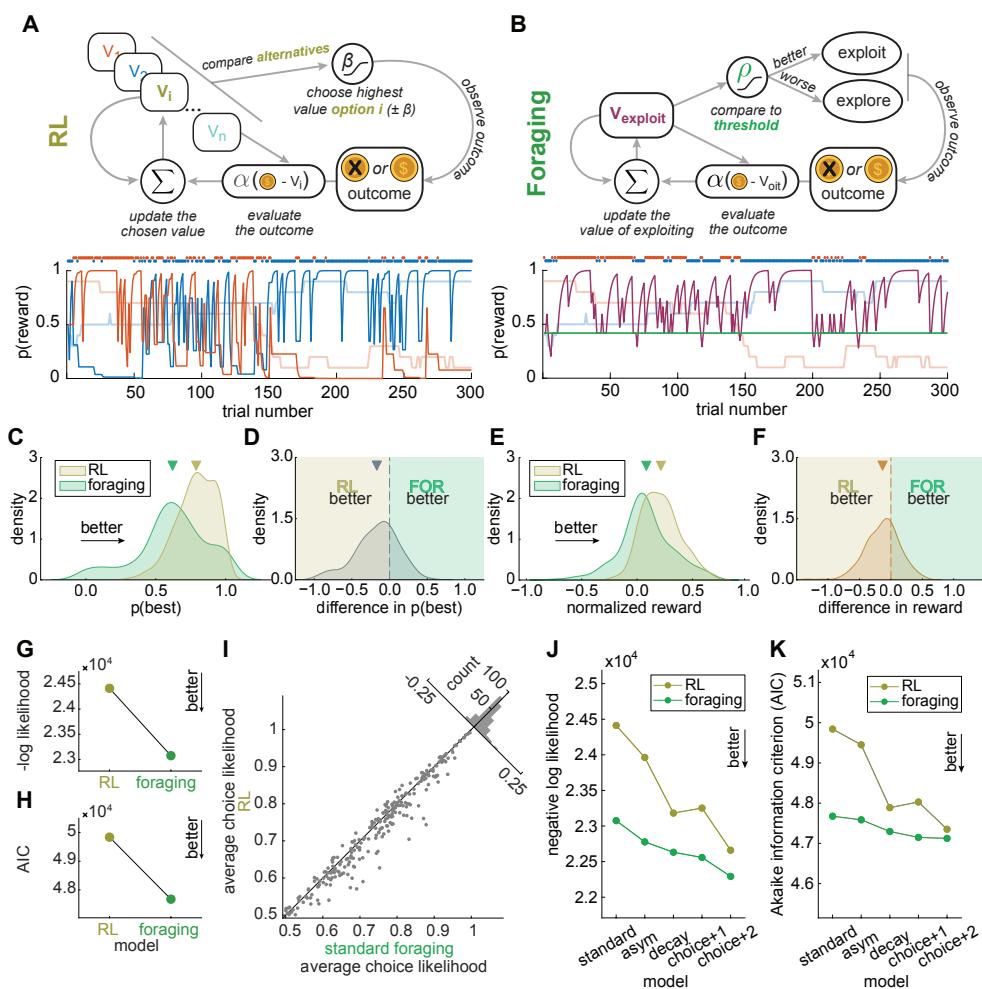
121 fingerprints. We found that the participants switched options the most at intermediate, rather than low levels of discriminability (Figure 2D,*top*), consistent with 122 compare-to-threshold computations. The participants were also less likely to switch 123 in rich environments, compared to poor ones (Figure 2D,*bottom*), again consistent 124 with compare-to-threshold computations. To quantify the relationship between participants' 125 switching behavior and the respective fingerprints of the compare-alternatives 126 and compare-to-threshold views, we simulated data at every possible threshold for 127 compare-to-threshold decision-making and at every possible Δ reward for compare- 128 alternatives decision-making. We then used generalized linear models (GLMs) to 129 characterize the slope and curvature of these relationships for each hypothesis (Figure 130 2E-I; see Methods). Human switching was sensitive to discriminability and richness 131 in a way that better resembled compare-to-threshold decision making, both in terms 132 of every individual feature (2E-G) and in a multivariate feature space that simultaneously 133 considered all features (2H-I; average distance to compare-alternative proxies 134 = 2.75 +/- 0.97 STD; to compare-to-threshold proxies = 1.34 +/- 0.44 STD; $t(13)$ 135 = 3.51, $p < 0.005$; see Methods). In sum, while the human data was not a perfect 136 match for either fingerprint, it better resembled the fingerprint of compare-to-threshold 137 decision-making than the fingerprint of compare-alternatives decision-making. 138

139 **Compare-alternatives agents outperformed 140 compare-to-threshold agents on the task**

141 Although the k-armed bandit is a classic testbed for compare-alternatives models like 142 traditional RL models [4, 6, 14, 28], it was nonetheless possible that some aspect of 143 the task design encouraged the participants to use compare-to-threshold computations 144 here. To determine if this was the case, we next developed a sequential decision-making 145 agent based on compare-to-threshold computations and compared its performance on 146 the task against a traditional compare-alternatives RL agent (Rescorla-Wagner; [6, 7]). 147

148 A traditional RL agent estimates the value of choosing each individual option 149 (V_1, \dots, V_n ; Figure 3A) and compares values across the option set (*compare-* 150 *alternatives*; Figure 3A) to select the best possible action. Our novel foraging agent 151 updates the value of the selected action via the same delta-rule computations used in a 152 traditional RL agent, but differs in what the action represents. Specifically, the foraging 153 agent only estimates the value of staying with the currently exploited option (V_{exploit} ; 154 Figure 2B). It then compares this value against a fixed threshold to decide whether to 155 continue exploiting or else to explore the alternatives at random (*compare-to-threshold*; 156 Figure 3B).

157 Simulating both agents in the same reward schedules experienced by our participants 158 revealed that the environment did not advantage foraging over RL; in fact, RL 159 agents outperformed foraging agents, regardless of whether performance was defined 160 as the probability of choosing the objectively best option (Wilcoxon signed rank test 161 : $p < 0.01$; Figure 3C/D) or as the probability of reward (Wilcoxon signed rank test 162 : $p < 0.01$; Figure 3 E/F). In short, the task did not encourage compare-to-threshold 163 decision-making and, in fact, the participants would have had to sacrifice reward to 164 adopt this strategy over a compare-alternatives strategy.



164 **Foraging models better predict participant decisions**

165 To determine how the participants solved the task, we fit computational models (see
166 Methods). We first compared a simple 2-parameter Reinforcement learning model
167 (“standard RL”; Rescorla-Wagner; [1, 6]) with a simple 3-parameter formulation of
168 the foraging model (“standard F”). We found that the standard foraging model was a
169 better fit to participant behavior than the standard RL model (Figure 3G-H; standard
170 F: log-likelihood = -23,206, AIC = 47,936, 3 parameters by 254 participants = 762
171 parameters; standard RL: log-likelihood = -24,878, AIC = 50,771, relative AIC weight
172 $< 1.8 * 10^{-32}$, 2 x 254 participants = 508 parameters; 76,200 total trials). The foraging
173 model also outperformed the RL model on an individual basis: it was a better fit in
174 64.2% of individual participants (163/254; Figure 3I; standard F: median individual
175 log-likelihood = 82.36, 95%CI = 9.40 to 201.06, standard RL: median = 86.72, 95% CI
176 = 9.56 to 199.66; significant paired t-test: $p < 0.0001$, $t(253) = 6.79$, mean difference =
177 5.27, 95% CI = 3.74 to 6.79). This suggests that a foraging-like compare-to-threshold
178 mechanism may better describe the participants’ choices in this task.

179 There are a variety of extensions to the RL model that outperform the standard 2-
180 parameter formulation and it remained unclear whether any of these would fit behavior
181 better than foraging. Therefore, we next compared the foraging model with 4 com-
182 mon extensions of the RL model (2 forms of choice history dependence, asymmetrical
183 learning, and value decay, see Methods). We found that every extended RL model per-
184 formed substantially better than the standard RL model in model comparison (Figure
185 3J-K). However, the foraging model continued to outperform: it was a better fit than
186 RL models that incorporated asymmetrical learning from wins and losses (“asymmet-
187 rical RL” [24, 29, 30]; log-likelihood = -23,963, AIC = 49,450, AIC weight relative
188 to foraging model $< 10^{-32}$, 762 parameters), decay in the value of unchosen options
189 (“decaying RL”; [15, 31]; log-likelihood = -23,181, AIC = 47,887, relative AIC weight
190 $< 10^{-32}$, 762 parameters), and a simple form of choice-history dependence with 1
191 added parameter (“history-kernel 1 RL”; [4]; log-likelihood = -23,252, AIC = 48,028,
192 AIC weight relative to foraging model $< 10^{-32}$, 762 parameters). The only extended
193 RL model that outperformed the simple foraging model was a 2-parameter choice-
194 history dependent model (“history-kernel 2 RL”; [4]; log-likelihood = -22,660, AIC =
195 47,351, relative weight of the foraging model $< 10^{-32}$). Thus, the simplest foraging
196 model was a better explanation for behavior than all but the most complex of RL
197 models.

198 The various extensions of the RL models were developed over a period of decades
199 to improve model fit and it remained ambiguous whether the 1 RL (*i.e.*, 2-parameter
200 choice-history dependent RL) model that did better than the foraging model did
201 so because it was a compare-alternatives model or because it incorporated history
202 dependence. Therefore, we next developed an equivalent version of the foraging model
203 for each extensions of the RL model and compared the two model classes (see Methods;
204 Figure 3J-K). Each extended foraging model outperformed the equivalent RL model.
205 This was true for a foraging model that permitted asymmetrical learning between wins
206 and losses (“asymmetrical foraging”: log-likelihood = -22,777, AIC = 47,585, AIC
207 weight relative to asymmetrical RL $< 10^{-32}$, 4 x 254 = 1016 parameters), for a foraging

208 model where the threshold decayed with repeated choices (“decaying foraging”: log-
209 likelihood = -22,632, AIC = 47,295, AIC weight relative to decaying RL $< 10^{-32}$,
210 1016 parameters), and for the 1-parameter history-dependent model (“history-kernel
211 1 foraging”: log-likelihood = -22,558, AIC = 47, 148, AIC weight relative to choice-
212 kernel RL 1 $< 10^{-32}$, 1016 parameters). Ultimately, the best model overall was the
213 history-dependent foraging model, which outperformed the best RL model (“history-
214 kernel 2 foraging”: log-likelihood = -22,292, AIC = 47,125, AIC weight relative to
215 choice-kernel RL 2 $< 10^{-32}$, 1270 parameters; relative AIC weights of all competing
216 models $< 10^{-32}$). This foraging model also outperformed the best RL model on an
217 individual basis: it did at least as well or better in nearly every individual participant
218 than the best RL model (foraging model: median individual log-likelihood = 79.32,
219 95% CI = 8.92 to 197.18, RL model: median = 80.43, 95% CI = 8.72 to 195.31;
220 significant paired t-test: $p < 0.05$, $t(253) = 1.98$, mean difference = 1.45, 95% CI =
221 0.01 to 2.89). In short, as a class, the foraging models consistently provided a better
222 fit to the participants’ decisions.

223 It remained possible that the foraging model outperformed the RL model solely
224 because it was a better fit for participants who did not fully understand or engaged
225 with the task. However, there was no systematic relationship between how foraging-like
226 an individual participant was and how well they did in the task. Individual differences
227 in the “foraging index” (see Methods) were not correlated with the probability that
228 the participant would choose the best option ($R = -0.01, p = 0.84$) nor were they
229 correlated with above-chance reward probability ($R = 0.03, p = 0.64$). In sum, the
230 participants who were most likely to be using foraging computations did not have
231 either an advantage or a disadvantage in this task. Considering that foraging agents
232 significantly underperformed RL agents (Figure 3C-F), this null result suggests that
233 our most foraging-like participants were just as engaged in the task, if not moreso,
234 than other participants.

