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Abstract 

Evolution shapes the structure and content of genomes, yet the contribution of local 

sequence composition to variant selection remains poorly understood. While traditional 

models emphasize protein function or cross-species conservation, we propose that 

intra-genomic patterns of oligonucleotide (k-mer) frequencies also reflect selective forces. To 

explore this, we developed kGain score, a metric that quantifies the frequency shift of a 

k-mer upon single-nucleotide substitution, using the surrounding genomic context as a 

baseline. We hypothesize that variants arising in high-kGain contexts are more likely to 

persist due to evolutionary favorability. We validated this hypothesis across multiple 

systems. In E. coli and S. cerevisiae long-term evolution experiments, we found that fixed, 

essential, and parallel mutations consistently show elevated kGain scores. This trend held in 

SARS-CoV-2 variants of concern and in an in-house antibiotic adaptation experiment, where 

a high-kGain fusA Y515N mutation conferred resistance and maintained fitness when 

overexpressed, demonstrating a causal link between kGain and adaptive potential. To enable 

cross-species generalization, we trained a transformer-based neural network regressor on 

LTEE-derived mutations to predict kGain from sequence alone. The model achieved high 

correlation in held-out in-domain data (Pearson r = 0.81) and accurately predicted kGain 

trends in out-of-domain data (Pearson r = 0.82), demonstrating that k-mer-based sequence 

constraints learned from one genome can be effectively transferred to others. Together, our 

results establish kGain as a biologically meaningful, scalable metric for probing 

within-genome sequence selection, offering a complementary lens to existing 

conservation-based frameworks for understanding evolutionary fitness and variant 

persistence. 

Introduction 

A central goal in evolutionary genomics is to understand how genetic variation translates 

into phenotypic consequences and, ultimately, adaptive fitness across successive 

generations. To achieve this, computational methods for variant effect prediction (VEP) 1 

have become critical tools for linking genotype to phenotype. Early VEP approaches, such as 

SIFT and PolyPhen, largely relied on evolutionary conservation signals extracted from 

cross-species alignments 2 to estimate the functional impact of mutations 3. These methods 
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modelled the probabilities of reference versus alternate alleles by leveraging homologous 

protein sequences. More recently, large-scale deep learning frameworks, exemplified by 

ESM 4, Evo 5, and AlphaMissense 6 , have advanced the field by capturing complex patterns of 

selection and functionality in protein-coding regions. Although these techniques have 

improved our ability to interpret coding variants, they often focus on interspecies 

conservation and may overlook subtle intra-genomic patterns of selection that govern the 

organization and evolution of the entire genome within a species. 

Increasing evidence suggests that analyzing k-mer frequencies within a single genome offers 

a complementary window into how selection shapes genomic architecture 7. k-mer-based 

approaches, which quantify the occurrence of all possible short nucleotide sequences 

(k-mers), have proven valuable in dissecting genome composition and evolution. 

Additionally, differential k-mer frequencies within a single genome can reflect local selection 

pressures acting on various genomic elements, including transcription factor binding sites 

and regulatory motifs. k-mer analysis has thus been employed to illuminate how specific 

sequence elements are conserved within a genome, an idea that extends beyond the 

classical paradigm of protein-centric or cross-species conservation. 

Such patterns of within-genome conservation are evident in microbial genomes, where 

selective pressures act rapidly, favoring certain nucleotide motifs essential for genomic 

stability/adaptation. For instance, bacteria often exhibit conserved k-mers within operons 

that enable synchronized gene expression, even in the absence of broader homology across 

species 8. Likewise, transposable elements, insertion sequences, and integrons maintain 

internal sequence motifs critical for their mobility and regulatory functions, suggesting that 

particular k-mers are preferentially retained for their functional utility within a given 

genomic context 9,10. In extremophilic archaea, duplicated stress-response genes often 

contain conserved k-mer motifs that enhance their tolerance to extreme temperatures or 

salinities, underscoring the potential adaptive significance of these patterns 11. Moreover, 

horizontal gene transfer, the primary driver of microbial evolution, frequently transfers 

regulatory elements or other k-mer motifs that seamlessly integrate into recipient genomes, 

affecting gene stability, expression, and evolutionary trajectories 12,13. 
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Together, these observations point to the possibility that certain k-mer motifs might be 

systematically favored during adaptive processes within the same genome, forming an 

underappreciated layer of selection that complements the traditional view of across-species 

sequence conservation. Despite the promise of these k-mer-based insights, the connection 

between specific k-mer motifs and their direct impact on evolutionary fitness remains 

underexplored. While k-mer-based methods have been successfully used in pangenomics 

and population genetics 14,15 revealing genetic diversity overlooked by single-reference-based 

approaches, a quantitative demonstration that k-mer frequency biases can drive or 

accompany adaptive changes has been lacking. 

Here, we introduce a quantitative framework for evaluating whether k-mer frequencies 

within a genome are non-randomly selected over evolutionary time. kGain score is central 

to our approach, designed to capture the enrichment level of specific k-mers near 

single-nucleotide variants (SNVs). By examining multiple data sets, long-term evolution 

experiments (LTEE) in E.coli and S.cerevisiae, as well as natural evolutionary data of 

SARS-CoV-2, we provide evidence that variant selection correlates with systematic shifts in 

genome-wide k-mer frequencies. We also performed a single-colony bottleneck passage 

experiment in E. coli under sublethal antibiotic pressure, revealing that k-mer frequency 

dynamics are not merely observational artifacts but can have tangible fitness consequences 

under controlled selection regimes. 

Our results yield four key findings. First, we show that the median kGain score of given 

variants in E. coli and S. cerevisiae populations tends to increase over the course of 

evolution, suggesting a bias toward certain k-mer enrichments 16. Second, essential genes 

preferentially accumulate variants with higher kGain scores, indicating a functional link 

between k-mer selection and vital cellular processes. Third, fixed mutations, those that 

persist over multiple generations, consistently exhibit higher kGain values, underscoring the 

evolutionary advantage conferred by these motifs. Finally, imposing sublethal antibiotic 

pressure in a single-cell bottleneck experiment amplifies selection for high-kGain variants, 

tying k-mer frequency biases directly to adaptive stress responses. 

Collectively, these insights propose an expanded view of molecular evolution, one that 

considers the potential role of k-mer frequencies within the same genome, intra genome 
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conservation, as a critical, yet largely overlooked, layer of selection. By tracking k-mer 

dynamics through the kGain metric, we establish a new avenue for identifying variants that 

may be key to adaptation. As genome sequencing efforts broaden across diverse organisms 

and ecological contexts, this framework holds promise for enhancing our understanding of 

how genomic architecture evolves under selective pressures, complementing the 

well-established narratives of cross-species conservation and protein-focused evolutionary 

dynamics. 

Results 

k-mer frequency patterns within and between genomes 

k-mers are short nucleotide sequences commonly used in bioinformatics for similarity 

searches, sequence alignment, and homology detection 17,18. To examine whether k-mers 

experience selective pressures, we explored their non-uniform distribution within individual 

genomes, followed by an investigation into the underlying principles behind such bias. To 

visualise k-mer frequencies, we generated Frequency Chaos Game Representations (FCGR) 

using Python (kaos) package 19.  

In our analysis, we represented k-mer frequencies using the Frequency Chaos Game 

Representation (FCGR), in which each k-mer is assigned to a specific coordinate in a 

two-dimensional matrix (Fig. 1a), thereby encoding global sequence composition. As a 

benchmark, we computed absolute frequency differences for randomly paired k-mers 

sampled from E. coli genomes and found that pairs differing by a single nucleotide exhibited 

significantly smaller disparities than random pairs, a pattern that persisted up to Hamming 

distances of three (Fig. 1b). This observation reflects the FCGR’s recursive partitioning, which 

clusters k-mers sharing a common prefix into neighboring matrix regions and thus preserves 

sequence similarity in spatial proximity (20). When applied to diverse genomes, the FCGR 

revealed fractal-like motifs in mammalian sequences, for example, human (Homo sapiens; 

Fig. 1c), gorilla, and mouse (Mus musculus; Supplemental Fig. S1a–b), whereas more 

discrete, non-fractal patterns emerged in zebrafish (Danio rerio; Supplemental Fig. S1c) and 

yeast (Saccharomyces cerevisiae; Fig. 1d) 21. 
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Notably, these FCGR k-mer frequency-based correlations preserve phylogenetic relationships 

across species 22,23 (Supplemental Fig. S1d).  Although k-mer frequency conservation across 

closely related species is well captured by phylogenetic trees, the intra-genomic rationale for 

differential k-mer frequencies remains largely unexplored15. To explore whether 

genome-specific k-mer patterns are selectively maintained, we generated randomised E. coli 

genomes while preserving overall nucleotide ratios. In contrast to the original E. coli 

sequence, these simulated genomes displayed no discernible fractal pattern in their FCGR 

heatmaps (Fig. 1e–f). Could these reflected fractal patterns arise because near-identical 

k-mers exhibit comparable frequencies across the entire genome, a feature that is 

biologically significant for selection? To explore this possibility, we investigated whether 

similar near-identical k-mers within an E. coli genome share similar frequencies 24. These 

findings suggest the systematic conservation of k-mers within an individual genome.  

In our pursuit to investigate whether such differential k-mer frequencies are linked to 

evolution, we hypothesized that SNVs under selection might replace low-frequency k-mers 

with high-frequency ones. To test this, we developed a simple score, kGain, which quantifies 

the relative abundance of k-mers associated with alternative alleles compared to reference 

alleles (Fig. 1g). For further information on kGain computation, please refer to the Methods 

section. For all our analysis, the value of k was set to 10 (Supplemental Fig. S1e-f, 

Supplementary Note 1). To illustrate how k-mers are captured within a genome, we used 

yaaJ A7764C as an example (Fig. 1h). In the following sections, we leverage the kGain score 

to explore the link between within-genome differential k-mer frequencies and selection.   

k-mer Enrichment Patterns Reflect Selective Pressures Across Evolutionary Contexts 

To evaluate whether local sequence composition influences the retention of genetic 

variants, we analyzed k-mer frequency dynamics across diverse evolutionary landscapes, 

including laboratory evolution, natural viral adaptation, and controlled antibiotic stress. We 

first examined high-resolution longitudinal whole-genome sequencing data from the 

long-term evolution experiments (LTEE) in Escherichia coli and Saccharomyces cerevisiae, 

which capture the stepwise accumulation of mutations across tens of thousands of 

generations under defined, nutrient-limited conditions. These systems provided a robust 

framework for observing how adaptive trajectories unfold over time. To extend our analysis 
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into natural evolution, we analyzed global genomic surveillance data from SARS-CoV-2, 

leveraging the emergence of major viral variants during the COVID-19 pandemic as a model 

for rapid, large-scale adaptation driven by host immunity, transmission dynamics, and 

medical interventions. Finally, to assess how acute selective pressures shape k-mer profiles 

in real time, we performed a de novo single-colony bottleneck evolution experiment in E. 

coli exposed to incrementally increasing sublethal kanamycin concentrations. This controlled 

setup allowed us to monitor evolutionary responses under antibiotic stress, directly linking 

mutational dynamics to survival outcomes (Fig. 2a–d). Together, these datasets provide a 

unified framework for assessing whether, and how k-mer frequency changes accompany 

evolutionary selection across timescales and ecological settings. 

We evaluated several critical dimensions to interpret the significance of kGain scores, 

including the classification of mutations as purifying, directional, or neutral 25; the fixation 

status of variants (fixed vs. not-fixed); the distinction between essential and non-essential 

gene; and the genomic context of mutator versus non-mutator lineages (Fig. 2e-h). As a first 

step, we applied kGain to reanalyze genomic data from the landmark E. coli LTEE initiated by 

Lenski and colleagues 26,27. Guided by established population genetic theory (e.g., neutral 

theory 1968), we categorized mutations identified in the LTEE into three classes, positively 

selected (directional selection), negatively selected (purifying selection), and neutral,  based 

on the trajectories of their allele frequencies over time26,2728–30. Mutations were classified by 

modeling allele-frequency trajectories on the log-odds scale and testing the per-generation 

change in frequency. Mutations with a significantly positive slope (β₁ > 0, p < 0.05) were 

classified as positively selected, those with a significantly negative slope (β₁ < 0, p < 0.05) as 

negatively selected, and mutations without a significant trend (p > 0.05) were considered 

neutral (Supplementary Note 2) . We investigated certain aspects like the directional 

selection, purifying selection and genetic drift (neutral) along with the AT to GC conversion. 

We noticed directional selection was associated with higher kGain scores compared to both 

neutral and purifying selection (Fig. 2i). We further analyzed kGain scores in mutator and 

non-mutator backgrounds and observed a gradual increase in the abundance of alternate 

k-mers over time in both groups (Fig. 2j), reflecting the progressive accumulation of 

high‑frequency alternate k‑mers mutations under differing mutation rates.   
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We examined the count of A/T to G/C conversions in both non-mutator (Fig. 2k) and mutator 

(Fig. 2l). As shown in Fig. 2m, the odds of a mutation being classified as beneficial were 23% 

higher for A/T to G/C substitutions than for other base changes (odds ratio = 1.23). 

High-kGain loci also exhibited increased odds of being beneficial (OR = 1.10), indicating that 

both the mutation class and kGain metric are associated with the predicted functional 

impact of mutations (See Methods). Next, we examined whether generation‑wise kGain 

scores exhibit a systematic temporal pattern when calculated using a population‑mutated 

evolved genome (constructed by introducing mutations observed in the final generation into 

the wild‑type reference). We observed a clear increasing trend in k‑mer enrichment over 

time, with the rate of increase gradually plateauing in later generations, a biologically 

meaningful signature consistent with mutation accumulation dynamics (Fig. 3a). To evaluate 

whether this pattern could arise by chance, we performed a permutation test, which yielded 

a Monte Carlo P = 1×10⁻⁴ (CI = 0.768), indicating that the observed trend is highly unlikely to 

occur randomly and underscores kGain’s robustness in capturing temporal shifts in sequence 

composition during evolution (Supplementary Note 3). To benchmark our findings against 

two state-of-the-art cross-species protein/DNA sequence foundation models, we evaluated 

ESM1b (650 million parameters) 4 and Evo (7 billion parameters) 5,as reference standards. 

These models output the probability of observing an input given an amino acid (ESM1b) or 

nucleotide (Evo) sequence across species. Notably, kGain is fundamentally different from 

these two since it solely focuses on k-mer frequencies within a single reference genome. Log 

Likelihood Ratio (LLR) score provided by ESM1b (Fig. 3b) (C.I.: 0.64, Monte Carlo P-value: 

1e-4) showed the best concordance, followed by kGain (Supplementary Note 4). No 

significant association was detected with Evo (Fig. 3c) (C.I. : -0.40, Monte Carlo P-value: 1) . 

