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Abstract

Evolution shapes the structure and content of genomes, yet the contribution of local
sequence composition to variant selection remains poorly understood. While traditional
models emphasize protein function or cross-species conservation, we propose that
intra-genomic patterns of oligonucleotide (k-mer) frequencies also reflect selective forces. To
explore this, we developed kGain score, a metric that quantifies the frequency shift of a
k-mer upon single-nucleotide substitution, using the surrounding genomic context as a
baseline. We hypothesize that variants arising in high-kGain contexts are more likely to
persist due to evolutionary favorability. We validated this hypothesis across multiple
systems. In E. coli and S. cerevisiae long-term evolution experiments, we found that fixed,
essential, and parallel mutations consistently show elevated kGain scores. This trend held in
SARS-CoV-2 variants of concern and in an in-house antibiotic adaptation experiment, where
a high-kGain fusA Y515N mutation conferred resistance and maintained fitness when
overexpressed, demonstrating a causal link between kGain and adaptive potential. To enable
cross-species generalization, we trained a transformer-based neural network regressor on
LTEE-derived mutations to predict kGain from sequence alone. The model achieved high
correlation in held-out in-domain data (Pearson r=0.81) and accurately predicted kGain
trends in out-of-domain data (Pearson r =0.82), demonstrating that k-mer-based sequence
constraints learned from one genome can be effectively transferred to others. Together, our
results establish kGain as a biologically meaningful, scalable metric for probing
within-genome sequence selection, offering a complementary lens to existing
conservation-based frameworks for understanding evolutionary fitness and variant

persistence.
Introduction

A central goal in evolutionary genomics is to understand how genetic variation translates
into phenotypic consequences and, ultimately, adaptive fitness across successive
generations. To achieve this, computational methods for variant effect prediction (VEP) !
have become critical tools for linking genotype to phenotype. Early VEP approaches, such as
SIFT and PolyPhen, largely relied on evolutionary conservation signals extracted from

cross-species alignments ? to estimate the functional impact of mutations *. These methods
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modelled the probabilities of reference versus alternate alleles by leveraging homologous
protein sequences. More recently, large-scale deep learning frameworks, exemplified by
ESM “, Evo °, and AlphaMissense ¢, have advanced the field by capturing complex patterns of
selection and functionality in protein-coding regions. Although these techniques have
improved our ability to interpret coding variants, they often focus on interspecies
conservation and may overlook subtle intra-genomic patterns of selection that govern the

organization and evolution of the entire genome within a species.

Increasing evidence suggests that analyzing k-mer frequencies within a single genome offers
a complementary window into how selection shapes genomic architecture ’. k-mer-based
approaches, which quantify the occurrence of all possible short nucleotide sequences
(k-mers), have proven valuable in dissecting genome composition and evolution.
Additionally, differential k-mer frequencies within a single genome can reflect local selection
pressures acting on various genomic elements, including transcription factor binding sites
and regulatory motifs. k-mer analysis has thus been employed to illuminate how specific
sequence elements are conserved within a genome, an idea that extends beyond the

classical paradigm of protein-centric or cross-species conservation.

Such patterns of within-genome conservation are evident in microbial genomes, where
selective pressures act rapidly, favoring certain nucleotide motifs essential for genomic
stability/adaptation. For instance, bacteria often exhibit conserved k-mers within operons
that enable synchronized gene expression, even in the absence of broader homology across

8 Likewise, transposable elements, insertion sequences, and integrons maintain

species
internal sequence motifs critical for their mobility and regulatory functions, suggesting that
particular k-mers are preferentially retained for their functional utility within a given

%10 In extremophilic archaea, duplicated stress-response genes often

genomic context
contain conserved k-mer motifs that enhance their tolerance to extreme temperatures or
salinities, underscoring the potential adaptive significance of these patterns '*. Moreover,
horizontal gene transfer, the primary driver of microbial evolution, frequently transfers
regulatory elements or other k-mer motifs that seamlessly integrate into recipient genomes,

affecting gene stability, expression, and evolutionary trajectories ****.
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Together, these observations point to the possibility that certain k-mer motifs might be
systematically favored during adaptive processes within the same genome, forming an
underappreciated layer of selection that complements the traditional view of across-species
sequence conservation. Despite the promise of these k-mer-based insights, the connection
between specific k-mer motifs and their direct impact on evolutionary fitness remains
underexplored. While k-mer-based methods have been successfully used in pangenomics

and population genetics ***°

revealing genetic diversity overlooked by single-reference-based
approaches, a quantitative demonstration that k-mer frequency biases can drive or

accompany adaptive changes has been lacking.

Here, we introduce a quantitative framework for evaluating whether k-mer frequencies
within a genome are non-randomly selected over evolutionary time. kGain score is central
to our approach, designed to capture the enrichment level of specific k-mers near
single-nucleotide variants (SNVs). By examining multiple data sets, long-term evolution
experiments (LTEE) in E.coli and S.cerevisiae, as well as natural evolutionary data of
SARS-CoV-2, we provide evidence that variant selection correlates with systematic shifts in
genome-wide k-mer frequencies. We also performed a single-colony bottleneck passage
experiment in E. coli under sublethal antibiotic pressure, revealing that k-mer frequency
dynamics are not merely observational artifacts but can have tangible fitness consequences

under controlled selection regimes.

Our results yield four key findings. First, we show that the median kGain score of given
variants in E. coli and S. cerevisiae populations tends to increase over the course of
evolution, suggesting a bias toward certain k-mer enrichments '°. Second, essential genes
preferentially accumulate variants with higher kGain scores, indicating a functional link
between k-mer selection and vital cellular processes. Third, fixed mutations, those that
persist over multiple generations, consistently exhibit higher kGain values, underscoring the
evolutionary advantage conferred by these motifs. Finally, imposing sublethal antibiotic
pressure in a single-cell bottleneck experiment amplifies selection for high-kGain variants,

tying k-mer frequency biases directly to adaptive stress responses.

Collectively, these insights propose an expanded view of molecular evolution, one that

considers the potential role of k-mer frequencies within the same genome, intra genome
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conservation, as a critical, yet largely overlooked, layer of selection. By tracking k-mer
dynamics through the kGain metric, we establish a new avenue for identifying variants that
may be key to adaptation. As genome sequencing efforts broaden across diverse organisms
and ecological contexts, this framework holds promise for enhancing our understanding of
how genomic architecture evolves under selective pressures, complementing the
well-established narratives of cross-species conservation and protein-focused evolutionary

dynamics.
Results
k-mer frequency patterns within and between genomes

k-mers are short nucleotide sequences commonly used in bioinformatics for similarity
searches, sequence alignment, and homology detection '*%. To examine whether k-mers
experience selective pressures, we explored their non-uniform distribution within individual
genomes, followed by an investigation into the underlying principles behind such bias. To
visualise k-mer frequencies, we generated Frequency Chaos Game Representations (FCGR)

using Python (kaos) package *°.

In our analysis, we represented k-mer frequencies using the Frequency Chaos Game
Representation (FCGR), in which each k-mer is assigned to a specific coordinate in a
two-dimensional matrix (Fig. 1a), thereby encoding global sequence composition. As a
benchmark, we computed absolute frequency differences for randomly paired k-mers
sampled from E. coli genomes and found that pairs differing by a single nucleotide exhibited
significantly smaller disparities than random pairs, a pattern that persisted up to Hamming
distances of three (Fig. 1b). This observation reflects the FCGR’s recursive partitioning, which
clusters k-mers sharing a common prefix into neighboring matrix regions and thus preserves
sequence similarity in spatial proximity (*°). When applied to diverse genomes, the FCGR
revealed fractal-like motifs in mammalian sequences, for example, human (Homo sapiens;
Fig. 1c), gorilla, and mouse (Mus musculus; Supplemental Fig. Sla—b), whereas more
discrete, non-fractal patterns emerged in zebrafish (Danio rerio; Supplemental Fig. S1c) and

yeast (Saccharomyces cerevisiae; Fig. 1d) *.
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Notably, these FCGR k-mer frequency-based correlations preserve phylogenetic relationships
across species *** (Supplemental Fig. S1d). Although k-mer frequency conservation across
closely related species is well captured by phylogenetic trees, the intra-genomic rationale for
differential k-mer frequencies remains largely unexplored®. To explore whether
genome-specific k-mer patterns are selectively maintained, we generated randomised E. coli
genomes while preserving overall nucleotide ratios. In contrast to the original E. coli
sequence, these simulated genomes displayed no discernible fractal pattern in their FCGR
heatmaps (Fig. 1le—f). Could these reflected fractal patterns arise because near-identical
k-mers exhibit comparable frequencies across the entire genome, a feature that is
biologically significant for selection? To explore this possibility, we investigated whether
similar near-identical k-mers within an E. coli genome share similar frequencies ?*. These

findings suggest the systematic conservation of k-mers within an individual genome.