235 **Foraging better explained the participants’ tendency to repeat**

236 We next asked why the foraging model was a better fit to behavior: what aspects of
237 behavior did it describe that the RL model was unable to account for? We previously
238 found that choices are considerably more repetitive than what can be explained with
239 standard RL models, at least in humans and other primates [15, 32]. This may explain
240 why most common extensions of the RL model tend to make the model more repet-
241 itive. This is most obvious in the case of the choice history kernel models: the added
242 parameters increase the probability of repeating the previous choice. In the decay
243 model, similarly, repetition increases as the value of the alternative decays towards
244 zero. Even in the asymmetrical learning models, learning more from wins than losses
245 tends to stabilize choices and increase repetition [33, 34]. Therefore, we next asked if
246 the foraging model was a better fit to behavior because it also better captured the
247 repetitiveness of the participants’ choices.

248 We simulated data from RL and foraging agents that were matched to the par-
249 ticipants’ environment and parameters (see Methods). We then compared the level of
250 repetitiveness in these simulated datasets with the participants’. In the participants,
251 the average run length (length of same-choice sequences: 4.31 trials) was close to our

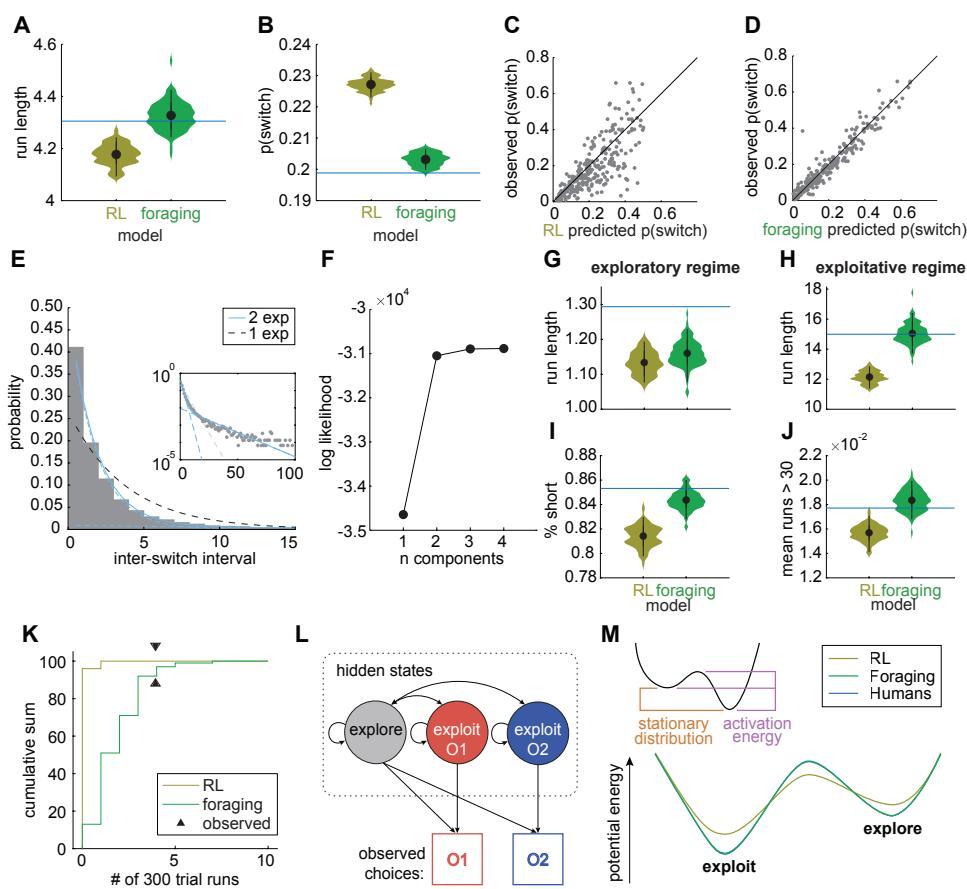


Fig. 4: Foraging and RL predict different choice dynamics. **A)** Average number of trials between switch decisions (*i.e.*, run length) of RL (gold) and foraging (green) agents in simulated Experiment 1 (blue line = average for Experiment 1 participants). **B)** Probability of switch. Same convention as in A. **C)** Human observed probability of switch as a function of RL predicted probability of switch. **D)** Human observed probability of switch as a function of foraging predicted probability of switch. **E)** Distribution of choice run lengths of humans in Experiment 1. If the probability of switching was fixed, run lengths would be exponentially distributed (black dotted line). A mixture of two exponential distributions (blue line) suggests 2 distinct probabilities of switching. Dotted blue lines show each mixing distribution, one slow-switching (*i.e.*, exploitative regime) and another fast-switching (*i.e.*, exploratory regime). *Insert:* Same data presented on a logarithmic scale. **F)** Log-likelihoods for different mixture models containing a range of 1 to 4 exponential distributions. **G)** Average run length in the exploratory regime. **H)** Average run length in the exploitative regime. **I)** Proportion of exploratory regimes. **J)** Proportion of very long exploitative regimes exceeding 30 consecutive trials. **K)** Four participants were held out of all analyses because they chose the same option 300 trials in a row. To determine the expected number of these no-switch participants under each model, 100 datasets were generated from the distribution of fitted parameters (each with 254 simulated participants). Here, we plot the cumulative percent of simulations (y-axis) as a function of the numbers of no-switch participants (x-axis). Black caret = proportion of no-switch participants in Experiment 1. **L)** Hidden Markov model (HMM) was used to infer the underlying internal state of the participants on each trial from their sequence of choices. The model included 3 hidden states, 2 exploitative states corresponding to each option and an exploratory state which participants could choose any of the options. **M)** Overlaid state dynamic landscapes for both foraging (green), RL (gold) agents and Experiment 1 participants (blue).

252 expectation under foraging (4.33 trials, 95% CI = [4.24, 4.43]) but greater than any
253 individual run length from the RL simulations (4.18 trials, 95% CI = [4.09, 4.24];
254 $p < 0.01$; Figure 4A). This was related to the fact that the foraging model was more
255 accurate in predicting how often the participants would switch (i.e., the inverse of the
256 choice run lengths; Figure 4B-D; foraging, mean sum of squared errors [MSSE] = 0.72,
257 95% CI across simulations = [0.53, 0.94], RL, MSSE = 2.78 (95% CI = [2.54, 3.01];
258 significantly greater in RL; 2-sided paired t-test: $p < 0.0001$, $t(1,253) = 6.46$). The
259 average probability of switching under the RL model was 22.7% (95% CI = [22.3%,
260 23.1%]) and under the foraging model it was 20.3% (95% CI = [20.0%, 20.7%]). The
261 participants switched 20.0% of the time, less frequently than any of the samples from
262 the RL model, but not the foraging model. In fact, the RL model systematically pre-
263 dicted that individual participants should switch more than they did (2.8% more, 95%
264 CI across individuals = [1.7%, 4.0%], $p < 0.0001$, $t(1,253) = 4.72$). The foraging model
265 did not have a significant bias towards over- or under-estimating individual partici-
266 pants (predicted 0.4% more on average, 95% CI = [-0.08% to 0.1%], $p = 0.1$, $t(253) =$
267 1.66). In short, in comparison to the RL model, the foraging model better predicted
268 the participants' tendency to switch on both the individual and group levels: it was
269 both more precise and less biased.

270 Foraging better explained persistent choice runs

271 In mice, monkeys, humans, and optimized RL models, the distribution of choice run
272 lengths in this task is composed of two switching regimes: one regime with rapid
273 switching that is likely due to exploratory trial-and-error sampling and one regime
274 with slow switching that is likely due to exploitative, persistent choices to the same
275 target [15, 24, 32]. A specific increase in the slow switching regime is what sets humans
276 and other primates apart from rodents in this task [32] and it is also one major feature
277 of human decision-making that RL models do not naturally capture [15]. Therefore,
278 we next asked whether the foraging model might better account for the slow switching
279 regime.

280 Again in this dataset, the behavior of the participants and both models were well
281 described as a mixture of 2 regimes (Figure 4E-F; see Exponential Mixture Models
282 in Methods). In the participants, the 2 regime model (log-likelihood = -31,048, 3
283 parameters, $n = 14,847$) provided a significantly better fit than 1 (log-likelihood =
284 -34,645, 1 parameter, likelihood ratio test: ratio = 7193.0, $p < 10^{-32}$) and, while
285 adding additional switching regimes continued to improve model fit (3 regimes: log-
286 likelihood = -30,893, 5 parameters; 4 regimes: log-likelihood = -30,884), improvement
287 was already saturated at 2 (Figure 4F). Two regimes were also apparent across all the
288 simulated data from the RL and foraging models (RL: $n = 1,699,789$, 1 regime log-
289 likelihood = -3,907,700, 2 regimes log likelihood = -3,527,300, 3 regimes log-likelihood
290 = -3,502,000, 4 regimes log-likelihood = -3,500,600, significant improvement from 1
291 to 2: ratio = 760,950, $p < 10^{-32}$, elbow at 2; foraging: $n = 1,517,656$, 1 regime log-
292 likelihood = -3,550,000, 2 regimes log likelihood = -3,128,100, 3 regimes log-likelihood
293 = -3,105,700, 4 regimes log-likelihood = -3,103,900, significant improvement from 1 to
294 2: ratio = 843,650, $p < 10^{-32}$, elbow at 2). In sum, both models and the participants
295 had two distinct switching regimes in this task.

296 The switching regimes in the foraging model better matched the participants than
297 those in the RL model. Both the foraging and the RL model tended to switch more
298 frequently than the humans did during their own fast-switching, exploratory regimes
299 (Figure 4G; RL = 1.13 trials, 95% CI = [1.08, 1.19]; foraging = 1.16, 95% CI =
300 [1.08, 1.23]; participants = 1.29, significantly longer than both models, $p < 0.01$). This
301 may be due to the fact that neither model accounted for the complexity of exploratory
302 decision-making, which can be information maximizing rather than random in some
303 circumstances [35–37]. Nonetheless, only the foraging model was able to replicate
304 the average long run length of the participants' slow-switching, exploitative regimes
305 (Figure 4H; RL = 12.15 trials, 95% CI = [11.38, 12.86]; foraging = 15.05, 95% CI =
306 [13.70, 16.42]; participants = 14.99, only significantly different than RL [$p < 0.01$]) and
307 their relative frequency (Figure 4J). This might explain why participants had more
308 very long choice runs than we would expect under RL (1.8% of their choice runs were
309 longer than 10% of the total number of trials [30 trials], significantly more than the
310 1.6% predicted by RL, 95% CI = [1.4%, 1.7%], $p < 0.01$) (Figure 4J). The participants'
311 long-run lengths frequency was well within the distribution under the foraging model,
312 however (1.8%, 95% = [1.7%, 2.0%]). In sum, the foraging model better accounted for
313 the participants' tendency to repeatedly persist in choosing certain options for long
314 periods of time.