We observed these trends consistently across individual populations as well. If kGain 

effectively captures selection-driven shifts in genomic composition, we sought to validate 

this by testing it against a well-characterized evolutionary transition reported by Blount and 

colleagues. In the E. coli LTEE, population m3 exhibited a dramatic phenotypic change 

around generation 33,000, marked by a sudden increase in turbidity due to the evolution of 

citrate utilization under aerobic conditions, a major adaptive innovation. When we examined 

the corresponding kGain trajectory, we observed a distinct elevation in median kGain values 

precisely at this transition point. This alignment suggests that kGain can sensitively register 

genome-wide shifts in selection pressure during key adaptive events31 (Supplemental Fig. 
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S1i). Based on our observation that kGain may reflect the selective retention of beneficial 

mutations, we tested whether a simple linear model, using short k-mer frequencies, could 

predict kGain. Although this approach explained part of the variation (R2 = 0.49, RMSE = 

3.80, Pearson correlation = 0.70 on the test set), it fell short of precise prediction 

(Supplemental Fig. S2a-g), as detailed in Supplemental Note 5. 

Quantitative Dynamics of kGain Enrichment in Essential Genes: Fixed, Non-Fixed, and 

Parallel Mutation Profiles  

Understandably, essential genes are generally resilient to mutations, as mutation can impact 

the function and therefore the organism’s survival or fitness. Intuitively, if kGain scores truly 

indicate evolutionary advantage in essential genes, we would observe a bias towards 

variants with higher kGain scores. This is because essential gene mutations with poor kGain 

scores would often have a deleterious impact on the organism, thereby eliminating 

populations carrying the variant allele. We sourced essential/non-essential categorization 

from the study by Gerdes et al. 32. Aligned to our hypothesis, we found elevated median 

kGain scores for single nucleotide substitutions associated with the essential genes, as 

compared to those associated with the non-essential ones (Fig. 3d,e). Bootstrapped 

distributions of mean kGain scores for essential and non‑essential mutations in mutator and 

non‑mutator populations, generated using 10,000 iterations with 90% subsampling of the 

minimum group size per iteration, revealed a similar pattern of enrichment (Fig. 3f,g). 

Longitudinal analysis indicated that generation wise median kGain scores for essential genes 

remained consistently above those of non-essential genes throughout the experiment, 

reflecting the stronger constraint and purifying selection operating on essential loci (Fig. 

3h,i).  Unlike kGain, LLR scores did not exhibit a comparable separation between essential 

and non‑essential genes, suggesting that LLR is less sensitive to such functional 

constraints.(Supplemental Fig. S3a-c). 

We compared kGain scores between fixed and not fixed mutations in both mutator and 

non-mutator backgrounds. Fixed mutations were defined as those with allele frequencies 

greater than or equal to 0.95 at the last two observed time points of the experiment 

(Supplementary Note 6). We observed that fixed mutations exhibited significantly higher 

kGain scores than those not fixed at the endpoint in both mutator and non-mutator 
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populations (Fig. 3j,k and Supplemental Fig. S3d,e). This pattern suggests that mutations 

which reach fixation are typically under stronger selection, consistent with the expected 

outcomes of adaptive evolution. 

To assess whether loci repeatedly mutated across independent lineages, the so-called 

parallel genes, harbor signatures of adaptive selection, we analyzed their kGain trajectories 

in comparison to non-parallel genes, as defined by 30. Across the LTEE, parallel genes, 

recurrently mutated across independent populations, consistently showed elevated median 

kGain scores, with this enrichment being especially prominent in mutator lineages compared 

to non mutator. As an additional control, we examined allele count trajectories, which 

revealed similar trends (Fig. 3l,m). 

We binned mutations into 5,000-generation intervals and calculated median allele 

frequencies for each bin, stratified by mutator status (mutator vs. non‑mutator) and 

parallelism status (parallel vs. non‑parallel genes). Median allele frequency trajectories were 

visualized using smoothed line plots and overlaid scatter points representing bin‑wise 

medians. To test whether parallel gene mutations exhibited consistently higher allele 

frequencies compared to non‑parallel gene mutations within each generation bin, we 

performed a one‑sided Mann–Whitney U test separately for mutator and non‑mutator 

populations. Parallel gene mutations in mutator populations rapidly rise to high allele 

frequencies than non‑parallel genes, with significance across most generation bins. 

Non‑mutator populations also favor parallel mutations but at lower frequencies, while 

non‑parallel genes remain largely neutral  (Fig. 4a). A similar pattern was observed for 

median kGain, with parallel gene mutations, showing consistently stronger positive selection 

signals compared to non‑parallel genes  (Fig. 4b). 

We then compared kGain distributions between coding and non-coding regions, focusing on 

essential versus non-essential genes. Essential genes consistently harbored variants with 

higher kGain scores, a trend most evident in non-mutator populations. This pattern implies 

that under lower mutation supply, selection more stringently filters variants, favoring those 

in high-kGain contexts that preserve core biological functions. Non-mutators, therefore, may 

be more efficient in retaining beneficial or tolerable mutations in essential coding regions 

while mutators, with broader exploration, show more diffuse kGain distributions 
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(Supplemental Fig. S3f–k). Together, these findings highlight how kGain reflects both 

evolutionary constraint and adaptive prioritization across functionally important genomic 

regions. 

Module-Specific kGain Dynamics in Mutator vs. Non-Mutator Lineages 

In mutator populations (Fig. 4c), early generations (5K–20K) show broadly negative to 

neutral median kGain across nearly all functional modules, consistent with initial purifying 

selection or drift. From ~30K generations onward, however, the majority of categories 

transition to positive kGain (pink/magenta) by 60K. The most pronounced enrichments occur 

in cell motility, amino acid transport & metabolism, transcription, posttranslational 

modification, and intracellular trafficking & secretion, indicating these systems become focal 

points of positive selection as adaptation unfolds. A handful of core functions, such as 

general function prediction and nucleotide transport & metabolism, remain closer to zero or 

slightly negative (light green), suggesting ongoing constraint or balanced turnover. 

By contrast, non-mutator lineages (Fig. 4d) exhibit a largely static kGain landscape. Across all 

timepoints, most modules, including cell wall/membrane biogenesis, carbohydrate 

transport, DNA replication & repair, and energy production & conversion—remain neutral to 

mildly beneficial, with only transient (Supplemental Fig. S4). Even by 60K, non-mutators 

show little sustained positive kGain, underscoring that without an elevated mutation supply, 

adaptive shifts in k-mer frequencies are both weaker and less widespread. 

Intra-species generalization of kGain predicts mutational effects with a attention model 

In biological systems, the effect of a mutation depends not only on the alternate allele but 

also on its neighbouring sequence, a key concept in modern evolutionary modeling. 

Traditionally, approaches such as ESM rely on inter-species conservation to predict 

mutational effects. Here, we investigated whether kGain can also capture mutational effects 

within a species by quantifying the influence of local sequence context. To test this 

hypothesis, we trained an attention-based neural network (see Methods) to predict kGain 

from sequence windows centered on the mutation site in the reference genome of 

Escherichia coli B strain REL606. We then evaluated whether the model could predict 

mutational effects, as represented by kGain scores, in other E. coli strains. Standard one-hot 
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encoding for SNP regression often fails to encode the exact position or nature of the allele 

change within the sequence. To address this, we introduced a dual-encoded sequence 

representation (see Methods), which embeds both the reference flanking region and the 

alternate allele, providing the model with complete information about each mutation event 

(Fig. 5a). This encoding served as input to the transformer-based attention model. To further 

improve learning, we developed a custom loss function (see Methods) inspired by focal loss, 

emphasizing samples with higher prediction errors and encouraging the model to better fit 

challenging cases compared to standard loss functions. 

For robust evaluation, we reserved 20% (6,879 samples) of the LTEE mutation data as an 

independent test set, using the remaining 80% (27,512 samples) for training and validation 

with an 80/20 split per epoch. The held-out set allowed us to rigorously assess in-domain 

performance. Both training and validation losses decreased steadily over 500 epochs (Fig. 

5b), without evidence of overfitting. Additionally, we observed that optimizing the custom 

loss led to concurrent reductions in both mean absolute error and mean square error (Fig. 

5c-d), further supporting the model’s generalizability. On the held-out test set, the model 

achieved a Pearson correlation of 0.81, R² of 0.64, and MAE of 2.49 between actual and 

predicted kGain scores. While the MAE was moderate, the high correlation demonstrates 

that the model effectively learns the ranking of mutational effects, even if the exact values 

are not perfectly predicted (Fig. 5e). The kGain error distribution in the LTEE dataset 

followed a Gaussian profile with a mean near zero and standard deviation of 3.14 (Fig. 5f). 

To test robustness to out-of-domain data, we evaluated the model trained solely on E. coli B 

strain REL606, on mutations from the E. coli MG1655 strain (see “Bacterial adaptation 

under antibiotic pressure validates kGain scores” below), without any fine-tuning. In our 

in-house experiment, we found that the Y515N mutation in fusA was strongly selected, as its 

high kGain score predicted both robust kanamycin resistance and maintained growth fitness, 

making it an optimal adaptive mutation compared to other lower kGain variants. The 

attention model predicted a kGain value of 3.26 for this mutation, closely matching the 

actual value and demonstrating the model’s ability to generalize to other strains. When 

evaluated on the entire in-house dataset (out-of-domain), the model maintained strong 

performance (Pearson correlation = 0.82, R² = 0.67, MAE = 2.48; Fig. 5g), indicating that the 

kGain framework can generalize mutational effects across strains within a species. To further 
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interpret the model’s predictions, we visualized attention maps (Fig. 5h) for the Y515N 

mutation in fusA. The maps revealed that the model focuses most strongly on the mutation 

site while also considering neighboring bases, consistent with biological principles. This 

pattern highlights how the dual-encoded sequence representation enables the model to 

explicitly recognize and interpret the mutation’s precise location. To determine whether this 

attention pattern was unique to one sample or represented a broader trend, we analyzed 

average attention maps across the sequence window for multiple samples. We found that all 

positions contributed to kGain prediction, with the greatest importance assigned to 

nucleotides near the mutation site. This influence decreased exponentially with distance 

from the mutation, in line with the rolling window approach for kGain calculation, where 

central nucleotides appear in more windows and thus have a larger impact on kGain. 

However, even distant positions contributed to the prediction, as reflected in the attention 

maps for both E. coli B strain REL606 and E. coli MG1655 (Fig. 5i-j). These findings 

underscore the importance of both local and broader sequence context in determining 

mutational effects. 

Bacterial adaptation under antibiotic pressure validates kGain scores  

An in-house mutational-accumulation experiment under antibiotic pressure was performed 

to evaluate the persistence of k-mer based selection biases during adaptation to kanamycin. 

Wild-type E. coli K-12 MG1655 lineages were subjected to five successive serial passages in 

sublethal, incrementally increased kanamycin concentrations (0.006 → 0.1 mg·mL⁻¹) using a 

single-colony bottleneck regime. One lineage (D) was maintained on nutrient-rich 

Luria–Bertani agar, while three parallel replicates (R1, R2, R3) were propagated in minimal 

M9 medium. Replicate R2 failed to re-establish growth after the second passage and was 

subsequently excluded. At each transfer, the colony capable of surviving a 2–4× increase in 

kanamycin concentration served as the inoculum for the next passage. 

By the end of passage five, replicate R1 exhibited no detectable growth and was terminated. 

Growth kinetics of all the endpoint clones were then quantified both in the presence (D: 

0.08 mg·mL⁻¹; R1: 0.20 mg·mL⁻¹; R3: 0.10 mg·mL⁻¹) and absence of kanamycin in LB media. 

Population D displayed growth indistinguishable from wild type under both conditions, 
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whereas R1 and R3 exhibited significantly impaired proliferation even without antibiotic 

challenge (Fig. 6a; Supplemental Fig. S5a). 

Whole‐genome sequencing of all clones enabled us to score all single‐nucleotide variants 

(SNVs) by their kGain values using our established pipeline. In the D population, “fixed” 

mutations (persisting across ≥4 passages) bore significantly higher kGain than transient 

variants (Fig. 6b; Supplementary Fig. S5c), and mutations fixed at frequency = 1.0 exhibited 

elevated kGain relative to those that failed to fix (Fig. 6c; Supplementary Fig. S5b). Total SNV 

counts were similar across populations (D = 36; R1 = 29; R3 = 26), but D showed a 

pronounced skew toward high‐frequency and fixed alleles, consistent with stronger 

selection. 

To validate our hypothesis, we examined fusA, encoding elongation factor G (EF‐G), a protein 

of five domains essential for ribosomal translocation. In population D, a Y515N substitution 

in domain IV emerged at passage 4 and fixed by passage 5 (kGain = 5.81). In contrast, R1 and 

R3 accumulated multiple fusA mutations in domains I and V, including I158N (kGain = –6.57), 

I654N (–1.06), T674A (1.05) in R1, and A76T (1.35), G575D (–6.60) in R3. To evaluate the 

functional consequences of the Y515N substitution in EF-G, we subcloned the wild-type and 

Y515N fusA alleles into the pProExHTA vector and transformed them into E. coli BL21(DE3). 

Expression of both wild‐type and Y515N EF-G variants was assessed by SDS–PAGE under 

uninduced (0 mM IPTG) and induced (1 mM IPTG) conditions; the ≈80 kDa bands 

corresponding to each EF-G protein were observed only upon IPTG induction (Fig. 6d). In the 

absence of kanamycin, without IPTG induction,both strains exhibited identical growth 

kinetics, demonstrating no basal fitness defect. Upon induction and exposure to 0.008 

mg·mL⁻¹ kanamycin, cells expressing FusA Y515N sustained robust growth over an 8-hour 

time course (Fig. 6e), whereas wild-type FusA, expressing cells, failed to proliferate. These 

results indicate that the Y515N mutation impairs kanamycin’s interaction with the ribosome, 

thereby conferring antibiotic resistance (Fig. 6f). Domain IV mutations have been implicated 

in modulating EF‐G–ribosome interactions without abolishing translocation. Although EF-G is 

vital for translation, several studies have reported non-lethal fusA mutations in mediating 

aminoglycoside resistance (Holley et al. 2022; Mogre, Veetil, and Seshasayee 2017; 

Rodriguez de Evgrafov et al. 2020; Chulluncuy et al. 2016). While the precise mechanism 

remains unclear, we speculate that the Y515N substitution of fusA in domain IV affects its 
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binding to the 30S ribosome (Fig. 6g,h and Supplementary Fig. S5d), preserving EF-G’s 

ability to facilitate translocation. Our overall findings suggest that k-mers are selectively 

favored  even under selective pressure. In population D, robust growth was maintained, 

suggesting that Y515N could confer resistance without compromising fitness associated with 

higher kGain scores. In contrast, fusA variants R1 and R3 provided only partial resistance, 

correlating with lower kGain scores and diminished growth. 