In our pursuit to investigate whether such differential k-mer frequencies are linked to
evolution, we hypothesized that SNVs under selection might replace low-frequency k-mers
with high-frequency ones. To test this, we developed a simple score, kGain, which quantifies
the relative abundance of k-mers associated with alternative alleles compared to reference
alleles (Fig. 1g). For further information on kGain computation, please refer to the Methods
section. For all our analysis, the value of k was set to 10 (Supplemental Fig. Sle-f,
Supplementary Note 1). To illustrate how k-mers are captured within a genome, we used
yaal A7764C as an example (Fig. 1h). In the following sections, we leverage the kGain score

to explore the link between within-genome differential k-mer frequencies and selection.
k-mer Enrichment Patterns Reflect Selective Pressures Across Evolutionary Contexts

To evaluate whether local sequence composition influences the retention of genetic
variants, we analyzed k-mer frequency dynamics across diverse evolutionary landscapes,
including laboratory evolution, natural viral adaptation, and controlled antibiotic stress. We
first examined high-resolution longitudinal whole-genome sequencing data from the
long-term evolution experiments (LTEE) in Escherichia coli and Saccharomyces cerevisiae,
which capture the stepwise accumulation of mutations across tens of thousands of
generations under defined, nutrient-limited conditions. These systems provided a robust

framework for observing how adaptive trajectories unfold over time. To extend our analysis
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into natural evolution, we analyzed global genomic surveillance data from SARS-CoV-2,
leveraging the emergence of major viral variants during the COVID-19 pandemic as a model
for rapid, large-scale adaptation driven by host immunity, transmission dynamics, and
medical interventions. Finally, to assess how acute selective pressures shape k-mer profiles
in real time, we performed a de novo single-colony bottleneck evolution experiment in E.
coli exposed to incrementally increasing sublethal kanamycin concentrations. This controlled
setup allowed us to monitor evolutionary responses under antibiotic stress, directly linking
mutational dynamics to survival outcomes (Fig. 2a—d). Together, these datasets provide a
unified framework for assessing whether, and how k-mer frequency changes accompany

evolutionary selection across timescales and ecological settings.

We evaluated several critical dimensions to interpret the significance of kGain scores,
including the classification of mutations as purifying, directional, or neutral **; the fixation
status of variants (fixed vs. not-fixed); the distinction between essential and non-essential
gene; and the genomic context of mutator versus non-mutator lineages (Fig. 2e-h). As a first
step, we applied kGain to reanalyze genomic data from the landmark E. coli LTEE initiated by
Lenski and colleagues **?’. Guided by established population genetic theory (e.g., neutral
theory 1968), we categorized mutations identified in the LTEE into three classes, positively
selected (directional selection), negatively selected (purifying selection), and neutral, based
on the trajectories of their allele frequencies over time?*?’%73°, Mutations were classified by
modeling allele-frequency trajectories on the log-odds scale and testing the per-generation
change in frequency. Mutations with a significantly positive slope (B:1 > 0, p < 0.05) were
classified as positively selected, those with a significantly negative slope (31 <0, p < 0.05) as
negatively selected, and mutations without a significant trend (p > 0.05) were considered
neutral (Supplementary Note 2) . We investigated certain aspects like the directional
selection, purifying selection and genetic drift (neutral) along with the AT to GC conversion.
We noticed directional selection was associated with higher kGain scores compared to both
neutral and purifying selection (Fig. 2i). We further analyzed kGain scores in mutator and
non-mutator backgrounds and observed a gradual increase in the abundance of alternate
k-mers over time in both groups (Fig. 2j), reflecting the progressive accumulation of

high-frequency alternate k-mers mutations under differing mutation rates.
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We examined the count of A/T to G/C conversions in both non-mutator (Fig. 2k) and mutator
(Fig. 2I). As shown in Fig. 2m, the odds of a mutation being classified as beneficial were 23%
higher for A/T to G/C substitutions than for other base changes (odds ratio = 1.23).
High-kGain loci also exhibited increased odds of being beneficial (OR = 1.10), indicating that
both the mutation class and kGain metric are associated with the predicted functional
impact of mutations (See Methods). Next, we examined whether generation-wise kGain
scores exhibit a systematic temporal pattern when calculated using a population-mutated
evolved genome (constructed by introducing mutations observed in the final generation into
the wild-type reference). We observed a clear increasing trend in k-mer enrichment over
time, with the rate of increase gradually plateauing in later generations, a biologically
meaningful signature consistent with mutation accumulation dynamics (Fig. 3a). To evaluate
whether this pattern could arise by chance, we performed a permutation test, which yielded
a Monte Carlo P =1x10"* (Cl = 0.768), indicating that the observed trend is highly unlikely to
occur randomly and underscores kGain’s robustness in capturing temporal shifts in sequence
composition during evolution (Supplementary Note 3). To benchmark our findings against
two state-of-the-art cross-species protein/DNA sequence foundation models, we evaluated
ESM1b (650 million parameters) * and Evo (7 billion parameters) *,as reference standards.
These models output the probability of observing an input given an amino acid (ESM1b) or
nucleotide (Evo) sequence across species. Notably, kGain is fundamentally different from
these two since it solely focuses on k-mer frequencies within a single reference genome. Log
Likelihood Ratio (LLR) score provided by ESM1b (Fig. 3b) (C.l.: 0.64, Monte Carlo P-value:
le-4) showed the best concordance, followed by kGain (Supplementary Note 4). No
significant association was detected with Evo (Fig. 3c) (C.I. : -0.40, Monte Carlo P-value: 1) .
We observed these trends consistently across individual populations as well. If kGain
effectively captures selection-driven shifts in genomic composition, we sought to validate
this by testing it against a well-characterized evolutionary transition reported by Blount and
colleagues. In the E. coli LTEE, population m3 exhibited a dramatic phenotypic change
around generation 33,000, marked by a sudden increase in turbidity due to the evolution of
citrate utilization under aerobic conditions, a major adaptive innovation. When we examined
the corresponding kGain trajectory, we observed a distinct elevation in median kGain values
precisely at this transition point. This alignment suggests that kGain can sensitively register

genome-wide shifts in selection pressure during key adaptive events®’ (Supplemental Fig.
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S1i). Based on our observation that kGain may reflect the selective retention of beneficial
mutations, we tested whether a simple linear model, using short k-mer frequencies, could
predict kGain. Although this approach explained part of the variation (R2 = 0.49, RMSE =
3.80, Pearson correlation = 0.70 on the test set), it fell short of precise prediction

(Supplemental Fig. S2a-g), as detailed in Supplemental Note 5.

Quantitative Dynamics of kGain Enrichment in Essential Genes: Fixed, Non-Fixed, and

Parallel Mutation Profiles

Understandably, essential genes are generally resilient to mutations, as mutation can impact
the function and therefore the organism’s survival or fitness. Intuitively, if kGain scores truly
indicate evolutionary advantage in essential genes, we would observe a bias towards
variants with higher kGain scores. This is because essential gene mutations with poor kGain
scores would often have a deleterious impact on the organism, thereby eliminating
populations carrying the variant allele. We sourced essential/non-essential categorization
from the study by Gerdes et al. *2. Aligned to our hypothesis, we found elevated median
kGain scores for single nucleotide substitutions associated with the essential genes, as
compared to those associated with the non-essential ones (Fig. 3d,e). Bootstrapped
distributions of mean kGain scores for essential and non-essential mutations in mutator and
non-mutator populations, generated using 10,000 iterations with 90% subsampling of the
minimum group size per iteration, revealed a similar pattern of enrichment (Fig. 3f,g).
Longitudinal analysis indicated that generation wise median kGain scores for essential genes
remained consistently above those of non-essential genes throughout the experiment,
reflecting the stronger constraint and purifying selection operating on essential loci (Fig.
3h,i). Unlike kGain, LLR scores did not exhibit a comparable separation between essential
and non-essential genes, suggesting that LLR is less sensitive to such functional

constraints.(Supplemental Fig. S3a-c).

We compared kGain scores between fixed and not fixed mutations in both mutator and
non-mutator backgrounds. Fixed mutations were defined as those with allele frequencies
greater than or equal to 0.95 at the last two observed time points of the experiment
(Supplementary Note 6). We observed that fixed mutations exhibited significantly higher

kGain scores than those not fixed at the endpoint in both mutator and non-mutator
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populations (Fig. 3j,k and Supplemental Fig. S3d,e). This pattern suggests that mutations
which reach fixation are typically under stronger selection, consistent with the expected

outcomes of adaptive evolution.

To assess whether loci repeatedly mutated across independent lineages, the so-called
parallel genes, harbor signatures of adaptive selection, we analyzed their kGain trajectories
in comparison to non-parallel genes, as defined by *. Across the LTEE, parallel genes,
recurrently mutated across independent populations, consistently showed elevated median
kGain scores, with this enrichment being especially prominent in mutator lineages compared
to non mutator. As an additional control, we examined allele count trajectories, which

revealed similar trends (Fig. 3I,m).

We binned mutations into 5,000-generation intervals and calculated median allele
frequencies for each bin, stratified by mutator status (mutator vs. non-mutator) and
parallelism status (parallel vs. non-parallel genes). Median allele frequency trajectories were
visualized using smoothed line plots and overlaid scatter points representing bin-wise
medians. To test whether parallel gene mutations exhibited consistently higher allele
frequencies compared to non-parallel gene mutations within each generation bin, we
performed a one-sided Mann—Whitney U test separately for mutator and non-mutator
populations. Parallel gene mutations in mutator populations rapidly rise to high allele
frequencies than non-parallel genes, with significance across most generation bins.
Non-mutator populations also favor parallel mutations but at lower frequencies, while
non-parallel genes remain largely neutral (Fig.4a). A similar pattern was observed for
median kGain, with parallel gene mutations, showing consistently stronger positive selection

signals compared to non-parallel genes (Fig. 4b).

We then compared kGain distributions between coding and non-coding regions, focusing on
essential versus non-essential genes. Essential genes consistently harbored variants with
higher kGain scores, a trend most evident in non-mutator populations. This pattern implies
that under lower mutation supply, selection more stringently filters variants, favoring those
in high-kGain contexts that preserve core biological functions. Non-mutators, therefore, may
be more efficient in retaining beneficial or tolerable mutations in essential coding regions

while mutators, with broader exploration, show more diffuse kGain distributions
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(Supplemental Fig. S3f-k). Together, these findings highlight how kGain reflects both
evolutionary constraint and adaptive prioritization across functionally important genomic

regions.