315 Recall that we initially excluded 4 of our 258 participants (1.6%) because they
316 chose same option for the entire 300-trial duration of the session, despite passing
317 our initial screening criteria. Because model parameters were not identifiable in these
318 participants, they represented held-out data that did not influence the simulations in
319 any way. Therefore, we next asked how likely these participants were, given the two
320 models. In the simulated data, we found that runs of 300 identical choices were very
321 rare in RL simulations (4 of 25,400 or 0.016% of simulated sessions), in contrast to
322 foraging (178 of 25,400 or 0.7% of simulated sessions). This meant that 4 or more
323 participants who chose the same option 300 trials in a row would be expected in 10.9%
324 of experiments under foraging (Figure 4K). By contrast, under RL, we would have less
325 than a 1 in 1 million chance of observing these 4 participants. In sum, the foraging
326 model better captured the stability or repetitiveness of participants choice runs, in
327 both those that were included in the model fits and in those that were excluded.

328 **Foraging better explains the dynamics of switching and 329 exploitation**

330 Foraging was better able to explain the participants' tendency to generate long choice
331 runs. This could suggest that the foraging model was simply more stable than the
332 traditional RL model. However, the foraging model also predicted that participants
333 should have more fast-switching (*i.e.*, exploratory regime) choices than the RL model
334 did (Figure 4B/I; relative frequency of short choice runs; foraging = 84.4%, 95% CI
335 = [82.8%, 86.0%]; RL = 81.4%, 95% CI = [79.8%, 83.0%]). Again the participants
336 matched the predictions of the foraging model, but not the RL model: they had
337 many more short choice runs than the RL model had predicted (relative frequency of
338 exploitative runs = 85.3%, only significantly different than RL [$p < 0.01$]). In short, the

339 participants both switched more and switched less than the RL model suggested they
340 should, but foraging was able to capture the complexity of the switching dynamics.

341 To understand why the foraging model was better at reproducing the participants' switching dynamics, we used latent state models to interrogate the dynamics
342 of exploration and exploitation in the participants and in both models (see Methods;
343 [15, 24, 36, 37]. Briefly, this approach models exploration and exploitation as
344 the latent states underlying sequences of decisions through training hidden Markov
345 models (HMMs) on observed choice sequences (Figure 4L). Where the mixture models
346 helped characterize the switching dynamics from runs of sequential choices, the
347 HMMs were used to infer the most likely generative state underlying each individual
348 choice [15, 24, 36] and to make statistical inferences about the governing equations
349 of exploration and exploitation [24, 32, 36]. For example, the parameters of the transition
350 matrix of an HMM are estimates of the probability of transitioning between
351 specific states: that a decision-maker will continue to exploit once they have begun to
352 exploit, for example, or that they will stop exploiting one option in order to explore
353 the alternatives.

354 The foraging model better matched the participants' explore/exploit state dynamics
355 than did the RL model. Every measurement made with the HMMs was out of
356 sample for the RL model simulations, but well within sample of the foraging model.
357 For example, the participants repeated exploration 90.4% of the time, which was significantly
358 higher than the RL model simulations (87.3%, 95% CI = [86.3%, 88.4%],
359 $p < 0.01$) but close to the mean of the foraging simulations (90.3%, 95% CI = [89.8%,
360 90.9%]). Similarly, the participants repeated exploitation 93.9% of the time, which
361 was significantly higher than RL (90.9%, 95% CI = [90.5%, 91.3%], $p < 0.01$) but
362 close to the mean foraging model (93.7%, 95% CI = [93.4%, 94.1%]). The fact that
363 the transition matrix of an HMMs is a Markov chain makes it particularly analytically
364 tractable. We can often solve for the stationary distributions of these equations:
365 the long-term probability that the participants would exploit (vs. explore; see Methods).
366 Here again, we found that the participants stationary frequency of exploration
367 and exploitation (39.2% explore, 60.8% exploit) was out of sample for the RL model
368 (41.6% explore, 95% CI = [40.4%, 42.9%]; 58.4% exploit, 95% CI = [57.1%, 59.6%],
369 $p < 0.01$ in both cases), but well within sample for the foraging model (39.3% explore,
370 95% CI = [38.4%, 40.2%]; 60.7% exploit, 95% CI = [59.9%, 61.6%]). Together, these
371 results illustrate that the foraging model well described the dynamics of exploration
372 and exploitation in the participants, while the RL model was consistently off target.

373 Plotting the energetic landscape of these dynamics (see Methods; [24, 32, 36])
374 revealed the intuition behind all of these individual results: the energetic landscape of
375 exploration and exploitation was flatter in the RL model than it was in either the par-
376 ticipants or the foraging model (Figure 4M). In both the participants and the foraging
377 model, exploitation was a deeper, more stable state than exploration, but a substantive
378 energetic barrier between the two states meant that exploration and exploitation were
379 actually fairly stable states, with infrequent transitions between them. Conversely,
380 in the RL model, not only was there less of a difference in the depth of exploration
381 and exploitation, but there was less of an energy barrier between. Together, these
382 results suggest that the foraging model was a better fit for the participants because it

384 better captured the dynamics of exploration and exploitation: their tendency to alter-
 385 nate between temporally-extended periods of exploiting good options and exploring
 386 alternatives.

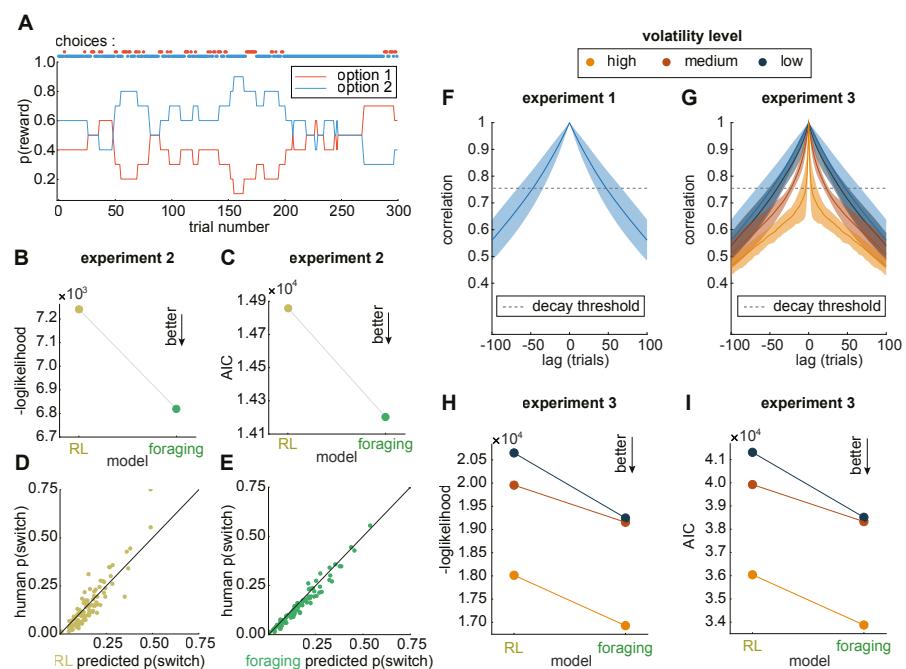


Fig. 5: Foraging and RL have different quality fit to the data across different environments. **A)** An example reward schedule from the predictable two-armed bandit task (Experiment 2), illustrating the reward probability of each option (red trace = option 1; blue trace = option 2) and the choices made by the participant who had this reward schedule (red dots = option 1; blue dots = option 2). **B)** The negative log-likelihood of the RL and foraging models fit to all data of Experiment 2. **C)** Akaike information criterion. Same convention as in **B**. **D)** Human observed probability of switch in Experiment 2 as a function of RL predicted probability of switch. **E)** Foraging predicted probability of switch. Same convention as in **D**. **F)** Reward schedules auto-correlations averaged for all participants of Experiment 1. Full line indicates the mean, shading indicates STD and dotted line indicate the decay threshold. **G)** Same convention as in **F** for 3 levels of volatilities (red line) participants of experiment 3 **H)** The negative log-likelihood of the RL and foraging models fit to all data of Experiment 3. **I)** AIC of the RL and foraging models across different volatility levels in Experiment 3. Same convention as in **G**.

387 Foraging better predicts behavior under varied uncertainty

388 It is possible that the participants did not bother comparing alternative values
 389 because the value of unchosen options was difficult to estimate in a restless bandit
 390 environment. Therefore, in Experiment 2 and 3, we bidirectionally manipulated the
 391 uncertainty of the unchosen option to try to make the participants more or less
 392 likely to prefer the RL-like, compare-alternative computations over the foraging-like
 393 compare-to-threshold.

394 In Experiment 2, participants (95 people, 41 females, 1 other or non reporting)
395 performed an more predictable version of the 2-armed bandit task where informa-
396 tion about the unchosen option was increased. In this variation, the environment was
397 structured so that the sum of reward probabilities for any given trial always totaled
398 one ('Example walk', Figure 5A). This reduces the uncertainty of the unchosen option
399 because its value could be inferred from the chosen option (it was always 1 minus the
400 value of the chosen option). In this new task, we found that foraging was also a better
401 fit to human behavior than RL (Figure 5B-C, FOR: log-likelihood = -6819, RL: log-
402 likelihood = -7241 and relative AIC weight $< 5.1 * 10^{-32}$). (Note that we were unable
403 to fit the model in 1/95 participants because that participant repeatedly selected the
404 same option 300 times ([1.1%]; a similar proportion to the number that did so in
405 Experiment 1: 4/258 [1.5%]).) To understand why foraging was a better fit, we gen-
406 erated an RL and foraging agent from each participant's parameters (see Methods)
407 and then compared the simulated agents' behaviors with the humans' choice patterns.
408 In line with Experiment 1, foraging better accounted for the participants' tendency
409 to switch between options (Figure 5D-E, RL: MSSE = 0.38, foraging: MSSE = 0.06,
410 Wilcoxon signed rank test $p < 1.5 * 10^{-7}$). Together, these results suggest that forag-
411 ing continues to be a better fit even when it is easier to infer the value of the unchosen
412 option.

413 In Experiment 3, participants (270 people, 112 females, 2 other or non reporting)
414 performed a 3-armed version of the bandit task in which information about the uncho-
415 sen option was reduced by (1) manipulating volatility and (2) increasing the number
416 of options (see Methods). Increasing the volatility of the environment increases uncer-
417 tainty about unchosen options because it increases the speed at which prior reward
418 information becomes uninformative about the current value. Moreover, prior research
419 suggest that increasing volatility tends to increase switching behaviors in humans
420 [38, 39], which could offer an advantage to RL, as a less stable and persistent algo-
421 rithm. Given that both Experiment 1 and 2 had similar low volatility (Experiment
422 1 is illustrated in Figure 5F), we increased the volatility of the environment by low,
423 medium, or high levels (Figure 5G). Regardless of the volatility of the environment,
424 foraging was a better fit (Figure 5H-I, "high volatility" FOR: log-likelihood = -16,928
425 , RL:log-likelihood=-18,013 and relative AIC weight $< 1.2 * 10^{-32}$; "medium volatil-
426 ity" FOR: log-likelihood = -19,155, RL:log-likelihood=-19,955 and relative AIC weight
427 $< 5.5 * 10^{-32}$; "low volatility" FOR: log-likelihood = -19,247 , RL:log-likelihood=-
428 20,649 and relative AIC weight $< 1.8 * 10^{-32}$). Together, these results suggest that
429 foraging better explained human behavior even in high volatility environments that
430 should have been best suited to the kind of frequent switching seen in RL models.

431 Discussion

432 Although human and animal behavior in k-armed bandits are conventionally modeled
433 as a compare-alternatives process [13–15, 24, 28], our results suggest that humans com-
434 pare the value of staying with the currently exploited option against a fixed threshold
435 rather than comparing the values of choosing alternative options directly. We leveraged

436 this finding to build a novel compare-to-threshold RL model (“foraging”) and com-
437 pare it to a traditional compare-alternatives RL models [1, 4, 6]. The foraging model
438 and its various extensions were a better fit to participants’ behavior compared to the
439 compare-alternatives RL models [1, 4, 6] even when comparing alternatives would have
440 been the more advantageous strategy. The foraging model fits were consistently bet-
441 ter than traditional RL models across 2 variations of the task that manipulated the
442 uncertainty of the unchosen option. Across environments, the foraging models consis-
443 tently better matched participants’ tendency to switch options, both on average and
444 on an individual basis. The foraging models were even able to predict the existence of
445 multiple participants who never switched at all: participants that essentially should
446 not have existed under compare-alternatives RL.