Together, these data demonstrate that k‐mer based selection biases endure under antibiotic 

stress and can predict adaptive trajectories. The Y515N fusA mutation, characterized by a 

high kGain score, confers kanamycin resistance without compromising fitness, whereas 

lower kGain fusA variants in R1 and R3 afford only partial resistance at the cost of reduced 

growth. This work underscores the utility of kGain as a genome‐wide metric for forecasting 

functionally important adaptive mutations. 

Experimental evolution in S. cerevisiae reveals consistent kGain trends 

Following the assessment of a prokaryotic system, we inquired if eukaryotes would conform 

with the elevation of the kGain score levels along the evolutionary time-course. To this end, 

we performed meta-analysis of genomic sequencing dataset from a S. cerevisiae LTEE 

experiment 33. The study chose 30 focal populations (12 diploid populations, 12 MATa 

populations, and 6 MATα populations) across three environments, cultivation in yeast 

extract peptone dextrose (YPD) at 30°C, in synthetic complete medium (SC) at 30°C, and in 

synthetic complete medium (SC) at 37°C. We computed kGain scores for 133,538 

substitutions from across the 90 populations under study. Notably, authors performed 

genomic sequencing for samples from only six representative timepoints. We observed a 

gradual increase in both the median fitness and median kGain scores over successive 

generations (Fig. 7a). To quantify this trend, we employed least squares regression and 

observed a strong correlation (Pearson’s rho = 0.9635) between median fitness and median 

kGain (Supplementary Fig. S6a). Despite the absence of a rise in mutation numbers akin to 

those observed in the E. coli LTEE study, populations did not display hypermutator 

phenotypes, indicating a steady accumulation of beneficial mutations even in the absence of 

mutator phenotypes. We next examined the essential vs. non-essential genes dynamic and 

observed that essential genes consistently exhibited higher kGain scores compared to 

non-essential ones. This pattern implies a stronger selective pressure on essential genes to 
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preserve beneficial or neutral variants. Notably, the trend remained significant across all 

generations, underscoring the greater evolutionary constraint these genes face in 

maintaining functional integrity (Fig. 7b). We closely examined the fixed mutations in the 

populations. The authors labelled a mutation as "fixed" at a particular time point if it met 

the criteria of having coverage of at least 5X and being present at a frequency of greater 

than or equal to 40% (for diploids) or 90% (for haploids). Notably, fixed mutations were 

assigned higher kGain scores, as compared to ones not fixed (Fig. 7c). 

Pathogenic SARS-CoV-2 variants are assigned elevated kGain scores 

The recent outbreak of SARS-CoV-2 arguably offers the most extensive data on natural 

evolution, supported by comprehensive large-scale genomic profiling initiatives. To 

comprehensively analyze the mutational landscape of the SARS-CoV-2 virus, we 

implemented a robust pipeline for mutation analysis, as illustrated in Supplemental Fig. S6b.  

We took around 0.5 million high-quality genome sequences from GISAID (last accessed on: 

29-08-2022) and made SNP calls, yielding ~54,000 unique SNPs. Within our analysis, we 

delineated gene length and unique mutation counts (Supplemental Fig. S6.c,d and table S1). 

We employed two widely recognized approaches to classify SARS-CoV-2 variants: functional 

categorization of associated genes and their pathogenic characteristics with implications for 

human health. Functionally, genes are divided into structural, non-structural, and accessory 

classes. Structural genes, such as Spike (S), Envelope (E), Membrane (M), and Nucleocapsid 

(N), are essential for the structural integrity and infectivity of the virus. These genes facilitate 

viral entry into host cells by binding to the ACE2 receptor and contribute to immune evasion 

and viral persistence. Non-structural genes, exemplified by ORF1ab, are crucial for viral 

replication and transcription which are vital for its lifecycle and interaction with the host 

immune system. Accessory genes, including ORF3a, ORF6, ORF7a, ORF7b, ORF8, and ORF10, 

enhance the ability of the virus to evade immune responses and modulate host cell 

functions such as antagonizing the host's interferon response (Fig. 7d). Based on pathogenic 

roles and public health implications, the World Health Organization (WHO) has classified 

SARS-CoV-2 variants as Variants of Interest (VOI) or Variants of Concern (VOC) (table S2). 

VOIs have mutations affecting virus behavior, including transmissibility, severity, detection, 

or treatment. VOCs meet VOI criteria and cause severe disease, significantly reducing 

vaccine effectiveness and impact healthcare systems. Examples of lineages associated with 
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VOIs include lineages like Lambda and Mu, while those associated with VOCs include Alpha, 

Beta, Gamma, Delta, and Omicron (Supplemental Fig. S6e). More details on COVID-19 data 

processing and filtering can be found in the Materials and Methods section. 

We observed a significant contrast between the control variants and the VOC/VOI variants, 

with the latter exhibiting substantially higher kGain scores (Fig. 7f). Interestingly, gene 

groups revealed that kGain scores for VOC/VOI variants were higher than those for control 

variants, particularly within accessory and structural genes (Fig. 7e). We set the kGain cutoff 

at 0 and divided the variants into two categories: <0 and ≥0 (Fig. 7g). Variants in the latter 

group were found to be present in considerably higher numbers of COVID-19 genome 

sequences, suggesting that our score could indicate the type of selection pressure (positive 

or negative) experienced by a mutation. 

Zhang et al. (2022) 34 reported mutations that contribute to the pathogenicity and fitness of 

the virus. We examined the kGain profile of the reported VOC/VOI mutations and found that 

ORF3a:S26L, ORF3a:T223I, and ORF3a:S171L had higher kGain scores, whereas ORF3a:Q57H 

and ORF3a:S253P had lower kGain scores. These variants highlight changes in accessory 

proteins, which may exhibit a heightened propensity for adaptation through immune 

evasion. 

Another study by Obermeyer et al. (2022) 35 established that the SARS-CoV-2 pandemic has 

been dominated by several genetic changes of functional and epidemiological importance, 

including the spike (S) D614G mutation. This mutation is associated with higher SARS-CoV-2 

loads and has contributed to the increased infectivity and fitness of the virus 

(Supplementary Note 8) 

Deep Mutational scans (DMS) uncover kGain signatures in key genes 

Having demonstrated kGain’s utility in capturing evolutionary constraints in both the E. coli 

LTEE and our in-house antibiotic adaptation experiment, we next applied it to deep 

mutational scanning (DMS) data. DMS systematically evaluates all possible substitutions in 

essential genes, providing a comprehensive landscape of mutational effects. By examining 

kGain scores in this context, we aimed to determine whether the adaptive signals observed 

in long-term evolution also arise under the focused conditions of DMS. 
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We analysed three essential E. coli genes murA, fabZ, and lpxC, each vital for cell envelope 

biosynthesis 36. Specifically, murA catalyzes the first step in peptidoglycan precursor 

formation, fabZ acts as a dehydratase in fatty acid synthesis, and lpxC produces lipid A, a 

core component of the lipopolysaccharide (LPS) layer. Among these, murA appears 

significantly  mutation-sensitive, potentially permitting more beneficial shifts than fabZ or 

lpxC. A heatmap (Fig. 8a,b) comparing kGain with tolerance scores showed alternating 

gradients, where regions of high tolerance often correlated with higher kGain. Similar 

patterns emerged for lpxC and fabZ  (Supplemental Fig. S7a,b). By applying a 

tolerance-score cutoff of 0.8 (Fig. 8c,e), we observed that “tolerant” mutants generally had 

higher kGain than “non-tolerant” ones (cutoff = 1, Supplemental Fig. S7c,e), implying that 

some variants could impact beneficial effects. 

To explore the functional impact of these mutations, we examined relative solvent 

accessibility (RSA) in conjunction with kGain. RSA indicates whether a residue is 

surface-exposed or buried within the protein structure. We found that residues with RSA > 1 

(i.e., surface-exposed) frequently aligned with higher kGain (notably in murA and lpxC) 

(Supplemental Fig. S7f), suggesting that exposed sites may be more prone to accumulate 

beneficial mutations. 

Discussion 

This study introduces kGain as a compact and interpretable metric that captures 

selection-linked shifts in oligonucleotide frequency during evolution. Traditional models of 

selection often rely on changes in protein structure, interspecies conservation, or allele 

frequency trajectories. Here, we propose that within-genome k-mer dynamics offer an 

orthogonal and quantifiable dimension of evolutionary constraint and selection. 

Across diverse evolutionary systems, including laboratory-evolved E. coli and S. cerevisiae 

populations, SARS-CoV-2 genome surveillance, and in-house antibiotic adaptation 

experiments, we observed a consistent trend: variants with higher kGain scores tend to 

persist and fix over time. These findings suggest that high-kGain contexts, reflecting 

enriched sequence motifs, are more likely to harbor beneficial or tolerated mutations. This is 

particularly evident in essential genes, where elevated kGain scores imply selective pressure 
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not only on the coding potential but also on local sequence architecture that may influence 

regulatory robustness or mutational resilience. 

Our analysis reveals that fixed variants, essential-gene mutations, and substitutions in 

parallel genes all show higher kGain scores than their respective controls. Parallel genes, 

recurrently mutated across independent LTEE populations, are especially informative. We 

find that these genes accumulate mutations more rapidly and in higher-kGain contexts, 

particularly in mutator backgrounds. Bootstrapped trajectories further reveal a 

generation-wise increase in both allele frequency and kGain in parallel loci, indicating that 

recurrent adaptive evolution may be facilitated by favorable motif architectures. These 

results suggest that mutators, despite their elevated mutation load, are not phenotypically 

compromised because they sample and fix beneficial mutations in high-kGain sequence 

contexts. This provides a mechanistic rationale for the fitness parity observed between 

mutator and non-mutator lineages over 60,000 generations. 

In the context of environmental stress, our single-colony bottleneck experiment under 

sublethal kanamycin selection showed that fixed mutations in the adaptive lineage 

(Population D) were significantly enriched for high-kGain scores. The fusA Y515N mutation, 

which reached fixation in Population D, conferred kanamycin resistance without growth cost 

when overexpressed in a wild-type background. In contrast, fusA mutations with lower or 

negative kGain in other populations failed to confer resistance or sustained growth. These 

results provide direct functional validation that high-kGain contexts are predictive of 

adaptive potential. 

Complementing our experimental validation, we demonstrate that kGain is computationally 

predictable. A transformer-inspired attention-based neural network, trained on short 

nucleotide windows flanking SNPs, achieved a Pearson correlation of r = 0.82. The model 

learned biologically meaningful patterns from both the local sequence context and the 

mutant allele, suggesting that k-mer-driven selection pressures can be approximated 

without exhaustive full-genome frequency computation. Importantly, this also opens the 

door for applying kGain inference across species using learned representations. 
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Our DMS analysis further supports these insights. While the correlation between kGain and 

tolerance scores is modest, we observe that residues with high relative solvent accessibility 

(RSA), especially in murA, tend to show elevated kGain. This suggests that surface-exposed 

residues may be more permissive to beneficial substitutions in enriched k-mer contexts. 

Although kGain alone is not a substitute for functional assays, it captures a meaningful 

dimension of mutational tolerance that may complement structural and biochemical 

predictors. 

We also observed significant kGain enrichment in natural viral evolution. SARS-CoV-2 

Variants of Concern (VOCs) and Variants of Interest (VOIs) show elevated kGain scores, 

especially in structural and accessory genes. This suggests that even in fast-evolving RNA 

viruses, motif-level constraints may influence the success and spread of adaptive mutations. 

These findings align with prior work demonstrating that motif-level conservation is 

preserved even in genomes under rapid drift. 

While our study focuses on point mutations, we acknowledge that other forces, horizontal 

gene transfer, indels, transposons, also shape genome evolution. However, the controlled 

context of LTEE and the reproducibility of kGain enrichment across independently evolved 

systems argue for a consistent selection-based mechanism at the k-mer level. 

In conclusion, our findings support a model in which selection not only targets genes or 

phenotypes but also operates on the sequence context itself. The consistent enrichment of 

high-kGain mutations in adaptive lineages, essential loci, and parallel genes, combined with 

predictive accuracy from machine learning, suggests that k-mer architecture plays a 

previously underappreciated role in shaping evolutionary trajectories. As genome-wide data 

continues to accumulate, incorporating motif-level selection into evolutionary models could 

provide new insights into how mutation, sequence context, and fitness co-evolve. 
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Methods  

 

Mathematical formulation of FCGR 

 

Let S be a DNA nucleotide string of length N, where S[i] represents the ith symbol (1≤i≤N) 

corresponding to a DNA nucleotide base (A, C, G, T). The notation S[..i] denotes the DNA 

sequence prefix ending at position i (S[..i]=S[1..i]). The CGR iterative algorithm operates on 

an ℝ2 space, with each vertex corresponding to a DNA base (A, C, G, T). For a given DNA 

sequence S of length N, CGR maps each S[..i] prefix to the point xi∈ℝ2 using an iterative 

procedure.  
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In the original formulation 37, the initial point ( ) was taken as the center of the square (0.5, 𝑥
0
 

0.5). Alternatively, this point could be chosen randomly within the square. The user can also 

customize the vertex for  corresponding to a given . Here,  represents the randomly 𝑝
𝑖

𝑆
𝑖

𝑆
𝑖

chosen vertex for the ith step of the walker.  

FCGR heatmap generation 

We used the kaos Python package 19 to produce the FCGR encoding matrix. The k-mers 

frequencies, returned by kaos, were scaled by dividing each k-mer frequency by the total 
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k-mer count in the DNA sequence. The 1024 x 1024 pixel FCGR heat maps show the negative 

log of these normalized frequency values. 

Computing the kGain score 

kGain scores associated with single nucleotide variation (SNVs) are computed solely by using 

the reference genomes of the respective organisms – E. coli B str. REL606 for the Goods 

dataset, S. cerevisiae for budding yeast LTEE and Severe acute respiratory syndrome 

coronavirus 2 isolate Wuhan-Hu-1 for SARS-CoV-2. Further details pertaining to the 

individual datasets can be found in the following sub-sections. 

 

Below are the steps for kGain score computation. 