Module-Specific kGain Dynamics in Mutator vs. Non-Mutator Lineages

In mutator populations (Fig. 4c), early generations (5K—20K) show broadly negative to
neutral median kGain across nearly all functional modules, consistent with initial purifying
selection or drift. From ~30K generations onward, however, the majority of categories
transition to positive kGain (pink/magenta) by 60K. The most pronounced enrichments occur
in cell motility, amino acid transport & metabolism, transcription, posttranslational
modification, and intracellular trafficking & secretion, indicating these systems become focal
points of positive selection as adaptation unfolds. A handful of core functions, such as
general function prediction and nucleotide transport & metabolism, remain closer to zero or

slightly negative (light green), suggesting ongoing constraint or balanced turnover.

By contrast, non-mutator lineages (Fig. 4d) exhibit a largely static kGain landscape. Across all
timepoints, most modules, including cell wall/membrane biogenesis, carbohydrate
transport, DNA replication & repair, and energy production & conversion—remain neutral to
mildly beneficial, with only transient (Supplemental Fig. S4). Even by 60K, non-mutators
show little sustained positive kGain, underscoring that without an elevated mutation supply,

adaptive shifts in k-mer frequencies are both weaker and less widespread.

Intra-species generalization of kGain predicts mutational effects with a attention model

In biological systems, the effect of a mutation depends not only on the alternate allele but
also on its neighbouring sequence, a key concept in modern evolutionary modeling.
Traditionally, approaches such as ESM rely on inter-species conservation to predict
mutational effects. Here, we investigated whether kGain can also capture mutational effects
within a species by quantifying the influence of local sequence context. To test this
hypothesis, we trained an attention-based neural network (see Methods) to predict kGain
from sequence windows centered on the mutation site in the reference genome of
Escherichia coli B strain REL606. We then evaluated whether the model could predict

mutational effects, as represented by kGain scores, in other E. coli strains. Standard one-hot
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encoding for SNP regression often fails to encode the exact position or nature of the allele
change within the sequence. To address this, we introduced a dual-encoded sequence
representation (see Methods), which embeds both the reference flanking region and the
alternate allele, providing the model with complete information about each mutation event
(Fig. 5a). This encoding served as input to the transformer-based attention model. To further
improve learning, we developed a custom loss function (see Methods) inspired by focal loss,
emphasizing samples with higher prediction errors and encouraging the model to better fit

challenging cases compared to standard loss functions.

For robust evaluation, we reserved 20% (6,879 samples) of the LTEE mutation data as an
independent test set, using the remaining 80% (27,512 samples) for training and validation
with an 80/20 split per epoch. The held-out set allowed us to rigorously assess in-domain
performance. Both training and validation losses decreased steadily over 500 epochs (Fig.
5b), without evidence of overfitting. Additionally, we observed that optimizing the custom
loss led to concurrent reductions in both mean absolute error and mean square error (Fig.
5c¢-d), further supporting the model’s generalizability. On the held-out test set, the model
achieved a Pearson correlation of 0.81, R? of 0.64, and MAE of 2.49 between actual and
predicted kGain scores. While the MAE was moderate, the high correlation demonstrates
that the model effectively learns the ranking of mutational effects, even if the exact values
are not perfectly predicted (Fig. 5e). The kGain error distribution in the LTEE dataset
followed a Gaussian profile with a mean near zero and standard deviation of 3.14 (Fig. 5f).
To test robustness to out-of-domain data, we evaluated the model trained solely on E. coli B
strain REL606, on mutations from the E. coli MG1655 strain (see “Bacterial adaptation
under antibiotic pressure validates kGain scores” below), without any fine-tuning. In our
in-house experiment, we found that the Y515N mutation in fusA was strongly selected, as its
high kGain score predicted both robust kanamycin resistance and maintained growth fitness,
making it an optimal adaptive mutation compared to other lower kGain variants. The
attention model predicted a kGain value of 3.26 for this mutation, closely matching the
actual value and demonstrating the model’s ability to generalize to other strains. When
evaluated on the entire in-house dataset (out-of-domain), the model maintained strong
performance (Pearson correlation = 0.82, R = 0.67, MAE = 2.48; Fig. 5g), indicating that the

kGain framework can generalize mutational effects across strains within a species. To further
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interpret the model’s predictions, we visualized attention maps (Fig. 5h) for the Y515N
mutation in fusA. The maps revealed that the model focuses most strongly on the mutation
site while also considering neighboring bases, consistent with biological principles. This
pattern highlights how the dual-encoded sequence representation enables the model to
explicitly recognize and interpret the mutation’s precise location. To determine whether this
attention pattern was unique to one sample or represented a broader trend, we analyzed
average attention maps across the sequence window for multiple samples. We found that all
positions contributed to kGain prediction, with the greatest importance assigned to
nucleotides near the mutation site. This influence decreased exponentially with distance
from the mutation, in line with the rolling window approach for kGain calculation, where
central nucleotides appear in more windows and thus have a larger impact on kGain.
However, even distant positions contributed to the prediction, as reflected in the attention
maps for both E. coli B strain REL606 and E. coli MG1655 (Fig. 5i-j). These findings
underscore the importance of both local and broader sequence context in determining

mutational effects.

Bacterial adaptation under antibiotic pressure validates kGain scores

An in-house mutational-accumulation experiment under antibiotic pressure was performed
to evaluate the persistence of k-mer based selection biases during adaptation to kanamycin.
Wild-type E. coli K-12 MG1655 lineages were subjected to five successive serial passages in
sublethal, incrementally increased kanamycin concentrations (0.006 — 0.1 mg-mL™) using a
single-colony bottleneck regime. One lineage (D) was maintained on nutrient-rich
Luria—Bertani agar, while three parallel replicates (R1, R2, R3) were propagated in minimal
M9 medium. Replicate R2 failed to re-establish growth after the second passage and was
subsequently excluded. At each transfer, the colony capable of surviving a 2-4x increase in

kanamycin concentration served as the inoculum for the next passage.

By the end of passage five, replicate R1 exhibited no detectable growth and was terminated.
Growth kinetics of all the endpoint clones were then quantified both in the presence (D:
0.08 mg-mL™; R1: 0.20 mg-mL™; R3: 0.10 mg-mL™") and absence of kanamycin in LB media.

Population D displayed growth indistinguishable from wild type under both conditions,
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whereas R1 and R3 exhibited significantly impaired proliferation even without antibiotic

challenge (Fig. 6a; Supplemental Fig. S5a).

Whole-genome sequencing of all clones enabled us to score all single-nucleotide variants
(SNVs) by their kGain values using our established pipeline. In the D population, “fixed”
mutations (persisting across 24 passages) bore significantly higher kGain than transient
variants (Fig. 6b; Supplementary Fig. S5c¢), and mutations fixed at frequency = 1.0 exhibited
elevated kGain relative to those that failed to fix (Fig. 6¢; Supplementary Fig. S5b). Total SNV
counts were similar across populations (D = 36; R1 = 29; R3 = 26), but D showed a
pronounced skew toward high-frequency and fixed alleles, consistent with stronger
selection.

To validate our hypothesis, we examined fusA, encoding elongation factor G (EF-G), a protein
of five domains essential for ribosomal translocation. In population D, a Y515N substitution
in domain IV emerged at passage 4 and fixed by passage 5 (kGain = 5.81). In contrast, R1 and
R3 accumulated multiple fusA mutations in domains | and V, including 1158N (kGain = —-6.57),
654N (—1.06), T674A (1.05) in R1, and A76T (1.35), G575D (—6.60) in R3. To evaluate the
functional consequences of the Y515N substitution in EF-G, we subcloned the wild-type and
Y515N fusA alleles into the pProExHTA vector and transformed them into E. coli BL21(DE3).
Expression of both wild-type and Y515N EF-G variants was assessed by SDS—PAGE under
uninduced (0 mM IPTG) and induced (1 mM IPTG) conditions; the =80 kDa bands
corresponding to each EF-G protein were observed only upon IPTG induction (Fig. 6d). In the
absence of kanamycin, without IPTG induction,both strains exhibited identical growth
kinetics, demonstrating no basal fitness defect. Upon induction and exposure to 0.008
mg-mL™" kanamycin, cells expressing FusA Y515N sustained robust growth over an 8-hour
time course (Fig. 6e), whereas wild-type FusA, expressing cells, failed to proliferate. These
results indicate that the Y515N mutation impairs kanamycin’s interaction with the ribosome,
thereby conferring antibiotic resistance (Fig. 6f). Domain IV mutations have been implicated
in modulating EF-G—ribosome interactions without abolishing translocation. Although EF-G is
vital for translation, several studies have reported non-lethal fusA mutations in mediating
aminoglycoside resistance (Holley et al. 2022; Mogre, Veetil, and Seshasayee 2017;
Rodriguez de Evgrafov et al. 2020; Chulluncuy et al. 2016). While the precise mechanism

remains unclear, we speculate that the Y515N substitution of fusA in domain IV affects its
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binding to the 30S ribosome (Fig. 6g,h and Supplementary Fig. $5d), preserving EF-G’s
ability to facilitate translocation. Our overall findings suggest that k-mers are selectively
favored even under selective pressure. In population D, robust growth was maintained,
suggesting that Y515N could confer resistance without compromising fitness associated with
higher kGain scores. In contrast, fusA variants R1 and R3 provided only partial resistance,
correlating with lower kGain scores and diminished growth.