447 The difference between the foraging and traditional RL models is not solely that
448 the latter uses compare-alternatives computations and the format uses compare-to-
449 threshold. Another critical difference is in the models’ action-value space. In the
450 traditional RL model, values represent the subjective utility of each primitive action
451 (choosing option 1 or 2). By contrast, the foraging model does not represent the value
452 of primitive actions, but instead of temporally extended actions (*i.e.*, of exploiting
453 the left option, rather than choosing the left option). In this way, the foraging model
454 resonates with recent work on hierarchical reinforcement learning that suggests that
455 people do make choices at the level of policies rather than primitive actions [40–46].
456 Higher level policies, macro actions and options [40] have been studied for over two
457 decades in the RL literature and are a candidate strategy for achieving better general-
458 ization and transfer of knowledge in artificial agents [40, 43]. This distinction between
459 models could make the foraging model better able to scale outside of laboratory tasks,
460 where the number of options available is generally much larger than the small finite
461 sets we present in the lab. Where the computations and representations in traditional
462 RL models become more costly in high-dimensional or continuous decision spaces, the
463 computations and representations in the foraging model can remain comparatively
464 efficient. Compare-to-threshold computations may thus be favored by humans because
465 they better align with the brain’s biological constraints and because they are better
466 equipped to scale to natural environments. Together, these considerations suggest that
467 foraging is a better explanatory model both because decisions are more like compare-
468 to-threshold than compare-alternatives, but also because decisions are made at the
469 level of temporally extended policies, rather than primitive actions.

470 The foraging model we introduce here draws both its inspiration and its limita-
471 tions from the foraging literature and could be expanded on in the future in ways that
472 could have implications across fields. The model assumes the existence of only two
473 macro actions—explore and exploit—and defines a specific low-level policy and termi-
474 nation for each of them. Based on the foraging literature, we assumed that switching
475 from exploit to explore causes instant forgetting of exploited values (*i.e.* the patch
476 is left behind), that explore actions select targets randomly (*i.e.* that we travel until
477 we encounter some new opportunity at random), and that exploit action-values are
478 compared to a fixed threshold (*i.e.* one that is learned very slowly across long-term
479 experience in an environment). On one hand, drawing these assumptions from the

480 ethological literature is a powerful way to create new computational models and con-
481 strain the space of useful macro policies. On the other hand, each of these assumptions
482 is also an opportunity for future research that could improve on the simple foraging
483 algorithm presented here. For example, the foraging model failed to account for the
484 rapid speed of switching during the exploratory regime (Figure 4G). This might suggest
485 that refining the exploratory policy in this model could substantially improve both
486 model fit and agent performance. One promising approach would be to incorporate
487 directed forms of exploration (like self-avoiding search [37]) or intrinsic motivations
488 (like entropy maximizing policies [47]). Developing more sophisticated exploratory
489 strategies is likely necessary for translating the simple foraging algorithm we present
490 here into something that could be useful in AI. In that sense, our work could represent
491 a bridge between observations in animal behavior and major challenges in AI, includ-
492 ing the problem of identifying useful macro action spaces. In short, developing new,
493 biologically-inspired models of human decision-making could have broader impacts:
494 not only for understanding the human mind, but also for generating powerful new
495 tools in AI.

496 The observation that foraging models are a better fit to human behavior may
497 superficially appear to contradict the large body of evidence for RL-like computations
498 in the neuroscience literature. However, the neural evidence for reinforcement learning
499 computations in the brain is strongest when we consider signals related to *reward*
500 *prediction errors* and *value functions*—both of which also exist in our novel foraging
501 model. Both models calculate reward prediction errors: this is how they learn their
502 respective value functions from their environments. Further, although neural activity
503 often correlates with action value (a signal thought to play a role in specifying primi-
504 tive actions; [48]), RL primitive action-values are likely to be highly collinear with the
505 macro action-values calculated by the foraging model. Because no direct comparison
506 between these two value signals has been performed, it is thus not entirely clear that
507 evidence for the former would be evidence against the latter. We would note that it is
508 always important to be cautious in interpreting correlations between value and neural
509 activity because (1) time series data are prone to spurious correlations, (2) puta-
510 tive neural correlates of value could be caused by other mechanisms, like mnemonic
511 errors [49], and (3) neural activity have a complex, nonlinear relationship with value
512 even when value is explicitly cued [50], which calls into question the interpretabil-
513 ity of linear correlations here. Further, there exist some neural observations—such
514 as nonlinearities in neural activity around shifts between exploration and exploita-
515 tion [15, 25, 51–53]—that are difficult to reconcile with traditional RL models. In the
516 foraging model, by contrast, instant forgetting at the onset of exploration causes an
517 obvious nonlinearity. It will be important, in the future, to determine whether these
518 assumptions of the foraging model are either validated or refuted by neural observations
519 [15, 25]. Ultimately, neuroscience research will hold the key to determining whether
520 the computations humans perform are truly more consistent with compare-alternative
521 or compare-to-threshold accounts.

522 Ultimately, this paper reinforces and extends a body of recent observations that
523 humans, like many other animals, can use foraging computations to make sequen-
524 tial decisions [19–21]. However, where previous studies of foraging computations in

525 psychology and neuroscience used foraging-specific tasks—tasks that are explicitly
526 designed to encourage foraging strategies or computations [18–23, 54, 55]—the present
527 study did the opposite. Through developing a new foraging model that is capable
528 of navigating dynamic, unpredictable environments, we determined that humans also
529 use foraging computations even in tasks that were originally designed as testbeds for
530 compare-alternatives RL algorithms.

531 Methods

532 Data Collection

533 **Ethics Approval.** All experiments procedures were in line with the standards set
534 by the Declaration of Helsinki and were approved by the relevant ethical review
535 boards (Experiment 1 and 2: the guidelines of the Comité d’Éthique de la Recherche
536 en Sciences et Santé (CERSES) of the University of Montreal [Project #2021-
537 1090], Experiment 3: Institutional Review Board of the University of Minnesota
538 [STUDY00008486]).

539 **Participants.** Participants were recruited via the online platform, Amazon
540 Mechanical (mTurk). To avoid bots and facilitate better data quality, participants were
541 only accepted when they had a minimum of 5000 approved human intelligence tasks
542 (HIT) and a minimal percentage of 98% in proportions of completed tasks that are
543 approved by requesters. Geographical restrictions were set for US participants only.
544 To help ensure that participants understood the task, there was an initial 25 trial
545 block with fixed but randomly assigned reward probabilities (20%, 30% and 70%). To
546 continue to the main task, participants were required to (1) switch between options at
547 least twice, and (2) get reward more than 42% of the time during the practice block.
548 The criteria and number of trials was chosen to ensure that people choosing at ran-
549 dom would rarely pass through to the main task. Participants were not allowed to
550 repeat the experiment. All participants who successfully submitted the HIT, either
551 the practice block or the full experiment, were paid a base rate of \$0.50, plus a bonus
552 of \$3.61 mean \pm \$0.97 SD based on their performance (for each trial that ended with
553 a reward, participants were given a \$0.02 compensation). Participants provided writ-
554 ten informed consent after the experimental procedure had been fully explained and
555 were reminded of their right to withdraw at any time during the study.

556 For Experiment 1 (two-armed bandit task), a total of 258 participants (120 females,
557 137 males, 1 preferred not to say) completed the task. This dataset has been analyzed
558 previously in a comparison of switching behavior between mice, monkeys, and humans
559 [32], but all analyses presented here are new. For experiment 2 (predictable two-
560 armed task), a total of 95 participants (41 females, 51 males) completed the task. For
561 experiment 3 (three-armed bandit task), a total of 270 participants (112 females, 156
562 males, 2 prefer not say) completed the task.

563 **Experiment 1: Two-armed restless bandit task.** To investigated how humans
564 solved a restless bandit task, participants were required to repeatedly choose one of
565 two options. Each option was associated with a probability of reward, which changed
566 across trials and independently across options. The experiment consisted of 25 practice
567 trials followed by 300 trials. To avoid environmental biases, each participant’s reward

568 schedule was randomly initialized. At any given step, the reward probability of each
569 option could subsequently vary by a 0.1 increment with a hazard rate of 0.1, following
570 a Bernoulli distribution.

571 **Experiment 2: Predictable 2-armed bandit task.** To understand how
572 decreased uncertainty in unchosen option influences behavior, participants performed
573 a modified version of the two-armed restless bandit task. Although both tasks are simi-
574 lar, they differ in how rewards are allocated to each of the two options. Specifically,
575 in this task, the reward probabilities associated with each option varied inversely with
576 respect to one another and across time.

577 **Experiment 3: Volatile 3-armed bandit task.** To explore how increased uncer-
578 tainty in unchosen options influences behavior, participants performed a three-armed
579 restless bandit task under various manipulations of volatility of the environment. This
580 task differed from the two-armed restless bandit in two keys aspects. First, an addi-
581 tional option was introduced. This is common practice in the field, and previous studies
582 show that increasing the number of options (up to 4) has no significant effect on the
583 probabilities of switching and exploring [32]. Second, the change in reward probabili-
584 ties was variable (probability of step = 1 or 0.1), with a different increment size for
585 each participant (ranging from 0.05 to 0.667).

586 Since there were 2 manipulations in this task (i.e., probability of step and step
587 size), volatility was assessed by looking at the auto-correlation of the reward schedule
588 experienced by each participant. We estimated the rate of decay of the auto-correlation
589 by measuring when it decayed to 0.75 of its initial value. We used this measurement
590 as an arbitrary volatility index for each participant. We then divided the volatilities
591 into 3 levels (high, medium, low).

592 Data Analysis

593 General Analysis Methods

594 Data was analyzed with custom software written in MATLAB and Python. Statisti-
595 cal tests were two-sided unless otherwise specified. Significance was compared against
596 the standard alpha = 0.05 threshold throughout. Correlations are Pearson correlation
597 unless otherwise indicated. A small number of participants (Experiment 1: 4/258 par-
598 ticipants, 1.6% ; Experiment 2: 1/95, 0.95%) were excluded from some model-based
599 analyses because they chose only one option in the main task, which made the model
600 parameters unidentifiable. However, these participants were included in other analyses
601 wherever it was possible to do so.

602 Strategy Fingerprints

603 Compare-alternatives and compare-to-threshold decision-making depend on different
604 aspects of the environment. Here, we characterized the fingerprints of each strategy
605 as a function of two features of the environment: richness (the sum of the values) and
606 discriminability (the range of the values, normalized to the sum). We assumed that
607 the compare-alternatives strategy would switch whenever discriminability was below
608 some Δ reward and that the compare-to-threshold strategy would switch whenever
609 richness was below some threshold. Example simulations for specific parameter values

610 of Δ reward and threshold are illustrated in 2B-C. To quantify the fingerprints, we
611 fit the simulated switch probabilities at each parameter value for each strategy with a
612 linear (2 parameter) generalized linear model (GLM) and a quadratic (3 parameter)
613 GLM, first as function of richness and then as a function of discriminability. (Identical
614 results were found with the identity and binomial link functions, though only the
615 former was used for illustration.) We then extracted 3 features from the fitted models:
616 (1) the relative deviance of the linear and quadratic models (a measure of the extent
617 of curvature as a function of either richness or discriminability), (2) the quadratic
618 term of quadratic model (a measure of the sign and magnitude of curvature in the
619 relationship), and (3) the linear term of the linear model (a measure of the overall
620 slope of the relationship). Distributions of these features are illustrated in 2E-G. To
621 provide a more holistic and multivariate view of these fingerprints, we took the 6
622 feature dimensions described above and added the overall probability of switching
623 as a 7th feature. We then performed PCA for illustration (2H) and calculated the
624 distance from the 7-dimensional fingerprint of the human data to the fingerprint of
625 every possible value for each of the two strategies 2I.