 

A.​ Sequences with the SNV and flanks: For every variant, we generate two sequences 

of length 19 (considering k-mer length is 10), one with the variant allele at the 

middle (10th position), and the other with the reference allele at the same location. 

Left and right flanks are sourced from the associated  reference genome, depending 

on the organism. 

B.​ k-mer generation using rolling windows: A total k (k = 10) windows are generated 

for each variant, such that each window contains the reference/alternate allele i.e., 

the position of the alternation. Rolling window based k-mer generation is performed 

in pair once for the reference sequence and once for the sequence carrying the 

variant of interest, giving rise to sets of k-mers per variant. 

C.​ kGain computation: For each k-mer, its occurrence across the reference genome is 

tracked, which finally contributes to the kGain computation.  

 

   = , 𝑘𝐺𝑎𝑖𝑛
𝑣

𝑖=1

𝑘

∑ 𝑙𝑛(
𝐹

𝑖(𝑣)
𝑎𝑙𝑡 + 1

𝐹
𝑖(𝑣)

𝑅𝑒𝑓 + 1
)

Where,  score is computed for each variant  by adding the natural log of the fold 𝑘𝐺𝑎𝑖𝑛
𝑣

𝑣

change between the genomic frequencies of the k-mer containing the alternate allele (

)and the reference allele (  ) within each ith window,  across all windows. In this 𝐹
𝑖(𝑣)

𝑎𝑙𝑡 𝐹
𝑖(𝑣)

𝑟𝑒𝑓

equation  is the total number of k-mers generated using the rolling window method, both 𝑘

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 11, 2025. ; https://doi.org/10.1101/2024.07.05.602168doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.05.602168
http://creativecommons.org/licenses/by-nc-nd/4.0/


for the reference and alternate sequences. Since the computation is on a logarithmic scale, 

both division by zero and taking the logarithm of zero pose issues. To address this, a pseudo 

count of 1 is added to both the numerator and denominator. This ensures numerical stability 

by preventing division by zero and avoiding undefined logarithmic values when the alternate 

k-mer frequency is 0. 

 

LLR Score  

We utilize the ESM1b model to compute the Likelihood ratio (LLR) exclusively for missense 

mutations across all datasets described below. The ESM1b model is being harnessed from 

the GitHub repository (https://github.com/ntranoslab/esm-variants). 

 

Evo Score  

The Evo model, trained on 2.7 million prokaryotic and phage genomes, allows zero-shot 

prediction of how small nucleotide sequence changes affect overall organismal fitness. For 

each mutation, we extracted a 101-base sequence centered on the mutation position, 

including 50 bases upstream and 50 bases downstream, with the mutated allele at the 

center. The Evo-1-131k-base model was then used to generate a log likelihood score for each 

101-base sequence (https://github.com/evo-design/evo). 

 

Overview of dataset 

To explore the utility of kGain score, we performed meta-analyses  of genomic sequencing 

data from laboratory evolution experiments involving E. coli and S. cerevisiae (budding 

yeast). Further we used Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) data 

from the GISAID repository. Apart from these, datasets from two other studies were used for 

various analyses.  

 

E. coli LTEE data (Goods dataset) 

The E. coli LTEE is an ongoing study in experimental evolution that began in 1988 by Richard 

Lenski at the University of California, Irvine 38. It observes the evolutionary alterations across 

12 genetically identical populations that have been consistently maintained in a controlled 

environment  39 26. We collected bacterial fitness measurements and sequencing data from 

two independent studies by Weiser et al. and Goods et al. Weiser and colleagues performed 
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competitive fitness assays for up to 50,000 generations, totalling 928 screened samples 

across 12 populations. 41,962 variants identified by Goods and colleagues 30 were filtered to 

include only single nucleotide substitutions, resulting in 36,923 variants. Both these datasets 

are accessible at https://github.com/benjaminhgood/LTEE-metagenomic. 

` 

S. cerevisiae LTEE data (Johnson dataset) 

The S. cerevisiae LTEE experiment comprised 205 (124 haploid and 81 diploid) populations, 

propagating up to ~10,000 generations in three different environments 33. For each of the 

three environments, the authors selected 30 focal populations (12 diploid, 12 MATa, and 6 

MATα) and sequenced them at six-time points, giving rise to 90 whole genome sequences. 

Upon request, we received the unfiltered .vcf file (144,708 variants), from which we filtered 

the single base substitutions, resulting in 133,538 variants. We obtained the fitness data 

from the same publication 33. 

SARS-CoV-2 dataset 

About 0.5 million (N=477, 667) high-quality SARS-CoV-2 genomic sequences were 

downloaded from the Global Initiative on Sharing All Influenza Data (GISAID) (GISAID 

Initiative (epicov.org)) EpiCoV database (last accessed on 29-08-2022) based on stringent 

criteria - human as host, completed genomes, excluding low coverage data, availability of 

patient clinical status and collection date ranging between 1st Jan 2010 and 29th Aug 2022. 

Genome-wide variant identification and open reading frame (ORF) prediction were executed 

using reference genome (Accession ID: NC_045512.2), employing an intricate multi-step 

analytical approach that integrated the StrainFlow and CoV-Seq pipelines as described by the 

authors. From a total of 68,364 unique mutations, 56,971 were identified as SNPs. Among 

these, 54,085 SNPs were considered for further analysis. At the same time, 2886 variants 

were excluded due to the presence of common variants spanning multiple genes, flank 

lengths less than ten bp and lacking protein variant identifiers (HGVS_P). The refined variant 

dataset was provided as input for the computation of the kGain score, as detailed above. 

 

SARS-CoV-2 dataset preprocessing : 

The preprocessing of the dataset contains the following steps :  
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1.​ Calculating the mutation frequency and mutation count: The mutation frequency 

for 54,075 SNPs is determined by dividing the mutation counts by the total sum of 

mutation counts within a gene. These mutation counts for each variant were 

obtained from the Python Outbreak.info API package. Notably, 10 SNPs were 

excluded from the analysis as they were not accessible through the API (Welcome to 

the Python Outbreak.info package docs! — Python Outbreak.info API 0.1 

documentation (outbreak-info.github.io)). 

2.​ Integration of Lineage and Variant Classification in SARS-CoV-2: Data extracted from 

the Python Outbreak.info API comprised 334 variants, each associated with lineage 

information including alpha, beta, gamma, delta, omicron, b.1.2, lambda, and mu. 

Integrating this lineage data with unique SNPs allowed us to identify 144 variants. 

Following this identification, these 144 variants were categorized into variants of 

concern (VOC) and variants of interest (VOI), in accordance with the SARS-CoV-2 

variant classification guidelines established by the WHO (COVID-19 variants | WHO 

COVID-19 dashboard and SARS-CoV-2 Variant Classifications and Definitions 

(cdc.gov)). The remaining variants were classified as controls within the analysis. 

 

Bacterial adaptation experiment  

Bacterial Strains 

Escherichia coli (E. coli) strain MG1655 was used as the wild‐type (WT) founder for the 

adaptation experiment. All strains employed were isogenic with E. coli MG1655.  

For clarity, the following definitions apply: Variants/Mutations: The list of mutations that 

distinguish a mutant from its isogenic parent strain. Lineage: A temporal series of bacteria 

connected by a continuous line of descent from ancestor to descendant. Clone: A population 

of bacteria (typically a colony on agar) derived from a single founder cell. Founder: WT 

bacterial strain used as a starting point for the experiment.                                                                                        

Cloning and Site Directed Mutagenesis 
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fusA gene was cloned using standard cloning techniques. Briefly, fusA gene was PCR 

amplified using the primer pair: Forward Primer - 5’ TATAGGATCCAATGGCTCGTACAAC 3’ and 

Reverse Primer - 5’ CTTTTCTCGAGTTATTTACCACGG 3’. PCR product and pProExHTA vector backbone 

were digested using BamHI and XhoI to generate linear DNA fragments with sticky ends, ligated, and 

transformed in DH5⍺ cells. Recombinant colonies were screened and sequencing was done to 

confirm that fusA was free of any spontaneous mutations.  

pProExHTA::fusA was used to generate pProExHTA::fusA Y515N using Phusion Site Directed 

Mutagenesis Kit (ThermoScientific #F541) and primers: Forward Primer- -- 5’ 

GTCGTGGTCAGAATGGTCATGTT 3’ and Reverse Primer- 5’ AACATGACCATTCTGACCACGAC 3’.  

Culture conditions 

Two types of media were used for the adaptive experiments: Luria–Bertani (LB) broth/Luria 

Agar (LA).  For 100 mL of LB, the medium was composed of 1 g tryptone, 1 g NaCl, 0.5 g yeast 

extract. The LA consists of LB medium with 1.5g agar. The pH was adjusted to ~7.0 prior to 

autoclaving at 121 °C for 15–20 minutes. M9 Minimal Medium (M9A): M9 minimal medium 

was prepared using a 5× M9 salts solution containing 32 g Na₂HPO₄, 7.5 g KH₂PO₄, 1.25 g 

NaCl, and 2.5 g NH₄Cl dissolved in 500 mL of distilled water. For 500 mL of M9A, the salts 

were combined with additional components, including 1 M MgSO₄, 1 M CaCl₂, 20% glucose, 

agar, and 250 µL of trace elements solution (comprising FeCl₃, ZnSO₄, CuCl₂, MnSO₄,and 

CoCl₂). 

Bacterial adaptation under selective pressure: Experimental setup 

Four independent lineages were established from the WT. Population D was propagated on 

LA plates, whereas Populations R1, R2, and R3 were maintained on M9A 40,41. A serial 

passage strategy was implemented, whereby at each passage a single colony was selected 

and transferred to fresh plates containing an incrementally increased sublethal 

concentration of kanamycin 42,43. Colony for each passage was based on selection and was 

tailored to the specific growth environment: in LA, colonies were chosen based on growth 

curve analysis 44—since rapid proliferation in a nutrient-rich medium renders growth kinetics 

a robust indicator of fitness—while in M9A, the INT/PMS assay was used to assess metabolic 

activity 45,46, which more accurately reflects cellular fitness under nutrient-limited conditions. 
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Following selection, the selected colony underwent minimum inhibitory concentration (MIC) 

determination 47, and the sublethal concentration thus established was used for the 

subsequent propagation. Initial MICs for kanamycin were 0.006 mg/ml in LA and 0.01 mg/ml 

in M9A, reflecting distinct metabolic conditions. LA’s nutrient-rich environment promotes 

rapid growth, potentially increasing antibiotic susceptibility, whereas M9A requires de novo 

synthesis of essential metabolites, resulting in slower growth and a slightly higher MIC 48,49). 

For Population D, kanamycin concentrations escalated from 0.006 mg/ml to 0.008, 0.01, 

0.04, and 0.08 mg/ml across D1–D5. In M9A, Population R1 encountered 0.01, 0.05, 0.06, 

and 0.2 mg/ml, while Population R3 followed a similar progression, culminating at 0.1 mg/ml 

by passage 5 (Supplementary Note 6).  

Colony Selection via Divergent Fitness Assays 

Colony selection criteria were tailored to the growth environment; for population D (LA), 

colony selection was based on growth kinetics. A 1% inoculum from a 3-hour culture (OD₆₀₀ 

~0.8–1.0) was added to a 96-well plate containing fresh LB. Growth was monitored for 16 

hours with OD₆₀₀ measured at  ~ 30-minute intervals. The area under the curve (AUC) was 

calculated, and colonies exhibiting the highest AUC were selected for the next passage. 

Populations R1 and R3 (M9A): Due to the nutrient-limited conditions, metabolic activity was 

assessed using an INT (1 mM) plus PMS (2.5 mM) redox-based colorimetric assay. Cultures 

grown to an OD₆₀₀ of 0.8–1.0, 10 µL aliquots were applied onto Whatman® grade 3 filter 

papers. Following the addition of 5 µL of the INT/PMS solution, the development of a purple 

formazan precipitate was monitored. Samples were air-dried in the dark (1–4 hours), 

scanned, and the color intensity (measured in the green channel) quantified using ImageJ™. 

Colonies with the highest metabolic activity were advanced to the subsequent passage. 

Antibiotics and Sublethal Concentration Selection 

Kanamycin (purchased from SRL Labs, India) was dissolved in nuclease free water at a 

concentration of 50 mg/ml prior to use. Kanamycin (Kan) was added to liquid and solid 

media at the specified concentrations . To determine the appropriate sublethal antibiotic 

concentration for each passage, minimal inhibitory concentration (MIC) assays were 

performed in 96-well plates. Briefly, 1% of a pre-cultured bacterial suspension (OD₆₀₀ 
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between 0.8 and 1.0, following a 3–4-hour incubation) was inoculated into wells containing 

progressively increasing concentrations of kanamycin. Optical density (OD₆₀₀) readings were 

recorded 18–20-hour period at 37 °C. 

Whole-Genome Sequencing 

Whole genome sequencing (WGS) was outsourced where genomic DNA was extracted from 

colonies using the DNeasy PowerSoil Pro Kit (Qiagen) according to the manufacturer’s 

protocol. Library preparation was followed by paired-end sequencing (150 bp) on an Illumina 

NovaSeq 6000 platform. Raw reads were quality filtered with fastp v0.12.4, and aligned to 

the E. coli K-12 MG1655 reference genome (ASM584v2; GCF_000005845.2) using BWA-MEM 

50. Reads were converted to BAM format using samtools v1.6 , sorted with sambamba v1.0.1, 

and duplicate reads were marked. Variant calling was performed with FreeBayes v0.9.21.7  

after base quality recalibration with htslib v1.21. Variants were filtered using vcflib v1.0.10 

and vt v2015.11.10, applying a minimum quality threshold of 20 and a minimum total read 

depth of 10. Quality control metrics were generated using MultiQC v1.19, and the final 

variant set was manually annotated using a GFF file 

(GCF_000005845.2_ASM584v2_genomic.gff) to retrieve the names of the genes. 

Growth Comparison Assays 

To assess growth differences among evolutionary passages and populations, standardized 

growth assays were performed in antibiotic-free LB medium. Overnight cultures (grown 

without antibiotic to allow recovery) were diluted 1% into fresh LB and grown to an OD₆₀₀ of 

~0.8. Subsequently, 1% inocula were transferred into 96-well plates containing LB, and 

growth was monitored for 16 hours with OD₆₀₀ readings every ~ 30 minutes. This approach 

enabled a comparative evaluation of growth kinetics across different passages and 

populations. 