Together, these data demonstrate that k-mer based selection biases endure under antibiotic
stress and can predict adaptive trajectories. The Y515N fusA mutation, characterized by a
high kGain score, confers kanamycin resistance without compromising fitness, whereas
lower kGain fusA variants in R1 and R3 afford only partial resistance at the cost of reduced
growth. This work underscores the utility of kGain as a genome-wide metric for forecasting

functionally important adaptive mutations.
Experimental evolution in S. cerevisiae reveals consistent kGain trends

Following the assessment of a prokaryotic system, we inquired if eukaryotes would conform
with the elevation of the kGain score levels along the evolutionary time-course. To this end,
we performed meta-analysis of genomic sequencing dataset from a S. cerevisiae LTEE
experiment **. The study chose 30 focal populations (12 diploid populations, 12 MATa
populations, and 6 MATa populations) across three environments, cultivation in yeast
extract peptone dextrose (YPD) at 30°C, in synthetic complete medium (SC) at 30°C, and in
synthetic complete medium (SC) at 37°C. We computed kGain scores for 133,538
substitutions from across the 90 populations under study. Notably, authors performed
genomic sequencing for samples from only six representative timepoints. We observed a
gradual increase in both the median fitness and median kGain scores over successive
generations (Fig. 7a). To quantify this trend, we employed least squares regression and
observed a strong correlation (Pearson’s rho = 0.9635) between median fitness and median
kGain (Supplementary Fig. S6a). Despite the absence of a rise in mutation numbers akin to
those observed in the E. coli LTEE study, populations did not display hypermutator
phenotypes, indicating a steady accumulation of beneficial mutations even in the absence of
mutator phenotypes. We next examined the essential vs. non-essential genes dynamic and
observed that essential genes consistently exhibited higher kGain scores compared to

non-essential ones. This pattern implies a stronger selective pressure on essential genes to
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preserve beneficial or neutral variants. Notably, the trend remained significant across all
generations, underscoring the greater evolutionary constraint these genes face in
maintaining functional integrity (Fig.7b). We closely examined the fixed mutations in the
populations. The authors labelled a mutation as "fixed" at a particular time point if it met
the criteria of having coverage of at least 5X and being present at a frequency of greater
than or equal to 40% (for diploids) or 90% (for haploids). Notably, fixed mutations were

assigned higher kGain scores, as compared to ones not fixed (Fig. 7c).

Pathogenic SARS-CoV-2 variants are assigned elevated kGain scores

The recent outbreak of SARS-CoV-2 arguably offers the most extensive data on natural
evolution, supported by comprehensive large-scale genomic profiling initiatives. To
comprehensively analyze the mutational landscape of the SARS-CoV-2 virus, we
implemented a robust pipeline for mutation analysis, as illustrated in Supplemental Fig. S6b.
We took around 0.5 million high-quality genome sequences from GISAID (last accessed on:
29-08-2022) and made SNP calls, yielding ~54,000 unique SNPs. Within our analysis, we
delineated gene length and unique mutation counts (Supplemental Fig. S6.c,d and table S1).
We employed two widely recognized approaches to classify SARS-CoV-2 variants: functional
categorization of associated genes and their pathogenic characteristics with implications for
human health. Functionally, genes are divided into structural, non-structural, and accessory
classes. Structural genes, such as Spike (S), Envelope (E), Membrane (M), and Nucleocapsid
(N), are essential for the structural integrity and infectivity of the virus. These genes facilitate
viral entry into host cells by binding to the ACE2 receptor and contribute to immune evasion
and viral persistence. Non-structural genes, exemplified by ORFlab, are crucial for viral
replication and transcription which are vital for its lifecycle and interaction with the host
immune system. Accessory genes, including ORF3a, ORF6, ORF7a, ORF7b, ORF8, and ORF10,
enhance the ability of the virus to evade immune responses and modulate host cell
functions such as antagonizing the host's interferon response (Fig. 7d). Based on pathogenic
roles and public health implications, the World Health Organization (WHO) has classified
SARS-CoV-2 variants as Variants of Interest (VOI) or Variants of Concern (VOC) (table S2).
VOIs have mutations affecting virus behavior, including transmissibility, severity, detection,
or treatment. VOCs meet VOI criteria and cause severe disease, significantly reducing

vaccine effectiveness and impact healthcare systems. Examples of lineages associated with
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VOIs include lineages like Lambda and Mu, while those associated with VOCs include Alpha,
Beta, Gamma, Delta, and Omicron (Supplemental Fig. S6e). More details on COVID-19 data

processing and filtering can be found in the Materials and Methods section.

We observed a significant contrast between the control variants and the VOC/VOI variants,
with the latter exhibiting substantially higher kGain scores (Fig. 7f). Interestingly, gene
groups revealed that kGain scores for VOC/VOI variants were higher than those for control
variants, particularly within accessory and structural genes (Fig. 7e). We set the kGain cutoff
at 0 and divided the variants into two categories: <0 and 20 (Fig. 7g). Variants in the latter
group were found to be present in considerably higher numbers of COVID-19 genome
sequences, suggesting that our score could indicate the type of selection pressure (positive

or negative) experienced by a mutation.

Zhang et al. (2022) ** reported mutations that contribute to the pathogenicity and fitness of
the virus. We examined the kGain profile of the reported VOC/VOI mutations and found that
ORF3a:526L, ORF3a:T223l, and ORF3a:5171L had higher kGain scores, whereas ORF3a:Q57H
and ORF3a:5253P had lower kGain scores. These variants highlight changes in accessory
proteins, which may exhibit a heightened propensity for adaptation through immune

evasion.

Another study by Obermeyer et al. (2022) * established that the SARS-CoV-2 pandemic has
been dominated by several genetic changes of functional and epidemiological importance,
including the spike (S) D614G mutation. This mutation is associated with higher SARS-CoV-2
loads and has contributed to the increased infectivity and fitness of the virus

(Supplementary Note 8)

Deep Mutational scans (DMS) uncover kGain signatures in key genes

Having demonstrated kGain’s utility in capturing evolutionary constraints in both the E. coli
LTEE and our in-house antibiotic adaptation experiment, we next applied it to deep
mutational scanning (DMS) data. DMS systematically evaluates all possible substitutions in
essential genes, providing a comprehensive landscape of mutational effects. By examining
kGain scores in this context, we aimed to determine whether the adaptive signals observed

in long-term evolution also arise under the focused conditions of DMS.
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We analysed three essential E. coli genes murA, fabZ, and IpxC, each vital for cell envelope

biosynthesis *.

Specifically, murA catalyzes the first step in peptidoglycan precursor
formation, fabZ acts as a dehydratase in fatty acid synthesis, and IpxC produces lipid A, a
core component of the lipopolysaccharide (LPS) layer. Among these, murA appears
significantly mutation-sensitive, potentially permitting more beneficial shifts than fabZ or
IpxC. A heatmap (Fig. 8a,b) comparing kGain with tolerance scores showed alternating
gradients, where regions of high tolerance often correlated with higher kGain. Similar
patterns emerged for IpxC and fabZ (Supplemental Fig. S7a,b). By applying a
tolerance-score cutoff of 0.8 (Fig. 8c,e), we observed that “tolerant” mutants generally had

higher kGain than “non-tolerant” ones (cutoff = 1, Supplemental Fig. S7c,e), implying that

some variants could impact beneficial effects.

To explore the functional impact of these mutations, we examined relative solvent
accessibility (RSA) in conjunction with kGain. RSA indicates whether a residue is
surface-exposed or buried within the protein structure. We found that residues with RSA > 1
(i.e., surface-exposed) frequently aligned with higher kGain (notably in murA and lpxC)
(Supplemental Fig. S7f), suggesting that exposed sites may be more prone to accumulate

beneficial mutations.

Discussion

This study introduces kGain as a compact and interpretable metric that captures
selection-linked shifts in oligonucleotide frequency during evolution. Traditional models of
selection often rely on changes in protein structure, interspecies conservation, or allele
frequency trajectories. Here, we propose that within-genome k-mer dynamics offer an

orthogonal and quantifiable dimension of evolutionary constraint and selection.

Across diverse evolutionary systems, including laboratory-evolved E. coli and S. cerevisiae
populations, SARS-CoV-2 genome surveillance, and in-house antibiotic adaptation
experiments, we observed a consistent trend: variants with higher kGain scores tend to
persist and fix over time. These findings suggest that high-kGain contexts, reflecting
enriched sequence motifs, are more likely to harbor beneficial or tolerated mutations. This is

particularly evident in essential genes, where elevated kGain scores imply selective pressure
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not only on the coding potential but also on local sequence architecture that may influence

regulatory robustness or mutational resilience.

Our analysis reveals that fixed variants, essential-gene mutations, and substitutions in
parallel genes all show higher kGain scores than their respective controls. Parallel genes,
recurrently mutated across independent LTEE populations, are especially informative. We
find that these genes accumulate mutations more rapidly and in higher-kGain contexts,
particularly in mutator backgrounds. Bootstrapped trajectories further reveal a
generation-wise increase in both allele frequency and kGain in parallel loci, indicating that
recurrent adaptive evolution may be facilitated by favorable motif architectures. These
results suggest that mutators, despite their elevated mutation load, are not phenotypically
compromised because they sample and fix beneficial mutations in high-kGain sequence
contexts. This provides a mechanistic rationale for the fitness parity observed between

mutator and non-mutator lineages over 60,000 generations.

In the context of environmental stress, our single-colony bottleneck experiment under
sublethal kanamycin selection showed that fixed mutations in the adaptive lineage
(Population D) were significantly enriched for high-kGain scores. The fusA Y515N mutation,
which reached fixation in Population D, conferred kanamycin resistance without growth cost
when overexpressed in a wild-type background. In contrast, fusA mutations with lower or
negative kGain in other populations failed to confer resistance or sustained growth. These
results provide direct functional validation that high-kGain contexts are predictive of

adaptive potential.