626 Foundations of Decision-Making Models

627 To determine whether participants were using foraging-like or RL-like computations,
628 we fit a series of 10 cognitive models (5 RL models and 5 foraging models). All mod-
629 els were initialized with 50 random seeds and fit via maximum likelihood (minimizing
630 the negative of the log likelihood; fminsearch, MATLAB, scipy.optimize.minimize,
631 Python). Here, we will describe the standard formulations of both the RL and foraging
632 models. The following section will explain the various extensions of each model.

633 All of the models, RL and foraging alike, had a classic delta-rule value updating
634 process at their core,

$$v_{t+1} = v_t + \alpha(r_t - v_t) . \quad (1)$$

635 That is, values ($v_t + 1$) were updated at each time step t according to the difference
636 between the observed reward (r_t) and the previous value (v_t ; $v_0 = 0$ for all values and
637 in all models). The magnitude of the update is scaled by a learning rate (α ; constrained
638 between 0 and 1 in all models). The delta-rule update dynamically calculates value
639 as an exponentially-decaying recency-weighted average of reward. This is a canonical
640 computation, with widespread neural and behavioral evidence supporting its existence
641 in humans and other animals [1, 6, 14, 56–60]. Though both models have the delta-rule
642 computation at their core, they differ in what the value represents.

643 *RL model*

644 Here, there are multiple values because each option i has its own value and each is
645 updated (or not) at each time step. One common approach, which we used in the
646 standard RL model here, is to update only the value of chosen options,

$$v_{i,t+1} = \begin{cases} v_{i,t} + \alpha(r_t - v_{i,t}), & \text{if } i \text{ is chosen} \\ v_{i,t}, & \text{otherwise} \end{cases} , \quad (2)$$

647 A softmax function transformed values into choice probabilities with the usual
 648 Boltzmann exploration strategy. In RL models, the probability of choosing option i at
 649 time t was

$$p(\text{choice}_t = i) = \frac{e^{\beta v_{i,t}}}{\sum_{j=1}^N e^{\beta v_{j,t}}} , \quad (3)$$

650 where β is an inverse temperature parameter that controls the noise in the value
 651 comparison (constrained between 0 [high noise] and 100 [low noise] in all models).
 652 Because this task only had $N = 2$ options, we can expand the sum and rearrange this
 653 equation,

$$p(\text{choice}_t = i) = \frac{1}{1 + e^{-\beta(v_{i,t} - v_{j,t})}} , \quad (4)$$

654 which may clarify the point that this function compares the value of the two options
 655 in order to decide which to choose.

656 **Foraging model**

657 Here, the value is the value of a single focal option: it is the value of staying with or
 658 “exploiting” that option, so the update equation is precisely Eq. 1. One useful way
 659 to characterize the foraging model is to think of it as a hierarchical action algorithm:
 660 there are higher-level, temporally-extended actions that determine the choices at each
 661 trial to each target. In particular, we can use the options framework [40] to define
 662 this hierarchical model. In this framework, an option o consist of three components: a
 663 policy π , a termination condition β , and an initiation set \mathcal{I} ,

$$o = \begin{cases} \pi : \mathcal{S} \times \mathcal{A} \rightarrow [0, 1] , \\ \beta : \mathcal{S}^+ \rightarrow [0, 1] , \\ \mathcal{I} \subseteq \mathcal{S} , \end{cases} \quad (5)$$

664 where \mathcal{S} is the state space, and \mathcal{A} is the primitive action space. If an option $o =$
 665 $\langle \mathcal{I}, \pi, \beta \rangle$ is taken, then actions are selected according to π until the option terminates
 666 stochastically according to β . This framework can be extended to semi-Markov options,
 667 where a history Ω over states, actions and rewards can be taken as input to the low
 668 level policy π . This is important because our foraging model will make use of this
 669 history.

670 In the foraging model, the primitive action space \mathcal{A} is the set of targets than can
 671 be chosen, the state space is a trivial one-state space (so initiation sets are trivial),
 672 and we define the option space as

$$\mathcal{O} = \{\text{explore}, \text{exploit}\} , \quad (6)$$

673 with each option defined the following way:

674 1. The exploit option has a lower level policy π_{exploit} that executes always the
 675 same action (given by the previous action from the history), and terminates with
 676 probability

$$\beta_{\text{exploit}} = 1 - p(\text{exploit}) , \quad (\text{given in Eq. 9}), \quad (7)$$

677 2. The explore option has a lower level policy π_{explore} that selects targets uniformly
 678 randomly, and terminates with probability

$$\beta_{\text{explore}} = p(\text{exploit}). \quad (8)$$

679 We define the termination conditions with a softmax rule, in a similar fashion to
 680 how the RL model randomly selects other targets, in the following way:

$$p(\text{exploit}) = \frac{1}{1 + e^{-\beta(v - \rho)}}, \quad (9)$$

681 where v is a value that gets updated using Eq. 1 and the threshold ρ could be thought
 682 of as the expected value of any alternative (the background rate of reward in the
 683 environment [17]) or as a literal threshold for exploration. It is important to note that
 684 the foraging algorithm only tracks one value (which we can think of as the value of the
 685 exploit option). This way of interrupting or terminating options is a usual choice in the
 686 context of hierarchical actions and options [40, 61], where we decide to interrupt the
 687 execution of a temporally-extended action based on the value of that option compared
 688 to alternatives. With this space of options, we can now build a policy over options to
 689 define the foraging algorithm: whenever an option terminates, the other starts.

690 Because exploration ensured that a new option was chosen and value of exploiting it
 691 was unknown, the value of exploitation was reset to the threshold on each exploration
 692 trial.

693 Extensions to Decision-Making Models

694 In addition to the standard formulations of the RL and foraging models introduced
 695 above, we considered a variety of extensions that are commonly used to improve the
 696 fit of RL models. First, we introduced an asymmetrical learning parameter, meaning
 697 a way for models to learn at different rates from rewards and omissions. Adding
 698 asymmetry often improves the fit of RL models [24, 62] and it improved the fit of
 699 both models here. In both the RL asymmetry and foraging asymmetry models, the
 700 delta-rule update was rewritten

$$v_{t+1} = \begin{cases} v_t + \alpha_W(1 - v_t), & \text{if } r_t = 1 \\ v_t + \alpha_L(0 - v_t), & \text{if } r_t = 0 \end{cases}, \quad (10)$$

701 where v was the value of the chosen arm in the RL model or the value of exploitation
 702 in foraging. Both positive and negative learning rates were constrained between 0 and
 703 1 in both models. Next, we introduced a decay parameter, meaning a way for some
 704 values to diminish over time without sampling. This approach is widely used in the
 705 reinforcement learning literature, where it has been interpreted as the indicative of
 706 limited memory resources. It consistently improves RL model fits [63–65] and improved
 707 the fit of both models here. In the reinforcement learning model, we implemented decay
 708 in the traditional way: instead of allowing the value of an unchosen option to carry
 709 forward unchanged in time, it decayed in proportion to delta (bounded at 0 and 1) as

$$v_{i,t+1} = \begin{cases} v_{i,t} + \alpha(r_t - v_{i,t}), & \text{if } i \text{ is chosen} \\ \delta v_{i,t}, & \text{otherwise} \end{cases} \quad (11)$$

710 Although the foraging model has no unchosen values to decay, it does have a
711 threshold parameter, ρ , which was previously modeled as static, but now allowed to
712 change over time

$$p(\text{exploit}_t) = \frac{1}{1 + e^{-\beta(v_t - \rho_t)}} \quad (12)$$

713 Specifically, ρ could now decay with each successive choice to the same option through
714 updating it in a state-dependent way as a function of some decay parameter δ ,

$$\rho_{t+1} = \begin{cases} \delta \rho_t, & \text{if exploit} \\ \rho_0, & \text{if explore} \end{cases} \quad (13)$$

715 where ρ_0 is the value at which ρ is initialized at time 0 or at the onset of explo-
716 ration. Finally, we considered 2 models that included history dependence, meaning an
717 outcome-independent tendency to repeat past behavior. Adding dependence on previ-
718 ous choices tends to improve the fit of RL models [4, 24], likely because of the strong
719 tendency towards hysteresis in the choices of humans and other animals. Adding his-
720 tory dependence also improved the fit of both models here. In reinforcement learning,
721 one common approach adds a choice kernel (k) for each option i which is updated in
722 parallel with the value as

$$k_{i,t+1} = \begin{cases} k_{i,t} + \alpha_c(1 - k_{i,t}), & \text{if choice} = i \\ k_{i,t} + \alpha_c(0 - k_{i,t}), & \text{otherwise} \end{cases}, \quad (14)$$

723 where α_c is the choice kernel learning rate parameter. The choice kernel value is then
724 combined with value in the softmax decision rule,

$$p(\text{choice} = i) = \frac{e^{\beta(v_i + k_i)}}{\sum_{j=1}^N e^{\beta(v_j + k_j)}} \quad (15)$$

725 Thus far, we have added only 1 choice-history dependent parameter to this RL
726 model, the α_c parameter, and this model is the history kernel 1 RL model referred to
727 in the text. However, it is common to give choice history its own inverse temperature
728 parameter β_c . This is the history kernel 2 RL model,

$$p(\text{choice} = i) = \frac{e^{\beta v_i + \beta_c k_i}}{\sum_{j=1}^N e^{\beta v_j + \beta_c k_j}} \quad (16)$$

729 Although there was no natural way to add a choice history kernel to the foraging
730 model, we could use a nearly identical approach to add a state history kernel to the
731 foraging model. This approach adds hysteresis at the level of the exploitation state,
732 rather than at the level of the choices themselves. To do this, we introduced a state

733 history kernel that was updated alongside the value of exploitation as

$$k_{t+1} = \begin{cases} k_t + \alpha_c(1 - k_{i,t}), & \text{if } \text{exploit}_t \\ 0, & \text{otherwise} \end{cases} . \quad (17)$$

734 Meaning that the state history kernel was re-set to 0 when the animal explored.
735 In the history-kernel 1 foraging model, this kernel was then added directly to the
736 exponential in the decision rule,

$$p(\text{exploit}_t) = \frac{1}{1 + e^{-\beta(v_t - \rho + k_t)}} . \quad (18)$$

737 In the history-kernel 2 foraging model, the kernel was inserted, but scaled with its
738 own inverse noise parameter, β_k , as

$$p(\text{exploit}_t) = \frac{1}{1 + e^{-\beta(v_t - \rho - \beta_k k_t)}} . \quad (19)$$

739 Model Fitting Procedure

740 Maximum Likelihood Estimation (MLE) was performed to determine the parameter
741 values of both standard models that most accurately described human behavioral data.
742 The log likelihood (LL) was computed as follows:

$$LL = \log p(\text{choice}_{1:T} | \theta_m, m) = \sum_{t=1}^T \log p(\text{choice}_t, \theta_m, m) . \quad (20)$$

743 where $p(\text{choice}_{1:T} | \theta_m, m)$ is the probability of all choices (from 1 to T trials) given the
744 parameters θ_m of each model m with $\theta_{RL} = [\alpha, \beta]$ and $\theta_{\text{foraging}} = [\alpha, \beta, \rho]$ for each
745 participant. To find the maximum likelihood parameters, the negative log-Likelihood
746 was minimized using an optimization function (Experiment 1: Matlab fminsearch;
747 Experiment 2-3: Python scipy.optimize.minimize). The optimization process was initiated
748 multiple times with randomly selected starting parameters to avoid local minima
749 (Experiment 1: 20 times, Experiment 2-3: 50 times). The set of parameters with the
750 lowest negative Log-Likelihood were selected. The Akaike Information Criteria was
751 calculated to identify the best fitting model, adjusting for differences in the number
752 of parameters, and Akaike weights were calculated to estimate the relative ability of
753 each model to minimize information loss.