For growth comparison assay between WT and Mutant FusA, plasmids (pProExHTA) carrying 

the fusA and fusA Y515N genes were transformed into E. coli BL21 (DE3) cells. A single 

colony of each was inoculated and grown overnight. 1 % of primary inoculum was used for 5 

ml of secondary inoculation and grown for 3-4 hrs, till OD600 reached 0.6. Subsequently, a 

96-well plate containing 0.4 mM IPTG and 0.008 mg/ml kanamycin was set up with culture 
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OD600 of 0.05. Growth was followed for 8 hrs and OD600 was recorded and plotted every 30 

minutes.  

Deep Mutation Scan Dataset 

Deep Mutational Scanning (DMS) data 36 we computed kGain scores for all edits for lpxC, 

fabZ, and murA genes, which are essential for bacterial viability. kGain was computed as 

mentioned above. Unlike typical nucleotide mutations, DMS involves codon mutations. 

Therefore, we adjusted our methodology to ensure the mutated codon position was always 

present within the sliding window used for kGain calculations. This involved generating 

flanking sequences to maintain the full three-nucleotide codon within every window. 

Consequently, both the reference and alternate flanks in our DMS analysis were 

standardized to a length of 17 nucleotides. 

Statistical analysis 

Throughout the paper, we have used one-sided Mann-Whitney U tests for statistical 

significance analysis between two groups, wherever applicable, unless specially mentioned.  

The one-sided Mann-Whitney U test is a non-parametric test used to assess whether one 

data group tends to have larger values than the other,  with the effect size calculated as 

described in Supplementary Note 9. 

 

Sequence Embedding Strategy for SNP Effect Prediction 

Accurate prediction of mutational effects requires that a model recognize both the specific 

nucleotide change and its sequence neighbors. However, standard one-hot encoding  (OHE) 

for SNPs  often fails to capture the precise position or nature of the mutation, limiting both 

biological interpretability and predictive power. To overcome this limitation, we introduced a 

dual-encoded sequence representation. For each SNP, a sequence window (length: 2*kmer 

length - 1) centered at the mutation was extracted. At each position, nucleotides were 

encoded using standard one-hot vectors for A, C, G, and T. At the central (mutated) position, 

both the reference and alternate alleles were explicitly encoded, with the alternate 

nucleotide assigned a negative value in its channel. This approach highlights the mutational 

event within the embedding, while also encoding wild-type and absent states. By providing 
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the model with information on both the sequence neighborhood and the explicit mutation, 

the dual-encoded representation enables more accurate and interpretable predictions of 

mutational effects, outperforming standard encodings in this context.  

Focal Loss Optimization for Accurate SNP Effect Prediction 

In biology, a single nucleotide change can have different effects depending on its location in 

the genome. Some mutations drive adaptation through directional selection, some are 

eliminated by purifying selection, and many simply drift without strong effect. Because the 

impact of each SNP is so context-dependent, predicting mutation effects can be especially 

challenging for rare or complex cases. To address this, we combined our biologically 

informed SNP embedding with a focal regression loss (gamma = 2), which places greater 

emphasis on large prediction errors. This strategy encourages the model to focus on difficult 

and rare SNPs, not just those that are easy to predict. By integrating context-aware 

embeddings and focal loss optimization, this approach delivers more accurate and robust 

predictions across the full range of mutation outcomes in the population. 

 

Attention-Based Neural Network for kGain Prediction 

We implemented a deep learning regression model inspired by the transformer architecture 

to predict quantitative mutation effects from DNA sequence context. Each input is a 

Dual-Encoded Sequence Representation (19X4), a one-hot matrix spanning 19 nucleotides 

centered on the SNP.  The architecture begins with a dense layer that projects each 

nucleotide position into a continuous embedding space. Learnable positional embeddings 

are then added to retain information about nucleotide order within the sequence. The 

combined embeddings are then processed by two multi-head self-attention layers (each 

with four heads), which enable the model to integrate information from all positions in the 

sequence, capturing important patterns and relationships between nucleotides. Each 

attention layer is followed by dropout regularization, residual connections, and layer 

normalization to stabilize learning and prevent overfitting. After attention, the sequence 

representations are further refined by a position-wise feed-forward block (with ReLU 

activation and dropout), again followed by residual connections and normalization. A global 

average pooling layer aggregates the information across all sequence positions, producing a 

fixed-length vector. This is passed through a final dense layer to generate a single, 
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continuous output value representing the predicted effect of the SNP. All hyperparameters, 

including sequence length, embedding dimension, attention heads, feed-forward dimension, 

number of layers, and dropout rate, were optimized for robust performance and reliable 

convergence on both training and validation data. 

 

Logistic Regression for Predictors of Directional Selection 

We modeled whether a mutation experienced directional selection (1) versus all other 

regimes (0; purifying selection or drift) as a function of mutation type (is_AT_to_GC, 

1 = A/T→G/C, 0 = other) and kGain score using logistic regression. Regression coefficients 

(excluding the intercept) were exponentiated to obtain odds ratios, representing the change 

in odds of a mutation falling under directional selection per unit increase in each predictor. 
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Figure 1. Exploring the fractal pattern of DNA across various organisms and examining its 

non-random nature. 
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(a) The genomic DNA is fragmented into oligonucleotides of a defined length 𝑘, which are 

subsequently mapped to the FCGR matrix of the reference genome. (b) Boxplot showing the 

absolute difference (log scale) in frequency distribution between two randomly selected 

k-mers and one randomly selected k-mer with its counterpart altered by n Hamming 

distances (original altered) (P-values of <1e-323 for Hamming distances 1 and 2, 1.56e-89 for 

distance 3, and 0.09 for distances greater than 3).  (c-e) Heatmaps illustrate normalised 

frequency values (in negative logarithmic scale) to reduce the range, which demonstrates 

that various organisms exhibit distinct patterns of k-mer abundance within their DNA 

sequences. (f) To evaluate the significance of these fractal patterns, we utilised a heatmap of 

genomic DNA from E. coli, comparing it to a randomised counterpart, thereby elucidating 

discernible differences in pattern preservation. (g) kGain score computation process: For 

each variant, two 21-mer/13-mer sequences are generated, one with the reference allele 

and one with the alternate allele at the central position. k-mers (k = 10) are generated using 

a rolling window method for both reference and variant sequences, resulting in sets of 

k-mers. The kGain score for each variant is calculated by summing the natural log of the fold 

change between the genomic frequencies of the k-mer containing the alternate allele and 

the reference allele across all k-mers. (h) The schematic illustrates the distribution of the 

alternate k-mer (resulting from an A→C substitution) across various genomic loci in E. coli. 

The yaaJ gene, highlighted in green, serves as the reference k-mer source. The alternate 

k-mer is mapped across multiple genes involved in diverse biological functions, including 

translation, metabolism, drug resistance, transport, defence mechanisms, and signal 

transduction. The functional classification of each gene is denoted by colored circles. The 

boxed region on the right depicts the reference (Ref) and alternate (Alt) k-mer sequences, 

highlighting the nucleotide substitution in red. 
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Figure 2. Evolutionary dynamics in E. coli LTEE dataset 

(a) A visual depiction of the LTEE involving Escherichia coli B strain REL606. Initiated in 1988 

by Lenski et al., this experiment has spanned over 30 years and includes 12 replicate 

populations labelled ara-1 to ara-6 (m1 to m6) and ara+1 to ara+6 (p1 to p6). These 

populations were propagated for 60,000 generations (1998-2016) and subjected to 

sequencing at intervals of 500 generations. (b) Schematic overview of the Saccharomyces 

cerevisiae LTEE: The experiment began with alpha MAT (MJM335) and a MAT (MJM361) 

strains, which were crossed to generate a diploid (MJM102). These populations were 

evolved in three different environments: YPD at 30°C for 10,000 generations, SC at 37°C for 

8,000 generations, and SC at 30°C for 10,000 generations. Samples were sequenced at eight 

time points throughout the experiment. (c) Schematic representation of the experimental 

workflow for bacterial adaptation under sublethal antibiotic pressure. The process begins 

with the passage of bacterial populations, followed by colony selection based on growth 

characteristics measured using the growth curve or INT+PMS assay. After selecting the 

colony, sublethal concentrations of antibiotics are determined, and the selected colony is 

grown in the following passage. (d)  Here is an example of the key variants of SARS-CoV-2 

tracked in this study, showing the lineage names, color-coded symbols, and dates of first 

discovery.  (e) A bar plot representing unique mutations classified by selective regime, 

purifying selection (green), drift (orange), and directional selection (blue), based on 

temporal allele frequency trajectories. (f) A bar plot showing the number of unique 

mutations stratified by fixation status, with fixed mutations (green) and not fixed mutations 

(orange) identified across all populations. (g) A bar plot illustrating the distribution of 

unique mutations among essential genes (red) and non-essential genes (cyan). (h) A bar plot 

depicting the number of unique mutations in mutator (pink) and non-mutator (green) gene 

sets. (i) Violin and box plots showing the distribution of kGain scores for mutations under 

directional selection (blue), drift (orange), and purifying selection (red) in both mutator 

(P-value <1e-323 and effect size = 7.97e-01 for directional selection vs neutral in mutator, 

P-value = 1.63e-134 and effect size = 7.41e-01 for directional selection vs purifying selection 

in mutator, P-value = 9.95e-01 and effect size = -4.89e-02 for neutral vs purifying selection in 

mutator) and non-mutator populations (P-value = 2.97e-17 and effect size = 7.57e-01 for 

directional selection vs neutral in non mutator, P-value = 3.03e-02 and effect size = 3.75e-01 

for directional selection vs purifying selection in non mutator, P-value = 5.56e-06 and effect 
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size = 3.70e-01 for purifying selection vs neutral in non mutator). (j)  Heatmap showing the 

median kGain values across generations for individual populations, stratified by mutator  

and non-mutator. (k) Number of unique mutations in non-mutator populations, separated 

by mutation type (A/T→G/C vs. Others). (l) Number of unique mutations in mutator 

populations, separated by mutation type. (m) Odds ratio comparing the enrichment of 

kGain and A/T→G/C substitutions. Error bars indicate 95% confidence intervals. 

 

[Note: The P-value cutoff for all the plots is 0.05. *, **, ***, and **** refers to p-values 

<0.05, <0.01, <0.001, and <0.0001, respectively.] 
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Figure 3. Beneficial mutational spectrum shift 

(a) Median kGain across generations, with 95% confidence intervals shown as shaded areas. 

(b) Temporal trends of median LLR score over generations.   (c) Median Evo score over 

generations. (d) Box plot of kGain scores in mutator populations comparing essential and 

non-essential genes (P-value = 2.40e-02 and effect size = 8.00e-02). (e) Box plot depicting 

kGain scores in non-mutator populations comparing essential and non-essential genes 

(P-value = 5.14e-05 and effect size = 3.05e-01). (f) Bootstrapped distributions of mean 

evolved kGain scores for essential and non-essential gene mutations in mutator populations, 

generated using 10,000 iterations and subsampling 90% of the minimum group size per 

iteration. (g) Bootstrapped distributions of mean evolved kGain scores for essential and 

non-essential gene in non mutator populations, generated using 10,000 iterations and 

subsampling 90% of the minimum group size per iteration. (h) Median kGain score over 

generations for essential and non-essential genes in mutator populations. (i) Median kGain 

score over generations for essential and non-essential genes in non-mutator populations. (j) 

Box plot of kGain scores in mutator populations comparing fixed and not fixed mutations 

(P-value = 1.04e-242 and effect size = 7.94e-01). (k) Box plot of kGain scores in non-mutator 

populations comparing fixed and not fixed mutations (P-value = 7.95e-14 and effect size = 

7.69e-01). (l) Line plot of mean allele count per generation for mutator and non-mutator in 

parallel genes. (m)  Line plot of generation wise mean kGain for mutator and non-mutator in 

parallel genes. 

 

[Note: The p-value cutoff for all the plots is 0.05. *, **, ***, and **** refers to p-values 

<0.05, <0.01, <0.001, and <0.0001, respectively.] 
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Figure 4. Temporal dynamics of allele frequency, kGain scores, and functional signatures in 

parallel and non-parallel genes in mutator and non-mutator backgrounds 

(a) Temporal trends of median allele frequency in parallel and non-parallel genes across 

mutator and non-mutator populations. (b) Median kGain scores over generations for parallel 

and non-parallel genes in mutator and non-mutator. Shaded regions represent 95% 

confidence intervals, and statistical significance between groups at each time point is 

indicated by asterisks. (c) Heatmap of median kGain scores for major COG functional 

categories over generation in mutator populations. (d) Heatmap of median kGain scores for 

major COG functional categories over time in non-mutator populations. 

[Note: The p-value cutoff for all the plots is 0.05. *, **, ***, and **** refers to p-values 

<0.05, <0.01, <0.001, and <0.0001, respectively.] 
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Figure 5. Performance and interpretation of the kGain prediction model. 

(a) Encoding strategy for representing SNP mutations: the panel illustrates the custom 

embedding approach used to encode single-nucleotide polymorphisms (SNPs) for the 

prediction model. The upper matrix shows the one-hot encoded states for each nucleotide 

(A, C, G, T) at positions flanking the mutation site, as well as at the mutation site itself. The 

lower sequence logo visualizes the nucleotide context around the mutation, highlighting the 

reference sequence, the alternate allele at the mutation site, and the reference flanking 

positions. This strategy captures both the local sequence and the specific nucleotide change 

introduced by each SNP.  (b) Training and validation loss curves (c) MAE loss curve Training 

and validation (d) MSE loss curve Training and validation  (e) In-domain performance. 

Predicted versus observed kGain scores for the held-out dataset, colored by point density, 

show strong agreement (Pearson correlation r = 0.81). (f) Distribution of prediction errors for 

the held-out LTEE data, confirming approximate normality with zero mean. (g) 

Out-of-domain validation. Predicted versus observed kGain scores for mutations from an 

independent E. coli strain ( E. coli MG1655) demonstrate robust generalization of the model 

(Pearson correlation r = 0.82). (h) Attention map for the Y515N mutation in fusA in E. coli 

MG1655, illustrating the model’s focus on the mutation site and neighboring positions. (i)  

Average attention map across the sequence window for multiple samples from E. coli 

MG1655 in the in-house experiment.  (j) Average attention map across the sequence 

window for held-out samples of E. coli B strain REL606 from the LTEE experiment. 
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Figure 6. Impact of kanamycin and fusA mutations on ribosomal translocation. 