Complementing our experimental validation, we demonstrate that kGain is computationally
predictable. A transformer-inspired attention-based neural network, trained on short
nucleotide windows flanking SNPs, achieved a Pearson correlation of r = 0.82. The model
learned biologically meaningful patterns from both the local sequence context and the
mutant allele, suggesting that k-mer-driven selection pressures can be approximated
without exhaustive full-genome frequency computation. Importantly, this also opens the

door for applying kGain inference across species using learned representations.
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Our DMS analysis further supports these insights. While the correlation between kGain and
tolerance scores is modest, we observe that residues with high relative solvent accessibility
(RSA), especially in murA, tend to show elevated kGain. This suggests that surface-exposed
residues may be more permissive to beneficial substitutions in enriched k-mer contexts.
Although kGain alone is not a substitute for functional assays, it captures a meaningful
dimension of mutational tolerance that may complement structural and biochemical

predictors.

We also observed significant kGain enrichment in natural viral evolution. SARS-CoV-2
Variants of Concern (VOCs) and Variants of Interest (VOIs) show elevated kGain scores,
especially in structural and accessory genes. This suggests that even in fast-evolving RNA
viruses, motif-level constraints may influence the success and spread of adaptive mutations.
These findings align with prior work demonstrating that motif-level conservation is

preserved even in genomes under rapid drift.

While our study focuses on point mutations, we acknowledge that other forces, horizontal
gene transfer, indels, transposons, also shape genome evolution. However, the controlled
context of LTEE and the reproducibility of kGain enrichment across independently evolved

systems argue for a consistent selection-based mechanism at the k-mer level.

In conclusion, our findings support a model in which selection not only targets genes or
phenotypes but also operates on the sequence context itself. The consistent enrichment of
high-kGain mutations in adaptive lineages, essential loci, and parallel genes, combined with
predictive accuracy from machine learning, suggests that k-mer architecture plays a
previously underappreciated role in shaping evolutionary trajectories. As genome-wide data
continues to accumulate, incorporating motif-level selection into evolutionary models could

provide new insights into how mutation, sequence context, and fitness co-evolve.
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Methods
Mathematical formulation of FCGR

Let S be a DNA nucleotide string of length N, where S[i] represents the /" symbol (1<i<N)
corresponding to a DNA nucleotide base (A, C, G, T). The notation S[../] denotes the DNA
sequence prefix ending at position i (S[../1=S[1..i]). The CGR iterative algorithm operates on
an R? space, with each vertex corresponding to a DNA base (A, C, G, T). For a given DNA

sequence S of length N, CGR maps each S[..i] prefix to the point X €R? using an iterative

procedure.
X, = (0.5, 0.5) e (1)
x=x_ .+ O.S(pl, —xi_l) R )

Where,
p, = (0,0) ifSl_ = A

= (0,1) ifSl_ = C

= (1,O)ifSL_ = G

= (1,1)ifSL_ =T

In the original formulation *’, the initial point (x0 ) was taken as the center of the square (0.5,

0.5). Alternatively, this point could be chosen randomly within the square. The user can also

customize the vertex for P, corresponding to a given Si. Here, Sl, represents the randomly

chosen vertex for the " step of the walker.

FCGR heatmap generation

We used the kaos Python package *° to produce the FCGR encoding matrix. The k-mers

frequencies, returned by kaos, were scaled by dividing each k-mer frequency by the total
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k-mer count in the DNA sequence. The 1024 x 1024 pixel FCGR heat maps show the negative

log of these normalized frequency values.

Computing the kGain score

kGain scores associated with single nucleotide variation (SNVs) are computed solely by using
the reference genomes of the respective organisms — E. coli B str. REL606 for the Goods
dataset, S. cerevisiae for budding yeast LTEE and Severe acute respiratory syndrome
coronavirus 2 isolate Wuhan-Hu-1 for SARS-CoV-2. Further details pertaining to the

individual datasets can be found in the following sub-sections.

Below are the steps for kGain score computation.

A. Sequences with the SNV and flanks: For every variant, we generate two sequences
of length 19 (considering k-mer length is 10), one with the variant allele at the
middle (10" position), and the other with the reference allele at the same location.
Left and right flanks are sourced from the associated reference genome, depending
on the organism.

B. k-mer generation using rolling windows: A total k (k = 10) windows are generated
for each variant, such that each window contains the reference/alternate allele i.e.,
the position of the alternation. Rolling window based k-mer generation is performed
in pair once for the reference sequence and once for the sequence carrying the
variant of interest, giving rise to sets of k-mers per variant.

C. kGain computation: For each k-mer, its occurrence across the reference genome is

tracked, which finally contributes to the kGain computation.

k Fo"41
kGain = ¥ In(—“—),
v +1
i=1 i(v)

Where, kGainv score is computed for each variant v by adding the natural log of the fold

change between the genomic frequencies of the k-mer containing the alternate allele (
!

Fi(v)a t)and the reference allele (Fi(v)ref ) within each i window, across all windows. In this

equation k is the total number of k-mers generated using the rolling window method, both
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for the reference and alternate sequences. Since the computation is on a logarithmic scale,
both division by zero and taking the logarithm of zero pose issues. To address this, a pseudo
count of 1 is added to both the numerator and denominator. This ensures numerical stability
by preventing division by zero and avoiding undefined logarithmic values when the alternate

k-mer frequency is 0.

LLR Score
We utilize the ESM1b model to compute the Likelihood ratio (LLR) exclusively for missense

mutations across all datasets described below. The ESM1b model is being harnessed from

the GitHub repository (https://github.com/ntranoslab/esm-variants).

Evo Score

The Evo model, trained on 2.7 million prokaryotic and phage genomes, allows zero-shot
prediction of how small nucleotide sequence changes affect overall organismal fitness. For
each mutation, we extracted a 101-base sequence centered on the mutation position,
including 50 bases upstream and 50 bases downstream, with the mutated allele at the

center. The Evo-1-131k-base model was then used to generate a log likelihood score for each

101-base sequence (https://github.com/evo-design/evo).

Overview of dataset

To explore the utility of kGain score, we performed meta-analyses of genomic sequencing
data from laboratory evolution experiments involving E. coli and S. cerevisiae (budding
yeast). Further we used Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) data
from the GISAID repository. Apart from these, datasets from two other studies were used for

various analyses.

E. coli LTEE data (Goods dataset)

The E. coli LTEE is an ongoing study in experimental evolution that began in 1988 by Richard
Lenski at the University of California, Irvine *. It observes the evolutionary alterations across
12 genetically identical populations that have been consistently maintained in a controlled
environment * ?°, We collected bacterial fitness measurements and sequencing data from

two independent studies by Weiser et al. and Goods et al. Weiser and colleagues performed
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competitive fitness assays for up to 50,000 generations, totalling 928 screened samples
across 12 populations. 41,962 variants identified by Goods and colleagues * were filtered to
include only single nucleotide substitutions, resulting in 36,923 variants. Both these datasets

are accessible at https://github.com/benjaminhgood/LTEE-metagenomic.

S. cerevisiae LTEE data (Johnson dataset)

The S. cerevisiae LTEE experiment comprised 205 (124 haploid and 81 diploid) populations,
propagating up to ~10,000 generations in three different environments *. For each of the
three environments, the authors selected 30 focal populations (12 diploid, 12 MATa, and 6
MATa) and sequenced them at six-time points, giving rise to 90 whole genome sequences.
Upon request, we received the unfiltered .vcf file (144,708 variants), from which we filtered
the single base substitutions, resulting in 133,538 variants. We obtained the fitness data

from the same publication *.
SARS-CoV-2 dataset

About 0.5 million (N=477, 667) high-quality SARS-CoV-2 genomic sequences were
downloaded from the Global Initiative on Sharing All Influenza Data (GISAID) (GISAID
Initiative (epicov.org)) EpiCoV database (last accessed on 29-08-2022) based on stringent
criteria - human as host, completed genomes, excluding low coverage data, availability of
patient clinical status and collection date ranging between 1st Jan 2010 and 29th Aug 2022.
Genome-wide variant identification and open reading frame (ORF) prediction were executed
using reference genome (Accession ID: NC_045512.2), employing an intricate multi-step
analytical approach that integrated the StrainFlow and CoV-Seq pipelines as described by the
authors. From a total of 68,364 unique mutations, 56,971 were identified as SNPs. Among
these, 54,085 SNPs were considered for further analysis. At the same time, 2886 variants
were excluded due to the presence of common variants spanning multiple genes, flank
lengths less than ten bp and lacking protein variant identifiers (HGVS_P). The refined variant

dataset was provided as input for the computation of the kGain score, as detailed above.

SARS-CoV-2 dataset preprocessing :

The preprocessing of the dataset contains the following steps :
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1. Calculating the mutation frequency and mutation count: The mutation frequency
for 54,075 SNPs is determined by dividing the mutation counts by the total sum of
mutation counts within a gene. These mutation counts for each variant were
obtained from the Python Outbreak.info APl package. Notably, 10 SNPs were
excluded from the analysis as they were not accessible through the API (Welcome to
the Python Outbreak.info package docs! — Python Outbreak.info API 0.1
documentation (outbreak-info.github.io)).

2. Integration of Lineage and Variant Classification in SARS-CoV-2: Data extracted from
the Python Outbreak.info APl comprised 334 variants, each associated with lineage
information including alpha, beta, gamma, delta, omicron, b.1.2, lambda, and mu.
Integrating this lineage data with unique SNPs allowed us to identify 144 variants.
Following this identification, these 144 variants were categorized into variants of
concern (VOC) and variants of interest (VOI), in accordance with the SARS-CoV-2
variant classification guidelines established by the WHO (COVID-19 variants | WHO
COVID-19 dashboard and SARS-CoV-2 Variant Classifications and Definitions

(cdc.gov)). The remaining variants were classified as controls within the analysis.

Bacterial adaptation experiment

Bacterial Strains

Escherichia coli (E. coli) strain MG1655 was used as the wild-type (WT) founder for the

adaptation experiment. All strains employed were isogenic with E. coli MG1655.