754 Simulations from Decision-Making Models

755 **Performance Optimization.** In order to determine if foraging had an advantage
756 (or disadvantage) compared to RL in performance, we asked if the upper bound on
757 performance was higher for foraging than it was for RL. This meant that we used
758 simulation to identify the optimal parameter combination for each model in matched,
759 randomly generated environments that matched the statistics of Experiment 1. We
760 then compared the performance of these optimized models. Optimal parameters
761 combination was selected so that it maximized the relative reward (minimizing the negative

762 of the relative reward, Python `scipy.optimize.minimize`) while remaining within the
763 participants' parameters range.

764 **Cohort simulation.** When simulating data from the standard foraging and RL
765 models, our goal was to produce datasets under each model that would resemble the
766 set of human participants as closely as possible. To do this, we took the stochastic
767 reward schedule experienced by each participant and simulated a new sequence of
768 choices in that reward environment from the RL and foraging models. The simulations
769 were generated using fitted parameters from the participant who experienced that
770 environment.

771 Exponential Mixture Model

772 We examined whether identifiable temporal patterns existed within the participants'
773 choice sequences. If a single time constant (probability of switching) governed the
774 behavior, we would expect to see exponentially distributed inter-switch intervals. That
775 is, the distribution of inter-switch intervals should be well described by the following
776 model:

$$f(x) = \frac{1}{\beta} e^{-\frac{x}{\beta}}, \quad (21)$$

777 where β is the survival parameter of the model (mean inter-switch interval). Although
778 the time between switch decisions was largely monotonically decreasing and concave
779 upwards, the distribution was not well described by a single exponential distribution.
780 Therefore, we next fit mixtures of varying numbers of exponential distributions (1-
781 4) in order to infer the number of switching regimes in these choice processes. For
782 continuous-time processes, these mixture distributions would be of the form:

$$f(x) = \sum_{i=1}^n \pi_i e^{-\frac{x}{\beta_i}}, \quad (22)$$

783 where $1 \geq \pi_i \geq 0$ for all π_i , and $\sum_{i=1}^n \pi_i = 1$. Here, each β_i reflects the survival
784 parameter (average inter-switch interval) for each component distribution i and the π_i
785 reflects the relative weight of each component. Because trials were discrete, we fit the
786 discrete analog of this distribution: mixtures of 1-4 discrete exponential (geometric)
787 distributions [66]. Mixtures were fit via the expectation-maximisation algorithm and
788 we used standard model comparison techniques [67] to determine the most probable
789 number of mixing components. Two regimes (log-likelihood = -31,048, 3 parameter)
790 were significantly better fit to data than one (log-likelihood = -34,645, 1 parameter,
791 likelihood ratio test: ratio = 7193.0, $p < 10^{-32}$) and, while adding additional regimes
792 continued to improve model fit (3 regimes: log-likelihood = -30,893, 5 parameters; 4
793 regimes: log-likelihood = -30,884), improvement was already saturated at 2 regimes
794 (Figure 5D).

795 Hidden Markov Model

796 To determine when models and participants were exploring (versus exploiting), we
797 used a hidden Markov model (HMM; [15, 24, 32, 36, 37]). In an HMM, choices (y)

798 are ‘emissions’ that are generated by an unobserved decision process that is in some
799 latent, hidden state (z). Latent states are defined by both the probability of making
800 each choice (k , out of N_k possible options), and by the probability of transitioning
801 from each state to every other state. Our model consisted of two types of states, an
802 explore state and the exploit states. The emissions model for the explore state was
803 the maximum-entropy distribution for a categorical variable, a uniform distribution:

$$p(y_t = k | z_t = \text{explore}) = \frac{1}{N_k}, \quad (23)$$

804 meaning that we made the fewest number of assumptions possible about the choices
805 that were made during exploration in order to avoid biasing the model towards or
806 away from any particular type of policy. However, modeling exploratory choices with
807 a uniform distribution does not imply, require, or enforce random decision-making
808 during these states [36, 37]. Because exploitation involves repeated sampling of each
809 option, exploit states only permitted choice emissions that matched one option:

$$\begin{aligned} p(y_t = k | z_t = \text{exploit}_i, k = i) &= 1 \\ p(y_t = k | z_t = \text{exploit}_i, k \neq i) &= 0 \end{aligned} \quad (24)$$

meaning latent states in this model are Markovian. The current state (z_t) depends only on the most recent state (z_{t-1}),

$$p(z_t | z_{t-1}, y_{t-1}, \dots, z_1, y_1) = p(z_t | z_{t-1}), \quad (25)$$

810 meaning that we can describe the entire pattern of dynamics in terms of a time-
811 invariant transition matrix between 3 possible states (two exploit states and one
812 explore state). This matrix is a system of stochastic equations that describe the one-
813 time-step probability of transitioning between every combination of past and future
814 states (i, j),

$$p(z_t = i | z_{t-1} = j). \quad (26)$$

815 Because we had only a limited number of trials for each participant (300), parameters
816 were tied across exploit states: each exploit state had the same probability of begin-
817 ning (from exploring) and of sustaining itself. For conceptual reasons, the model also
818 assumed that participants started in exploration and had to pass through exploration
819 in order to start exploiting a new option, even if only for a single trial [15, 24, 32, 36, 37].
820 We have previously shown that models that lack these constraints by design tend to
821 approximate them when fit to sufficiently large datasets [15, 24].

822 Because the emissions model was fixed, certain parameters were tied, the structure
823 of the transmission matrix was constrained, and the initial state was specified, the
824 final HMM had only two free parameters: one corresponding to the probability of
825 exploring, given exploration on the last trial, and one corresponding to the probability
826 of exploiting, given exploitation on the last trial. We have previously reported that
827 this constrained model does not underperform an unconstrained model [15, 24], and
828 that unconstrained models tend to closely resemble to the constrained model when fit
829 to large amounts of data [15].

830 The HMM was fit via expectation-maximization using the Baum Welch algorithm
831 [68]. This algorithm finds a (possibly local) maxima of the complete-data likelihood.
832 The algorithm was reinitialized with random seeds 20 times, and the model that
833 maximized the observed (incomplete) data log likelihood across all the sessions for
834 each animal was ultimately taken as the best. To decode latent states from choices,
835 we used the Viterbi algorithm to discover the most probable a posteriori sequence of
836 latent states.

837 Explore/Exploit State Dynamics

838 In order to understand the dynamics of exploration and exploitation in the partic-
839 ipants, RL models, and foraging models, we analysed the dynamics of the HMMs
840 [24, 32, 37]. The fitted HMMs are a set of equations that describe probability of trans-
841 sitions between exploration and exploitation and vice versa, or the state dynamics of
842 each agent. Methods from statistical thermodynamics can then be used to analyze
843 these equations and generate insight into the potential energy of each state in each
844 agent (Figure 4M).

845 In statistical thermodynamics, the potential energy of a state (E_i) is related to
846 the long-time scale probability of observing a process (here, a decision-maker) in that
847 state (p_i) via the Boltzman distribution,

$$848 p_i = \frac{1}{Z} e^{\frac{-E_i}{k_B T}} , \quad (27)$$

848 where Z is the partition function of the system, k_B is the Boltzman constant, and
849 T is the temperature. In a two-state system, the partition functions cancel out, the
850 relative occupancy of the states is just a function of the difference in energy between
851 them, and we can rearrange to express the difference in energy between two states as
852 a function of the difference between them,

$$853 \ln \left(\frac{p_i}{p_j} \right) k_B T = E_j - E_i , \quad (28)$$

853 where $E_j - E_i$ is the difference in the energetic depth between the two states (i.e. the
854 Gibbs Free Energy), which is proportional to the log odds of each state, up to some
855 multiplicative factor, $k_B T$.

856 To calculate the probability of exploration and exploitation (p_i and p_j), we solved
857 for the stationary distribution π^* of the fitted HMMs, where π^* is the probability
858 distribution that satisfies

$$859 \pi^* = \pi^* A_k , \quad (29)$$

859 where A_k is the transition matrix for agent k . If it exists, this distribution is a (nor-
860 malised) left eigenvector of A_k with an eigenvalue of 1, so we solved for this eigenvector
861 to determine the stationary distribution over explore and exploit states for each agent.
862 We then took an average of these stationary distributions across all sessions for each
863 species, and plugged these back into the Boltzman equations to calculate the relative
864 energy (depth) of exploration and exploitation in (Figure 4M).

865 In order to calculate the height of the energetic barrier between exploration and
866 exploitation, we built on the Arrhenius equation from chemical kinetics that relates

867 the rate of transitions (k) between some pair of states to the activation energy required
868 to affect these transitions (E_a):

$$k = C e^{\frac{E_a}{k_B T}}, \quad (30)$$

869 where C is a constant pre-exponential factor and $k_B T$ is again the product of tem-
870 perature and the Boltzman constant. Rearranging to solve for activation energy yields
871 our equation for the height of the energy barrier,

$$E_a = -\ln\left(\frac{k}{C}\right) k_B T, \quad (31)$$

872 which has an obvious similarity to the Boltzman distribution illustrated earlier, where
873 the relative depth of each state was proportional to the probability of occupying each
874 state and the activation energy is now proportional to the rate of transitions between
875 states.

876 To create the dynamical landscape graphs (Figure 4M), transition matrices were
877 calculated individually for all participants and for simulated data from both foraging
878 and RL algorithms. Energy measurements were then averaged within each class of
879 agents. Note that our approach only identifies the energy of three discrete states (an
880 explore state, an exploit state, and the peak of the barrier between them). These are
881 illustrated by tracing a continuous potential through these three points to provide a
882 physical intuition for the differences in explore/exploit dynamics between models and
883 participants.

884 **Foraging Index**

885 In order to determine if individual participants were more foraging-like (versus RL-
886 like) in their approach to the task, we calculated the foraging index as the difference
887 in the individual model likelihood (L) between the best-fitting foraging model (F^*)
888 and the best-fitting RL model (RL^*) for each participant i :

$$\text{foraging index}_i = \mathcal{L}_{F^*,i} - \mathcal{L}_{RL^*,i} \quad (32)$$

889 **Declaration of Interest**

890 The authors have no competing interests to disclose.

891 **Resource Availability**

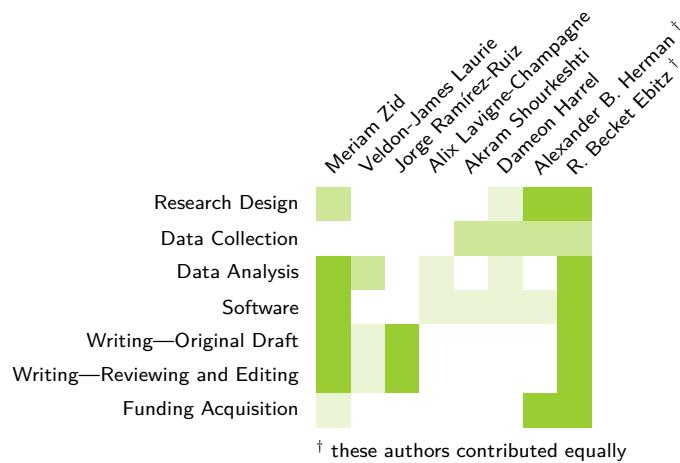
892 **Material Availability**

893 This study did not involve generating new material.

894 **Data and Code Availability**

895 Requests for Data and Code should be directed to and will be fulfilled by Lead
896 Contacts. Data and code will be made publicly available upon acceptance of this
897 article.