(a) Growth curve for passage 5 of the D, R1, R3 populations, and the WT founder strain in LB 

medium without antibiotics. The OD₆₀₀ was measured over a 16-hour period to assess 

bacterial growth across all populations. (b) kGain scores for populations with fixed (orange) 

and not fixed (blue) mutations. Boxplots show the distribution of kGain scores for each 

population (D, R1, R3), comparing mutations that were successfully carried (P-value = 

6.17e-01 and effect size = -1.05e+00 for R1, P-value = 1.87e-02 and effect size = 1.99e+00 for 

D, P-value = 2.58e-01 and effect size = 9.51e-01 for R3). (c) kGain scores for mutations in 

genes across populations D, R1, and R3 are shown . Boxplots depict the kGain scores for 

mutations in genes, comparing the alternate allele frequency (AF) of 1 (orange) versus AF 

less than 1 (blue) in each population (P-value = 4.84e-01 and effect size = -7.85e-02 for R1, 

P-value = 1.75e-03 and effect size = 2.53e+00 for D, P-value = nan and effect size = -4.00e-01 

for R3). (d) SDS-PAGE analysis of induced and uninduced cells carrying pProExHTA::fusA and 

pProExHTA::fusA Y515N. BL21 cells transformed with pProExHTA::fusA and pProExHTA::fusA 

Y515N in log phase were separated into two tubes and one of each was  induced with 1.0 

mM IPTG at 37 ℃ overnight. 20 µl of cells were mixed with SDS loading dye and boiled prior 

to loading in the gel.  Red arrows indicate the expression of fusA or fusA Y515N in lanes 

loaded with induced cells. M denotes Marker in kDa.  Growth curve for BL21 cells expressing 

fusA or fusA Y515N in the (e) absence or (f) presence of 0.008 mg/ml Kanamycin. The cells 

were induced with 0.4 mM IPTG and growth was followed and OD600 was measured for 8 hrs. 

(g) Schematic illustrating the proposed mechanism of ribosomal translocation in the 

presence of kanamycin (Kan). In the WT scenario, kanamycin binds to the decoding site of 

the 30S ribosome, leading to impaired translocation. In the fusA mutant, a mutant form of 

EF-G binds to the decoding site of the 30S ribosome, resuming translocation despite the 

presence of kanamycin. (h) Structural alignment of fusA WT and fusA mutant protein 

structures. The fusA WT structure is shown with regions I-V labelled and color-coded. The 

fusA mutant structure is aligned with the WT, highlighting the Y515N mutation, which is 

critical for resuming translocation in the presence of kanamycin. 
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Figure 7. Evolution of kGain scores across generations and categories in Yeast and Covid. 

(a) Heatmap showing the distribution of median kGain scores across 90 populations at 

different generations, with marginal violin plots depicting the density of kGain scores across 

sampled generations in yeast. (b) Violin and box plots comparing kGain scores between 

essential and non-essential genes across unique mutations in yeast (P-value = 3.72e-16 and 

effect size = 3.06e-01 for generation 70, P-value = 1.69e-32 and effect size = 3.14e-01 for 

generation 1410, P-value = 1.39e-24 and effect size = 3.65e-01 for generation 2640, P-value 

= 1.52e-28 and effect size = 2.97e-01 for generation 5150, P-value = 6.82e-23 and effect size 

= 2.89e-01 for generation 7530, P-value = 1.04e-27 and effect size = 2.97e-01 for generation 

10150). (c) Violin and box plots comparing kGain scores for fixed and not fixed mutations 

across unique mutations in Yeast (P-value = 1.73e-01 and effect size = 1.09e-01 for 

generation 70, P-value = 5.32e-02 and effect size = 1.19e-01 for generation 1410, P-value = 

4.71e-03 and effect size = 9.49e-02 for generation 2640, P-value = 3.25e-03 and effect size = 

8.53e-02 for generation 5150, P-value = 2.72e-03 and effect size = 6.00e-02 for generation 

7530, P-value = 1.03e-03 and effect size = 6.08e-02 for generation 10150). (d) The variant 

counts are depicted using a logarithmic scale for control, VOC, and VOI categories within the 

structural, non-structural, and accessory gene groups in SARS-CoV-2. (e-f)  All variants are 

classified into accessory, structural, and non-structural based on gene and variant 

classification (control and VOC/VOI) and then visualised with kGain using box plots   in 

SARS-CoV-2. (g) A kGain of 0 is taken as a cutoff, and based on that, variants  => 0 and 

variants <0 are visualised with the log of mutation frequency using a box plot  in SARS-CoV-2. 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 11, 2025. ; https://doi.org/10.1101/2024.07.05.602168doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.05.602168
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 11, 2025. ; https://doi.org/10.1101/2024.07.05.602168doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.05.602168
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 8. kGain scores dynamics captured in DMS studies 

(a) Heatmap showing the median kGain scores for mutations across different amino acids in 

murA gene. The color scale indicates the range of kGain scores, with red representing 

negative values and green indicating positive values. (b) Heatmap representing the median 

tolerance scores for each mutated amino acid, with the color scale from blue to red 

representing the range of tolerance values from 0 to 1. The domains are categorized as 

catalytic and C-terminal, with distinct coloring to highlight regions of higher or lower 

tolerance. (c-e) Boxplot showing kGain scores for fabZ, lpxC, and murA mutations, comparing 

tolerant versus intolerant mutations. Tolerant mutations (green) are associated with higher 

kGain scores, while intolerant mutations (red) show significantly lower values (P-values are 

2.08e-2 for fabZ, 7.11e-9 for lpxC , and 5.46e-8 for murA). 

[Note: The p-value cutoff for all the plots is 0.05. *, **, ***, and **** refers to p-values 

<0.05, <0.01, <0.001, and <0.0001, respectively.] 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 11, 2025. ; https://doi.org/10.1101/2024.07.05.602168doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.05.602168
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgements 

 

We would like to express our gratitude to Dr. Michael Desi from the Department of 

Organismic and Evolutionary Biology at Harvard University, Cambridge, and Dr. Milo 

Johnson, Postdoctoral Fellow at UC Berkeley, for their invaluable assistance in understanding 

and acquiring the data. We thank Dr. Manjula Reddy and Suraj Kumar Meher from the 

Centre for Cell and Molecular Biology (CCMB), Hyderabad, for the bacterial strain E. coli 

MG1655.  

Fundings 

DS acknowledges the support of the iHub-Anubhuti-IIITD Foundation set up under the 

NM-ICPS scheme of the DST. DS. also acknowledges support from the SERB 

(CRG/2022/007706) and DBT (IC-12044(12)/4/2022-ICD-DBT) 

Authors contributions 

Conceptualization: DS. Methodology: DS, BM, AH. Investigation: BM, AH, SP, NJ, DP, ST, AG. 

Visualization: BM, AH, SP. Supervision: DS, GA, VM. Writing – original draft: DS ,BM ,AH. 

Writing – review & editing:  DS, BM, AH, SMP, SP, AG, GA, VM, SS. 

Competing interests 

None. 

Data and materials availability 

The kGain analysis code and datasets for both the E. coli LTEE and S. cerevisiae LTEE, as well 

as the bioinformatic pipelines (alignment, variant calling, and annotation) for the E. coli 

MG1655 experiment and DMS studies, are publicly accessible on GitHub 

https://github.com/cellsemantics/Oligo_Promotion. The raw reads for the E. coli antibiotic 

adaptation generated in this study has been deposited in the NCBI database under the 

BioProject accession number PRJNA1225006. The kGain analysis code along with the 

attention model and data for SARS-CoV-2 are available on Github 

https://github.com/cellsemantics/Oligo_Promotion. GISAID sequence data for SARS-CoV-2 is 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 11, 2025. ; https://doi.org/10.1101/2024.07.05.602168doi: bioRxiv preprint 

https://github.com/cellsemantics/Oligo_Promotion
https://github.com/cellsemantics/Oligo_Promotion
https://doi.org/10.1101/2024.07.05.602168
http://creativecommons.org/licenses/by-nc-nd/4.0/


publicly available at GISAID Initiative (epicov.org). Source code for variant calling, ORF 

prediction, and genome annotation is available at  rintukutum/strainflow_manuscript 

(github.com) and boxiangliu/covseq: CoV-Seq: COVID-19 Genomic Sequence Database and 

Visualization (github.com). Reference genomes for SARS-CoV-2 are sourced from Severe 

acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1, co - Nucleotide - NCBI 

(nih.gov). The mutation count and lineage data are available at Welcome to the Python 

Outbreak.info package docs! — Python Outbreak.info API 0.1 documentation 

(outbreak-info.github.io). WHO guidelines for SARS-CoV-2 variant classification are available 

at COVID-19 variants | WHO COVID-19 dashboard and SARS-CoV-2 Variant Classifications 

and Definitions (cdc.gov).  

Supplementary Materials 

This PDF includes material and methods along with Figs. S1 to S7 and Table S1 - S2  

 

 

 

 

 

 

 

 

 

 

 

References :  

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 11, 2025. ; https://doi.org/10.1101/2024.07.05.602168doi: bioRxiv preprint 

https://www.epicov.org/epi3/frontend#2c4978
https://github.com/rintukutum/strainflow_manuscript
https://github.com/rintukutum/strainflow_manuscript
https://github.com/boxiangliu/covseq
https://github.com/boxiangliu/covseq
https://www.ncbi.nlm.nih.gov/nuccore/NC_045512.2
https://www.ncbi.nlm.nih.gov/nuccore/NC_045512.2
https://www.ncbi.nlm.nih.gov/nuccore/NC_045512.2
https://outbreak-info.github.io/python-outbreak-info/index.html
https://outbreak-info.github.io/python-outbreak-info/index.html
https://outbreak-info.github.io/python-outbreak-info/index.html
https://data.who.int/dashboards/covid19/variants#:~:text=Since%20the%20beginning%20of%20the%20COVID-19%20pandemic%20and,the%20need%20for%20adjustments%20to%20public%20health%20actions.
https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-classifications.html
https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-classifications.html
https://doi.org/10.1101/2024.07.05.602168
http://creativecommons.org/licenses/by-nc-nd/4.0/


1.​ McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016). 

2.​ di Iulio, J. et al. The human noncoding genome defined by genetic diversity. Nat. Genet. 50, 

333–337 (2018). 

3.​ Kirk, J. M. et al. Functional classification of long non-coding RNAs by k-mer content. Nat. Genet. 

50, 1474–1482 (2018). 

4.​ Brandes, N., Goldman, G., Wang, C. H., Ye, C. J. & Ntranos, V. Genome-wide prediction of disease 

variant effects with a deep protein language model. Nat. Genet. 55, 1512–1522 (2023). 

5.​ Nguyen, E. et al. Sequence modeling and design from molecular to genome scale with Evo. 

Science 386, eado9336 (2024). 

6.​ Minton, K. Predicting variant pathogenicity with AlphaMissense. Nat. Rev. Genet. 24, 804 (2023). 

7.​ Chor, B., Horn, D., Goldman, N., Levy, Y. & Massingham, T. Genomic DNA k-mer spectra: models 

and modalities. Genome Biol. 10, R108 (2009). 

8.​ Jensen, P. R. & Hammer, K. The sequence of spacers between the consensus sequences 

modulates the strength of prokaryotic promoters. Appl. Environ. Microbiol. 64, 82–87 (1998). 

9.​ Olasz, F., Farkas, T., Kiss, J., Arini, A. & Arber, W. Terminal inverted repeats of insertion sequence 

IS30 serve as targets for transposition. J. Bacteriol. 179, 7551–7558 (1997). 

10.​ Siguier, P., Gourbeyre, E., Varani, A., Ton-Hoang, B. & Chandler, M. Everyman’s guide to bacterial 

insertion sequences. in Mobile DNA III vol. 3 555–590 (American Society of Microbiology, 2015). 

11.​ Krupovic, M. et al. Integrated mobile genetic elements in Thaumarchaeota. Environ. Microbiol. 

21, 2056–2078 (2019). 

12.​ Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial 

innovation. Nature 405, 299–304 (2000). 

13.​ Juhas, M. et al. Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS 

Microbiol. Rev. 33, 376–393 (2009). 

14.​ Dubinkina, V. B., Ischenko, D. S., Ulyantsev, V. I., Tyakht, A. V. & Alexeev, D. G. Assessment of 

k-mer spectrum applicability for metagenomic dissimilarity analysis. BMC Bioinformatics 17, 38 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 11, 2025. ; https://doi.org/10.1101/2024.07.05.602168doi: bioRxiv preprint 

http://paperpile.com/b/ZBqMzl/Ya2M
http://paperpile.com/b/ZBqMzl/lsL2X
http://paperpile.com/b/ZBqMzl/lsL2X
http://paperpile.com/b/ZBqMzl/pfjjz
http://paperpile.com/b/ZBqMzl/pfjjz
http://paperpile.com/b/ZBqMzl/SHUt
http://paperpile.com/b/ZBqMzl/SHUt
http://paperpile.com/b/ZBqMzl/EJiA
http://paperpile.com/b/ZBqMzl/EJiA
http://paperpile.com/b/ZBqMzl/dtgsS
http://paperpile.com/b/ZBqMzl/49xOl
http://paperpile.com/b/ZBqMzl/49xOl
http://paperpile.com/b/ZBqMzl/2zCzM
http://paperpile.com/b/ZBqMzl/2zCzM
http://paperpile.com/b/ZBqMzl/6jirb
http://paperpile.com/b/ZBqMzl/6jirb
http://paperpile.com/b/ZBqMzl/zwRtw
http://paperpile.com/b/ZBqMzl/zwRtw
http://paperpile.com/b/ZBqMzl/Upbdp
http://paperpile.com/b/ZBqMzl/Upbdp
http://paperpile.com/b/ZBqMzl/i4FvB
http://paperpile.com/b/ZBqMzl/i4FvB
http://paperpile.com/b/ZBqMzl/miOrC
http://paperpile.com/b/ZBqMzl/miOrC
http://paperpile.com/b/ZBqMzl/GfhqF
http://paperpile.com/b/ZBqMzl/GfhqF
https://doi.org/10.1101/2024.07.05.602168
http://creativecommons.org/licenses/by-nc-nd/4.0/


(2016). 

15.​ Bussi, Y., Kapon, R. & Reich, Z. Large-scale k-mer-based analysis of the informational properties 

of genomes, comparative genomics and taxonomy. PLoS One 16, e0258693 (2021). 

16.​ Chantzi, N. et al. The determinants of the rarity of nucleic and peptide short sequences in 

nature. NAR Genom. Bioinform. 6, lqae029 (2024). 

17.​ Häntze, H. & Horton, P. Effects of spaced k-mers on alignment-free genotyping. Bioinformatics 

39, i213–i221 (2023). 

18.​ Zielezinski, A., Vinga, S., Almeida, J. & Karlowski, W. M. Alignment-free sequence comparison: 

benefits, applications, and tools. Genome Biol. 18, 186 (2017). 