For clarity, the following definitions apply: Variants/Mutations: The list of mutations that
distinguish a mutant from its isogenic parent strain. Lineage: A temporal series of bacteria
connected by a continuous line of descent from ancestor to descendant. Clone: A population
of bacteria (typically a colony on agar) derived from a single founder cell. Founder: WT

bacterial strain used as a starting point for the experiment.

Cloning and Site Directed Mutagenesis
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fusA gene was cloned using standard cloning techniques. Briefly, fusA gene was PCR
amplified using the primer pair: Forward Primer - 5’ TATAGGATCCAATGGCTCGTACAAC 3’ and
Reverse Primer - 5" CTTTTCTCGAGTTATTTACCACGG 3'. PCR product and pProExHTA vector backbone
were digested using BamHI and Xhol to generate linear DNA fragments with sticky ends, ligated, and
transformed in DH5q. cells. Recombinant colonies were screened and sequencing was done to

confirm that fusA was free of any spontaneous mutations.

pProExHTA::fusA was used to generate pProExHTA::fusA Y515N using Phusion Site Directed
Mutagenesis Kit (ThermoScientific #F541) and primers: Forward Primer- -- 5’

GTCGTGGTCAGAATGGTCATGTT 3’ and Reverse Primer- 5 AACATGACCATTCTGACCACGAC 3.

Culture conditions

Two types of media were used for the adaptive experiments: Luria—Bertani (LB) broth/Luria
Agar (LA). For 100 mL of LB, the medium was composed of 1 g tryptone, 1 g NaCl, 0.5 g yeast
extract. The LA consists of LB medium with 1.5g agar. The pH was adjusted to ~7.0 prior to
autoclaving at 121 °C for 15-20 minutes. M9 Minimal Medium (M9A): M9 minimal medium
was prepared using a 5x M9 salts solution containing 32 g Na,HPO., 7.5 g KH,PO4, 1.25 g
NaCl, and 2.5 g NH.4Cl dissolved in 500 mL of distilled water. For 500 mL of M9A, the salts
were combined with additional components, including 1 M MgSQO4, 1 M CaCl,, 20% glucose,
agar, and 250 pL of trace elements solution (comprising FeCls, ZnSQOs, CuCl,, MnSQs,and

COClz).

Bacterial adaptation under selective pressure: Experimental setup

Four independent lineages were established from the WT. Population D was propagated on
LA plates, whereas Populations R1, R2, and R3 were maintained on M9A “>*!, A serial
passage strategy was implemented, whereby at each passage a single colony was selected
and transferred to fresh plates containing an incrementally increased sublethal
concentration of kanamycin ***3. Colony for each passage was based on selection and was
tailored to the specific growth environment: in LA, colonies were chosen based on growth
curve analysis **—since rapid proliferation in a nutrient-rich medium renders growth kinetics
a robust indicator of fitness—while in M9A, the INT/PMS assay was used to assess metabolic

45,46

activity ®*°, which more accurately reflects cellular fitness under nutrient-limited conditions.
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Following selection, the selected colony underwent minimum inhibitory concentration (MIC)
determination ¥/, and the sublethal concentration thus established was used for the
subsequent propagation. Initial MICs for kanamycin were 0.006 mg/ml in LA and 0.01 mg/ml
in M9A, reflecting distinct metabolic conditions. LA’s nutrient-rich environment promotes
rapid growth, potentially increasing antibiotic susceptibility, whereas M9A requires de novo
synthesis of essential metabolites, resulting in slower growth and a slightly higher MIC *3%°).
For Population D, kanamycin concentrations escalated from 0.006 mg/ml to 0.008, 0.01,
0.04, and 0.08 mg/ml across D1-D5. In M9A, Population R1 encountered 0.01, 0.05, 0.06,
and 0.2 mg/ml, while Population R3 followed a similar progression, culminating at 0.1 mg/ml

by passage 5 (Supplementary Note 6).

Colony Selection via Divergent Fitness Assays

Colony selection criteria were tailored to the growth environment; for population D (LA),
colony selection was based on growth kinetics. A 1% inoculum from a 3-hour culture (ODsoo
~0.8-1.0) was added to a 96-well plate containing fresh LB. Growth was monitored for 16
hours with ODso measured at ~ 30-minute intervals. The area under the curve (AUC) was
calculated, and colonies exhibiting the highest AUC were selected for the next passage.
Populations R1 and R3 (M9A): Due to the nutrient-limited conditions, metabolic activity was
assessed using an INT (1 mM) plus PMS (2.5 mM) redox-based colorimetric assay. Cultures
grown to an ODsoo of 0.8—1.0, 10 uL aliquots were applied onto Whatman® grade 3 filter
papers. Following the addition of 5 pL of the INT/PMS solution, the development of a purple
formazan precipitate was monitored. Samples were air-dried in the dark (1-4 hours),
scanned, and the color intensity (measured in the green channel) quantified using Image)™.

Colonies with the highest metabolic activity were advanced to the subsequent passage.

Antibiotics and Sublethal Concentration Selection

Kanamycin (purchased from SRL Labs, India) was dissolved in nuclease free water at a
concentration of 50 mg/ml prior to use. Kanamycin (Kan) was added to liquid and solid
media at the specified concentrations . To determine the appropriate sublethal antibiotic
concentration for each passage, minimal inhibitory concentration (MIC) assays were

performed in 96-well plates. Briefly, 1% of a pre-cultured bacterial suspension (ODsoo
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between 0.8 and 1.0, following a 3—4-hour incubation) was inoculated into wells containing
progressively increasing concentrations of kanamycin. Optical density (ODsoo) readings were

recorded 18—20-hour period at 37 °C.

Whole-Genome Sequencing

Whole genome sequencing (WGS) was outsourced where genomic DNA was extracted from
colonies using the DNeasy PowerSoil Pro Kit (Qiagen) according to the manufacturer’s
protocol. Library preparation was followed by paired-end sequencing (150 bp) on an lllumina
NovaSeq 6000 platform. Raw reads were quality filtered with fastp v0.12.4, and aligned to
the E. coli K-12 MG1655 reference genome (ASM584v2; GCF_000005845.2) using BWA-MEM
*°, Reads were converted to BAM format using samtools v1.6 , sorted with sambamba v1.0.1,
and duplicate reads were marked. Variant calling was performed with FreeBayes v0.9.21.7
after base quality recalibration with htslib v1.21. Variants were filtered using vcflib v1.0.10
and vt v2015.11.10, applying a minimum quality threshold of 20 and a minimum total read
depth of 10. Quality control metrics were generated using MultiQC v1.19, and the final
variant set was manually annotated using a GFF file

(GCF_000005845.2_ASM584v2_genomic.gff) to retrieve the names of the genes.

Growth Comparison Assays

To assess growth differences among evolutionary passages and populations, standardized
growth assays were performed in antibiotic-free LB medium. Overnight cultures (grown
without antibiotic to allow recovery) were diluted 1% into fresh LB and grown to an ODsoo of
~0.8. Subsequently, 1% inocula were transferred into 96-well plates containing LB, and
growth was monitored for 16 hours with ODsoo readings every ~ 30 minutes. This approach
enabled a comparative evaluation of growth kinetics across different passages and

populations.

For growth comparison assay between WT and Mutant FusA, plasmids (pProExHTA) carrying
the fusA and fusA Y515N genes were transformed into E. coli BL21 (DE3) cells. A single
colony of each was inoculated and grown overnight. 1 % of primary inoculum was used for 5
ml of secondary inoculation and grown for 3-4 hrs, till OD, reached 0.6. Subsequently, a

96-well plate containing 0.4 mM IPTG and 0.008 mg/ml kanamycin was set up with culture
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OD¢y, of 0.05. Growth was followed for 8 hrs and OD,,, was recorded and plotted every 30

minutes.
Deep Mutation Scan Dataset

Deep Mutational Scanning (DMS) data ** we computed kGain scores for all edits for IpxC,
fabZ, and murA genes, which are essential for bacterial viability. kGain was computed as
mentioned above. Unlike typical nucleotide mutations, DMS involves codon mutations.
Therefore, we adjusted our methodology to ensure the mutated codon position was always
present within the sliding window used for kGain calculations. This involved generating
flanking sequences to maintain the full three-nucleotide codon within every window.
Consequently, both the reference and alternate flanks in our DMS analysis were

standardized to a length of 17 nucleotides.

Statistical analysis

Throughout the paper, we have used one-sided Mann-Whitney U tests for statistical
significance analysis between two groups, wherever applicable, unless specially mentioned.
The one-sided Mann-Whitney U test is a non-parametric test used to assess whether one
data group tends to have larger values than the other, with the effect size calculated as

described in Supplementary Note 9.

Sequence Embedding Strategy for SNP Effect Prediction

Accurate prediction of mutational effects requires that a model recognize both the specific
nucleotide change and its sequence neighbors. However, standard one-hot encoding (OHE)
for SNPs often fails to capture the precise position or nature of the mutation, limiting both
biological interpretability and predictive power. To overcome this limitation, we introduced a
dual-encoded sequence representation. For each SNP, a sequence window (length: 2*kmer
length - 1) centered at the mutation was extracted. At each position, nucleotides were
encoded using standard one-hot vectors for A, C, G, and T. At the central (mutated) position,
both the reference and alternate alleles were explicitly encoded, with the alternate
nucleotide assigned a negative value in its channel. This approach highlights the mutational

event within the embedding, while also encoding wild-type and absent states. By providing
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the model with information on both the sequence neighborhood and the explicit mutation,
the dual-encoded representation enables more accurate and interpretable predictions of

mutational effects, outperforming standard encodings in this context.
Focal Loss Optimization for Accurate SNP Effect Prediction

In biology, a single nucleotide change can have different effects depending on its location in
the genome. Some mutations drive adaptation through directional selection, some are
eliminated by purifying selection, and many simply drift without strong effect. Because the
impact of each SNP is so context-dependent, predicting mutation effects can be especially
challenging for rare or complex cases. To address this, we combined our biologically
informed SNP embedding with a focal regression loss (gamma = 2), which places greater
emphasis on large prediction errors. This strategy encourages the model to focus on difficult
and rare SNPs, not just those that are easy to predict. By integrating context-aware
embeddings and focal loss optimization, this approach delivers more accurate and robust

predictions across the full range of mutation outcomes in the population.