898 **Author contributions**



899 The author contribution matrix was adapted from [69].

900 **Acknowledgements**

901 The authors would like to thank Ossama Ghenissa, Rishabh Singhal, and Nicola Gris-
902 som for insightful discussion, Devin H. Keheo for feedback on an earlier draft of the
903 manuscript, and Cathy Chen and Colin Meyer for invaluable technical support. This
904 project was supported by an NSERC Discovery Grant (RGPIN-2020-05577; RBE), the
905 Research Corporation for Science Advancement & Frederick Gardner Cottrell Foun-
906 dation (Project #29087; RBE), the Canada Research Chair Dynamics of Cognition
907 (FD507106; RBE), a Research Fellowship from the Jacobs Foundation (RBE), the Cen-
908 tre Interdisciplinaire de Recherche sur le Cerveau et l'Apprentissage (CIRCA; M.Z.),
909 and the National Institutes of Health (R21 MH127607 and K23 MH050909; A.B.H.).

References

- [1] Rescorla, R., Wagner, A.: A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In: Classical Conditioning II: Current Research And Theory vol. Vol. 2, (1972). Journal Abbreviation: Classical Conditioning II: Current Research and Theory
- [2] Levy, D.J., Glimcher, P.W.: The root of all value: a neural common currency for choice. Current Opinion in Neurobiology **22**(6), 1027–1038 (2012) <https://doi.org/10.1016/j.conb.2012.06.001> . Accessed 2024-04-08
- [3] McNamee, D., Rangel, A., O'Doherty, J.P.: Category-dependent and category-independent goal-value codes in human ventromedial prefrontal cortex. Nature

Neuroscience **16**(4), 479–485 (2013) <https://doi.org/10.1038/nn.3337> . Publisher: Nature Publishing Group. Accessed 2024-04-18

- [4] Wilson, R.C., Collins, A.G.: Ten simple rules for the computational modeling of behavioral data. *eLife* **8**, 49547 (2019) <https://doi.org/10.7554/eLife.49547> . Publisher: eLife Sciences Publications, Ltd. Accessed 2024-06-14
- [5] Cisek, P., Hayden, B.Y.: Neuroscience needs evolution. *Philosophical Transactions of the Royal Society B: Biological Sciences* **377**(1844), 20200518 (2021) <https://doi.org/10.1098/rstb.2020.0518> . Publisher: Royal Society. Accessed 2024-04-08
- [6] Sutton, R.S., Barto, A.G.: Reinforcement Learning, Second Edition: An Introduction. MIT Press, ??? (2018). Google-Books-ID: uWV0DwAAQBAJ
- [7] Watkins, C.J.C.H., Dayan, P.: Q-learning. *Machine Learning* **8**(3), 279–292 (1992) <https://doi.org/10.1007/BF00992698> . Accessed 2025-01-06
- [8] Wallis, J.D., Miller, E.K.: Neuronal activity in primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task. *European Journal of Neuroscience* **18**(7), 2069–2081 (2003) <https://doi.org/10.1046/j.1460-9568.2003.02922.x> . eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1460-9568.2003.02922.x>. Accessed 2024-04-25
- [9] Hosokawa, T., Kennerley, S.W., Sloan, J., Wallis, J.D.: Single-Neuron Mechanisms Underlying Cost-Benefit Analysis in Frontal Cortex. *Journal of Neuroscience* **33**(44), 17385–17397 (2013) <https://doi.org/10.1523/JNEUROSCI.2221-13.2013> . Publisher: Society for Neuroscience Section: Articles. Accessed 2024-05-27
- [10] Amemori, S., Amemori, K.-i., Yoshida, T., Papageorgiou, G.K., Xu, R., Shimazu, H., Desimone, R., Graybiel, A.M.: Microstimulation of primate neocortex targeting striosomes induces negative decision-making. *European Journal of Neuroscience* **51**(3), 731–741 (2020) <https://doi.org/10.1111/ejn.14555> . eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1111/ejn.14555>. Accessed 2024-05-27
- [11] Giarrocco, F., Costa, V.D., Basile, B.M., Pujara, M.S., Murray, E.A., Averbeck, B.B.: Motor System-Dependent Effects of Amygdala and Ventral Striatum Lesions on Explore–Exploit Behaviors. *Journal of Neuroscience* **44**(5) (2024) <https://doi.org/10.1523/JNEUROSCI.1206-23.2023> . Publisher: Society for Neuroscience Section: Research Articles. Accessed 2024-05-27
- [12] Pearson, J.M., Hayden, B.Y., Raghavachari, S., Platt, M.L.: Neurons in posterior cingulate cortex signal exploratory decisions in a dynamic multi-option choice task. *Current biology : CB* **19**(18), 1532–1537 (2009) <https://doi.org/10.1016/j.cub.2009.07.048> . Accessed 2024-05-16
- [13] Pearson, J.M., Heilbronner, S.R., Barack, D.L., Hayden, B.Y., Platt, M.L.:

Posterior cingulate cortex: adapting behavior to a changing world. Trends in Cognitive Sciences **15**(4), 143–151 (2011) <https://doi.org/10.1016/j.tics.2011.02.002> . Accessed 2024-06-13

[14] Daw, N.D., O'Doherty, J.P., Dayan, P., Seymour, B., Dolan, R.J.: Cortical substrates for exploratory decisions in humans. Nature **441**(7095), 876–879 (2006) <https://doi.org/10.1038/nature04766> . Accessed 2024-06-12

[15] Ebitz, R.B., Albarran, E., Moore, T.: Exploration Disrupts Choice-Predictive Signals and Alters Dynamics in Prefrontal Cortex. Neuron **97**(2), 450–4619 (2018) <https://doi.org/10.1016/j.neuron.2017.12.007>

[16] Charnov, E.L.: Optimal foraging, the marginal value theorem. Theoretical Population Biology **9**(2), 129–136 (1976) [https://doi.org/10.1016/0040-5809\(76\)90040-X](https://doi.org/10.1016/0040-5809(76)90040-X) . Accessed 2024-04-30

[17] Stephens, D.W., Krebs, J.R.: Foraging Theory. Princeton University Press, ??? (1986)

[18] Hayden, B.Y., Pearson, J.M., Platt, M.L.: Neuronal basis of sequential foraging decisions in a patchy environment. Nature Neuroscience **14**(7), 933–939 (2011) <https://doi.org/10.1038/nn.2856> . Publisher: Nature Publishing Group. Accessed 2024-06-12

[19] Kolling, N., Behrens, T.E.J., Mars, R.B., Rushworth, M.F.S.: Neural Mechanisms of Foraging. Science **336**(6077), 95–98 (2012) <https://doi.org/10.1126/science.1216930> . Publisher: American Association for the Advancement of Science. Accessed 2024-06-06

[20] Wikenheiser, A.M., Stephens, D.W., Redish, A.D.: Subjective costs drive overly patient foraging strategies in rats on an intertemporal foraging task. Proceedings of the National Academy of Sciences **110**(20), 8308–8313 (2013) <https://doi.org/10.1073/pnas.1220738110> . Publisher: Proceedings of the National Academy of Sciences. Accessed 2024-06-12

[21] Constantino, S.M., Daw, N.D.: Learning the opportunity cost of time in a patch-foraging task. Cognitive, Affective, & Behavioral Neuroscience **15**(4), 837–853 (2015) <https://doi.org/10.3758/s13415-015-0350-y> . Accessed 2023-12-19

[22] Kane, G.A., James, M.H., Shenhav, A., Daw, N.D., Cohen, J.D., Aston-Jones, G.: Rat Anterior Cingulate Cortex Continuously Signals Decision Variables in a Patch Foraging Task. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience **42**(29), 5730–5744 (2022) <https://doi.org/10.1523/JNEUROSCI.1940-21.2022>

[23] Blanchard, T.C., Hayden, B.Y.: Neurons in Dorsal Anterior Cingulate Cortex Signal Postdecisional Variables in a Foraging Task. Journal of Neuroscience **34**(2),

646–655 (2014) <https://doi.org/10.1523/JNEUROSCI.3151-13.2014> . Publisher: Society for Neuroscience Section: Articles. Accessed 2024-06-14

[24] Chen, C.S., Knep, E., Han, A., Ebitz, R.B., Grissom, N.M.: Sex differences in learning from exploration. *eLife* **10**, 69748 (2021) <https://doi.org/10.7554/eLife.69748> . Publisher: eLife Sciences Publications, Ltd. Accessed 2024-05-16

[25] Shourkeshti, A., Marrocco, G., Jurewicz, K., Moore, T., Ebitz, R.B.: Pupil size predicts the onset of exploration in brain and behavior. *bioRxiv*, 2023–0524541981 (2023) <https://doi.org/10.1101/2023.05.24.541981> . Accessed 2024-07-08

[26] Cohen, J.D., McClure, S.M., Yu, A.J.: Should I stay or should I go? How the human brain manages the trade-off between exploitation and exploration. *Philosophical Transactions of the Royal Society B: Biological Sciences* **362**(1481), 933–942 (2007) <https://doi.org/10.1098/rstb.2007.2098> . Accessed 2024-06-12

[27] Shteingart, H., Loewenstein, Y.: Reinforcement learning and human behavior. *Current Opinion in Neurobiology* **25**, 93–98 (2014) <https://doi.org/10.1016/j.conb.2013.12.004> . Accessed 2024-06-12

[28] Guo, D., Yu, A.: Human learning and decision-making in the bandit task: Three wrongs make a right. In: 2019 Conference on Cognitive Computational Neuroscience. Cognitive Computational Neuroscience, Berlin, Germany (2019). <https://doi.org/10.32470/CCN.2019.1356-0> . <https://ccneuro.org/2019/Papers/ViewPapers.asp?PaperNum=1356> Accessed 2024-05-13

[29] Palminteri, S., Khamassi, M., Joffly, M., Coricelli, G.: Contextual modulation of value signals in reward and punishment learning. *Nature Communications* **6**, 8096 (2015) <https://doi.org/10.1038/ncomms9096>

[30] Lefebvre, G., Lebreton, M., Meyniel, F., Bourgeois-Gironde, S., Palminteri, S.: Behavioural and neural characterization of optimistic reinforcement learning. *Nature Human Behaviour* **1**, 0067 (2017) <https://doi.org/10.1038/s41562-017-0067>

[31] Kennerley, S.W., Walton, M.E., Behrens, T.E.J., Buckley, M.J., Rushworth, M.F.S.: Optimal decision making and the anterior cingulate cortex. *Nature Neuroscience* **9**(7), 940–947 (2006) <https://doi.org/10.1038/nn1724> . Publisher: Nature Publishing Group. Accessed 2024-06-13

[32] Laurie, V.-J., Shourkeshti, A., Chen, C.S., Herman, A.B., Grissom, N.M., Ebitz, R.B.: Persistent Decision-Making in Mice, Monkeys, and Humans. *bioRxiv*. Pages: 2024.05.07.592970 Section: New Results (2024). <https://doi.org/10.1101/2024.05.07.592970> . <https://www.biorxiv.org/content/10.1101/2024.05.07.592970v1> Accessed 2024-05-15