19.​ Halder, A., Piyush, Mathew, B. & Sengupta, D. Improved Python Package for DNA Sequence 

Encoding using Frequency Chaos Game Representation. bioRxiv 2024.04.14.589394 (2024) 

doi:10.1101/2024.04.14.589394. 

20.​ Löchel, H. F. & Heider, D. Chaos game representation and its applications in bioinformatics. 

Comput. Struct. Biotechnol. J. 19, 6263–6271 (2021). 

21.​ Sun, Z., Pei, S., He, R. L. & Yau, S. S.-T. A novel numerical representation for proteins: 

Three-dimensional Chaos Game Representation and its Extended Natural Vector. Comput. 

Struct. Biotechnol. J. 18, 1904–1913 (2020). 

22.​ Wen, J., Chan, R. H. F., Yau, S.-C., He, R. L. & Yau, S. S. T. K-mer natural vector and its application 

to the phylogenetic analysis of genetic sequences. Gene 546, 25–34 (2014). 

23.​ Islam, R., Yusuf, M., Biswas, S. & Rahman, A. H. Optimal K-mer analysis for alignment free 

phylogenetic tree. in Proceedings of the 2023 10th International Conference on Bioinformatics 

Research and Applications (ACM, New York, NY, USA, 2023). doi:10.1145/3632047.3632058. 

24.​ Joseph, J. & Sasikumar, R. Chaos game representation for comparison of whole genomes. BMC 

Bioinformatics 7, 243 (2006). 

25.​ Neutral Theory: The Null Hypothesis of Molecular Evolution. 

http://www.nature.com/scitable/topicpage/neutral-theory-the-null-hypothesis-of-molecular-83

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 11, 2025. ; https://doi.org/10.1101/2024.07.05.602168doi: bioRxiv preprint 

http://paperpile.com/b/ZBqMzl/GfhqF
http://paperpile.com/b/ZBqMzl/LZwEi
http://paperpile.com/b/ZBqMzl/LZwEi
http://paperpile.com/b/ZBqMzl/rOvwv
http://paperpile.com/b/ZBqMzl/rOvwv
http://paperpile.com/b/ZBqMzl/v4wz6
http://paperpile.com/b/ZBqMzl/v4wz6
http://paperpile.com/b/ZBqMzl/UeCIS
http://paperpile.com/b/ZBqMzl/UeCIS
http://paperpile.com/b/ZBqMzl/m9a4g
http://paperpile.com/b/ZBqMzl/m9a4g
http://paperpile.com/b/ZBqMzl/m9a4g
http://dx.doi.org/10.1101/2024.04.14.589394
http://paperpile.com/b/ZBqMzl/m9a4g
http://paperpile.com/b/ZBqMzl/mdVx6
http://paperpile.com/b/ZBqMzl/mdVx6
http://paperpile.com/b/ZBqMzl/MSISW
http://paperpile.com/b/ZBqMzl/MSISW
http://paperpile.com/b/ZBqMzl/MSISW
http://paperpile.com/b/ZBqMzl/90NLo
http://paperpile.com/b/ZBqMzl/90NLo
http://paperpile.com/b/ZBqMzl/K0dMv
http://paperpile.com/b/ZBqMzl/K0dMv
http://paperpile.com/b/ZBqMzl/K0dMv
http://dx.doi.org/10.1145/3632047.3632058
http://paperpile.com/b/ZBqMzl/K0dMv
http://paperpile.com/b/ZBqMzl/Np5Em
http://paperpile.com/b/ZBqMzl/Np5Em
http://paperpile.com/b/ZBqMzl/2nFe
http://www.nature.com/scitable/topicpage/neutral-theory-the-null-hypothesis-of-molecular-839
https://doi.org/10.1101/2024.07.05.602168
http://creativecommons.org/licenses/by-nc-nd/4.0/


9. 

26.​ Lenski, R. E. Experimental evolution and the dynamics of adaptation and genome evolution in 

microbial populations. ISME J. 11, 2181–2194 (2017). 

27.​ Callaway, E. Legendary bacterial evolution experiment enters new era. Nature 606, 634–635 

(2022). 

28.​ Crozat, E., Philippe, N., Lenski, R. E., Geiselmann, J. & Schneider, D. Long-term experimental 

evolution in Escherichia coli. XII. DNA topology as a key target of selection. Genetics 169, 

523–532 (2005). 

29.​ Jeong, H. et al. Genome sequences of Escherichia coli B strains REL606 and BL21(DE3). J. Mol. 

Biol. 394, 644–652 (2009). 

30.​ Good, B. H., McDonald, M. J., Barrick, J. E., Lenski, R. E. & Desai, M. M. The dynamics of 

molecular evolution over 60,000 generations. Nature 551, 45–50 (2017). 

31.​ Van Hofwegen, D. J., Hovde, C. J. & Minnich, S. A. Rapid evolution of citrate utilization by 

Escherichia coli by direct selection requires citT and dctA. J. Bacteriol. 198, 1022–1034 (2016). 

32.​ Supplementary Online Material: Sveta Gerdes et al. 

https://www.genome.wisc.edu/Gerdes2003/genetic.html. 

33.​ Johnson, M. S. et al. Phenotypic and molecular evolution across 10,000 generations in 

laboratory budding yeast populations. Elife 10, (2021). 

34.​ Zhang, Q., Bastard, P., COVID Human Genetic Effort, Cobat, A. & Casanova, J.-L. Human genetic 

and immunological determinants of critical COVID-19 pneumonia. Nature 603, 587–598 (2022). 

35.​ Obermeyer, F. et al. Analysis of 6.4 million SARS-CoV-2 genomes identifies mutations associated 

with fitness. Science 376, 1327–1332 (2022). 

36.​ Dewachter, L. et al. Deep mutational scanning of essential bacterial proteins can guide antibiotic 

development. Nat. Commun. 14, 241 (2023). 

37.​ Jeffrey, H. J. Chaos game representation of gene structure. Nucleic Acids Res. 18, 2163–2170 

(1990). 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 11, 2025. ; https://doi.org/10.1101/2024.07.05.602168doi: bioRxiv preprint 

http://www.nature.com/scitable/topicpage/neutral-theory-the-null-hypothesis-of-molecular-839
http://paperpile.com/b/ZBqMzl/2nFe
http://paperpile.com/b/ZBqMzl/wcc4e
http://paperpile.com/b/ZBqMzl/wcc4e
http://paperpile.com/b/ZBqMzl/w9pXh
http://paperpile.com/b/ZBqMzl/w9pXh
http://paperpile.com/b/ZBqMzl/esqrz
http://paperpile.com/b/ZBqMzl/esqrz
http://paperpile.com/b/ZBqMzl/esqrz
http://paperpile.com/b/ZBqMzl/BuEQX
http://paperpile.com/b/ZBqMzl/BuEQX
http://paperpile.com/b/ZBqMzl/aEia
http://paperpile.com/b/ZBqMzl/aEia
http://paperpile.com/b/ZBqMzl/kG2JA
http://paperpile.com/b/ZBqMzl/kG2JA
http://paperpile.com/b/ZBqMzl/H7qYJ
https://www.genome.wisc.edu/Gerdes2003/genetic.html
http://paperpile.com/b/ZBqMzl/H7qYJ
http://paperpile.com/b/ZBqMzl/uPy6L
http://paperpile.com/b/ZBqMzl/uPy6L
http://paperpile.com/b/ZBqMzl/rTDbw
http://paperpile.com/b/ZBqMzl/rTDbw
http://paperpile.com/b/ZBqMzl/YPWHH
http://paperpile.com/b/ZBqMzl/YPWHH
http://paperpile.com/b/ZBqMzl/z1egk
http://paperpile.com/b/ZBqMzl/z1egk
http://paperpile.com/b/ZBqMzl/9UKpq
http://paperpile.com/b/ZBqMzl/9UKpq
https://doi.org/10.1101/2024.07.05.602168
http://creativecommons.org/licenses/by-nc-nd/4.0/


38.​ Lacey, T. Richard Lenski, E. coli, and the long-term evolution experiment (LTEE). Answers in 

Genesis https://answersingenesis.org/genetics/mutations/richard-lenski-e-coli-ltee/. 

39.​ de Visser, J. A. G. M. & Lenski, R. E. Long-term experimental evolution in Escherichia coli. XI. 

Rejection of non-transitive interactions as cause of declining rate of adaptation. BMC Evol. Biol. 

2, 19 (2002). 

40.​ Lee, D.-H. & Palsson, B. Ø. Adaptive evolution of Escherichia coli K-12 MG1655 during growth on 

a Nonnative carbon source, L-1,2-propanediol. Appl. Environ. Microbiol. 76, 4158–4168 (2010). 

41.​ Sagen, A. Standard M9 minimal medium. (2023). 

42.​ Marciano, D. C. et al. Evolutionary action of mutations reveals antimicrobial resistance genes in 

Escherichia coli. Nat. Commun. 13, 3189 (2022). 

43.​ Garoff, L. et al. Population bottlenecks strongly influence the evolutionary trajectory to 

fluoroquinolone resistance in Escherichia coli. Mol. Biol. Evol. 37, 1637–1646 (2020). 

44.​ Tonner, P. D., Darnell, C. L., Engelhardt, B. E. & Schmid, A. K. Detecting differential growth of 

microbial populations with Gaussian process regression. Genome Res. 27, 320–333 (2017). 

45.​ Beloti, V. et al. Frequency of 2, 3, 5-triphenyltetrazolium chloride (ttc) non-reducing bacteria in 

pasteurized milk. 

https://www.scielo.br/j/rm/a/V7P89Qhddc86rDLP38Xzcbz/?format=pdf&lang=en (1999). 

46.​ Hice, S. A., Santoscoy, M. C., Soupir, M. L. & Cademartiri, R. Distinguishing between 

metabolically active and dormant bacteria on paper. Appl. Microbiol. Biotechnol. 102, 367–375 

(2018). 

47.​ Hoeksema, M., Brul, S. & Ter Kuile, B. H. Influence of reactive oxygen species on DE Novo 

acquisition of resistance to bactericidal antibiotics. Antimicrob. Agents Chemother. 62, (2018). 

48.​ Valentine, N., Wunschel, S., Wunschel, D., Petersen, C. & Wahl, K. Effect of culture conditions on 

microorganism identification by matrix-assisted laser desorption ionization mass spectrometry. 

Appl. Environ. Microbiol. 71, 58–64 (2005). 

49.​ Gonzalez, J. M. & Aranda, B. Microbial growth under limiting conditions-future perspectives. 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 11, 2025. ; https://doi.org/10.1101/2024.07.05.602168doi: bioRxiv preprint 

http://paperpile.com/b/ZBqMzl/dpKk1
http://paperpile.com/b/ZBqMzl/dpKk1
https://answersingenesis.org/genetics/mutations/richard-lenski-e-coli-ltee/
http://paperpile.com/b/ZBqMzl/dpKk1
http://paperpile.com/b/ZBqMzl/1xzGc
http://paperpile.com/b/ZBqMzl/1xzGc
http://paperpile.com/b/ZBqMzl/1xzGc
http://paperpile.com/b/ZBqMzl/yDaHQ
http://paperpile.com/b/ZBqMzl/yDaHQ
http://paperpile.com/b/ZBqMzl/dIr3n
http://paperpile.com/b/ZBqMzl/54boO
http://paperpile.com/b/ZBqMzl/54boO
http://paperpile.com/b/ZBqMzl/I3B7O
http://paperpile.com/b/ZBqMzl/I3B7O
http://paperpile.com/b/ZBqMzl/chfhC
http://paperpile.com/b/ZBqMzl/chfhC
http://paperpile.com/b/ZBqMzl/NOlO5
http://paperpile.com/b/ZBqMzl/NOlO5
https://www.scielo.br/j/rm/a/V7P89Qhddc86rDLP38Xzcbz/?format=pdf&lang=en
http://paperpile.com/b/ZBqMzl/NOlO5
http://paperpile.com/b/ZBqMzl/2sW4o
http://paperpile.com/b/ZBqMzl/2sW4o
http://paperpile.com/b/ZBqMzl/2sW4o
http://paperpile.com/b/ZBqMzl/WtZeU
http://paperpile.com/b/ZBqMzl/WtZeU
http://paperpile.com/b/ZBqMzl/8NbH6
http://paperpile.com/b/ZBqMzl/8NbH6
http://paperpile.com/b/ZBqMzl/8NbH6
http://paperpile.com/b/ZBqMzl/HRdBO
https://doi.org/10.1101/2024.07.05.602168
http://creativecommons.org/licenses/by-nc-nd/4.0/


Microorganisms 11, 1641 (2023). 

50.​ Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. 