Attention-Based Neural Network for kGain Prediction

We implemented a deep learning regression model inspired by the transformer architecture
to predict quantitative mutation effects from DNA sequence context. Each input is a
Dual-Encoded Sequence Representation (19X4), a one-hot matrix spanning 19 nucleotides
centered on the SNP. The architecture begins with a dense layer that projects each
nucleotide position into a continuous embedding space. Learnable positional embeddings
are then added to retain information about nucleotide order within the sequence. The
combined embeddings are then processed by two multi-head self-attention layers (each
with four heads), which enable the model to integrate information from all positions in the
sequence, capturing important patterns and relationships between nucleotides. Each
attention layer is followed by dropout regularization, residual connections, and layer
normalization to stabilize learning and prevent overfitting. After attention, the sequence
representations are further refined by a position-wise feed-forward block (with RelLU
activation and dropout), again followed by residual connections and normalization. A global
average pooling layer aggregates the information across all sequence positions, producing a

fixed-length vector. This is passed through a final dense layer to generate a single,
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continuous output value representing the predicted effect of the SNP. All hyperparameters,
including sequence length, embedding dimension, attention heads, feed-forward dimension,
number of layers, and dropout rate, were optimized for robust performance and reliable

convergence on both training and validation data.

Logistic Regression for Predictors of Directional Selection

We modeled whether a mutation experienced directional selection (1) versus all other
regimes (0; purifying selection or drift) as a function of mutation type (is_AT to GC,
1=A/T—G/C, 0=other) and kGain score using logistic regression. Regression coefficients
(excluding the intercept) were exponentiated to obtain odds ratios, representing the change

in odds of a mutation falling under directional selection per unit increase in each predictor.

Figures
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Figure 1. Exploring the fractal pattern of DNA across various organisms and examining its

non-random nature.
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(a) The genomic DNA is fragmented into oligonucleotides of a defined length &, which are
subsequently mapped to the FCGR matrix of the reference genome. (b) Boxplot showing the
absolute difference (log scale) in frequency distribution between two randomly selected
k-mers and one randomly selected k-mer with its counterpart altered by n Hamming
distances (original altered) (P-values of <1e-323 for Homming distances 1 and 2, 1.56e-89 for
distance 3, and 0.09 for distances greater than 3). (c-e) Heatmaps illustrate normalised
frequency values (in negative logarithmic scale) to reduce the range, which demonstrates
that various organisms exhibit distinct patterns of k-mer abundance within their DNA
sequences. (f) To evaluate the significance of these fractal patterns, we utilised a heatmap of
genomic DNA from E. coli, comparing it to a randomised counterpart, thereby elucidating
discernible differences in pattern preservation. (g) kGain score computation process: For
each variant, two 21-mer/13-mer sequences are generated, one with the reference allele
and one with the alternate allele at the central position. k-mers (k = 10) are generated using
a rolling window method for both reference and variant sequences, resulting in sets of
k-mers. The kGain score for each variant is calculated by summing the natural log of the fold
change between the genomic frequencies of the k-mer containing the alternate allele and
the reference allele across all k-mers. (h) The schematic illustrates the distribution of the
alternate k-mer (resulting from an A—C substitution) across various genomic loci in E. coli.
The yaaJ gene, highlighted in green, serves as the reference k-mer source. The alternate
k-mer is mapped across multiple genes involved in diverse biological functions, including
translation, metabolism, drug resistance, transport, defence mechanisms, and signal
transduction. The functional classification of each gene is denoted by colored circles. The
boxed region on the right depicts the reference (Ref) and alternate (Alt) k-mer sequences,

highlighting the nucleotide substitution in red.
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Figure 2. Evolutionary dynamics in E. coli LTEE dataset

(a) A visual depiction of the LTEE involving Escherichia coli B strain REL606. Initiated in 1988
by Lenski et al., this experiment has spanned over 30 years and includes 12 replicate
populations labelled ara-1 to ara-6 (m1 to m6) and ara+1 to ara+6 (p1 to p6). These
populations were propagated for 60,000 generations (1998-2016) and subjected to
sequencing at intervals of 500 generations. (b) Schematic overview of the Saccharomyces
cerevisiae LTEE: The experiment began with alpha MAT (MJM335) and a MAT (MJM361)
strains, which were crossed to generate a diploid (MJM102). These populations were
evolved in three different environments: YPD at 30°C for 10,000 generations, SC at 37°C for
8,000 generations, and SC at 30°C for 10,000 generations. Samples were sequenced at eight
time points throughout the experiment. (c) Schematic representation of the experimental
workflow for bacterial adaptation under sublethal antibiotic pressure. The process begins
with the passage of bacterial populations, followed by colony selection based on growth
characteristics measured using the growth curve or INT+PMS assay. After selecting the
colony, sublethal concentrations of antibiotics are determined, and the selected colony is
grown in the following passage. (d) Here is an example of the key variants of SARS-CoV-2
tracked in this study, showing the lineage names, color-coded symbols, and dates of first
discovery. (e) A bar plot representing unique mutations classified by selective regime,
purifying selection (green), drift (orange), and directional selection (blue), based on
temporal allele frequency trajectories. (f) A bar plot showing the number of unique
mutations stratified by fixation status, with fixed mutations (green) and not fixed mutations
(orange) identified across all populations. (g) A bar plot illustrating the distribution of
unique mutations among essential genes (red) and non-essential genes (cyan). (h) A bar plot
depicting the number of unique mutations in mutator (pink) and non-mutator (green) gene
sets. (i) Violin and box plots showing the distribution of kGain scores for mutations under
directional selection (blue), drift (orange), and purifying selection (red) in both mutator
(P-value <1e-323 and effect size = 7.97e-01 for directional selection vs neutral in mutator,
P-value = 1.63e-134 and effect size = 7.41e-01 for directional selection vs purifying selection
in mutator, P-value = 9.95e-01 and effect size = -4.89e-02 for neutral vs purifying selection in
mutator) and non-mutator populations (P-value = 2.97e-17 and effect size = 7.57e-01 for
directional selection vs neutral in non mutator, P-value = 3.03e-02 and effect size = 3.75e-01

for directional selection vs purifying selection in non mutator, P-value = 5.56e-06 and effect
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size = 3.70e-01 for purifying selection vs neutral in non mutator). (j) Heatmap showing the
median kGain values across generations for individual populations, stratified by mutator
and non-mutator. (k) Number of unique mutations in non-mutator populations, separated
by mutation type (A/T—G/C vs. Others). (I) Number of unique mutations in mutator
populations, separated by mutation type. (m) Odds ratio comparing the enrichment of

kGain and A/T—G/C substitutions. Error bars indicate 95% confidence intervals.

[Note: The P-value cutoff for all the plots is 0.05. *, **, *** and **** refers to p-values

<0.05, <0.01, <0.001, and <0.0001, respectively.]
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Figure 3. Beneficial mutational spectrum shift

(a) Median kGain across generations, with 95% confidence intervals shown as shaded areas.
(b) Temporal trends of median LLR score over generations. (c) Median Evo score over
generations. (d) Box plot of kGain scores in mutator populations comparing essential and
non-essential genes (P-value = 2.40e-02 and effect size = 8.00e-02). (e) Box plot depicting
kGain scores in non-mutator populations comparing essential and non-essential genes
(P-value = 5.14e-05 and effect size = 3.05e-01). (f) Bootstrapped distributions of mean
evolved kGain scores for essential and non-essential gene mutations in mutator populations,
generated using 10,000 iterations and subsampling 90% of the minimum group size per
iteration. (g) Bootstrapped distributions of mean evolved kGain scores for essential and
non-essential gene in non mutator populations, generated using 10,000 iterations and
subsampling 90% of the minimum group size per iteration. (h) Median kGain score over
generations for essential and non-essential genes in mutator populations. (i) Median kGain
score over generations for essential and non-essential genes in non-mutator populations. (j)
Box plot of kGain scores in mutator populations comparing fixed and not fixed mutations
(P-value = 1.04e-242 and effect size = 7.94e-01). (k) Box plot of kGain scores in non-mutator
populations comparing fixed and not fixed mutations (P-value = 7.95e-14 and effect size =
7.69e-01). () Line plot of mean allele count per generation for mutator and non-mutator in
parallel genes. (m) Line plot of generation wise mean kGain for mutator and non-mutator in

parallel genes.

[Note: The p-value cutoff for all the plots is 0.05. *, **, *** and **** refers to p-values

<0.05, <0.01, <0.001, and <0.0001, respectively.]
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Figure 4. Temporal dynamics of allele frequency, kGain scores, and functional signatures in

parallel and non-parallel genes in mutator and non-mutator backgrounds

(a) Temporal trends of median allele frequency in parallel and non-parallel genes across
mutator and non-mutator populations. (b) Median kGain scores over generations for parallel
and non-parallel genes in mutator and non-mutator. Shaded regions represent 95%
confidence intervals, and statistical significance between groups at each time point is
indicated by asterisks. (c) Heatmap of median kGain scores for major COG functional
categories over generation in mutator populations. (d) Heatmap of median kGain scores for

major COG functional categories over time in non-mutator populations.