[33] Katahira, K.: The statistical structures of reinforcement learning with asymmetric

value updates. *Journal of Mathematical Psychology* **87**, 31–45 (2018) <https://doi.org/10.1016/j.jmp.2018.09.002> . Accessed 2024-06-14

- [34] Palminteri, S.: Choice-confirmation bias and gradual perseveration in human reinforcement learning. *Behavioral Neuroscience* **137**(1), 78–88 (2023) <https://doi.org/10.1037/bne0000541> . Place: US Publisher: American Psychological Association
- [35] Wilson, R.C., Bonawitz, E., Costa, V.D., Ebitz, R.B.: Balancing exploration and exploitation with information and randomization. *Current Opinion in Behavioral Sciences* **38**, 49–56 (2021) <https://doi.org/10.1016/j.cobeha.2020.10.001> . Accessed 2024-06-05
- [36] Ebitz, R.B., Tu, J.C., Hayden, B.Y.: Rules warp feature encoding in decision-making circuits. *PLOS Biology* **18**(11), 3000951 (2020) <https://doi.org/10.1371/journal.pbio.3000951> . Publisher: Public Library of Science. Accessed 2024-05-17
- [37] Ebitz, R.B., Sleezer, B.J., Jedema, H.P., Bradberry, C.W., Hayden, B.Y.: Tonic exploration governs both flexibility and lapses. *PLOS Computational Biology* **15**(11), 1007475 (2019) <https://doi.org/10.1371/journal.pcbi.1007475> . Publisher: Public Library of Science. Accessed 2024-05-17
- [38] Rushworth, M.F.S., Behrens, T.E.J.: Choice, uncertainty and value in prefrontal and cingulate cortex. *Nature Neuroscience* **11**(4), 389–397 (2008) <https://doi.org/10.1038/nn2066> . Publisher: Nature Publishing Group. Accessed 2024-06-12
- [39] Deserno, L., Boehme, R., Mathys, C., Katthagen, T., Kaminski, J., Stephan, K.E., Heinz, A., Schlaggenhauf, F.: Volatility Estimates Increase Choice Switching and Relate to Prefrontal Activity in Schizophrenia. *Biological Psychiatry: Cognitive Neuroscience and Neuroimaging* **5**(2), 173–183 (2020) <https://doi.org/10.1016/j.bpsc.2019.10.007> . Accessed 2024-06-12
- [40] Sutton, R.S., Precup, D., Singh, S.: Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning. *Artificial Intelligence* **112**(1), 181–211 (1999) [https://doi.org/10.1016/S0004-3702\(99\)00052-1](https://doi.org/10.1016/S0004-3702(99)00052-1) . Accessed 2025-01-06
- [41] Stolle, M., Precup, D.: Learning Options in Reinforcement Learning. In: Koenig, S., Holte, R.C. (eds.) *Abstraction, Reformulation, and Approximation*, pp. 212–223. Springer, Berlin, Heidelberg (2002). https://doi.org/10.1007/3-540-45622-8_16
- [42] Bacon, P.-L., Harb, J., Precup, D.: The Option-Critic Architecture. *Proceedings of the AAAI Conference on Artificial Intelligence* **31**(1) (2017) <https://doi.org/10.1609/aaai.v31i1.10916> . Number: 1. Accessed 2025-01-06
- [43] Harb, J., Bacon, P.-L., Klissarov, M., Precup, D.: When Waiting Is Not an Option:

Learning Options With a Deliberation Cost. Proceedings of the AAAI Conference on Artificial Intelligence **32**(1) (2018) <https://doi.org/10.1609/aaai.v32i1.11831> . Number: 1. Accessed 2025-01-06

- [44] Botvinick, M.M.: Hierarchical reinforcement learning and decision making. Current Opinion in Neurobiology **22**(6), 956–962 (2012) <https://doi.org/10.1016/j.conb.2012.05.008> . Accessed 2025-03-04
- [45] Eckstein, M.K., Collins, A.G.E.: Computational evidence for hierarchically structured reinforcement learning in humans. Proceedings of the National Academy of Sciences **117**(47), 29381–29389 (2020) <https://doi.org/10.1073/pnas.1912330117> . Publisher: Proceedings of the National Academy of Sciences. Accessed 2025-01-06
- [46] Collins, A.G.E., Frank, M.J.: Cognitive control over learning: Creating, clustering and generalizing task-set structure. Psychological review **120**(1), 190–229 (2013) <https://doi.org/10.1037/a0030852> . Accessed 2025-03-04
- [47] Ramírez-Ruiz, J., Grytskyy, D., Mastrogiovanni, C., Habib, Y., Moreno-Bote, R.: Complex behavior from intrinsic motivation to occupy future action-state path space. Nature Communications **15**(1), 6368 (2024) <https://doi.org/10.1038/s41467-024-49711-1> . Publisher: Nature Publishing Group. Accessed 2025-01-06
- [48] Lee, D., Seo, H., Jung, M.W.: Neural Basis of Reinforcement Learning and Decision Making. Annual review of neuroscience **35**, 287–308 (2012) <https://doi.org/10.1146/annurev-neuro-062111-150512> . Accessed 2025-01-10
- [49] Ramírez-Ruiz, J., Ebitz, R.B.: “Value” emerges from imperfect memory. bioRxiv. Pages: 2024.05.26.595970 Section: New Results (2024). <https://doi.org/10.1101/2024.05.26.595970> . <https://www.biorxiv.org/content/10.1101/2024.05.26.595970v1> Accessed 2024-07-08
- [50] Jurewicz, K., Sleezer, B.J., Mehta, P.S., Hayden, B.Y., Ebitz, R.B.: Irrational choices via a curvilinear representational geometry for value. bioRxiv. Pages: 2022.03.31.486635 Section: New Results (2022). <https://doi.org/10.1101/2022.03.31.486635> . <https://www.biorxiv.org/content/10.1101/2022.03.31.486635v1> Accessed 2024-04-29
- [51] Durstewitz, D., Vittoz, N.M., Floresco, S.B., Seamans, J.K.: Abrupt Transitions between Prefrontal Neural Ensemble States Accompany Behavioral Transitions during Rule Learning. Neuron **66**(3), 438–448 (2010) <https://doi.org/10.1016/j.neuron.2010.03.029> . Accessed 2024-04-29
- [52] Pulcu, E.: A nonlinear relationship between prediction errors and learning rates in human reinforcement learning. bioRxiv. Pages: 751222 Section: New Results (2019). <https://doi.org/10.1101/751222> . <https://www.biorxiv.org/content/10.1101/751222v2> Accessed 2024-04-29

- [53] Karlsson, M.P., Tervo, D.G.R., Karpova, A.Y.: Network resets in medial pre-frontal cortex mark the onset of behavioral uncertainty. *Science (New York, N.Y.)* **338**(6103), 135–139 (2012) <https://doi.org/10.1126/science.1226518>
- [54] Azab, H., Hayden, B.Y.: Correlates of economic decisions in the dorsal and subgenual anterior cingulate cortices. *European Journal of Neuroscience* **47**(8), 979–993 (2018) <https://doi.org/10.1111/ejn.13865> . eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1111/ejn.13865>. Accessed 2024-04-18
- [55] Azab, H., Hayden, B.Y.: Partial integration of the components of value in anterior cingulate cortex. *Behavioral Neuroscience* **134**(4), 296–308 (2020) <https://doi.org/10.1037/bne0000382> . Accessed 2024-04-18
- [56] Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. *Machine Learning* **8**(3), 229–256 (1992) <https://doi.org/10.1007/BF00992696> . Accessed 2024-06-13
- [57] Jacobs, R.A.: Increased rates of convergence through learning rate adaptation. *Neural Networks* **1**(4), 295–307 (1988) [https://doi.org/10.1016/0893-6080\(88\)90003-2](https://doi.org/10.1016/0893-6080(88)90003-2) . Accessed 2024-06-13
- [58] Gluck, M.A., Bower, G.H.: From conditioning to category learning: an adaptive network model. *Journal of Experimental Psychology. General* **117**(3), 227–247 (1988) <https://doi.org/10.1037/0096-3445.117.3.227>
- [59] Rumelhart, D.E., McClelland, J.L., Group, P.R.: Parallel Distributed Processing, Volume 1: Explorations in the Microstructure of Cognition: Foundations. The MIT Press, ??? (1986). <https://doi.org/10.7551/mitpress/5236.001.0001> . <https://direct.mit.edu/books/monograph/4424/Parallel-Distributed-Processing-Volume> Accessed 2024-06-13
- [60] Busemeyer, J.R., Stout, J.C.: A contribution of cognitive decision models to clinical assessment: Decomposing performance on the Bechara gambling task. *Psychological Assessment* **14**(3), 253–262 (2002) <https://doi.org/10.1037/1040-3590.14.3.253> . Place: US Publisher: American Psychological Association
- [61] Kaelbling, L.P.: Hierarchical Learning in Stochastic Domains: Preliminary Results. In: *Machine Learning Proceedings 1993*, pp. 167–173. Morgan Kaufmann, San Francisco (CA) (1993). <https://doi.org/10.1016/B978-1-55860-307-3.50028-9> . <https://www.sciencedirect.com/science/article/pii/B9781558603073500289> Accessed 2025-03-05
- [62] Ciranka, S., Linde-Domingo, J., Padezhki, I., Wicherz, C., Wu, C.M., Spitzer, B.: Asymmetric reinforcement learning facilitates human inference of transitive relations. *Nature Human Behaviour* **6**(4), 555–564 (2022) <https://doi.org/10.1038/s41562-021-01263-w> . Publisher: Nature Publishing Group. Accessed 2024-06-13

- [63] Patel, N., Acerbi, L., Pouget, A.: Dynamic allocation of limited memory resources in reinforcement learning. In: Advances in Neural Information Processing Systems, vol. 33, pp. 16948–16960. Curran Associates, Inc., ??? (2020). <https://proceedings.neurips.cc/paper/2020/hash/c4fac8fb3c9e17a2f4553a001f631975-Abstract.html> Accessed 2024-06-14
- [64] Santoro, A., Frankland, P.W., Richards, B.A.: Memory Transformation Enhances Reinforcement Learning in Dynamic Environments. *Journal of Neuroscience* **36**(48), 12228–12242 (2016) <https://doi.org/10.1523/JNEUROSCI.0763-16.2016> . Publisher: Society for Neuroscience Section: Research Articles. Accessed 2024-06-14
- [65] Yoo, A.H., Collins, A.G.E.: How Working Memory and Reinforcement Learning Are Intertwined: A Cognitive, Neural, and Computational Perspective. *Journal of Cognitive Neuroscience* **34**(4), 551–568 (2022) https://doi.org/10.1162/jocn_a_01808 . Accessed 2024-06-14
- [66] Barger, K.J.-A.: Mixtures of Exponential Distributions to Describe the Distribution of Poisson Means in Estimating the Number of Unobserved Classes (2006). Accessed 2024-06-13
- [67] Burnham, K.P., Anderson, D.R. (eds.): Model Selection and Multimodel Inference. Springer, New York, NY (2002). <https://doi.org/10.1007/b97636> . <http://link.springer.com/10.1007/b97636> Accessed 2024-06-13
- [68] Bilmes, J.A.: A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models **4**(510) (1998)
- [69] O’Shea, D.J., Duncker, L., Goo, W., Sun, X., Vyas, S., Trautmann, E.M., Diester, I., Ramakrishnan, C., Deisseroth, K., Sahani, M., Shenoy, K.V.: Direct neural perturbations reveal a dynamical mechanism for robust computation. *bioRxiv*. Pages: 2022.12.16.520768 Section: New Results (2022). <https://doi.org/10.1101/2022.12.16.520768> . <https://www.biorxiv.org/content/10.1101/2022.12.16.520768v1> Accessed 2024-07-08