Bioinformatics 25, 1754–1760 (2009). 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 11, 2025. ; https://doi.org/10.1101/2024.07.05.602168doi: bioRxiv preprint 

http://paperpile.com/b/ZBqMzl/HRdBO
http://paperpile.com/b/ZBqMzl/whvA8
http://paperpile.com/b/ZBqMzl/whvA8
https://doi.org/10.1101/2024.07.05.602168
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1

Sequence alignment

Variant calling

ATG ACG Σk
i=1

ln  F alt i(v)kGain� =

E. coli 

S. cerevisiae

SARS-CoV-2
  T

  C

ATG
19th

Reference Flank  

ACG
19th

Alternate Flank  

  T

k-mers

F ref i(v)
( )

A T

G
CA CT

CG
CCC CCG

CCA CCTATGCGTCCCTTTATGCTTCTCC

ATGCGTCCCTTTATACTTCTCC

H.sapien S.cerevisiae E.coli (randomized)E.coli

uv
rB

ss
uD

pn
tB

ph
eS

re
cD

gl
gP

at
pE

zr
aS

ac
rB

cy
dC

ld
tC

an
m

K
nu

dG

yo
jI

hc
aD

gl
m

M

m
al

P
�s

X

at
pC

m
al

F

Drug Resistance Metabolism TransportRepair MetabolismSignal Transduc�onDefense mechanismTransla�on

Genomic posi�on
5’ 3’

g

h

a

c d e f

b
ya

aJ

kGain computa�on

GCCGCAAGAC ->Ref kmer

GCCGCCAGAC ->Alt kmer

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 11, 2025. ; https://doi.org/10.1101/2024.07.05.602168doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.05.602168
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

10
k

20
k

30
k

40
k

50
k

m2
m4
p3

m3
p6

m1
m6
m5
p2
p4
p5
p1

M
ut

at
or

N
on

-m
ut

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.5

-3.0

-2.0

M
ed

ia
n 

kG
ai

n 

Genera�on

1.10
1.23

1.2

1.0

0.8

0.6

0.2

0.0

kG
ai

n
AT

 ->
 G

C

O
dd

s 
Ra

tio

Figure 2

REL606
0th 10k 30k 60k

1988 2016 Present

Mutator

Non-mutator
X12

~6.67 genera�on 

1% x6

x6

Samples frozen a�er every 500 genera�on

YPD @ 30°C 

SC @ 37° C

SC @ 30° C 

alpha MAT
MJM335

a MAT
MJM361

Diploid
MJM102

10k

8k

10k

Sequenced at eight �me points 

E.Coli LTEE S.cerevisiae LTEE

B.1.526
Discovered:
Nov. 2020

P.1
Discovered:
Dec. 4 2020

B.1.351
Discovered:
Dec. 18 2020

B.1.1.7
Discovered:
Dec. 14 2020

B.1.427
Discovered:
Dec. 2020

B.1.429
Discovered:
Nov. 2020

B.1.617
Discovered:
Oct. 2020

SARS CoV-2

1000

800

600

400

200

0N
um

be
r o

f u
ni

qu
e 

m
ut

a�
on

Non-mut
Others
AT -> GC

m
5

m
6 p1 p2 p4 p5

10000

8000

6000

4000

2000

0N
um

be
r o

f u
ni

qu
e 

m
ut

a�
on

Mut
Others
AT -> GC

m
1

m
2

m
3

m
4 p3 p6

N
um

be
r o

f u
ni

qu
e 

m
ut

a�
on

Pu
rif

yin
g 

Se
lec

�o
n

Ne
ut

ra
l

Di
re

c�
on

al 
Se

lec
�o

n

0

5k

10k

15k

20k

4330

23086

9424

Fix
ed

No
t F

ixe
d

0

10k

20k

30k

5216

31624

N
um

be
r o

f u
ni

qu
e 

m
ut

a�
on

N
um

be
r o

f u
ni

qu
e 

m
ut

a�
on

M
ut

No
n-

m
ut

N
um

be
r o

f u
ni

qu
e 

m
ut

a�
on

e f g h i

j mk l

INT+PMS Assay

E.coli kanamycin resistance muta�onal accumula�on 

Passage Selec�on of colony Sublethal conc. Selected colony

a b

c

d

27213

3776

0

10k

20k

30k

Ess.

Non−ess.
0

10k

20k

30k

33784

3138
−30

−20

−10

0

10

20

Directional Selection
Purifying SelectionNeutral

Non
-m

ut

M
ut

kG
ai

n 

**** *
ns ****

****
****

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 11, 2025. ; https://doi.org/10.1101/2024.07.05.602168doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.05.602168
http://creativecommons.org/licenses/by-nc-nd/4.0/


Parallel Genes

KGain 

Ess.

Non-ess.

Non-mut
****

Ess.

Non-ess.

kG
ai

n

Mut
* Essen�al

Non-essen�al

Non-mut

Fr
eq

ue
nc

y

Essen�al
Non-essen�al

Mut

Fr
eq

ue
nc

y

600

400

200

0

60
K

0

-2

-4

-6

0

10
K

20
K

30
K

40
K

50
K

Mut

Essen�al
Non-ess

M
ed

ia
n 

kG
ai

n

Genera�on

0

10
K

20
K

30
K

40
K

50
K

60
K

0

-2

-4

-6

Non-mut

Essen�al
Non-ess

M
ed

ia
n 

kG
ai

n

Genera�on

0 10K 20K 30K 40K 50K 60K

M
ea

n 
Al

le
le

 c
ou

nt

30

50

40

20

10
Mutator
Non-mut

Genera�on

M
ea

n 
kG

ai
n

0

-3

-1

-2

-4
Mutator
Non-mut

0 10K 20K 30K 40K 50K 60K
Genera�on

0 10k 20k 30k 40k 50k 60k

0 10k 20k 30k 40k 50k 60k

-5.8

-6.2

-6.6

-7.0

-1.93

-1.95

-1.97

-1.99

LL
R 

Sc
or

e
Ev

o 
Sc

or
e

Genera�on

Genera�on

a

b

c

Scores
3 SWS 

Scores
3 SWS 

Scores
3 SWS 

P = 1e-04 
C.I = 0.768

P =  1e-04 
C.I = 0.641

P =  1e+00 
C.I =  -0.401

0 10k 20k 30k 40k 50k 60k

Genera�on

0.5

0.0

-0.5

-1.0

-1.5

-2.0

-2.5

-3.0

-3.5

M
ed

ia
n 

kG
ai

n 
sc

or
e

j k l m

d e h if g

Figure 3

Fixed

Not Fixed

kG
ai

n

Non-mut

−30

−20

−10

0

10

20 ****

kG
ai

n

****

Fixed

Not Fixed

Mut

−30

−20

−10

0

10

20

−30

−20
−10

0

10

20

−30
−20
−10

0
10
20

kG
ai

n

−2.2 −2.0−1.8−1.6 −4 −3 −2

600

400

200

0

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 11, 2025. ; https://doi.org/10.1101/2024.07.05.602168doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.05.602168
http://creativecommons.org/licenses/by-nc-nd/4.0/


Mutator
Cell mo�lity

Amino acid transport and metabolism
Transcrip�on

Pos�ransla�onal modifica�on
Intracellular trafficking and secre�on
Coenzyme transport and metabolism

Secondary metabolites biosynthesis
Cell wall/membrane/envelope biogenesis

Func�on unknown
Signal transduc�on mechanisms
Lipid transport and metabolism

DNA replica�on, recombina�on and repair
Defense mechanisms

Carbohydrate transport and metabolism
Inorganic ion transport and metabolism

Cell cycle control, cell division
Energy produc�on and conversion

Nucleo�de transport and metabolism
General func�on predic�on

−3

−2

−1

0

1

M
edian kGain

5K 10
K

15
K

20
K

25
K

30
K

35
K

40
K

45
K

50
K

55
K

60
K

Non-mut

−8

−6

−4

−2

0

Cell wall/membrane/envelope biogenesis
Carbohydrate transport and metabolism

Amino acid transport and metabolism
DNA replica�on, recombina�on and repair

Transcrip�on
Func�on unknown

Inorganic ion transport and metabolism
Signal transduc�on mechanisms

Intracellular trafficking and secre�on
Energy produc�on and conversion

General func�on predic�on
Cell cycle control, cell division

Secondary metabolites biosynthesis
Cell mo�lity

Pos�ransla�onal modifica�on
Coenzyme transport and metabolism
Nucleo�de transport and metabolism

Lipid transport and metabolism
Defense mechanisms

5K 10
K

15
K

20
K

25
K

30
K

35
K

40
K

45
K

50
K

55
K

60
K

****
****

****

****

****
****

**** ****
****

**** **** ****

a b

Figure 4

c d

0 10k 20k 30k 40k 50k
Genera�on

0.0

0.2

0.4

0.6

0.8

1.0

1.2
M

ed
ia

n 
al

le
le

 fr
eq

ue
nc

y
Non-mut non-parallel Non-mut parallel

Mut parallelMut non-parallel

0 10k 20k 30k 40k 50k
Genera�on

−5

−4

−3

−2

−1

0

1

2

M
ed

ia
n 

 k
Ga

in

Non-mut non-parallel Non-mut parallel
Mut parallelMut non-parallel

**** **** **** **** **** **** **** **** **** **** **** ****

*** **** ****
**** **** ****

****
**** **

****
****

** *** ** **

M
edian kGain

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 11, 2025. ; https://doi.org/10.1101/2024.07.05.602168doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.05.602168
http://creativecommons.org/licenses/by-nc-nd/4.0/


A
C

G
TN
uc

le
o�

de 1 1 0 0 0 0 1 0 0 0 1 1 1 0 0 1 0 0 0
0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1
0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1 0 -1 0 0 0 0 0 0 1 0 0

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9
Posi�on (rela�ve to muta�on)

Reference flank Alternate Allele
Alt (Mut. Site) Absent Wild-type Ref (Mut. Site)

N
uc

le
o�

de
a b c

100

200

0
100

200 300
400

500

Epoch

Cu
st

om
 lo

ss

Training
Valida�on

2.5

3.0

3.5

4.0

4.5

M
AE

 L
os

s

Training
Valida�on

0
100

200
300

400
500

Epoch

10

15

20

25

30

M
SE

 L
os

s

Training
Valida�on

0
100

200
300

400
500

Epoch

-20

-10

0

10

Actual kGain

Pr
ed

ic
te

d 
kG

ai
n

Count

30
60
90

-20 -10 0 10

d

e

r = 0.81
R2 = 0.64
MAE  2.49

0.00

0.05

0.10

−10 0 10
Error

De
ns

ity

f

yahN

ybhJ

mntP

y�S

fusA

fusA

tldD
sbmA

Asuf
Ijby

rpsL

fusA

fusA

hemA

fusA

rrlDrrlA

cpxA

-15

-10

-5

0

5

-20 -15 -10 -5 0 5 10
Actual kGain

Pr
ed

ic
te

d 
kG

ai
n

metQ

r = 0.82
R2 = 0.67
MAE  2.48

g

C A T G A C C A T A C T G A C C A C G C A T G A C C A T A C T G A C C A C G C A T G A C C A T A C T G A C C A C G C A T G A C C A T A C T G A C C A C G

C
A
T
G
A
C
C
A
T
A
C
T
G
A
C
C
A
C
G

C
A
T
G
A
C
C
A
T
A
C
T
G
A
C
C
A
C
G

0.25

0.50

0.75

1.00

La
ye

r 1
La

ye
r 2

Head1 Head2 Head3 Head4

h

0.00

0.05

0.10

0.15

0.20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Posi�on

M
ea

n 
A�

en
�o

n

Mutated site Other posi�ons

0.00

0.05

0.10

0.15

0.20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Posi�on

Mutated site Other posi�ons

M
ea

n 
A�

en
�o

n

i j

Figure 5

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 11, 2025. ; https://doi.org/10.1101/2024.07.05.602168doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.05.602168
http://creativecommons.org/licenses/by-nc-nd/4.0/


40.6

GII

III

IV
V

GII

III

IV V

GII
III

IV
V

Y515N

515Y

fusA WT

fusA Mutant
fusA Alignment of WT and Mutant

Kan

Kan

EF-
G

APE

APE

kanamycin binds to decoding site of 
the 30S ribosome,

leading to impaired transloca�on   

EF-G

g h

Mutant EF-G binds to decoding site 
of the 30S ribosome,

resuming transloca�on   

0 2 4 6
0.0

0.5

1.0

1.5

Time in hours

O
D

at
60

0n
m

WT
Mutant

0 2 4 6
0.0

0.1

0.2

0.3

Time in hours

O
D

at
60

0n
m

WT
Mutant

**
ns ns

a

d e f

Figure 6

pProExHTA::fusA Overexpression 

hemA

mntP mntP mntP

metQ

yfbS yfbS yfbS

tldD

rrlD

yahN

yahN yahN

fusA

fusA
fusA

fusA

fusA

fusA

rpsLsbmA

rrlA

cpxA

ybhJ

ybhJ ybhJybjI

−10

0

10

D R1 R3

kG
ai

n

AF < 1 AF = 1

hemA

mntP mntP mntP

metQ

yfbS yfbS yfbS

tldD

rrlD

yahN

yahN
yahN

fusA

fusA
fusA

fusA

fusA

fusA

rpsL sbmA

rrlA

cpxA

ybhJ

ybhJ ybhJybjI

−10

0

10

D R1 R3

Fixed

Not fixed

kG
ai

n

b c

****

5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Time in hours

O
D

at
60

0n
m

D 
R1 

R3 
WT

****

****

ns
**

*
ns ns

75

100
~80

Induced
Uninduced

+ - + -
+- +-

M

fusA fusA Y515N

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 11, 2025. ; https://doi.org/10.1101/2024.07.05.602168doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.05.602168
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 7

Po
pu

la
�o

ns
 (n

 =
 9

0)

10

5

0

-10

-5

-15

kG
ai

n 
sc

or
e

Ac
ce

ss
or

y
No

n-
st

ru
ct

ur
al

St
ru

ct
ur

al

Control VOC/VOI
** ns  *

Structural

Non-structural

Accessory

0
0.

25
0.

50
0.

75
1.

00
1.

25
1.

50
1.

75

Variant Counts (log scale)

Control VOC VOI

12207

36918

4806

83

22

9

12

11

7

10

5

0

-10

-5

-15

Co
nt

ro
l 

kG
ai

n 
sc

or
e

***

VO
C/

VO
I

d e f g

a b c

< 0 >= 0
kGain

102

100

10-2

10-4

10-6

M
ut

a�
on

 Fr
eq

ue
nc

y

****

−30

−20

−10

0

10

20

70
1410

2640
5150

7530
10150

Genera�on
kG

ai
n

−30

−20

−10

0

10

20

70
1410

2640
5150

7530
10150

Genera�on

kG
ai

n

****
**** **** ****

**** ****

Fixed Not FixedEssen�al Non essen�al

**ns ns ******

70
1410

2640
5150

7530
10150

−1.5
−1

−0.5
0

De
ns

ity

−2
−1.5
−1

−0.5
0 kGain

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 11, 2025. ; https://doi.org/10.1101/2024.07.05.602168doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.05.602168
http://creativecommons.org/licenses/by-nc-nd/4.0/


murA

Cataly�c
Domain

C terminal
Domain

kGain Tolerance Score
D
E
K
R
H
S
T
C
N
Q
F
Y

W
G
A
V
L
I

M
P

M
ut

at
ed

 A
m

in
o 

Ac
id

M
ut

at
ed

 A
m

in
o 

Ac
id

D
E
K
R
H
S
T
C
N
Q
F
Y

W
G
A
V
L
I

M
P

1

0.8

0.4

0.2

0.6

10

-30

0

-20

-10
-1

.2
0

-1
.7

7

10

5

0

-5

-10

-15

To
ler

an
t 

In
to

ler
an

t 

*

kG
ai

n

-1
.3

8

-1
.9

2

To
ler

an
t 

In
to

ler
an

t 

  ****

10

5

0

-5

-10

-15

kG
ai

n

-0
.4

9

-0
.9

4

To
ler

an
t 

In
to

ler
an

t 

  ****

10

5

0

-5

-10

-15

kG
ai

n

a b

c d e
lpxC murAfabZ

murA

Cataly�c
Domain

C terminal
Domain

Figure 8

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 11, 2025. ; https://doi.org/10.1101/2024.07.05.602168doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.05.602168
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 11, 2025. ; https://doi.org/10.1101/2024.07.05.602168doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.05.602168
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 11, 2025. ; https://doi.org/10.1101/2024.07.05.602168doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.05.602168
http://creativecommons.org/licenses/by-nc-nd/4.0/