[Note: The p-value cutoff for all the plots is 0.05. *, **, *¥** and **** refers to p-values

<0.05, <0.01, <0.001, and <0.0001, respectively.]


https://doi.org/10.1101/2024.07.05.602168
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.05.602168; this version posted August 11, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

a b c d
8 < {1]iJoJoJoJoJaJoJoJo e a]a]oo[1]o oo
k=] ] 45
Pancnaionn, gannong s g ||
ERel — Validati — Validation — Validati
2+ {ojoolofoofolzo Jolofolololoi]o]o g Validation &40 025 Validation
= °
| | I £ J3s S
E + Sa— - H g w
Alt (Mut. Site) ~ Absent Wild-type Ref (Mut. Site) ‘g S 30 g
Reference flank Alternate Allele ©
g 25
3z
E O PP O S
S
2 e e — Epoch Epoch
9-87-65-43-2-101234567829
Position (relative to mutation)
e f g
fusA y
Count 54 fush ~vEl
10 4 - 7
- i 90 e £
// © -
3 o 60 a5 S 0
g o1% 0 _ g
2 Eel
el ‘B (7] _5 -
2z c kst
G -10 4 P 9] °
B P e S
g <& r=0.81 L -104
20 1 R2-0.64 & =0.
[ J MAE 2.48
MAE 2.49 -15 A metQ
T T T T T T T T T T T
-200 -10 ] 10 -20 -15 -10 -5 0 5 10
Actual kGain Actual kGain
h l 1.00
075
050
l 025
Headl Head2 Head3 Head4
G | |
g m | I = _m
A 1 | . m u,
c = [ |
: ! i "
G [ | 1 | |
P T '8 ] -
g i [ : = | [ [ ]
> I | I
T | | | |
3 B = \ I [
C | | I+
C m || |
A | -, n _u
G | | |
T N | | . |
A
¢ | B | |
G L_| |
¢ m J " | 'm L .
c I i " 'm | . .
c
A " | ' m 's 't
N am™ " - I
3 < ] | 'm mIm m |
& 4 n | = -
a0T | H E | ]
é | | 1 | I | | .
c | I | |l ] |- |
A
G | ] q' ] ] | I
; o | e a .
c - Il 1 I

CATGACCATACTGACCACG CATGACCATACTGACCACG CATGACCATACTGACCACG CATGACCATACTGACCACG

i j
0.20
0.20 Mutated site Other positions Mutated site Other positions
c c
8 o1s S o5
c =4
£ £
< 0.10 < 010
C C
© ©
[ [
= 0.05 = 0.05
0.00 0.00
0123456 7 8 9 101112131415161718 0123456 7 8 9101112131415161718
Position Position

Figure 5


https://doi.org/10.1101/2024.07.05.602168
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.05.602168; this version posted August 11, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Figure 5. Performance and interpretation of the kGain prediction model.

(a) Encoding strategy for representing SNP mutations: the panel illustrates the custom
embedding approach used to encode single-nucleotide polymorphisms (SNPs) for the
prediction model. The upper matrix shows the one-hot encoded states for each nucleotide
(A, C, G, T) at positions flanking the mutation site, as well as at the mutation site itself. The
lower sequence logo visualizes the nucleotide context around the mutation, highlighting the
reference sequence, the alternate allele at the mutation site, and the reference flanking
positions. This strategy captures both the local sequence and the specific nucleotide change
introduced by each SNP. (b) Training and validation loss curves (c) MAE loss curve Training
and validation (d) MSE loss curve Training and validation (e) In-domain performance.
Predicted versus observed kGain scores for the held-out dataset, colored by point density,
show strong agreement (Pearson correlation r = 0.81). (f) Distribution of prediction errors for
the held-out LTEE data, confirming approximate normality with zero mean. (g)
Out-of-domain validation. Predicted versus observed kGain scores for mutations from an
independent E. coli strain ( E. coli MG1655) demonstrate robust generalization of the model
(Pearson correlation r = 0.82). (h) Attention map for the Y515N mutation in fusA in E. coli
MG1655, illustrating the model’s focus on the mutation site and neighboring positions. (i)
Average attention map across the sequence window for multiple samples from E. coli
MG1655 in the in-house experiment. (j) Average attention map across the sequence

window for held-out samples of E. coli B strain REL606 from the LTEE experiment.
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Figure 6. Impact of kanamycin and fusA mutations on ribosomal translocation.

(a) Growth curve for passage 5 of the D, R1, R3 populations, and the WT founder strain in LB
medium without antibiotics. The ODsoo Was measured over a 16-hour period to assess
bacterial growth across all populations. (b) kGain scores for populations with fixed (orange)
and not fixed (blue) mutations. Boxplots show the distribution of kGain scores for each
population (D, R1, R3), comparing mutations that were successfully carried (P-value =
6.17e-01 and effect size = -1.05e+00 for R1, P-value = 1.87e-02 and effect size = 1.99e+00 for
D, P-value = 2.58e-01 and effect size = 9.51e-01 for R3). (c) kGain scores for mutations in
genes across populations D, R1, and R3 are shown . Boxplots depict the kGain scores for
mutations in genes, comparing the alternate allele frequency (AF) of 1 (orange) versus AF
less than 1 (blue) in each population (P-value = 4.84e-01 and effect size = -7.85e-02 for R1,
P-value = 1.75e-03 and effect size = 2.53e+00 for D, P-value = nan and effect size = -4.00e-01
for R3). (d) SDS-PAGE analysis of induced and uninduced cells carrying pProExHTA::fusA and
pProExHTA::fusA Y515N. BL21 cells transformed with pProExHTA::fusA and pProExHTA::fusA
Y515N in log phase were separated into two tubes and one of each was induced with 1.0
mM IPTG at 37 °C overnight. 20 pl of cells were mixed with SDS loading dye and boiled prior
to loading in the gel. Red arrows indicate the expression of fusA or fusA Y515N in lanes
loaded with induced cells. M denotes Marker in kDa. Growth curve for BL21 cells expressing
fusA or fusA Y515N in the (e) absence or (f) presence of 0.008 mg/ml Kanamycin. The cells
were induced with 0.4 mM IPTG and growth was followed and ODg,, was measured for 8 hrs.
(g) Schematic illustrating the proposed mechanism of ribosomal translocation in the
presence of kanamycin (Kan). In the WT scenario, kanamycin binds to the decoding site of
the 30S ribosome, leading to impaired translocation. In the fusA mutant, a mutant form of
EF-G binds to the decoding site of the 30S ribosome, resuming translocation despite the
presence of kanamycin. (h) Structural alignment of fusA WT and fusA mutant protein
structures. The fusA WT structure is shown with regions I-V labelled and color-coded. The
fusA mutant structure is aligned with the WT, highlighting the Y515N mutation, which is

critical for resuming translocation in the presence of kanamycin.
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Figure 7. Evolution of kGain scores across generations and categories in Yeast and Covid.

(a) Heatmap showing the distribution of median kGain scores across 90 populations at
different generations, with marginal violin plots depicting the density of kGain scores across
sampled generations in yeast. (b) Violin and box plots comparing kGain scores between
essential and non-essential genes across unique mutations in yeast (P-value = 3.72e-16 and
effect size = 3.06e-01 for generation 70, P-value = 1.69e-32 and effect size = 3.14e-01 for
generation 1410, P-value = 1.39e-24 and effect size = 3.65e-01 for generation 2640, P-value
= 1.52e-28 and effect size = 2.97e-01 for generation 5150, P-value = 6.82e-23 and effect size
= 2.89e-01 for generation 7530, P-value = 1.04e-27 and effect size = 2.97e-01 for generation
10150). (c) Violin and box plots comparing kGain scores for fixed and not fixed mutations
across unique mutations in Yeast (P-value = 1.73e-01 and effect size = 1.09e-01 for
generation 70, P-value = 5.32e-02 and effect size = 1.19e-01 for generation 1410, P-value =
4.71e-03 and effect size = 9.49e-02 for generation 2640, P-value = 3.25e-03 and effect size =
8.53e-02 for generation 5150, P-value = 2.72e-03 and effect size = 6.00e-02 for generation
7530, P-value = 1.03e-03 and effect size = 6.08e-02 for generation 10150). (d) The variant
counts are depicted using a logarithmic scale for control, VOC, and VOI categories within the
structural, non-structural, and accessory gene groups in SARS-CoV-2. (e-f) All variants are
classified into accessory, structural, and non-structural based on gene and variant
classification (control and VOC/VOI) and then visualised with kGain using box plots in
SARS-CoV-2. (g) A kGain of 0 is taken as a cutoff, and based on that, variants =>0 and

variants <0 are visualised with the log of mutation frequency using a box plot in SARS-CoV-2.
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Figure 8. kGain scores dynamics captured in DMS studies

(a) Heatmap showing the median kGain scores for mutations across different amino acids in
murA gene. The color scale indicates the range of kGain scores, with red representing
negative values and green indicating positive values. (b) Heatmap representing the median
tolerance scores for each mutated amino acid, with the color scale from blue to red
representing the range of tolerance values from 0 to 1. The domains are categorized as
catalytic and C-terminal, with distinct coloring to highlight regions of higher or lower
tolerance. (c-e) Boxplot showing kGain scores for fabZ, lpxC, and murA mutations, comparing
tolerant versus intolerant mutations. Tolerant mutations (green) are associated with higher
kGain scores, while intolerant mutations (red) show significantly lower values (P-values are

2.08e-2 for fabz, 7.11e-9 for IpxC , and 5.46e-8 for murA).

[Note: The p-value cutoff for all the plots is 0.05. *, **, *** and **** refers to p-values

<0.05, <0.01, <0.001, and <0.0001, respectively.]
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